1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22 #include "gdb_string.h"
35 /* Local function prototypes. */
37 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
40 static void show_values PARAMS ((char *, int));
42 static void show_convenience PARAMS ((char *, int));
44 static int vb_match PARAMS ((struct type *, int, struct type *));
46 /* The value-history records all the values printed
47 by print commands during this session. Each chunk
48 records 60 consecutive values. The first chunk on
49 the chain records the most recent values.
50 The total number of values is in value_history_count. */
52 #define VALUE_HISTORY_CHUNK 60
54 struct value_history_chunk
56 struct value_history_chunk *next;
57 value_ptr values[VALUE_HISTORY_CHUNK];
60 /* Chain of chunks now in use. */
62 static struct value_history_chunk *value_history_chain;
64 static int value_history_count; /* Abs number of last entry stored */
66 /* List of all value objects currently allocated
67 (except for those released by calls to release_value)
68 This is so they can be freed after each command. */
70 static value_ptr all_values;
72 /* Allocate a value that has the correct length for type TYPE. */
78 register value_ptr val;
79 struct type *atype = check_typedef (type);
81 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
82 VALUE_NEXT (val) = all_values;
84 VALUE_TYPE (val) = type;
85 VALUE_LVAL (val) = not_lval;
86 VALUE_ADDRESS (val) = 0;
87 VALUE_FRAME (val) = 0;
88 VALUE_OFFSET (val) = 0;
89 VALUE_BITPOS (val) = 0;
90 VALUE_BITSIZE (val) = 0;
91 VALUE_REGNO (val) = -1;
93 VALUE_OPTIMIZED_OUT (val) = 0;
98 /* Allocate a value that has the correct length
99 for COUNT repetitions type TYPE. */
102 allocate_repeat_value (type, count)
106 int low_bound = current_language->string_lower_bound; /* ??? */
107 /* FIXME-type-allocation: need a way to free this type when we are
109 struct type *range_type
110 = create_range_type ((struct type *) NULL, builtin_type_int,
111 low_bound, count + low_bound - 1);
112 /* FIXME-type-allocation: need a way to free this type when we are
114 return allocate_value (create_array_type ((struct type *) NULL,
118 /* Return a mark in the value chain. All values allocated after the
119 mark is obtained (except for those released) are subject to being freed
120 if a subsequent value_free_to_mark is passed the mark. */
127 /* Free all values allocated since MARK was obtained by value_mark
128 (except for those released). */
130 value_free_to_mark (mark)
135 for (val = all_values; val && val != mark; val = next)
137 next = VALUE_NEXT (val);
143 /* Free all the values that have been allocated (except for those released).
144 Called after each command, successful or not. */
149 register value_ptr val, next;
151 for (val = all_values; val; val = next)
153 next = VALUE_NEXT (val);
160 /* Remove VAL from the chain all_values
161 so it will not be freed automatically. */
165 register value_ptr val;
167 register value_ptr v;
169 if (all_values == val)
171 all_values = val->next;
175 for (v = all_values; v; v = v->next)
185 /* Release all values up to mark */
187 value_release_to_mark (mark)
192 for (val = next = all_values; next; next = VALUE_NEXT (next))
193 if (VALUE_NEXT (next) == mark)
195 all_values = VALUE_NEXT (next);
196 VALUE_NEXT (next) = 0;
203 /* Return a copy of the value ARG.
204 It contains the same contents, for same memory address,
205 but it's a different block of storage. */
211 register struct type *type = VALUE_TYPE (arg);
212 register value_ptr val = allocate_value (type);
213 VALUE_LVAL (val) = VALUE_LVAL (arg);
214 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
215 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
216 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
217 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
218 VALUE_FRAME (val) = VALUE_FRAME (arg);
219 VALUE_REGNO (val) = VALUE_REGNO (arg);
220 VALUE_LAZY (val) = VALUE_LAZY (arg);
221 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
222 val->modifiable = arg->modifiable;
223 if (!VALUE_LAZY (val))
225 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
226 TYPE_LENGTH (VALUE_TYPE (arg)));
231 /* Access to the value history. */
233 /* Record a new value in the value history.
234 Returns the absolute history index of the entry.
235 Result of -1 indicates the value was not saved; otherwise it is the
236 value history index of this new item. */
239 record_latest_value (val)
244 /* We don't want this value to have anything to do with the inferior anymore.
245 In particular, "set $1 = 50" should not affect the variable from which
246 the value was taken, and fast watchpoints should be able to assume that
247 a value on the value history never changes. */
248 if (VALUE_LAZY (val))
249 value_fetch_lazy (val);
250 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
251 from. This is a bit dubious, because then *&$1 does not just return $1
252 but the current contents of that location. c'est la vie... */
256 /* Here we treat value_history_count as origin-zero
257 and applying to the value being stored now. */
259 i = value_history_count % VALUE_HISTORY_CHUNK;
262 register struct value_history_chunk *new
263 = (struct value_history_chunk *)
264 xmalloc (sizeof (struct value_history_chunk));
265 memset (new->values, 0, sizeof new->values);
266 new->next = value_history_chain;
267 value_history_chain = new;
270 value_history_chain->values[i] = val;
272 /* Now we regard value_history_count as origin-one
273 and applying to the value just stored. */
275 return ++value_history_count;
278 /* Return a copy of the value in the history with sequence number NUM. */
281 access_value_history (num)
284 register struct value_history_chunk *chunk;
286 register int absnum = num;
289 absnum += value_history_count;
294 error ("The history is empty.");
296 error ("There is only one value in the history.");
298 error ("History does not go back to $$%d.", -num);
300 if (absnum > value_history_count)
301 error ("History has not yet reached $%d.", absnum);
305 /* Now absnum is always absolute and origin zero. */
307 chunk = value_history_chain;
308 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
312 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
315 /* Clear the value history entirely.
316 Must be done when new symbol tables are loaded,
317 because the type pointers become invalid. */
320 clear_value_history ()
322 register struct value_history_chunk *next;
324 register value_ptr val;
326 while (value_history_chain)
328 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
329 if ((val = value_history_chain->values[i]) != NULL)
331 next = value_history_chain->next;
332 free ((PTR)value_history_chain);
333 value_history_chain = next;
335 value_history_count = 0;
339 show_values (num_exp, from_tty)
344 register value_ptr val;
349 /* "info history +" should print from the stored position.
350 "info history <exp>" should print around value number <exp>. */
351 if (num_exp[0] != '+' || num_exp[1] != '\0')
352 num = parse_and_eval_address (num_exp) - 5;
356 /* "info history" means print the last 10 values. */
357 num = value_history_count - 9;
363 for (i = num; i < num + 10 && i <= value_history_count; i++)
365 val = access_value_history (i);
366 printf_filtered ("$%d = ", i);
367 value_print (val, gdb_stdout, 0, Val_pretty_default);
368 printf_filtered ("\n");
371 /* The next "info history +" should start after what we just printed. */
374 /* Hitting just return after this command should do the same thing as
375 "info history +". If num_exp is null, this is unnecessary, since
376 "info history +" is not useful after "info history". */
377 if (from_tty && num_exp)
384 /* Internal variables. These are variables within the debugger
385 that hold values assigned by debugger commands.
386 The user refers to them with a '$' prefix
387 that does not appear in the variable names stored internally. */
389 static struct internalvar *internalvars;
391 /* Look up an internal variable with name NAME. NAME should not
392 normally include a dollar sign.
394 If the specified internal variable does not exist,
395 one is created, with a void value. */
398 lookup_internalvar (name)
401 register struct internalvar *var;
403 for (var = internalvars; var; var = var->next)
404 if (STREQ (var->name, name))
407 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
408 var->name = concat (name, NULL);
409 var->value = allocate_value (builtin_type_void);
410 release_value (var->value);
411 var->next = internalvars;
417 value_of_internalvar (var)
418 struct internalvar *var;
420 register value_ptr val;
422 #ifdef IS_TRAPPED_INTERNALVAR
423 if (IS_TRAPPED_INTERNALVAR (var->name))
424 return VALUE_OF_TRAPPED_INTERNALVAR (var);
427 val = value_copy (var->value);
428 if (VALUE_LAZY (val))
429 value_fetch_lazy (val);
430 VALUE_LVAL (val) = lval_internalvar;
431 VALUE_INTERNALVAR (val) = var;
436 set_internalvar_component (var, offset, bitpos, bitsize, newval)
437 struct internalvar *var;
438 int offset, bitpos, bitsize;
441 register char *addr = VALUE_CONTENTS (var->value) + offset;
443 #ifdef IS_TRAPPED_INTERNALVAR
444 if (IS_TRAPPED_INTERNALVAR (var->name))
445 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
449 modify_field (addr, value_as_long (newval),
452 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
456 set_internalvar (var, val)
457 struct internalvar *var;
462 #ifdef IS_TRAPPED_INTERNALVAR
463 if (IS_TRAPPED_INTERNALVAR (var->name))
464 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
467 newval = value_copy (val);
468 newval->modifiable = 1;
470 /* Force the value to be fetched from the target now, to avoid problems
471 later when this internalvar is referenced and the target is gone or
473 if (VALUE_LAZY (newval))
474 value_fetch_lazy (newval);
476 /* Begin code which must not call error(). If var->value points to
477 something free'd, an error() obviously leaves a dangling pointer.
478 But we also get a danling pointer if var->value points to
479 something in the value chain (i.e., before release_value is
480 called), because after the error free_all_values will get called before
482 free ((PTR)var->value);
484 release_value (newval);
485 /* End code which must not call error(). */
489 internalvar_name (var)
490 struct internalvar *var;
495 /* Free all internalvars. Done when new symtabs are loaded,
496 because that makes the values invalid. */
499 clear_internalvars ()
501 register struct internalvar *var;
506 internalvars = var->next;
507 free ((PTR)var->name);
508 free ((PTR)var->value);
514 show_convenience (ignore, from_tty)
518 register struct internalvar *var;
521 for (var = internalvars; var; var = var->next)
523 #ifdef IS_TRAPPED_INTERNALVAR
524 if (IS_TRAPPED_INTERNALVAR (var->name))
531 printf_filtered ("$%s = ", var->name);
532 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
533 printf_filtered ("\n");
536 printf_unfiltered ("No debugger convenience variables now defined.\n\
537 Convenience variables have names starting with \"$\";\n\
538 use \"set\" as in \"set $foo = 5\" to define them.\n");
541 /* Extract a value as a C number (either long or double).
542 Knows how to convert fixed values to double, or
543 floating values to long.
544 Does not deallocate the value. */
548 register value_ptr val;
550 /* This coerces arrays and functions, which is necessary (e.g.
551 in disassemble_command). It also dereferences references, which
552 I suspect is the most logical thing to do. */
554 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
558 value_as_double (val)
559 register value_ptr val;
564 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
566 error ("Invalid floating value found in program.");
569 /* Extract a value as a C pointer.
570 Does not deallocate the value. */
572 value_as_pointer (val)
575 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
576 whether we want this to be true eventually. */
578 /* ADDR_BITS_REMOVE is wrong if we are being called for a
579 non-address (e.g. argument to "signal", "info break", etc.), or
580 for pointers to char, in which the low bits *are* significant. */
581 return ADDR_BITS_REMOVE(value_as_long (val));
583 return value_as_long (val);
587 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
588 as a long, or as a double, assuming the raw data is described
589 by type TYPE. Knows how to convert different sizes of values
590 and can convert between fixed and floating point. We don't assume
591 any alignment for the raw data. Return value is in host byte order.
593 If you want functions and arrays to be coerced to pointers, and
594 references to be dereferenced, call value_as_long() instead.
596 C++: It is assumed that the front-end has taken care of
597 all matters concerning pointers to members. A pointer
598 to member which reaches here is considered to be equivalent
599 to an INT (or some size). After all, it is only an offset. */
602 unpack_long (type, valaddr)
606 register enum type_code code = TYPE_CODE (type);
607 register int len = TYPE_LENGTH (type);
608 register int nosign = TYPE_UNSIGNED (type);
610 if (current_language->la_language == language_scm
611 && is_scmvalue_type (type))
612 return scm_unpack (type, valaddr, TYPE_CODE_INT);
616 case TYPE_CODE_TYPEDEF:
617 return unpack_long (check_typedef (type), valaddr);
622 case TYPE_CODE_RANGE:
624 return extract_unsigned_integer (valaddr, len);
626 return extract_signed_integer (valaddr, len);
629 return extract_floating (valaddr, len);
633 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
634 whether we want this to be true eventually. */
635 return extract_address (valaddr, len);
637 case TYPE_CODE_MEMBER:
638 error ("not implemented: member types in unpack_long");
641 error ("Value can't be converted to integer.");
643 return 0; /* Placate lint. */
646 /* Return a double value from the specified type and address.
647 INVP points to an int which is set to 0 for valid value,
648 1 for invalid value (bad float format). In either case,
649 the returned double is OK to use. Argument is in target
650 format, result is in host format. */
653 unpack_double (type, valaddr, invp)
658 register enum type_code code = TYPE_CODE (type);
659 register int len = TYPE_LENGTH (type);
660 register int nosign = TYPE_UNSIGNED (type);
662 *invp = 0; /* Assume valid. */
663 CHECK_TYPEDEF (type);
664 if (code == TYPE_CODE_FLT)
667 if (INVALID_FLOAT (valaddr, len))
670 return 1.234567891011121314;
673 return extract_floating (valaddr, len);
677 /* Unsigned -- be sure we compensate for signed LONGEST. */
679 return (ULONGEST) unpack_long (type, valaddr);
682 return (ULONGEST) unpack_long (type, valaddr);
684 /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */
685 return (LONGEST) unpack_long (type, valaddr);
687 #endif /* _MSC_VER */
691 /* Signed -- we are OK with unpack_long. */
692 return unpack_long (type, valaddr);
696 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
697 as a CORE_ADDR, assuming the raw data is described by type TYPE.
698 We don't assume any alignment for the raw data. Return value is in
701 If you want functions and arrays to be coerced to pointers, and
702 references to be dereferenced, call value_as_pointer() instead.
704 C++: It is assumed that the front-end has taken care of
705 all matters concerning pointers to members. A pointer
706 to member which reaches here is considered to be equivalent
707 to an INT (or some size). After all, it is only an offset. */
710 unpack_pointer (type, valaddr)
714 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
715 whether we want this to be true eventually. */
716 return unpack_long (type, valaddr);
719 /* Given a value ARG1 (offset by OFFSET bytes)
720 of a struct or union type ARG_TYPE,
721 extract and return the value of one of its fields.
722 FIELDNO says which field.
724 For C++, must also be able to return values from static fields */
727 value_primitive_field (arg1, offset, fieldno, arg_type)
728 register value_ptr arg1;
730 register int fieldno;
731 register struct type *arg_type;
733 register value_ptr v;
734 register struct type *type;
736 CHECK_TYPEDEF (arg_type);
737 type = TYPE_FIELD_TYPE (arg_type, fieldno);
739 /* Handle packed fields */
741 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
742 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
744 v = value_from_longest (type,
745 unpack_field_as_long (arg_type,
746 VALUE_CONTENTS (arg1),
748 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
749 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
753 v = allocate_value (type);
754 if (VALUE_LAZY (arg1))
757 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
760 VALUE_LVAL (v) = VALUE_LVAL (arg1);
761 if (VALUE_LVAL (arg1) == lval_internalvar)
762 VALUE_LVAL (v) = lval_internalvar_component;
763 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
764 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
768 /* Given a value ARG1 of a struct or union type,
769 extract and return the value of one of its fields.
770 FIELDNO says which field.
772 For C++, must also be able to return values from static fields */
775 value_field (arg1, fieldno)
776 register value_ptr arg1;
777 register int fieldno;
779 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
782 /* Return a non-virtual function as a value.
783 F is the list of member functions which contains the desired method.
784 J is an index into F which provides the desired method. */
787 value_fn_field (arg1p, f, j, type, offset)
794 register value_ptr v;
795 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
798 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
799 0, VAR_NAMESPACE, 0, NULL);
803 error ("Internal error: could not find physical method named %s",
804 TYPE_FN_FIELD_PHYSNAME (f, j));
807 v = allocate_value (ftype);
808 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
809 VALUE_TYPE (v) = ftype;
813 if (type != VALUE_TYPE (*arg1p))
814 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
815 value_addr (*arg1p)));
817 /* Move the `this' pointer according to the offset.
818 VALUE_OFFSET (*arg1p) += offset;
825 /* Return a virtual function as a value.
826 ARG1 is the object which provides the virtual function
827 table pointer. *ARG1P is side-effected in calling this function.
828 F is the list of member functions which contains the desired virtual
830 J is an index into F which provides the desired virtual function.
832 TYPE is the type in which F is located. */
834 value_virtual_fn_field (arg1p, f, j, type, offset)
841 value_ptr arg1 = *arg1p;
842 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
843 struct type *entry_type;
844 /* First, get the virtual function table pointer. That comes
845 with a strange type, so cast it to type `pointer to long' (which
846 should serve just fine as a function type). Then, index into
847 the table, and convert final value to appropriate function type. */
848 value_ptr entry, vfn, vtbl;
849 value_ptr vi = value_from_longest (builtin_type_int,
850 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
851 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
852 struct type *context;
853 if (fcontext == NULL)
854 /* We don't have an fcontext (e.g. the program was compiled with
855 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
856 This won't work right for multiple inheritance, but at least we
857 should do as well as GDB 3.x did. */
858 fcontext = TYPE_VPTR_BASETYPE (type);
859 context = lookup_pointer_type (fcontext);
860 /* Now context is a pointer to the basetype containing the vtbl. */
861 if (TYPE_TARGET_TYPE (context) != type1)
863 arg1 = value_ind (value_cast (context, value_addr (arg1)));
864 type1 = check_typedef (VALUE_TYPE (arg1));
868 /* Now context is the basetype containing the vtbl. */
870 /* This type may have been defined before its virtual function table
871 was. If so, fill in the virtual function table entry for the
873 if (TYPE_VPTR_FIELDNO (context) < 0)
874 fill_in_vptr_fieldno (context);
876 /* The virtual function table is now an array of structures
877 which have the form { int16 offset, delta; void *pfn; }. */
878 vtbl = value_ind (value_primitive_field (arg1, 0,
879 TYPE_VPTR_FIELDNO (context),
880 TYPE_VPTR_BASETYPE (context)));
882 /* Index into the virtual function table. This is hard-coded because
883 looking up a field is not cheap, and it may be important to save
884 time, e.g. if the user has set a conditional breakpoint calling
885 a virtual function. */
886 entry = value_subscript (vtbl, vi);
887 entry_type = check_typedef (VALUE_TYPE (entry));
889 if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
891 /* Move the `this' pointer according to the virtual function table. */
892 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
894 if (! VALUE_LAZY (arg1))
896 VALUE_LAZY (arg1) = 1;
897 value_fetch_lazy (arg1);
900 vfn = value_field (entry, 2);
902 else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
905 error ("I'm confused: virtual function table has bad type");
906 /* Reinstantiate the function pointer with the correct type. */
907 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
913 /* ARG is a pointer to an object we know to be at least
914 a DTYPE. BTYPE is the most derived basetype that has
915 already been searched (and need not be searched again).
916 After looking at the vtables between BTYPE and DTYPE,
917 return the most derived type we find. The caller must
918 be satisfied when the return value == DTYPE.
920 FIXME-tiemann: should work with dossier entries as well. */
923 value_headof (in_arg, btype, dtype)
925 struct type *btype, *dtype;
927 /* First collect the vtables we must look at for this object. */
928 /* FIXME-tiemann: right now, just look at top-most vtable. */
929 value_ptr arg, vtbl, entry, best_entry = 0;
931 int offset, best_offset = 0;
933 CORE_ADDR pc_for_sym;
934 char *demangled_name;
935 struct minimal_symbol *msymbol;
937 btype = TYPE_VPTR_BASETYPE (dtype);
938 CHECK_TYPEDEF (btype);
941 arg = value_cast (lookup_pointer_type (btype), arg);
942 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
944 /* Check that VTBL looks like it points to a virtual function table. */
945 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
947 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
948 || !VTBL_PREFIX_P (demangled_name))
950 /* If we expected to find a vtable, but did not, let the user
951 know that we aren't happy, but don't throw an error.
952 FIXME: there has to be a better way to do this. */
953 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
954 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
955 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
956 VALUE_TYPE (in_arg) = error_type;
960 /* Now search through the virtual function table. */
961 entry = value_ind (vtbl);
962 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
963 for (i = 1; i <= nelems; i++)
965 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
967 /* This won't work if we're using thunks. */
968 if (TYPE_CODE (check_typedef (VALUE_TYPE (entry))) != TYPE_CODE_STRUCT)
970 offset = longest_to_int (value_as_long (value_field (entry, 0)));
971 /* If we use '<=' we can handle single inheritance
972 * where all offsets are zero - just use the first entry found. */
973 if (offset <= best_offset)
975 best_offset = offset;
979 /* Move the pointer according to BEST_ENTRY's offset, and figure
980 out what type we should return as the new pointer. */
983 /* An alternative method (which should no longer be necessary).
984 * But we leave it in for future use, when we will hopefully
985 * have optimizes the vtable to use thunks instead of offsets. */
986 /* Use the name of vtable itself to extract a base type. */
987 demangled_name += 4; /* Skip _vt$ prefix. */
991 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
992 sym = find_pc_function (pc_for_sym);
993 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
994 *(strchr (demangled_name, ':')) = '\0';
996 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
998 error ("could not find type declaration for `%s'", demangled_name);
1001 free (demangled_name);
1002 arg = value_add (value_cast (builtin_type_int, arg),
1003 value_field (best_entry, 0));
1006 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1010 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1011 function tables, probe ARG's tables (including the vtables
1012 of its baseclasses) to figure out the most derived type that ARG
1013 could actually be a pointer to. */
1016 value_from_vtable_info (arg, type)
1020 /* Take care of preliminaries. */
1021 if (TYPE_VPTR_FIELDNO (type) < 0)
1022 fill_in_vptr_fieldno (type);
1023 if (TYPE_VPTR_FIELDNO (type) < 0)
1026 return value_headof (arg, 0, type);
1029 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1030 pointer which is for the base class whose type is BASECLASS. */
1033 vb_match (type, index, basetype)
1036 struct type *basetype;
1038 struct type *fieldtype;
1039 char *name = TYPE_FIELD_NAME (type, index);
1040 char *field_class_name = NULL;
1044 /* gcc 2.4 uses _vb$. */
1045 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1046 field_class_name = name + 4;
1047 /* gcc 2.5 will use __vb_. */
1048 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1049 field_class_name = name + 5;
1051 if (field_class_name == NULL)
1052 /* This field is not a virtual base class pointer. */
1055 /* It's a virtual baseclass pointer, now we just need to find out whether
1056 it is for this baseclass. */
1057 fieldtype = TYPE_FIELD_TYPE (type, index);
1058 if (fieldtype == NULL
1059 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1060 /* "Can't happen". */
1063 /* What we check for is that either the types are equal (needed for
1064 nameless types) or have the same name. This is ugly, and a more
1065 elegant solution should be devised (which would probably just push
1066 the ugliness into symbol reading unless we change the stabs format). */
1067 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1070 if (TYPE_NAME (basetype) != NULL
1071 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1072 && STREQ (TYPE_NAME (basetype),
1073 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1078 /* Compute the offset of the baseclass which is
1079 the INDEXth baseclass of class TYPE,
1080 for value at VALADDR (in host) at ADDRESS (in target).
1081 The result is the offset of the baseclass value relative
1082 to (the address of)(ARG) + OFFSET.
1084 -1 is returned on error. */
1087 baseclass_offset (type, index, valaddr, address)
1093 struct type *basetype = TYPE_BASECLASS (type, index);
1095 if (BASETYPE_VIA_VIRTUAL (type, index))
1097 /* Must hunt for the pointer to this virtual baseclass. */
1098 register int i, len = TYPE_NFIELDS (type);
1099 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1101 /* First look for the virtual baseclass pointer
1103 for (i = n_baseclasses; i < len; i++)
1105 if (vb_match (type, i, basetype))
1108 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1109 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1111 return addr - (LONGEST) address;
1114 /* Not in the fields, so try looking through the baseclasses. */
1115 for (i = index+1; i < n_baseclasses; i++)
1118 baseclass_offset (type, i, valaddr, address);
1126 /* Baseclass is easily computed. */
1127 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1130 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1133 Extracting bits depends on endianness of the machine. Compute the
1134 number of least significant bits to discard. For big endian machines,
1135 we compute the total number of bits in the anonymous object, subtract
1136 off the bit count from the MSB of the object to the MSB of the
1137 bitfield, then the size of the bitfield, which leaves the LSB discard
1138 count. For little endian machines, the discard count is simply the
1139 number of bits from the LSB of the anonymous object to the LSB of the
1142 If the field is signed, we also do sign extension. */
1145 unpack_field_as_long (type, valaddr, fieldno)
1152 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1153 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1156 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1158 /* Extract bits. See comment above. */
1160 if (BITS_BIG_ENDIAN)
1161 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1163 lsbcount = (bitpos % 8);
1166 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1167 If the field is signed, and is negative, then sign extend. */
1169 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1171 valmask = (((ULONGEST) 1) << bitsize) - 1;
1173 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1175 if (val & (valmask ^ (valmask >> 1)))
1184 /* Modify the value of a bitfield. ADDR points to a block of memory in
1185 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1186 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1187 indicate which bits (in target bit order) comprise the bitfield. */
1190 modify_field (addr, fieldval, bitpos, bitsize)
1193 int bitpos, bitsize;
1197 /* If a negative fieldval fits in the field in question, chop
1198 off the sign extension bits. */
1199 if (bitsize < (8 * (int) sizeof (fieldval))
1200 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1201 fieldval = fieldval & ((1 << bitsize) - 1);
1203 /* Warn if value is too big to fit in the field in question. */
1204 if (bitsize < (8 * (int) sizeof (fieldval))
1205 && 0 != (fieldval & ~((1<<bitsize)-1)))
1207 /* FIXME: would like to include fieldval in the message, but
1208 we don't have a sprintf_longest. */
1209 warning ("Value does not fit in %d bits.", bitsize);
1211 /* Truncate it, otherwise adjoining fields may be corrupted. */
1212 fieldval = fieldval & ((1 << bitsize) - 1);
1215 oword = extract_signed_integer (addr, sizeof oword);
1217 /* Shifting for bit field depends on endianness of the target machine. */
1218 if (BITS_BIG_ENDIAN)
1219 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1221 /* Mask out old value, while avoiding shifts >= size of oword */
1222 if (bitsize < 8 * (int) sizeof (oword))
1223 oword &= ~(((((ULONGEST)1) << bitsize) - 1) << bitpos);
1225 oword &= ~((~(ULONGEST)0) << bitpos);
1226 oword |= fieldval << bitpos;
1228 store_signed_integer (addr, sizeof oword, oword);
1231 /* Convert C numbers into newly allocated values */
1234 value_from_longest (type, num)
1236 register LONGEST num;
1238 register value_ptr val = allocate_value (type);
1239 register enum type_code code;
1242 code = TYPE_CODE (type);
1243 len = TYPE_LENGTH (type);
1247 case TYPE_CODE_TYPEDEF:
1248 type = check_typedef (type);
1251 case TYPE_CODE_CHAR:
1252 case TYPE_CODE_ENUM:
1253 case TYPE_CODE_BOOL:
1254 case TYPE_CODE_RANGE:
1255 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1260 /* This assumes that all pointers of a given length
1261 have the same form. */
1263 /* start-sanitize-d10v */
1264 #ifdef GDB_TARGET_IS_D10V
1265 /* D10V function pointers need adjusted */
1266 if (TYPE_TARGET_TYPE(type) && TYPE_CODE(TYPE_TARGET_TYPE(type)) == TYPE_CODE_FUNC)
1267 num = D10V_MAKE_IADDR (num);
1269 /* end-sanitize-d10v */
1270 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1274 error ("Unexpected type encountered for integer constant.");
1280 value_from_double (type, num)
1284 register value_ptr val = allocate_value (type);
1285 struct type *base_type = check_typedef (type);
1286 register enum type_code code = TYPE_CODE (base_type);
1287 register int len = TYPE_LENGTH (base_type);
1289 if (code == TYPE_CODE_FLT)
1291 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1294 error ("Unexpected type encountered for floating constant.");
1299 /* Deal with the value that is "about to be returned". */
1301 /* Return the value that a function returning now
1302 would be returning to its caller, assuming its type is VALTYPE.
1303 RETBUF is where we look for what ought to be the contents
1304 of the registers (in raw form). This is because it is often
1305 desirable to restore old values to those registers
1306 after saving the contents of interest, and then call
1307 this function using the saved values.
1308 struct_return is non-zero when the function in question is
1309 using the structure return conventions on the machine in question;
1310 0 when it is using the value returning conventions (this often
1311 means returning pointer to where structure is vs. returning value). */
1314 value_being_returned (valtype, retbuf, struct_return)
1315 register struct type *valtype;
1316 char retbuf[REGISTER_BYTES];
1320 register value_ptr val;
1323 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1324 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1325 if (struct_return) {
1326 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1328 error ("Function return value unknown");
1329 return value_at (valtype, addr);
1333 val = allocate_value (valtype);
1334 CHECK_TYPEDEF (valtype);
1335 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1340 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1341 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1342 and TYPE is the type (which is known to be struct, union or array).
1344 On most machines, the struct convention is used unless we are
1345 using gcc and the type is of a special size. */
1346 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1347 native compiler. GCC 2.3.3 was the last release that did it the
1348 old way. Since gcc2_compiled was not changed, we have no
1349 way to correctly win in all cases, so we just do the right thing
1350 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1351 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1352 would cause more chaos than dealing with some struct returns being
1354 #if !defined (USE_STRUCT_CONVENTION)
1355 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1356 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1357 || TYPE_LENGTH (value_type) == 2 \
1358 || TYPE_LENGTH (value_type) == 4 \
1359 || TYPE_LENGTH (value_type) == 8 \
1364 /* Some fundamental types (such as long double) are returned on the stack for
1365 certain architectures. This macro should return true for any type besides
1366 struct, union or array that gets returned on the stack. */
1368 #ifndef RETURN_VALUE_ON_STACK
1369 #define RETURN_VALUE_ON_STACK(TYPE) 0
1372 /* Return true if the function specified is using the structure returning
1373 convention on this machine to return arguments, or 0 if it is using
1374 the value returning convention. FUNCTION is the value representing
1375 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1376 is the type returned by the function. GCC_P is nonzero if compiled
1380 using_struct_return (function, funcaddr, value_type, gcc_p)
1383 struct type *value_type;
1387 register enum type_code code = TYPE_CODE (value_type);
1389 if (code == TYPE_CODE_ERROR)
1390 error ("Function return type unknown.");
1392 if (code == TYPE_CODE_STRUCT
1393 || code == TYPE_CODE_UNION
1394 || code == TYPE_CODE_ARRAY
1395 || RETURN_VALUE_ON_STACK (value_type))
1396 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1401 /* Store VAL so it will be returned if a function returns now.
1402 Does not verify that VAL's type matches what the current
1403 function wants to return. */
1406 set_return_value (val)
1409 struct type *type = check_typedef (VALUE_TYPE (val));
1410 register enum type_code code = TYPE_CODE (type);
1412 if (code == TYPE_CODE_ERROR)
1413 error ("Function return type unknown.");
1415 if ( code == TYPE_CODE_STRUCT
1416 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1417 error ("GDB does not support specifying a struct or union return value.");
1419 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1423 _initialize_values ()
1425 add_cmd ("convenience", no_class, show_convenience,
1426 "Debugger convenience (\"$foo\") variables.\n\
1427 These variables are created when you assign them values;\n\
1428 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1429 A few convenience variables are given values automatically:\n\
1430 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1431 \"$__\" holds the contents of the last address examined with \"x\".",
1434 add_cmd ("values", no_class, show_values,
1435 "Elements of value history around item number IDX (or last ten).",