1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 87, 89, 91, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 #include "gdb_string.h"
36 /* Prototypes for exported functions. */
38 void _initialize_values (void);
40 /* Prototypes for local functions. */
42 static value_ptr value_headof (value_ptr, struct type *, struct type *);
44 static void show_values (char *, int);
46 static void show_convenience (char *, int);
48 static int vb_match (struct type *, int, struct type *);
50 /* The value-history records all the values printed
51 by print commands during this session. Each chunk
52 records 60 consecutive values. The first chunk on
53 the chain records the most recent values.
54 The total number of values is in value_history_count. */
56 #define VALUE_HISTORY_CHUNK 60
58 struct value_history_chunk
60 struct value_history_chunk *next;
61 value_ptr values[VALUE_HISTORY_CHUNK];
64 /* Chain of chunks now in use. */
66 static struct value_history_chunk *value_history_chain;
68 static int value_history_count; /* Abs number of last entry stored */
70 /* List of all value objects currently allocated
71 (except for those released by calls to release_value)
72 This is so they can be freed after each command. */
74 static value_ptr all_values;
76 /* Allocate a value that has the correct length for type TYPE. */
79 allocate_value (struct type *type)
81 register value_ptr val;
82 struct type *atype = check_typedef (type);
84 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
85 VALUE_NEXT (val) = all_values;
87 VALUE_TYPE (val) = type;
88 VALUE_ENCLOSING_TYPE (val) = type;
89 VALUE_LVAL (val) = not_lval;
90 VALUE_ADDRESS (val) = 0;
91 VALUE_FRAME (val) = 0;
92 VALUE_OFFSET (val) = 0;
93 VALUE_BITPOS (val) = 0;
94 VALUE_BITSIZE (val) = 0;
95 VALUE_REGNO (val) = -1;
97 VALUE_OPTIMIZED_OUT (val) = 0;
98 VALUE_BFD_SECTION (val) = NULL;
99 VALUE_EMBEDDED_OFFSET (val) = 0;
100 VALUE_POINTED_TO_OFFSET (val) = 0;
105 /* Allocate a value that has the correct length
106 for COUNT repetitions type TYPE. */
109 allocate_repeat_value (struct type *type, int count)
111 int low_bound = current_language->string_lower_bound; /* ??? */
112 /* FIXME-type-allocation: need a way to free this type when we are
114 struct type *range_type
115 = create_range_type ((struct type *) NULL, builtin_type_int,
116 low_bound, count + low_bound - 1);
117 /* FIXME-type-allocation: need a way to free this type when we are
119 return allocate_value (create_array_type ((struct type *) NULL,
123 /* Return a mark in the value chain. All values allocated after the
124 mark is obtained (except for those released) are subject to being freed
125 if a subsequent value_free_to_mark is passed the mark. */
132 /* Free all values allocated since MARK was obtained by value_mark
133 (except for those released). */
135 value_free_to_mark (value_ptr mark)
139 for (val = all_values; val && val != mark; val = next)
141 next = VALUE_NEXT (val);
147 /* Free all the values that have been allocated (except for those released).
148 Called after each command, successful or not. */
151 free_all_values (void)
153 register value_ptr val, next;
155 for (val = all_values; val; val = next)
157 next = VALUE_NEXT (val);
164 /* Remove VAL from the chain all_values
165 so it will not be freed automatically. */
168 release_value (register value_ptr val)
170 register value_ptr v;
172 if (all_values == val)
174 all_values = val->next;
178 for (v = all_values; v; v = v->next)
188 /* Release all values up to mark */
190 value_release_to_mark (value_ptr mark)
194 for (val = next = all_values; next; next = VALUE_NEXT (next))
195 if (VALUE_NEXT (next) == mark)
197 all_values = VALUE_NEXT (next);
198 VALUE_NEXT (next) = 0;
205 /* Return a copy of the value ARG.
206 It contains the same contents, for same memory address,
207 but it's a different block of storage. */
210 value_copy (value_ptr arg)
212 register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
213 register value_ptr val = allocate_value (encl_type);
214 VALUE_TYPE (val) = VALUE_TYPE (arg);
215 VALUE_LVAL (val) = VALUE_LVAL (arg);
216 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
217 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
218 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
219 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
220 VALUE_FRAME (val) = VALUE_FRAME (arg);
221 VALUE_REGNO (val) = VALUE_REGNO (arg);
222 VALUE_LAZY (val) = VALUE_LAZY (arg);
223 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
224 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
225 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
226 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
227 val->modifiable = arg->modifiable;
228 if (!VALUE_LAZY (val))
230 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
231 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
237 /* Access to the value history. */
239 /* Record a new value in the value history.
240 Returns the absolute history index of the entry.
241 Result of -1 indicates the value was not saved; otherwise it is the
242 value history index of this new item. */
245 record_latest_value (value_ptr val)
249 /* We don't want this value to have anything to do with the inferior anymore.
250 In particular, "set $1 = 50" should not affect the variable from which
251 the value was taken, and fast watchpoints should be able to assume that
252 a value on the value history never changes. */
253 if (VALUE_LAZY (val))
254 value_fetch_lazy (val);
255 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
256 from. This is a bit dubious, because then *&$1 does not just return $1
257 but the current contents of that location. c'est la vie... */
261 /* Here we treat value_history_count as origin-zero
262 and applying to the value being stored now. */
264 i = value_history_count % VALUE_HISTORY_CHUNK;
267 register struct value_history_chunk *new
268 = (struct value_history_chunk *)
269 xmalloc (sizeof (struct value_history_chunk));
270 memset (new->values, 0, sizeof new->values);
271 new->next = value_history_chain;
272 value_history_chain = new;
275 value_history_chain->values[i] = val;
277 /* Now we regard value_history_count as origin-one
278 and applying to the value just stored. */
280 return ++value_history_count;
283 /* Return a copy of the value in the history with sequence number NUM. */
286 access_value_history (int num)
288 register struct value_history_chunk *chunk;
290 register int absnum = num;
293 absnum += value_history_count;
298 error ("The history is empty.");
300 error ("There is only one value in the history.");
302 error ("History does not go back to $$%d.", -num);
304 if (absnum > value_history_count)
305 error ("History has not yet reached $%d.", absnum);
309 /* Now absnum is always absolute and origin zero. */
311 chunk = value_history_chain;
312 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
316 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
319 /* Clear the value history entirely.
320 Must be done when new symbol tables are loaded,
321 because the type pointers become invalid. */
324 clear_value_history (void)
326 register struct value_history_chunk *next;
328 register value_ptr val;
330 while (value_history_chain)
332 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
333 if ((val = value_history_chain->values[i]) != NULL)
335 next = value_history_chain->next;
336 xfree (value_history_chain);
337 value_history_chain = next;
339 value_history_count = 0;
343 show_values (char *num_exp, int from_tty)
346 register value_ptr val;
351 /* "info history +" should print from the stored position.
352 "info history <exp>" should print around value number <exp>. */
353 if (num_exp[0] != '+' || num_exp[1] != '\0')
354 num = parse_and_eval_long (num_exp) - 5;
358 /* "info history" means print the last 10 values. */
359 num = value_history_count - 9;
365 for (i = num; i < num + 10 && i <= value_history_count; i++)
367 val = access_value_history (i);
368 printf_filtered ("$%d = ", i);
369 value_print (val, gdb_stdout, 0, Val_pretty_default);
370 printf_filtered ("\n");
373 /* The next "info history +" should start after what we just printed. */
376 /* Hitting just return after this command should do the same thing as
377 "info history +". If num_exp is null, this is unnecessary, since
378 "info history +" is not useful after "info history". */
379 if (from_tty && num_exp)
386 /* Internal variables. These are variables within the debugger
387 that hold values assigned by debugger commands.
388 The user refers to them with a '$' prefix
389 that does not appear in the variable names stored internally. */
391 static struct internalvar *internalvars;
393 /* Look up an internal variable with name NAME. NAME should not
394 normally include a dollar sign.
396 If the specified internal variable does not exist,
397 one is created, with a void value. */
400 lookup_internalvar (char *name)
402 register struct internalvar *var;
404 for (var = internalvars; var; var = var->next)
405 if (STREQ (var->name, name))
408 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
409 var->name = concat (name, NULL);
410 var->value = allocate_value (builtin_type_void);
411 release_value (var->value);
412 var->next = internalvars;
418 value_of_internalvar (struct internalvar *var)
420 register value_ptr val;
422 #ifdef IS_TRAPPED_INTERNALVAR
423 if (IS_TRAPPED_INTERNALVAR (var->name))
424 return VALUE_OF_TRAPPED_INTERNALVAR (var);
427 val = value_copy (var->value);
428 if (VALUE_LAZY (val))
429 value_fetch_lazy (val);
430 VALUE_LVAL (val) = lval_internalvar;
431 VALUE_INTERNALVAR (val) = var;
436 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
437 int bitsize, value_ptr newval)
439 register char *addr = VALUE_CONTENTS (var->value) + offset;
441 #ifdef IS_TRAPPED_INTERNALVAR
442 if (IS_TRAPPED_INTERNALVAR (var->name))
443 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
447 modify_field (addr, value_as_long (newval),
450 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
454 set_internalvar (struct internalvar *var, value_ptr val)
458 #ifdef IS_TRAPPED_INTERNALVAR
459 if (IS_TRAPPED_INTERNALVAR (var->name))
460 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
463 newval = value_copy (val);
464 newval->modifiable = 1;
466 /* Force the value to be fetched from the target now, to avoid problems
467 later when this internalvar is referenced and the target is gone or
469 if (VALUE_LAZY (newval))
470 value_fetch_lazy (newval);
472 /* Begin code which must not call error(). If var->value points to
473 something free'd, an error() obviously leaves a dangling pointer.
474 But we also get a danling pointer if var->value points to
475 something in the value chain (i.e., before release_value is
476 called), because after the error free_all_values will get called before
480 release_value (newval);
481 /* End code which must not call error(). */
485 internalvar_name (struct internalvar *var)
490 /* Free all internalvars. Done when new symtabs are loaded,
491 because that makes the values invalid. */
494 clear_internalvars (void)
496 register struct internalvar *var;
501 internalvars = var->next;
509 show_convenience (char *ignore, int from_tty)
511 register struct internalvar *var;
514 for (var = internalvars; var; var = var->next)
516 #ifdef IS_TRAPPED_INTERNALVAR
517 if (IS_TRAPPED_INTERNALVAR (var->name))
524 printf_filtered ("$%s = ", var->name);
525 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
526 printf_filtered ("\n");
529 printf_unfiltered ("No debugger convenience variables now defined.\n\
530 Convenience variables have names starting with \"$\";\n\
531 use \"set\" as in \"set $foo = 5\" to define them.\n");
534 /* Extract a value as a C number (either long or double).
535 Knows how to convert fixed values to double, or
536 floating values to long.
537 Does not deallocate the value. */
540 value_as_long (register value_ptr val)
542 /* This coerces arrays and functions, which is necessary (e.g.
543 in disassemble_command). It also dereferences references, which
544 I suspect is the most logical thing to do. */
546 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
550 value_as_double (register value_ptr val)
555 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
557 error ("Invalid floating value found in program.");
560 /* Extract a value as a C pointer. Does not deallocate the value.
561 Note that val's type may not actually be a pointer; value_as_long
562 handles all the cases. */
564 value_as_pointer (value_ptr val)
566 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
567 whether we want this to be true eventually. */
569 /* ADDR_BITS_REMOVE is wrong if we are being called for a
570 non-address (e.g. argument to "signal", "info break", etc.), or
571 for pointers to char, in which the low bits *are* significant. */
572 return ADDR_BITS_REMOVE (value_as_long (val));
575 /* In converting VAL to an address (CORE_ADDR), any small integers
576 are first cast to a generic pointer. The function unpack_long
577 will then correctly convert that pointer into a canonical address
578 (using POINTER_TO_ADDRESS).
580 Without the cast, the MIPS gets: 0xa0000000 -> (unsigned int)
581 0xa0000000 -> (LONGEST) 0x00000000a0000000
583 With the cast, the MIPS gets: 0xa0000000 -> (unsigned int)
584 0xa0000000 -> (void*) 0xa0000000 -> (LONGEST) 0xffffffffa0000000.
586 If the user specifies an integer that is larger than the target
587 pointer type, it is assumed that it was intentional and the value
588 is converted directly into an ADDRESS. This ensures that no
589 information is discarded.
591 NOTE: The cast operation may eventualy be converted into a TARGET
592 method (see POINTER_TO_ADDRESS() and ADDRESS_TO_POINTER()) so
593 that the TARGET ISA/ABI can apply an arbitrary conversion.
595 NOTE: In pure harvard architectures function and data pointers
596 can be different and may require different integer to pointer
598 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT
599 && TYPE_LENGTH (VALUE_TYPE (val)) <= TYPE_LENGTH (builtin_type_ptr))
601 val = value_cast (builtin_type_ptr, val);
603 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
607 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
608 as a long, or as a double, assuming the raw data is described
609 by type TYPE. Knows how to convert different sizes of values
610 and can convert between fixed and floating point. We don't assume
611 any alignment for the raw data. Return value is in host byte order.
613 If you want functions and arrays to be coerced to pointers, and
614 references to be dereferenced, call value_as_long() instead.
616 C++: It is assumed that the front-end has taken care of
617 all matters concerning pointers to members. A pointer
618 to member which reaches here is considered to be equivalent
619 to an INT (or some size). After all, it is only an offset. */
622 unpack_long (struct type *type, char *valaddr)
624 register enum type_code code = TYPE_CODE (type);
625 register int len = TYPE_LENGTH (type);
626 register int nosign = TYPE_UNSIGNED (type);
628 if (current_language->la_language == language_scm
629 && is_scmvalue_type (type))
630 return scm_unpack (type, valaddr, TYPE_CODE_INT);
634 case TYPE_CODE_TYPEDEF:
635 return unpack_long (check_typedef (type), valaddr);
640 case TYPE_CODE_RANGE:
642 return extract_unsigned_integer (valaddr, len);
644 return extract_signed_integer (valaddr, len);
647 return extract_floating (valaddr, len);
651 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
652 whether we want this to be true eventually. */
653 if (GDB_TARGET_IS_D10V
655 return D10V_MAKE_DADDR (extract_address (valaddr, len));
656 return extract_typed_address (valaddr, type);
658 case TYPE_CODE_MEMBER:
659 error ("not implemented: member types in unpack_long");
662 error ("Value can't be converted to integer.");
664 return 0; /* Placate lint. */
667 /* Return a double value from the specified type and address.
668 INVP points to an int which is set to 0 for valid value,
669 1 for invalid value (bad float format). In either case,
670 the returned double is OK to use. Argument is in target
671 format, result is in host format. */
674 unpack_double (struct type *type, char *valaddr, int *invp)
680 *invp = 0; /* Assume valid. */
681 CHECK_TYPEDEF (type);
682 code = TYPE_CODE (type);
683 len = TYPE_LENGTH (type);
684 nosign = TYPE_UNSIGNED (type);
685 if (code == TYPE_CODE_FLT)
688 if (INVALID_FLOAT (valaddr, len))
691 return 1.234567891011121314;
694 return extract_floating (valaddr, len);
698 /* Unsigned -- be sure we compensate for signed LONGEST. */
699 #if !defined (_MSC_VER) || (_MSC_VER > 900)
700 return (ULONGEST) unpack_long (type, valaddr);
702 /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */
703 return (LONGEST) unpack_long (type, valaddr);
704 #endif /* _MSC_VER */
708 /* Signed -- we are OK with unpack_long. */
709 return unpack_long (type, valaddr);
713 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
714 as a CORE_ADDR, assuming the raw data is described by type TYPE.
715 We don't assume any alignment for the raw data. Return value is in
718 If you want functions and arrays to be coerced to pointers, and
719 references to be dereferenced, call value_as_pointer() instead.
721 C++: It is assumed that the front-end has taken care of
722 all matters concerning pointers to members. A pointer
723 to member which reaches here is considered to be equivalent
724 to an INT (or some size). After all, it is only an offset. */
727 unpack_pointer (struct type *type, char *valaddr)
729 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
730 whether we want this to be true eventually. */
731 return unpack_long (type, valaddr);
735 /* Get the value of the FIELDN'th field (which must be static) of TYPE. */
738 value_static_field (struct type *type, int fieldno)
742 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
744 addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
749 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
750 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
753 /* With some compilers, e.g. HP aCC, static data members are reported
754 as non-debuggable symbols */
755 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
760 addr = SYMBOL_VALUE_ADDRESS (msym);
761 sect = SYMBOL_BFD_SECTION (msym);
766 addr = SYMBOL_VALUE_ADDRESS (sym);
767 sect = SYMBOL_BFD_SECTION (sym);
769 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
771 return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
774 /* Given a value ARG1 (offset by OFFSET bytes)
775 of a struct or union type ARG_TYPE,
776 extract and return the value of one of its (non-static) fields.
777 FIELDNO says which field. */
780 value_primitive_field (register value_ptr arg1, int offset,
781 register int fieldno, register struct type *arg_type)
783 register value_ptr v;
784 register struct type *type;
786 CHECK_TYPEDEF (arg_type);
787 type = TYPE_FIELD_TYPE (arg_type, fieldno);
789 /* Handle packed fields */
791 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
793 v = value_from_longest (type,
794 unpack_field_as_long (arg_type,
795 VALUE_CONTENTS (arg1)
798 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
799 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
800 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
801 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
803 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
805 /* This field is actually a base subobject, so preserve the
806 entire object's contents for later references to virtual
808 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
809 VALUE_TYPE (v) = arg_type;
810 if (VALUE_LAZY (arg1))
813 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
814 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
815 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
816 VALUE_EMBEDDED_OFFSET (v)
818 VALUE_EMBEDDED_OFFSET (arg1) +
819 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
823 /* Plain old data member */
824 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
825 v = allocate_value (type);
826 if (VALUE_LAZY (arg1))
829 memcpy (VALUE_CONTENTS_RAW (v),
830 VALUE_CONTENTS_RAW (arg1) + offset,
832 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset;
834 VALUE_LVAL (v) = VALUE_LVAL (arg1);
835 if (VALUE_LVAL (arg1) == lval_internalvar)
836 VALUE_LVAL (v) = lval_internalvar_component;
837 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
838 VALUE_REGNO (v) = VALUE_REGNO (arg1);
839 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
840 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
844 /* Given a value ARG1 of a struct or union type,
845 extract and return the value of one of its (non-static) fields.
846 FIELDNO says which field. */
849 value_field (register value_ptr arg1, register int fieldno)
851 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
854 /* Return a non-virtual function as a value.
855 F is the list of member functions which contains the desired method.
856 J is an index into F which provides the desired method. */
859 value_fn_field (value_ptr *arg1p, struct fn_field *f, int j, struct type *type,
862 register value_ptr v;
863 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
866 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
867 0, VAR_NAMESPACE, 0, NULL);
871 error ("Internal error: could not find physical method named %s",
872 TYPE_FN_FIELD_PHYSNAME (f, j));
875 v = allocate_value (ftype);
876 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
877 VALUE_TYPE (v) = ftype;
881 if (type != VALUE_TYPE (*arg1p))
882 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
883 value_addr (*arg1p)));
885 /* Move the `this' pointer according to the offset.
886 VALUE_OFFSET (*arg1p) += offset;
893 /* Return a virtual function as a value.
894 ARG1 is the object which provides the virtual function
895 table pointer. *ARG1P is side-effected in calling this function.
896 F is the list of member functions which contains the desired virtual
898 J is an index into F which provides the desired virtual function.
900 TYPE is the type in which F is located. */
902 value_virtual_fn_field (value_ptr *arg1p, struct fn_field *f, int j,
903 struct type *type, int offset)
905 value_ptr arg1 = *arg1p;
906 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
908 if (TYPE_HAS_VTABLE (type))
910 /* Deal with HP/Taligent runtime model for virtual functions */
912 value_ptr argp; /* arg1 cast to base */
913 CORE_ADDR coreptr; /* pointer to target address */
914 int class_index; /* which class segment pointer to use */
915 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); /* method type */
917 argp = value_cast (type, *arg1p);
919 if (VALUE_ADDRESS (argp) == 0)
920 error ("Address of object is null; object may not have been created.");
922 /* pai: FIXME -- 32x64 possible problem? */
923 /* First word (4 bytes) in object layout is the vtable pointer */
924 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (argp)); /* pai: (temp) */
925 /* + offset + VALUE_EMBEDDED_OFFSET (argp)); */
928 error ("Virtual table pointer is null for object; object may not have been created.");
931 * FIXME: The code here currently handles only
932 * the non-RRBC case of the Taligent/HP runtime spec; when RRBC
933 * is introduced, the condition for the "if" below will have to
934 * be changed to be a test for the RRBC case. */
938 /* Non-RRBC case; the virtual function pointers are stored at fixed
939 * offsets in the virtual table. */
941 /* Retrieve the offset in the virtual table from the debug
942 * info. The offset of the vfunc's entry is in words from
943 * the beginning of the vtable; but first we have to adjust
944 * by HP_ACC_VFUNC_START to account for other entries */
946 /* pai: FIXME: 32x64 problem here, a word may be 8 bytes in
947 * which case the multiplier should be 8 and values should be long */
948 vp = value_at (builtin_type_int,
949 coreptr + 4 * (TYPE_FN_FIELD_VOFFSET (f, j) + HP_ACC_VFUNC_START), NULL);
951 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
952 /* coreptr now contains the address of the virtual function */
953 /* (Actually, it contains the pointer to the plabel for the function. */
957 /* RRBC case; the virtual function pointers are found by double
958 * indirection through the class segment tables. */
960 /* Choose class segment depending on type we were passed */
961 class_index = class_index_in_primary_list (type);
963 /* Find class segment pointer. These are in the vtable slots after
964 * some other entries, so adjust by HP_ACC_VFUNC_START for that. */
965 /* pai: FIXME 32x64 problem here, if words are 8 bytes long
966 * the multiplier below has to be 8 and value should be long. */
967 vp = value_at (builtin_type_int,
968 coreptr + 4 * (HP_ACC_VFUNC_START + class_index), NULL);
969 /* Indirect once more, offset by function index */
970 /* pai: FIXME 32x64 problem here, again multiplier could be 8 and value long */
971 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp) + 4 * TYPE_FN_FIELD_VOFFSET (f, j));
972 vp = value_at (builtin_type_int, coreptr, NULL);
973 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
975 /* coreptr now contains the address of the virtual function */
976 /* (Actually, it contains the pointer to the plabel for the function.) */
981 error ("Address of virtual function is null; error in virtual table?");
983 /* Wrap this addr in a value and return pointer */
984 vp = allocate_value (ftype);
985 VALUE_TYPE (vp) = ftype;
986 VALUE_ADDRESS (vp) = coreptr;
988 /* pai: (temp) do we need the value_ind stuff in value_fn_field? */
992 { /* Not using HP/Taligent runtime conventions; so try to
993 * use g++ conventions for virtual table */
995 struct type *entry_type;
996 /* First, get the virtual function table pointer. That comes
997 with a strange type, so cast it to type `pointer to long' (which
998 should serve just fine as a function type). Then, index into
999 the table, and convert final value to appropriate function type. */
1000 value_ptr entry, vfn, vtbl;
1001 value_ptr vi = value_from_longest (builtin_type_int,
1002 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
1003 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
1004 struct type *context;
1005 if (fcontext == NULL)
1006 /* We don't have an fcontext (e.g. the program was compiled with
1007 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
1008 This won't work right for multiple inheritance, but at least we
1009 should do as well as GDB 3.x did. */
1010 fcontext = TYPE_VPTR_BASETYPE (type);
1011 context = lookup_pointer_type (fcontext);
1012 /* Now context is a pointer to the basetype containing the vtbl. */
1013 if (TYPE_TARGET_TYPE (context) != type1)
1015 value_ptr tmp = value_cast (context, value_addr (arg1));
1016 VALUE_POINTED_TO_OFFSET (tmp) = 0;
1017 arg1 = value_ind (tmp);
1018 type1 = check_typedef (VALUE_TYPE (arg1));
1022 /* Now context is the basetype containing the vtbl. */
1024 /* This type may have been defined before its virtual function table
1025 was. If so, fill in the virtual function table entry for the
1027 if (TYPE_VPTR_FIELDNO (context) < 0)
1028 fill_in_vptr_fieldno (context);
1030 /* The virtual function table is now an array of structures
1031 which have the form { int16 offset, delta; void *pfn; }. */
1032 vtbl = value_primitive_field (arg1, 0, TYPE_VPTR_FIELDNO (context),
1033 TYPE_VPTR_BASETYPE (context));
1035 /* With older versions of g++, the vtbl field pointed to an array
1036 of structures. Nowadays it points directly to the structure. */
1037 if (TYPE_CODE (VALUE_TYPE (vtbl)) == TYPE_CODE_PTR
1038 && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (vtbl))) == TYPE_CODE_ARRAY)
1040 /* Handle the case where the vtbl field points to an
1041 array of structures. */
1042 vtbl = value_ind (vtbl);
1044 /* Index into the virtual function table. This is hard-coded because
1045 looking up a field is not cheap, and it may be important to save
1046 time, e.g. if the user has set a conditional breakpoint calling
1047 a virtual function. */
1048 entry = value_subscript (vtbl, vi);
1052 /* Handle the case where the vtbl field points directly to a structure. */
1053 vtbl = value_add (vtbl, vi);
1054 entry = value_ind (vtbl);
1057 entry_type = check_typedef (VALUE_TYPE (entry));
1059 if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
1061 /* Move the `this' pointer according to the virtual function table. */
1062 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
1064 if (!VALUE_LAZY (arg1))
1066 VALUE_LAZY (arg1) = 1;
1067 value_fetch_lazy (arg1);
1070 vfn = value_field (entry, 2);
1072 else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
1075 error ("I'm confused: virtual function table has bad type");
1076 /* Reinstantiate the function pointer with the correct type. */
1077 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
1084 /* ARG is a pointer to an object we know to be at least
1085 a DTYPE. BTYPE is the most derived basetype that has
1086 already been searched (and need not be searched again).
1087 After looking at the vtables between BTYPE and DTYPE,
1088 return the most derived type we find. The caller must
1089 be satisfied when the return value == DTYPE.
1091 FIXME-tiemann: should work with dossier entries as well.
1092 NOTICE - djb: I see no good reason at all to keep this function now that
1093 we have RTTI support. It's used in literally one place, and it's
1094 hard to keep this function up to date when it's purpose is served
1095 by value_rtti_type efficiently.
1096 Consider it gone for 5.1. */
1099 value_headof (value_ptr in_arg, struct type *btype, struct type *dtype)
1101 /* First collect the vtables we must look at for this object. */
1102 value_ptr arg, vtbl;
1104 char *demangled_name;
1105 struct minimal_symbol *msymbol;
1107 btype = TYPE_VPTR_BASETYPE (dtype);
1108 CHECK_TYPEDEF (btype);
1111 arg = value_cast (lookup_pointer_type (btype), arg);
1112 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_REF)
1115 * Copy the value, but change the type from (T&) to (T*).
1116 * We keep the same location information, which is efficient,
1117 * and allows &(&X) to get the location containing the reference.
1119 arg = value_copy (arg);
1120 VALUE_TYPE (arg) = lookup_pointer_type (TYPE_TARGET_TYPE (VALUE_TYPE (arg)));
1122 if (VALUE_ADDRESS(value_field (value_ind(arg), TYPE_VPTR_FIELDNO (btype)))==0)
1125 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
1126 /* Turn vtable into typeinfo function */
1127 VALUE_OFFSET(vtbl)+=4;
1129 msymbol = lookup_minimal_symbol_by_pc ( value_as_pointer(value_ind(vtbl)) );
1131 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL)
1133 /* If we expected to find a vtable, but did not, let the user
1134 know that we aren't happy, but don't throw an error.
1135 FIXME: there has to be a better way to do this. */
1136 struct type *error_type = (struct type *) xmalloc (sizeof (struct type));
1137 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
1138 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
1139 VALUE_TYPE (in_arg) = error_type;
1142 demangled_name = cplus_demangle(demangled_name,DMGL_ANSI);
1143 *(strchr (demangled_name, ' ')) = '\0';
1145 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1147 error ("could not find type declaration for `%s'", demangled_name);
1150 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1154 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1155 function tables, probe ARG's tables (including the vtables
1156 of its baseclasses) to figure out the most derived type that ARG
1157 could actually be a pointer to. */
1160 value_from_vtable_info (value_ptr arg, struct type *type)
1162 /* Take care of preliminaries. */
1163 if (TYPE_VPTR_FIELDNO (type) < 0)
1164 fill_in_vptr_fieldno (type);
1165 if (TYPE_VPTR_FIELDNO (type) < 0)
1168 return value_headof (arg, 0, type);
1171 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1172 pointer which is for the base class whose type is BASECLASS. */
1175 vb_match (struct type *type, int index, struct type *basetype)
1177 struct type *fieldtype;
1178 char *name = TYPE_FIELD_NAME (type, index);
1179 char *field_class_name = NULL;
1183 /* gcc 2.4 uses _vb$. */
1184 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1185 field_class_name = name + 4;
1186 /* gcc 2.5 will use __vb_. */
1187 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1188 field_class_name = name + 5;
1190 if (field_class_name == NULL)
1191 /* This field is not a virtual base class pointer. */
1194 /* It's a virtual baseclass pointer, now we just need to find out whether
1195 it is for this baseclass. */
1196 fieldtype = TYPE_FIELD_TYPE (type, index);
1197 if (fieldtype == NULL
1198 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1199 /* "Can't happen". */
1202 /* What we check for is that either the types are equal (needed for
1203 nameless types) or have the same name. This is ugly, and a more
1204 elegant solution should be devised (which would probably just push
1205 the ugliness into symbol reading unless we change the stabs format). */
1206 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1209 if (TYPE_NAME (basetype) != NULL
1210 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1211 && STREQ (TYPE_NAME (basetype),
1212 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1217 /* Compute the offset of the baseclass which is
1218 the INDEXth baseclass of class TYPE,
1219 for value at VALADDR (in host) at ADDRESS (in target).
1220 The result is the offset of the baseclass value relative
1221 to (the address of)(ARG) + OFFSET.
1223 -1 is returned on error. */
1226 baseclass_offset (struct type *type, int index, char *valaddr,
1229 struct type *basetype = TYPE_BASECLASS (type, index);
1231 if (BASETYPE_VIA_VIRTUAL (type, index))
1233 /* Must hunt for the pointer to this virtual baseclass. */
1234 register int i, len = TYPE_NFIELDS (type);
1235 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1237 /* First look for the virtual baseclass pointer
1239 for (i = n_baseclasses; i < len; i++)
1241 if (vb_match (type, i, basetype))
1244 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1245 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1247 return addr - (LONGEST) address;
1250 /* Not in the fields, so try looking through the baseclasses. */
1251 for (i = index + 1; i < n_baseclasses; i++)
1254 baseclass_offset (type, i, valaddr, address);
1262 /* Baseclass is easily computed. */
1263 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1266 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1269 Extracting bits depends on endianness of the machine. Compute the
1270 number of least significant bits to discard. For big endian machines,
1271 we compute the total number of bits in the anonymous object, subtract
1272 off the bit count from the MSB of the object to the MSB of the
1273 bitfield, then the size of the bitfield, which leaves the LSB discard
1274 count. For little endian machines, the discard count is simply the
1275 number of bits from the LSB of the anonymous object to the LSB of the
1278 If the field is signed, we also do sign extension. */
1281 unpack_field_as_long (struct type *type, char *valaddr, int fieldno)
1285 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1286 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1288 struct type *field_type;
1290 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1291 field_type = TYPE_FIELD_TYPE (type, fieldno);
1292 CHECK_TYPEDEF (field_type);
1294 /* Extract bits. See comment above. */
1296 if (BITS_BIG_ENDIAN)
1297 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1299 lsbcount = (bitpos % 8);
1302 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1303 If the field is signed, and is negative, then sign extend. */
1305 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1307 valmask = (((ULONGEST) 1) << bitsize) - 1;
1309 if (!TYPE_UNSIGNED (field_type))
1311 if (val & (valmask ^ (valmask >> 1)))
1320 /* Modify the value of a bitfield. ADDR points to a block of memory in
1321 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1322 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1323 indicate which bits (in target bit order) comprise the bitfield. */
1326 modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1330 /* If a negative fieldval fits in the field in question, chop
1331 off the sign extension bits. */
1332 if (bitsize < (8 * (int) sizeof (fieldval))
1333 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1334 fieldval = fieldval & ((1 << bitsize) - 1);
1336 /* Warn if value is too big to fit in the field in question. */
1337 if (bitsize < (8 * (int) sizeof (fieldval))
1338 && 0 != (fieldval & ~((1 << bitsize) - 1)))
1340 /* FIXME: would like to include fieldval in the message, but
1341 we don't have a sprintf_longest. */
1342 warning ("Value does not fit in %d bits.", bitsize);
1344 /* Truncate it, otherwise adjoining fields may be corrupted. */
1345 fieldval = fieldval & ((1 << bitsize) - 1);
1348 oword = extract_signed_integer (addr, sizeof oword);
1350 /* Shifting for bit field depends on endianness of the target machine. */
1351 if (BITS_BIG_ENDIAN)
1352 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1354 /* Mask out old value, while avoiding shifts >= size of oword */
1355 if (bitsize < 8 * (int) sizeof (oword))
1356 oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
1358 oword &= ~((~(ULONGEST) 0) << bitpos);
1359 oword |= fieldval << bitpos;
1361 store_signed_integer (addr, sizeof oword, oword);
1364 /* Convert C numbers into newly allocated values */
1367 value_from_longest (struct type *type, register LONGEST num)
1369 register value_ptr val = allocate_value (type);
1370 register enum type_code code;
1373 code = TYPE_CODE (type);
1374 len = TYPE_LENGTH (type);
1378 case TYPE_CODE_TYPEDEF:
1379 type = check_typedef (type);
1382 case TYPE_CODE_CHAR:
1383 case TYPE_CODE_ENUM:
1384 case TYPE_CODE_BOOL:
1385 case TYPE_CODE_RANGE:
1386 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1391 store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
1395 error ("Unexpected type (%d) encountered for integer constant.", code);
1401 /* Create a value representing a pointer of type TYPE to the address
1404 value_from_pointer (struct type *type, CORE_ADDR addr)
1406 value_ptr val = allocate_value (type);
1407 store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
1412 /* Create a value for a string constant to be stored locally
1413 (not in the inferior's memory space, but in GDB memory).
1414 This is analogous to value_from_longest, which also does not
1415 use inferior memory. String shall NOT contain embedded nulls. */
1418 value_from_string (char *ptr)
1421 int len = strlen (ptr);
1422 int lowbound = current_language->string_lower_bound;
1423 struct type *rangetype =
1424 create_range_type ((struct type *) NULL,
1426 lowbound, len + lowbound - 1);
1427 struct type *stringtype =
1428 create_array_type ((struct type *) NULL,
1429 *current_language->string_char_type,
1432 val = allocate_value (stringtype);
1433 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1438 value_from_double (struct type *type, DOUBLEST num)
1440 register value_ptr val = allocate_value (type);
1441 struct type *base_type = check_typedef (type);
1442 register enum type_code code = TYPE_CODE (base_type);
1443 register int len = TYPE_LENGTH (base_type);
1445 if (code == TYPE_CODE_FLT)
1447 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1450 error ("Unexpected type encountered for floating constant.");
1455 /* Deal with the value that is "about to be returned". */
1457 /* Return the value that a function returning now
1458 would be returning to its caller, assuming its type is VALTYPE.
1459 RETBUF is where we look for what ought to be the contents
1460 of the registers (in raw form). This is because it is often
1461 desirable to restore old values to those registers
1462 after saving the contents of interest, and then call
1463 this function using the saved values.
1464 struct_return is non-zero when the function in question is
1465 using the structure return conventions on the machine in question;
1466 0 when it is using the value returning conventions (this often
1467 means returning pointer to where structure is vs. returning value). */
1471 value_being_returned (struct type *valtype, char *retbuf, int struct_return)
1473 register value_ptr val;
1476 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1477 if (EXTRACT_STRUCT_VALUE_ADDRESS_P)
1480 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1482 error ("Function return value unknown");
1483 return value_at (valtype, addr, NULL);
1486 val = allocate_value (valtype);
1487 CHECK_TYPEDEF (valtype);
1488 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1493 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1494 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1495 and TYPE is the type (which is known to be struct, union or array).
1497 On most machines, the struct convention is used unless we are
1498 using gcc and the type is of a special size. */
1499 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1500 native compiler. GCC 2.3.3 was the last release that did it the
1501 old way. Since gcc2_compiled was not changed, we have no
1502 way to correctly win in all cases, so we just do the right thing
1503 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1504 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1505 would cause more chaos than dealing with some struct returns being
1509 generic_use_struct_convention (int gcc_p, struct type *value_type)
1511 return !((gcc_p == 1)
1512 && (TYPE_LENGTH (value_type) == 1
1513 || TYPE_LENGTH (value_type) == 2
1514 || TYPE_LENGTH (value_type) == 4
1515 || TYPE_LENGTH (value_type) == 8));
1518 #ifndef USE_STRUCT_CONVENTION
1519 #define USE_STRUCT_CONVENTION(gcc_p,type) generic_use_struct_convention (gcc_p, type)
1523 /* Return true if the function specified is using the structure returning
1524 convention on this machine to return arguments, or 0 if it is using
1525 the value returning convention. FUNCTION is the value representing
1526 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1527 is the type returned by the function. GCC_P is nonzero if compiled
1532 using_struct_return (value_ptr function, CORE_ADDR funcaddr,
1533 struct type *value_type, int gcc_p)
1535 register enum type_code code = TYPE_CODE (value_type);
1537 if (code == TYPE_CODE_ERROR)
1538 error ("Function return type unknown.");
1540 if (code == TYPE_CODE_STRUCT
1541 || code == TYPE_CODE_UNION
1542 || code == TYPE_CODE_ARRAY
1543 || RETURN_VALUE_ON_STACK (value_type))
1544 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1549 /* Store VAL so it will be returned if a function returns now.
1550 Does not verify that VAL's type matches what the current
1551 function wants to return. */
1554 set_return_value (value_ptr val)
1556 struct type *type = check_typedef (VALUE_TYPE (val));
1557 register enum type_code code = TYPE_CODE (type);
1559 if (code == TYPE_CODE_ERROR)
1560 error ("Function return type unknown.");
1562 if (code == TYPE_CODE_STRUCT
1563 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1564 error ("GDB does not support specifying a struct or union return value.");
1566 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1570 _initialize_values (void)
1572 add_cmd ("convenience", no_class, show_convenience,
1573 "Debugger convenience (\"$foo\") variables.\n\
1574 These variables are created when you assign them values;\n\
1575 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1576 A few convenience variables are given values automatically:\n\
1577 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1578 \"$__\" holds the contents of the last address examined with \"x\".",
1581 add_cmd ("values", no_class, show_values,
1582 "Elements of value history around item number IDX (or last ten).",