1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "arch-utils.h"
33 #include "target-float.h"
36 #include "cli/cli-decode.h"
37 #include "extension.h"
39 #include "tracepoint.h"
41 #include "user-regs.h"
43 #include "completer.h"
45 /* Definition of a user function. */
46 struct internal_function
48 /* The name of the function. It is a bit odd to have this in the
49 function itself -- the user might use a differently-named
50 convenience variable to hold the function. */
54 internal_function_fn handler;
56 /* User data for the handler. */
60 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
64 /* Lowest offset in the range. */
67 /* Length of the range. */
71 typedef struct range range_s;
75 /* Returns true if the ranges defined by [offset1, offset1+len1) and
76 [offset2, offset2+len2) overlap. */
79 ranges_overlap (LONGEST offset1, LONGEST len1,
80 LONGEST offset2, LONGEST len2)
84 l = std::max (offset1, offset2);
85 h = std::min (offset1 + len1, offset2 + len2);
89 /* Returns true if the first argument is strictly less than the
90 second, useful for VEC_lower_bound. We keep ranges sorted by
91 offset and coalesce overlapping and contiguous ranges, so this just
92 compares the starting offset. */
95 range_lessthan (const range_s *r1, const range_s *r2)
97 return r1->offset < r2->offset;
100 /* Returns true if RANGES contains any range that overlaps [OFFSET,
104 ranges_contain (VEC(range_s) *ranges, LONGEST offset, LONGEST length)
109 what.offset = offset;
110 what.length = length;
112 /* We keep ranges sorted by offset and coalesce overlapping and
113 contiguous ranges, so to check if a range list contains a given
114 range, we can do a binary search for the position the given range
115 would be inserted if we only considered the starting OFFSET of
116 ranges. We call that position I. Since we also have LENGTH to
117 care for (this is a range afterall), we need to check if the
118 _previous_ range overlaps the I range. E.g.,
122 |---| |---| |------| ... |--|
127 In the case above, the binary search would return `I=1', meaning,
128 this OFFSET should be inserted at position 1, and the current
129 position 1 should be pushed further (and before 2). But, `0'
132 Then we need to check if the I range overlaps the I range itself.
137 |---| |---| |-------| ... |--|
143 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
147 struct range *bef = VEC_index (range_s, ranges, i - 1);
149 if (ranges_overlap (bef->offset, bef->length, offset, length))
153 if (i < VEC_length (range_s, ranges))
155 struct range *r = VEC_index (range_s, ranges, i);
157 if (ranges_overlap (r->offset, r->length, offset, length))
164 static struct cmd_list_element *functionlist;
166 /* Note that the fields in this structure are arranged to save a bit
171 /* Type of value; either not an lval, or one of the various
172 different possible kinds of lval. */
175 /* Is it modifiable? Only relevant if lval != not_lval. */
176 unsigned int modifiable : 1;
178 /* If zero, contents of this value are in the contents field. If
179 nonzero, contents are in inferior. If the lval field is lval_memory,
180 the contents are in inferior memory at location.address plus offset.
181 The lval field may also be lval_register.
183 WARNING: This field is used by the code which handles watchpoints
184 (see breakpoint.c) to decide whether a particular value can be
185 watched by hardware watchpoints. If the lazy flag is set for
186 some member of a value chain, it is assumed that this member of
187 the chain doesn't need to be watched as part of watching the
188 value itself. This is how GDB avoids watching the entire struct
189 or array when the user wants to watch a single struct member or
190 array element. If you ever change the way lazy flag is set and
191 reset, be sure to consider this use as well! */
192 unsigned int lazy : 1;
194 /* If value is a variable, is it initialized or not. */
195 unsigned int initialized : 1;
197 /* If value is from the stack. If this is set, read_stack will be
198 used instead of read_memory to enable extra caching. */
199 unsigned int stack : 1;
201 /* If the value has been released. */
202 unsigned int released : 1;
204 /* Location of value (if lval). */
207 /* If lval == lval_memory, this is the address in the inferior */
210 /*If lval == lval_register, the value is from a register. */
213 /* Register number. */
215 /* Frame ID of "next" frame to which a register value is relative.
216 If the register value is found relative to frame F, then the
217 frame id of F->next will be stored in next_frame_id. */
218 struct frame_id next_frame_id;
221 /* Pointer to internal variable. */
222 struct internalvar *internalvar;
224 /* Pointer to xmethod worker. */
225 struct xmethod_worker *xm_worker;
227 /* If lval == lval_computed, this is a set of function pointers
228 to use to access and describe the value, and a closure pointer
232 /* Functions to call. */
233 const struct lval_funcs *funcs;
235 /* Closure for those functions to use. */
240 /* Describes offset of a value within lval of a structure in target
241 addressable memory units. Note also the member embedded_offset
245 /* Only used for bitfields; number of bits contained in them. */
248 /* Only used for bitfields; position of start of field. For
249 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
250 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
253 /* The number of references to this value. When a value is created,
254 the value chain holds a reference, so REFERENCE_COUNT is 1. If
255 release_value is called, this value is removed from the chain but
256 the caller of release_value now has a reference to this value.
257 The caller must arrange for a call to value_free later. */
260 /* Only used for bitfields; the containing value. This allows a
261 single read from the target when displaying multiple
263 struct value *parent;
265 /* Type of the value. */
268 /* If a value represents a C++ object, then the `type' field gives
269 the object's compile-time type. If the object actually belongs
270 to some class derived from `type', perhaps with other base
271 classes and additional members, then `type' is just a subobject
272 of the real thing, and the full object is probably larger than
273 `type' would suggest.
275 If `type' is a dynamic class (i.e. one with a vtable), then GDB
276 can actually determine the object's run-time type by looking at
277 the run-time type information in the vtable. When this
278 information is available, we may elect to read in the entire
279 object, for several reasons:
281 - When printing the value, the user would probably rather see the
282 full object, not just the limited portion apparent from the
285 - If `type' has virtual base classes, then even printing `type'
286 alone may require reaching outside the `type' portion of the
287 object to wherever the virtual base class has been stored.
289 When we store the entire object, `enclosing_type' is the run-time
290 type -- the complete object -- and `embedded_offset' is the
291 offset of `type' within that larger type, in target addressable memory
292 units. The value_contents() macro takes `embedded_offset' into account,
293 so most GDB code continues to see the `type' portion of the value, just
294 as the inferior would.
296 If `type' is a pointer to an object, then `enclosing_type' is a
297 pointer to the object's run-time type, and `pointed_to_offset' is
298 the offset in target addressable memory units from the full object
299 to the pointed-to object -- that is, the value `embedded_offset' would
300 have if we followed the pointer and fetched the complete object.
301 (I don't really see the point. Why not just determine the
302 run-time type when you indirect, and avoid the special case? The
303 contents don't matter until you indirect anyway.)
305 If we're not doing anything fancy, `enclosing_type' is equal to
306 `type', and `embedded_offset' is zero, so everything works
308 struct type *enclosing_type;
309 LONGEST embedded_offset;
310 LONGEST pointed_to_offset;
312 /* Values are stored in a chain, so that they can be deleted easily
313 over calls to the inferior. Values assigned to internal
314 variables, put into the value history or exposed to Python are
315 taken off this list. */
318 /* Actual contents of the value. Target byte-order. NULL or not
319 valid if lazy is nonzero. */
322 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
323 rather than available, since the common and default case is for a
324 value to be available. This is filled in at value read time.
325 The unavailable ranges are tracked in bits. Note that a contents
326 bit that has been optimized out doesn't really exist in the
327 program, so it can't be marked unavailable either. */
328 VEC(range_s) *unavailable;
330 /* Likewise, but for optimized out contents (a chunk of the value of
331 a variable that does not actually exist in the program). If LVAL
332 is lval_register, this is a register ($pc, $sp, etc., never a
333 program variable) that has not been saved in the frame. Not
334 saved registers and optimized-out program variables values are
335 treated pretty much the same, except not-saved registers have a
336 different string representation and related error strings. */
337 VEC(range_s) *optimized_out;
343 get_value_arch (const struct value *value)
345 return get_type_arch (value_type (value));
349 value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
351 gdb_assert (!value->lazy);
353 return !ranges_contain (value->unavailable, offset, length);
357 value_bytes_available (const struct value *value,
358 LONGEST offset, LONGEST length)
360 return value_bits_available (value,
361 offset * TARGET_CHAR_BIT,
362 length * TARGET_CHAR_BIT);
366 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
368 gdb_assert (!value->lazy);
370 return ranges_contain (value->optimized_out, bit_offset, bit_length);
374 value_entirely_available (struct value *value)
376 /* We can only tell whether the whole value is available when we try
379 value_fetch_lazy (value);
381 if (VEC_empty (range_s, value->unavailable))
386 /* Returns true if VALUE is entirely covered by RANGES. If the value
387 is lazy, it'll be read now. Note that RANGE is a pointer to
388 pointer because reading the value might change *RANGE. */
391 value_entirely_covered_by_range_vector (struct value *value,
392 VEC(range_s) **ranges)
394 /* We can only tell whether the whole value is optimized out /
395 unavailable when we try to read it. */
397 value_fetch_lazy (value);
399 if (VEC_length (range_s, *ranges) == 1)
401 struct range *t = VEC_index (range_s, *ranges, 0);
404 && t->length == (TARGET_CHAR_BIT
405 * TYPE_LENGTH (value_enclosing_type (value))))
413 value_entirely_unavailable (struct value *value)
415 return value_entirely_covered_by_range_vector (value, &value->unavailable);
419 value_entirely_optimized_out (struct value *value)
421 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
424 /* Insert into the vector pointed to by VECTORP the bit range starting of
425 OFFSET bits, and extending for the next LENGTH bits. */
428 insert_into_bit_range_vector (VEC(range_s) **vectorp,
429 LONGEST offset, LONGEST length)
434 /* Insert the range sorted. If there's overlap or the new range
435 would be contiguous with an existing range, merge. */
437 newr.offset = offset;
438 newr.length = length;
440 /* Do a binary search for the position the given range would be
441 inserted if we only considered the starting OFFSET of ranges.
442 Call that position I. Since we also have LENGTH to care for
443 (this is a range afterall), we need to check if the _previous_
444 range overlaps the I range. E.g., calling R the new range:
446 #1 - overlaps with previous
450 |---| |---| |------| ... |--|
455 In the case #1 above, the binary search would return `I=1',
456 meaning, this OFFSET should be inserted at position 1, and the
457 current position 1 should be pushed further (and become 2). But,
458 note that `0' overlaps with R, so we want to merge them.
460 A similar consideration needs to be taken if the new range would
461 be contiguous with the previous range:
463 #2 - contiguous with previous
467 |--| |---| |------| ... |--|
472 If there's no overlap with the previous range, as in:
474 #3 - not overlapping and not contiguous
478 |--| |---| |------| ... |--|
485 #4 - R is the range with lowest offset
489 |--| |---| |------| ... |--|
494 ... we just push the new range to I.
496 All the 4 cases above need to consider that the new range may
497 also overlap several of the ranges that follow, or that R may be
498 contiguous with the following range, and merge. E.g.,
500 #5 - overlapping following ranges
503 |------------------------|
504 |--| |---| |------| ... |--|
513 |--| |---| |------| ... |--|
520 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
523 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
525 if (ranges_overlap (bef->offset, bef->length, offset, length))
528 ULONGEST l = std::min (bef->offset, offset);
529 ULONGEST h = std::max (bef->offset + bef->length, offset + length);
535 else if (offset == bef->offset + bef->length)
538 bef->length += length;
544 VEC_safe_insert (range_s, *vectorp, i, &newr);
550 VEC_safe_insert (range_s, *vectorp, i, &newr);
553 /* Check whether the ranges following the one we've just added or
554 touched can be folded in (#5 above). */
555 if (i + 1 < VEC_length (range_s, *vectorp))
562 /* Get the range we just touched. */
563 t = VEC_index (range_s, *vectorp, i);
567 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
568 if (r->offset <= t->offset + t->length)
572 l = std::min (t->offset, r->offset);
573 h = std::max (t->offset + t->length, r->offset + r->length);
582 /* If we couldn't merge this one, we won't be able to
583 merge following ones either, since the ranges are
584 always sorted by OFFSET. */
589 VEC_block_remove (range_s, *vectorp, next, removed);
594 mark_value_bits_unavailable (struct value *value,
595 LONGEST offset, LONGEST length)
597 insert_into_bit_range_vector (&value->unavailable, offset, length);
601 mark_value_bytes_unavailable (struct value *value,
602 LONGEST offset, LONGEST length)
604 mark_value_bits_unavailable (value,
605 offset * TARGET_CHAR_BIT,
606 length * TARGET_CHAR_BIT);
609 /* Find the first range in RANGES that overlaps the range defined by
610 OFFSET and LENGTH, starting at element POS in the RANGES vector,
611 Returns the index into RANGES where such overlapping range was
612 found, or -1 if none was found. */
615 find_first_range_overlap (VEC(range_s) *ranges, int pos,
616 LONGEST offset, LONGEST length)
621 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
622 if (ranges_overlap (r->offset, r->length, offset, length))
628 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
629 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
632 It must always be the case that:
633 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
635 It is assumed that memory can be accessed from:
636 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
638 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
639 / TARGET_CHAR_BIT) */
641 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
642 const gdb_byte *ptr2, size_t offset2_bits,
645 gdb_assert (offset1_bits % TARGET_CHAR_BIT
646 == offset2_bits % TARGET_CHAR_BIT);
648 if (offset1_bits % TARGET_CHAR_BIT != 0)
651 gdb_byte mask, b1, b2;
653 /* The offset from the base pointers PTR1 and PTR2 is not a complete
654 number of bytes. A number of bits up to either the next exact
655 byte boundary, or LENGTH_BITS (which ever is sooner) will be
657 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
658 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
659 mask = (1 << bits) - 1;
661 if (length_bits < bits)
663 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
667 /* Now load the two bytes and mask off the bits we care about. */
668 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
669 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
674 /* Now update the length and offsets to take account of the bits
675 we've just compared. */
677 offset1_bits += bits;
678 offset2_bits += bits;
681 if (length_bits % TARGET_CHAR_BIT != 0)
685 gdb_byte mask, b1, b2;
687 /* The length is not an exact number of bytes. After the previous
688 IF.. block then the offsets are byte aligned, or the
689 length is zero (in which case this code is not reached). Compare
690 a number of bits at the end of the region, starting from an exact
692 bits = length_bits % TARGET_CHAR_BIT;
693 o1 = offset1_bits + length_bits - bits;
694 o2 = offset2_bits + length_bits - bits;
696 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
697 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
699 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
700 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
702 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
703 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
713 /* We've now taken care of any stray "bits" at the start, or end of
714 the region to compare, the remainder can be covered with a simple
716 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
717 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
718 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
720 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
721 ptr2 + offset2_bits / TARGET_CHAR_BIT,
722 length_bits / TARGET_CHAR_BIT);
725 /* Length is zero, regions match. */
729 /* Helper struct for find_first_range_overlap_and_match and
730 value_contents_bits_eq. Keep track of which slot of a given ranges
731 vector have we last looked at. */
733 struct ranges_and_idx
736 VEC(range_s) *ranges;
738 /* The range we've last found in RANGES. Given ranges are sorted,
739 we can start the next lookup here. */
743 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
744 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
745 ranges starting at OFFSET2 bits. Return true if the ranges match
746 and fill in *L and *H with the overlapping window relative to
747 (both) OFFSET1 or OFFSET2. */
750 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
751 struct ranges_and_idx *rp2,
752 LONGEST offset1, LONGEST offset2,
753 LONGEST length, ULONGEST *l, ULONGEST *h)
755 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
757 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
760 if (rp1->idx == -1 && rp2->idx == -1)
766 else if (rp1->idx == -1 || rp2->idx == -1)
774 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
775 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
777 /* Get the unavailable windows intersected by the incoming
778 ranges. The first and last ranges that overlap the argument
779 range may be wider than said incoming arguments ranges. */
780 l1 = std::max (offset1, r1->offset);
781 h1 = std::min (offset1 + length, r1->offset + r1->length);
783 l2 = std::max (offset2, r2->offset);
784 h2 = std::min (offset2 + length, offset2 + r2->length);
786 /* Make them relative to the respective start offsets, so we can
787 compare them for equality. */
794 /* Different ranges, no match. */
795 if (l1 != l2 || h1 != h2)
804 /* Helper function for value_contents_eq. The only difference is that
805 this function is bit rather than byte based.
807 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
808 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
809 Return true if the available bits match. */
812 value_contents_bits_eq (const struct value *val1, int offset1,
813 const struct value *val2, int offset2,
816 /* Each array element corresponds to a ranges source (unavailable,
817 optimized out). '1' is for VAL1, '2' for VAL2. */
818 struct ranges_and_idx rp1[2], rp2[2];
820 /* See function description in value.h. */
821 gdb_assert (!val1->lazy && !val2->lazy);
823 /* We shouldn't be trying to compare past the end of the values. */
824 gdb_assert (offset1 + length
825 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
826 gdb_assert (offset2 + length
827 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
829 memset (&rp1, 0, sizeof (rp1));
830 memset (&rp2, 0, sizeof (rp2));
831 rp1[0].ranges = val1->unavailable;
832 rp2[0].ranges = val2->unavailable;
833 rp1[1].ranges = val1->optimized_out;
834 rp2[1].ranges = val2->optimized_out;
838 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
841 for (i = 0; i < 2; i++)
843 ULONGEST l_tmp, h_tmp;
845 /* The contents only match equal if the invalid/unavailable
846 contents ranges match as well. */
847 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
848 offset1, offset2, length,
852 /* We're interested in the lowest/first range found. */
853 if (i == 0 || l_tmp < l)
860 /* Compare the available/valid contents. */
861 if (memcmp_with_bit_offsets (val1->contents, offset1,
862 val2->contents, offset2, l) != 0)
874 value_contents_eq (const struct value *val1, LONGEST offset1,
875 const struct value *val2, LONGEST offset2,
878 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
879 val2, offset2 * TARGET_CHAR_BIT,
880 length * TARGET_CHAR_BIT);
884 /* The value-history records all the values printed
885 by print commands during this session. Each chunk
886 records 60 consecutive values. The first chunk on
887 the chain records the most recent values.
888 The total number of values is in value_history_count. */
890 #define VALUE_HISTORY_CHUNK 60
892 struct value_history_chunk
894 struct value_history_chunk *next;
895 struct value *values[VALUE_HISTORY_CHUNK];
898 /* Chain of chunks now in use. */
900 static struct value_history_chunk *value_history_chain;
902 static int value_history_count; /* Abs number of last entry stored. */
905 /* List of all value objects currently allocated
906 (except for those released by calls to release_value)
907 This is so they can be freed after each command. */
909 static struct value *all_values;
911 /* Allocate a lazy value for type TYPE. Its actual content is
912 "lazily" allocated too: the content field of the return value is
913 NULL; it will be allocated when it is fetched from the target. */
916 allocate_value_lazy (struct type *type)
920 /* Call check_typedef on our type to make sure that, if TYPE
921 is a TYPE_CODE_TYPEDEF, its length is set to the length
922 of the target type instead of zero. However, we do not
923 replace the typedef type by the target type, because we want
924 to keep the typedef in order to be able to set the VAL's type
925 description correctly. */
926 check_typedef (type);
928 val = XCNEW (struct value);
929 val->contents = NULL;
930 val->next = all_values;
933 val->enclosing_type = type;
934 VALUE_LVAL (val) = not_lval;
935 val->location.address = 0;
940 val->embedded_offset = 0;
941 val->pointed_to_offset = 0;
943 val->initialized = 1; /* Default to initialized. */
945 /* Values start out on the all_values chain. */
946 val->reference_count = 1;
951 /* The maximum size, in bytes, that GDB will try to allocate for a value.
952 The initial value of 64k was not selected for any specific reason, it is
953 just a reasonable starting point. */
955 static int max_value_size = 65536; /* 64k bytes */
957 /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
958 LONGEST, otherwise GDB will not be able to parse integer values from the
959 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
960 be unable to parse "set max-value-size 2".
962 As we want a consistent GDB experience across hosts with different sizes
963 of LONGEST, this arbitrary minimum value was selected, so long as this
964 is bigger than LONGEST on all GDB supported hosts we're fine. */
966 #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
967 gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
969 /* Implement the "set max-value-size" command. */
972 set_max_value_size (const char *args, int from_tty,
973 struct cmd_list_element *c)
975 gdb_assert (max_value_size == -1 || max_value_size >= 0);
977 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
979 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
980 error (_("max-value-size set too low, increasing to %d bytes"),
985 /* Implement the "show max-value-size" command. */
988 show_max_value_size (struct ui_file *file, int from_tty,
989 struct cmd_list_element *c, const char *value)
991 if (max_value_size == -1)
992 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
994 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
998 /* Called before we attempt to allocate or reallocate a buffer for the
999 contents of a value. TYPE is the type of the value for which we are
1000 allocating the buffer. If the buffer is too large (based on the user
1001 controllable setting) then throw an error. If this function returns
1002 then we should attempt to allocate the buffer. */
1005 check_type_length_before_alloc (const struct type *type)
1007 unsigned int length = TYPE_LENGTH (type);
1009 if (max_value_size > -1 && length > max_value_size)
1011 if (TYPE_NAME (type) != NULL)
1012 error (_("value of type `%s' requires %u bytes, which is more "
1013 "than max-value-size"), TYPE_NAME (type), length);
1015 error (_("value requires %u bytes, which is more than "
1016 "max-value-size"), length);
1020 /* Allocate the contents of VAL if it has not been allocated yet. */
1023 allocate_value_contents (struct value *val)
1027 check_type_length_before_alloc (val->enclosing_type);
1029 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1033 /* Allocate a value and its contents for type TYPE. */
1036 allocate_value (struct type *type)
1038 struct value *val = allocate_value_lazy (type);
1040 allocate_value_contents (val);
1045 /* Allocate a value that has the correct length
1046 for COUNT repetitions of type TYPE. */
1049 allocate_repeat_value (struct type *type, int count)
1051 int low_bound = current_language->string_lower_bound; /* ??? */
1052 /* FIXME-type-allocation: need a way to free this type when we are
1054 struct type *array_type
1055 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
1057 return allocate_value (array_type);
1061 allocate_computed_value (struct type *type,
1062 const struct lval_funcs *funcs,
1065 struct value *v = allocate_value_lazy (type);
1067 VALUE_LVAL (v) = lval_computed;
1068 v->location.computed.funcs = funcs;
1069 v->location.computed.closure = closure;
1074 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1077 allocate_optimized_out_value (struct type *type)
1079 struct value *retval = allocate_value_lazy (type);
1081 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1082 set_value_lazy (retval, 0);
1086 /* Accessor methods. */
1089 value_next (const struct value *value)
1095 value_type (const struct value *value)
1100 deprecated_set_value_type (struct value *value, struct type *type)
1106 value_offset (const struct value *value)
1108 return value->offset;
1111 set_value_offset (struct value *value, LONGEST offset)
1113 value->offset = offset;
1117 value_bitpos (const struct value *value)
1119 return value->bitpos;
1122 set_value_bitpos (struct value *value, LONGEST bit)
1124 value->bitpos = bit;
1128 value_bitsize (const struct value *value)
1130 return value->bitsize;
1133 set_value_bitsize (struct value *value, LONGEST bit)
1135 value->bitsize = bit;
1139 value_parent (const struct value *value)
1141 return value->parent;
1147 set_value_parent (struct value *value, struct value *parent)
1149 struct value *old = value->parent;
1151 value->parent = parent;
1153 value_incref (parent);
1158 value_contents_raw (struct value *value)
1160 struct gdbarch *arch = get_value_arch (value);
1161 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1163 allocate_value_contents (value);
1164 return value->contents + value->embedded_offset * unit_size;
1168 value_contents_all_raw (struct value *value)
1170 allocate_value_contents (value);
1171 return value->contents;
1175 value_enclosing_type (const struct value *value)
1177 return value->enclosing_type;
1180 /* Look at value.h for description. */
1183 value_actual_type (struct value *value, int resolve_simple_types,
1184 int *real_type_found)
1186 struct value_print_options opts;
1187 struct type *result;
1189 get_user_print_options (&opts);
1191 if (real_type_found)
1192 *real_type_found = 0;
1193 result = value_type (value);
1194 if (opts.objectprint)
1196 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1197 fetch its rtti type. */
1198 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
1199 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1201 && !value_optimized_out (value))
1203 struct type *real_type;
1205 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1208 if (real_type_found)
1209 *real_type_found = 1;
1213 else if (resolve_simple_types)
1215 if (real_type_found)
1216 *real_type_found = 1;
1217 result = value_enclosing_type (value);
1225 error_value_optimized_out (void)
1227 error (_("value has been optimized out"));
1231 require_not_optimized_out (const struct value *value)
1233 if (!VEC_empty (range_s, value->optimized_out))
1235 if (value->lval == lval_register)
1236 error (_("register has not been saved in frame"));
1238 error_value_optimized_out ();
1243 require_available (const struct value *value)
1245 if (!VEC_empty (range_s, value->unavailable))
1246 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1250 value_contents_for_printing (struct value *value)
1253 value_fetch_lazy (value);
1254 return value->contents;
1258 value_contents_for_printing_const (const struct value *value)
1260 gdb_assert (!value->lazy);
1261 return value->contents;
1265 value_contents_all (struct value *value)
1267 const gdb_byte *result = value_contents_for_printing (value);
1268 require_not_optimized_out (value);
1269 require_available (value);
1273 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1274 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1277 ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1278 VEC (range_s) *src_range, int src_bit_offset,
1284 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1288 l = std::max (r->offset, (LONGEST) src_bit_offset);
1289 h = std::min (r->offset + r->length,
1290 (LONGEST) src_bit_offset + bit_length);
1293 insert_into_bit_range_vector (dst_range,
1294 dst_bit_offset + (l - src_bit_offset),
1299 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1300 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1303 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1304 const struct value *src, int src_bit_offset,
1307 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1308 src->unavailable, src_bit_offset,
1310 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1311 src->optimized_out, src_bit_offset,
1315 /* Copy LENGTH target addressable memory units of SRC value's (all) contents
1316 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1317 contents, starting at DST_OFFSET. If unavailable contents are
1318 being copied from SRC, the corresponding DST contents are marked
1319 unavailable accordingly. Neither DST nor SRC may be lazy
1322 It is assumed the contents of DST in the [DST_OFFSET,
1323 DST_OFFSET+LENGTH) range are wholly available. */
1326 value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1327 struct value *src, LONGEST src_offset, LONGEST length)
1329 LONGEST src_bit_offset, dst_bit_offset, bit_length;
1330 struct gdbarch *arch = get_value_arch (src);
1331 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1333 /* A lazy DST would make that this copy operation useless, since as
1334 soon as DST's contents were un-lazied (by a later value_contents
1335 call, say), the contents would be overwritten. A lazy SRC would
1336 mean we'd be copying garbage. */
1337 gdb_assert (!dst->lazy && !src->lazy);
1339 /* The overwritten DST range gets unavailability ORed in, not
1340 replaced. Make sure to remember to implement replacing if it
1341 turns out actually necessary. */
1342 gdb_assert (value_bytes_available (dst, dst_offset, length));
1343 gdb_assert (!value_bits_any_optimized_out (dst,
1344 TARGET_CHAR_BIT * dst_offset,
1345 TARGET_CHAR_BIT * length));
1347 /* Copy the data. */
1348 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1349 value_contents_all_raw (src) + src_offset * unit_size,
1350 length * unit_size);
1352 /* Copy the meta-data, adjusted. */
1353 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1354 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1355 bit_length = length * unit_size * HOST_CHAR_BIT;
1357 value_ranges_copy_adjusted (dst, dst_bit_offset,
1358 src, src_bit_offset,
1362 /* Copy LENGTH bytes of SRC value's (all) contents
1363 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1364 (all) contents, starting at DST_OFFSET. If unavailable contents
1365 are being copied from SRC, the corresponding DST contents are
1366 marked unavailable accordingly. DST must not be lazy. If SRC is
1367 lazy, it will be fetched now.
1369 It is assumed the contents of DST in the [DST_OFFSET,
1370 DST_OFFSET+LENGTH) range are wholly available. */
1373 value_contents_copy (struct value *dst, LONGEST dst_offset,
1374 struct value *src, LONGEST src_offset, LONGEST length)
1377 value_fetch_lazy (src);
1379 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1383 value_lazy (const struct value *value)
1389 set_value_lazy (struct value *value, int val)
1395 value_stack (const struct value *value)
1397 return value->stack;
1401 set_value_stack (struct value *value, int val)
1407 value_contents (struct value *value)
1409 const gdb_byte *result = value_contents_writeable (value);
1410 require_not_optimized_out (value);
1411 require_available (value);
1416 value_contents_writeable (struct value *value)
1419 value_fetch_lazy (value);
1420 return value_contents_raw (value);
1424 value_optimized_out (struct value *value)
1426 /* We can only know if a value is optimized out once we have tried to
1428 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
1432 value_fetch_lazy (value);
1434 CATCH (ex, RETURN_MASK_ERROR)
1436 /* Fall back to checking value->optimized_out. */
1441 return !VEC_empty (range_s, value->optimized_out);
1444 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1445 the following LENGTH bytes. */
1448 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1450 mark_value_bits_optimized_out (value,
1451 offset * TARGET_CHAR_BIT,
1452 length * TARGET_CHAR_BIT);
1458 mark_value_bits_optimized_out (struct value *value,
1459 LONGEST offset, LONGEST length)
1461 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1465 value_bits_synthetic_pointer (const struct value *value,
1466 LONGEST offset, LONGEST length)
1468 if (value->lval != lval_computed
1469 || !value->location.computed.funcs->check_synthetic_pointer)
1471 return value->location.computed.funcs->check_synthetic_pointer (value,
1477 value_embedded_offset (const struct value *value)
1479 return value->embedded_offset;
1483 set_value_embedded_offset (struct value *value, LONGEST val)
1485 value->embedded_offset = val;
1489 value_pointed_to_offset (const struct value *value)
1491 return value->pointed_to_offset;
1495 set_value_pointed_to_offset (struct value *value, LONGEST val)
1497 value->pointed_to_offset = val;
1500 const struct lval_funcs *
1501 value_computed_funcs (const struct value *v)
1503 gdb_assert (value_lval_const (v) == lval_computed);
1505 return v->location.computed.funcs;
1509 value_computed_closure (const struct value *v)
1511 gdb_assert (v->lval == lval_computed);
1513 return v->location.computed.closure;
1517 deprecated_value_lval_hack (struct value *value)
1519 return &value->lval;
1523 value_lval_const (const struct value *value)
1529 value_address (const struct value *value)
1531 if (value->lval != lval_memory)
1533 if (value->parent != NULL)
1534 return value_address (value->parent) + value->offset;
1535 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1537 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1538 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1541 return value->location.address + value->offset;
1545 value_raw_address (const struct value *value)
1547 if (value->lval != lval_memory)
1549 return value->location.address;
1553 set_value_address (struct value *value, CORE_ADDR addr)
1555 gdb_assert (value->lval == lval_memory);
1556 value->location.address = addr;
1559 struct internalvar **
1560 deprecated_value_internalvar_hack (struct value *value)
1562 return &value->location.internalvar;
1566 deprecated_value_next_frame_id_hack (struct value *value)
1568 gdb_assert (value->lval == lval_register);
1569 return &value->location.reg.next_frame_id;
1573 deprecated_value_regnum_hack (struct value *value)
1575 gdb_assert (value->lval == lval_register);
1576 return &value->location.reg.regnum;
1580 deprecated_value_modifiable (const struct value *value)
1582 return value->modifiable;
1585 /* Return a mark in the value chain. All values allocated after the
1586 mark is obtained (except for those released) are subject to being freed
1587 if a subsequent value_free_to_mark is passed the mark. */
1594 /* Take a reference to VAL. VAL will not be deallocated until all
1595 references are released. */
1598 value_incref (struct value *val)
1600 val->reference_count++;
1603 /* Release a reference to VAL, which was acquired with value_incref.
1604 This function is also called to deallocate values from the value
1608 value_free (struct value *val)
1612 gdb_assert (val->reference_count > 0);
1613 val->reference_count--;
1614 if (val->reference_count > 0)
1617 /* If there's an associated parent value, drop our reference to
1619 if (val->parent != NULL)
1620 value_free (val->parent);
1622 if (VALUE_LVAL (val) == lval_computed)
1624 const struct lval_funcs *funcs = val->location.computed.funcs;
1626 if (funcs->free_closure)
1627 funcs->free_closure (val);
1629 else if (VALUE_LVAL (val) == lval_xcallable)
1630 free_xmethod_worker (val->location.xm_worker);
1632 xfree (val->contents);
1633 VEC_free (range_s, val->unavailable);
1638 /* Free all values allocated since MARK was obtained by value_mark
1639 (except for those released). */
1641 value_free_to_mark (const struct value *mark)
1646 for (val = all_values; val && val != mark; val = next)
1655 /* Free all the values that have been allocated (except for those released).
1656 Call after each command, successful or not.
1657 In practice this is called before each command, which is sufficient. */
1660 free_all_values (void)
1665 for (val = all_values; val; val = next)
1675 /* Frees all the elements in a chain of values. */
1678 free_value_chain (struct value *v)
1684 next = value_next (v);
1689 /* Remove VAL from the chain all_values
1690 so it will not be freed automatically. */
1693 release_value (struct value *val)
1697 if (all_values == val)
1699 all_values = val->next;
1705 for (v = all_values; v; v = v->next)
1709 v->next = val->next;
1717 /* If the value is not already released, release it.
1718 If the value is already released, increment its reference count.
1719 That is, this function ensures that the value is released from the
1720 value chain and that the caller owns a reference to it. */
1723 release_value_or_incref (struct value *val)
1728 release_value (val);
1731 /* Release all values up to mark */
1733 value_release_to_mark (const struct value *mark)
1738 for (val = next = all_values; next; next = next->next)
1740 if (next->next == mark)
1742 all_values = next->next;
1752 /* Return a copy of the value ARG.
1753 It contains the same contents, for same memory address,
1754 but it's a different block of storage. */
1757 value_copy (struct value *arg)
1759 struct type *encl_type = value_enclosing_type (arg);
1762 if (value_lazy (arg))
1763 val = allocate_value_lazy (encl_type);
1765 val = allocate_value (encl_type);
1766 val->type = arg->type;
1767 VALUE_LVAL (val) = VALUE_LVAL (arg);
1768 val->location = arg->location;
1769 val->offset = arg->offset;
1770 val->bitpos = arg->bitpos;
1771 val->bitsize = arg->bitsize;
1772 val->lazy = arg->lazy;
1773 val->embedded_offset = value_embedded_offset (arg);
1774 val->pointed_to_offset = arg->pointed_to_offset;
1775 val->modifiable = arg->modifiable;
1776 if (!value_lazy (val))
1778 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1779 TYPE_LENGTH (value_enclosing_type (arg)));
1782 val->unavailable = VEC_copy (range_s, arg->unavailable);
1783 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
1784 set_value_parent (val, arg->parent);
1785 if (VALUE_LVAL (val) == lval_computed)
1787 const struct lval_funcs *funcs = val->location.computed.funcs;
1789 if (funcs->copy_closure)
1790 val->location.computed.closure = funcs->copy_closure (val);
1795 /* Return a "const" and/or "volatile" qualified version of the value V.
1796 If CNST is true, then the returned value will be qualified with
1798 if VOLTL is true, then the returned value will be qualified with
1802 make_cv_value (int cnst, int voltl, struct value *v)
1804 struct type *val_type = value_type (v);
1805 struct type *enclosing_type = value_enclosing_type (v);
1806 struct value *cv_val = value_copy (v);
1808 deprecated_set_value_type (cv_val,
1809 make_cv_type (cnst, voltl, val_type, NULL));
1810 set_value_enclosing_type (cv_val,
1811 make_cv_type (cnst, voltl, enclosing_type, NULL));
1816 /* Return a version of ARG that is non-lvalue. */
1819 value_non_lval (struct value *arg)
1821 if (VALUE_LVAL (arg) != not_lval)
1823 struct type *enc_type = value_enclosing_type (arg);
1824 struct value *val = allocate_value (enc_type);
1826 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1827 TYPE_LENGTH (enc_type));
1828 val->type = arg->type;
1829 set_value_embedded_offset (val, value_embedded_offset (arg));
1830 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1836 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1839 value_force_lval (struct value *v, CORE_ADDR addr)
1841 gdb_assert (VALUE_LVAL (v) == not_lval);
1843 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1844 v->lval = lval_memory;
1845 v->location.address = addr;
1849 set_value_component_location (struct value *component,
1850 const struct value *whole)
1854 gdb_assert (whole->lval != lval_xcallable);
1856 if (whole->lval == lval_internalvar)
1857 VALUE_LVAL (component) = lval_internalvar_component;
1859 VALUE_LVAL (component) = whole->lval;
1861 component->location = whole->location;
1862 if (whole->lval == lval_computed)
1864 const struct lval_funcs *funcs = whole->location.computed.funcs;
1866 if (funcs->copy_closure)
1867 component->location.computed.closure = funcs->copy_closure (whole);
1870 /* If type has a dynamic resolved location property
1871 update it's value address. */
1872 type = value_type (whole);
1873 if (NULL != TYPE_DATA_LOCATION (type)
1874 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1875 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1878 /* Access to the value history. */
1880 /* Record a new value in the value history.
1881 Returns the absolute history index of the entry. */
1884 record_latest_value (struct value *val)
1888 /* We don't want this value to have anything to do with the inferior anymore.
1889 In particular, "set $1 = 50" should not affect the variable from which
1890 the value was taken, and fast watchpoints should be able to assume that
1891 a value on the value history never changes. */
1892 if (value_lazy (val))
1893 value_fetch_lazy (val);
1894 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1895 from. This is a bit dubious, because then *&$1 does not just return $1
1896 but the current contents of that location. c'est la vie... */
1897 val->modifiable = 0;
1899 /* The value may have already been released, in which case we're adding a
1900 new reference for its entry in the history. That is why we call
1901 release_value_or_incref here instead of release_value. */
1902 release_value_or_incref (val);
1904 /* Here we treat value_history_count as origin-zero
1905 and applying to the value being stored now. */
1907 i = value_history_count % VALUE_HISTORY_CHUNK;
1910 struct value_history_chunk *newobj = XCNEW (struct value_history_chunk);
1912 newobj->next = value_history_chain;
1913 value_history_chain = newobj;
1916 value_history_chain->values[i] = val;
1918 /* Now we regard value_history_count as origin-one
1919 and applying to the value just stored. */
1921 return ++value_history_count;
1924 /* Return a copy of the value in the history with sequence number NUM. */
1927 access_value_history (int num)
1929 struct value_history_chunk *chunk;
1934 absnum += value_history_count;
1939 error (_("The history is empty."));
1941 error (_("There is only one value in the history."));
1943 error (_("History does not go back to $$%d."), -num);
1945 if (absnum > value_history_count)
1946 error (_("History has not yet reached $%d."), absnum);
1950 /* Now absnum is always absolute and origin zero. */
1952 chunk = value_history_chain;
1953 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1954 - absnum / VALUE_HISTORY_CHUNK;
1956 chunk = chunk->next;
1958 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1962 show_values (const char *num_exp, int from_tty)
1970 /* "show values +" should print from the stored position.
1971 "show values <exp>" should print around value number <exp>. */
1972 if (num_exp[0] != '+' || num_exp[1] != '\0')
1973 num = parse_and_eval_long (num_exp) - 5;
1977 /* "show values" means print the last 10 values. */
1978 num = value_history_count - 9;
1984 for (i = num; i < num + 10 && i <= value_history_count; i++)
1986 struct value_print_options opts;
1988 val = access_value_history (i);
1989 printf_filtered (("$%d = "), i);
1990 get_user_print_options (&opts);
1991 value_print (val, gdb_stdout, &opts);
1992 printf_filtered (("\n"));
1995 /* The next "show values +" should start after what we just printed. */
1998 /* Hitting just return after this command should do the same thing as
1999 "show values +". If num_exp is null, this is unnecessary, since
2000 "show values +" is not useful after "show values". */
2001 if (from_tty && num_exp)
2002 set_repeat_arguments ("+");
2005 enum internalvar_kind
2007 /* The internal variable is empty. */
2010 /* The value of the internal variable is provided directly as
2011 a GDB value object. */
2014 /* A fresh value is computed via a call-back routine on every
2015 access to the internal variable. */
2016 INTERNALVAR_MAKE_VALUE,
2018 /* The internal variable holds a GDB internal convenience function. */
2019 INTERNALVAR_FUNCTION,
2021 /* The variable holds an integer value. */
2022 INTERNALVAR_INTEGER,
2024 /* The variable holds a GDB-provided string. */
2028 union internalvar_data
2030 /* A value object used with INTERNALVAR_VALUE. */
2031 struct value *value;
2033 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
2036 /* The functions to call. */
2037 const struct internalvar_funcs *functions;
2039 /* The function's user-data. */
2043 /* The internal function used with INTERNALVAR_FUNCTION. */
2046 struct internal_function *function;
2047 /* True if this is the canonical name for the function. */
2051 /* An integer value used with INTERNALVAR_INTEGER. */
2054 /* If type is non-NULL, it will be used as the type to generate
2055 a value for this internal variable. If type is NULL, a default
2056 integer type for the architecture is used. */
2061 /* A string value used with INTERNALVAR_STRING. */
2065 /* Internal variables. These are variables within the debugger
2066 that hold values assigned by debugger commands.
2067 The user refers to them with a '$' prefix
2068 that does not appear in the variable names stored internally. */
2072 struct internalvar *next;
2075 /* We support various different kinds of content of an internal variable.
2076 enum internalvar_kind specifies the kind, and union internalvar_data
2077 provides the data associated with this particular kind. */
2079 enum internalvar_kind kind;
2081 union internalvar_data u;
2084 static struct internalvar *internalvars;
2086 /* If the variable does not already exist create it and give it the
2087 value given. If no value is given then the default is zero. */
2089 init_if_undefined_command (const char* args, int from_tty)
2091 struct internalvar* intvar;
2093 /* Parse the expression - this is taken from set_command(). */
2094 expression_up expr = parse_expression (args);
2096 /* Validate the expression.
2097 Was the expression an assignment?
2098 Or even an expression at all? */
2099 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2100 error (_("Init-if-undefined requires an assignment expression."));
2102 /* Extract the variable from the parsed expression.
2103 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2104 if (expr->elts[1].opcode != OP_INTERNALVAR)
2105 error (_("The first parameter to init-if-undefined "
2106 "should be a GDB variable."));
2107 intvar = expr->elts[2].internalvar;
2109 /* Only evaluate the expression if the lvalue is void.
2110 This may still fail if the expresssion is invalid. */
2111 if (intvar->kind == INTERNALVAR_VOID)
2112 evaluate_expression (expr.get ());
2116 /* Look up an internal variable with name NAME. NAME should not
2117 normally include a dollar sign.
2119 If the specified internal variable does not exist,
2120 the return value is NULL. */
2122 struct internalvar *
2123 lookup_only_internalvar (const char *name)
2125 struct internalvar *var;
2127 for (var = internalvars; var; var = var->next)
2128 if (strcmp (var->name, name) == 0)
2134 /* Complete NAME by comparing it to the names of internal
2138 complete_internalvar (completion_tracker &tracker, const char *name)
2140 struct internalvar *var;
2143 len = strlen (name);
2145 for (var = internalvars; var; var = var->next)
2146 if (strncmp (var->name, name, len) == 0)
2148 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name));
2150 tracker.add_completion (std::move (copy));
2154 /* Create an internal variable with name NAME and with a void value.
2155 NAME should not normally include a dollar sign. */
2157 struct internalvar *
2158 create_internalvar (const char *name)
2160 struct internalvar *var = XNEW (struct internalvar);
2162 var->name = concat (name, (char *)NULL);
2163 var->kind = INTERNALVAR_VOID;
2164 var->next = internalvars;
2169 /* Create an internal variable with name NAME and register FUN as the
2170 function that value_of_internalvar uses to create a value whenever
2171 this variable is referenced. NAME should not normally include a
2172 dollar sign. DATA is passed uninterpreted to FUN when it is
2173 called. CLEANUP, if not NULL, is called when the internal variable
2174 is destroyed. It is passed DATA as its only argument. */
2176 struct internalvar *
2177 create_internalvar_type_lazy (const char *name,
2178 const struct internalvar_funcs *funcs,
2181 struct internalvar *var = create_internalvar (name);
2183 var->kind = INTERNALVAR_MAKE_VALUE;
2184 var->u.make_value.functions = funcs;
2185 var->u.make_value.data = data;
2189 /* See documentation in value.h. */
2192 compile_internalvar_to_ax (struct internalvar *var,
2193 struct agent_expr *expr,
2194 struct axs_value *value)
2196 if (var->kind != INTERNALVAR_MAKE_VALUE
2197 || var->u.make_value.functions->compile_to_ax == NULL)
2200 var->u.make_value.functions->compile_to_ax (var, expr, value,
2201 var->u.make_value.data);
2205 /* Look up an internal variable with name NAME. NAME should not
2206 normally include a dollar sign.
2208 If the specified internal variable does not exist,
2209 one is created, with a void value. */
2211 struct internalvar *
2212 lookup_internalvar (const char *name)
2214 struct internalvar *var;
2216 var = lookup_only_internalvar (name);
2220 return create_internalvar (name);
2223 /* Return current value of internal variable VAR. For variables that
2224 are not inherently typed, use a value type appropriate for GDBARCH. */
2227 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2230 struct trace_state_variable *tsv;
2232 /* If there is a trace state variable of the same name, assume that
2233 is what we really want to see. */
2234 tsv = find_trace_state_variable (var->name);
2237 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2239 if (tsv->value_known)
2240 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2243 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2249 case INTERNALVAR_VOID:
2250 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2253 case INTERNALVAR_FUNCTION:
2254 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2257 case INTERNALVAR_INTEGER:
2258 if (!var->u.integer.type)
2259 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2260 var->u.integer.val);
2262 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2265 case INTERNALVAR_STRING:
2266 val = value_cstring (var->u.string, strlen (var->u.string),
2267 builtin_type (gdbarch)->builtin_char);
2270 case INTERNALVAR_VALUE:
2271 val = value_copy (var->u.value);
2272 if (value_lazy (val))
2273 value_fetch_lazy (val);
2276 case INTERNALVAR_MAKE_VALUE:
2277 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2278 var->u.make_value.data);
2282 internal_error (__FILE__, __LINE__, _("bad kind"));
2285 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2286 on this value go back to affect the original internal variable.
2288 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2289 no underlying modifyable state in the internal variable.
2291 Likewise, if the variable's value is a computed lvalue, we want
2292 references to it to produce another computed lvalue, where
2293 references and assignments actually operate through the
2294 computed value's functions.
2296 This means that internal variables with computed values
2297 behave a little differently from other internal variables:
2298 assignments to them don't just replace the previous value
2299 altogether. At the moment, this seems like the behavior we
2302 if (var->kind != INTERNALVAR_MAKE_VALUE
2303 && val->lval != lval_computed)
2305 VALUE_LVAL (val) = lval_internalvar;
2306 VALUE_INTERNALVAR (val) = var;
2313 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2315 if (var->kind == INTERNALVAR_INTEGER)
2317 *result = var->u.integer.val;
2321 if (var->kind == INTERNALVAR_VALUE)
2323 struct type *type = check_typedef (value_type (var->u.value));
2325 if (TYPE_CODE (type) == TYPE_CODE_INT)
2327 *result = value_as_long (var->u.value);
2336 get_internalvar_function (struct internalvar *var,
2337 struct internal_function **result)
2341 case INTERNALVAR_FUNCTION:
2342 *result = var->u.fn.function;
2351 set_internalvar_component (struct internalvar *var,
2352 LONGEST offset, LONGEST bitpos,
2353 LONGEST bitsize, struct value *newval)
2356 struct gdbarch *arch;
2361 case INTERNALVAR_VALUE:
2362 addr = value_contents_writeable (var->u.value);
2363 arch = get_value_arch (var->u.value);
2364 unit_size = gdbarch_addressable_memory_unit_size (arch);
2367 modify_field (value_type (var->u.value), addr + offset,
2368 value_as_long (newval), bitpos, bitsize);
2370 memcpy (addr + offset * unit_size, value_contents (newval),
2371 TYPE_LENGTH (value_type (newval)));
2375 /* We can never get a component of any other kind. */
2376 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2381 set_internalvar (struct internalvar *var, struct value *val)
2383 enum internalvar_kind new_kind;
2384 union internalvar_data new_data = { 0 };
2386 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2387 error (_("Cannot overwrite convenience function %s"), var->name);
2389 /* Prepare new contents. */
2390 switch (TYPE_CODE (check_typedef (value_type (val))))
2392 case TYPE_CODE_VOID:
2393 new_kind = INTERNALVAR_VOID;
2396 case TYPE_CODE_INTERNAL_FUNCTION:
2397 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2398 new_kind = INTERNALVAR_FUNCTION;
2399 get_internalvar_function (VALUE_INTERNALVAR (val),
2400 &new_data.fn.function);
2401 /* Copies created here are never canonical. */
2405 new_kind = INTERNALVAR_VALUE;
2406 new_data.value = value_copy (val);
2407 new_data.value->modifiable = 1;
2409 /* Force the value to be fetched from the target now, to avoid problems
2410 later when this internalvar is referenced and the target is gone or
2412 if (value_lazy (new_data.value))
2413 value_fetch_lazy (new_data.value);
2415 /* Release the value from the value chain to prevent it from being
2416 deleted by free_all_values. From here on this function should not
2417 call error () until new_data is installed into the var->u to avoid
2419 release_value (new_data.value);
2421 /* Internal variables which are created from values with a dynamic
2422 location don't need the location property of the origin anymore.
2423 The resolved dynamic location is used prior then any other address
2424 when accessing the value.
2425 If we keep it, we would still refer to the origin value.
2426 Remove the location property in case it exist. */
2427 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2432 /* Clean up old contents. */
2433 clear_internalvar (var);
2436 var->kind = new_kind;
2438 /* End code which must not call error(). */
2442 set_internalvar_integer (struct internalvar *var, LONGEST l)
2444 /* Clean up old contents. */
2445 clear_internalvar (var);
2447 var->kind = INTERNALVAR_INTEGER;
2448 var->u.integer.type = NULL;
2449 var->u.integer.val = l;
2453 set_internalvar_string (struct internalvar *var, const char *string)
2455 /* Clean up old contents. */
2456 clear_internalvar (var);
2458 var->kind = INTERNALVAR_STRING;
2459 var->u.string = xstrdup (string);
2463 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2465 /* Clean up old contents. */
2466 clear_internalvar (var);
2468 var->kind = INTERNALVAR_FUNCTION;
2469 var->u.fn.function = f;
2470 var->u.fn.canonical = 1;
2471 /* Variables installed here are always the canonical version. */
2475 clear_internalvar (struct internalvar *var)
2477 /* Clean up old contents. */
2480 case INTERNALVAR_VALUE:
2481 value_free (var->u.value);
2484 case INTERNALVAR_STRING:
2485 xfree (var->u.string);
2488 case INTERNALVAR_MAKE_VALUE:
2489 if (var->u.make_value.functions->destroy != NULL)
2490 var->u.make_value.functions->destroy (var->u.make_value.data);
2497 /* Reset to void kind. */
2498 var->kind = INTERNALVAR_VOID;
2502 internalvar_name (const struct internalvar *var)
2507 static struct internal_function *
2508 create_internal_function (const char *name,
2509 internal_function_fn handler, void *cookie)
2511 struct internal_function *ifn = XNEW (struct internal_function);
2513 ifn->name = xstrdup (name);
2514 ifn->handler = handler;
2515 ifn->cookie = cookie;
2520 value_internal_function_name (struct value *val)
2522 struct internal_function *ifn;
2525 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2526 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2527 gdb_assert (result);
2533 call_internal_function (struct gdbarch *gdbarch,
2534 const struct language_defn *language,
2535 struct value *func, int argc, struct value **argv)
2537 struct internal_function *ifn;
2540 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2541 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2542 gdb_assert (result);
2544 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2547 /* The 'function' command. This does nothing -- it is just a
2548 placeholder to let "help function NAME" work. This is also used as
2549 the implementation of the sub-command that is created when
2550 registering an internal function. */
2552 function_command (const char *command, int from_tty)
2557 /* Clean up if an internal function's command is destroyed. */
2559 function_destroyer (struct cmd_list_element *self, void *ignore)
2561 xfree ((char *) self->name);
2562 xfree ((char *) self->doc);
2565 /* Add a new internal function. NAME is the name of the function; DOC
2566 is a documentation string describing the function. HANDLER is
2567 called when the function is invoked. COOKIE is an arbitrary
2568 pointer which is passed to HANDLER and is intended for "user
2571 add_internal_function (const char *name, const char *doc,
2572 internal_function_fn handler, void *cookie)
2574 struct cmd_list_element *cmd;
2575 struct internal_function *ifn;
2576 struct internalvar *var = lookup_internalvar (name);
2578 ifn = create_internal_function (name, handler, cookie);
2579 set_internalvar_function (var, ifn);
2581 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2583 cmd->destroyer = function_destroyer;
2586 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2587 prevent cycles / duplicates. */
2590 preserve_one_value (struct value *value, struct objfile *objfile,
2591 htab_t copied_types)
2593 if (TYPE_OBJFILE (value->type) == objfile)
2594 value->type = copy_type_recursive (objfile, value->type, copied_types);
2596 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2597 value->enclosing_type = copy_type_recursive (objfile,
2598 value->enclosing_type,
2602 /* Likewise for internal variable VAR. */
2605 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2606 htab_t copied_types)
2610 case INTERNALVAR_INTEGER:
2611 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2613 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2616 case INTERNALVAR_VALUE:
2617 preserve_one_value (var->u.value, objfile, copied_types);
2622 /* Update the internal variables and value history when OBJFILE is
2623 discarded; we must copy the types out of the objfile. New global types
2624 will be created for every convenience variable which currently points to
2625 this objfile's types, and the convenience variables will be adjusted to
2626 use the new global types. */
2629 preserve_values (struct objfile *objfile)
2631 htab_t copied_types;
2632 struct value_history_chunk *cur;
2633 struct internalvar *var;
2636 /* Create the hash table. We allocate on the objfile's obstack, since
2637 it is soon to be deleted. */
2638 copied_types = create_copied_types_hash (objfile);
2640 for (cur = value_history_chain; cur; cur = cur->next)
2641 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2643 preserve_one_value (cur->values[i], objfile, copied_types);
2645 for (var = internalvars; var; var = var->next)
2646 preserve_one_internalvar (var, objfile, copied_types);
2648 preserve_ext_lang_values (objfile, copied_types);
2650 htab_delete (copied_types);
2654 show_convenience (const char *ignore, int from_tty)
2656 struct gdbarch *gdbarch = get_current_arch ();
2657 struct internalvar *var;
2659 struct value_print_options opts;
2661 get_user_print_options (&opts);
2662 for (var = internalvars; var; var = var->next)
2669 printf_filtered (("$%s = "), var->name);
2675 val = value_of_internalvar (gdbarch, var);
2676 value_print (val, gdb_stdout, &opts);
2678 CATCH (ex, RETURN_MASK_ERROR)
2680 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2684 printf_filtered (("\n"));
2688 /* This text does not mention convenience functions on purpose.
2689 The user can't create them except via Python, and if Python support
2690 is installed this message will never be printed ($_streq will
2692 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2693 "Convenience variables have "
2694 "names starting with \"$\";\n"
2695 "use \"set\" as in \"set "
2696 "$foo = 5\" to define them.\n"));
2700 /* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2703 value_of_xmethod (struct xmethod_worker *worker)
2705 if (worker->value == NULL)
2709 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2710 v->lval = lval_xcallable;
2711 v->location.xm_worker = worker;
2716 return worker->value;
2719 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2722 result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2724 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2725 && method->lval == lval_xcallable && argc > 0);
2727 return get_xmethod_result_type (method->location.xm_worker,
2728 argv[0], argv + 1, argc - 1);
2731 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2734 call_xmethod (struct value *method, int argc, struct value **argv)
2736 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2737 && method->lval == lval_xcallable && argc > 0);
2739 return invoke_xmethod (method->location.xm_worker,
2740 argv[0], argv + 1, argc - 1);
2743 /* Extract a value as a C number (either long or double).
2744 Knows how to convert fixed values to double, or
2745 floating values to long.
2746 Does not deallocate the value. */
2749 value_as_long (struct value *val)
2751 /* This coerces arrays and functions, which is necessary (e.g.
2752 in disassemble_command). It also dereferences references, which
2753 I suspect is the most logical thing to do. */
2754 val = coerce_array (val);
2755 return unpack_long (value_type (val), value_contents (val));
2758 /* Extract a value as a C pointer. Does not deallocate the value.
2759 Note that val's type may not actually be a pointer; value_as_long
2760 handles all the cases. */
2762 value_as_address (struct value *val)
2764 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2766 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2767 whether we want this to be true eventually. */
2769 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2770 non-address (e.g. argument to "signal", "info break", etc.), or
2771 for pointers to char, in which the low bits *are* significant. */
2772 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2775 /* There are several targets (IA-64, PowerPC, and others) which
2776 don't represent pointers to functions as simply the address of
2777 the function's entry point. For example, on the IA-64, a
2778 function pointer points to a two-word descriptor, generated by
2779 the linker, which contains the function's entry point, and the
2780 value the IA-64 "global pointer" register should have --- to
2781 support position-independent code. The linker generates
2782 descriptors only for those functions whose addresses are taken.
2784 On such targets, it's difficult for GDB to convert an arbitrary
2785 function address into a function pointer; it has to either find
2786 an existing descriptor for that function, or call malloc and
2787 build its own. On some targets, it is impossible for GDB to
2788 build a descriptor at all: the descriptor must contain a jump
2789 instruction; data memory cannot be executed; and code memory
2792 Upon entry to this function, if VAL is a value of type `function'
2793 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2794 value_address (val) is the address of the function. This is what
2795 you'll get if you evaluate an expression like `main'. The call
2796 to COERCE_ARRAY below actually does all the usual unary
2797 conversions, which includes converting values of type `function'
2798 to `pointer to function'. This is the challenging conversion
2799 discussed above. Then, `unpack_long' will convert that pointer
2800 back into an address.
2802 So, suppose the user types `disassemble foo' on an architecture
2803 with a strange function pointer representation, on which GDB
2804 cannot build its own descriptors, and suppose further that `foo'
2805 has no linker-built descriptor. The address->pointer conversion
2806 will signal an error and prevent the command from running, even
2807 though the next step would have been to convert the pointer
2808 directly back into the same address.
2810 The following shortcut avoids this whole mess. If VAL is a
2811 function, just return its address directly. */
2812 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2813 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2814 return value_address (val);
2816 val = coerce_array (val);
2818 /* Some architectures (e.g. Harvard), map instruction and data
2819 addresses onto a single large unified address space. For
2820 instance: An architecture may consider a large integer in the
2821 range 0x10000000 .. 0x1000ffff to already represent a data
2822 addresses (hence not need a pointer to address conversion) while
2823 a small integer would still need to be converted integer to
2824 pointer to address. Just assume such architectures handle all
2825 integer conversions in a single function. */
2829 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2830 must admonish GDB hackers to make sure its behavior matches the
2831 compiler's, whenever possible.
2833 In general, I think GDB should evaluate expressions the same way
2834 the compiler does. When the user copies an expression out of
2835 their source code and hands it to a `print' command, they should
2836 get the same value the compiler would have computed. Any
2837 deviation from this rule can cause major confusion and annoyance,
2838 and needs to be justified carefully. In other words, GDB doesn't
2839 really have the freedom to do these conversions in clever and
2842 AndrewC pointed out that users aren't complaining about how GDB
2843 casts integers to pointers; they are complaining that they can't
2844 take an address from a disassembly listing and give it to `x/i'.
2845 This is certainly important.
2847 Adding an architecture method like integer_to_address() certainly
2848 makes it possible for GDB to "get it right" in all circumstances
2849 --- the target has complete control over how things get done, so
2850 people can Do The Right Thing for their target without breaking
2851 anyone else. The standard doesn't specify how integers get
2852 converted to pointers; usually, the ABI doesn't either, but
2853 ABI-specific code is a more reasonable place to handle it. */
2855 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2856 && !TYPE_IS_REFERENCE (value_type (val))
2857 && gdbarch_integer_to_address_p (gdbarch))
2858 return gdbarch_integer_to_address (gdbarch, value_type (val),
2859 value_contents (val));
2861 return unpack_long (value_type (val), value_contents (val));
2865 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2866 as a long, or as a double, assuming the raw data is described
2867 by type TYPE. Knows how to convert different sizes of values
2868 and can convert between fixed and floating point. We don't assume
2869 any alignment for the raw data. Return value is in host byte order.
2871 If you want functions and arrays to be coerced to pointers, and
2872 references to be dereferenced, call value_as_long() instead.
2874 C++: It is assumed that the front-end has taken care of
2875 all matters concerning pointers to members. A pointer
2876 to member which reaches here is considered to be equivalent
2877 to an INT (or some size). After all, it is only an offset. */
2880 unpack_long (struct type *type, const gdb_byte *valaddr)
2882 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2883 enum type_code code = TYPE_CODE (type);
2884 int len = TYPE_LENGTH (type);
2885 int nosign = TYPE_UNSIGNED (type);
2889 case TYPE_CODE_TYPEDEF:
2890 return unpack_long (check_typedef (type), valaddr);
2891 case TYPE_CODE_ENUM:
2892 case TYPE_CODE_FLAGS:
2893 case TYPE_CODE_BOOL:
2895 case TYPE_CODE_CHAR:
2896 case TYPE_CODE_RANGE:
2897 case TYPE_CODE_MEMBERPTR:
2899 return extract_unsigned_integer (valaddr, len, byte_order);
2901 return extract_signed_integer (valaddr, len, byte_order);
2904 case TYPE_CODE_DECFLOAT:
2905 return target_float_to_longest (valaddr, type);
2909 case TYPE_CODE_RVALUE_REF:
2910 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2911 whether we want this to be true eventually. */
2912 return extract_typed_address (valaddr, type);
2915 error (_("Value can't be converted to integer."));
2917 return 0; /* Placate lint. */
2920 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2921 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2922 We don't assume any alignment for the raw data. Return value is in
2925 If you want functions and arrays to be coerced to pointers, and
2926 references to be dereferenced, call value_as_address() instead.
2928 C++: It is assumed that the front-end has taken care of
2929 all matters concerning pointers to members. A pointer
2930 to member which reaches here is considered to be equivalent
2931 to an INT (or some size). After all, it is only an offset. */
2934 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2936 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2937 whether we want this to be true eventually. */
2938 return unpack_long (type, valaddr);
2942 is_floating_value (struct value *val)
2944 struct type *type = check_typedef (value_type (val));
2946 if (is_floating_type (type))
2948 if (!target_float_is_valid (value_contents (val), type))
2949 error (_("Invalid floating value found in program."));
2957 /* Get the value of the FIELDNO'th field (which must be static) of
2961 value_static_field (struct type *type, int fieldno)
2963 struct value *retval;
2965 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2967 case FIELD_LOC_KIND_PHYSADDR:
2968 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2969 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2971 case FIELD_LOC_KIND_PHYSNAME:
2973 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2974 /* TYPE_FIELD_NAME (type, fieldno); */
2975 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2977 if (sym.symbol == NULL)
2979 /* With some compilers, e.g. HP aCC, static data members are
2980 reported as non-debuggable symbols. */
2981 struct bound_minimal_symbol msym
2982 = lookup_minimal_symbol (phys_name, NULL, NULL);
2985 return allocate_optimized_out_value (type);
2988 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2989 BMSYMBOL_VALUE_ADDRESS (msym));
2993 retval = value_of_variable (sym.symbol, sym.block);
2997 gdb_assert_not_reached ("unexpected field location kind");
3003 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
3004 You have to be careful here, since the size of the data area for the value
3005 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
3006 than the old enclosing type, you have to allocate more space for the
3010 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
3012 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
3014 check_type_length_before_alloc (new_encl_type);
3016 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
3019 val->enclosing_type = new_encl_type;
3022 /* Given a value ARG1 (offset by OFFSET bytes)
3023 of a struct or union type ARG_TYPE,
3024 extract and return the value of one of its (non-static) fields.
3025 FIELDNO says which field. */
3028 value_primitive_field (struct value *arg1, LONGEST offset,
3029 int fieldno, struct type *arg_type)
3033 struct gdbarch *arch = get_value_arch (arg1);
3034 int unit_size = gdbarch_addressable_memory_unit_size (arch);
3036 arg_type = check_typedef (arg_type);
3037 type = TYPE_FIELD_TYPE (arg_type, fieldno);
3039 /* Call check_typedef on our type to make sure that, if TYPE
3040 is a TYPE_CODE_TYPEDEF, its length is set to the length
3041 of the target type instead of zero. However, we do not
3042 replace the typedef type by the target type, because we want
3043 to keep the typedef in order to be able to print the type
3044 description correctly. */
3045 check_typedef (type);
3047 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
3049 /* Handle packed fields.
3051 Create a new value for the bitfield, with bitpos and bitsize
3052 set. If possible, arrange offset and bitpos so that we can
3053 do a single aligned read of the size of the containing type.
3054 Otherwise, adjust offset to the byte containing the first
3055 bit. Assume that the address, offset, and embedded offset
3056 are sufficiently aligned. */
3058 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3059 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
3061 v = allocate_value_lazy (type);
3062 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3063 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3064 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3065 v->bitpos = bitpos % container_bitsize;
3067 v->bitpos = bitpos % 8;
3068 v->offset = (value_embedded_offset (arg1)
3070 + (bitpos - v->bitpos) / 8);
3071 set_value_parent (v, arg1);
3072 if (!value_lazy (arg1))
3073 value_fetch_lazy (v);
3075 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3077 /* This field is actually a base subobject, so preserve the
3078 entire object's contents for later references to virtual
3082 /* Lazy register values with offsets are not supported. */
3083 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3084 value_fetch_lazy (arg1);
3086 /* We special case virtual inheritance here because this
3087 requires access to the contents, which we would rather avoid
3088 for references to ordinary fields of unavailable values. */
3089 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3090 boffset = baseclass_offset (arg_type, fieldno,
3091 value_contents (arg1),
3092 value_embedded_offset (arg1),
3093 value_address (arg1),
3096 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
3098 if (value_lazy (arg1))
3099 v = allocate_value_lazy (value_enclosing_type (arg1));
3102 v = allocate_value (value_enclosing_type (arg1));
3103 value_contents_copy_raw (v, 0, arg1, 0,
3104 TYPE_LENGTH (value_enclosing_type (arg1)));
3107 v->offset = value_offset (arg1);
3108 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
3110 else if (NULL != TYPE_DATA_LOCATION (type))
3112 /* Field is a dynamic data member. */
3114 gdb_assert (0 == offset);
3115 /* We expect an already resolved data location. */
3116 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3117 /* For dynamic data types defer memory allocation
3118 until we actual access the value. */
3119 v = allocate_value_lazy (type);
3123 /* Plain old data member */
3124 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3125 / (HOST_CHAR_BIT * unit_size));
3127 /* Lazy register values with offsets are not supported. */
3128 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3129 value_fetch_lazy (arg1);
3131 if (value_lazy (arg1))
3132 v = allocate_value_lazy (type);
3135 v = allocate_value (type);
3136 value_contents_copy_raw (v, value_embedded_offset (v),
3137 arg1, value_embedded_offset (arg1) + offset,
3138 type_length_units (type));
3140 v->offset = (value_offset (arg1) + offset
3141 + value_embedded_offset (arg1));
3143 set_value_component_location (v, arg1);
3147 /* Given a value ARG1 of a struct or union type,
3148 extract and return the value of one of its (non-static) fields.
3149 FIELDNO says which field. */
3152 value_field (struct value *arg1, int fieldno)
3154 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3157 /* Return a non-virtual function as a value.
3158 F is the list of member functions which contains the desired method.
3159 J is an index into F which provides the desired method.
3161 We only use the symbol for its address, so be happy with either a
3162 full symbol or a minimal symbol. */
3165 value_fn_field (struct value **arg1p, struct fn_field *f,
3166 int j, struct type *type,
3170 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3171 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3173 struct bound_minimal_symbol msym;
3175 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
3178 memset (&msym, 0, sizeof (msym));
3182 gdb_assert (sym == NULL);
3183 msym = lookup_bound_minimal_symbol (physname);
3184 if (msym.minsym == NULL)
3188 v = allocate_value (ftype);
3189 VALUE_LVAL (v) = lval_memory;
3192 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
3196 /* The minimal symbol might point to a function descriptor;
3197 resolve it to the actual code address instead. */
3198 struct objfile *objfile = msym.objfile;
3199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3201 set_value_address (v,
3202 gdbarch_convert_from_func_ptr_addr
3203 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), ¤t_target));
3208 if (type != value_type (*arg1p))
3209 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3210 value_addr (*arg1p)));
3212 /* Move the `this' pointer according to the offset.
3213 VALUE_OFFSET (*arg1p) += offset; */
3221 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3222 VALADDR, and store the result in *RESULT.
3223 The bitfield starts at BITPOS bits and contains BITSIZE bits.
3225 Extracting bits depends on endianness of the machine. Compute the
3226 number of least significant bits to discard. For big endian machines,
3227 we compute the total number of bits in the anonymous object, subtract
3228 off the bit count from the MSB of the object to the MSB of the
3229 bitfield, then the size of the bitfield, which leaves the LSB discard
3230 count. For little endian machines, the discard count is simply the
3231 number of bits from the LSB of the anonymous object to the LSB of the
3234 If the field is signed, we also do sign extension. */
3237 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3238 LONGEST bitpos, LONGEST bitsize)
3240 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3245 LONGEST read_offset;
3247 /* Read the minimum number of bytes required; there may not be
3248 enough bytes to read an entire ULONGEST. */
3249 field_type = check_typedef (field_type);
3251 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3253 bytes_read = TYPE_LENGTH (field_type);
3255 read_offset = bitpos / 8;
3257 val = extract_unsigned_integer (valaddr + read_offset,
3258 bytes_read, byte_order);
3260 /* Extract bits. See comment above. */
3262 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3263 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3265 lsbcount = (bitpos % 8);
3268 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3269 If the field is signed, and is negative, then sign extend. */
3271 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3273 valmask = (((ULONGEST) 1) << bitsize) - 1;
3275 if (!TYPE_UNSIGNED (field_type))
3277 if (val & (valmask ^ (valmask >> 1)))
3287 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3288 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3289 ORIGINAL_VALUE, which must not be NULL. See
3290 unpack_value_bits_as_long for more details. */
3293 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3294 LONGEST embedded_offset, int fieldno,
3295 const struct value *val, LONGEST *result)
3297 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3298 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3299 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3302 gdb_assert (val != NULL);
3304 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3305 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3306 || !value_bits_available (val, bit_offset, bitsize))
3309 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3314 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3315 object at VALADDR. See unpack_bits_as_long for more details. */
3318 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3320 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3321 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3322 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3324 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3327 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3328 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3329 the contents in DEST_VAL, zero or sign extending if the type of
3330 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3331 VAL. If the VAL's contents required to extract the bitfield from
3332 are unavailable/optimized out, DEST_VAL is correspondingly
3333 marked unavailable/optimized out. */
3336 unpack_value_bitfield (struct value *dest_val,
3337 LONGEST bitpos, LONGEST bitsize,
3338 const gdb_byte *valaddr, LONGEST embedded_offset,
3339 const struct value *val)
3341 enum bfd_endian byte_order;
3344 struct type *field_type = value_type (dest_val);
3346 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3348 /* First, unpack and sign extend the bitfield as if it was wholly
3349 valid. Optimized out/unavailable bits are read as zero, but
3350 that's OK, as they'll end up marked below. If the VAL is
3351 wholly-invalid we may have skipped allocating its contents,
3352 though. See allocate_optimized_out_value. */
3353 if (valaddr != NULL)
3357 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3359 store_signed_integer (value_contents_raw (dest_val),
3360 TYPE_LENGTH (field_type), byte_order, num);
3363 /* Now copy the optimized out / unavailability ranges to the right
3365 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3366 if (byte_order == BFD_ENDIAN_BIG)
3367 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3370 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3371 val, src_bit_offset, bitsize);
3374 /* Return a new value with type TYPE, which is FIELDNO field of the
3375 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3376 of VAL. If the VAL's contents required to extract the bitfield
3377 from are unavailable/optimized out, the new value is
3378 correspondingly marked unavailable/optimized out. */
3381 value_field_bitfield (struct type *type, int fieldno,
3382 const gdb_byte *valaddr,
3383 LONGEST embedded_offset, const struct value *val)
3385 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3386 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3387 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
3389 unpack_value_bitfield (res_val, bitpos, bitsize,
3390 valaddr, embedded_offset, val);
3395 /* Modify the value of a bitfield. ADDR points to a block of memory in
3396 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3397 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3398 indicate which bits (in target bit order) comprise the bitfield.
3399 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3400 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3403 modify_field (struct type *type, gdb_byte *addr,
3404 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
3406 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3408 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3411 /* Normalize BITPOS. */
3415 /* If a negative fieldval fits in the field in question, chop
3416 off the sign extension bits. */
3417 if ((~fieldval & ~(mask >> 1)) == 0)
3420 /* Warn if value is too big to fit in the field in question. */
3421 if (0 != (fieldval & ~mask))
3423 /* FIXME: would like to include fieldval in the message, but
3424 we don't have a sprintf_longest. */
3425 warning (_("Value does not fit in %s bits."), plongest (bitsize));
3427 /* Truncate it, otherwise adjoining fields may be corrupted. */
3431 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3432 false valgrind reports. */
3434 bytesize = (bitpos + bitsize + 7) / 8;
3435 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3437 /* Shifting for bit field depends on endianness of the target machine. */
3438 if (gdbarch_bits_big_endian (get_type_arch (type)))
3439 bitpos = bytesize * 8 - bitpos - bitsize;
3441 oword &= ~(mask << bitpos);
3442 oword |= fieldval << bitpos;
3444 store_unsigned_integer (addr, bytesize, byte_order, oword);
3447 /* Pack NUM into BUF using a target format of TYPE. */
3450 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3452 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3455 type = check_typedef (type);
3456 len = TYPE_LENGTH (type);
3458 switch (TYPE_CODE (type))
3461 case TYPE_CODE_CHAR:
3462 case TYPE_CODE_ENUM:
3463 case TYPE_CODE_FLAGS:
3464 case TYPE_CODE_BOOL:
3465 case TYPE_CODE_RANGE:
3466 case TYPE_CODE_MEMBERPTR:
3467 store_signed_integer (buf, len, byte_order, num);
3471 case TYPE_CODE_RVALUE_REF:
3473 store_typed_address (buf, type, (CORE_ADDR) num);
3477 case TYPE_CODE_DECFLOAT:
3478 target_float_from_longest (buf, type, num);
3482 error (_("Unexpected type (%d) encountered for integer constant."),
3488 /* Pack NUM into BUF using a target format of TYPE. */
3491 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3494 enum bfd_endian byte_order;
3496 type = check_typedef (type);
3497 len = TYPE_LENGTH (type);
3498 byte_order = gdbarch_byte_order (get_type_arch (type));
3500 switch (TYPE_CODE (type))
3503 case TYPE_CODE_CHAR:
3504 case TYPE_CODE_ENUM:
3505 case TYPE_CODE_FLAGS:
3506 case TYPE_CODE_BOOL:
3507 case TYPE_CODE_RANGE:
3508 case TYPE_CODE_MEMBERPTR:
3509 store_unsigned_integer (buf, len, byte_order, num);
3513 case TYPE_CODE_RVALUE_REF:
3515 store_typed_address (buf, type, (CORE_ADDR) num);
3519 case TYPE_CODE_DECFLOAT:
3520 target_float_from_ulongest (buf, type, num);
3524 error (_("Unexpected type (%d) encountered "
3525 "for unsigned integer constant."),
3531 /* Convert C numbers into newly allocated values. */
3534 value_from_longest (struct type *type, LONGEST num)
3536 struct value *val = allocate_value (type);
3538 pack_long (value_contents_raw (val), type, num);
3543 /* Convert C unsigned numbers into newly allocated values. */
3546 value_from_ulongest (struct type *type, ULONGEST num)
3548 struct value *val = allocate_value (type);
3550 pack_unsigned_long (value_contents_raw (val), type, num);
3556 /* Create a value representing a pointer of type TYPE to the address
3560 value_from_pointer (struct type *type, CORE_ADDR addr)
3562 struct value *val = allocate_value (type);
3564 store_typed_address (value_contents_raw (val),
3565 check_typedef (type), addr);
3570 /* Create a value of type TYPE whose contents come from VALADDR, if it
3571 is non-null, and whose memory address (in the inferior) is
3572 ADDRESS. The type of the created value may differ from the passed
3573 type TYPE. Make sure to retrieve values new type after this call.
3574 Note that TYPE is not passed through resolve_dynamic_type; this is
3575 a special API intended for use only by Ada. */
3578 value_from_contents_and_address_unresolved (struct type *type,
3579 const gdb_byte *valaddr,
3584 if (valaddr == NULL)
3585 v = allocate_value_lazy (type);
3587 v = value_from_contents (type, valaddr);
3588 VALUE_LVAL (v) = lval_memory;
3589 set_value_address (v, address);
3593 /* Create a value of type TYPE whose contents come from VALADDR, if it
3594 is non-null, and whose memory address (in the inferior) is
3595 ADDRESS. The type of the created value may differ from the passed
3596 type TYPE. Make sure to retrieve values new type after this call. */
3599 value_from_contents_and_address (struct type *type,
3600 const gdb_byte *valaddr,
3603 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
3604 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3607 if (valaddr == NULL)
3608 v = allocate_value_lazy (resolved_type);
3610 v = value_from_contents (resolved_type, valaddr);
3611 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3612 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3613 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3614 VALUE_LVAL (v) = lval_memory;
3615 set_value_address (v, address);
3619 /* Create a value of type TYPE holding the contents CONTENTS.
3620 The new value is `not_lval'. */
3623 value_from_contents (struct type *type, const gdb_byte *contents)
3625 struct value *result;
3627 result = allocate_value (type);
3628 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3632 /* Extract a value from the history file. Input will be of the form
3633 $digits or $$digits. See block comment above 'write_dollar_variable'
3637 value_from_history_ref (const char *h, const char **endp)
3649 /* Find length of numeral string. */
3650 for (; isdigit (h[len]); len++)
3653 /* Make sure numeral string is not part of an identifier. */
3654 if (h[len] == '_' || isalpha (h[len]))
3657 /* Now collect the index value. */
3662 /* For some bizarre reason, "$$" is equivalent to "$$1",
3663 rather than to "$$0" as it ought to be! */
3671 index = -strtol (&h[2], &local_end, 10);
3679 /* "$" is equivalent to "$0". */
3687 index = strtol (&h[1], &local_end, 10);
3692 return access_value_history (index);
3695 /* Get the component value (offset by OFFSET bytes) of a struct or
3696 union WHOLE. Component's type is TYPE. */
3699 value_from_component (struct value *whole, struct type *type, LONGEST offset)
3703 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3704 v = allocate_value_lazy (type);
3707 v = allocate_value (type);
3708 value_contents_copy (v, value_embedded_offset (v),
3709 whole, value_embedded_offset (whole) + offset,
3710 type_length_units (type));
3712 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3713 set_value_component_location (v, whole);
3719 coerce_ref_if_computed (const struct value *arg)
3721 const struct lval_funcs *funcs;
3723 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
3726 if (value_lval_const (arg) != lval_computed)
3729 funcs = value_computed_funcs (arg);
3730 if (funcs->coerce_ref == NULL)
3733 return funcs->coerce_ref (arg);
3736 /* Look at value.h for description. */
3739 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3740 const struct type *original_type,
3741 const struct value *original_value)
3743 /* Re-adjust type. */
3744 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3746 /* Add embedding info. */
3747 set_value_enclosing_type (value, enc_type);
3748 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3750 /* We may be pointing to an object of some derived type. */
3751 return value_full_object (value, NULL, 0, 0, 0);
3755 coerce_ref (struct value *arg)
3757 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3758 struct value *retval;
3759 struct type *enc_type;
3761 retval = coerce_ref_if_computed (arg);
3765 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
3768 enc_type = check_typedef (value_enclosing_type (arg));
3769 enc_type = TYPE_TARGET_TYPE (enc_type);
3771 retval = value_at_lazy (enc_type,
3772 unpack_pointer (value_type (arg),
3773 value_contents (arg)));
3774 enc_type = value_type (retval);
3775 return readjust_indirect_value_type (retval, enc_type,
3776 value_type_arg_tmp, arg);
3780 coerce_array (struct value *arg)
3784 arg = coerce_ref (arg);
3785 type = check_typedef (value_type (arg));
3787 switch (TYPE_CODE (type))
3789 case TYPE_CODE_ARRAY:
3790 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3791 arg = value_coerce_array (arg);
3793 case TYPE_CODE_FUNC:
3794 arg = value_coerce_function (arg);
3801 /* Return the return value convention that will be used for the
3804 enum return_value_convention
3805 struct_return_convention (struct gdbarch *gdbarch,
3806 struct value *function, struct type *value_type)
3808 enum type_code code = TYPE_CODE (value_type);
3810 if (code == TYPE_CODE_ERROR)
3811 error (_("Function return type unknown."));
3813 /* Probe the architecture for the return-value convention. */
3814 return gdbarch_return_value (gdbarch, function, value_type,
3818 /* Return true if the function returning the specified type is using
3819 the convention of returning structures in memory (passing in the
3820 address as a hidden first parameter). */
3823 using_struct_return (struct gdbarch *gdbarch,
3824 struct value *function, struct type *value_type)
3826 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3827 /* A void return value is never in memory. See also corresponding
3828 code in "print_return_value". */
3831 return (struct_return_convention (gdbarch, function, value_type)
3832 != RETURN_VALUE_REGISTER_CONVENTION);
3835 /* Set the initialized field in a value struct. */
3838 set_value_initialized (struct value *val, int status)
3840 val->initialized = status;
3843 /* Return the initialized field in a value struct. */
3846 value_initialized (const struct value *val)
3848 return val->initialized;
3851 /* Load the actual content of a lazy value. Fetch the data from the
3852 user's process and clear the lazy flag to indicate that the data in
3853 the buffer is valid.
3855 If the value is zero-length, we avoid calling read_memory, which
3856 would abort. We mark the value as fetched anyway -- all 0 bytes of
3860 value_fetch_lazy (struct value *val)
3862 gdb_assert (value_lazy (val));
3863 allocate_value_contents (val);
3864 /* A value is either lazy, or fully fetched. The
3865 availability/validity is only established as we try to fetch a
3867 gdb_assert (VEC_empty (range_s, val->optimized_out));
3868 gdb_assert (VEC_empty (range_s, val->unavailable));
3869 if (value_bitsize (val))
3871 /* To read a lazy bitfield, read the entire enclosing value. This
3872 prevents reading the same block of (possibly volatile) memory once
3873 per bitfield. It would be even better to read only the containing
3874 word, but we have no way to record that just specific bits of a
3875 value have been fetched. */
3876 struct type *type = check_typedef (value_type (val));
3877 struct value *parent = value_parent (val);
3879 if (value_lazy (parent))
3880 value_fetch_lazy (parent);
3882 unpack_value_bitfield (val,
3883 value_bitpos (val), value_bitsize (val),
3884 value_contents_for_printing (parent),
3885 value_offset (val), parent);
3887 else if (VALUE_LVAL (val) == lval_memory)
3889 CORE_ADDR addr = value_address (val);
3890 struct type *type = check_typedef (value_enclosing_type (val));
3892 if (TYPE_LENGTH (type))
3893 read_value_memory (val, 0, value_stack (val),
3894 addr, value_contents_all_raw (val),
3895 type_length_units (type));
3897 else if (VALUE_LVAL (val) == lval_register)
3899 struct frame_info *next_frame;
3901 struct type *type = check_typedef (value_type (val));
3902 struct value *new_val = val, *mark = value_mark ();
3904 /* Offsets are not supported here; lazy register values must
3905 refer to the entire register. */
3906 gdb_assert (value_offset (val) == 0);
3908 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3910 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
3912 next_frame = frame_find_by_id (next_frame_id);
3913 regnum = VALUE_REGNUM (new_val);
3915 gdb_assert (next_frame != NULL);
3917 /* Convertible register routines are used for multi-register
3918 values and for interpretation in different types
3919 (e.g. float or int from a double register). Lazy
3920 register values should have the register's natural type,
3921 so they do not apply. */
3922 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
3925 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3926 Since a "->next" operation was performed when setting
3927 this field, we do not need to perform a "next" operation
3928 again when unwinding the register. That's why
3929 frame_unwind_register_value() is called here instead of
3930 get_frame_register_value(). */
3931 new_val = frame_unwind_register_value (next_frame, regnum);
3933 /* If we get another lazy lval_register value, it means the
3934 register is found by reading it from NEXT_FRAME's next frame.
3935 frame_unwind_register_value should never return a value with
3936 the frame id pointing to NEXT_FRAME. If it does, it means we
3937 either have two consecutive frames with the same frame id
3938 in the frame chain, or some code is trying to unwind
3939 behind get_prev_frame's back (e.g., a frame unwind
3940 sniffer trying to unwind), bypassing its validations. In
3941 any case, it should always be an internal error to end up
3942 in this situation. */
3943 if (VALUE_LVAL (new_val) == lval_register
3944 && value_lazy (new_val)
3945 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
3946 internal_error (__FILE__, __LINE__,
3947 _("infinite loop while fetching a register"));
3950 /* If it's still lazy (for instance, a saved register on the
3951 stack), fetch it. */
3952 if (value_lazy (new_val))
3953 value_fetch_lazy (new_val);
3955 /* Copy the contents and the unavailability/optimized-out
3956 meta-data from NEW_VAL to VAL. */
3957 set_value_lazy (val, 0);
3958 value_contents_copy (val, value_embedded_offset (val),
3959 new_val, value_embedded_offset (new_val),
3960 type_length_units (type));
3964 struct gdbarch *gdbarch;
3965 struct frame_info *frame;
3966 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3967 so that the frame level will be shown correctly. */
3968 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3969 regnum = VALUE_REGNUM (val);
3970 gdbarch = get_frame_arch (frame);
3972 fprintf_unfiltered (gdb_stdlog,
3973 "{ value_fetch_lazy "
3974 "(frame=%d,regnum=%d(%s),...) ",
3975 frame_relative_level (frame), regnum,
3976 user_reg_map_regnum_to_name (gdbarch, regnum));
3978 fprintf_unfiltered (gdb_stdlog, "->");
3979 if (value_optimized_out (new_val))
3981 fprintf_unfiltered (gdb_stdlog, " ");
3982 val_print_optimized_out (new_val, gdb_stdlog);
3987 const gdb_byte *buf = value_contents (new_val);
3989 if (VALUE_LVAL (new_val) == lval_register)
3990 fprintf_unfiltered (gdb_stdlog, " register=%d",
3991 VALUE_REGNUM (new_val));
3992 else if (VALUE_LVAL (new_val) == lval_memory)
3993 fprintf_unfiltered (gdb_stdlog, " address=%s",
3995 value_address (new_val)));
3997 fprintf_unfiltered (gdb_stdlog, " computed");
3999 fprintf_unfiltered (gdb_stdlog, " bytes=");
4000 fprintf_unfiltered (gdb_stdlog, "[");
4001 for (i = 0; i < register_size (gdbarch, regnum); i++)
4002 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
4003 fprintf_unfiltered (gdb_stdlog, "]");
4006 fprintf_unfiltered (gdb_stdlog, " }\n");
4009 /* Dispose of the intermediate values. This prevents
4010 watchpoints from trying to watch the saved frame pointer. */
4011 value_free_to_mark (mark);
4013 else if (VALUE_LVAL (val) == lval_computed
4014 && value_computed_funcs (val)->read != NULL)
4015 value_computed_funcs (val)->read (val);
4017 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4019 set_value_lazy (val, 0);
4022 /* Implementation of the convenience function $_isvoid. */
4024 static struct value *
4025 isvoid_internal_fn (struct gdbarch *gdbarch,
4026 const struct language_defn *language,
4027 void *cookie, int argc, struct value **argv)
4032 error (_("You must provide one argument for $_isvoid."));
4034 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
4036 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4040 _initialize_values (void)
4042 add_cmd ("convenience", no_class, show_convenience, _("\
4043 Debugger convenience (\"$foo\") variables and functions.\n\
4044 Convenience variables are created when you assign them values;\n\
4045 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
4047 A few convenience variables are given values automatically:\n\
4048 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
4049 \"$__\" holds the contents of the last address examined with \"x\"."
4052 Convenience functions are defined via the Python API."
4055 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
4057 add_cmd ("values", no_set_class, show_values, _("\
4058 Elements of value history around item number IDX (or last ten)."),
4061 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4062 Initialize a convenience variable if necessary.\n\
4063 init-if-undefined VARIABLE = EXPRESSION\n\
4064 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4065 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4066 VARIABLE is already initialized."));
4068 add_prefix_cmd ("function", no_class, function_command, _("\
4069 Placeholder command for showing help on convenience functions."),
4070 &functionlist, "function ", 0, &cmdlist);
4072 add_internal_function ("_isvoid", _("\
4073 Check whether an expression is void.\n\
4074 Usage: $_isvoid (expression)\n\
4075 Return 1 if the expression is void, zero otherwise."),
4076 isvoid_internal_fn, NULL);
4078 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4079 class_support, &max_value_size, _("\
4080 Set maximum sized value gdb will load from the inferior."), _("\
4081 Show maximum sized value gdb will load from the inferior."), _("\
4082 Use this to control the maximum size, in bytes, of a value that gdb\n\
4083 will load from the inferior. Setting this value to 'unlimited'\n\
4084 disables checking.\n\
4085 Setting this does not invalidate already allocated values, it only\n\
4086 prevents future values, larger than this size, from being allocated."),
4088 show_max_value_size,
4089 &setlist, &showlist);