1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "arch-utils.h"
33 #include "gdb_assert.h"
39 #include "cli/cli-decode.h"
40 #include "exceptions.h"
41 #include "extension.h"
43 #include "tracepoint.h"
45 #include "user-regs.h"
47 /* Prototypes for exported functions. */
49 void _initialize_values (void);
51 /* Definition of a user function. */
52 struct internal_function
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
60 internal_function_fn handler;
62 /* User data for the handler. */
66 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
70 /* Lowest offset in the range. */
73 /* Length of the range. */
77 typedef struct range range_s;
81 /* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
85 ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
95 /* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
101 range_lessthan (const range_s *r1, const range_s *r2)
103 return r1->offset < r2->offset;
106 /* Returns true if RANGES contains any range that overlaps [OFFSET,
110 ranges_contain (VEC(range_s) *ranges, int offset, int length)
115 what.offset = offset;
116 what.length = length;
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
128 |---| |---| |------| ... |--|
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
138 Then we need to check if the I range overlaps the I range itself.
143 |---| |---| |-------| ... |--|
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
159 if (i < VEC_length (range_s, ranges))
161 struct range *r = VEC_index (range_s, ranges, i);
163 if (ranges_overlap (r->offset, r->length, offset, length))
170 static struct cmd_list_element *functionlist;
172 /* Note that the fields in this structure are arranged to save a bit
177 /* Type of value; either not an lval, or one of the various
178 different possible kinds of lval. */
181 /* Is it modifiable? Only relevant if lval != not_lval. */
182 unsigned int modifiable : 1;
184 /* If zero, contents of this value are in the contents field. If
185 nonzero, contents are in inferior. If the lval field is lval_memory,
186 the contents are in inferior memory at location.address plus offset.
187 The lval field may also be lval_register.
189 WARNING: This field is used by the code which handles watchpoints
190 (see breakpoint.c) to decide whether a particular value can be
191 watched by hardware watchpoints. If the lazy flag is set for
192 some member of a value chain, it is assumed that this member of
193 the chain doesn't need to be watched as part of watching the
194 value itself. This is how GDB avoids watching the entire struct
195 or array when the user wants to watch a single struct member or
196 array element. If you ever change the way lazy flag is set and
197 reset, be sure to consider this use as well! */
198 unsigned int lazy : 1;
200 /* If nonzero, this is the value of a variable that does not
201 actually exist in the program. If nonzero, and LVAL is
202 lval_register, this is a register ($pc, $sp, etc., never a
203 program variable) that has not been saved in the frame. All
204 optimized-out values are treated pretty much the same, except
205 registers have a different string representation and related
207 unsigned int optimized_out : 1;
209 /* If value is a variable, is it initialized or not. */
210 unsigned int initialized : 1;
212 /* If value is from the stack. If this is set, read_stack will be
213 used instead of read_memory to enable extra caching. */
214 unsigned int stack : 1;
216 /* If the value has been released. */
217 unsigned int released : 1;
219 /* Register number if the value is from a register. */
222 /* Location of value (if lval). */
225 /* If lval == lval_memory, this is the address in the inferior.
226 If lval == lval_register, this is the byte offset into the
227 registers structure. */
230 /* Pointer to internal variable. */
231 struct internalvar *internalvar;
233 /* Pointer to xmethod worker. */
234 struct xmethod_worker *xm_worker;
236 /* If lval == lval_computed, this is a set of function pointers
237 to use to access and describe the value, and a closure pointer
241 /* Functions to call. */
242 const struct lval_funcs *funcs;
244 /* Closure for those functions to use. */
249 /* Describes offset of a value within lval of a structure in bytes.
250 If lval == lval_memory, this is an offset to the address. If
251 lval == lval_register, this is a further offset from
252 location.address within the registers structure. Note also the
253 member embedded_offset below. */
256 /* Only used for bitfields; number of bits contained in them. */
259 /* Only used for bitfields; position of start of field. For
260 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
261 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
264 /* The number of references to this value. When a value is created,
265 the value chain holds a reference, so REFERENCE_COUNT is 1. If
266 release_value is called, this value is removed from the chain but
267 the caller of release_value now has a reference to this value.
268 The caller must arrange for a call to value_free later. */
271 /* Only used for bitfields; the containing value. This allows a
272 single read from the target when displaying multiple
274 struct value *parent;
276 /* Frame register value is relative to. This will be described in
277 the lval enum above as "lval_register". */
278 struct frame_id frame_id;
280 /* Type of the value. */
283 /* If a value represents a C++ object, then the `type' field gives
284 the object's compile-time type. If the object actually belongs
285 to some class derived from `type', perhaps with other base
286 classes and additional members, then `type' is just a subobject
287 of the real thing, and the full object is probably larger than
288 `type' would suggest.
290 If `type' is a dynamic class (i.e. one with a vtable), then GDB
291 can actually determine the object's run-time type by looking at
292 the run-time type information in the vtable. When this
293 information is available, we may elect to read in the entire
294 object, for several reasons:
296 - When printing the value, the user would probably rather see the
297 full object, not just the limited portion apparent from the
300 - If `type' has virtual base classes, then even printing `type'
301 alone may require reaching outside the `type' portion of the
302 object to wherever the virtual base class has been stored.
304 When we store the entire object, `enclosing_type' is the run-time
305 type -- the complete object -- and `embedded_offset' is the
306 offset of `type' within that larger type, in bytes. The
307 value_contents() macro takes `embedded_offset' into account, so
308 most GDB code continues to see the `type' portion of the value,
309 just as the inferior would.
311 If `type' is a pointer to an object, then `enclosing_type' is a
312 pointer to the object's run-time type, and `pointed_to_offset' is
313 the offset in bytes from the full object to the pointed-to object
314 -- that is, the value `embedded_offset' would have if we followed
315 the pointer and fetched the complete object. (I don't really see
316 the point. Why not just determine the run-time type when you
317 indirect, and avoid the special case? The contents don't matter
318 until you indirect anyway.)
320 If we're not doing anything fancy, `enclosing_type' is equal to
321 `type', and `embedded_offset' is zero, so everything works
323 struct type *enclosing_type;
325 int pointed_to_offset;
327 /* Values are stored in a chain, so that they can be deleted easily
328 over calls to the inferior. Values assigned to internal
329 variables, put into the value history or exposed to Python are
330 taken off this list. */
333 /* Actual contents of the value. Target byte-order. NULL or not
334 valid if lazy is nonzero. */
337 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
338 rather than available, since the common and default case is for a
339 value to be available. This is filled in at value read time. The
340 unavailable ranges are tracked in bits. */
341 VEC(range_s) *unavailable;
345 value_bits_available (const struct value *value, int offset, int length)
347 gdb_assert (!value->lazy);
349 return !ranges_contain (value->unavailable, offset, length);
353 value_bytes_available (const struct value *value, int offset, int length)
355 return value_bits_available (value,
356 offset * TARGET_CHAR_BIT,
357 length * TARGET_CHAR_BIT);
361 value_entirely_available (struct value *value)
363 /* We can only tell whether the whole value is available when we try
366 value_fetch_lazy (value);
368 if (VEC_empty (range_s, value->unavailable))
374 value_entirely_unavailable (struct value *value)
376 /* We can only tell whether the whole value is available when we try
379 value_fetch_lazy (value);
381 if (VEC_length (range_s, value->unavailable) == 1)
383 struct range *t = VEC_index (range_s, value->unavailable, 0);
386 && t->length == (TARGET_CHAR_BIT
387 * TYPE_LENGTH (value_enclosing_type (value))))
395 mark_value_bits_unavailable (struct value *value, int offset, int length)
400 /* Insert the range sorted. If there's overlap or the new range
401 would be contiguous with an existing range, merge. */
403 newr.offset = offset;
404 newr.length = length;
406 /* Do a binary search for the position the given range would be
407 inserted if we only considered the starting OFFSET of ranges.
408 Call that position I. Since we also have LENGTH to care for
409 (this is a range afterall), we need to check if the _previous_
410 range overlaps the I range. E.g., calling R the new range:
412 #1 - overlaps with previous
416 |---| |---| |------| ... |--|
421 In the case #1 above, the binary search would return `I=1',
422 meaning, this OFFSET should be inserted at position 1, and the
423 current position 1 should be pushed further (and become 2). But,
424 note that `0' overlaps with R, so we want to merge them.
426 A similar consideration needs to be taken if the new range would
427 be contiguous with the previous range:
429 #2 - contiguous with previous
433 |--| |---| |------| ... |--|
438 If there's no overlap with the previous range, as in:
440 #3 - not overlapping and not contiguous
444 |--| |---| |------| ... |--|
451 #4 - R is the range with lowest offset
455 |--| |---| |------| ... |--|
460 ... we just push the new range to I.
462 All the 4 cases above need to consider that the new range may
463 also overlap several of the ranges that follow, or that R may be
464 contiguous with the following range, and merge. E.g.,
466 #5 - overlapping following ranges
469 |------------------------|
470 |--| |---| |------| ... |--|
479 |--| |---| |------| ... |--|
486 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
489 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
491 if (ranges_overlap (bef->offset, bef->length, offset, length))
494 ULONGEST l = min (bef->offset, offset);
495 ULONGEST h = max (bef->offset + bef->length, offset + length);
501 else if (offset == bef->offset + bef->length)
504 bef->length += length;
510 VEC_safe_insert (range_s, value->unavailable, i, &newr);
516 VEC_safe_insert (range_s, value->unavailable, i, &newr);
519 /* Check whether the ranges following the one we've just added or
520 touched can be folded in (#5 above). */
521 if (i + 1 < VEC_length (range_s, value->unavailable))
528 /* Get the range we just touched. */
529 t = VEC_index (range_s, value->unavailable, i);
533 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
534 if (r->offset <= t->offset + t->length)
538 l = min (t->offset, r->offset);
539 h = max (t->offset + t->length, r->offset + r->length);
548 /* If we couldn't merge this one, we won't be able to
549 merge following ones either, since the ranges are
550 always sorted by OFFSET. */
555 VEC_block_remove (range_s, value->unavailable, next, removed);
560 mark_value_bytes_unavailable (struct value *value, int offset, int length)
562 mark_value_bits_unavailable (value,
563 offset * TARGET_CHAR_BIT,
564 length * TARGET_CHAR_BIT);
567 /* Find the first range in RANGES that overlaps the range defined by
568 OFFSET and LENGTH, starting at element POS in the RANGES vector,
569 Returns the index into RANGES where such overlapping range was
570 found, or -1 if none was found. */
573 find_first_range_overlap (VEC(range_s) *ranges, int pos,
574 int offset, int length)
579 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
580 if (ranges_overlap (r->offset, r->length, offset, length))
586 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
587 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
590 It must always be the case that:
591 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
593 It is assumed that memory can be accessed from:
594 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
596 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
597 / TARGET_CHAR_BIT) */
599 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
600 const gdb_byte *ptr2, size_t offset2_bits,
603 gdb_assert (offset1_bits % TARGET_CHAR_BIT
604 == offset2_bits % TARGET_CHAR_BIT);
606 if (offset1_bits % TARGET_CHAR_BIT != 0)
609 gdb_byte mask, b1, b2;
611 /* The offset from the base pointers PTR1 and PTR2 is not a complete
612 number of bytes. A number of bits up to either the next exact
613 byte boundary, or LENGTH_BITS (which ever is sooner) will be
615 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
616 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
617 mask = (1 << bits) - 1;
619 if (length_bits < bits)
621 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
625 /* Now load the two bytes and mask off the bits we care about. */
626 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
627 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
632 /* Now update the length and offsets to take account of the bits
633 we've just compared. */
635 offset1_bits += bits;
636 offset2_bits += bits;
639 if (length_bits % TARGET_CHAR_BIT != 0)
643 gdb_byte mask, b1, b2;
645 /* The length is not an exact number of bytes. After the previous
646 IF.. block then the offsets are byte aligned, or the
647 length is zero (in which case this code is not reached). Compare
648 a number of bits at the end of the region, starting from an exact
650 bits = length_bits % TARGET_CHAR_BIT;
651 o1 = offset1_bits + length_bits - bits;
652 o2 = offset2_bits + length_bits - bits;
654 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
655 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
657 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
658 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
660 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
661 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
671 /* We've now taken care of any stray "bits" at the start, or end of
672 the region to compare, the remainder can be covered with a simple
674 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
675 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
676 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
678 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
679 ptr2 + offset2_bits / TARGET_CHAR_BIT,
680 length_bits / TARGET_CHAR_BIT);
683 /* Length is zero, regions match. */
687 /* Helper function for value_available_contents_eq. The only difference is
688 that this function is bit rather than byte based.
690 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits with
691 LENGTH bits of VAL2's contents starting at OFFSET2 bits. Return true
692 if the available bits match. */
695 value_available_contents_bits_eq (const struct value *val1, int offset1,
696 const struct value *val2, int offset2,
699 int idx1 = 0, idx2 = 0;
701 /* See function description in value.h. */
702 gdb_assert (!val1->lazy && !val2->lazy);
710 idx1 = find_first_range_overlap (val1->unavailable, idx1,
712 idx2 = find_first_range_overlap (val2->unavailable, idx2,
715 /* The usual case is for both values to be completely available. */
716 if (idx1 == -1 && idx2 == -1)
717 return (memcmp_with_bit_offsets (val1->contents, offset1,
718 val2->contents, offset2,
720 /* The contents only match equal if the available set matches as
722 else if (idx1 == -1 || idx2 == -1)
725 gdb_assert (idx1 != -1 && idx2 != -1);
727 r1 = VEC_index (range_s, val1->unavailable, idx1);
728 r2 = VEC_index (range_s, val2->unavailable, idx2);
730 /* Get the unavailable windows intersected by the incoming
731 ranges. The first and last ranges that overlap the argument
732 range may be wider than said incoming arguments ranges. */
733 l1 = max (offset1, r1->offset);
734 h1 = min (offset1 + length, r1->offset + r1->length);
736 l2 = max (offset2, r2->offset);
737 h2 = min (offset2 + length, r2->offset + r2->length);
739 /* Make them relative to the respective start offsets, so we can
740 compare them for equality. */
747 /* Different availability, no match. */
748 if (l1 != l2 || h1 != h2)
751 /* Compare the _available_ contents. */
752 if (memcmp_with_bit_offsets (val1->contents, offset1,
753 val2->contents, offset2, l1) != 0)
765 value_available_contents_eq (const struct value *val1, int offset1,
766 const struct value *val2, int offset2,
769 return value_available_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
770 val2, offset2 * TARGET_CHAR_BIT,
771 length * TARGET_CHAR_BIT);
774 /* Prototypes for local functions. */
776 static void show_values (char *, int);
778 static void show_convenience (char *, int);
781 /* The value-history records all the values printed
782 by print commands during this session. Each chunk
783 records 60 consecutive values. The first chunk on
784 the chain records the most recent values.
785 The total number of values is in value_history_count. */
787 #define VALUE_HISTORY_CHUNK 60
789 struct value_history_chunk
791 struct value_history_chunk *next;
792 struct value *values[VALUE_HISTORY_CHUNK];
795 /* Chain of chunks now in use. */
797 static struct value_history_chunk *value_history_chain;
799 static int value_history_count; /* Abs number of last entry stored. */
802 /* List of all value objects currently allocated
803 (except for those released by calls to release_value)
804 This is so they can be freed after each command. */
806 static struct value *all_values;
808 /* Allocate a lazy value for type TYPE. Its actual content is
809 "lazily" allocated too: the content field of the return value is
810 NULL; it will be allocated when it is fetched from the target. */
813 allocate_value_lazy (struct type *type)
817 /* Call check_typedef on our type to make sure that, if TYPE
818 is a TYPE_CODE_TYPEDEF, its length is set to the length
819 of the target type instead of zero. However, we do not
820 replace the typedef type by the target type, because we want
821 to keep the typedef in order to be able to set the VAL's type
822 description correctly. */
823 check_typedef (type);
825 val = (struct value *) xzalloc (sizeof (struct value));
826 val->contents = NULL;
827 val->next = all_values;
830 val->enclosing_type = type;
831 VALUE_LVAL (val) = not_lval;
832 val->location.address = 0;
833 VALUE_FRAME_ID (val) = null_frame_id;
837 VALUE_REGNUM (val) = -1;
839 val->optimized_out = 0;
840 val->embedded_offset = 0;
841 val->pointed_to_offset = 0;
843 val->initialized = 1; /* Default to initialized. */
845 /* Values start out on the all_values chain. */
846 val->reference_count = 1;
851 /* Allocate the contents of VAL if it has not been allocated yet. */
854 allocate_value_contents (struct value *val)
857 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
860 /* Allocate a value and its contents for type TYPE. */
863 allocate_value (struct type *type)
865 struct value *val = allocate_value_lazy (type);
867 allocate_value_contents (val);
872 /* Allocate a value that has the correct length
873 for COUNT repetitions of type TYPE. */
876 allocate_repeat_value (struct type *type, int count)
878 int low_bound = current_language->string_lower_bound; /* ??? */
879 /* FIXME-type-allocation: need a way to free this type when we are
881 struct type *array_type
882 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
884 return allocate_value (array_type);
888 allocate_computed_value (struct type *type,
889 const struct lval_funcs *funcs,
892 struct value *v = allocate_value_lazy (type);
894 VALUE_LVAL (v) = lval_computed;
895 v->location.computed.funcs = funcs;
896 v->location.computed.closure = closure;
901 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
904 allocate_optimized_out_value (struct type *type)
906 struct value *retval = allocate_value_lazy (type);
908 set_value_optimized_out (retval, 1);
909 /* FIXME: we should be able to avoid allocating the value's contents
910 buffer, but value_available_contents_bits_eq can't handle
912 /* set_value_lazy (retval, 0); */
916 /* Accessor methods. */
919 value_next (struct value *value)
925 value_type (const struct value *value)
930 deprecated_set_value_type (struct value *value, struct type *type)
936 value_offset (const struct value *value)
938 return value->offset;
941 set_value_offset (struct value *value, int offset)
943 value->offset = offset;
947 value_bitpos (const struct value *value)
949 return value->bitpos;
952 set_value_bitpos (struct value *value, int bit)
958 value_bitsize (const struct value *value)
960 return value->bitsize;
963 set_value_bitsize (struct value *value, int bit)
965 value->bitsize = bit;
969 value_parent (struct value *value)
971 return value->parent;
977 set_value_parent (struct value *value, struct value *parent)
979 struct value *old = value->parent;
981 value->parent = parent;
983 value_incref (parent);
988 value_contents_raw (struct value *value)
990 allocate_value_contents (value);
991 return value->contents + value->embedded_offset;
995 value_contents_all_raw (struct value *value)
997 allocate_value_contents (value);
998 return value->contents;
1002 value_enclosing_type (struct value *value)
1004 return value->enclosing_type;
1007 /* Look at value.h for description. */
1010 value_actual_type (struct value *value, int resolve_simple_types,
1011 int *real_type_found)
1013 struct value_print_options opts;
1014 struct type *result;
1016 get_user_print_options (&opts);
1018 if (real_type_found)
1019 *real_type_found = 0;
1020 result = value_type (value);
1021 if (opts.objectprint)
1023 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1024 fetch its rtti type. */
1025 if ((TYPE_CODE (result) == TYPE_CODE_PTR
1026 || TYPE_CODE (result) == TYPE_CODE_REF)
1027 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1028 == TYPE_CODE_STRUCT)
1030 struct type *real_type;
1032 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1035 if (real_type_found)
1036 *real_type_found = 1;
1040 else if (resolve_simple_types)
1042 if (real_type_found)
1043 *real_type_found = 1;
1044 result = value_enclosing_type (value);
1052 error_value_optimized_out (void)
1054 error (_("value has been optimized out"));
1058 require_not_optimized_out (const struct value *value)
1060 if (value->optimized_out)
1062 if (value->lval == lval_register)
1063 error (_("register has not been saved in frame"));
1065 error_value_optimized_out ();
1070 require_available (const struct value *value)
1072 if (!VEC_empty (range_s, value->unavailable))
1073 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1077 value_contents_for_printing (struct value *value)
1080 value_fetch_lazy (value);
1081 return value->contents;
1085 value_contents_for_printing_const (const struct value *value)
1087 gdb_assert (!value->lazy);
1088 return value->contents;
1092 value_contents_all (struct value *value)
1094 const gdb_byte *result = value_contents_for_printing (value);
1095 require_not_optimized_out (value);
1096 require_available (value);
1100 /* Copy LENGTH bytes of SRC value's (all) contents
1101 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1102 contents, starting at DST_OFFSET. If unavailable contents are
1103 being copied from SRC, the corresponding DST contents are marked
1104 unavailable accordingly. Neither DST nor SRC may be lazy
1107 It is assumed the contents of DST in the [DST_OFFSET,
1108 DST_OFFSET+LENGTH) range are wholly available. */
1111 value_contents_copy_raw (struct value *dst, int dst_offset,
1112 struct value *src, int src_offset, int length)
1116 int src_bit_offset, dst_bit_offset, bit_length;
1118 /* A lazy DST would make that this copy operation useless, since as
1119 soon as DST's contents were un-lazied (by a later value_contents
1120 call, say), the contents would be overwritten. A lazy SRC would
1121 mean we'd be copying garbage. */
1122 gdb_assert (!dst->lazy && !src->lazy);
1124 /* The overwritten DST range gets unavailability ORed in, not
1125 replaced. Make sure to remember to implement replacing if it
1126 turns out actually necessary. */
1127 gdb_assert (value_bytes_available (dst, dst_offset, length));
1129 /* Copy the data. */
1130 memcpy (value_contents_all_raw (dst) + dst_offset,
1131 value_contents_all_raw (src) + src_offset,
1134 /* Copy the meta-data, adjusted. */
1135 src_bit_offset = src_offset * TARGET_CHAR_BIT;
1136 dst_bit_offset = dst_offset * TARGET_CHAR_BIT;
1137 bit_length = length * TARGET_CHAR_BIT;
1138 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
1142 l = max (r->offset, src_bit_offset);
1143 h = min (r->offset + r->length, src_bit_offset + bit_length);
1146 mark_value_bits_unavailable (dst,
1147 dst_bit_offset + (l - src_bit_offset),
1152 /* Copy LENGTH bytes of SRC value's (all) contents
1153 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1154 (all) contents, starting at DST_OFFSET. If unavailable contents
1155 are being copied from SRC, the corresponding DST contents are
1156 marked unavailable accordingly. DST must not be lazy. If SRC is
1157 lazy, it will be fetched now. If SRC is not valid (is optimized
1158 out), an error is thrown.
1160 It is assumed the contents of DST in the [DST_OFFSET,
1161 DST_OFFSET+LENGTH) range are wholly available. */
1164 value_contents_copy (struct value *dst, int dst_offset,
1165 struct value *src, int src_offset, int length)
1167 require_not_optimized_out (src);
1170 value_fetch_lazy (src);
1172 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1176 value_lazy (struct value *value)
1182 set_value_lazy (struct value *value, int val)
1188 value_stack (struct value *value)
1190 return value->stack;
1194 set_value_stack (struct value *value, int val)
1200 value_contents (struct value *value)
1202 const gdb_byte *result = value_contents_writeable (value);
1203 require_not_optimized_out (value);
1204 require_available (value);
1209 value_contents_writeable (struct value *value)
1212 value_fetch_lazy (value);
1213 return value_contents_raw (value);
1217 value_optimized_out (struct value *value)
1219 /* We can only know if a value is optimized out once we have tried to
1221 if (!value->optimized_out && value->lazy)
1222 value_fetch_lazy (value);
1224 return value->optimized_out;
1228 value_optimized_out_const (const struct value *value)
1230 return value->optimized_out;
1234 set_value_optimized_out (struct value *value, int val)
1236 value->optimized_out = val;
1240 value_entirely_optimized_out (const struct value *value)
1242 if (!value->optimized_out)
1244 if (value->lval != lval_computed
1245 || !value->location.computed.funcs->check_any_valid)
1247 return !value->location.computed.funcs->check_any_valid (value);
1251 value_bits_valid (const struct value *value, int offset, int length)
1253 if (!value->optimized_out)
1255 if (value->lval != lval_computed
1256 || !value->location.computed.funcs->check_validity)
1258 return value->location.computed.funcs->check_validity (value, offset,
1263 value_bits_synthetic_pointer (const struct value *value,
1264 int offset, int length)
1266 if (value->lval != lval_computed
1267 || !value->location.computed.funcs->check_synthetic_pointer)
1269 return value->location.computed.funcs->check_synthetic_pointer (value,
1275 value_embedded_offset (struct value *value)
1277 return value->embedded_offset;
1281 set_value_embedded_offset (struct value *value, int val)
1283 value->embedded_offset = val;
1287 value_pointed_to_offset (struct value *value)
1289 return value->pointed_to_offset;
1293 set_value_pointed_to_offset (struct value *value, int val)
1295 value->pointed_to_offset = val;
1298 const struct lval_funcs *
1299 value_computed_funcs (const struct value *v)
1301 gdb_assert (value_lval_const (v) == lval_computed);
1303 return v->location.computed.funcs;
1307 value_computed_closure (const struct value *v)
1309 gdb_assert (v->lval == lval_computed);
1311 return v->location.computed.closure;
1315 deprecated_value_lval_hack (struct value *value)
1317 return &value->lval;
1321 value_lval_const (const struct value *value)
1327 value_address (const struct value *value)
1329 if (value->lval == lval_internalvar
1330 || value->lval == lval_internalvar_component
1331 || value->lval == lval_xcallable)
1333 if (value->parent != NULL)
1334 return value_address (value->parent) + value->offset;
1336 return value->location.address + value->offset;
1340 value_raw_address (struct value *value)
1342 if (value->lval == lval_internalvar
1343 || value->lval == lval_internalvar_component
1344 || value->lval == lval_xcallable)
1346 return value->location.address;
1350 set_value_address (struct value *value, CORE_ADDR addr)
1352 gdb_assert (value->lval != lval_internalvar
1353 && value->lval != lval_internalvar_component
1354 && value->lval != lval_xcallable);
1355 value->location.address = addr;
1358 struct internalvar **
1359 deprecated_value_internalvar_hack (struct value *value)
1361 return &value->location.internalvar;
1365 deprecated_value_frame_id_hack (struct value *value)
1367 return &value->frame_id;
1371 deprecated_value_regnum_hack (struct value *value)
1373 return &value->regnum;
1377 deprecated_value_modifiable (struct value *value)
1379 return value->modifiable;
1382 /* Return a mark in the value chain. All values allocated after the
1383 mark is obtained (except for those released) are subject to being freed
1384 if a subsequent value_free_to_mark is passed the mark. */
1391 /* Take a reference to VAL. VAL will not be deallocated until all
1392 references are released. */
1395 value_incref (struct value *val)
1397 val->reference_count++;
1400 /* Release a reference to VAL, which was acquired with value_incref.
1401 This function is also called to deallocate values from the value
1405 value_free (struct value *val)
1409 gdb_assert (val->reference_count > 0);
1410 val->reference_count--;
1411 if (val->reference_count > 0)
1414 /* If there's an associated parent value, drop our reference to
1416 if (val->parent != NULL)
1417 value_free (val->parent);
1419 if (VALUE_LVAL (val) == lval_computed)
1421 const struct lval_funcs *funcs = val->location.computed.funcs;
1423 if (funcs->free_closure)
1424 funcs->free_closure (val);
1426 else if (VALUE_LVAL (val) == lval_xcallable)
1427 free_xmethod_worker (val->location.xm_worker);
1429 xfree (val->contents);
1430 VEC_free (range_s, val->unavailable);
1435 /* Free all values allocated since MARK was obtained by value_mark
1436 (except for those released). */
1438 value_free_to_mark (struct value *mark)
1443 for (val = all_values; val && val != mark; val = next)
1452 /* Free all the values that have been allocated (except for those released).
1453 Call after each command, successful or not.
1454 In practice this is called before each command, which is sufficient. */
1457 free_all_values (void)
1462 for (val = all_values; val; val = next)
1472 /* Frees all the elements in a chain of values. */
1475 free_value_chain (struct value *v)
1481 next = value_next (v);
1486 /* Remove VAL from the chain all_values
1487 so it will not be freed automatically. */
1490 release_value (struct value *val)
1494 if (all_values == val)
1496 all_values = val->next;
1502 for (v = all_values; v; v = v->next)
1506 v->next = val->next;
1514 /* If the value is not already released, release it.
1515 If the value is already released, increment its reference count.
1516 That is, this function ensures that the value is released from the
1517 value chain and that the caller owns a reference to it. */
1520 release_value_or_incref (struct value *val)
1525 release_value (val);
1528 /* Release all values up to mark */
1530 value_release_to_mark (struct value *mark)
1535 for (val = next = all_values; next; next = next->next)
1537 if (next->next == mark)
1539 all_values = next->next;
1549 /* Return a copy of the value ARG.
1550 It contains the same contents, for same memory address,
1551 but it's a different block of storage. */
1554 value_copy (struct value *arg)
1556 struct type *encl_type = value_enclosing_type (arg);
1559 if (value_lazy (arg))
1560 val = allocate_value_lazy (encl_type);
1562 val = allocate_value (encl_type);
1563 val->type = arg->type;
1564 VALUE_LVAL (val) = VALUE_LVAL (arg);
1565 val->location = arg->location;
1566 val->offset = arg->offset;
1567 val->bitpos = arg->bitpos;
1568 val->bitsize = arg->bitsize;
1569 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1570 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1571 val->lazy = arg->lazy;
1572 val->optimized_out = arg->optimized_out;
1573 val->embedded_offset = value_embedded_offset (arg);
1574 val->pointed_to_offset = arg->pointed_to_offset;
1575 val->modifiable = arg->modifiable;
1576 if (!value_lazy (val))
1578 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1579 TYPE_LENGTH (value_enclosing_type (arg)));
1582 val->unavailable = VEC_copy (range_s, arg->unavailable);
1583 set_value_parent (val, arg->parent);
1584 if (VALUE_LVAL (val) == lval_computed)
1586 const struct lval_funcs *funcs = val->location.computed.funcs;
1588 if (funcs->copy_closure)
1589 val->location.computed.closure = funcs->copy_closure (val);
1594 /* Return a version of ARG that is non-lvalue. */
1597 value_non_lval (struct value *arg)
1599 if (VALUE_LVAL (arg) != not_lval)
1601 struct type *enc_type = value_enclosing_type (arg);
1602 struct value *val = allocate_value (enc_type);
1604 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1605 TYPE_LENGTH (enc_type));
1606 val->type = arg->type;
1607 set_value_embedded_offset (val, value_embedded_offset (arg));
1608 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1615 set_value_component_location (struct value *component,
1616 const struct value *whole)
1618 gdb_assert (whole->lval != lval_xcallable);
1620 if (whole->lval == lval_internalvar)
1621 VALUE_LVAL (component) = lval_internalvar_component;
1623 VALUE_LVAL (component) = whole->lval;
1625 component->location = whole->location;
1626 if (whole->lval == lval_computed)
1628 const struct lval_funcs *funcs = whole->location.computed.funcs;
1630 if (funcs->copy_closure)
1631 component->location.computed.closure = funcs->copy_closure (whole);
1636 /* Access to the value history. */
1638 /* Record a new value in the value history.
1639 Returns the absolute history index of the entry. */
1642 record_latest_value (struct value *val)
1646 /* We don't want this value to have anything to do with the inferior anymore.
1647 In particular, "set $1 = 50" should not affect the variable from which
1648 the value was taken, and fast watchpoints should be able to assume that
1649 a value on the value history never changes. */
1650 if (value_lazy (val))
1651 value_fetch_lazy (val);
1652 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1653 from. This is a bit dubious, because then *&$1 does not just return $1
1654 but the current contents of that location. c'est la vie... */
1655 val->modifiable = 0;
1657 /* The value may have already been released, in which case we're adding a
1658 new reference for its entry in the history. That is why we call
1659 release_value_or_incref here instead of release_value. */
1660 release_value_or_incref (val);
1662 /* Here we treat value_history_count as origin-zero
1663 and applying to the value being stored now. */
1665 i = value_history_count % VALUE_HISTORY_CHUNK;
1668 struct value_history_chunk *new
1669 = (struct value_history_chunk *)
1671 xmalloc (sizeof (struct value_history_chunk));
1672 memset (new->values, 0, sizeof new->values);
1673 new->next = value_history_chain;
1674 value_history_chain = new;
1677 value_history_chain->values[i] = val;
1679 /* Now we regard value_history_count as origin-one
1680 and applying to the value just stored. */
1682 return ++value_history_count;
1685 /* Return a copy of the value in the history with sequence number NUM. */
1688 access_value_history (int num)
1690 struct value_history_chunk *chunk;
1695 absnum += value_history_count;
1700 error (_("The history is empty."));
1702 error (_("There is only one value in the history."));
1704 error (_("History does not go back to $$%d."), -num);
1706 if (absnum > value_history_count)
1707 error (_("History has not yet reached $%d."), absnum);
1711 /* Now absnum is always absolute and origin zero. */
1713 chunk = value_history_chain;
1714 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1715 - absnum / VALUE_HISTORY_CHUNK;
1717 chunk = chunk->next;
1719 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1723 show_values (char *num_exp, int from_tty)
1731 /* "show values +" should print from the stored position.
1732 "show values <exp>" should print around value number <exp>. */
1733 if (num_exp[0] != '+' || num_exp[1] != '\0')
1734 num = parse_and_eval_long (num_exp) - 5;
1738 /* "show values" means print the last 10 values. */
1739 num = value_history_count - 9;
1745 for (i = num; i < num + 10 && i <= value_history_count; i++)
1747 struct value_print_options opts;
1749 val = access_value_history (i);
1750 printf_filtered (("$%d = "), i);
1751 get_user_print_options (&opts);
1752 value_print (val, gdb_stdout, &opts);
1753 printf_filtered (("\n"));
1756 /* The next "show values +" should start after what we just printed. */
1759 /* Hitting just return after this command should do the same thing as
1760 "show values +". If num_exp is null, this is unnecessary, since
1761 "show values +" is not useful after "show values". */
1762 if (from_tty && num_exp)
1769 /* Internal variables. These are variables within the debugger
1770 that hold values assigned by debugger commands.
1771 The user refers to them with a '$' prefix
1772 that does not appear in the variable names stored internally. */
1776 struct internalvar *next;
1779 /* We support various different kinds of content of an internal variable.
1780 enum internalvar_kind specifies the kind, and union internalvar_data
1781 provides the data associated with this particular kind. */
1783 enum internalvar_kind
1785 /* The internal variable is empty. */
1788 /* The value of the internal variable is provided directly as
1789 a GDB value object. */
1792 /* A fresh value is computed via a call-back routine on every
1793 access to the internal variable. */
1794 INTERNALVAR_MAKE_VALUE,
1796 /* The internal variable holds a GDB internal convenience function. */
1797 INTERNALVAR_FUNCTION,
1799 /* The variable holds an integer value. */
1800 INTERNALVAR_INTEGER,
1802 /* The variable holds a GDB-provided string. */
1807 union internalvar_data
1809 /* A value object used with INTERNALVAR_VALUE. */
1810 struct value *value;
1812 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1815 /* The functions to call. */
1816 const struct internalvar_funcs *functions;
1818 /* The function's user-data. */
1822 /* The internal function used with INTERNALVAR_FUNCTION. */
1825 struct internal_function *function;
1826 /* True if this is the canonical name for the function. */
1830 /* An integer value used with INTERNALVAR_INTEGER. */
1833 /* If type is non-NULL, it will be used as the type to generate
1834 a value for this internal variable. If type is NULL, a default
1835 integer type for the architecture is used. */
1840 /* A string value used with INTERNALVAR_STRING. */
1845 static struct internalvar *internalvars;
1847 /* If the variable does not already exist create it and give it the
1848 value given. If no value is given then the default is zero. */
1850 init_if_undefined_command (char* args, int from_tty)
1852 struct internalvar* intvar;
1854 /* Parse the expression - this is taken from set_command(). */
1855 struct expression *expr = parse_expression (args);
1856 register struct cleanup *old_chain =
1857 make_cleanup (free_current_contents, &expr);
1859 /* Validate the expression.
1860 Was the expression an assignment?
1861 Or even an expression at all? */
1862 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1863 error (_("Init-if-undefined requires an assignment expression."));
1865 /* Extract the variable from the parsed expression.
1866 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1867 if (expr->elts[1].opcode != OP_INTERNALVAR)
1868 error (_("The first parameter to init-if-undefined "
1869 "should be a GDB variable."));
1870 intvar = expr->elts[2].internalvar;
1872 /* Only evaluate the expression if the lvalue is void.
1873 This may still fail if the expresssion is invalid. */
1874 if (intvar->kind == INTERNALVAR_VOID)
1875 evaluate_expression (expr);
1877 do_cleanups (old_chain);
1881 /* Look up an internal variable with name NAME. NAME should not
1882 normally include a dollar sign.
1884 If the specified internal variable does not exist,
1885 the return value is NULL. */
1887 struct internalvar *
1888 lookup_only_internalvar (const char *name)
1890 struct internalvar *var;
1892 for (var = internalvars; var; var = var->next)
1893 if (strcmp (var->name, name) == 0)
1899 /* Complete NAME by comparing it to the names of internal variables.
1900 Returns a vector of newly allocated strings, or NULL if no matches
1904 complete_internalvar (const char *name)
1906 VEC (char_ptr) *result = NULL;
1907 struct internalvar *var;
1910 len = strlen (name);
1912 for (var = internalvars; var; var = var->next)
1913 if (strncmp (var->name, name, len) == 0)
1915 char *r = xstrdup (var->name);
1917 VEC_safe_push (char_ptr, result, r);
1923 /* Create an internal variable with name NAME and with a void value.
1924 NAME should not normally include a dollar sign. */
1926 struct internalvar *
1927 create_internalvar (const char *name)
1929 struct internalvar *var;
1931 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1932 var->name = concat (name, (char *)NULL);
1933 var->kind = INTERNALVAR_VOID;
1934 var->next = internalvars;
1939 /* Create an internal variable with name NAME and register FUN as the
1940 function that value_of_internalvar uses to create a value whenever
1941 this variable is referenced. NAME should not normally include a
1942 dollar sign. DATA is passed uninterpreted to FUN when it is
1943 called. CLEANUP, if not NULL, is called when the internal variable
1944 is destroyed. It is passed DATA as its only argument. */
1946 struct internalvar *
1947 create_internalvar_type_lazy (const char *name,
1948 const struct internalvar_funcs *funcs,
1951 struct internalvar *var = create_internalvar (name);
1953 var->kind = INTERNALVAR_MAKE_VALUE;
1954 var->u.make_value.functions = funcs;
1955 var->u.make_value.data = data;
1959 /* See documentation in value.h. */
1962 compile_internalvar_to_ax (struct internalvar *var,
1963 struct agent_expr *expr,
1964 struct axs_value *value)
1966 if (var->kind != INTERNALVAR_MAKE_VALUE
1967 || var->u.make_value.functions->compile_to_ax == NULL)
1970 var->u.make_value.functions->compile_to_ax (var, expr, value,
1971 var->u.make_value.data);
1975 /* Look up an internal variable with name NAME. NAME should not
1976 normally include a dollar sign.
1978 If the specified internal variable does not exist,
1979 one is created, with a void value. */
1981 struct internalvar *
1982 lookup_internalvar (const char *name)
1984 struct internalvar *var;
1986 var = lookup_only_internalvar (name);
1990 return create_internalvar (name);
1993 /* Return current value of internal variable VAR. For variables that
1994 are not inherently typed, use a value type appropriate for GDBARCH. */
1997 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2000 struct trace_state_variable *tsv;
2002 /* If there is a trace state variable of the same name, assume that
2003 is what we really want to see. */
2004 tsv = find_trace_state_variable (var->name);
2007 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2009 if (tsv->value_known)
2010 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2013 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2019 case INTERNALVAR_VOID:
2020 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2023 case INTERNALVAR_FUNCTION:
2024 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2027 case INTERNALVAR_INTEGER:
2028 if (!var->u.integer.type)
2029 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2030 var->u.integer.val);
2032 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2035 case INTERNALVAR_STRING:
2036 val = value_cstring (var->u.string, strlen (var->u.string),
2037 builtin_type (gdbarch)->builtin_char);
2040 case INTERNALVAR_VALUE:
2041 val = value_copy (var->u.value);
2042 if (value_lazy (val))
2043 value_fetch_lazy (val);
2046 case INTERNALVAR_MAKE_VALUE:
2047 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2048 var->u.make_value.data);
2052 internal_error (__FILE__, __LINE__, _("bad kind"));
2055 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2056 on this value go back to affect the original internal variable.
2058 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2059 no underlying modifyable state in the internal variable.
2061 Likewise, if the variable's value is a computed lvalue, we want
2062 references to it to produce another computed lvalue, where
2063 references and assignments actually operate through the
2064 computed value's functions.
2066 This means that internal variables with computed values
2067 behave a little differently from other internal variables:
2068 assignments to them don't just replace the previous value
2069 altogether. At the moment, this seems like the behavior we
2072 if (var->kind != INTERNALVAR_MAKE_VALUE
2073 && val->lval != lval_computed)
2075 VALUE_LVAL (val) = lval_internalvar;
2076 VALUE_INTERNALVAR (val) = var;
2083 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2085 if (var->kind == INTERNALVAR_INTEGER)
2087 *result = var->u.integer.val;
2091 if (var->kind == INTERNALVAR_VALUE)
2093 struct type *type = check_typedef (value_type (var->u.value));
2095 if (TYPE_CODE (type) == TYPE_CODE_INT)
2097 *result = value_as_long (var->u.value);
2106 get_internalvar_function (struct internalvar *var,
2107 struct internal_function **result)
2111 case INTERNALVAR_FUNCTION:
2112 *result = var->u.fn.function;
2121 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
2122 int bitsize, struct value *newval)
2128 case INTERNALVAR_VALUE:
2129 addr = value_contents_writeable (var->u.value);
2132 modify_field (value_type (var->u.value), addr + offset,
2133 value_as_long (newval), bitpos, bitsize);
2135 memcpy (addr + offset, value_contents (newval),
2136 TYPE_LENGTH (value_type (newval)));
2140 /* We can never get a component of any other kind. */
2141 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2146 set_internalvar (struct internalvar *var, struct value *val)
2148 enum internalvar_kind new_kind;
2149 union internalvar_data new_data = { 0 };
2151 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2152 error (_("Cannot overwrite convenience function %s"), var->name);
2154 /* Prepare new contents. */
2155 switch (TYPE_CODE (check_typedef (value_type (val))))
2157 case TYPE_CODE_VOID:
2158 new_kind = INTERNALVAR_VOID;
2161 case TYPE_CODE_INTERNAL_FUNCTION:
2162 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2163 new_kind = INTERNALVAR_FUNCTION;
2164 get_internalvar_function (VALUE_INTERNALVAR (val),
2165 &new_data.fn.function);
2166 /* Copies created here are never canonical. */
2170 new_kind = INTERNALVAR_VALUE;
2171 new_data.value = value_copy (val);
2172 new_data.value->modifiable = 1;
2174 /* Force the value to be fetched from the target now, to avoid problems
2175 later when this internalvar is referenced and the target is gone or
2177 if (value_lazy (new_data.value))
2178 value_fetch_lazy (new_data.value);
2180 /* Release the value from the value chain to prevent it from being
2181 deleted by free_all_values. From here on this function should not
2182 call error () until new_data is installed into the var->u to avoid
2184 release_value (new_data.value);
2188 /* Clean up old contents. */
2189 clear_internalvar (var);
2192 var->kind = new_kind;
2194 /* End code which must not call error(). */
2198 set_internalvar_integer (struct internalvar *var, LONGEST l)
2200 /* Clean up old contents. */
2201 clear_internalvar (var);
2203 var->kind = INTERNALVAR_INTEGER;
2204 var->u.integer.type = NULL;
2205 var->u.integer.val = l;
2209 set_internalvar_string (struct internalvar *var, const char *string)
2211 /* Clean up old contents. */
2212 clear_internalvar (var);
2214 var->kind = INTERNALVAR_STRING;
2215 var->u.string = xstrdup (string);
2219 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2221 /* Clean up old contents. */
2222 clear_internalvar (var);
2224 var->kind = INTERNALVAR_FUNCTION;
2225 var->u.fn.function = f;
2226 var->u.fn.canonical = 1;
2227 /* Variables installed here are always the canonical version. */
2231 clear_internalvar (struct internalvar *var)
2233 /* Clean up old contents. */
2236 case INTERNALVAR_VALUE:
2237 value_free (var->u.value);
2240 case INTERNALVAR_STRING:
2241 xfree (var->u.string);
2244 case INTERNALVAR_MAKE_VALUE:
2245 if (var->u.make_value.functions->destroy != NULL)
2246 var->u.make_value.functions->destroy (var->u.make_value.data);
2253 /* Reset to void kind. */
2254 var->kind = INTERNALVAR_VOID;
2258 internalvar_name (struct internalvar *var)
2263 static struct internal_function *
2264 create_internal_function (const char *name,
2265 internal_function_fn handler, void *cookie)
2267 struct internal_function *ifn = XNEW (struct internal_function);
2269 ifn->name = xstrdup (name);
2270 ifn->handler = handler;
2271 ifn->cookie = cookie;
2276 value_internal_function_name (struct value *val)
2278 struct internal_function *ifn;
2281 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2282 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2283 gdb_assert (result);
2289 call_internal_function (struct gdbarch *gdbarch,
2290 const struct language_defn *language,
2291 struct value *func, int argc, struct value **argv)
2293 struct internal_function *ifn;
2296 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2297 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2298 gdb_assert (result);
2300 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2303 /* The 'function' command. This does nothing -- it is just a
2304 placeholder to let "help function NAME" work. This is also used as
2305 the implementation of the sub-command that is created when
2306 registering an internal function. */
2308 function_command (char *command, int from_tty)
2313 /* Clean up if an internal function's command is destroyed. */
2315 function_destroyer (struct cmd_list_element *self, void *ignore)
2317 xfree ((char *) self->name);
2318 xfree ((char *) self->doc);
2321 /* Add a new internal function. NAME is the name of the function; DOC
2322 is a documentation string describing the function. HANDLER is
2323 called when the function is invoked. COOKIE is an arbitrary
2324 pointer which is passed to HANDLER and is intended for "user
2327 add_internal_function (const char *name, const char *doc,
2328 internal_function_fn handler, void *cookie)
2330 struct cmd_list_element *cmd;
2331 struct internal_function *ifn;
2332 struct internalvar *var = lookup_internalvar (name);
2334 ifn = create_internal_function (name, handler, cookie);
2335 set_internalvar_function (var, ifn);
2337 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2339 cmd->destroyer = function_destroyer;
2342 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2343 prevent cycles / duplicates. */
2346 preserve_one_value (struct value *value, struct objfile *objfile,
2347 htab_t copied_types)
2349 if (TYPE_OBJFILE (value->type) == objfile)
2350 value->type = copy_type_recursive (objfile, value->type, copied_types);
2352 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2353 value->enclosing_type = copy_type_recursive (objfile,
2354 value->enclosing_type,
2358 /* Likewise for internal variable VAR. */
2361 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2362 htab_t copied_types)
2366 case INTERNALVAR_INTEGER:
2367 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2369 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2372 case INTERNALVAR_VALUE:
2373 preserve_one_value (var->u.value, objfile, copied_types);
2378 /* Update the internal variables and value history when OBJFILE is
2379 discarded; we must copy the types out of the objfile. New global types
2380 will be created for every convenience variable which currently points to
2381 this objfile's types, and the convenience variables will be adjusted to
2382 use the new global types. */
2385 preserve_values (struct objfile *objfile)
2387 htab_t copied_types;
2388 struct value_history_chunk *cur;
2389 struct internalvar *var;
2392 /* Create the hash table. We allocate on the objfile's obstack, since
2393 it is soon to be deleted. */
2394 copied_types = create_copied_types_hash (objfile);
2396 for (cur = value_history_chain; cur; cur = cur->next)
2397 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2399 preserve_one_value (cur->values[i], objfile, copied_types);
2401 for (var = internalvars; var; var = var->next)
2402 preserve_one_internalvar (var, objfile, copied_types);
2404 preserve_ext_lang_values (objfile, copied_types);
2406 htab_delete (copied_types);
2410 show_convenience (char *ignore, int from_tty)
2412 struct gdbarch *gdbarch = get_current_arch ();
2413 struct internalvar *var;
2415 struct value_print_options opts;
2417 get_user_print_options (&opts);
2418 for (var = internalvars; var; var = var->next)
2420 volatile struct gdb_exception ex;
2426 printf_filtered (("$%s = "), var->name);
2428 TRY_CATCH (ex, RETURN_MASK_ERROR)
2432 val = value_of_internalvar (gdbarch, var);
2433 value_print (val, gdb_stdout, &opts);
2436 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2437 printf_filtered (("\n"));
2441 /* This text does not mention convenience functions on purpose.
2442 The user can't create them except via Python, and if Python support
2443 is installed this message will never be printed ($_streq will
2445 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2446 "Convenience variables have "
2447 "names starting with \"$\";\n"
2448 "use \"set\" as in \"set "
2449 "$foo = 5\" to define them.\n"));
2453 /* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2456 value_of_xmethod (struct xmethod_worker *worker)
2458 if (worker->value == NULL)
2462 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2463 v->lval = lval_xcallable;
2464 v->location.xm_worker = worker;
2469 return worker->value;
2472 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2475 call_xmethod (struct value *method, int argc, struct value **argv)
2477 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2478 && method->lval == lval_xcallable && argc > 0);
2480 return invoke_xmethod (method->location.xm_worker,
2481 argv[0], argv + 1, argc - 1);
2484 /* Extract a value as a C number (either long or double).
2485 Knows how to convert fixed values to double, or
2486 floating values to long.
2487 Does not deallocate the value. */
2490 value_as_long (struct value *val)
2492 /* This coerces arrays and functions, which is necessary (e.g.
2493 in disassemble_command). It also dereferences references, which
2494 I suspect is the most logical thing to do. */
2495 val = coerce_array (val);
2496 return unpack_long (value_type (val), value_contents (val));
2500 value_as_double (struct value *val)
2505 foo = unpack_double (value_type (val), value_contents (val), &inv);
2507 error (_("Invalid floating value found in program."));
2511 /* Extract a value as a C pointer. Does not deallocate the value.
2512 Note that val's type may not actually be a pointer; value_as_long
2513 handles all the cases. */
2515 value_as_address (struct value *val)
2517 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2519 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2520 whether we want this to be true eventually. */
2522 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2523 non-address (e.g. argument to "signal", "info break", etc.), or
2524 for pointers to char, in which the low bits *are* significant. */
2525 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2528 /* There are several targets (IA-64, PowerPC, and others) which
2529 don't represent pointers to functions as simply the address of
2530 the function's entry point. For example, on the IA-64, a
2531 function pointer points to a two-word descriptor, generated by
2532 the linker, which contains the function's entry point, and the
2533 value the IA-64 "global pointer" register should have --- to
2534 support position-independent code. The linker generates
2535 descriptors only for those functions whose addresses are taken.
2537 On such targets, it's difficult for GDB to convert an arbitrary
2538 function address into a function pointer; it has to either find
2539 an existing descriptor for that function, or call malloc and
2540 build its own. On some targets, it is impossible for GDB to
2541 build a descriptor at all: the descriptor must contain a jump
2542 instruction; data memory cannot be executed; and code memory
2545 Upon entry to this function, if VAL is a value of type `function'
2546 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2547 value_address (val) is the address of the function. This is what
2548 you'll get if you evaluate an expression like `main'. The call
2549 to COERCE_ARRAY below actually does all the usual unary
2550 conversions, which includes converting values of type `function'
2551 to `pointer to function'. This is the challenging conversion
2552 discussed above. Then, `unpack_long' will convert that pointer
2553 back into an address.
2555 So, suppose the user types `disassemble foo' on an architecture
2556 with a strange function pointer representation, on which GDB
2557 cannot build its own descriptors, and suppose further that `foo'
2558 has no linker-built descriptor. The address->pointer conversion
2559 will signal an error and prevent the command from running, even
2560 though the next step would have been to convert the pointer
2561 directly back into the same address.
2563 The following shortcut avoids this whole mess. If VAL is a
2564 function, just return its address directly. */
2565 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2566 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2567 return value_address (val);
2569 val = coerce_array (val);
2571 /* Some architectures (e.g. Harvard), map instruction and data
2572 addresses onto a single large unified address space. For
2573 instance: An architecture may consider a large integer in the
2574 range 0x10000000 .. 0x1000ffff to already represent a data
2575 addresses (hence not need a pointer to address conversion) while
2576 a small integer would still need to be converted integer to
2577 pointer to address. Just assume such architectures handle all
2578 integer conversions in a single function. */
2582 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2583 must admonish GDB hackers to make sure its behavior matches the
2584 compiler's, whenever possible.
2586 In general, I think GDB should evaluate expressions the same way
2587 the compiler does. When the user copies an expression out of
2588 their source code and hands it to a `print' command, they should
2589 get the same value the compiler would have computed. Any
2590 deviation from this rule can cause major confusion and annoyance,
2591 and needs to be justified carefully. In other words, GDB doesn't
2592 really have the freedom to do these conversions in clever and
2595 AndrewC pointed out that users aren't complaining about how GDB
2596 casts integers to pointers; they are complaining that they can't
2597 take an address from a disassembly listing and give it to `x/i'.
2598 This is certainly important.
2600 Adding an architecture method like integer_to_address() certainly
2601 makes it possible for GDB to "get it right" in all circumstances
2602 --- the target has complete control over how things get done, so
2603 people can Do The Right Thing for their target without breaking
2604 anyone else. The standard doesn't specify how integers get
2605 converted to pointers; usually, the ABI doesn't either, but
2606 ABI-specific code is a more reasonable place to handle it. */
2608 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2609 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2610 && gdbarch_integer_to_address_p (gdbarch))
2611 return gdbarch_integer_to_address (gdbarch, value_type (val),
2612 value_contents (val));
2614 return unpack_long (value_type (val), value_contents (val));
2618 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2619 as a long, or as a double, assuming the raw data is described
2620 by type TYPE. Knows how to convert different sizes of values
2621 and can convert between fixed and floating point. We don't assume
2622 any alignment for the raw data. Return value is in host byte order.
2624 If you want functions and arrays to be coerced to pointers, and
2625 references to be dereferenced, call value_as_long() instead.
2627 C++: It is assumed that the front-end has taken care of
2628 all matters concerning pointers to members. A pointer
2629 to member which reaches here is considered to be equivalent
2630 to an INT (or some size). After all, it is only an offset. */
2633 unpack_long (struct type *type, const gdb_byte *valaddr)
2635 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2636 enum type_code code = TYPE_CODE (type);
2637 int len = TYPE_LENGTH (type);
2638 int nosign = TYPE_UNSIGNED (type);
2642 case TYPE_CODE_TYPEDEF:
2643 return unpack_long (check_typedef (type), valaddr);
2644 case TYPE_CODE_ENUM:
2645 case TYPE_CODE_FLAGS:
2646 case TYPE_CODE_BOOL:
2648 case TYPE_CODE_CHAR:
2649 case TYPE_CODE_RANGE:
2650 case TYPE_CODE_MEMBERPTR:
2652 return extract_unsigned_integer (valaddr, len, byte_order);
2654 return extract_signed_integer (valaddr, len, byte_order);
2657 return extract_typed_floating (valaddr, type);
2659 case TYPE_CODE_DECFLOAT:
2660 /* libdecnumber has a function to convert from decimal to integer, but
2661 it doesn't work when the decimal number has a fractional part. */
2662 return decimal_to_doublest (valaddr, len, byte_order);
2666 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2667 whether we want this to be true eventually. */
2668 return extract_typed_address (valaddr, type);
2671 error (_("Value can't be converted to integer."));
2673 return 0; /* Placate lint. */
2676 /* Return a double value from the specified type and address.
2677 INVP points to an int which is set to 0 for valid value,
2678 1 for invalid value (bad float format). In either case,
2679 the returned double is OK to use. Argument is in target
2680 format, result is in host format. */
2683 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2685 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2686 enum type_code code;
2690 *invp = 0; /* Assume valid. */
2691 CHECK_TYPEDEF (type);
2692 code = TYPE_CODE (type);
2693 len = TYPE_LENGTH (type);
2694 nosign = TYPE_UNSIGNED (type);
2695 if (code == TYPE_CODE_FLT)
2697 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2698 floating-point value was valid (using the macro
2699 INVALID_FLOAT). That test/macro have been removed.
2701 It turns out that only the VAX defined this macro and then
2702 only in a non-portable way. Fixing the portability problem
2703 wouldn't help since the VAX floating-point code is also badly
2704 bit-rotten. The target needs to add definitions for the
2705 methods gdbarch_float_format and gdbarch_double_format - these
2706 exactly describe the target floating-point format. The
2707 problem here is that the corresponding floatformat_vax_f and
2708 floatformat_vax_d values these methods should be set to are
2709 also not defined either. Oops!
2711 Hopefully someone will add both the missing floatformat
2712 definitions and the new cases for floatformat_is_valid (). */
2714 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2720 return extract_typed_floating (valaddr, type);
2722 else if (code == TYPE_CODE_DECFLOAT)
2723 return decimal_to_doublest (valaddr, len, byte_order);
2726 /* Unsigned -- be sure we compensate for signed LONGEST. */
2727 return (ULONGEST) unpack_long (type, valaddr);
2731 /* Signed -- we are OK with unpack_long. */
2732 return unpack_long (type, valaddr);
2736 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2737 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2738 We don't assume any alignment for the raw data. Return value is in
2741 If you want functions and arrays to be coerced to pointers, and
2742 references to be dereferenced, call value_as_address() instead.
2744 C++: It is assumed that the front-end has taken care of
2745 all matters concerning pointers to members. A pointer
2746 to member which reaches here is considered to be equivalent
2747 to an INT (or some size). After all, it is only an offset. */
2750 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2752 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2753 whether we want this to be true eventually. */
2754 return unpack_long (type, valaddr);
2758 /* Get the value of the FIELDNO'th field (which must be static) of
2762 value_static_field (struct type *type, int fieldno)
2764 struct value *retval;
2766 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2768 case FIELD_LOC_KIND_PHYSADDR:
2769 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2770 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2772 case FIELD_LOC_KIND_PHYSNAME:
2774 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2775 /* TYPE_FIELD_NAME (type, fieldno); */
2776 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2780 /* With some compilers, e.g. HP aCC, static data members are
2781 reported as non-debuggable symbols. */
2782 struct bound_minimal_symbol msym
2783 = lookup_minimal_symbol (phys_name, NULL, NULL);
2786 return allocate_optimized_out_value (type);
2789 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2790 BMSYMBOL_VALUE_ADDRESS (msym));
2794 retval = value_of_variable (sym, NULL);
2798 gdb_assert_not_reached ("unexpected field location kind");
2804 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2805 You have to be careful here, since the size of the data area for the value
2806 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2807 than the old enclosing type, you have to allocate more space for the
2811 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2813 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2815 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2817 val->enclosing_type = new_encl_type;
2820 /* Given a value ARG1 (offset by OFFSET bytes)
2821 of a struct or union type ARG_TYPE,
2822 extract and return the value of one of its (non-static) fields.
2823 FIELDNO says which field. */
2826 value_primitive_field (struct value *arg1, int offset,
2827 int fieldno, struct type *arg_type)
2832 CHECK_TYPEDEF (arg_type);
2833 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2835 /* Call check_typedef on our type to make sure that, if TYPE
2836 is a TYPE_CODE_TYPEDEF, its length is set to the length
2837 of the target type instead of zero. However, we do not
2838 replace the typedef type by the target type, because we want
2839 to keep the typedef in order to be able to print the type
2840 description correctly. */
2841 check_typedef (type);
2843 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2845 /* Handle packed fields.
2847 Create a new value for the bitfield, with bitpos and bitsize
2848 set. If possible, arrange offset and bitpos so that we can
2849 do a single aligned read of the size of the containing type.
2850 Otherwise, adjust offset to the byte containing the first
2851 bit. Assume that the address, offset, and embedded offset
2852 are sufficiently aligned. */
2854 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2855 int container_bitsize = TYPE_LENGTH (type) * 8;
2857 if (arg1->optimized_out)
2858 v = allocate_optimized_out_value (type);
2861 v = allocate_value_lazy (type);
2862 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2863 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2864 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2865 v->bitpos = bitpos % container_bitsize;
2867 v->bitpos = bitpos % 8;
2868 v->offset = (value_embedded_offset (arg1)
2870 + (bitpos - v->bitpos) / 8);
2871 set_value_parent (v, arg1);
2872 if (!value_lazy (arg1))
2873 value_fetch_lazy (v);
2876 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2878 /* This field is actually a base subobject, so preserve the
2879 entire object's contents for later references to virtual
2883 /* Lazy register values with offsets are not supported. */
2884 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2885 value_fetch_lazy (arg1);
2887 /* The optimized_out flag is only set correctly once a lazy value is
2888 loaded, having just loaded some lazy values we should check the
2889 optimized out case now. */
2890 if (arg1->optimized_out)
2891 v = allocate_optimized_out_value (type);
2894 /* We special case virtual inheritance here because this
2895 requires access to the contents, which we would rather avoid
2896 for references to ordinary fields of unavailable values. */
2897 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2898 boffset = baseclass_offset (arg_type, fieldno,
2899 value_contents (arg1),
2900 value_embedded_offset (arg1),
2901 value_address (arg1),
2904 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2906 if (value_lazy (arg1))
2907 v = allocate_value_lazy (value_enclosing_type (arg1));
2910 v = allocate_value (value_enclosing_type (arg1));
2911 value_contents_copy_raw (v, 0, arg1, 0,
2912 TYPE_LENGTH (value_enclosing_type (arg1)));
2915 v->offset = value_offset (arg1);
2916 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2921 /* Plain old data member */
2922 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2924 /* Lazy register values with offsets are not supported. */
2925 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2926 value_fetch_lazy (arg1);
2928 /* The optimized_out flag is only set correctly once a lazy value is
2929 loaded, having just loaded some lazy values we should check for
2930 the optimized out case now. */
2931 if (arg1->optimized_out)
2932 v = allocate_optimized_out_value (type);
2933 else if (value_lazy (arg1))
2934 v = allocate_value_lazy (type);
2937 v = allocate_value (type);
2938 value_contents_copy_raw (v, value_embedded_offset (v),
2939 arg1, value_embedded_offset (arg1) + offset,
2940 TYPE_LENGTH (type));
2942 v->offset = (value_offset (arg1) + offset
2943 + value_embedded_offset (arg1));
2945 set_value_component_location (v, arg1);
2946 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2947 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2951 /* Given a value ARG1 of a struct or union type,
2952 extract and return the value of one of its (non-static) fields.
2953 FIELDNO says which field. */
2956 value_field (struct value *arg1, int fieldno)
2958 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2961 /* Return a non-virtual function as a value.
2962 F is the list of member functions which contains the desired method.
2963 J is an index into F which provides the desired method.
2965 We only use the symbol for its address, so be happy with either a
2966 full symbol or a minimal symbol. */
2969 value_fn_field (struct value **arg1p, struct fn_field *f,
2970 int j, struct type *type,
2974 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2975 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2977 struct bound_minimal_symbol msym;
2979 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2982 memset (&msym, 0, sizeof (msym));
2986 gdb_assert (sym == NULL);
2987 msym = lookup_bound_minimal_symbol (physname);
2988 if (msym.minsym == NULL)
2992 v = allocate_value (ftype);
2995 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2999 /* The minimal symbol might point to a function descriptor;
3000 resolve it to the actual code address instead. */
3001 struct objfile *objfile = msym.objfile;
3002 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3004 set_value_address (v,
3005 gdbarch_convert_from_func_ptr_addr
3006 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), ¤t_target));
3011 if (type != value_type (*arg1p))
3012 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3013 value_addr (*arg1p)));
3015 /* Move the `this' pointer according to the offset.
3016 VALUE_OFFSET (*arg1p) += offset; */
3024 /* Helper function for both unpack_value_bits_as_long and
3025 unpack_bits_as_long. See those functions for more details on the
3026 interface; the only difference is that this function accepts either
3027 a NULL or a non-NULL ORIGINAL_VALUE. */
3030 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
3031 int embedded_offset, int bitpos, int bitsize,
3032 const struct value *original_value,
3035 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3042 /* Read the minimum number of bytes required; there may not be
3043 enough bytes to read an entire ULONGEST. */
3044 CHECK_TYPEDEF (field_type);
3046 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3048 bytes_read = TYPE_LENGTH (field_type);
3050 read_offset = bitpos / 8;
3052 if (original_value != NULL
3053 && !value_bits_available (original_value, embedded_offset + bitpos,
3057 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
3058 bytes_read, byte_order);
3060 /* Extract bits. See comment above. */
3062 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3063 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3065 lsbcount = (bitpos % 8);
3068 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3069 If the field is signed, and is negative, then sign extend. */
3071 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3073 valmask = (((ULONGEST) 1) << bitsize) - 1;
3075 if (!TYPE_UNSIGNED (field_type))
3077 if (val & (valmask ^ (valmask >> 1)))
3088 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3089 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
3090 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
3091 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
3094 Returns false if the value contents are unavailable, otherwise
3095 returns true, indicating a valid value has been stored in *RESULT.
3097 Extracting bits depends on endianness of the machine. Compute the
3098 number of least significant bits to discard. For big endian machines,
3099 we compute the total number of bits in the anonymous object, subtract
3100 off the bit count from the MSB of the object to the MSB of the
3101 bitfield, then the size of the bitfield, which leaves the LSB discard
3102 count. For little endian machines, the discard count is simply the
3103 number of bits from the LSB of the anonymous object to the LSB of the
3106 If the field is signed, we also do sign extension. */
3109 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3110 int embedded_offset, int bitpos, int bitsize,
3111 const struct value *original_value,
3114 gdb_assert (original_value != NULL);
3116 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
3117 bitpos, bitsize, original_value, result);
3121 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3122 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3123 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
3127 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
3128 int embedded_offset, int fieldno,
3129 const struct value *val, LONGEST *result)
3131 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3132 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3133 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3135 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
3136 bitpos, bitsize, val,
3140 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3141 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3142 ORIGINAL_VALUE, which must not be NULL. See
3143 unpack_value_bits_as_long for more details. */
3146 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3147 int embedded_offset, int fieldno,
3148 const struct value *val, LONGEST *result)
3150 gdb_assert (val != NULL);
3152 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
3153 fieldno, val, result);
3156 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3157 object at VALADDR. See unpack_value_bits_as_long for more details.
3158 This function differs from unpack_value_field_as_long in that it
3159 operates without a struct value object. */
3162 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3166 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
3170 /* Return a new value with type TYPE, which is FIELDNO field of the
3171 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3172 of VAL. If the VAL's contents required to extract the bitfield
3173 from are unavailable, the new value is correspondingly marked as
3177 value_field_bitfield (struct type *type, int fieldno,
3178 const gdb_byte *valaddr,
3179 int embedded_offset, const struct value *val)
3183 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
3186 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3187 struct value *retval = allocate_value (field_type);
3188 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
3193 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
3197 /* Modify the value of a bitfield. ADDR points to a block of memory in
3198 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3199 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3200 indicate which bits (in target bit order) comprise the bitfield.
3201 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3202 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3205 modify_field (struct type *type, gdb_byte *addr,
3206 LONGEST fieldval, int bitpos, int bitsize)
3208 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3210 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3213 /* Normalize BITPOS. */
3217 /* If a negative fieldval fits in the field in question, chop
3218 off the sign extension bits. */
3219 if ((~fieldval & ~(mask >> 1)) == 0)
3222 /* Warn if value is too big to fit in the field in question. */
3223 if (0 != (fieldval & ~mask))
3225 /* FIXME: would like to include fieldval in the message, but
3226 we don't have a sprintf_longest. */
3227 warning (_("Value does not fit in %d bits."), bitsize);
3229 /* Truncate it, otherwise adjoining fields may be corrupted. */
3233 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3234 false valgrind reports. */
3236 bytesize = (bitpos + bitsize + 7) / 8;
3237 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3239 /* Shifting for bit field depends on endianness of the target machine. */
3240 if (gdbarch_bits_big_endian (get_type_arch (type)))
3241 bitpos = bytesize * 8 - bitpos - bitsize;
3243 oword &= ~(mask << bitpos);
3244 oword |= fieldval << bitpos;
3246 store_unsigned_integer (addr, bytesize, byte_order, oword);
3249 /* Pack NUM into BUF using a target format of TYPE. */
3252 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3254 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3257 type = check_typedef (type);
3258 len = TYPE_LENGTH (type);
3260 switch (TYPE_CODE (type))
3263 case TYPE_CODE_CHAR:
3264 case TYPE_CODE_ENUM:
3265 case TYPE_CODE_FLAGS:
3266 case TYPE_CODE_BOOL:
3267 case TYPE_CODE_RANGE:
3268 case TYPE_CODE_MEMBERPTR:
3269 store_signed_integer (buf, len, byte_order, num);
3274 store_typed_address (buf, type, (CORE_ADDR) num);
3278 error (_("Unexpected type (%d) encountered for integer constant."),
3284 /* Pack NUM into BUF using a target format of TYPE. */
3287 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3290 enum bfd_endian byte_order;
3292 type = check_typedef (type);
3293 len = TYPE_LENGTH (type);
3294 byte_order = gdbarch_byte_order (get_type_arch (type));
3296 switch (TYPE_CODE (type))
3299 case TYPE_CODE_CHAR:
3300 case TYPE_CODE_ENUM:
3301 case TYPE_CODE_FLAGS:
3302 case TYPE_CODE_BOOL:
3303 case TYPE_CODE_RANGE:
3304 case TYPE_CODE_MEMBERPTR:
3305 store_unsigned_integer (buf, len, byte_order, num);
3310 store_typed_address (buf, type, (CORE_ADDR) num);
3314 error (_("Unexpected type (%d) encountered "
3315 "for unsigned integer constant."),
3321 /* Convert C numbers into newly allocated values. */
3324 value_from_longest (struct type *type, LONGEST num)
3326 struct value *val = allocate_value (type);
3328 pack_long (value_contents_raw (val), type, num);
3333 /* Convert C unsigned numbers into newly allocated values. */
3336 value_from_ulongest (struct type *type, ULONGEST num)
3338 struct value *val = allocate_value (type);
3340 pack_unsigned_long (value_contents_raw (val), type, num);
3346 /* Create a value representing a pointer of type TYPE to the address
3347 ADDR. The type of the created value may differ from the passed
3348 type TYPE. Make sure to retrieve the returned values's new type
3349 after this call e.g. in case of an variable length array. */
3352 value_from_pointer (struct type *type, CORE_ADDR addr)
3354 struct type *resolved_type = resolve_dynamic_type (type, addr);
3355 struct value *val = allocate_value (resolved_type);
3357 store_typed_address (value_contents_raw (val),
3358 check_typedef (resolved_type), addr);
3363 /* Create a value of type TYPE whose contents come from VALADDR, if it
3364 is non-null, and whose memory address (in the inferior) is
3365 ADDRESS. The type of the created value may differ from the passed
3366 type TYPE. Make sure to retrieve values new type after this call.
3367 Note that TYPE is not passed through resolve_dynamic_type; this is
3368 a special API intended for use only by Ada. */
3371 value_from_contents_and_address_unresolved (struct type *type,
3372 const gdb_byte *valaddr,
3377 if (valaddr == NULL)
3378 v = allocate_value_lazy (type);
3380 v = value_from_contents (type, valaddr);
3381 set_value_address (v, address);
3382 VALUE_LVAL (v) = lval_memory;
3386 /* Create a value of type TYPE whose contents come from VALADDR, if it
3387 is non-null, and whose memory address (in the inferior) is
3388 ADDRESS. The type of the created value may differ from the passed
3389 type TYPE. Make sure to retrieve values new type after this call. */
3392 value_from_contents_and_address (struct type *type,
3393 const gdb_byte *valaddr,
3396 struct type *resolved_type = resolve_dynamic_type (type, address);
3399 if (valaddr == NULL)
3400 v = allocate_value_lazy (resolved_type);
3402 v = value_from_contents (resolved_type, valaddr);
3403 set_value_address (v, address);
3404 VALUE_LVAL (v) = lval_memory;
3408 /* Create a value of type TYPE holding the contents CONTENTS.
3409 The new value is `not_lval'. */
3412 value_from_contents (struct type *type, const gdb_byte *contents)
3414 struct value *result;
3416 result = allocate_value (type);
3417 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3422 value_from_double (struct type *type, DOUBLEST num)
3424 struct value *val = allocate_value (type);
3425 struct type *base_type = check_typedef (type);
3426 enum type_code code = TYPE_CODE (base_type);
3428 if (code == TYPE_CODE_FLT)
3430 store_typed_floating (value_contents_raw (val), base_type, num);
3433 error (_("Unexpected type encountered for floating constant."));
3439 value_from_decfloat (struct type *type, const gdb_byte *dec)
3441 struct value *val = allocate_value (type);
3443 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3447 /* Extract a value from the history file. Input will be of the form
3448 $digits or $$digits. See block comment above 'write_dollar_variable'
3452 value_from_history_ref (const char *h, const char **endp)
3464 /* Find length of numeral string. */
3465 for (; isdigit (h[len]); len++)
3468 /* Make sure numeral string is not part of an identifier. */
3469 if (h[len] == '_' || isalpha (h[len]))
3472 /* Now collect the index value. */
3477 /* For some bizarre reason, "$$" is equivalent to "$$1",
3478 rather than to "$$0" as it ought to be! */
3486 index = -strtol (&h[2], &local_end, 10);
3494 /* "$" is equivalent to "$0". */
3502 index = strtol (&h[1], &local_end, 10);
3507 return access_value_history (index);
3511 coerce_ref_if_computed (const struct value *arg)
3513 const struct lval_funcs *funcs;
3515 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3518 if (value_lval_const (arg) != lval_computed)
3521 funcs = value_computed_funcs (arg);
3522 if (funcs->coerce_ref == NULL)
3525 return funcs->coerce_ref (arg);
3528 /* Look at value.h for description. */
3531 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3532 struct type *original_type,
3533 struct value *original_value)
3535 /* Re-adjust type. */
3536 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3538 /* Add embedding info. */
3539 set_value_enclosing_type (value, enc_type);
3540 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3542 /* We may be pointing to an object of some derived type. */
3543 return value_full_object (value, NULL, 0, 0, 0);
3547 coerce_ref (struct value *arg)
3549 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3550 struct value *retval;
3551 struct type *enc_type;
3553 retval = coerce_ref_if_computed (arg);
3557 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3560 enc_type = check_typedef (value_enclosing_type (arg));
3561 enc_type = TYPE_TARGET_TYPE (enc_type);
3563 retval = value_at_lazy (enc_type,
3564 unpack_pointer (value_type (arg),
3565 value_contents (arg)));
3566 enc_type = value_type (retval);
3567 return readjust_indirect_value_type (retval, enc_type,
3568 value_type_arg_tmp, arg);
3572 coerce_array (struct value *arg)
3576 arg = coerce_ref (arg);
3577 type = check_typedef (value_type (arg));
3579 switch (TYPE_CODE (type))
3581 case TYPE_CODE_ARRAY:
3582 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3583 arg = value_coerce_array (arg);
3585 case TYPE_CODE_FUNC:
3586 arg = value_coerce_function (arg);
3593 /* Return the return value convention that will be used for the
3596 enum return_value_convention
3597 struct_return_convention (struct gdbarch *gdbarch,
3598 struct value *function, struct type *value_type)
3600 enum type_code code = TYPE_CODE (value_type);
3602 if (code == TYPE_CODE_ERROR)
3603 error (_("Function return type unknown."));
3605 /* Probe the architecture for the return-value convention. */
3606 return gdbarch_return_value (gdbarch, function, value_type,
3610 /* Return true if the function returning the specified type is using
3611 the convention of returning structures in memory (passing in the
3612 address as a hidden first parameter). */
3615 using_struct_return (struct gdbarch *gdbarch,
3616 struct value *function, struct type *value_type)
3618 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3619 /* A void return value is never in memory. See also corresponding
3620 code in "print_return_value". */
3623 return (struct_return_convention (gdbarch, function, value_type)
3624 != RETURN_VALUE_REGISTER_CONVENTION);
3627 /* Set the initialized field in a value struct. */
3630 set_value_initialized (struct value *val, int status)
3632 val->initialized = status;
3635 /* Return the initialized field in a value struct. */
3638 value_initialized (struct value *val)
3640 return val->initialized;
3643 /* Called only from the value_contents and value_contents_all()
3644 macros, if the current data for a variable needs to be loaded into
3645 value_contents(VAL). Fetches the data from the user's process, and
3646 clears the lazy flag to indicate that the data in the buffer is
3649 If the value is zero-length, we avoid calling read_memory, which
3650 would abort. We mark the value as fetched anyway -- all 0 bytes of
3653 This function returns a value because it is used in the
3654 value_contents macro as part of an expression, where a void would
3655 not work. The value is ignored. */
3658 value_fetch_lazy (struct value *val)
3660 gdb_assert (value_lazy (val));
3661 allocate_value_contents (val);
3662 if (value_bitsize (val))
3664 /* To read a lazy bitfield, read the entire enclosing value. This
3665 prevents reading the same block of (possibly volatile) memory once
3666 per bitfield. It would be even better to read only the containing
3667 word, but we have no way to record that just specific bits of a
3668 value have been fetched. */
3669 struct type *type = check_typedef (value_type (val));
3670 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3671 struct value *parent = value_parent (val);
3672 LONGEST offset = value_offset (val);
3675 if (value_lazy (parent))
3676 value_fetch_lazy (parent);
3678 if (!value_bits_valid (parent,
3679 TARGET_CHAR_BIT * offset + value_bitpos (val),
3680 value_bitsize (val)))
3681 set_value_optimized_out (val, 1);
3682 else if (!unpack_value_bits_as_long (value_type (val),
3683 value_contents_for_printing (parent),
3686 value_bitsize (val), parent, &num))
3687 mark_value_bytes_unavailable (val,
3688 value_embedded_offset (val),
3689 TYPE_LENGTH (type));
3691 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
3694 else if (VALUE_LVAL (val) == lval_memory)
3696 CORE_ADDR addr = value_address (val);
3697 struct type *type = check_typedef (value_enclosing_type (val));
3699 if (TYPE_LENGTH (type))
3700 read_value_memory (val, 0, value_stack (val),
3701 addr, value_contents_all_raw (val),
3702 TYPE_LENGTH (type));
3704 else if (VALUE_LVAL (val) == lval_register)
3706 struct frame_info *frame;
3708 struct type *type = check_typedef (value_type (val));
3709 struct value *new_val = val, *mark = value_mark ();
3711 /* Offsets are not supported here; lazy register values must
3712 refer to the entire register. */
3713 gdb_assert (value_offset (val) == 0);
3715 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3717 struct frame_id frame_id = VALUE_FRAME_ID (new_val);
3719 frame = frame_find_by_id (frame_id);
3720 regnum = VALUE_REGNUM (new_val);
3722 gdb_assert (frame != NULL);
3724 /* Convertible register routines are used for multi-register
3725 values and for interpretation in different types
3726 (e.g. float or int from a double register). Lazy
3727 register values should have the register's natural type,
3728 so they do not apply. */
3729 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3732 new_val = get_frame_register_value (frame, regnum);
3734 /* If we get another lazy lval_register value, it means the
3735 register is found by reading it from the next frame.
3736 get_frame_register_value should never return a value with
3737 the frame id pointing to FRAME. If it does, it means we
3738 either have two consecutive frames with the same frame id
3739 in the frame chain, or some code is trying to unwind
3740 behind get_prev_frame's back (e.g., a frame unwind
3741 sniffer trying to unwind), bypassing its validations. In
3742 any case, it should always be an internal error to end up
3743 in this situation. */
3744 if (VALUE_LVAL (new_val) == lval_register
3745 && value_lazy (new_val)
3746 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id))
3747 internal_error (__FILE__, __LINE__,
3748 _("infinite loop while fetching a register"));
3751 /* If it's still lazy (for instance, a saved register on the
3752 stack), fetch it. */
3753 if (value_lazy (new_val))
3754 value_fetch_lazy (new_val);
3756 /* If the register was not saved, mark it optimized out. */
3757 if (value_optimized_out (new_val))
3758 set_value_optimized_out (val, 1);
3761 set_value_lazy (val, 0);
3762 value_contents_copy (val, value_embedded_offset (val),
3763 new_val, value_embedded_offset (new_val),
3764 TYPE_LENGTH (type));
3769 struct gdbarch *gdbarch;
3770 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3771 regnum = VALUE_REGNUM (val);
3772 gdbarch = get_frame_arch (frame);
3774 fprintf_unfiltered (gdb_stdlog,
3775 "{ value_fetch_lazy "
3776 "(frame=%d,regnum=%d(%s),...) ",
3777 frame_relative_level (frame), regnum,
3778 user_reg_map_regnum_to_name (gdbarch, regnum));
3780 fprintf_unfiltered (gdb_stdlog, "->");
3781 if (value_optimized_out (new_val))
3783 fprintf_unfiltered (gdb_stdlog, " ");
3784 val_print_optimized_out (new_val, gdb_stdlog);
3789 const gdb_byte *buf = value_contents (new_val);
3791 if (VALUE_LVAL (new_val) == lval_register)
3792 fprintf_unfiltered (gdb_stdlog, " register=%d",
3793 VALUE_REGNUM (new_val));
3794 else if (VALUE_LVAL (new_val) == lval_memory)
3795 fprintf_unfiltered (gdb_stdlog, " address=%s",
3797 value_address (new_val)));
3799 fprintf_unfiltered (gdb_stdlog, " computed");
3801 fprintf_unfiltered (gdb_stdlog, " bytes=");
3802 fprintf_unfiltered (gdb_stdlog, "[");
3803 for (i = 0; i < register_size (gdbarch, regnum); i++)
3804 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3805 fprintf_unfiltered (gdb_stdlog, "]");
3808 fprintf_unfiltered (gdb_stdlog, " }\n");
3811 /* Dispose of the intermediate values. This prevents
3812 watchpoints from trying to watch the saved frame pointer. */
3813 value_free_to_mark (mark);
3815 else if (VALUE_LVAL (val) == lval_computed
3816 && value_computed_funcs (val)->read != NULL)
3817 value_computed_funcs (val)->read (val);
3818 /* Don't call value_optimized_out on val, doing so would result in a
3819 recursive call back to value_fetch_lazy, instead check the
3820 optimized_out flag directly. */
3821 else if (val->optimized_out)
3822 /* Keep it optimized out. */;
3824 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3826 set_value_lazy (val, 0);
3830 /* Implementation of the convenience function $_isvoid. */
3832 static struct value *
3833 isvoid_internal_fn (struct gdbarch *gdbarch,
3834 const struct language_defn *language,
3835 void *cookie, int argc, struct value **argv)
3840 error (_("You must provide one argument for $_isvoid."));
3842 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3844 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3848 _initialize_values (void)
3850 add_cmd ("convenience", no_class, show_convenience, _("\
3851 Debugger convenience (\"$foo\") variables and functions.\n\
3852 Convenience variables are created when you assign them values;\n\
3853 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3855 A few convenience variables are given values automatically:\n\
3856 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3857 \"$__\" holds the contents of the last address examined with \"x\"."
3860 Convenience functions are defined via the Python API."
3863 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
3865 add_cmd ("values", no_set_class, show_values, _("\
3866 Elements of value history around item number IDX (or last ten)."),
3869 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3870 Initialize a convenience variable if necessary.\n\
3871 init-if-undefined VARIABLE = EXPRESSION\n\
3872 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3873 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3874 VARIABLE is already initialized."));
3876 add_prefix_cmd ("function", no_class, function_command, _("\
3877 Placeholder command for showing help on convenience functions."),
3878 &functionlist, "function ", 0, &cmdlist);
3880 add_internal_function ("_isvoid", _("\
3881 Check whether an expression is void.\n\
3882 Usage: $_isvoid (expression)\n\
3883 Return 1 if the expression is void, zero otherwise."),
3884 isvoid_internal_fn, NULL);