1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "arch-utils.h"
35 #include "target-float.h"
38 #include "cli/cli-decode.h"
39 #include "extension.h"
41 #include "tracepoint.h"
43 #include "user-regs.h"
45 #include "completer.h"
47 /* Definition of a user function. */
48 struct internal_function
50 /* The name of the function. It is a bit odd to have this in the
51 function itself -- the user might use a differently-named
52 convenience variable to hold the function. */
56 internal_function_fn handler;
58 /* User data for the handler. */
62 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
66 /* Lowest offset in the range. */
69 /* Length of the range. */
73 typedef struct range range_s;
77 /* Returns true if the ranges defined by [offset1, offset1+len1) and
78 [offset2, offset2+len2) overlap. */
81 ranges_overlap (LONGEST offset1, LONGEST len1,
82 LONGEST offset2, LONGEST len2)
86 l = std::max (offset1, offset2);
87 h = std::min (offset1 + len1, offset2 + len2);
91 /* Returns true if the first argument is strictly less than the
92 second, useful for VEC_lower_bound. We keep ranges sorted by
93 offset and coalesce overlapping and contiguous ranges, so this just
94 compares the starting offset. */
97 range_lessthan (const range_s *r1, const range_s *r2)
99 return r1->offset < r2->offset;
102 /* Returns true if RANGES contains any range that overlaps [OFFSET,
106 ranges_contain (VEC(range_s) *ranges, LONGEST offset, LONGEST length)
111 what.offset = offset;
112 what.length = length;
114 /* We keep ranges sorted by offset and coalesce overlapping and
115 contiguous ranges, so to check if a range list contains a given
116 range, we can do a binary search for the position the given range
117 would be inserted if we only considered the starting OFFSET of
118 ranges. We call that position I. Since we also have LENGTH to
119 care for (this is a range afterall), we need to check if the
120 _previous_ range overlaps the I range. E.g.,
124 |---| |---| |------| ... |--|
129 In the case above, the binary search would return `I=1', meaning,
130 this OFFSET should be inserted at position 1, and the current
131 position 1 should be pushed further (and before 2). But, `0'
134 Then we need to check if the I range overlaps the I range itself.
139 |---| |---| |-------| ... |--|
145 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
149 struct range *bef = VEC_index (range_s, ranges, i - 1);
151 if (ranges_overlap (bef->offset, bef->length, offset, length))
155 if (i < VEC_length (range_s, ranges))
157 struct range *r = VEC_index (range_s, ranges, i);
159 if (ranges_overlap (r->offset, r->length, offset, length))
166 static struct cmd_list_element *functionlist;
168 /* Note that the fields in this structure are arranged to save a bit
173 /* Type of value; either not an lval, or one of the various
174 different possible kinds of lval. */
177 /* Is it modifiable? Only relevant if lval != not_lval. */
178 unsigned int modifiable : 1;
180 /* If zero, contents of this value are in the contents field. If
181 nonzero, contents are in inferior. If the lval field is lval_memory,
182 the contents are in inferior memory at location.address plus offset.
183 The lval field may also be lval_register.
185 WARNING: This field is used by the code which handles watchpoints
186 (see breakpoint.c) to decide whether a particular value can be
187 watched by hardware watchpoints. If the lazy flag is set for
188 some member of a value chain, it is assumed that this member of
189 the chain doesn't need to be watched as part of watching the
190 value itself. This is how GDB avoids watching the entire struct
191 or array when the user wants to watch a single struct member or
192 array element. If you ever change the way lazy flag is set and
193 reset, be sure to consider this use as well! */
194 unsigned int lazy : 1;
196 /* If value is a variable, is it initialized or not. */
197 unsigned int initialized : 1;
199 /* If value is from the stack. If this is set, read_stack will be
200 used instead of read_memory to enable extra caching. */
201 unsigned int stack : 1;
203 /* If the value has been released. */
204 unsigned int released : 1;
206 /* Location of value (if lval). */
209 /* If lval == lval_memory, this is the address in the inferior */
212 /*If lval == lval_register, the value is from a register. */
215 /* Register number. */
217 /* Frame ID of "next" frame to which a register value is relative.
218 If the register value is found relative to frame F, then the
219 frame id of F->next will be stored in next_frame_id. */
220 struct frame_id next_frame_id;
223 /* Pointer to internal variable. */
224 struct internalvar *internalvar;
226 /* Pointer to xmethod worker. */
227 struct xmethod_worker *xm_worker;
229 /* If lval == lval_computed, this is a set of function pointers
230 to use to access and describe the value, and a closure pointer
234 /* Functions to call. */
235 const struct lval_funcs *funcs;
237 /* Closure for those functions to use. */
242 /* Describes offset of a value within lval of a structure in target
243 addressable memory units. Note also the member embedded_offset
247 /* Only used for bitfields; number of bits contained in them. */
250 /* Only used for bitfields; position of start of field. For
251 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
252 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
255 /* The number of references to this value. When a value is created,
256 the value chain holds a reference, so REFERENCE_COUNT is 1. If
257 release_value is called, this value is removed from the chain but
258 the caller of release_value now has a reference to this value.
259 The caller must arrange for a call to value_free later. */
262 /* Only used for bitfields; the containing value. This allows a
263 single read from the target when displaying multiple
265 struct value *parent;
267 /* Type of the value. */
270 /* If a value represents a C++ object, then the `type' field gives
271 the object's compile-time type. If the object actually belongs
272 to some class derived from `type', perhaps with other base
273 classes and additional members, then `type' is just a subobject
274 of the real thing, and the full object is probably larger than
275 `type' would suggest.
277 If `type' is a dynamic class (i.e. one with a vtable), then GDB
278 can actually determine the object's run-time type by looking at
279 the run-time type information in the vtable. When this
280 information is available, we may elect to read in the entire
281 object, for several reasons:
283 - When printing the value, the user would probably rather see the
284 full object, not just the limited portion apparent from the
287 - If `type' has virtual base classes, then even printing `type'
288 alone may require reaching outside the `type' portion of the
289 object to wherever the virtual base class has been stored.
291 When we store the entire object, `enclosing_type' is the run-time
292 type -- the complete object -- and `embedded_offset' is the
293 offset of `type' within that larger type, in target addressable memory
294 units. The value_contents() macro takes `embedded_offset' into account,
295 so most GDB code continues to see the `type' portion of the value, just
296 as the inferior would.
298 If `type' is a pointer to an object, then `enclosing_type' is a
299 pointer to the object's run-time type, and `pointed_to_offset' is
300 the offset in target addressable memory units from the full object
301 to the pointed-to object -- that is, the value `embedded_offset' would
302 have if we followed the pointer and fetched the complete object.
303 (I don't really see the point. Why not just determine the
304 run-time type when you indirect, and avoid the special case? The
305 contents don't matter until you indirect anyway.)
307 If we're not doing anything fancy, `enclosing_type' is equal to
308 `type', and `embedded_offset' is zero, so everything works
310 struct type *enclosing_type;
311 LONGEST embedded_offset;
312 LONGEST pointed_to_offset;
314 /* Values are stored in a chain, so that they can be deleted easily
315 over calls to the inferior. Values assigned to internal
316 variables, put into the value history or exposed to Python are
317 taken off this list. */
320 /* Actual contents of the value. Target byte-order. NULL or not
321 valid if lazy is nonzero. */
324 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
325 rather than available, since the common and default case is for a
326 value to be available. This is filled in at value read time.
327 The unavailable ranges are tracked in bits. Note that a contents
328 bit that has been optimized out doesn't really exist in the
329 program, so it can't be marked unavailable either. */
330 VEC(range_s) *unavailable;
332 /* Likewise, but for optimized out contents (a chunk of the value of
333 a variable that does not actually exist in the program). If LVAL
334 is lval_register, this is a register ($pc, $sp, etc., never a
335 program variable) that has not been saved in the frame. Not
336 saved registers and optimized-out program variables values are
337 treated pretty much the same, except not-saved registers have a
338 different string representation and related error strings. */
339 VEC(range_s) *optimized_out;
345 get_value_arch (const struct value *value)
347 return get_type_arch (value_type (value));
351 value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
353 gdb_assert (!value->lazy);
355 return !ranges_contain (value->unavailable, offset, length);
359 value_bytes_available (const struct value *value,
360 LONGEST offset, LONGEST length)
362 return value_bits_available (value,
363 offset * TARGET_CHAR_BIT,
364 length * TARGET_CHAR_BIT);
368 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
370 gdb_assert (!value->lazy);
372 return ranges_contain (value->optimized_out, bit_offset, bit_length);
376 value_entirely_available (struct value *value)
378 /* We can only tell whether the whole value is available when we try
381 value_fetch_lazy (value);
383 if (VEC_empty (range_s, value->unavailable))
388 /* Returns true if VALUE is entirely covered by RANGES. If the value
389 is lazy, it'll be read now. Note that RANGE is a pointer to
390 pointer because reading the value might change *RANGE. */
393 value_entirely_covered_by_range_vector (struct value *value,
394 VEC(range_s) **ranges)
396 /* We can only tell whether the whole value is optimized out /
397 unavailable when we try to read it. */
399 value_fetch_lazy (value);
401 if (VEC_length (range_s, *ranges) == 1)
403 struct range *t = VEC_index (range_s, *ranges, 0);
406 && t->length == (TARGET_CHAR_BIT
407 * TYPE_LENGTH (value_enclosing_type (value))))
415 value_entirely_unavailable (struct value *value)
417 return value_entirely_covered_by_range_vector (value, &value->unavailable);
421 value_entirely_optimized_out (struct value *value)
423 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
426 /* Insert into the vector pointed to by VECTORP the bit range starting of
427 OFFSET bits, and extending for the next LENGTH bits. */
430 insert_into_bit_range_vector (VEC(range_s) **vectorp,
431 LONGEST offset, LONGEST length)
436 /* Insert the range sorted. If there's overlap or the new range
437 would be contiguous with an existing range, merge. */
439 newr.offset = offset;
440 newr.length = length;
442 /* Do a binary search for the position the given range would be
443 inserted if we only considered the starting OFFSET of ranges.
444 Call that position I. Since we also have LENGTH to care for
445 (this is a range afterall), we need to check if the _previous_
446 range overlaps the I range. E.g., calling R the new range:
448 #1 - overlaps with previous
452 |---| |---| |------| ... |--|
457 In the case #1 above, the binary search would return `I=1',
458 meaning, this OFFSET should be inserted at position 1, and the
459 current position 1 should be pushed further (and become 2). But,
460 note that `0' overlaps with R, so we want to merge them.
462 A similar consideration needs to be taken if the new range would
463 be contiguous with the previous range:
465 #2 - contiguous with previous
469 |--| |---| |------| ... |--|
474 If there's no overlap with the previous range, as in:
476 #3 - not overlapping and not contiguous
480 |--| |---| |------| ... |--|
487 #4 - R is the range with lowest offset
491 |--| |---| |------| ... |--|
496 ... we just push the new range to I.
498 All the 4 cases above need to consider that the new range may
499 also overlap several of the ranges that follow, or that R may be
500 contiguous with the following range, and merge. E.g.,
502 #5 - overlapping following ranges
505 |------------------------|
506 |--| |---| |------| ... |--|
515 |--| |---| |------| ... |--|
522 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
525 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
527 if (ranges_overlap (bef->offset, bef->length, offset, length))
530 ULONGEST l = std::min (bef->offset, offset);
531 ULONGEST h = std::max (bef->offset + bef->length, offset + length);
537 else if (offset == bef->offset + bef->length)
540 bef->length += length;
546 VEC_safe_insert (range_s, *vectorp, i, &newr);
552 VEC_safe_insert (range_s, *vectorp, i, &newr);
555 /* Check whether the ranges following the one we've just added or
556 touched can be folded in (#5 above). */
557 if (i + 1 < VEC_length (range_s, *vectorp))
564 /* Get the range we just touched. */
565 t = VEC_index (range_s, *vectorp, i);
569 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
570 if (r->offset <= t->offset + t->length)
574 l = std::min (t->offset, r->offset);
575 h = std::max (t->offset + t->length, r->offset + r->length);
584 /* If we couldn't merge this one, we won't be able to
585 merge following ones either, since the ranges are
586 always sorted by OFFSET. */
591 VEC_block_remove (range_s, *vectorp, next, removed);
596 mark_value_bits_unavailable (struct value *value,
597 LONGEST offset, LONGEST length)
599 insert_into_bit_range_vector (&value->unavailable, offset, length);
603 mark_value_bytes_unavailable (struct value *value,
604 LONGEST offset, LONGEST length)
606 mark_value_bits_unavailable (value,
607 offset * TARGET_CHAR_BIT,
608 length * TARGET_CHAR_BIT);
611 /* Find the first range in RANGES that overlaps the range defined by
612 OFFSET and LENGTH, starting at element POS in the RANGES vector,
613 Returns the index into RANGES where such overlapping range was
614 found, or -1 if none was found. */
617 find_first_range_overlap (VEC(range_s) *ranges, int pos,
618 LONGEST offset, LONGEST length)
623 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
624 if (ranges_overlap (r->offset, r->length, offset, length))
630 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
631 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
634 It must always be the case that:
635 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
637 It is assumed that memory can be accessed from:
638 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
640 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
641 / TARGET_CHAR_BIT) */
643 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
644 const gdb_byte *ptr2, size_t offset2_bits,
647 gdb_assert (offset1_bits % TARGET_CHAR_BIT
648 == offset2_bits % TARGET_CHAR_BIT);
650 if (offset1_bits % TARGET_CHAR_BIT != 0)
653 gdb_byte mask, b1, b2;
655 /* The offset from the base pointers PTR1 and PTR2 is not a complete
656 number of bytes. A number of bits up to either the next exact
657 byte boundary, or LENGTH_BITS (which ever is sooner) will be
659 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
660 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
661 mask = (1 << bits) - 1;
663 if (length_bits < bits)
665 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
669 /* Now load the two bytes and mask off the bits we care about. */
670 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
671 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
676 /* Now update the length and offsets to take account of the bits
677 we've just compared. */
679 offset1_bits += bits;
680 offset2_bits += bits;
683 if (length_bits % TARGET_CHAR_BIT != 0)
687 gdb_byte mask, b1, b2;
689 /* The length is not an exact number of bytes. After the previous
690 IF.. block then the offsets are byte aligned, or the
691 length is zero (in which case this code is not reached). Compare
692 a number of bits at the end of the region, starting from an exact
694 bits = length_bits % TARGET_CHAR_BIT;
695 o1 = offset1_bits + length_bits - bits;
696 o2 = offset2_bits + length_bits - bits;
698 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
699 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
701 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
702 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
704 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
705 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
715 /* We've now taken care of any stray "bits" at the start, or end of
716 the region to compare, the remainder can be covered with a simple
718 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
719 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
720 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
722 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
723 ptr2 + offset2_bits / TARGET_CHAR_BIT,
724 length_bits / TARGET_CHAR_BIT);
727 /* Length is zero, regions match. */
731 /* Helper struct for find_first_range_overlap_and_match and
732 value_contents_bits_eq. Keep track of which slot of a given ranges
733 vector have we last looked at. */
735 struct ranges_and_idx
738 VEC(range_s) *ranges;
740 /* The range we've last found in RANGES. Given ranges are sorted,
741 we can start the next lookup here. */
745 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
746 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
747 ranges starting at OFFSET2 bits. Return true if the ranges match
748 and fill in *L and *H with the overlapping window relative to
749 (both) OFFSET1 or OFFSET2. */
752 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
753 struct ranges_and_idx *rp2,
754 LONGEST offset1, LONGEST offset2,
755 LONGEST length, ULONGEST *l, ULONGEST *h)
757 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
759 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
762 if (rp1->idx == -1 && rp2->idx == -1)
768 else if (rp1->idx == -1 || rp2->idx == -1)
776 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
777 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
779 /* Get the unavailable windows intersected by the incoming
780 ranges. The first and last ranges that overlap the argument
781 range may be wider than said incoming arguments ranges. */
782 l1 = std::max (offset1, r1->offset);
783 h1 = std::min (offset1 + length, r1->offset + r1->length);
785 l2 = std::max (offset2, r2->offset);
786 h2 = std::min (offset2 + length, offset2 + r2->length);
788 /* Make them relative to the respective start offsets, so we can
789 compare them for equality. */
796 /* Different ranges, no match. */
797 if (l1 != l2 || h1 != h2)
806 /* Helper function for value_contents_eq. The only difference is that
807 this function is bit rather than byte based.
809 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
810 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
811 Return true if the available bits match. */
814 value_contents_bits_eq (const struct value *val1, int offset1,
815 const struct value *val2, int offset2,
818 /* Each array element corresponds to a ranges source (unavailable,
819 optimized out). '1' is for VAL1, '2' for VAL2. */
820 struct ranges_and_idx rp1[2], rp2[2];
822 /* See function description in value.h. */
823 gdb_assert (!val1->lazy && !val2->lazy);
825 /* We shouldn't be trying to compare past the end of the values. */
826 gdb_assert (offset1 + length
827 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
828 gdb_assert (offset2 + length
829 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
831 memset (&rp1, 0, sizeof (rp1));
832 memset (&rp2, 0, sizeof (rp2));
833 rp1[0].ranges = val1->unavailable;
834 rp2[0].ranges = val2->unavailable;
835 rp1[1].ranges = val1->optimized_out;
836 rp2[1].ranges = val2->optimized_out;
840 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
843 for (i = 0; i < 2; i++)
845 ULONGEST l_tmp, h_tmp;
847 /* The contents only match equal if the invalid/unavailable
848 contents ranges match as well. */
849 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
850 offset1, offset2, length,
854 /* We're interested in the lowest/first range found. */
855 if (i == 0 || l_tmp < l)
862 /* Compare the available/valid contents. */
863 if (memcmp_with_bit_offsets (val1->contents, offset1,
864 val2->contents, offset2, l) != 0)
876 value_contents_eq (const struct value *val1, LONGEST offset1,
877 const struct value *val2, LONGEST offset2,
880 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
881 val2, offset2 * TARGET_CHAR_BIT,
882 length * TARGET_CHAR_BIT);
885 /* Prototypes for local functions. */
887 static void show_values (char *, int);
890 /* The value-history records all the values printed
891 by print commands during this session. Each chunk
892 records 60 consecutive values. The first chunk on
893 the chain records the most recent values.
894 The total number of values is in value_history_count. */
896 #define VALUE_HISTORY_CHUNK 60
898 struct value_history_chunk
900 struct value_history_chunk *next;
901 struct value *values[VALUE_HISTORY_CHUNK];
904 /* Chain of chunks now in use. */
906 static struct value_history_chunk *value_history_chain;
908 static int value_history_count; /* Abs number of last entry stored. */
911 /* List of all value objects currently allocated
912 (except for those released by calls to release_value)
913 This is so they can be freed after each command. */
915 static struct value *all_values;
917 /* Allocate a lazy value for type TYPE. Its actual content is
918 "lazily" allocated too: the content field of the return value is
919 NULL; it will be allocated when it is fetched from the target. */
922 allocate_value_lazy (struct type *type)
926 /* Call check_typedef on our type to make sure that, if TYPE
927 is a TYPE_CODE_TYPEDEF, its length is set to the length
928 of the target type instead of zero. However, we do not
929 replace the typedef type by the target type, because we want
930 to keep the typedef in order to be able to set the VAL's type
931 description correctly. */
932 check_typedef (type);
934 val = XCNEW (struct value);
935 val->contents = NULL;
936 val->next = all_values;
939 val->enclosing_type = type;
940 VALUE_LVAL (val) = not_lval;
941 val->location.address = 0;
946 val->embedded_offset = 0;
947 val->pointed_to_offset = 0;
949 val->initialized = 1; /* Default to initialized. */
951 /* Values start out on the all_values chain. */
952 val->reference_count = 1;
957 /* The maximum size, in bytes, that GDB will try to allocate for a value.
958 The initial value of 64k was not selected for any specific reason, it is
959 just a reasonable starting point. */
961 static int max_value_size = 65536; /* 64k bytes */
963 /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
964 LONGEST, otherwise GDB will not be able to parse integer values from the
965 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
966 be unable to parse "set max-value-size 2".
968 As we want a consistent GDB experience across hosts with different sizes
969 of LONGEST, this arbitrary minimum value was selected, so long as this
970 is bigger than LONGEST on all GDB supported hosts we're fine. */
972 #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
973 gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
975 /* Implement the "set max-value-size" command. */
978 set_max_value_size (char *args, int from_tty,
979 struct cmd_list_element *c)
981 gdb_assert (max_value_size == -1 || max_value_size >= 0);
983 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
985 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
986 error (_("max-value-size set too low, increasing to %d bytes"),
991 /* Implement the "show max-value-size" command. */
994 show_max_value_size (struct ui_file *file, int from_tty,
995 struct cmd_list_element *c, const char *value)
997 if (max_value_size == -1)
998 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
1000 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
1004 /* Called before we attempt to allocate or reallocate a buffer for the
1005 contents of a value. TYPE is the type of the value for which we are
1006 allocating the buffer. If the buffer is too large (based on the user
1007 controllable setting) then throw an error. If this function returns
1008 then we should attempt to allocate the buffer. */
1011 check_type_length_before_alloc (const struct type *type)
1013 unsigned int length = TYPE_LENGTH (type);
1015 if (max_value_size > -1 && length > max_value_size)
1017 if (TYPE_NAME (type) != NULL)
1018 error (_("value of type `%s' requires %u bytes, which is more "
1019 "than max-value-size"), TYPE_NAME (type), length);
1021 error (_("value requires %u bytes, which is more than "
1022 "max-value-size"), length);
1026 /* Allocate the contents of VAL if it has not been allocated yet. */
1029 allocate_value_contents (struct value *val)
1033 check_type_length_before_alloc (val->enclosing_type);
1035 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1039 /* Allocate a value and its contents for type TYPE. */
1042 allocate_value (struct type *type)
1044 struct value *val = allocate_value_lazy (type);
1046 allocate_value_contents (val);
1051 /* Allocate a value that has the correct length
1052 for COUNT repetitions of type TYPE. */
1055 allocate_repeat_value (struct type *type, int count)
1057 int low_bound = current_language->string_lower_bound; /* ??? */
1058 /* FIXME-type-allocation: need a way to free this type when we are
1060 struct type *array_type
1061 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
1063 return allocate_value (array_type);
1067 allocate_computed_value (struct type *type,
1068 const struct lval_funcs *funcs,
1071 struct value *v = allocate_value_lazy (type);
1073 VALUE_LVAL (v) = lval_computed;
1074 v->location.computed.funcs = funcs;
1075 v->location.computed.closure = closure;
1080 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1083 allocate_optimized_out_value (struct type *type)
1085 struct value *retval = allocate_value_lazy (type);
1087 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1088 set_value_lazy (retval, 0);
1092 /* Accessor methods. */
1095 value_next (const struct value *value)
1101 value_type (const struct value *value)
1106 deprecated_set_value_type (struct value *value, struct type *type)
1112 value_offset (const struct value *value)
1114 return value->offset;
1117 set_value_offset (struct value *value, LONGEST offset)
1119 value->offset = offset;
1123 value_bitpos (const struct value *value)
1125 return value->bitpos;
1128 set_value_bitpos (struct value *value, LONGEST bit)
1130 value->bitpos = bit;
1134 value_bitsize (const struct value *value)
1136 return value->bitsize;
1139 set_value_bitsize (struct value *value, LONGEST bit)
1141 value->bitsize = bit;
1145 value_parent (const struct value *value)
1147 return value->parent;
1153 set_value_parent (struct value *value, struct value *parent)
1155 struct value *old = value->parent;
1157 value->parent = parent;
1159 value_incref (parent);
1164 value_contents_raw (struct value *value)
1166 struct gdbarch *arch = get_value_arch (value);
1167 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1169 allocate_value_contents (value);
1170 return value->contents + value->embedded_offset * unit_size;
1174 value_contents_all_raw (struct value *value)
1176 allocate_value_contents (value);
1177 return value->contents;
1181 value_enclosing_type (const struct value *value)
1183 return value->enclosing_type;
1186 /* Look at value.h for description. */
1189 value_actual_type (struct value *value, int resolve_simple_types,
1190 int *real_type_found)
1192 struct value_print_options opts;
1193 struct type *result;
1195 get_user_print_options (&opts);
1197 if (real_type_found)
1198 *real_type_found = 0;
1199 result = value_type (value);
1200 if (opts.objectprint)
1202 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1203 fetch its rtti type. */
1204 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
1205 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1207 && !value_optimized_out (value))
1209 struct type *real_type;
1211 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1214 if (real_type_found)
1215 *real_type_found = 1;
1219 else if (resolve_simple_types)
1221 if (real_type_found)
1222 *real_type_found = 1;
1223 result = value_enclosing_type (value);
1231 error_value_optimized_out (void)
1233 error (_("value has been optimized out"));
1237 require_not_optimized_out (const struct value *value)
1239 if (!VEC_empty (range_s, value->optimized_out))
1241 if (value->lval == lval_register)
1242 error (_("register has not been saved in frame"));
1244 error_value_optimized_out ();
1249 require_available (const struct value *value)
1251 if (!VEC_empty (range_s, value->unavailable))
1252 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1256 value_contents_for_printing (struct value *value)
1259 value_fetch_lazy (value);
1260 return value->contents;
1264 value_contents_for_printing_const (const struct value *value)
1266 gdb_assert (!value->lazy);
1267 return value->contents;
1271 value_contents_all (struct value *value)
1273 const gdb_byte *result = value_contents_for_printing (value);
1274 require_not_optimized_out (value);
1275 require_available (value);
1279 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1280 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1283 ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1284 VEC (range_s) *src_range, int src_bit_offset,
1290 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1294 l = std::max (r->offset, (LONGEST) src_bit_offset);
1295 h = std::min (r->offset + r->length,
1296 (LONGEST) src_bit_offset + bit_length);
1299 insert_into_bit_range_vector (dst_range,
1300 dst_bit_offset + (l - src_bit_offset),
1305 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1306 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1309 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1310 const struct value *src, int src_bit_offset,
1313 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1314 src->unavailable, src_bit_offset,
1316 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1317 src->optimized_out, src_bit_offset,
1321 /* Copy LENGTH target addressable memory units of SRC value's (all) contents
1322 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1323 contents, starting at DST_OFFSET. If unavailable contents are
1324 being copied from SRC, the corresponding DST contents are marked
1325 unavailable accordingly. Neither DST nor SRC may be lazy
1328 It is assumed the contents of DST in the [DST_OFFSET,
1329 DST_OFFSET+LENGTH) range are wholly available. */
1332 value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1333 struct value *src, LONGEST src_offset, LONGEST length)
1335 LONGEST src_bit_offset, dst_bit_offset, bit_length;
1336 struct gdbarch *arch = get_value_arch (src);
1337 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1339 /* A lazy DST would make that this copy operation useless, since as
1340 soon as DST's contents were un-lazied (by a later value_contents
1341 call, say), the contents would be overwritten. A lazy SRC would
1342 mean we'd be copying garbage. */
1343 gdb_assert (!dst->lazy && !src->lazy);
1345 /* The overwritten DST range gets unavailability ORed in, not
1346 replaced. Make sure to remember to implement replacing if it
1347 turns out actually necessary. */
1348 gdb_assert (value_bytes_available (dst, dst_offset, length));
1349 gdb_assert (!value_bits_any_optimized_out (dst,
1350 TARGET_CHAR_BIT * dst_offset,
1351 TARGET_CHAR_BIT * length));
1353 /* Copy the data. */
1354 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1355 value_contents_all_raw (src) + src_offset * unit_size,
1356 length * unit_size);
1358 /* Copy the meta-data, adjusted. */
1359 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1360 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1361 bit_length = length * unit_size * HOST_CHAR_BIT;
1363 value_ranges_copy_adjusted (dst, dst_bit_offset,
1364 src, src_bit_offset,
1368 /* Copy LENGTH bytes of SRC value's (all) contents
1369 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1370 (all) contents, starting at DST_OFFSET. If unavailable contents
1371 are being copied from SRC, the corresponding DST contents are
1372 marked unavailable accordingly. DST must not be lazy. If SRC is
1373 lazy, it will be fetched now.
1375 It is assumed the contents of DST in the [DST_OFFSET,
1376 DST_OFFSET+LENGTH) range are wholly available. */
1379 value_contents_copy (struct value *dst, LONGEST dst_offset,
1380 struct value *src, LONGEST src_offset, LONGEST length)
1383 value_fetch_lazy (src);
1385 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1389 value_lazy (const struct value *value)
1395 set_value_lazy (struct value *value, int val)
1401 value_stack (const struct value *value)
1403 return value->stack;
1407 set_value_stack (struct value *value, int val)
1413 value_contents (struct value *value)
1415 const gdb_byte *result = value_contents_writeable (value);
1416 require_not_optimized_out (value);
1417 require_available (value);
1422 value_contents_writeable (struct value *value)
1425 value_fetch_lazy (value);
1426 return value_contents_raw (value);
1430 value_optimized_out (struct value *value)
1432 /* We can only know if a value is optimized out once we have tried to
1434 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
1438 value_fetch_lazy (value);
1440 CATCH (ex, RETURN_MASK_ERROR)
1442 /* Fall back to checking value->optimized_out. */
1447 return !VEC_empty (range_s, value->optimized_out);
1450 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1451 the following LENGTH bytes. */
1454 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1456 mark_value_bits_optimized_out (value,
1457 offset * TARGET_CHAR_BIT,
1458 length * TARGET_CHAR_BIT);
1464 mark_value_bits_optimized_out (struct value *value,
1465 LONGEST offset, LONGEST length)
1467 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1471 value_bits_synthetic_pointer (const struct value *value,
1472 LONGEST offset, LONGEST length)
1474 if (value->lval != lval_computed
1475 || !value->location.computed.funcs->check_synthetic_pointer)
1477 return value->location.computed.funcs->check_synthetic_pointer (value,
1483 value_embedded_offset (const struct value *value)
1485 return value->embedded_offset;
1489 set_value_embedded_offset (struct value *value, LONGEST val)
1491 value->embedded_offset = val;
1495 value_pointed_to_offset (const struct value *value)
1497 return value->pointed_to_offset;
1501 set_value_pointed_to_offset (struct value *value, LONGEST val)
1503 value->pointed_to_offset = val;
1506 const struct lval_funcs *
1507 value_computed_funcs (const struct value *v)
1509 gdb_assert (value_lval_const (v) == lval_computed);
1511 return v->location.computed.funcs;
1515 value_computed_closure (const struct value *v)
1517 gdb_assert (v->lval == lval_computed);
1519 return v->location.computed.closure;
1523 deprecated_value_lval_hack (struct value *value)
1525 return &value->lval;
1529 value_lval_const (const struct value *value)
1535 value_address (const struct value *value)
1537 if (value->lval != lval_memory)
1539 if (value->parent != NULL)
1540 return value_address (value->parent) + value->offset;
1541 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1543 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1544 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1547 return value->location.address + value->offset;
1551 value_raw_address (const struct value *value)
1553 if (value->lval != lval_memory)
1555 return value->location.address;
1559 set_value_address (struct value *value, CORE_ADDR addr)
1561 gdb_assert (value->lval == lval_memory);
1562 value->location.address = addr;
1565 struct internalvar **
1566 deprecated_value_internalvar_hack (struct value *value)
1568 return &value->location.internalvar;
1572 deprecated_value_next_frame_id_hack (struct value *value)
1574 gdb_assert (value->lval == lval_register);
1575 return &value->location.reg.next_frame_id;
1579 deprecated_value_regnum_hack (struct value *value)
1581 gdb_assert (value->lval == lval_register);
1582 return &value->location.reg.regnum;
1586 deprecated_value_modifiable (const struct value *value)
1588 return value->modifiable;
1591 /* Return a mark in the value chain. All values allocated after the
1592 mark is obtained (except for those released) are subject to being freed
1593 if a subsequent value_free_to_mark is passed the mark. */
1600 /* Take a reference to VAL. VAL will not be deallocated until all
1601 references are released. */
1604 value_incref (struct value *val)
1606 val->reference_count++;
1609 /* Release a reference to VAL, which was acquired with value_incref.
1610 This function is also called to deallocate values from the value
1614 value_free (struct value *val)
1618 gdb_assert (val->reference_count > 0);
1619 val->reference_count--;
1620 if (val->reference_count > 0)
1623 /* If there's an associated parent value, drop our reference to
1625 if (val->parent != NULL)
1626 value_free (val->parent);
1628 if (VALUE_LVAL (val) == lval_computed)
1630 const struct lval_funcs *funcs = val->location.computed.funcs;
1632 if (funcs->free_closure)
1633 funcs->free_closure (val);
1635 else if (VALUE_LVAL (val) == lval_xcallable)
1636 free_xmethod_worker (val->location.xm_worker);
1638 xfree (val->contents);
1639 VEC_free (range_s, val->unavailable);
1644 /* Free all values allocated since MARK was obtained by value_mark
1645 (except for those released). */
1647 value_free_to_mark (const struct value *mark)
1652 for (val = all_values; val && val != mark; val = next)
1661 /* Free all the values that have been allocated (except for those released).
1662 Call after each command, successful or not.
1663 In practice this is called before each command, which is sufficient. */
1666 free_all_values (void)
1671 for (val = all_values; val; val = next)
1681 /* Frees all the elements in a chain of values. */
1684 free_value_chain (struct value *v)
1690 next = value_next (v);
1695 /* Remove VAL from the chain all_values
1696 so it will not be freed automatically. */
1699 release_value (struct value *val)
1703 if (all_values == val)
1705 all_values = val->next;
1711 for (v = all_values; v; v = v->next)
1715 v->next = val->next;
1723 /* If the value is not already released, release it.
1724 If the value is already released, increment its reference count.
1725 That is, this function ensures that the value is released from the
1726 value chain and that the caller owns a reference to it. */
1729 release_value_or_incref (struct value *val)
1734 release_value (val);
1737 /* Release all values up to mark */
1739 value_release_to_mark (const struct value *mark)
1744 for (val = next = all_values; next; next = next->next)
1746 if (next->next == mark)
1748 all_values = next->next;
1758 /* Return a copy of the value ARG.
1759 It contains the same contents, for same memory address,
1760 but it's a different block of storage. */
1763 value_copy (struct value *arg)
1765 struct type *encl_type = value_enclosing_type (arg);
1768 if (value_lazy (arg))
1769 val = allocate_value_lazy (encl_type);
1771 val = allocate_value (encl_type);
1772 val->type = arg->type;
1773 VALUE_LVAL (val) = VALUE_LVAL (arg);
1774 val->location = arg->location;
1775 val->offset = arg->offset;
1776 val->bitpos = arg->bitpos;
1777 val->bitsize = arg->bitsize;
1778 val->lazy = arg->lazy;
1779 val->embedded_offset = value_embedded_offset (arg);
1780 val->pointed_to_offset = arg->pointed_to_offset;
1781 val->modifiable = arg->modifiable;
1782 if (!value_lazy (val))
1784 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1785 TYPE_LENGTH (value_enclosing_type (arg)));
1788 val->unavailable = VEC_copy (range_s, arg->unavailable);
1789 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
1790 set_value_parent (val, arg->parent);
1791 if (VALUE_LVAL (val) == lval_computed)
1793 const struct lval_funcs *funcs = val->location.computed.funcs;
1795 if (funcs->copy_closure)
1796 val->location.computed.closure = funcs->copy_closure (val);
1801 /* Return a "const" and/or "volatile" qualified version of the value V.
1802 If CNST is true, then the returned value will be qualified with
1804 if VOLTL is true, then the returned value will be qualified with
1808 make_cv_value (int cnst, int voltl, struct value *v)
1810 struct type *val_type = value_type (v);
1811 struct type *enclosing_type = value_enclosing_type (v);
1812 struct value *cv_val = value_copy (v);
1814 deprecated_set_value_type (cv_val,
1815 make_cv_type (cnst, voltl, val_type, NULL));
1816 set_value_enclosing_type (cv_val,
1817 make_cv_type (cnst, voltl, enclosing_type, NULL));
1822 /* Return a version of ARG that is non-lvalue. */
1825 value_non_lval (struct value *arg)
1827 if (VALUE_LVAL (arg) != not_lval)
1829 struct type *enc_type = value_enclosing_type (arg);
1830 struct value *val = allocate_value (enc_type);
1832 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1833 TYPE_LENGTH (enc_type));
1834 val->type = arg->type;
1835 set_value_embedded_offset (val, value_embedded_offset (arg));
1836 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1842 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1845 value_force_lval (struct value *v, CORE_ADDR addr)
1847 gdb_assert (VALUE_LVAL (v) == not_lval);
1849 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1850 v->lval = lval_memory;
1851 v->location.address = addr;
1855 set_value_component_location (struct value *component,
1856 const struct value *whole)
1860 gdb_assert (whole->lval != lval_xcallable);
1862 if (whole->lval == lval_internalvar)
1863 VALUE_LVAL (component) = lval_internalvar_component;
1865 VALUE_LVAL (component) = whole->lval;
1867 component->location = whole->location;
1868 if (whole->lval == lval_computed)
1870 const struct lval_funcs *funcs = whole->location.computed.funcs;
1872 if (funcs->copy_closure)
1873 component->location.computed.closure = funcs->copy_closure (whole);
1876 /* If type has a dynamic resolved location property
1877 update it's value address. */
1878 type = value_type (whole);
1879 if (NULL != TYPE_DATA_LOCATION (type)
1880 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1881 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1884 /* Access to the value history. */
1886 /* Record a new value in the value history.
1887 Returns the absolute history index of the entry. */
1890 record_latest_value (struct value *val)
1894 /* We don't want this value to have anything to do with the inferior anymore.
1895 In particular, "set $1 = 50" should not affect the variable from which
1896 the value was taken, and fast watchpoints should be able to assume that
1897 a value on the value history never changes. */
1898 if (value_lazy (val))
1899 value_fetch_lazy (val);
1900 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1901 from. This is a bit dubious, because then *&$1 does not just return $1
1902 but the current contents of that location. c'est la vie... */
1903 val->modifiable = 0;
1905 /* The value may have already been released, in which case we're adding a
1906 new reference for its entry in the history. That is why we call
1907 release_value_or_incref here instead of release_value. */
1908 release_value_or_incref (val);
1910 /* Here we treat value_history_count as origin-zero
1911 and applying to the value being stored now. */
1913 i = value_history_count % VALUE_HISTORY_CHUNK;
1916 struct value_history_chunk *newobj = XCNEW (struct value_history_chunk);
1918 newobj->next = value_history_chain;
1919 value_history_chain = newobj;
1922 value_history_chain->values[i] = val;
1924 /* Now we regard value_history_count as origin-one
1925 and applying to the value just stored. */
1927 return ++value_history_count;
1930 /* Return a copy of the value in the history with sequence number NUM. */
1933 access_value_history (int num)
1935 struct value_history_chunk *chunk;
1940 absnum += value_history_count;
1945 error (_("The history is empty."));
1947 error (_("There is only one value in the history."));
1949 error (_("History does not go back to $$%d."), -num);
1951 if (absnum > value_history_count)
1952 error (_("History has not yet reached $%d."), absnum);
1956 /* Now absnum is always absolute and origin zero. */
1958 chunk = value_history_chain;
1959 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1960 - absnum / VALUE_HISTORY_CHUNK;
1962 chunk = chunk->next;
1964 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1968 show_values (char *num_exp, int from_tty)
1976 /* "show values +" should print from the stored position.
1977 "show values <exp>" should print around value number <exp>. */
1978 if (num_exp[0] != '+' || num_exp[1] != '\0')
1979 num = parse_and_eval_long (num_exp) - 5;
1983 /* "show values" means print the last 10 values. */
1984 num = value_history_count - 9;
1990 for (i = num; i < num + 10 && i <= value_history_count; i++)
1992 struct value_print_options opts;
1994 val = access_value_history (i);
1995 printf_filtered (("$%d = "), i);
1996 get_user_print_options (&opts);
1997 value_print (val, gdb_stdout, &opts);
1998 printf_filtered (("\n"));
2001 /* The next "show values +" should start after what we just printed. */
2004 /* Hitting just return after this command should do the same thing as
2005 "show values +". If num_exp is null, this is unnecessary, since
2006 "show values +" is not useful after "show values". */
2007 if (from_tty && num_exp)
2014 enum internalvar_kind
2016 /* The internal variable is empty. */
2019 /* The value of the internal variable is provided directly as
2020 a GDB value object. */
2023 /* A fresh value is computed via a call-back routine on every
2024 access to the internal variable. */
2025 INTERNALVAR_MAKE_VALUE,
2027 /* The internal variable holds a GDB internal convenience function. */
2028 INTERNALVAR_FUNCTION,
2030 /* The variable holds an integer value. */
2031 INTERNALVAR_INTEGER,
2033 /* The variable holds a GDB-provided string. */
2037 union internalvar_data
2039 /* A value object used with INTERNALVAR_VALUE. */
2040 struct value *value;
2042 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
2045 /* The functions to call. */
2046 const struct internalvar_funcs *functions;
2048 /* The function's user-data. */
2052 /* The internal function used with INTERNALVAR_FUNCTION. */
2055 struct internal_function *function;
2056 /* True if this is the canonical name for the function. */
2060 /* An integer value used with INTERNALVAR_INTEGER. */
2063 /* If type is non-NULL, it will be used as the type to generate
2064 a value for this internal variable. If type is NULL, a default
2065 integer type for the architecture is used. */
2070 /* A string value used with INTERNALVAR_STRING. */
2074 /* Internal variables. These are variables within the debugger
2075 that hold values assigned by debugger commands.
2076 The user refers to them with a '$' prefix
2077 that does not appear in the variable names stored internally. */
2081 struct internalvar *next;
2084 /* We support various different kinds of content of an internal variable.
2085 enum internalvar_kind specifies the kind, and union internalvar_data
2086 provides the data associated with this particular kind. */
2088 enum internalvar_kind kind;
2090 union internalvar_data u;
2093 static struct internalvar *internalvars;
2095 /* If the variable does not already exist create it and give it the
2096 value given. If no value is given then the default is zero. */
2098 init_if_undefined_command (char* args, int from_tty)
2100 struct internalvar* intvar;
2102 /* Parse the expression - this is taken from set_command(). */
2103 expression_up expr = parse_expression (args);
2105 /* Validate the expression.
2106 Was the expression an assignment?
2107 Or even an expression at all? */
2108 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2109 error (_("Init-if-undefined requires an assignment expression."));
2111 /* Extract the variable from the parsed expression.
2112 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2113 if (expr->elts[1].opcode != OP_INTERNALVAR)
2114 error (_("The first parameter to init-if-undefined "
2115 "should be a GDB variable."));
2116 intvar = expr->elts[2].internalvar;
2118 /* Only evaluate the expression if the lvalue is void.
2119 This may still fail if the expresssion is invalid. */
2120 if (intvar->kind == INTERNALVAR_VOID)
2121 evaluate_expression (expr.get ());
2125 /* Look up an internal variable with name NAME. NAME should not
2126 normally include a dollar sign.
2128 If the specified internal variable does not exist,
2129 the return value is NULL. */
2131 struct internalvar *
2132 lookup_only_internalvar (const char *name)
2134 struct internalvar *var;
2136 for (var = internalvars; var; var = var->next)
2137 if (strcmp (var->name, name) == 0)
2143 /* Complete NAME by comparing it to the names of internal
2147 complete_internalvar (completion_tracker &tracker, const char *name)
2149 struct internalvar *var;
2152 len = strlen (name);
2154 for (var = internalvars; var; var = var->next)
2155 if (strncmp (var->name, name, len) == 0)
2157 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name));
2159 tracker.add_completion (std::move (copy));
2163 /* Create an internal variable with name NAME and with a void value.
2164 NAME should not normally include a dollar sign. */
2166 struct internalvar *
2167 create_internalvar (const char *name)
2169 struct internalvar *var = XNEW (struct internalvar);
2171 var->name = concat (name, (char *)NULL);
2172 var->kind = INTERNALVAR_VOID;
2173 var->next = internalvars;
2178 /* Create an internal variable with name NAME and register FUN as the
2179 function that value_of_internalvar uses to create a value whenever
2180 this variable is referenced. NAME should not normally include a
2181 dollar sign. DATA is passed uninterpreted to FUN when it is
2182 called. CLEANUP, if not NULL, is called when the internal variable
2183 is destroyed. It is passed DATA as its only argument. */
2185 struct internalvar *
2186 create_internalvar_type_lazy (const char *name,
2187 const struct internalvar_funcs *funcs,
2190 struct internalvar *var = create_internalvar (name);
2192 var->kind = INTERNALVAR_MAKE_VALUE;
2193 var->u.make_value.functions = funcs;
2194 var->u.make_value.data = data;
2198 /* See documentation in value.h. */
2201 compile_internalvar_to_ax (struct internalvar *var,
2202 struct agent_expr *expr,
2203 struct axs_value *value)
2205 if (var->kind != INTERNALVAR_MAKE_VALUE
2206 || var->u.make_value.functions->compile_to_ax == NULL)
2209 var->u.make_value.functions->compile_to_ax (var, expr, value,
2210 var->u.make_value.data);
2214 /* Look up an internal variable with name NAME. NAME should not
2215 normally include a dollar sign.
2217 If the specified internal variable does not exist,
2218 one is created, with a void value. */
2220 struct internalvar *
2221 lookup_internalvar (const char *name)
2223 struct internalvar *var;
2225 var = lookup_only_internalvar (name);
2229 return create_internalvar (name);
2232 /* Return current value of internal variable VAR. For variables that
2233 are not inherently typed, use a value type appropriate for GDBARCH. */
2236 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2239 struct trace_state_variable *tsv;
2241 /* If there is a trace state variable of the same name, assume that
2242 is what we really want to see. */
2243 tsv = find_trace_state_variable (var->name);
2246 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2248 if (tsv->value_known)
2249 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2252 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2258 case INTERNALVAR_VOID:
2259 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2262 case INTERNALVAR_FUNCTION:
2263 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2266 case INTERNALVAR_INTEGER:
2267 if (!var->u.integer.type)
2268 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2269 var->u.integer.val);
2271 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2274 case INTERNALVAR_STRING:
2275 val = value_cstring (var->u.string, strlen (var->u.string),
2276 builtin_type (gdbarch)->builtin_char);
2279 case INTERNALVAR_VALUE:
2280 val = value_copy (var->u.value);
2281 if (value_lazy (val))
2282 value_fetch_lazy (val);
2285 case INTERNALVAR_MAKE_VALUE:
2286 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2287 var->u.make_value.data);
2291 internal_error (__FILE__, __LINE__, _("bad kind"));
2294 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2295 on this value go back to affect the original internal variable.
2297 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2298 no underlying modifyable state in the internal variable.
2300 Likewise, if the variable's value is a computed lvalue, we want
2301 references to it to produce another computed lvalue, where
2302 references and assignments actually operate through the
2303 computed value's functions.
2305 This means that internal variables with computed values
2306 behave a little differently from other internal variables:
2307 assignments to them don't just replace the previous value
2308 altogether. At the moment, this seems like the behavior we
2311 if (var->kind != INTERNALVAR_MAKE_VALUE
2312 && val->lval != lval_computed)
2314 VALUE_LVAL (val) = lval_internalvar;
2315 VALUE_INTERNALVAR (val) = var;
2322 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2324 if (var->kind == INTERNALVAR_INTEGER)
2326 *result = var->u.integer.val;
2330 if (var->kind == INTERNALVAR_VALUE)
2332 struct type *type = check_typedef (value_type (var->u.value));
2334 if (TYPE_CODE (type) == TYPE_CODE_INT)
2336 *result = value_as_long (var->u.value);
2345 get_internalvar_function (struct internalvar *var,
2346 struct internal_function **result)
2350 case INTERNALVAR_FUNCTION:
2351 *result = var->u.fn.function;
2360 set_internalvar_component (struct internalvar *var,
2361 LONGEST offset, LONGEST bitpos,
2362 LONGEST bitsize, struct value *newval)
2365 struct gdbarch *arch;
2370 case INTERNALVAR_VALUE:
2371 addr = value_contents_writeable (var->u.value);
2372 arch = get_value_arch (var->u.value);
2373 unit_size = gdbarch_addressable_memory_unit_size (arch);
2376 modify_field (value_type (var->u.value), addr + offset,
2377 value_as_long (newval), bitpos, bitsize);
2379 memcpy (addr + offset * unit_size, value_contents (newval),
2380 TYPE_LENGTH (value_type (newval)));
2384 /* We can never get a component of any other kind. */
2385 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2390 set_internalvar (struct internalvar *var, struct value *val)
2392 enum internalvar_kind new_kind;
2393 union internalvar_data new_data = { 0 };
2395 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2396 error (_("Cannot overwrite convenience function %s"), var->name);
2398 /* Prepare new contents. */
2399 switch (TYPE_CODE (check_typedef (value_type (val))))
2401 case TYPE_CODE_VOID:
2402 new_kind = INTERNALVAR_VOID;
2405 case TYPE_CODE_INTERNAL_FUNCTION:
2406 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2407 new_kind = INTERNALVAR_FUNCTION;
2408 get_internalvar_function (VALUE_INTERNALVAR (val),
2409 &new_data.fn.function);
2410 /* Copies created here are never canonical. */
2414 new_kind = INTERNALVAR_VALUE;
2415 new_data.value = value_copy (val);
2416 new_data.value->modifiable = 1;
2418 /* Force the value to be fetched from the target now, to avoid problems
2419 later when this internalvar is referenced and the target is gone or
2421 if (value_lazy (new_data.value))
2422 value_fetch_lazy (new_data.value);
2424 /* Release the value from the value chain to prevent it from being
2425 deleted by free_all_values. From here on this function should not
2426 call error () until new_data is installed into the var->u to avoid
2428 release_value (new_data.value);
2430 /* Internal variables which are created from values with a dynamic
2431 location don't need the location property of the origin anymore.
2432 The resolved dynamic location is used prior then any other address
2433 when accessing the value.
2434 If we keep it, we would still refer to the origin value.
2435 Remove the location property in case it exist. */
2436 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2441 /* Clean up old contents. */
2442 clear_internalvar (var);
2445 var->kind = new_kind;
2447 /* End code which must not call error(). */
2451 set_internalvar_integer (struct internalvar *var, LONGEST l)
2453 /* Clean up old contents. */
2454 clear_internalvar (var);
2456 var->kind = INTERNALVAR_INTEGER;
2457 var->u.integer.type = NULL;
2458 var->u.integer.val = l;
2462 set_internalvar_string (struct internalvar *var, const char *string)
2464 /* Clean up old contents. */
2465 clear_internalvar (var);
2467 var->kind = INTERNALVAR_STRING;
2468 var->u.string = xstrdup (string);
2472 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2474 /* Clean up old contents. */
2475 clear_internalvar (var);
2477 var->kind = INTERNALVAR_FUNCTION;
2478 var->u.fn.function = f;
2479 var->u.fn.canonical = 1;
2480 /* Variables installed here are always the canonical version. */
2484 clear_internalvar (struct internalvar *var)
2486 /* Clean up old contents. */
2489 case INTERNALVAR_VALUE:
2490 value_free (var->u.value);
2493 case INTERNALVAR_STRING:
2494 xfree (var->u.string);
2497 case INTERNALVAR_MAKE_VALUE:
2498 if (var->u.make_value.functions->destroy != NULL)
2499 var->u.make_value.functions->destroy (var->u.make_value.data);
2506 /* Reset to void kind. */
2507 var->kind = INTERNALVAR_VOID;
2511 internalvar_name (const struct internalvar *var)
2516 static struct internal_function *
2517 create_internal_function (const char *name,
2518 internal_function_fn handler, void *cookie)
2520 struct internal_function *ifn = XNEW (struct internal_function);
2522 ifn->name = xstrdup (name);
2523 ifn->handler = handler;
2524 ifn->cookie = cookie;
2529 value_internal_function_name (struct value *val)
2531 struct internal_function *ifn;
2534 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2535 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2536 gdb_assert (result);
2542 call_internal_function (struct gdbarch *gdbarch,
2543 const struct language_defn *language,
2544 struct value *func, int argc, struct value **argv)
2546 struct internal_function *ifn;
2549 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2550 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2551 gdb_assert (result);
2553 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2556 /* The 'function' command. This does nothing -- it is just a
2557 placeholder to let "help function NAME" work. This is also used as
2558 the implementation of the sub-command that is created when
2559 registering an internal function. */
2561 function_command (const char *command, int from_tty)
2566 /* Clean up if an internal function's command is destroyed. */
2568 function_destroyer (struct cmd_list_element *self, void *ignore)
2570 xfree ((char *) self->name);
2571 xfree ((char *) self->doc);
2574 /* Add a new internal function. NAME is the name of the function; DOC
2575 is a documentation string describing the function. HANDLER is
2576 called when the function is invoked. COOKIE is an arbitrary
2577 pointer which is passed to HANDLER and is intended for "user
2580 add_internal_function (const char *name, const char *doc,
2581 internal_function_fn handler, void *cookie)
2583 struct cmd_list_element *cmd;
2584 struct internal_function *ifn;
2585 struct internalvar *var = lookup_internalvar (name);
2587 ifn = create_internal_function (name, handler, cookie);
2588 set_internalvar_function (var, ifn);
2590 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2592 cmd->destroyer = function_destroyer;
2595 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2596 prevent cycles / duplicates. */
2599 preserve_one_value (struct value *value, struct objfile *objfile,
2600 htab_t copied_types)
2602 if (TYPE_OBJFILE (value->type) == objfile)
2603 value->type = copy_type_recursive (objfile, value->type, copied_types);
2605 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2606 value->enclosing_type = copy_type_recursive (objfile,
2607 value->enclosing_type,
2611 /* Likewise for internal variable VAR. */
2614 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2615 htab_t copied_types)
2619 case INTERNALVAR_INTEGER:
2620 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2622 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2625 case INTERNALVAR_VALUE:
2626 preserve_one_value (var->u.value, objfile, copied_types);
2631 /* Update the internal variables and value history when OBJFILE is
2632 discarded; we must copy the types out of the objfile. New global types
2633 will be created for every convenience variable which currently points to
2634 this objfile's types, and the convenience variables will be adjusted to
2635 use the new global types. */
2638 preserve_values (struct objfile *objfile)
2640 htab_t copied_types;
2641 struct value_history_chunk *cur;
2642 struct internalvar *var;
2645 /* Create the hash table. We allocate on the objfile's obstack, since
2646 it is soon to be deleted. */
2647 copied_types = create_copied_types_hash (objfile);
2649 for (cur = value_history_chain; cur; cur = cur->next)
2650 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2652 preserve_one_value (cur->values[i], objfile, copied_types);
2654 for (var = internalvars; var; var = var->next)
2655 preserve_one_internalvar (var, objfile, copied_types);
2657 preserve_ext_lang_values (objfile, copied_types);
2659 htab_delete (copied_types);
2663 show_convenience (const char *ignore, int from_tty)
2665 struct gdbarch *gdbarch = get_current_arch ();
2666 struct internalvar *var;
2668 struct value_print_options opts;
2670 get_user_print_options (&opts);
2671 for (var = internalvars; var; var = var->next)
2678 printf_filtered (("$%s = "), var->name);
2684 val = value_of_internalvar (gdbarch, var);
2685 value_print (val, gdb_stdout, &opts);
2687 CATCH (ex, RETURN_MASK_ERROR)
2689 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2693 printf_filtered (("\n"));
2697 /* This text does not mention convenience functions on purpose.
2698 The user can't create them except via Python, and if Python support
2699 is installed this message will never be printed ($_streq will
2701 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2702 "Convenience variables have "
2703 "names starting with \"$\";\n"
2704 "use \"set\" as in \"set "
2705 "$foo = 5\" to define them.\n"));
2709 /* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2712 value_of_xmethod (struct xmethod_worker *worker)
2714 if (worker->value == NULL)
2718 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2719 v->lval = lval_xcallable;
2720 v->location.xm_worker = worker;
2725 return worker->value;
2728 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2731 result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2733 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2734 && method->lval == lval_xcallable && argc > 0);
2736 return get_xmethod_result_type (method->location.xm_worker,
2737 argv[0], argv + 1, argc - 1);
2740 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2743 call_xmethod (struct value *method, int argc, struct value **argv)
2745 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2746 && method->lval == lval_xcallable && argc > 0);
2748 return invoke_xmethod (method->location.xm_worker,
2749 argv[0], argv + 1, argc - 1);
2752 /* Extract a value as a C number (either long or double).
2753 Knows how to convert fixed values to double, or
2754 floating values to long.
2755 Does not deallocate the value. */
2758 value_as_long (struct value *val)
2760 /* This coerces arrays and functions, which is necessary (e.g.
2761 in disassemble_command). It also dereferences references, which
2762 I suspect is the most logical thing to do. */
2763 val = coerce_array (val);
2764 return unpack_long (value_type (val), value_contents (val));
2768 value_as_double (struct value *val)
2773 foo = unpack_double (value_type (val), value_contents (val), &inv);
2775 error (_("Invalid floating value found in program."));
2779 /* Extract a value as a C pointer. Does not deallocate the value.
2780 Note that val's type may not actually be a pointer; value_as_long
2781 handles all the cases. */
2783 value_as_address (struct value *val)
2785 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2787 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2788 whether we want this to be true eventually. */
2790 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2791 non-address (e.g. argument to "signal", "info break", etc.), or
2792 for pointers to char, in which the low bits *are* significant. */
2793 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2796 /* There are several targets (IA-64, PowerPC, and others) which
2797 don't represent pointers to functions as simply the address of
2798 the function's entry point. For example, on the IA-64, a
2799 function pointer points to a two-word descriptor, generated by
2800 the linker, which contains the function's entry point, and the
2801 value the IA-64 "global pointer" register should have --- to
2802 support position-independent code. The linker generates
2803 descriptors only for those functions whose addresses are taken.
2805 On such targets, it's difficult for GDB to convert an arbitrary
2806 function address into a function pointer; it has to either find
2807 an existing descriptor for that function, or call malloc and
2808 build its own. On some targets, it is impossible for GDB to
2809 build a descriptor at all: the descriptor must contain a jump
2810 instruction; data memory cannot be executed; and code memory
2813 Upon entry to this function, if VAL is a value of type `function'
2814 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2815 value_address (val) is the address of the function. This is what
2816 you'll get if you evaluate an expression like `main'. The call
2817 to COERCE_ARRAY below actually does all the usual unary
2818 conversions, which includes converting values of type `function'
2819 to `pointer to function'. This is the challenging conversion
2820 discussed above. Then, `unpack_long' will convert that pointer
2821 back into an address.
2823 So, suppose the user types `disassemble foo' on an architecture
2824 with a strange function pointer representation, on which GDB
2825 cannot build its own descriptors, and suppose further that `foo'
2826 has no linker-built descriptor. The address->pointer conversion
2827 will signal an error and prevent the command from running, even
2828 though the next step would have been to convert the pointer
2829 directly back into the same address.
2831 The following shortcut avoids this whole mess. If VAL is a
2832 function, just return its address directly. */
2833 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2834 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2835 return value_address (val);
2837 val = coerce_array (val);
2839 /* Some architectures (e.g. Harvard), map instruction and data
2840 addresses onto a single large unified address space. For
2841 instance: An architecture may consider a large integer in the
2842 range 0x10000000 .. 0x1000ffff to already represent a data
2843 addresses (hence not need a pointer to address conversion) while
2844 a small integer would still need to be converted integer to
2845 pointer to address. Just assume such architectures handle all
2846 integer conversions in a single function. */
2850 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2851 must admonish GDB hackers to make sure its behavior matches the
2852 compiler's, whenever possible.
2854 In general, I think GDB should evaluate expressions the same way
2855 the compiler does. When the user copies an expression out of
2856 their source code and hands it to a `print' command, they should
2857 get the same value the compiler would have computed. Any
2858 deviation from this rule can cause major confusion and annoyance,
2859 and needs to be justified carefully. In other words, GDB doesn't
2860 really have the freedom to do these conversions in clever and
2863 AndrewC pointed out that users aren't complaining about how GDB
2864 casts integers to pointers; they are complaining that they can't
2865 take an address from a disassembly listing and give it to `x/i'.
2866 This is certainly important.
2868 Adding an architecture method like integer_to_address() certainly
2869 makes it possible for GDB to "get it right" in all circumstances
2870 --- the target has complete control over how things get done, so
2871 people can Do The Right Thing for their target without breaking
2872 anyone else. The standard doesn't specify how integers get
2873 converted to pointers; usually, the ABI doesn't either, but
2874 ABI-specific code is a more reasonable place to handle it. */
2876 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2877 && !TYPE_IS_REFERENCE (value_type (val))
2878 && gdbarch_integer_to_address_p (gdbarch))
2879 return gdbarch_integer_to_address (gdbarch, value_type (val),
2880 value_contents (val));
2882 return unpack_long (value_type (val), value_contents (val));
2886 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2887 as a long, or as a double, assuming the raw data is described
2888 by type TYPE. Knows how to convert different sizes of values
2889 and can convert between fixed and floating point. We don't assume
2890 any alignment for the raw data. Return value is in host byte order.
2892 If you want functions and arrays to be coerced to pointers, and
2893 references to be dereferenced, call value_as_long() instead.
2895 C++: It is assumed that the front-end has taken care of
2896 all matters concerning pointers to members. A pointer
2897 to member which reaches here is considered to be equivalent
2898 to an INT (or some size). After all, it is only an offset. */
2901 unpack_long (struct type *type, const gdb_byte *valaddr)
2903 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2904 enum type_code code = TYPE_CODE (type);
2905 int len = TYPE_LENGTH (type);
2906 int nosign = TYPE_UNSIGNED (type);
2910 case TYPE_CODE_TYPEDEF:
2911 return unpack_long (check_typedef (type), valaddr);
2912 case TYPE_CODE_ENUM:
2913 case TYPE_CODE_FLAGS:
2914 case TYPE_CODE_BOOL:
2916 case TYPE_CODE_CHAR:
2917 case TYPE_CODE_RANGE:
2918 case TYPE_CODE_MEMBERPTR:
2920 return extract_unsigned_integer (valaddr, len, byte_order);
2922 return extract_signed_integer (valaddr, len, byte_order);
2925 case TYPE_CODE_DECFLOAT:
2926 return target_float_to_longest (valaddr, type);
2930 case TYPE_CODE_RVALUE_REF:
2931 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2932 whether we want this to be true eventually. */
2933 return extract_typed_address (valaddr, type);
2936 error (_("Value can't be converted to integer."));
2938 return 0; /* Placate lint. */
2941 /* Return a double value from the specified type and address.
2942 INVP points to an int which is set to 0 for valid value,
2943 1 for invalid value (bad float format). In either case,
2944 the returned double is OK to use. Argument is in target
2945 format, result is in host format. */
2948 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2950 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2951 enum type_code code;
2955 *invp = 0; /* Assume valid. */
2956 type = check_typedef (type);
2957 code = TYPE_CODE (type);
2958 len = TYPE_LENGTH (type);
2959 nosign = TYPE_UNSIGNED (type);
2960 if (code == TYPE_CODE_FLT)
2962 if (!target_float_is_valid (valaddr, type))
2968 return extract_typed_floating (valaddr, type);
2970 else if (code == TYPE_CODE_DECFLOAT)
2971 return decimal_to_doublest (valaddr, len, byte_order);
2974 /* Unsigned -- be sure we compensate for signed LONGEST. */
2975 return (ULONGEST) unpack_long (type, valaddr);
2979 /* Signed -- we are OK with unpack_long. */
2980 return unpack_long (type, valaddr);
2984 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2985 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2986 We don't assume any alignment for the raw data. Return value is in
2989 If you want functions and arrays to be coerced to pointers, and
2990 references to be dereferenced, call value_as_address() instead.
2992 C++: It is assumed that the front-end has taken care of
2993 all matters concerning pointers to members. A pointer
2994 to member which reaches here is considered to be equivalent
2995 to an INT (or some size). After all, it is only an offset. */
2998 unpack_pointer (struct type *type, const gdb_byte *valaddr)
3000 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
3001 whether we want this to be true eventually. */
3002 return unpack_long (type, valaddr);
3006 is_floating_value (struct value *val)
3008 struct type *type = check_typedef (value_type (val));
3010 if (is_floating_type (type))
3012 if (!target_float_is_valid (value_contents (val), type))
3013 error (_("Invalid floating value found in program."));
3021 /* Get the value of the FIELDNO'th field (which must be static) of
3025 value_static_field (struct type *type, int fieldno)
3027 struct value *retval;
3029 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
3031 case FIELD_LOC_KIND_PHYSADDR:
3032 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
3033 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
3035 case FIELD_LOC_KIND_PHYSNAME:
3037 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
3038 /* TYPE_FIELD_NAME (type, fieldno); */
3039 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
3041 if (sym.symbol == NULL)
3043 /* With some compilers, e.g. HP aCC, static data members are
3044 reported as non-debuggable symbols. */
3045 struct bound_minimal_symbol msym
3046 = lookup_minimal_symbol (phys_name, NULL, NULL);
3049 return allocate_optimized_out_value (type);
3052 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
3053 BMSYMBOL_VALUE_ADDRESS (msym));
3057 retval = value_of_variable (sym.symbol, sym.block);
3061 gdb_assert_not_reached ("unexpected field location kind");
3067 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
3068 You have to be careful here, since the size of the data area for the value
3069 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
3070 than the old enclosing type, you have to allocate more space for the
3074 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
3076 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
3078 check_type_length_before_alloc (new_encl_type);
3080 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
3083 val->enclosing_type = new_encl_type;
3086 /* Given a value ARG1 (offset by OFFSET bytes)
3087 of a struct or union type ARG_TYPE,
3088 extract and return the value of one of its (non-static) fields.
3089 FIELDNO says which field. */
3092 value_primitive_field (struct value *arg1, LONGEST offset,
3093 int fieldno, struct type *arg_type)
3097 struct gdbarch *arch = get_value_arch (arg1);
3098 int unit_size = gdbarch_addressable_memory_unit_size (arch);
3100 arg_type = check_typedef (arg_type);
3101 type = TYPE_FIELD_TYPE (arg_type, fieldno);
3103 /* Call check_typedef on our type to make sure that, if TYPE
3104 is a TYPE_CODE_TYPEDEF, its length is set to the length
3105 of the target type instead of zero. However, we do not
3106 replace the typedef type by the target type, because we want
3107 to keep the typedef in order to be able to print the type
3108 description correctly. */
3109 check_typedef (type);
3111 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
3113 /* Handle packed fields.
3115 Create a new value for the bitfield, with bitpos and bitsize
3116 set. If possible, arrange offset and bitpos so that we can
3117 do a single aligned read of the size of the containing type.
3118 Otherwise, adjust offset to the byte containing the first
3119 bit. Assume that the address, offset, and embedded offset
3120 are sufficiently aligned. */
3122 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3123 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
3125 v = allocate_value_lazy (type);
3126 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3127 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3128 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3129 v->bitpos = bitpos % container_bitsize;
3131 v->bitpos = bitpos % 8;
3132 v->offset = (value_embedded_offset (arg1)
3134 + (bitpos - v->bitpos) / 8);
3135 set_value_parent (v, arg1);
3136 if (!value_lazy (arg1))
3137 value_fetch_lazy (v);
3139 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3141 /* This field is actually a base subobject, so preserve the
3142 entire object's contents for later references to virtual
3146 /* Lazy register values with offsets are not supported. */
3147 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3148 value_fetch_lazy (arg1);
3150 /* We special case virtual inheritance here because this
3151 requires access to the contents, which we would rather avoid
3152 for references to ordinary fields of unavailable values. */
3153 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3154 boffset = baseclass_offset (arg_type, fieldno,
3155 value_contents (arg1),
3156 value_embedded_offset (arg1),
3157 value_address (arg1),
3160 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
3162 if (value_lazy (arg1))
3163 v = allocate_value_lazy (value_enclosing_type (arg1));
3166 v = allocate_value (value_enclosing_type (arg1));
3167 value_contents_copy_raw (v, 0, arg1, 0,
3168 TYPE_LENGTH (value_enclosing_type (arg1)));
3171 v->offset = value_offset (arg1);
3172 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
3174 else if (NULL != TYPE_DATA_LOCATION (type))
3176 /* Field is a dynamic data member. */
3178 gdb_assert (0 == offset);
3179 /* We expect an already resolved data location. */
3180 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3181 /* For dynamic data types defer memory allocation
3182 until we actual access the value. */
3183 v = allocate_value_lazy (type);
3187 /* Plain old data member */
3188 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3189 / (HOST_CHAR_BIT * unit_size));
3191 /* Lazy register values with offsets are not supported. */
3192 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3193 value_fetch_lazy (arg1);
3195 if (value_lazy (arg1))
3196 v = allocate_value_lazy (type);
3199 v = allocate_value (type);
3200 value_contents_copy_raw (v, value_embedded_offset (v),
3201 arg1, value_embedded_offset (arg1) + offset,
3202 type_length_units (type));
3204 v->offset = (value_offset (arg1) + offset
3205 + value_embedded_offset (arg1));
3207 set_value_component_location (v, arg1);
3211 /* Given a value ARG1 of a struct or union type,
3212 extract and return the value of one of its (non-static) fields.
3213 FIELDNO says which field. */
3216 value_field (struct value *arg1, int fieldno)
3218 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3221 /* Return a non-virtual function as a value.
3222 F is the list of member functions which contains the desired method.
3223 J is an index into F which provides the desired method.
3225 We only use the symbol for its address, so be happy with either a
3226 full symbol or a minimal symbol. */
3229 value_fn_field (struct value **arg1p, struct fn_field *f,
3230 int j, struct type *type,
3234 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3235 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3237 struct bound_minimal_symbol msym;
3239 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
3242 memset (&msym, 0, sizeof (msym));
3246 gdb_assert (sym == NULL);
3247 msym = lookup_bound_minimal_symbol (physname);
3248 if (msym.minsym == NULL)
3252 v = allocate_value (ftype);
3253 VALUE_LVAL (v) = lval_memory;
3256 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
3260 /* The minimal symbol might point to a function descriptor;
3261 resolve it to the actual code address instead. */
3262 struct objfile *objfile = msym.objfile;
3263 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3265 set_value_address (v,
3266 gdbarch_convert_from_func_ptr_addr
3267 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), ¤t_target));
3272 if (type != value_type (*arg1p))
3273 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3274 value_addr (*arg1p)));
3276 /* Move the `this' pointer according to the offset.
3277 VALUE_OFFSET (*arg1p) += offset; */
3285 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3286 VALADDR, and store the result in *RESULT.
3287 The bitfield starts at BITPOS bits and contains BITSIZE bits.
3289 Extracting bits depends on endianness of the machine. Compute the
3290 number of least significant bits to discard. For big endian machines,
3291 we compute the total number of bits in the anonymous object, subtract
3292 off the bit count from the MSB of the object to the MSB of the
3293 bitfield, then the size of the bitfield, which leaves the LSB discard
3294 count. For little endian machines, the discard count is simply the
3295 number of bits from the LSB of the anonymous object to the LSB of the
3298 If the field is signed, we also do sign extension. */
3301 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3302 LONGEST bitpos, LONGEST bitsize)
3304 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3309 LONGEST read_offset;
3311 /* Read the minimum number of bytes required; there may not be
3312 enough bytes to read an entire ULONGEST. */
3313 field_type = check_typedef (field_type);
3315 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3317 bytes_read = TYPE_LENGTH (field_type);
3319 read_offset = bitpos / 8;
3321 val = extract_unsigned_integer (valaddr + read_offset,
3322 bytes_read, byte_order);
3324 /* Extract bits. See comment above. */
3326 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3327 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3329 lsbcount = (bitpos % 8);
3332 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3333 If the field is signed, and is negative, then sign extend. */
3335 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3337 valmask = (((ULONGEST) 1) << bitsize) - 1;
3339 if (!TYPE_UNSIGNED (field_type))
3341 if (val & (valmask ^ (valmask >> 1)))
3351 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3352 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3353 ORIGINAL_VALUE, which must not be NULL. See
3354 unpack_value_bits_as_long for more details. */
3357 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3358 LONGEST embedded_offset, int fieldno,
3359 const struct value *val, LONGEST *result)
3361 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3362 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3363 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3366 gdb_assert (val != NULL);
3368 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3369 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3370 || !value_bits_available (val, bit_offset, bitsize))
3373 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3378 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3379 object at VALADDR. See unpack_bits_as_long for more details. */
3382 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3384 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3385 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3386 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3388 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3391 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3392 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3393 the contents in DEST_VAL, zero or sign extending if the type of
3394 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3395 VAL. If the VAL's contents required to extract the bitfield from
3396 are unavailable/optimized out, DEST_VAL is correspondingly
3397 marked unavailable/optimized out. */
3400 unpack_value_bitfield (struct value *dest_val,
3401 LONGEST bitpos, LONGEST bitsize,
3402 const gdb_byte *valaddr, LONGEST embedded_offset,
3403 const struct value *val)
3405 enum bfd_endian byte_order;
3408 struct type *field_type = value_type (dest_val);
3410 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3412 /* First, unpack and sign extend the bitfield as if it was wholly
3413 valid. Optimized out/unavailable bits are read as zero, but
3414 that's OK, as they'll end up marked below. If the VAL is
3415 wholly-invalid we may have skipped allocating its contents,
3416 though. See allocate_optimized_out_value. */
3417 if (valaddr != NULL)
3421 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3423 store_signed_integer (value_contents_raw (dest_val),
3424 TYPE_LENGTH (field_type), byte_order, num);
3427 /* Now copy the optimized out / unavailability ranges to the right
3429 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3430 if (byte_order == BFD_ENDIAN_BIG)
3431 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3434 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3435 val, src_bit_offset, bitsize);
3438 /* Return a new value with type TYPE, which is FIELDNO field of the
3439 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3440 of VAL. If the VAL's contents required to extract the bitfield
3441 from are unavailable/optimized out, the new value is
3442 correspondingly marked unavailable/optimized out. */
3445 value_field_bitfield (struct type *type, int fieldno,
3446 const gdb_byte *valaddr,
3447 LONGEST embedded_offset, const struct value *val)
3449 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3450 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3451 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
3453 unpack_value_bitfield (res_val, bitpos, bitsize,
3454 valaddr, embedded_offset, val);
3459 /* Modify the value of a bitfield. ADDR points to a block of memory in
3460 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3461 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3462 indicate which bits (in target bit order) comprise the bitfield.
3463 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3464 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3467 modify_field (struct type *type, gdb_byte *addr,
3468 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
3470 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3472 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3475 /* Normalize BITPOS. */
3479 /* If a negative fieldval fits in the field in question, chop
3480 off the sign extension bits. */
3481 if ((~fieldval & ~(mask >> 1)) == 0)
3484 /* Warn if value is too big to fit in the field in question. */
3485 if (0 != (fieldval & ~mask))
3487 /* FIXME: would like to include fieldval in the message, but
3488 we don't have a sprintf_longest. */
3489 warning (_("Value does not fit in %s bits."), plongest (bitsize));
3491 /* Truncate it, otherwise adjoining fields may be corrupted. */
3495 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3496 false valgrind reports. */
3498 bytesize = (bitpos + bitsize + 7) / 8;
3499 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3501 /* Shifting for bit field depends on endianness of the target machine. */
3502 if (gdbarch_bits_big_endian (get_type_arch (type)))
3503 bitpos = bytesize * 8 - bitpos - bitsize;
3505 oword &= ~(mask << bitpos);
3506 oword |= fieldval << bitpos;
3508 store_unsigned_integer (addr, bytesize, byte_order, oword);
3511 /* Pack NUM into BUF using a target format of TYPE. */
3514 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3516 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3519 type = check_typedef (type);
3520 len = TYPE_LENGTH (type);
3522 switch (TYPE_CODE (type))
3525 case TYPE_CODE_CHAR:
3526 case TYPE_CODE_ENUM:
3527 case TYPE_CODE_FLAGS:
3528 case TYPE_CODE_BOOL:
3529 case TYPE_CODE_RANGE:
3530 case TYPE_CODE_MEMBERPTR:
3531 store_signed_integer (buf, len, byte_order, num);
3535 case TYPE_CODE_RVALUE_REF:
3537 store_typed_address (buf, type, (CORE_ADDR) num);
3541 case TYPE_CODE_DECFLOAT:
3542 target_float_from_longest (buf, type, num);
3546 error (_("Unexpected type (%d) encountered for integer constant."),
3552 /* Pack NUM into BUF using a target format of TYPE. */
3555 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3558 enum bfd_endian byte_order;
3560 type = check_typedef (type);
3561 len = TYPE_LENGTH (type);
3562 byte_order = gdbarch_byte_order (get_type_arch (type));
3564 switch (TYPE_CODE (type))
3567 case TYPE_CODE_CHAR:
3568 case TYPE_CODE_ENUM:
3569 case TYPE_CODE_FLAGS:
3570 case TYPE_CODE_BOOL:
3571 case TYPE_CODE_RANGE:
3572 case TYPE_CODE_MEMBERPTR:
3573 store_unsigned_integer (buf, len, byte_order, num);
3577 case TYPE_CODE_RVALUE_REF:
3579 store_typed_address (buf, type, (CORE_ADDR) num);
3583 case TYPE_CODE_DECFLOAT:
3584 target_float_from_ulongest (buf, type, num);
3588 error (_("Unexpected type (%d) encountered "
3589 "for unsigned integer constant."),
3595 /* Convert C numbers into newly allocated values. */
3598 value_from_longest (struct type *type, LONGEST num)
3600 struct value *val = allocate_value (type);
3602 pack_long (value_contents_raw (val), type, num);
3607 /* Convert C unsigned numbers into newly allocated values. */
3610 value_from_ulongest (struct type *type, ULONGEST num)
3612 struct value *val = allocate_value (type);
3614 pack_unsigned_long (value_contents_raw (val), type, num);
3620 /* Create a value representing a pointer of type TYPE to the address
3624 value_from_pointer (struct type *type, CORE_ADDR addr)
3626 struct value *val = allocate_value (type);
3628 store_typed_address (value_contents_raw (val),
3629 check_typedef (type), addr);
3634 /* Create a value of type TYPE whose contents come from VALADDR, if it
3635 is non-null, and whose memory address (in the inferior) is
3636 ADDRESS. The type of the created value may differ from the passed
3637 type TYPE. Make sure to retrieve values new type after this call.
3638 Note that TYPE is not passed through resolve_dynamic_type; this is
3639 a special API intended for use only by Ada. */
3642 value_from_contents_and_address_unresolved (struct type *type,
3643 const gdb_byte *valaddr,
3648 if (valaddr == NULL)
3649 v = allocate_value_lazy (type);
3651 v = value_from_contents (type, valaddr);
3652 VALUE_LVAL (v) = lval_memory;
3653 set_value_address (v, address);
3657 /* Create a value of type TYPE whose contents come from VALADDR, if it
3658 is non-null, and whose memory address (in the inferior) is
3659 ADDRESS. The type of the created value may differ from the passed
3660 type TYPE. Make sure to retrieve values new type after this call. */
3663 value_from_contents_and_address (struct type *type,
3664 const gdb_byte *valaddr,
3667 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
3668 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3671 if (valaddr == NULL)
3672 v = allocate_value_lazy (resolved_type);
3674 v = value_from_contents (resolved_type, valaddr);
3675 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3676 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3677 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3678 VALUE_LVAL (v) = lval_memory;
3679 set_value_address (v, address);
3683 /* Create a value of type TYPE holding the contents CONTENTS.
3684 The new value is `not_lval'. */
3687 value_from_contents (struct type *type, const gdb_byte *contents)
3689 struct value *result;
3691 result = allocate_value (type);
3692 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3697 value_from_double (struct type *type, DOUBLEST num)
3699 struct value *val = allocate_value (type);
3700 struct type *base_type = check_typedef (type);
3701 enum type_code code = TYPE_CODE (base_type);
3703 if (code == TYPE_CODE_FLT)
3705 store_typed_floating (value_contents_raw (val), base_type, num);
3708 error (_("Unexpected type encountered for floating constant."));
3714 value_from_decfloat (struct type *type, const gdb_byte *dec)
3716 struct value *val = allocate_value (type);
3718 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3722 /* Extract a value from the history file. Input will be of the form
3723 $digits or $$digits. See block comment above 'write_dollar_variable'
3727 value_from_history_ref (const char *h, const char **endp)
3739 /* Find length of numeral string. */
3740 for (; isdigit (h[len]); len++)
3743 /* Make sure numeral string is not part of an identifier. */
3744 if (h[len] == '_' || isalpha (h[len]))
3747 /* Now collect the index value. */
3752 /* For some bizarre reason, "$$" is equivalent to "$$1",
3753 rather than to "$$0" as it ought to be! */
3761 index = -strtol (&h[2], &local_end, 10);
3769 /* "$" is equivalent to "$0". */
3777 index = strtol (&h[1], &local_end, 10);
3782 return access_value_history (index);
3785 /* Get the component value (offset by OFFSET bytes) of a struct or
3786 union WHOLE. Component's type is TYPE. */
3789 value_from_component (struct value *whole, struct type *type, LONGEST offset)
3793 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3794 v = allocate_value_lazy (type);
3797 v = allocate_value (type);
3798 value_contents_copy (v, value_embedded_offset (v),
3799 whole, value_embedded_offset (whole) + offset,
3800 type_length_units (type));
3802 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3803 set_value_component_location (v, whole);
3809 coerce_ref_if_computed (const struct value *arg)
3811 const struct lval_funcs *funcs;
3813 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
3816 if (value_lval_const (arg) != lval_computed)
3819 funcs = value_computed_funcs (arg);
3820 if (funcs->coerce_ref == NULL)
3823 return funcs->coerce_ref (arg);
3826 /* Look at value.h for description. */
3829 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3830 const struct type *original_type,
3831 const struct value *original_value)
3833 /* Re-adjust type. */
3834 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3836 /* Add embedding info. */
3837 set_value_enclosing_type (value, enc_type);
3838 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3840 /* We may be pointing to an object of some derived type. */
3841 return value_full_object (value, NULL, 0, 0, 0);
3845 coerce_ref (struct value *arg)
3847 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3848 struct value *retval;
3849 struct type *enc_type;
3851 retval = coerce_ref_if_computed (arg);
3855 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
3858 enc_type = check_typedef (value_enclosing_type (arg));
3859 enc_type = TYPE_TARGET_TYPE (enc_type);
3861 retval = value_at_lazy (enc_type,
3862 unpack_pointer (value_type (arg),
3863 value_contents (arg)));
3864 enc_type = value_type (retval);
3865 return readjust_indirect_value_type (retval, enc_type,
3866 value_type_arg_tmp, arg);
3870 coerce_array (struct value *arg)
3874 arg = coerce_ref (arg);
3875 type = check_typedef (value_type (arg));
3877 switch (TYPE_CODE (type))
3879 case TYPE_CODE_ARRAY:
3880 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3881 arg = value_coerce_array (arg);
3883 case TYPE_CODE_FUNC:
3884 arg = value_coerce_function (arg);
3891 /* Return the return value convention that will be used for the
3894 enum return_value_convention
3895 struct_return_convention (struct gdbarch *gdbarch,
3896 struct value *function, struct type *value_type)
3898 enum type_code code = TYPE_CODE (value_type);
3900 if (code == TYPE_CODE_ERROR)
3901 error (_("Function return type unknown."));
3903 /* Probe the architecture for the return-value convention. */
3904 return gdbarch_return_value (gdbarch, function, value_type,
3908 /* Return true if the function returning the specified type is using
3909 the convention of returning structures in memory (passing in the
3910 address as a hidden first parameter). */
3913 using_struct_return (struct gdbarch *gdbarch,
3914 struct value *function, struct type *value_type)
3916 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3917 /* A void return value is never in memory. See also corresponding
3918 code in "print_return_value". */
3921 return (struct_return_convention (gdbarch, function, value_type)
3922 != RETURN_VALUE_REGISTER_CONVENTION);
3925 /* Set the initialized field in a value struct. */
3928 set_value_initialized (struct value *val, int status)
3930 val->initialized = status;
3933 /* Return the initialized field in a value struct. */
3936 value_initialized (const struct value *val)
3938 return val->initialized;
3941 /* Load the actual content of a lazy value. Fetch the data from the
3942 user's process and clear the lazy flag to indicate that the data in
3943 the buffer is valid.
3945 If the value is zero-length, we avoid calling read_memory, which
3946 would abort. We mark the value as fetched anyway -- all 0 bytes of
3950 value_fetch_lazy (struct value *val)
3952 gdb_assert (value_lazy (val));
3953 allocate_value_contents (val);
3954 /* A value is either lazy, or fully fetched. The
3955 availability/validity is only established as we try to fetch a
3957 gdb_assert (VEC_empty (range_s, val->optimized_out));
3958 gdb_assert (VEC_empty (range_s, val->unavailable));
3959 if (value_bitsize (val))
3961 /* To read a lazy bitfield, read the entire enclosing value. This
3962 prevents reading the same block of (possibly volatile) memory once
3963 per bitfield. It would be even better to read only the containing
3964 word, but we have no way to record that just specific bits of a
3965 value have been fetched. */
3966 struct type *type = check_typedef (value_type (val));
3967 struct value *parent = value_parent (val);
3969 if (value_lazy (parent))
3970 value_fetch_lazy (parent);
3972 unpack_value_bitfield (val,
3973 value_bitpos (val), value_bitsize (val),
3974 value_contents_for_printing (parent),
3975 value_offset (val), parent);
3977 else if (VALUE_LVAL (val) == lval_memory)
3979 CORE_ADDR addr = value_address (val);
3980 struct type *type = check_typedef (value_enclosing_type (val));
3982 if (TYPE_LENGTH (type))
3983 read_value_memory (val, 0, value_stack (val),
3984 addr, value_contents_all_raw (val),
3985 type_length_units (type));
3987 else if (VALUE_LVAL (val) == lval_register)
3989 struct frame_info *next_frame;
3991 struct type *type = check_typedef (value_type (val));
3992 struct value *new_val = val, *mark = value_mark ();
3994 /* Offsets are not supported here; lazy register values must
3995 refer to the entire register. */
3996 gdb_assert (value_offset (val) == 0);
3998 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
4000 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
4002 next_frame = frame_find_by_id (next_frame_id);
4003 regnum = VALUE_REGNUM (new_val);
4005 gdb_assert (next_frame != NULL);
4007 /* Convertible register routines are used for multi-register
4008 values and for interpretation in different types
4009 (e.g. float or int from a double register). Lazy
4010 register values should have the register's natural type,
4011 so they do not apply. */
4012 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
4015 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
4016 Since a "->next" operation was performed when setting
4017 this field, we do not need to perform a "next" operation
4018 again when unwinding the register. That's why
4019 frame_unwind_register_value() is called here instead of
4020 get_frame_register_value(). */
4021 new_val = frame_unwind_register_value (next_frame, regnum);
4023 /* If we get another lazy lval_register value, it means the
4024 register is found by reading it from NEXT_FRAME's next frame.
4025 frame_unwind_register_value should never return a value with
4026 the frame id pointing to NEXT_FRAME. If it does, it means we
4027 either have two consecutive frames with the same frame id
4028 in the frame chain, or some code is trying to unwind
4029 behind get_prev_frame's back (e.g., a frame unwind
4030 sniffer trying to unwind), bypassing its validations. In
4031 any case, it should always be an internal error to end up
4032 in this situation. */
4033 if (VALUE_LVAL (new_val) == lval_register
4034 && value_lazy (new_val)
4035 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
4036 internal_error (__FILE__, __LINE__,
4037 _("infinite loop while fetching a register"));
4040 /* If it's still lazy (for instance, a saved register on the
4041 stack), fetch it. */
4042 if (value_lazy (new_val))
4043 value_fetch_lazy (new_val);
4045 /* Copy the contents and the unavailability/optimized-out
4046 meta-data from NEW_VAL to VAL. */
4047 set_value_lazy (val, 0);
4048 value_contents_copy (val, value_embedded_offset (val),
4049 new_val, value_embedded_offset (new_val),
4050 type_length_units (type));
4054 struct gdbarch *gdbarch;
4055 struct frame_info *frame;
4056 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
4057 so that the frame level will be shown correctly. */
4058 frame = frame_find_by_id (VALUE_FRAME_ID (val));
4059 regnum = VALUE_REGNUM (val);
4060 gdbarch = get_frame_arch (frame);
4062 fprintf_unfiltered (gdb_stdlog,
4063 "{ value_fetch_lazy "
4064 "(frame=%d,regnum=%d(%s),...) ",
4065 frame_relative_level (frame), regnum,
4066 user_reg_map_regnum_to_name (gdbarch, regnum));
4068 fprintf_unfiltered (gdb_stdlog, "->");
4069 if (value_optimized_out (new_val))
4071 fprintf_unfiltered (gdb_stdlog, " ");
4072 val_print_optimized_out (new_val, gdb_stdlog);
4077 const gdb_byte *buf = value_contents (new_val);
4079 if (VALUE_LVAL (new_val) == lval_register)
4080 fprintf_unfiltered (gdb_stdlog, " register=%d",
4081 VALUE_REGNUM (new_val));
4082 else if (VALUE_LVAL (new_val) == lval_memory)
4083 fprintf_unfiltered (gdb_stdlog, " address=%s",
4085 value_address (new_val)));
4087 fprintf_unfiltered (gdb_stdlog, " computed");
4089 fprintf_unfiltered (gdb_stdlog, " bytes=");
4090 fprintf_unfiltered (gdb_stdlog, "[");
4091 for (i = 0; i < register_size (gdbarch, regnum); i++)
4092 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
4093 fprintf_unfiltered (gdb_stdlog, "]");
4096 fprintf_unfiltered (gdb_stdlog, " }\n");
4099 /* Dispose of the intermediate values. This prevents
4100 watchpoints from trying to watch the saved frame pointer. */
4101 value_free_to_mark (mark);
4103 else if (VALUE_LVAL (val) == lval_computed
4104 && value_computed_funcs (val)->read != NULL)
4105 value_computed_funcs (val)->read (val);
4107 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4109 set_value_lazy (val, 0);
4112 /* Implementation of the convenience function $_isvoid. */
4114 static struct value *
4115 isvoid_internal_fn (struct gdbarch *gdbarch,
4116 const struct language_defn *language,
4117 void *cookie, int argc, struct value **argv)
4122 error (_("You must provide one argument for $_isvoid."));
4124 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
4126 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4130 _initialize_values (void)
4132 add_cmd ("convenience", no_class, show_convenience, _("\
4133 Debugger convenience (\"$foo\") variables and functions.\n\
4134 Convenience variables are created when you assign them values;\n\
4135 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
4137 A few convenience variables are given values automatically:\n\
4138 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
4139 \"$__\" holds the contents of the last address examined with \"x\"."
4142 Convenience functions are defined via the Python API."
4145 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
4147 add_cmd ("values", no_set_class, show_values, _("\
4148 Elements of value history around item number IDX (or last ten)."),
4151 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4152 Initialize a convenience variable if necessary.\n\
4153 init-if-undefined VARIABLE = EXPRESSION\n\
4154 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4155 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4156 VARIABLE is already initialized."));
4158 add_prefix_cmd ("function", no_class, function_command, _("\
4159 Placeholder command for showing help on convenience functions."),
4160 &functionlist, "function ", 0, &cmdlist);
4162 add_internal_function ("_isvoid", _("\
4163 Check whether an expression is void.\n\
4164 Usage: $_isvoid (expression)\n\
4165 Return 1 if the expression is void, zero otherwise."),
4166 isvoid_internal_fn, NULL);
4168 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4169 class_support, &max_value_size, _("\
4170 Set maximum sized value gdb will load from the inferior."), _("\
4171 Show maximum sized value gdb will load from the inferior."), _("\
4172 Use this to control the maximum size, in bytes, of a value that gdb\n\
4173 will load from the inferior. Setting this value to 'unlimited'\n\
4174 disables checking.\n\
4175 Setting this does not invalidate already allocated values, it only\n\
4176 prevents future values, larger than this size, from being allocated."),
4178 show_max_value_size,
4179 &setlist, &showlist);