1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "arch-utils.h"
33 #include "gdb_assert.h"
39 #include "cli/cli-decode.h"
40 #include "exceptions.h"
41 #include "extension.h"
43 #include "tracepoint.h"
45 #include "user-regs.h"
47 /* Prototypes for exported functions. */
49 void _initialize_values (void);
51 /* Definition of a user function. */
52 struct internal_function
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
60 internal_function_fn handler;
62 /* User data for the handler. */
66 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
70 /* Lowest offset in the range. */
73 /* Length of the range. */
77 typedef struct range range_s;
81 /* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
85 ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
95 /* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
101 range_lessthan (const range_s *r1, const range_s *r2)
103 return r1->offset < r2->offset;
106 /* Returns true if RANGES contains any range that overlaps [OFFSET,
110 ranges_contain (VEC(range_s) *ranges, int offset, int length)
115 what.offset = offset;
116 what.length = length;
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
128 |---| |---| |------| ... |--|
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
138 Then we need to check if the I range overlaps the I range itself.
143 |---| |---| |-------| ... |--|
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
159 if (i < VEC_length (range_s, ranges))
161 struct range *r = VEC_index (range_s, ranges, i);
163 if (ranges_overlap (r->offset, r->length, offset, length))
170 static struct cmd_list_element *functionlist;
172 /* Note that the fields in this structure are arranged to save a bit
177 /* Type of value; either not an lval, or one of the various
178 different possible kinds of lval. */
181 /* Is it modifiable? Only relevant if lval != not_lval. */
182 unsigned int modifiable : 1;
184 /* If zero, contents of this value are in the contents field. If
185 nonzero, contents are in inferior. If the lval field is lval_memory,
186 the contents are in inferior memory at location.address plus offset.
187 The lval field may also be lval_register.
189 WARNING: This field is used by the code which handles watchpoints
190 (see breakpoint.c) to decide whether a particular value can be
191 watched by hardware watchpoints. If the lazy flag is set for
192 some member of a value chain, it is assumed that this member of
193 the chain doesn't need to be watched as part of watching the
194 value itself. This is how GDB avoids watching the entire struct
195 or array when the user wants to watch a single struct member or
196 array element. If you ever change the way lazy flag is set and
197 reset, be sure to consider this use as well! */
198 unsigned int lazy : 1;
200 /* If nonzero, this is the value of a variable that does not
201 actually exist in the program. If nonzero, and LVAL is
202 lval_register, this is a register ($pc, $sp, etc., never a
203 program variable) that has not been saved in the frame. All
204 optimized-out values are treated pretty much the same, except
205 registers have a different string representation and related
207 unsigned int optimized_out : 1;
209 /* If value is a variable, is it initialized or not. */
210 unsigned int initialized : 1;
212 /* If value is from the stack. If this is set, read_stack will be
213 used instead of read_memory to enable extra caching. */
214 unsigned int stack : 1;
216 /* If the value has been released. */
217 unsigned int released : 1;
219 /* Register number if the value is from a register. */
222 /* Location of value (if lval). */
225 /* If lval == lval_memory, this is the address in the inferior.
226 If lval == lval_register, this is the byte offset into the
227 registers structure. */
230 /* Pointer to internal variable. */
231 struct internalvar *internalvar;
233 /* If lval == lval_computed, this is a set of function pointers
234 to use to access and describe the value, and a closure pointer
238 /* Functions to call. */
239 const struct lval_funcs *funcs;
241 /* Closure for those functions to use. */
246 /* Describes offset of a value within lval of a structure in bytes.
247 If lval == lval_memory, this is an offset to the address. If
248 lval == lval_register, this is a further offset from
249 location.address within the registers structure. Note also the
250 member embedded_offset below. */
253 /* Only used for bitfields; number of bits contained in them. */
256 /* Only used for bitfields; position of start of field. For
257 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
258 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
261 /* The number of references to this value. When a value is created,
262 the value chain holds a reference, so REFERENCE_COUNT is 1. If
263 release_value is called, this value is removed from the chain but
264 the caller of release_value now has a reference to this value.
265 The caller must arrange for a call to value_free later. */
268 /* Only used for bitfields; the containing value. This allows a
269 single read from the target when displaying multiple
271 struct value *parent;
273 /* Frame register value is relative to. This will be described in
274 the lval enum above as "lval_register". */
275 struct frame_id frame_id;
277 /* Type of the value. */
280 /* If a value represents a C++ object, then the `type' field gives
281 the object's compile-time type. If the object actually belongs
282 to some class derived from `type', perhaps with other base
283 classes and additional members, then `type' is just a subobject
284 of the real thing, and the full object is probably larger than
285 `type' would suggest.
287 If `type' is a dynamic class (i.e. one with a vtable), then GDB
288 can actually determine the object's run-time type by looking at
289 the run-time type information in the vtable. When this
290 information is available, we may elect to read in the entire
291 object, for several reasons:
293 - When printing the value, the user would probably rather see the
294 full object, not just the limited portion apparent from the
297 - If `type' has virtual base classes, then even printing `type'
298 alone may require reaching outside the `type' portion of the
299 object to wherever the virtual base class has been stored.
301 When we store the entire object, `enclosing_type' is the run-time
302 type -- the complete object -- and `embedded_offset' is the
303 offset of `type' within that larger type, in bytes. The
304 value_contents() macro takes `embedded_offset' into account, so
305 most GDB code continues to see the `type' portion of the value,
306 just as the inferior would.
308 If `type' is a pointer to an object, then `enclosing_type' is a
309 pointer to the object's run-time type, and `pointed_to_offset' is
310 the offset in bytes from the full object to the pointed-to object
311 -- that is, the value `embedded_offset' would have if we followed
312 the pointer and fetched the complete object. (I don't really see
313 the point. Why not just determine the run-time type when you
314 indirect, and avoid the special case? The contents don't matter
315 until you indirect anyway.)
317 If we're not doing anything fancy, `enclosing_type' is equal to
318 `type', and `embedded_offset' is zero, so everything works
320 struct type *enclosing_type;
322 int pointed_to_offset;
324 /* Values are stored in a chain, so that they can be deleted easily
325 over calls to the inferior. Values assigned to internal
326 variables, put into the value history or exposed to Python are
327 taken off this list. */
330 /* Actual contents of the value. Target byte-order. NULL or not
331 valid if lazy is nonzero. */
334 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
335 rather than available, since the common and default case is for a
336 value to be available. This is filled in at value read time. The
337 unavailable ranges are tracked in bits. */
338 VEC(range_s) *unavailable;
342 value_bits_available (const struct value *value, int offset, int length)
344 gdb_assert (!value->lazy);
346 return !ranges_contain (value->unavailable, offset, length);
350 value_bytes_available (const struct value *value, int offset, int length)
352 return value_bits_available (value,
353 offset * TARGET_CHAR_BIT,
354 length * TARGET_CHAR_BIT);
358 value_entirely_available (struct value *value)
360 /* We can only tell whether the whole value is available when we try
363 value_fetch_lazy (value);
365 if (VEC_empty (range_s, value->unavailable))
371 value_entirely_unavailable (struct value *value)
373 /* We can only tell whether the whole value is available when we try
376 value_fetch_lazy (value);
378 if (VEC_length (range_s, value->unavailable) == 1)
380 struct range *t = VEC_index (range_s, value->unavailable, 0);
383 && t->length == (TARGET_CHAR_BIT
384 * TYPE_LENGTH (value_enclosing_type (value))))
392 mark_value_bits_unavailable (struct value *value, int offset, int length)
397 /* Insert the range sorted. If there's overlap or the new range
398 would be contiguous with an existing range, merge. */
400 newr.offset = offset;
401 newr.length = length;
403 /* Do a binary search for the position the given range would be
404 inserted if we only considered the starting OFFSET of ranges.
405 Call that position I. Since we also have LENGTH to care for
406 (this is a range afterall), we need to check if the _previous_
407 range overlaps the I range. E.g., calling R the new range:
409 #1 - overlaps with previous
413 |---| |---| |------| ... |--|
418 In the case #1 above, the binary search would return `I=1',
419 meaning, this OFFSET should be inserted at position 1, and the
420 current position 1 should be pushed further (and become 2). But,
421 note that `0' overlaps with R, so we want to merge them.
423 A similar consideration needs to be taken if the new range would
424 be contiguous with the previous range:
426 #2 - contiguous with previous
430 |--| |---| |------| ... |--|
435 If there's no overlap with the previous range, as in:
437 #3 - not overlapping and not contiguous
441 |--| |---| |------| ... |--|
448 #4 - R is the range with lowest offset
452 |--| |---| |------| ... |--|
457 ... we just push the new range to I.
459 All the 4 cases above need to consider that the new range may
460 also overlap several of the ranges that follow, or that R may be
461 contiguous with the following range, and merge. E.g.,
463 #5 - overlapping following ranges
466 |------------------------|
467 |--| |---| |------| ... |--|
476 |--| |---| |------| ... |--|
483 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
486 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
488 if (ranges_overlap (bef->offset, bef->length, offset, length))
491 ULONGEST l = min (bef->offset, offset);
492 ULONGEST h = max (bef->offset + bef->length, offset + length);
498 else if (offset == bef->offset + bef->length)
501 bef->length += length;
507 VEC_safe_insert (range_s, value->unavailable, i, &newr);
513 VEC_safe_insert (range_s, value->unavailable, i, &newr);
516 /* Check whether the ranges following the one we've just added or
517 touched can be folded in (#5 above). */
518 if (i + 1 < VEC_length (range_s, value->unavailable))
525 /* Get the range we just touched. */
526 t = VEC_index (range_s, value->unavailable, i);
530 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
531 if (r->offset <= t->offset + t->length)
535 l = min (t->offset, r->offset);
536 h = max (t->offset + t->length, r->offset + r->length);
545 /* If we couldn't merge this one, we won't be able to
546 merge following ones either, since the ranges are
547 always sorted by OFFSET. */
552 VEC_block_remove (range_s, value->unavailable, next, removed);
557 mark_value_bytes_unavailable (struct value *value, int offset, int length)
559 mark_value_bits_unavailable (value,
560 offset * TARGET_CHAR_BIT,
561 length * TARGET_CHAR_BIT);
564 /* Find the first range in RANGES that overlaps the range defined by
565 OFFSET and LENGTH, starting at element POS in the RANGES vector,
566 Returns the index into RANGES where such overlapping range was
567 found, or -1 if none was found. */
570 find_first_range_overlap (VEC(range_s) *ranges, int pos,
571 int offset, int length)
576 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
577 if (ranges_overlap (r->offset, r->length, offset, length))
583 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
584 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
587 It must always be the case that:
588 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
590 It is assumed that memory can be accessed from:
591 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
593 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
594 / TARGET_CHAR_BIT) */
596 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
597 const gdb_byte *ptr2, size_t offset2_bits,
600 gdb_assert (offset1_bits % TARGET_CHAR_BIT
601 == offset2_bits % TARGET_CHAR_BIT);
603 if (offset1_bits % TARGET_CHAR_BIT != 0)
606 gdb_byte mask, b1, b2;
608 /* The offset from the base pointers PTR1 and PTR2 is not a complete
609 number of bytes. A number of bits up to either the next exact
610 byte boundary, or LENGTH_BITS (which ever is sooner) will be
612 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
613 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
614 mask = (1 << bits) - 1;
616 if (length_bits < bits)
618 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
622 /* Now load the two bytes and mask off the bits we care about. */
623 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
624 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
629 /* Now update the length and offsets to take account of the bits
630 we've just compared. */
632 offset1_bits += bits;
633 offset2_bits += bits;
636 if (length_bits % TARGET_CHAR_BIT != 0)
640 gdb_byte mask, b1, b2;
642 /* The length is not an exact number of bytes. After the previous
643 IF.. block then the offsets are byte aligned, or the
644 length is zero (in which case this code is not reached). Compare
645 a number of bits at the end of the region, starting from an exact
647 bits = length_bits % TARGET_CHAR_BIT;
648 o1 = offset1_bits + length_bits - bits;
649 o2 = offset2_bits + length_bits - bits;
651 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
652 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
654 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
655 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
657 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
658 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
668 /* We've now taken care of any stray "bits" at the start, or end of
669 the region to compare, the remainder can be covered with a simple
671 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
672 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
673 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
675 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
676 ptr2 + offset2_bits / TARGET_CHAR_BIT,
677 length_bits / TARGET_CHAR_BIT);
680 /* Length is zero, regions match. */
684 /* Helper function for value_available_contents_eq. The only difference is
685 that this function is bit rather than byte based.
687 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits with
688 LENGTH bits of VAL2's contents starting at OFFSET2 bits. Return true
689 if the available bits match. */
692 value_available_contents_bits_eq (const struct value *val1, int offset1,
693 const struct value *val2, int offset2,
696 int idx1 = 0, idx2 = 0;
698 /* See function description in value.h. */
699 gdb_assert (!val1->lazy && !val2->lazy);
707 idx1 = find_first_range_overlap (val1->unavailable, idx1,
709 idx2 = find_first_range_overlap (val2->unavailable, idx2,
712 /* The usual case is for both values to be completely available. */
713 if (idx1 == -1 && idx2 == -1)
714 return (memcmp_with_bit_offsets (val1->contents, offset1,
715 val2->contents, offset2,
717 /* The contents only match equal if the available set matches as
719 else if (idx1 == -1 || idx2 == -1)
722 gdb_assert (idx1 != -1 && idx2 != -1);
724 r1 = VEC_index (range_s, val1->unavailable, idx1);
725 r2 = VEC_index (range_s, val2->unavailable, idx2);
727 /* Get the unavailable windows intersected by the incoming
728 ranges. The first and last ranges that overlap the argument
729 range may be wider than said incoming arguments ranges. */
730 l1 = max (offset1, r1->offset);
731 h1 = min (offset1 + length, r1->offset + r1->length);
733 l2 = max (offset2, r2->offset);
734 h2 = min (offset2 + length, r2->offset + r2->length);
736 /* Make them relative to the respective start offsets, so we can
737 compare them for equality. */
744 /* Different availability, no match. */
745 if (l1 != l2 || h1 != h2)
748 /* Compare the _available_ contents. */
749 if (memcmp_with_bit_offsets (val1->contents, offset1,
750 val2->contents, offset2, l1) != 0)
762 value_available_contents_eq (const struct value *val1, int offset1,
763 const struct value *val2, int offset2,
766 return value_available_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
767 val2, offset2 * TARGET_CHAR_BIT,
768 length * TARGET_CHAR_BIT);
771 /* Prototypes for local functions. */
773 static void show_values (char *, int);
775 static void show_convenience (char *, int);
778 /* The value-history records all the values printed
779 by print commands during this session. Each chunk
780 records 60 consecutive values. The first chunk on
781 the chain records the most recent values.
782 The total number of values is in value_history_count. */
784 #define VALUE_HISTORY_CHUNK 60
786 struct value_history_chunk
788 struct value_history_chunk *next;
789 struct value *values[VALUE_HISTORY_CHUNK];
792 /* Chain of chunks now in use. */
794 static struct value_history_chunk *value_history_chain;
796 static int value_history_count; /* Abs number of last entry stored. */
799 /* List of all value objects currently allocated
800 (except for those released by calls to release_value)
801 This is so they can be freed after each command. */
803 static struct value *all_values;
805 /* Allocate a lazy value for type TYPE. Its actual content is
806 "lazily" allocated too: the content field of the return value is
807 NULL; it will be allocated when it is fetched from the target. */
810 allocate_value_lazy (struct type *type)
814 /* Call check_typedef on our type to make sure that, if TYPE
815 is a TYPE_CODE_TYPEDEF, its length is set to the length
816 of the target type instead of zero. However, we do not
817 replace the typedef type by the target type, because we want
818 to keep the typedef in order to be able to set the VAL's type
819 description correctly. */
820 check_typedef (type);
822 val = (struct value *) xzalloc (sizeof (struct value));
823 val->contents = NULL;
824 val->next = all_values;
827 val->enclosing_type = type;
828 VALUE_LVAL (val) = not_lval;
829 val->location.address = 0;
830 VALUE_FRAME_ID (val) = null_frame_id;
834 VALUE_REGNUM (val) = -1;
836 val->optimized_out = 0;
837 val->embedded_offset = 0;
838 val->pointed_to_offset = 0;
840 val->initialized = 1; /* Default to initialized. */
842 /* Values start out on the all_values chain. */
843 val->reference_count = 1;
848 /* Allocate the contents of VAL if it has not been allocated yet. */
851 allocate_value_contents (struct value *val)
854 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
857 /* Allocate a value and its contents for type TYPE. */
860 allocate_value (struct type *type)
862 struct value *val = allocate_value_lazy (type);
864 allocate_value_contents (val);
869 /* Allocate a value that has the correct length
870 for COUNT repetitions of type TYPE. */
873 allocate_repeat_value (struct type *type, int count)
875 int low_bound = current_language->string_lower_bound; /* ??? */
876 /* FIXME-type-allocation: need a way to free this type when we are
878 struct type *array_type
879 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
881 return allocate_value (array_type);
885 allocate_computed_value (struct type *type,
886 const struct lval_funcs *funcs,
889 struct value *v = allocate_value_lazy (type);
891 VALUE_LVAL (v) = lval_computed;
892 v->location.computed.funcs = funcs;
893 v->location.computed.closure = closure;
898 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
901 allocate_optimized_out_value (struct type *type)
903 struct value *retval = allocate_value_lazy (type);
905 set_value_optimized_out (retval, 1);
906 set_value_lazy (retval, 0);
910 /* Accessor methods. */
913 value_next (struct value *value)
919 value_type (const struct value *value)
924 deprecated_set_value_type (struct value *value, struct type *type)
930 value_offset (const struct value *value)
932 return value->offset;
935 set_value_offset (struct value *value, int offset)
937 value->offset = offset;
941 value_bitpos (const struct value *value)
943 return value->bitpos;
946 set_value_bitpos (struct value *value, int bit)
952 value_bitsize (const struct value *value)
954 return value->bitsize;
957 set_value_bitsize (struct value *value, int bit)
959 value->bitsize = bit;
963 value_parent (struct value *value)
965 return value->parent;
971 set_value_parent (struct value *value, struct value *parent)
973 struct value *old = value->parent;
975 value->parent = parent;
977 value_incref (parent);
982 value_contents_raw (struct value *value)
984 allocate_value_contents (value);
985 return value->contents + value->embedded_offset;
989 value_contents_all_raw (struct value *value)
991 allocate_value_contents (value);
992 return value->contents;
996 value_enclosing_type (struct value *value)
998 return value->enclosing_type;
1001 /* Look at value.h for description. */
1004 value_actual_type (struct value *value, int resolve_simple_types,
1005 int *real_type_found)
1007 struct value_print_options opts;
1008 struct type *result;
1010 get_user_print_options (&opts);
1012 if (real_type_found)
1013 *real_type_found = 0;
1014 result = value_type (value);
1015 if (opts.objectprint)
1017 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1018 fetch its rtti type. */
1019 if ((TYPE_CODE (result) == TYPE_CODE_PTR
1020 || TYPE_CODE (result) == TYPE_CODE_REF)
1021 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1022 == TYPE_CODE_STRUCT)
1024 struct type *real_type;
1026 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1029 if (real_type_found)
1030 *real_type_found = 1;
1034 else if (resolve_simple_types)
1036 if (real_type_found)
1037 *real_type_found = 1;
1038 result = value_enclosing_type (value);
1046 error_value_optimized_out (void)
1048 error (_("value has been optimized out"));
1052 require_not_optimized_out (const struct value *value)
1054 if (value->optimized_out)
1056 if (value->lval == lval_register)
1057 error (_("register has not been saved in frame"));
1059 error_value_optimized_out ();
1064 require_available (const struct value *value)
1066 if (!VEC_empty (range_s, value->unavailable))
1067 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1071 value_contents_for_printing (struct value *value)
1074 value_fetch_lazy (value);
1075 return value->contents;
1079 value_contents_for_printing_const (const struct value *value)
1081 gdb_assert (!value->lazy);
1082 return value->contents;
1086 value_contents_all (struct value *value)
1088 const gdb_byte *result = value_contents_for_printing (value);
1089 require_not_optimized_out (value);
1090 require_available (value);
1094 /* Copy LENGTH bytes of SRC value's (all) contents
1095 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1096 contents, starting at DST_OFFSET. If unavailable contents are
1097 being copied from SRC, the corresponding DST contents are marked
1098 unavailable accordingly. Neither DST nor SRC may be lazy
1101 It is assumed the contents of DST in the [DST_OFFSET,
1102 DST_OFFSET+LENGTH) range are wholly available. */
1105 value_contents_copy_raw (struct value *dst, int dst_offset,
1106 struct value *src, int src_offset, int length)
1110 int src_bit_offset, dst_bit_offset, bit_length;
1112 /* A lazy DST would make that this copy operation useless, since as
1113 soon as DST's contents were un-lazied (by a later value_contents
1114 call, say), the contents would be overwritten. A lazy SRC would
1115 mean we'd be copying garbage. */
1116 gdb_assert (!dst->lazy && !src->lazy);
1118 /* The overwritten DST range gets unavailability ORed in, not
1119 replaced. Make sure to remember to implement replacing if it
1120 turns out actually necessary. */
1121 gdb_assert (value_bytes_available (dst, dst_offset, length));
1123 /* Copy the data. */
1124 memcpy (value_contents_all_raw (dst) + dst_offset,
1125 value_contents_all_raw (src) + src_offset,
1128 /* Copy the meta-data, adjusted. */
1129 src_bit_offset = src_offset * TARGET_CHAR_BIT;
1130 dst_bit_offset = dst_offset * TARGET_CHAR_BIT;
1131 bit_length = length * TARGET_CHAR_BIT;
1132 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
1136 l = max (r->offset, src_bit_offset);
1137 h = min (r->offset + r->length, src_bit_offset + bit_length);
1140 mark_value_bits_unavailable (dst,
1141 dst_bit_offset + (l - src_bit_offset),
1146 /* Copy LENGTH bytes of SRC value's (all) contents
1147 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1148 (all) contents, starting at DST_OFFSET. If unavailable contents
1149 are being copied from SRC, the corresponding DST contents are
1150 marked unavailable accordingly. DST must not be lazy. If SRC is
1151 lazy, it will be fetched now. If SRC is not valid (is optimized
1152 out), an error is thrown.
1154 It is assumed the contents of DST in the [DST_OFFSET,
1155 DST_OFFSET+LENGTH) range are wholly available. */
1158 value_contents_copy (struct value *dst, int dst_offset,
1159 struct value *src, int src_offset, int length)
1161 require_not_optimized_out (src);
1164 value_fetch_lazy (src);
1166 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1170 value_lazy (struct value *value)
1176 set_value_lazy (struct value *value, int val)
1182 value_stack (struct value *value)
1184 return value->stack;
1188 set_value_stack (struct value *value, int val)
1194 value_contents (struct value *value)
1196 const gdb_byte *result = value_contents_writeable (value);
1197 require_not_optimized_out (value);
1198 require_available (value);
1203 value_contents_writeable (struct value *value)
1206 value_fetch_lazy (value);
1207 return value_contents_raw (value);
1210 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1211 this function is different from value_equal; in C the operator ==
1212 can return 0 even if the two values being compared are equal. */
1215 value_contents_equal (struct value *val1, struct value *val2)
1220 type1 = check_typedef (value_type (val1));
1221 type2 = check_typedef (value_type (val2));
1222 if (TYPE_LENGTH (type1) != TYPE_LENGTH (type2))
1225 return (memcmp (value_contents (val1), value_contents (val2),
1226 TYPE_LENGTH (type1)) == 0);
1230 value_optimized_out (struct value *value)
1232 /* We can only know if a value is optimized out once we have tried to
1234 if (!value->optimized_out && value->lazy)
1235 value_fetch_lazy (value);
1237 return value->optimized_out;
1241 value_optimized_out_const (const struct value *value)
1243 return value->optimized_out;
1247 set_value_optimized_out (struct value *value, int val)
1249 value->optimized_out = val;
1253 value_entirely_optimized_out (const struct value *value)
1255 if (!value->optimized_out)
1257 if (value->lval != lval_computed
1258 || !value->location.computed.funcs->check_any_valid)
1260 return !value->location.computed.funcs->check_any_valid (value);
1264 value_bits_valid (const struct value *value, int offset, int length)
1266 if (!value->optimized_out)
1268 if (value->lval != lval_computed
1269 || !value->location.computed.funcs->check_validity)
1271 return value->location.computed.funcs->check_validity (value, offset,
1276 value_bits_synthetic_pointer (const struct value *value,
1277 int offset, int length)
1279 if (value->lval != lval_computed
1280 || !value->location.computed.funcs->check_synthetic_pointer)
1282 return value->location.computed.funcs->check_synthetic_pointer (value,
1288 value_embedded_offset (struct value *value)
1290 return value->embedded_offset;
1294 set_value_embedded_offset (struct value *value, int val)
1296 value->embedded_offset = val;
1300 value_pointed_to_offset (struct value *value)
1302 return value->pointed_to_offset;
1306 set_value_pointed_to_offset (struct value *value, int val)
1308 value->pointed_to_offset = val;
1311 const struct lval_funcs *
1312 value_computed_funcs (const struct value *v)
1314 gdb_assert (value_lval_const (v) == lval_computed);
1316 return v->location.computed.funcs;
1320 value_computed_closure (const struct value *v)
1322 gdb_assert (v->lval == lval_computed);
1324 return v->location.computed.closure;
1328 deprecated_value_lval_hack (struct value *value)
1330 return &value->lval;
1334 value_lval_const (const struct value *value)
1340 value_address (const struct value *value)
1342 if (value->lval == lval_internalvar
1343 || value->lval == lval_internalvar_component)
1345 if (value->parent != NULL)
1346 return value_address (value->parent) + value->offset;
1348 return value->location.address + value->offset;
1352 value_raw_address (struct value *value)
1354 if (value->lval == lval_internalvar
1355 || value->lval == lval_internalvar_component)
1357 return value->location.address;
1361 set_value_address (struct value *value, CORE_ADDR addr)
1363 gdb_assert (value->lval != lval_internalvar
1364 && value->lval != lval_internalvar_component);
1365 value->location.address = addr;
1368 struct internalvar **
1369 deprecated_value_internalvar_hack (struct value *value)
1371 return &value->location.internalvar;
1375 deprecated_value_frame_id_hack (struct value *value)
1377 return &value->frame_id;
1381 deprecated_value_regnum_hack (struct value *value)
1383 return &value->regnum;
1387 deprecated_value_modifiable (struct value *value)
1389 return value->modifiable;
1392 /* Return a mark in the value chain. All values allocated after the
1393 mark is obtained (except for those released) are subject to being freed
1394 if a subsequent value_free_to_mark is passed the mark. */
1401 /* Take a reference to VAL. VAL will not be deallocated until all
1402 references are released. */
1405 value_incref (struct value *val)
1407 val->reference_count++;
1410 /* Release a reference to VAL, which was acquired with value_incref.
1411 This function is also called to deallocate values from the value
1415 value_free (struct value *val)
1419 gdb_assert (val->reference_count > 0);
1420 val->reference_count--;
1421 if (val->reference_count > 0)
1424 /* If there's an associated parent value, drop our reference to
1426 if (val->parent != NULL)
1427 value_free (val->parent);
1429 if (VALUE_LVAL (val) == lval_computed)
1431 const struct lval_funcs *funcs = val->location.computed.funcs;
1433 if (funcs->free_closure)
1434 funcs->free_closure (val);
1437 xfree (val->contents);
1438 VEC_free (range_s, val->unavailable);
1443 /* Free all values allocated since MARK was obtained by value_mark
1444 (except for those released). */
1446 value_free_to_mark (struct value *mark)
1451 for (val = all_values; val && val != mark; val = next)
1460 /* Free all the values that have been allocated (except for those released).
1461 Call after each command, successful or not.
1462 In practice this is called before each command, which is sufficient. */
1465 free_all_values (void)
1470 for (val = all_values; val; val = next)
1480 /* Frees all the elements in a chain of values. */
1483 free_value_chain (struct value *v)
1489 next = value_next (v);
1494 /* Remove VAL from the chain all_values
1495 so it will not be freed automatically. */
1498 release_value (struct value *val)
1502 if (all_values == val)
1504 all_values = val->next;
1510 for (v = all_values; v; v = v->next)
1514 v->next = val->next;
1522 /* If the value is not already released, release it.
1523 If the value is already released, increment its reference count.
1524 That is, this function ensures that the value is released from the
1525 value chain and that the caller owns a reference to it. */
1528 release_value_or_incref (struct value *val)
1533 release_value (val);
1536 /* Release all values up to mark */
1538 value_release_to_mark (struct value *mark)
1543 for (val = next = all_values; next; next = next->next)
1545 if (next->next == mark)
1547 all_values = next->next;
1557 /* Return a copy of the value ARG.
1558 It contains the same contents, for same memory address,
1559 but it's a different block of storage. */
1562 value_copy (struct value *arg)
1564 struct type *encl_type = value_enclosing_type (arg);
1567 if (value_lazy (arg))
1568 val = allocate_value_lazy (encl_type);
1570 val = allocate_value (encl_type);
1571 val->type = arg->type;
1572 VALUE_LVAL (val) = VALUE_LVAL (arg);
1573 val->location = arg->location;
1574 val->offset = arg->offset;
1575 val->bitpos = arg->bitpos;
1576 val->bitsize = arg->bitsize;
1577 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1578 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1579 val->lazy = arg->lazy;
1580 val->optimized_out = arg->optimized_out;
1581 val->embedded_offset = value_embedded_offset (arg);
1582 val->pointed_to_offset = arg->pointed_to_offset;
1583 val->modifiable = arg->modifiable;
1584 if (!value_lazy (val))
1586 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1587 TYPE_LENGTH (value_enclosing_type (arg)));
1590 val->unavailable = VEC_copy (range_s, arg->unavailable);
1591 set_value_parent (val, arg->parent);
1592 if (VALUE_LVAL (val) == lval_computed)
1594 const struct lval_funcs *funcs = val->location.computed.funcs;
1596 if (funcs->copy_closure)
1597 val->location.computed.closure = funcs->copy_closure (val);
1602 /* Return a version of ARG that is non-lvalue. */
1605 value_non_lval (struct value *arg)
1607 if (VALUE_LVAL (arg) != not_lval)
1609 struct type *enc_type = value_enclosing_type (arg);
1610 struct value *val = allocate_value (enc_type);
1612 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1613 TYPE_LENGTH (enc_type));
1614 val->type = arg->type;
1615 set_value_embedded_offset (val, value_embedded_offset (arg));
1616 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1623 set_value_component_location (struct value *component,
1624 const struct value *whole)
1626 if (whole->lval == lval_internalvar)
1627 VALUE_LVAL (component) = lval_internalvar_component;
1629 VALUE_LVAL (component) = whole->lval;
1631 component->location = whole->location;
1632 if (whole->lval == lval_computed)
1634 const struct lval_funcs *funcs = whole->location.computed.funcs;
1636 if (funcs->copy_closure)
1637 component->location.computed.closure = funcs->copy_closure (whole);
1642 /* Access to the value history. */
1644 /* Record a new value in the value history.
1645 Returns the absolute history index of the entry. */
1648 record_latest_value (struct value *val)
1652 /* We don't want this value to have anything to do with the inferior anymore.
1653 In particular, "set $1 = 50" should not affect the variable from which
1654 the value was taken, and fast watchpoints should be able to assume that
1655 a value on the value history never changes. */
1656 if (value_lazy (val))
1657 value_fetch_lazy (val);
1658 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1659 from. This is a bit dubious, because then *&$1 does not just return $1
1660 but the current contents of that location. c'est la vie... */
1661 val->modifiable = 0;
1662 release_value (val);
1664 /* Here we treat value_history_count as origin-zero
1665 and applying to the value being stored now. */
1667 i = value_history_count % VALUE_HISTORY_CHUNK;
1670 struct value_history_chunk *new
1671 = (struct value_history_chunk *)
1673 xmalloc (sizeof (struct value_history_chunk));
1674 memset (new->values, 0, sizeof new->values);
1675 new->next = value_history_chain;
1676 value_history_chain = new;
1679 value_history_chain->values[i] = val;
1681 /* Now we regard value_history_count as origin-one
1682 and applying to the value just stored. */
1684 return ++value_history_count;
1687 /* Return a copy of the value in the history with sequence number NUM. */
1690 access_value_history (int num)
1692 struct value_history_chunk *chunk;
1697 absnum += value_history_count;
1702 error (_("The history is empty."));
1704 error (_("There is only one value in the history."));
1706 error (_("History does not go back to $$%d."), -num);
1708 if (absnum > value_history_count)
1709 error (_("History has not yet reached $%d."), absnum);
1713 /* Now absnum is always absolute and origin zero. */
1715 chunk = value_history_chain;
1716 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1717 - absnum / VALUE_HISTORY_CHUNK;
1719 chunk = chunk->next;
1721 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1725 show_values (char *num_exp, int from_tty)
1733 /* "show values +" should print from the stored position.
1734 "show values <exp>" should print around value number <exp>. */
1735 if (num_exp[0] != '+' || num_exp[1] != '\0')
1736 num = parse_and_eval_long (num_exp) - 5;
1740 /* "show values" means print the last 10 values. */
1741 num = value_history_count - 9;
1747 for (i = num; i < num + 10 && i <= value_history_count; i++)
1749 struct value_print_options opts;
1751 val = access_value_history (i);
1752 printf_filtered (("$%d = "), i);
1753 get_user_print_options (&opts);
1754 value_print (val, gdb_stdout, &opts);
1755 printf_filtered (("\n"));
1758 /* The next "show values +" should start after what we just printed. */
1761 /* Hitting just return after this command should do the same thing as
1762 "show values +". If num_exp is null, this is unnecessary, since
1763 "show values +" is not useful after "show values". */
1764 if (from_tty && num_exp)
1771 /* Internal variables. These are variables within the debugger
1772 that hold values assigned by debugger commands.
1773 The user refers to them with a '$' prefix
1774 that does not appear in the variable names stored internally. */
1778 struct internalvar *next;
1781 /* We support various different kinds of content of an internal variable.
1782 enum internalvar_kind specifies the kind, and union internalvar_data
1783 provides the data associated with this particular kind. */
1785 enum internalvar_kind
1787 /* The internal variable is empty. */
1790 /* The value of the internal variable is provided directly as
1791 a GDB value object. */
1794 /* A fresh value is computed via a call-back routine on every
1795 access to the internal variable. */
1796 INTERNALVAR_MAKE_VALUE,
1798 /* The internal variable holds a GDB internal convenience function. */
1799 INTERNALVAR_FUNCTION,
1801 /* The variable holds an integer value. */
1802 INTERNALVAR_INTEGER,
1804 /* The variable holds a GDB-provided string. */
1809 union internalvar_data
1811 /* A value object used with INTERNALVAR_VALUE. */
1812 struct value *value;
1814 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1817 /* The functions to call. */
1818 const struct internalvar_funcs *functions;
1820 /* The function's user-data. */
1824 /* The internal function used with INTERNALVAR_FUNCTION. */
1827 struct internal_function *function;
1828 /* True if this is the canonical name for the function. */
1832 /* An integer value used with INTERNALVAR_INTEGER. */
1835 /* If type is non-NULL, it will be used as the type to generate
1836 a value for this internal variable. If type is NULL, a default
1837 integer type for the architecture is used. */
1842 /* A string value used with INTERNALVAR_STRING. */
1847 static struct internalvar *internalvars;
1849 /* If the variable does not already exist create it and give it the
1850 value given. If no value is given then the default is zero. */
1852 init_if_undefined_command (char* args, int from_tty)
1854 struct internalvar* intvar;
1856 /* Parse the expression - this is taken from set_command(). */
1857 struct expression *expr = parse_expression (args);
1858 register struct cleanup *old_chain =
1859 make_cleanup (free_current_contents, &expr);
1861 /* Validate the expression.
1862 Was the expression an assignment?
1863 Or even an expression at all? */
1864 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1865 error (_("Init-if-undefined requires an assignment expression."));
1867 /* Extract the variable from the parsed expression.
1868 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1869 if (expr->elts[1].opcode != OP_INTERNALVAR)
1870 error (_("The first parameter to init-if-undefined "
1871 "should be a GDB variable."));
1872 intvar = expr->elts[2].internalvar;
1874 /* Only evaluate the expression if the lvalue is void.
1875 This may still fail if the expresssion is invalid. */
1876 if (intvar->kind == INTERNALVAR_VOID)
1877 evaluate_expression (expr);
1879 do_cleanups (old_chain);
1883 /* Look up an internal variable with name NAME. NAME should not
1884 normally include a dollar sign.
1886 If the specified internal variable does not exist,
1887 the return value is NULL. */
1889 struct internalvar *
1890 lookup_only_internalvar (const char *name)
1892 struct internalvar *var;
1894 for (var = internalvars; var; var = var->next)
1895 if (strcmp (var->name, name) == 0)
1901 /* Complete NAME by comparing it to the names of internal variables.
1902 Returns a vector of newly allocated strings, or NULL if no matches
1906 complete_internalvar (const char *name)
1908 VEC (char_ptr) *result = NULL;
1909 struct internalvar *var;
1912 len = strlen (name);
1914 for (var = internalvars; var; var = var->next)
1915 if (strncmp (var->name, name, len) == 0)
1917 char *r = xstrdup (var->name);
1919 VEC_safe_push (char_ptr, result, r);
1925 /* Create an internal variable with name NAME and with a void value.
1926 NAME should not normally include a dollar sign. */
1928 struct internalvar *
1929 create_internalvar (const char *name)
1931 struct internalvar *var;
1933 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1934 var->name = concat (name, (char *)NULL);
1935 var->kind = INTERNALVAR_VOID;
1936 var->next = internalvars;
1941 /* Create an internal variable with name NAME and register FUN as the
1942 function that value_of_internalvar uses to create a value whenever
1943 this variable is referenced. NAME should not normally include a
1944 dollar sign. DATA is passed uninterpreted to FUN when it is
1945 called. CLEANUP, if not NULL, is called when the internal variable
1946 is destroyed. It is passed DATA as its only argument. */
1948 struct internalvar *
1949 create_internalvar_type_lazy (const char *name,
1950 const struct internalvar_funcs *funcs,
1953 struct internalvar *var = create_internalvar (name);
1955 var->kind = INTERNALVAR_MAKE_VALUE;
1956 var->u.make_value.functions = funcs;
1957 var->u.make_value.data = data;
1961 /* See documentation in value.h. */
1964 compile_internalvar_to_ax (struct internalvar *var,
1965 struct agent_expr *expr,
1966 struct axs_value *value)
1968 if (var->kind != INTERNALVAR_MAKE_VALUE
1969 || var->u.make_value.functions->compile_to_ax == NULL)
1972 var->u.make_value.functions->compile_to_ax (var, expr, value,
1973 var->u.make_value.data);
1977 /* Look up an internal variable with name NAME. NAME should not
1978 normally include a dollar sign.
1980 If the specified internal variable does not exist,
1981 one is created, with a void value. */
1983 struct internalvar *
1984 lookup_internalvar (const char *name)
1986 struct internalvar *var;
1988 var = lookup_only_internalvar (name);
1992 return create_internalvar (name);
1995 /* Return current value of internal variable VAR. For variables that
1996 are not inherently typed, use a value type appropriate for GDBARCH. */
1999 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2002 struct trace_state_variable *tsv;
2004 /* If there is a trace state variable of the same name, assume that
2005 is what we really want to see. */
2006 tsv = find_trace_state_variable (var->name);
2009 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2011 if (tsv->value_known)
2012 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2015 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2021 case INTERNALVAR_VOID:
2022 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2025 case INTERNALVAR_FUNCTION:
2026 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2029 case INTERNALVAR_INTEGER:
2030 if (!var->u.integer.type)
2031 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2032 var->u.integer.val);
2034 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2037 case INTERNALVAR_STRING:
2038 val = value_cstring (var->u.string, strlen (var->u.string),
2039 builtin_type (gdbarch)->builtin_char);
2042 case INTERNALVAR_VALUE:
2043 val = value_copy (var->u.value);
2044 if (value_lazy (val))
2045 value_fetch_lazy (val);
2048 case INTERNALVAR_MAKE_VALUE:
2049 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2050 var->u.make_value.data);
2054 internal_error (__FILE__, __LINE__, _("bad kind"));
2057 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2058 on this value go back to affect the original internal variable.
2060 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2061 no underlying modifyable state in the internal variable.
2063 Likewise, if the variable's value is a computed lvalue, we want
2064 references to it to produce another computed lvalue, where
2065 references and assignments actually operate through the
2066 computed value's functions.
2068 This means that internal variables with computed values
2069 behave a little differently from other internal variables:
2070 assignments to them don't just replace the previous value
2071 altogether. At the moment, this seems like the behavior we
2074 if (var->kind != INTERNALVAR_MAKE_VALUE
2075 && val->lval != lval_computed)
2077 VALUE_LVAL (val) = lval_internalvar;
2078 VALUE_INTERNALVAR (val) = var;
2085 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2087 if (var->kind == INTERNALVAR_INTEGER)
2089 *result = var->u.integer.val;
2093 if (var->kind == INTERNALVAR_VALUE)
2095 struct type *type = check_typedef (value_type (var->u.value));
2097 if (TYPE_CODE (type) == TYPE_CODE_INT)
2099 *result = value_as_long (var->u.value);
2108 get_internalvar_function (struct internalvar *var,
2109 struct internal_function **result)
2113 case INTERNALVAR_FUNCTION:
2114 *result = var->u.fn.function;
2123 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
2124 int bitsize, struct value *newval)
2130 case INTERNALVAR_VALUE:
2131 addr = value_contents_writeable (var->u.value);
2134 modify_field (value_type (var->u.value), addr + offset,
2135 value_as_long (newval), bitpos, bitsize);
2137 memcpy (addr + offset, value_contents (newval),
2138 TYPE_LENGTH (value_type (newval)));
2142 /* We can never get a component of any other kind. */
2143 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2148 set_internalvar (struct internalvar *var, struct value *val)
2150 enum internalvar_kind new_kind;
2151 union internalvar_data new_data = { 0 };
2153 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2154 error (_("Cannot overwrite convenience function %s"), var->name);
2156 /* Prepare new contents. */
2157 switch (TYPE_CODE (check_typedef (value_type (val))))
2159 case TYPE_CODE_VOID:
2160 new_kind = INTERNALVAR_VOID;
2163 case TYPE_CODE_INTERNAL_FUNCTION:
2164 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2165 new_kind = INTERNALVAR_FUNCTION;
2166 get_internalvar_function (VALUE_INTERNALVAR (val),
2167 &new_data.fn.function);
2168 /* Copies created here are never canonical. */
2172 new_kind = INTERNALVAR_VALUE;
2173 new_data.value = value_copy (val);
2174 new_data.value->modifiable = 1;
2176 /* Force the value to be fetched from the target now, to avoid problems
2177 later when this internalvar is referenced and the target is gone or
2179 if (value_lazy (new_data.value))
2180 value_fetch_lazy (new_data.value);
2182 /* Release the value from the value chain to prevent it from being
2183 deleted by free_all_values. From here on this function should not
2184 call error () until new_data is installed into the var->u to avoid
2186 release_value (new_data.value);
2190 /* Clean up old contents. */
2191 clear_internalvar (var);
2194 var->kind = new_kind;
2196 /* End code which must not call error(). */
2200 set_internalvar_integer (struct internalvar *var, LONGEST l)
2202 /* Clean up old contents. */
2203 clear_internalvar (var);
2205 var->kind = INTERNALVAR_INTEGER;
2206 var->u.integer.type = NULL;
2207 var->u.integer.val = l;
2211 set_internalvar_string (struct internalvar *var, const char *string)
2213 /* Clean up old contents. */
2214 clear_internalvar (var);
2216 var->kind = INTERNALVAR_STRING;
2217 var->u.string = xstrdup (string);
2221 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2223 /* Clean up old contents. */
2224 clear_internalvar (var);
2226 var->kind = INTERNALVAR_FUNCTION;
2227 var->u.fn.function = f;
2228 var->u.fn.canonical = 1;
2229 /* Variables installed here are always the canonical version. */
2233 clear_internalvar (struct internalvar *var)
2235 /* Clean up old contents. */
2238 case INTERNALVAR_VALUE:
2239 value_free (var->u.value);
2242 case INTERNALVAR_STRING:
2243 xfree (var->u.string);
2246 case INTERNALVAR_MAKE_VALUE:
2247 if (var->u.make_value.functions->destroy != NULL)
2248 var->u.make_value.functions->destroy (var->u.make_value.data);
2255 /* Reset to void kind. */
2256 var->kind = INTERNALVAR_VOID;
2260 internalvar_name (struct internalvar *var)
2265 static struct internal_function *
2266 create_internal_function (const char *name,
2267 internal_function_fn handler, void *cookie)
2269 struct internal_function *ifn = XNEW (struct internal_function);
2271 ifn->name = xstrdup (name);
2272 ifn->handler = handler;
2273 ifn->cookie = cookie;
2278 value_internal_function_name (struct value *val)
2280 struct internal_function *ifn;
2283 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2284 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2285 gdb_assert (result);
2291 call_internal_function (struct gdbarch *gdbarch,
2292 const struct language_defn *language,
2293 struct value *func, int argc, struct value **argv)
2295 struct internal_function *ifn;
2298 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2299 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2300 gdb_assert (result);
2302 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2305 /* The 'function' command. This does nothing -- it is just a
2306 placeholder to let "help function NAME" work. This is also used as
2307 the implementation of the sub-command that is created when
2308 registering an internal function. */
2310 function_command (char *command, int from_tty)
2315 /* Clean up if an internal function's command is destroyed. */
2317 function_destroyer (struct cmd_list_element *self, void *ignore)
2319 xfree ((char *) self->name);
2323 /* Add a new internal function. NAME is the name of the function; DOC
2324 is a documentation string describing the function. HANDLER is
2325 called when the function is invoked. COOKIE is an arbitrary
2326 pointer which is passed to HANDLER and is intended for "user
2329 add_internal_function (const char *name, const char *doc,
2330 internal_function_fn handler, void *cookie)
2332 struct cmd_list_element *cmd;
2333 struct internal_function *ifn;
2334 struct internalvar *var = lookup_internalvar (name);
2336 ifn = create_internal_function (name, handler, cookie);
2337 set_internalvar_function (var, ifn);
2339 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2341 cmd->destroyer = function_destroyer;
2344 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2345 prevent cycles / duplicates. */
2348 preserve_one_value (struct value *value, struct objfile *objfile,
2349 htab_t copied_types)
2351 if (TYPE_OBJFILE (value->type) == objfile)
2352 value->type = copy_type_recursive (objfile, value->type, copied_types);
2354 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2355 value->enclosing_type = copy_type_recursive (objfile,
2356 value->enclosing_type,
2360 /* Likewise for internal variable VAR. */
2363 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2364 htab_t copied_types)
2368 case INTERNALVAR_INTEGER:
2369 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2371 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2374 case INTERNALVAR_VALUE:
2375 preserve_one_value (var->u.value, objfile, copied_types);
2380 /* Update the internal variables and value history when OBJFILE is
2381 discarded; we must copy the types out of the objfile. New global types
2382 will be created for every convenience variable which currently points to
2383 this objfile's types, and the convenience variables will be adjusted to
2384 use the new global types. */
2387 preserve_values (struct objfile *objfile)
2389 htab_t copied_types;
2390 struct value_history_chunk *cur;
2391 struct internalvar *var;
2394 /* Create the hash table. We allocate on the objfile's obstack, since
2395 it is soon to be deleted. */
2396 copied_types = create_copied_types_hash (objfile);
2398 for (cur = value_history_chain; cur; cur = cur->next)
2399 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2401 preserve_one_value (cur->values[i], objfile, copied_types);
2403 for (var = internalvars; var; var = var->next)
2404 preserve_one_internalvar (var, objfile, copied_types);
2406 preserve_ext_lang_values (objfile, copied_types);
2408 htab_delete (copied_types);
2412 show_convenience (char *ignore, int from_tty)
2414 struct gdbarch *gdbarch = get_current_arch ();
2415 struct internalvar *var;
2417 struct value_print_options opts;
2419 get_user_print_options (&opts);
2420 for (var = internalvars; var; var = var->next)
2422 volatile struct gdb_exception ex;
2428 printf_filtered (("$%s = "), var->name);
2430 TRY_CATCH (ex, RETURN_MASK_ERROR)
2434 val = value_of_internalvar (gdbarch, var);
2435 value_print (val, gdb_stdout, &opts);
2438 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2439 printf_filtered (("\n"));
2443 /* This text does not mention convenience functions on purpose.
2444 The user can't create them except via Python, and if Python support
2445 is installed this message will never be printed ($_streq will
2447 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2448 "Convenience variables have "
2449 "names starting with \"$\";\n"
2450 "use \"set\" as in \"set "
2451 "$foo = 5\" to define them.\n"));
2455 /* Extract a value as a C number (either long or double).
2456 Knows how to convert fixed values to double, or
2457 floating values to long.
2458 Does not deallocate the value. */
2461 value_as_long (struct value *val)
2463 /* This coerces arrays and functions, which is necessary (e.g.
2464 in disassemble_command). It also dereferences references, which
2465 I suspect is the most logical thing to do. */
2466 val = coerce_array (val);
2467 return unpack_long (value_type (val), value_contents (val));
2471 value_as_double (struct value *val)
2476 foo = unpack_double (value_type (val), value_contents (val), &inv);
2478 error (_("Invalid floating value found in program."));
2482 /* Extract a value as a C pointer. Does not deallocate the value.
2483 Note that val's type may not actually be a pointer; value_as_long
2484 handles all the cases. */
2486 value_as_address (struct value *val)
2488 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2490 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2491 whether we want this to be true eventually. */
2493 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2494 non-address (e.g. argument to "signal", "info break", etc.), or
2495 for pointers to char, in which the low bits *are* significant. */
2496 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2499 /* There are several targets (IA-64, PowerPC, and others) which
2500 don't represent pointers to functions as simply the address of
2501 the function's entry point. For example, on the IA-64, a
2502 function pointer points to a two-word descriptor, generated by
2503 the linker, which contains the function's entry point, and the
2504 value the IA-64 "global pointer" register should have --- to
2505 support position-independent code. The linker generates
2506 descriptors only for those functions whose addresses are taken.
2508 On such targets, it's difficult for GDB to convert an arbitrary
2509 function address into a function pointer; it has to either find
2510 an existing descriptor for that function, or call malloc and
2511 build its own. On some targets, it is impossible for GDB to
2512 build a descriptor at all: the descriptor must contain a jump
2513 instruction; data memory cannot be executed; and code memory
2516 Upon entry to this function, if VAL is a value of type `function'
2517 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2518 value_address (val) is the address of the function. This is what
2519 you'll get if you evaluate an expression like `main'. The call
2520 to COERCE_ARRAY below actually does all the usual unary
2521 conversions, which includes converting values of type `function'
2522 to `pointer to function'. This is the challenging conversion
2523 discussed above. Then, `unpack_long' will convert that pointer
2524 back into an address.
2526 So, suppose the user types `disassemble foo' on an architecture
2527 with a strange function pointer representation, on which GDB
2528 cannot build its own descriptors, and suppose further that `foo'
2529 has no linker-built descriptor. The address->pointer conversion
2530 will signal an error and prevent the command from running, even
2531 though the next step would have been to convert the pointer
2532 directly back into the same address.
2534 The following shortcut avoids this whole mess. If VAL is a
2535 function, just return its address directly. */
2536 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2537 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2538 return value_address (val);
2540 val = coerce_array (val);
2542 /* Some architectures (e.g. Harvard), map instruction and data
2543 addresses onto a single large unified address space. For
2544 instance: An architecture may consider a large integer in the
2545 range 0x10000000 .. 0x1000ffff to already represent a data
2546 addresses (hence not need a pointer to address conversion) while
2547 a small integer would still need to be converted integer to
2548 pointer to address. Just assume such architectures handle all
2549 integer conversions in a single function. */
2553 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2554 must admonish GDB hackers to make sure its behavior matches the
2555 compiler's, whenever possible.
2557 In general, I think GDB should evaluate expressions the same way
2558 the compiler does. When the user copies an expression out of
2559 their source code and hands it to a `print' command, they should
2560 get the same value the compiler would have computed. Any
2561 deviation from this rule can cause major confusion and annoyance,
2562 and needs to be justified carefully. In other words, GDB doesn't
2563 really have the freedom to do these conversions in clever and
2566 AndrewC pointed out that users aren't complaining about how GDB
2567 casts integers to pointers; they are complaining that they can't
2568 take an address from a disassembly listing and give it to `x/i'.
2569 This is certainly important.
2571 Adding an architecture method like integer_to_address() certainly
2572 makes it possible for GDB to "get it right" in all circumstances
2573 --- the target has complete control over how things get done, so
2574 people can Do The Right Thing for their target without breaking
2575 anyone else. The standard doesn't specify how integers get
2576 converted to pointers; usually, the ABI doesn't either, but
2577 ABI-specific code is a more reasonable place to handle it. */
2579 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2580 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2581 && gdbarch_integer_to_address_p (gdbarch))
2582 return gdbarch_integer_to_address (gdbarch, value_type (val),
2583 value_contents (val));
2585 return unpack_long (value_type (val), value_contents (val));
2589 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2590 as a long, or as a double, assuming the raw data is described
2591 by type TYPE. Knows how to convert different sizes of values
2592 and can convert between fixed and floating point. We don't assume
2593 any alignment for the raw data. Return value is in host byte order.
2595 If you want functions and arrays to be coerced to pointers, and
2596 references to be dereferenced, call value_as_long() instead.
2598 C++: It is assumed that the front-end has taken care of
2599 all matters concerning pointers to members. A pointer
2600 to member which reaches here is considered to be equivalent
2601 to an INT (or some size). After all, it is only an offset. */
2604 unpack_long (struct type *type, const gdb_byte *valaddr)
2606 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2607 enum type_code code = TYPE_CODE (type);
2608 int len = TYPE_LENGTH (type);
2609 int nosign = TYPE_UNSIGNED (type);
2613 case TYPE_CODE_TYPEDEF:
2614 return unpack_long (check_typedef (type), valaddr);
2615 case TYPE_CODE_ENUM:
2616 case TYPE_CODE_FLAGS:
2617 case TYPE_CODE_BOOL:
2619 case TYPE_CODE_CHAR:
2620 case TYPE_CODE_RANGE:
2621 case TYPE_CODE_MEMBERPTR:
2623 return extract_unsigned_integer (valaddr, len, byte_order);
2625 return extract_signed_integer (valaddr, len, byte_order);
2628 return extract_typed_floating (valaddr, type);
2630 case TYPE_CODE_DECFLOAT:
2631 /* libdecnumber has a function to convert from decimal to integer, but
2632 it doesn't work when the decimal number has a fractional part. */
2633 return decimal_to_doublest (valaddr, len, byte_order);
2637 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2638 whether we want this to be true eventually. */
2639 return extract_typed_address (valaddr, type);
2642 error (_("Value can't be converted to integer."));
2644 return 0; /* Placate lint. */
2647 /* Return a double value from the specified type and address.
2648 INVP points to an int which is set to 0 for valid value,
2649 1 for invalid value (bad float format). In either case,
2650 the returned double is OK to use. Argument is in target
2651 format, result is in host format. */
2654 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2656 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2657 enum type_code code;
2661 *invp = 0; /* Assume valid. */
2662 CHECK_TYPEDEF (type);
2663 code = TYPE_CODE (type);
2664 len = TYPE_LENGTH (type);
2665 nosign = TYPE_UNSIGNED (type);
2666 if (code == TYPE_CODE_FLT)
2668 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2669 floating-point value was valid (using the macro
2670 INVALID_FLOAT). That test/macro have been removed.
2672 It turns out that only the VAX defined this macro and then
2673 only in a non-portable way. Fixing the portability problem
2674 wouldn't help since the VAX floating-point code is also badly
2675 bit-rotten. The target needs to add definitions for the
2676 methods gdbarch_float_format and gdbarch_double_format - these
2677 exactly describe the target floating-point format. The
2678 problem here is that the corresponding floatformat_vax_f and
2679 floatformat_vax_d values these methods should be set to are
2680 also not defined either. Oops!
2682 Hopefully someone will add both the missing floatformat
2683 definitions and the new cases for floatformat_is_valid (). */
2685 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2691 return extract_typed_floating (valaddr, type);
2693 else if (code == TYPE_CODE_DECFLOAT)
2694 return decimal_to_doublest (valaddr, len, byte_order);
2697 /* Unsigned -- be sure we compensate for signed LONGEST. */
2698 return (ULONGEST) unpack_long (type, valaddr);
2702 /* Signed -- we are OK with unpack_long. */
2703 return unpack_long (type, valaddr);
2707 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2708 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2709 We don't assume any alignment for the raw data. Return value is in
2712 If you want functions and arrays to be coerced to pointers, and
2713 references to be dereferenced, call value_as_address() instead.
2715 C++: It is assumed that the front-end has taken care of
2716 all matters concerning pointers to members. A pointer
2717 to member which reaches here is considered to be equivalent
2718 to an INT (or some size). After all, it is only an offset. */
2721 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2723 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2724 whether we want this to be true eventually. */
2725 return unpack_long (type, valaddr);
2729 /* Get the value of the FIELDNO'th field (which must be static) of
2733 value_static_field (struct type *type, int fieldno)
2735 struct value *retval;
2737 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2739 case FIELD_LOC_KIND_PHYSADDR:
2740 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2741 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2743 case FIELD_LOC_KIND_PHYSNAME:
2745 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2746 /* TYPE_FIELD_NAME (type, fieldno); */
2747 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2751 /* With some compilers, e.g. HP aCC, static data members are
2752 reported as non-debuggable symbols. */
2753 struct bound_minimal_symbol msym
2754 = lookup_minimal_symbol (phys_name, NULL, NULL);
2757 return allocate_optimized_out_value (type);
2760 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2761 MSYMBOL_VALUE_ADDRESS (msym.minsym));
2765 retval = value_of_variable (sym, NULL);
2769 gdb_assert_not_reached ("unexpected field location kind");
2775 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2776 You have to be careful here, since the size of the data area for the value
2777 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2778 than the old enclosing type, you have to allocate more space for the
2782 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2784 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2786 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2788 val->enclosing_type = new_encl_type;
2791 /* Given a value ARG1 (offset by OFFSET bytes)
2792 of a struct or union type ARG_TYPE,
2793 extract and return the value of one of its (non-static) fields.
2794 FIELDNO says which field. */
2797 value_primitive_field (struct value *arg1, int offset,
2798 int fieldno, struct type *arg_type)
2803 CHECK_TYPEDEF (arg_type);
2804 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2806 /* Call check_typedef on our type to make sure that, if TYPE
2807 is a TYPE_CODE_TYPEDEF, its length is set to the length
2808 of the target type instead of zero. However, we do not
2809 replace the typedef type by the target type, because we want
2810 to keep the typedef in order to be able to print the type
2811 description correctly. */
2812 check_typedef (type);
2814 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2816 /* Handle packed fields.
2818 Create a new value for the bitfield, with bitpos and bitsize
2819 set. If possible, arrange offset and bitpos so that we can
2820 do a single aligned read of the size of the containing type.
2821 Otherwise, adjust offset to the byte containing the first
2822 bit. Assume that the address, offset, and embedded offset
2823 are sufficiently aligned. */
2825 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2826 int container_bitsize = TYPE_LENGTH (type) * 8;
2828 if (arg1->optimized_out)
2829 v = allocate_optimized_out_value (type);
2832 v = allocate_value_lazy (type);
2833 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2834 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2835 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2836 v->bitpos = bitpos % container_bitsize;
2838 v->bitpos = bitpos % 8;
2839 v->offset = (value_embedded_offset (arg1)
2841 + (bitpos - v->bitpos) / 8);
2842 set_value_parent (v, arg1);
2843 if (!value_lazy (arg1))
2844 value_fetch_lazy (v);
2847 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2849 /* This field is actually a base subobject, so preserve the
2850 entire object's contents for later references to virtual
2854 /* Lazy register values with offsets are not supported. */
2855 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2856 value_fetch_lazy (arg1);
2858 /* The optimized_out flag is only set correctly once a lazy value is
2859 loaded, having just loaded some lazy values we should check the
2860 optimized out case now. */
2861 if (arg1->optimized_out)
2862 v = allocate_optimized_out_value (type);
2865 /* We special case virtual inheritance here because this
2866 requires access to the contents, which we would rather avoid
2867 for references to ordinary fields of unavailable values. */
2868 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2869 boffset = baseclass_offset (arg_type, fieldno,
2870 value_contents (arg1),
2871 value_embedded_offset (arg1),
2872 value_address (arg1),
2875 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2877 if (value_lazy (arg1))
2878 v = allocate_value_lazy (value_enclosing_type (arg1));
2881 v = allocate_value (value_enclosing_type (arg1));
2882 value_contents_copy_raw (v, 0, arg1, 0,
2883 TYPE_LENGTH (value_enclosing_type (arg1)));
2886 v->offset = value_offset (arg1);
2887 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2892 /* Plain old data member */
2893 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2895 /* Lazy register values with offsets are not supported. */
2896 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2897 value_fetch_lazy (arg1);
2899 /* The optimized_out flag is only set correctly once a lazy value is
2900 loaded, having just loaded some lazy values we should check for
2901 the optimized out case now. */
2902 if (arg1->optimized_out)
2903 v = allocate_optimized_out_value (type);
2904 else if (value_lazy (arg1))
2905 v = allocate_value_lazy (type);
2908 v = allocate_value (type);
2909 value_contents_copy_raw (v, value_embedded_offset (v),
2910 arg1, value_embedded_offset (arg1) + offset,
2911 TYPE_LENGTH (type));
2913 v->offset = (value_offset (arg1) + offset
2914 + value_embedded_offset (arg1));
2916 set_value_component_location (v, arg1);
2917 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2918 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2922 /* Given a value ARG1 of a struct or union type,
2923 extract and return the value of one of its (non-static) fields.
2924 FIELDNO says which field. */
2927 value_field (struct value *arg1, int fieldno)
2929 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2932 /* Return a non-virtual function as a value.
2933 F is the list of member functions which contains the desired method.
2934 J is an index into F which provides the desired method.
2936 We only use the symbol for its address, so be happy with either a
2937 full symbol or a minimal symbol. */
2940 value_fn_field (struct value **arg1p, struct fn_field *f,
2941 int j, struct type *type,
2945 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2946 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2948 struct bound_minimal_symbol msym;
2950 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2953 memset (&msym, 0, sizeof (msym));
2957 gdb_assert (sym == NULL);
2958 msym = lookup_bound_minimal_symbol (physname);
2959 if (msym.minsym == NULL)
2963 v = allocate_value (ftype);
2966 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2970 /* The minimal symbol might point to a function descriptor;
2971 resolve it to the actual code address instead. */
2972 struct objfile *objfile = msym.objfile;
2973 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2975 set_value_address (v,
2976 gdbarch_convert_from_func_ptr_addr
2977 (gdbarch, MSYMBOL_VALUE_ADDRESS (msym.minsym), ¤t_target));
2982 if (type != value_type (*arg1p))
2983 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2984 value_addr (*arg1p)));
2986 /* Move the `this' pointer according to the offset.
2987 VALUE_OFFSET (*arg1p) += offset; */
2995 /* Helper function for both unpack_value_bits_as_long and
2996 unpack_bits_as_long. See those functions for more details on the
2997 interface; the only difference is that this function accepts either
2998 a NULL or a non-NULL ORIGINAL_VALUE. */
3001 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
3002 int embedded_offset, int bitpos, int bitsize,
3003 const struct value *original_value,
3006 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3013 /* Read the minimum number of bytes required; there may not be
3014 enough bytes to read an entire ULONGEST. */
3015 CHECK_TYPEDEF (field_type);
3017 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3019 bytes_read = TYPE_LENGTH (field_type);
3021 read_offset = bitpos / 8;
3023 if (original_value != NULL
3024 && !value_bits_available (original_value, embedded_offset + bitpos,
3028 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
3029 bytes_read, byte_order);
3031 /* Extract bits. See comment above. */
3033 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3034 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3036 lsbcount = (bitpos % 8);
3039 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3040 If the field is signed, and is negative, then sign extend. */
3042 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3044 valmask = (((ULONGEST) 1) << bitsize) - 1;
3046 if (!TYPE_UNSIGNED (field_type))
3048 if (val & (valmask ^ (valmask >> 1)))
3059 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3060 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
3061 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
3062 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
3065 Returns false if the value contents are unavailable, otherwise
3066 returns true, indicating a valid value has been stored in *RESULT.
3068 Extracting bits depends on endianness of the machine. Compute the
3069 number of least significant bits to discard. For big endian machines,
3070 we compute the total number of bits in the anonymous object, subtract
3071 off the bit count from the MSB of the object to the MSB of the
3072 bitfield, then the size of the bitfield, which leaves the LSB discard
3073 count. For little endian machines, the discard count is simply the
3074 number of bits from the LSB of the anonymous object to the LSB of the
3077 If the field is signed, we also do sign extension. */
3080 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3081 int embedded_offset, int bitpos, int bitsize,
3082 const struct value *original_value,
3085 gdb_assert (original_value != NULL);
3087 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
3088 bitpos, bitsize, original_value, result);
3092 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3093 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3094 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
3098 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
3099 int embedded_offset, int fieldno,
3100 const struct value *val, LONGEST *result)
3102 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3103 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3104 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3106 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
3107 bitpos, bitsize, val,
3111 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3112 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3113 ORIGINAL_VALUE, which must not be NULL. See
3114 unpack_value_bits_as_long for more details. */
3117 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3118 int embedded_offset, int fieldno,
3119 const struct value *val, LONGEST *result)
3121 gdb_assert (val != NULL);
3123 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
3124 fieldno, val, result);
3127 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3128 object at VALADDR. See unpack_value_bits_as_long for more details.
3129 This function differs from unpack_value_field_as_long in that it
3130 operates without a struct value object. */
3133 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3137 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
3141 /* Return a new value with type TYPE, which is FIELDNO field of the
3142 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3143 of VAL. If the VAL's contents required to extract the bitfield
3144 from are unavailable, the new value is correspondingly marked as
3148 value_field_bitfield (struct type *type, int fieldno,
3149 const gdb_byte *valaddr,
3150 int embedded_offset, const struct value *val)
3154 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
3157 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3158 struct value *retval = allocate_value (field_type);
3159 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
3164 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
3168 /* Modify the value of a bitfield. ADDR points to a block of memory in
3169 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3170 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3171 indicate which bits (in target bit order) comprise the bitfield.
3172 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3173 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3176 modify_field (struct type *type, gdb_byte *addr,
3177 LONGEST fieldval, int bitpos, int bitsize)
3179 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3181 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3184 /* Normalize BITPOS. */
3188 /* If a negative fieldval fits in the field in question, chop
3189 off the sign extension bits. */
3190 if ((~fieldval & ~(mask >> 1)) == 0)
3193 /* Warn if value is too big to fit in the field in question. */
3194 if (0 != (fieldval & ~mask))
3196 /* FIXME: would like to include fieldval in the message, but
3197 we don't have a sprintf_longest. */
3198 warning (_("Value does not fit in %d bits."), bitsize);
3200 /* Truncate it, otherwise adjoining fields may be corrupted. */
3204 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3205 false valgrind reports. */
3207 bytesize = (bitpos + bitsize + 7) / 8;
3208 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3210 /* Shifting for bit field depends on endianness of the target machine. */
3211 if (gdbarch_bits_big_endian (get_type_arch (type)))
3212 bitpos = bytesize * 8 - bitpos - bitsize;
3214 oword &= ~(mask << bitpos);
3215 oword |= fieldval << bitpos;
3217 store_unsigned_integer (addr, bytesize, byte_order, oword);
3220 /* Pack NUM into BUF using a target format of TYPE. */
3223 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3225 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3228 type = check_typedef (type);
3229 len = TYPE_LENGTH (type);
3231 switch (TYPE_CODE (type))
3234 case TYPE_CODE_CHAR:
3235 case TYPE_CODE_ENUM:
3236 case TYPE_CODE_FLAGS:
3237 case TYPE_CODE_BOOL:
3238 case TYPE_CODE_RANGE:
3239 case TYPE_CODE_MEMBERPTR:
3240 store_signed_integer (buf, len, byte_order, num);
3245 store_typed_address (buf, type, (CORE_ADDR) num);
3249 error (_("Unexpected type (%d) encountered for integer constant."),
3255 /* Pack NUM into BUF using a target format of TYPE. */
3258 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3261 enum bfd_endian byte_order;
3263 type = check_typedef (type);
3264 len = TYPE_LENGTH (type);
3265 byte_order = gdbarch_byte_order (get_type_arch (type));
3267 switch (TYPE_CODE (type))
3270 case TYPE_CODE_CHAR:
3271 case TYPE_CODE_ENUM:
3272 case TYPE_CODE_FLAGS:
3273 case TYPE_CODE_BOOL:
3274 case TYPE_CODE_RANGE:
3275 case TYPE_CODE_MEMBERPTR:
3276 store_unsigned_integer (buf, len, byte_order, num);
3281 store_typed_address (buf, type, (CORE_ADDR) num);
3285 error (_("Unexpected type (%d) encountered "
3286 "for unsigned integer constant."),
3292 /* Convert C numbers into newly allocated values. */
3295 value_from_longest (struct type *type, LONGEST num)
3297 struct value *val = allocate_value (type);
3299 pack_long (value_contents_raw (val), type, num);
3304 /* Convert C unsigned numbers into newly allocated values. */
3307 value_from_ulongest (struct type *type, ULONGEST num)
3309 struct value *val = allocate_value (type);
3311 pack_unsigned_long (value_contents_raw (val), type, num);
3317 /* Create a value representing a pointer of type TYPE to the address
3320 value_from_pointer (struct type *type, CORE_ADDR addr)
3322 struct value *val = allocate_value (type);
3324 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
3329 /* Create a value of type TYPE whose contents come from VALADDR, if it
3330 is non-null, and whose memory address (in the inferior) is
3334 value_from_contents_and_address (struct type *type,
3335 const gdb_byte *valaddr,
3340 if (valaddr == NULL)
3341 v = allocate_value_lazy (type);
3343 v = value_from_contents (type, valaddr);
3344 set_value_address (v, address);
3345 VALUE_LVAL (v) = lval_memory;
3349 /* Create a value of type TYPE holding the contents CONTENTS.
3350 The new value is `not_lval'. */
3353 value_from_contents (struct type *type, const gdb_byte *contents)
3355 struct value *result;
3357 result = allocate_value (type);
3358 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3363 value_from_double (struct type *type, DOUBLEST num)
3365 struct value *val = allocate_value (type);
3366 struct type *base_type = check_typedef (type);
3367 enum type_code code = TYPE_CODE (base_type);
3369 if (code == TYPE_CODE_FLT)
3371 store_typed_floating (value_contents_raw (val), base_type, num);
3374 error (_("Unexpected type encountered for floating constant."));
3380 value_from_decfloat (struct type *type, const gdb_byte *dec)
3382 struct value *val = allocate_value (type);
3384 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3388 /* Extract a value from the history file. Input will be of the form
3389 $digits or $$digits. See block comment above 'write_dollar_variable'
3393 value_from_history_ref (char *h, char **endp)
3405 /* Find length of numeral string. */
3406 for (; isdigit (h[len]); len++)
3409 /* Make sure numeral string is not part of an identifier. */
3410 if (h[len] == '_' || isalpha (h[len]))
3413 /* Now collect the index value. */
3418 /* For some bizarre reason, "$$" is equivalent to "$$1",
3419 rather than to "$$0" as it ought to be! */
3424 index = -strtol (&h[2], endp, 10);
3430 /* "$" is equivalent to "$0". */
3435 index = strtol (&h[1], endp, 10);
3438 return access_value_history (index);
3442 coerce_ref_if_computed (const struct value *arg)
3444 const struct lval_funcs *funcs;
3446 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3449 if (value_lval_const (arg) != lval_computed)
3452 funcs = value_computed_funcs (arg);
3453 if (funcs->coerce_ref == NULL)
3456 return funcs->coerce_ref (arg);
3459 /* Look at value.h for description. */
3462 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3463 struct type *original_type,
3464 struct value *original_value)
3466 /* Re-adjust type. */
3467 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3469 /* Add embedding info. */
3470 set_value_enclosing_type (value, enc_type);
3471 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3473 /* We may be pointing to an object of some derived type. */
3474 return value_full_object (value, NULL, 0, 0, 0);
3478 coerce_ref (struct value *arg)
3480 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3481 struct value *retval;
3482 struct type *enc_type;
3484 retval = coerce_ref_if_computed (arg);
3488 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3491 enc_type = check_typedef (value_enclosing_type (arg));
3492 enc_type = TYPE_TARGET_TYPE (enc_type);
3494 retval = value_at_lazy (enc_type,
3495 unpack_pointer (value_type (arg),
3496 value_contents (arg)));
3497 return readjust_indirect_value_type (retval, enc_type,
3498 value_type_arg_tmp, arg);
3502 coerce_array (struct value *arg)
3506 arg = coerce_ref (arg);
3507 type = check_typedef (value_type (arg));
3509 switch (TYPE_CODE (type))
3511 case TYPE_CODE_ARRAY:
3512 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3513 arg = value_coerce_array (arg);
3515 case TYPE_CODE_FUNC:
3516 arg = value_coerce_function (arg);
3523 /* Return the return value convention that will be used for the
3526 enum return_value_convention
3527 struct_return_convention (struct gdbarch *gdbarch,
3528 struct value *function, struct type *value_type)
3530 enum type_code code = TYPE_CODE (value_type);
3532 if (code == TYPE_CODE_ERROR)
3533 error (_("Function return type unknown."));
3535 /* Probe the architecture for the return-value convention. */
3536 return gdbarch_return_value (gdbarch, function, value_type,
3540 /* Return true if the function returning the specified type is using
3541 the convention of returning structures in memory (passing in the
3542 address as a hidden first parameter). */
3545 using_struct_return (struct gdbarch *gdbarch,
3546 struct value *function, struct type *value_type)
3548 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3549 /* A void return value is never in memory. See also corresponding
3550 code in "print_return_value". */
3553 return (struct_return_convention (gdbarch, function, value_type)
3554 != RETURN_VALUE_REGISTER_CONVENTION);
3557 /* Set the initialized field in a value struct. */
3560 set_value_initialized (struct value *val, int status)
3562 val->initialized = status;
3565 /* Return the initialized field in a value struct. */
3568 value_initialized (struct value *val)
3570 return val->initialized;
3573 /* Called only from the value_contents and value_contents_all()
3574 macros, if the current data for a variable needs to be loaded into
3575 value_contents(VAL). Fetches the data from the user's process, and
3576 clears the lazy flag to indicate that the data in the buffer is
3579 If the value is zero-length, we avoid calling read_memory, which
3580 would abort. We mark the value as fetched anyway -- all 0 bytes of
3583 This function returns a value because it is used in the
3584 value_contents macro as part of an expression, where a void would
3585 not work. The value is ignored. */
3588 value_fetch_lazy (struct value *val)
3590 gdb_assert (value_lazy (val));
3591 allocate_value_contents (val);
3592 if (value_bitsize (val))
3594 /* To read a lazy bitfield, read the entire enclosing value. This
3595 prevents reading the same block of (possibly volatile) memory once
3596 per bitfield. It would be even better to read only the containing
3597 word, but we have no way to record that just specific bits of a
3598 value have been fetched. */
3599 struct type *type = check_typedef (value_type (val));
3600 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3601 struct value *parent = value_parent (val);
3602 LONGEST offset = value_offset (val);
3605 if (value_lazy (parent))
3606 value_fetch_lazy (parent);
3608 if (!value_bits_valid (parent,
3609 TARGET_CHAR_BIT * offset + value_bitpos (val),
3610 value_bitsize (val)))
3611 set_value_optimized_out (val, 1);
3612 else if (!unpack_value_bits_as_long (value_type (val),
3613 value_contents_for_printing (parent),
3616 value_bitsize (val), parent, &num))
3617 mark_value_bytes_unavailable (val,
3618 value_embedded_offset (val),
3619 TYPE_LENGTH (type));
3621 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
3624 else if (VALUE_LVAL (val) == lval_memory)
3626 CORE_ADDR addr = value_address (val);
3627 struct type *type = check_typedef (value_enclosing_type (val));
3629 if (TYPE_LENGTH (type))
3630 read_value_memory (val, 0, value_stack (val),
3631 addr, value_contents_all_raw (val),
3632 TYPE_LENGTH (type));
3634 else if (VALUE_LVAL (val) == lval_register)
3636 struct frame_info *frame;
3638 struct type *type = check_typedef (value_type (val));
3639 struct value *new_val = val, *mark = value_mark ();
3641 /* Offsets are not supported here; lazy register values must
3642 refer to the entire register. */
3643 gdb_assert (value_offset (val) == 0);
3645 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3647 struct frame_id frame_id = VALUE_FRAME_ID (new_val);
3649 frame = frame_find_by_id (frame_id);
3650 regnum = VALUE_REGNUM (new_val);
3652 gdb_assert (frame != NULL);
3654 /* Convertible register routines are used for multi-register
3655 values and for interpretation in different types
3656 (e.g. float or int from a double register). Lazy
3657 register values should have the register's natural type,
3658 so they do not apply. */
3659 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3662 new_val = get_frame_register_value (frame, regnum);
3664 /* If we get another lazy lval_register value, it means the
3665 register is found by reading it from the next frame.
3666 get_frame_register_value should never return a value with
3667 the frame id pointing to FRAME. If it does, it means we
3668 either have two consecutive frames with the same frame id
3669 in the frame chain, or some code is trying to unwind
3670 behind get_prev_frame's back (e.g., a frame unwind
3671 sniffer trying to unwind), bypassing its validations. In
3672 any case, it should always be an internal error to end up
3673 in this situation. */
3674 if (VALUE_LVAL (new_val) == lval_register
3675 && value_lazy (new_val)
3676 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id))
3677 internal_error (__FILE__, __LINE__,
3678 _("infinite loop while fetching a register"));
3681 /* If it's still lazy (for instance, a saved register on the
3682 stack), fetch it. */
3683 if (value_lazy (new_val))
3684 value_fetch_lazy (new_val);
3686 /* If the register was not saved, mark it optimized out. */
3687 if (value_optimized_out (new_val))
3688 set_value_optimized_out (val, 1);
3691 set_value_lazy (val, 0);
3692 value_contents_copy (val, value_embedded_offset (val),
3693 new_val, value_embedded_offset (new_val),
3694 TYPE_LENGTH (type));
3699 struct gdbarch *gdbarch;
3700 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3701 regnum = VALUE_REGNUM (val);
3702 gdbarch = get_frame_arch (frame);
3704 fprintf_unfiltered (gdb_stdlog,
3705 "{ value_fetch_lazy "
3706 "(frame=%d,regnum=%d(%s),...) ",
3707 frame_relative_level (frame), regnum,
3708 user_reg_map_regnum_to_name (gdbarch, regnum));
3710 fprintf_unfiltered (gdb_stdlog, "->");
3711 if (value_optimized_out (new_val))
3713 fprintf_unfiltered (gdb_stdlog, " ");
3714 val_print_optimized_out (new_val, gdb_stdlog);
3719 const gdb_byte *buf = value_contents (new_val);
3721 if (VALUE_LVAL (new_val) == lval_register)
3722 fprintf_unfiltered (gdb_stdlog, " register=%d",
3723 VALUE_REGNUM (new_val));
3724 else if (VALUE_LVAL (new_val) == lval_memory)
3725 fprintf_unfiltered (gdb_stdlog, " address=%s",
3727 value_address (new_val)));
3729 fprintf_unfiltered (gdb_stdlog, " computed");
3731 fprintf_unfiltered (gdb_stdlog, " bytes=");
3732 fprintf_unfiltered (gdb_stdlog, "[");
3733 for (i = 0; i < register_size (gdbarch, regnum); i++)
3734 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3735 fprintf_unfiltered (gdb_stdlog, "]");
3738 fprintf_unfiltered (gdb_stdlog, " }\n");
3741 /* Dispose of the intermediate values. This prevents
3742 watchpoints from trying to watch the saved frame pointer. */
3743 value_free_to_mark (mark);
3745 else if (VALUE_LVAL (val) == lval_computed
3746 && value_computed_funcs (val)->read != NULL)
3747 value_computed_funcs (val)->read (val);
3748 /* Don't call value_optimized_out on val, doing so would result in a
3749 recursive call back to value_fetch_lazy, instead check the
3750 optimized_out flag directly. */
3751 else if (val->optimized_out)
3752 /* Keep it optimized out. */;
3754 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3756 set_value_lazy (val, 0);
3760 /* Implementation of the convenience function $_isvoid. */
3762 static struct value *
3763 isvoid_internal_fn (struct gdbarch *gdbarch,
3764 const struct language_defn *language,
3765 void *cookie, int argc, struct value **argv)
3770 error (_("You must provide one argument for $_isvoid."));
3772 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3774 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3778 _initialize_values (void)
3780 add_cmd ("convenience", no_class, show_convenience, _("\
3781 Debugger convenience (\"$foo\") variables and functions.\n\
3782 Convenience variables are created when you assign them values;\n\
3783 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3785 A few convenience variables are given values automatically:\n\
3786 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3787 \"$__\" holds the contents of the last address examined with \"x\"."
3790 Convenience functions are defined via the Python API."
3793 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
3795 add_cmd ("values", no_set_class, show_values, _("\
3796 Elements of value history around item number IDX (or last ten)."),
3799 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3800 Initialize a convenience variable if necessary.\n\
3801 init-if-undefined VARIABLE = EXPRESSION\n\
3802 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3803 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3804 VARIABLE is already initialized."));
3806 add_prefix_cmd ("function", no_class, function_command, _("\
3807 Placeholder command for showing help on convenience functions."),
3808 &functionlist, "function ", 0, &cmdlist);
3810 add_internal_function ("_isvoid", _("\
3811 Check whether an expression is void.\n\
3812 Usage: $_isvoid (expression)\n\
3813 Return 1 if the expression is void, zero otherwise."),
3814 isvoid_internal_fn, NULL);