1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "arch-utils.h"
33 #include "target-float.h"
36 #include "cli/cli-decode.h"
37 #include "extension.h"
39 #include "tracepoint.h"
41 #include "user-regs.h"
43 #include "completer.h"
44 #include "common/selftest.h"
45 #include "common/array-view.h"
47 /* Definition of a user function. */
48 struct internal_function
50 /* The name of the function. It is a bit odd to have this in the
51 function itself -- the user might use a differently-named
52 convenience variable to hold the function. */
56 internal_function_fn handler;
58 /* User data for the handler. */
62 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
66 /* Lowest offset in the range. */
69 /* Length of the range. */
72 /* Returns true if THIS is strictly less than OTHER, useful for
73 searching. We keep ranges sorted by offset and coalesce
74 overlapping and contiguous ranges, so this just compares the
77 bool operator< (const range &other) const
79 return offset < other.offset;
82 /* Returns true if THIS is equal to OTHER. */
83 bool operator== (const range &other) const
85 return offset == other.offset && length == other.length;
89 /* Returns true if the ranges defined by [offset1, offset1+len1) and
90 [offset2, offset2+len2) overlap. */
93 ranges_overlap (LONGEST offset1, LONGEST len1,
94 LONGEST offset2, LONGEST len2)
98 l = std::max (offset1, offset2);
99 h = std::min (offset1 + len1, offset2 + len2);
103 /* Returns true if RANGES contains any range that overlaps [OFFSET,
107 ranges_contain (const std::vector<range> &ranges, LONGEST offset,
112 what.offset = offset;
113 what.length = length;
115 /* We keep ranges sorted by offset and coalesce overlapping and
116 contiguous ranges, so to check if a range list contains a given
117 range, we can do a binary search for the position the given range
118 would be inserted if we only considered the starting OFFSET of
119 ranges. We call that position I. Since we also have LENGTH to
120 care for (this is a range afterall), we need to check if the
121 _previous_ range overlaps the I range. E.g.,
125 |---| |---| |------| ... |--|
130 In the case above, the binary search would return `I=1', meaning,
131 this OFFSET should be inserted at position 1, and the current
132 position 1 should be pushed further (and before 2). But, `0'
135 Then we need to check if the I range overlaps the I range itself.
140 |---| |---| |-------| ... |--|
147 auto i = std::lower_bound (ranges.begin (), ranges.end (), what);
149 if (i > ranges.begin ())
151 const struct range &bef = *(i - 1);
153 if (ranges_overlap (bef.offset, bef.length, offset, length))
157 if (i < ranges.end ())
159 const struct range &r = *i;
161 if (ranges_overlap (r.offset, r.length, offset, length))
168 static struct cmd_list_element *functionlist;
170 /* Note that the fields in this structure are arranged to save a bit
175 explicit value (struct type *type_)
181 enclosing_type (type_)
187 if (VALUE_LVAL (this) == lval_computed)
189 const struct lval_funcs *funcs = location.computed.funcs;
191 if (funcs->free_closure)
192 funcs->free_closure (this);
194 else if (VALUE_LVAL (this) == lval_xcallable)
195 delete location.xm_worker;
198 DISABLE_COPY_AND_ASSIGN (value);
200 /* Type of value; either not an lval, or one of the various
201 different possible kinds of lval. */
202 enum lval_type lval = not_lval;
204 /* Is it modifiable? Only relevant if lval != not_lval. */
205 unsigned int modifiable : 1;
207 /* If zero, contents of this value are in the contents field. If
208 nonzero, contents are in inferior. If the lval field is lval_memory,
209 the contents are in inferior memory at location.address plus offset.
210 The lval field may also be lval_register.
212 WARNING: This field is used by the code which handles watchpoints
213 (see breakpoint.c) to decide whether a particular value can be
214 watched by hardware watchpoints. If the lazy flag is set for
215 some member of a value chain, it is assumed that this member of
216 the chain doesn't need to be watched as part of watching the
217 value itself. This is how GDB avoids watching the entire struct
218 or array when the user wants to watch a single struct member or
219 array element. If you ever change the way lazy flag is set and
220 reset, be sure to consider this use as well! */
221 unsigned int lazy : 1;
223 /* If value is a variable, is it initialized or not. */
224 unsigned int initialized : 1;
226 /* If value is from the stack. If this is set, read_stack will be
227 used instead of read_memory to enable extra caching. */
228 unsigned int stack : 1;
230 /* Location of value (if lval). */
233 /* If lval == lval_memory, this is the address in the inferior */
236 /*If lval == lval_register, the value is from a register. */
239 /* Register number. */
241 /* Frame ID of "next" frame to which a register value is relative.
242 If the register value is found relative to frame F, then the
243 frame id of F->next will be stored in next_frame_id. */
244 struct frame_id next_frame_id;
247 /* Pointer to internal variable. */
248 struct internalvar *internalvar;
250 /* Pointer to xmethod worker. */
251 struct xmethod_worker *xm_worker;
253 /* If lval == lval_computed, this is a set of function pointers
254 to use to access and describe the value, and a closure pointer
258 /* Functions to call. */
259 const struct lval_funcs *funcs;
261 /* Closure for those functions to use. */
266 /* Describes offset of a value within lval of a structure in target
267 addressable memory units. Note also the member embedded_offset
271 /* Only used for bitfields; number of bits contained in them. */
274 /* Only used for bitfields; position of start of field. For
275 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
276 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
279 /* The number of references to this value. When a value is created,
280 the value chain holds a reference, so REFERENCE_COUNT is 1. If
281 release_value is called, this value is removed from the chain but
282 the caller of release_value now has a reference to this value.
283 The caller must arrange for a call to value_free later. */
284 int reference_count = 1;
286 /* Only used for bitfields; the containing value. This allows a
287 single read from the target when displaying multiple
289 value_ref_ptr parent;
291 /* Type of the value. */
294 /* If a value represents a C++ object, then the `type' field gives
295 the object's compile-time type. If the object actually belongs
296 to some class derived from `type', perhaps with other base
297 classes and additional members, then `type' is just a subobject
298 of the real thing, and the full object is probably larger than
299 `type' would suggest.
301 If `type' is a dynamic class (i.e. one with a vtable), then GDB
302 can actually determine the object's run-time type by looking at
303 the run-time type information in the vtable. When this
304 information is available, we may elect to read in the entire
305 object, for several reasons:
307 - When printing the value, the user would probably rather see the
308 full object, not just the limited portion apparent from the
311 - If `type' has virtual base classes, then even printing `type'
312 alone may require reaching outside the `type' portion of the
313 object to wherever the virtual base class has been stored.
315 When we store the entire object, `enclosing_type' is the run-time
316 type -- the complete object -- and `embedded_offset' is the
317 offset of `type' within that larger type, in target addressable memory
318 units. The value_contents() macro takes `embedded_offset' into account,
319 so most GDB code continues to see the `type' portion of the value, just
320 as the inferior would.
322 If `type' is a pointer to an object, then `enclosing_type' is a
323 pointer to the object's run-time type, and `pointed_to_offset' is
324 the offset in target addressable memory units from the full object
325 to the pointed-to object -- that is, the value `embedded_offset' would
326 have if we followed the pointer and fetched the complete object.
327 (I don't really see the point. Why not just determine the
328 run-time type when you indirect, and avoid the special case? The
329 contents don't matter until you indirect anyway.)
331 If we're not doing anything fancy, `enclosing_type' is equal to
332 `type', and `embedded_offset' is zero, so everything works
334 struct type *enclosing_type;
335 LONGEST embedded_offset = 0;
336 LONGEST pointed_to_offset = 0;
338 /* Actual contents of the value. Target byte-order. NULL or not
339 valid if lazy is nonzero. */
340 gdb::unique_xmalloc_ptr<gdb_byte> contents;
342 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
343 rather than available, since the common and default case is for a
344 value to be available. This is filled in at value read time.
345 The unavailable ranges are tracked in bits. Note that a contents
346 bit that has been optimized out doesn't really exist in the
347 program, so it can't be marked unavailable either. */
348 std::vector<range> unavailable;
350 /* Likewise, but for optimized out contents (a chunk of the value of
351 a variable that does not actually exist in the program). If LVAL
352 is lval_register, this is a register ($pc, $sp, etc., never a
353 program variable) that has not been saved in the frame. Not
354 saved registers and optimized-out program variables values are
355 treated pretty much the same, except not-saved registers have a
356 different string representation and related error strings. */
357 std::vector<range> optimized_out;
363 get_value_arch (const struct value *value)
365 return get_type_arch (value_type (value));
369 value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
371 gdb_assert (!value->lazy);
373 return !ranges_contain (value->unavailable, offset, length);
377 value_bytes_available (const struct value *value,
378 LONGEST offset, LONGEST length)
380 return value_bits_available (value,
381 offset * TARGET_CHAR_BIT,
382 length * TARGET_CHAR_BIT);
386 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
388 gdb_assert (!value->lazy);
390 return ranges_contain (value->optimized_out, bit_offset, bit_length);
394 value_entirely_available (struct value *value)
396 /* We can only tell whether the whole value is available when we try
399 value_fetch_lazy (value);
401 if (value->unavailable.empty ())
406 /* Returns true if VALUE is entirely covered by RANGES. If the value
407 is lazy, it'll be read now. Note that RANGE is a pointer to
408 pointer because reading the value might change *RANGE. */
411 value_entirely_covered_by_range_vector (struct value *value,
412 const std::vector<range> &ranges)
414 /* We can only tell whether the whole value is optimized out /
415 unavailable when we try to read it. */
417 value_fetch_lazy (value);
419 if (ranges.size () == 1)
421 const struct range &t = ranges[0];
424 && t.length == (TARGET_CHAR_BIT
425 * TYPE_LENGTH (value_enclosing_type (value))))
433 value_entirely_unavailable (struct value *value)
435 return value_entirely_covered_by_range_vector (value, value->unavailable);
439 value_entirely_optimized_out (struct value *value)
441 return value_entirely_covered_by_range_vector (value, value->optimized_out);
444 /* Insert into the vector pointed to by VECTORP the bit range starting of
445 OFFSET bits, and extending for the next LENGTH bits. */
448 insert_into_bit_range_vector (std::vector<range> *vectorp,
449 LONGEST offset, LONGEST length)
453 /* Insert the range sorted. If there's overlap or the new range
454 would be contiguous with an existing range, merge. */
456 newr.offset = offset;
457 newr.length = length;
459 /* Do a binary search for the position the given range would be
460 inserted if we only considered the starting OFFSET of ranges.
461 Call that position I. Since we also have LENGTH to care for
462 (this is a range afterall), we need to check if the _previous_
463 range overlaps the I range. E.g., calling R the new range:
465 #1 - overlaps with previous
469 |---| |---| |------| ... |--|
474 In the case #1 above, the binary search would return `I=1',
475 meaning, this OFFSET should be inserted at position 1, and the
476 current position 1 should be pushed further (and become 2). But,
477 note that `0' overlaps with R, so we want to merge them.
479 A similar consideration needs to be taken if the new range would
480 be contiguous with the previous range:
482 #2 - contiguous with previous
486 |--| |---| |------| ... |--|
491 If there's no overlap with the previous range, as in:
493 #3 - not overlapping and not contiguous
497 |--| |---| |------| ... |--|
504 #4 - R is the range with lowest offset
508 |--| |---| |------| ... |--|
513 ... we just push the new range to I.
515 All the 4 cases above need to consider that the new range may
516 also overlap several of the ranges that follow, or that R may be
517 contiguous with the following range, and merge. E.g.,
519 #5 - overlapping following ranges
522 |------------------------|
523 |--| |---| |------| ... |--|
532 |--| |---| |------| ... |--|
539 auto i = std::lower_bound (vectorp->begin (), vectorp->end (), newr);
540 if (i > vectorp->begin ())
542 struct range &bef = *(i - 1);
544 if (ranges_overlap (bef.offset, bef.length, offset, length))
547 ULONGEST l = std::min (bef.offset, offset);
548 ULONGEST h = std::max (bef.offset + bef.length, offset + length);
554 else if (offset == bef.offset + bef.length)
557 bef.length += length;
563 i = vectorp->insert (i, newr);
569 i = vectorp->insert (i, newr);
572 /* Check whether the ranges following the one we've just added or
573 touched can be folded in (#5 above). */
574 if (i != vectorp->end () && i + 1 < vectorp->end ())
579 /* Get the range we just touched. */
580 struct range &t = *i;
584 for (; i < vectorp->end (); i++)
586 struct range &r = *i;
587 if (r.offset <= t.offset + t.length)
591 l = std::min (t.offset, r.offset);
592 h = std::max (t.offset + t.length, r.offset + r.length);
601 /* If we couldn't merge this one, we won't be able to
602 merge following ones either, since the ranges are
603 always sorted by OFFSET. */
609 vectorp->erase (next, next + removed);
614 mark_value_bits_unavailable (struct value *value,
615 LONGEST offset, LONGEST length)
617 insert_into_bit_range_vector (&value->unavailable, offset, length);
621 mark_value_bytes_unavailable (struct value *value,
622 LONGEST offset, LONGEST length)
624 mark_value_bits_unavailable (value,
625 offset * TARGET_CHAR_BIT,
626 length * TARGET_CHAR_BIT);
629 /* Find the first range in RANGES that overlaps the range defined by
630 OFFSET and LENGTH, starting at element POS in the RANGES vector,
631 Returns the index into RANGES where such overlapping range was
632 found, or -1 if none was found. */
635 find_first_range_overlap (const std::vector<range> *ranges, int pos,
636 LONGEST offset, LONGEST length)
640 for (i = pos; i < ranges->size (); i++)
642 const range &r = (*ranges)[i];
643 if (ranges_overlap (r.offset, r.length, offset, length))
650 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
651 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
654 It must always be the case that:
655 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
657 It is assumed that memory can be accessed from:
658 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
660 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
661 / TARGET_CHAR_BIT) */
663 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
664 const gdb_byte *ptr2, size_t offset2_bits,
667 gdb_assert (offset1_bits % TARGET_CHAR_BIT
668 == offset2_bits % TARGET_CHAR_BIT);
670 if (offset1_bits % TARGET_CHAR_BIT != 0)
673 gdb_byte mask, b1, b2;
675 /* The offset from the base pointers PTR1 and PTR2 is not a complete
676 number of bytes. A number of bits up to either the next exact
677 byte boundary, or LENGTH_BITS (which ever is sooner) will be
679 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
680 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
681 mask = (1 << bits) - 1;
683 if (length_bits < bits)
685 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
689 /* Now load the two bytes and mask off the bits we care about. */
690 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
691 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
696 /* Now update the length and offsets to take account of the bits
697 we've just compared. */
699 offset1_bits += bits;
700 offset2_bits += bits;
703 if (length_bits % TARGET_CHAR_BIT != 0)
707 gdb_byte mask, b1, b2;
709 /* The length is not an exact number of bytes. After the previous
710 IF.. block then the offsets are byte aligned, or the
711 length is zero (in which case this code is not reached). Compare
712 a number of bits at the end of the region, starting from an exact
714 bits = length_bits % TARGET_CHAR_BIT;
715 o1 = offset1_bits + length_bits - bits;
716 o2 = offset2_bits + length_bits - bits;
718 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
719 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
721 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
722 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
724 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
725 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
735 /* We've now taken care of any stray "bits" at the start, or end of
736 the region to compare, the remainder can be covered with a simple
738 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
739 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
740 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
742 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
743 ptr2 + offset2_bits / TARGET_CHAR_BIT,
744 length_bits / TARGET_CHAR_BIT);
747 /* Length is zero, regions match. */
751 /* Helper struct for find_first_range_overlap_and_match and
752 value_contents_bits_eq. Keep track of which slot of a given ranges
753 vector have we last looked at. */
755 struct ranges_and_idx
758 const std::vector<range> *ranges;
760 /* The range we've last found in RANGES. Given ranges are sorted,
761 we can start the next lookup here. */
765 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
766 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
767 ranges starting at OFFSET2 bits. Return true if the ranges match
768 and fill in *L and *H with the overlapping window relative to
769 (both) OFFSET1 or OFFSET2. */
772 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
773 struct ranges_and_idx *rp2,
774 LONGEST offset1, LONGEST offset2,
775 LONGEST length, ULONGEST *l, ULONGEST *h)
777 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
779 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
782 if (rp1->idx == -1 && rp2->idx == -1)
788 else if (rp1->idx == -1 || rp2->idx == -1)
792 const range *r1, *r2;
796 r1 = &(*rp1->ranges)[rp1->idx];
797 r2 = &(*rp2->ranges)[rp2->idx];
799 /* Get the unavailable windows intersected by the incoming
800 ranges. The first and last ranges that overlap the argument
801 range may be wider than said incoming arguments ranges. */
802 l1 = std::max (offset1, r1->offset);
803 h1 = std::min (offset1 + length, r1->offset + r1->length);
805 l2 = std::max (offset2, r2->offset);
806 h2 = std::min (offset2 + length, offset2 + r2->length);
808 /* Make them relative to the respective start offsets, so we can
809 compare them for equality. */
816 /* Different ranges, no match. */
817 if (l1 != l2 || h1 != h2)
826 /* Helper function for value_contents_eq. The only difference is that
827 this function is bit rather than byte based.
829 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
830 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
831 Return true if the available bits match. */
834 value_contents_bits_eq (const struct value *val1, int offset1,
835 const struct value *val2, int offset2,
838 /* Each array element corresponds to a ranges source (unavailable,
839 optimized out). '1' is for VAL1, '2' for VAL2. */
840 struct ranges_and_idx rp1[2], rp2[2];
842 /* See function description in value.h. */
843 gdb_assert (!val1->lazy && !val2->lazy);
845 /* We shouldn't be trying to compare past the end of the values. */
846 gdb_assert (offset1 + length
847 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
848 gdb_assert (offset2 + length
849 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
851 memset (&rp1, 0, sizeof (rp1));
852 memset (&rp2, 0, sizeof (rp2));
853 rp1[0].ranges = &val1->unavailable;
854 rp2[0].ranges = &val2->unavailable;
855 rp1[1].ranges = &val1->optimized_out;
856 rp2[1].ranges = &val2->optimized_out;
860 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
863 for (i = 0; i < 2; i++)
865 ULONGEST l_tmp, h_tmp;
867 /* The contents only match equal if the invalid/unavailable
868 contents ranges match as well. */
869 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
870 offset1, offset2, length,
874 /* We're interested in the lowest/first range found. */
875 if (i == 0 || l_tmp < l)
882 /* Compare the available/valid contents. */
883 if (memcmp_with_bit_offsets (val1->contents.get (), offset1,
884 val2->contents.get (), offset2, l) != 0)
896 value_contents_eq (const struct value *val1, LONGEST offset1,
897 const struct value *val2, LONGEST offset2,
900 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
901 val2, offset2 * TARGET_CHAR_BIT,
902 length * TARGET_CHAR_BIT);
906 /* The value-history records all the values printed by print commands
907 during this session. */
909 static std::vector<value_ref_ptr> value_history;
912 /* List of all value objects currently allocated
913 (except for those released by calls to release_value)
914 This is so they can be freed after each command. */
916 static std::vector<value_ref_ptr> all_values;
918 /* Allocate a lazy value for type TYPE. Its actual content is
919 "lazily" allocated too: the content field of the return value is
920 NULL; it will be allocated when it is fetched from the target. */
923 allocate_value_lazy (struct type *type)
927 /* Call check_typedef on our type to make sure that, if TYPE
928 is a TYPE_CODE_TYPEDEF, its length is set to the length
929 of the target type instead of zero. However, we do not
930 replace the typedef type by the target type, because we want
931 to keep the typedef in order to be able to set the VAL's type
932 description correctly. */
933 check_typedef (type);
935 val = new struct value (type);
937 /* Values start out on the all_values chain. */
938 all_values.emplace_back (val);
943 /* The maximum size, in bytes, that GDB will try to allocate for a value.
944 The initial value of 64k was not selected for any specific reason, it is
945 just a reasonable starting point. */
947 static int max_value_size = 65536; /* 64k bytes */
949 /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
950 LONGEST, otherwise GDB will not be able to parse integer values from the
951 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
952 be unable to parse "set max-value-size 2".
954 As we want a consistent GDB experience across hosts with different sizes
955 of LONGEST, this arbitrary minimum value was selected, so long as this
956 is bigger than LONGEST on all GDB supported hosts we're fine. */
958 #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
959 gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
961 /* Implement the "set max-value-size" command. */
964 set_max_value_size (const char *args, int from_tty,
965 struct cmd_list_element *c)
967 gdb_assert (max_value_size == -1 || max_value_size >= 0);
969 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
971 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
972 error (_("max-value-size set too low, increasing to %d bytes"),
977 /* Implement the "show max-value-size" command. */
980 show_max_value_size (struct ui_file *file, int from_tty,
981 struct cmd_list_element *c, const char *value)
983 if (max_value_size == -1)
984 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
986 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
990 /* Called before we attempt to allocate or reallocate a buffer for the
991 contents of a value. TYPE is the type of the value for which we are
992 allocating the buffer. If the buffer is too large (based on the user
993 controllable setting) then throw an error. If this function returns
994 then we should attempt to allocate the buffer. */
997 check_type_length_before_alloc (const struct type *type)
999 unsigned int length = TYPE_LENGTH (type);
1001 if (max_value_size > -1 && length > max_value_size)
1003 if (TYPE_NAME (type) != NULL)
1004 error (_("value of type `%s' requires %u bytes, which is more "
1005 "than max-value-size"), TYPE_NAME (type), length);
1007 error (_("value requires %u bytes, which is more than "
1008 "max-value-size"), length);
1012 /* Allocate the contents of VAL if it has not been allocated yet. */
1015 allocate_value_contents (struct value *val)
1019 check_type_length_before_alloc (val->enclosing_type);
1021 ((gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)));
1025 /* Allocate a value and its contents for type TYPE. */
1028 allocate_value (struct type *type)
1030 struct value *val = allocate_value_lazy (type);
1032 allocate_value_contents (val);
1037 /* Allocate a value that has the correct length
1038 for COUNT repetitions of type TYPE. */
1041 allocate_repeat_value (struct type *type, int count)
1043 int low_bound = current_language->string_lower_bound; /* ??? */
1044 /* FIXME-type-allocation: need a way to free this type when we are
1046 struct type *array_type
1047 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
1049 return allocate_value (array_type);
1053 allocate_computed_value (struct type *type,
1054 const struct lval_funcs *funcs,
1057 struct value *v = allocate_value_lazy (type);
1059 VALUE_LVAL (v) = lval_computed;
1060 v->location.computed.funcs = funcs;
1061 v->location.computed.closure = closure;
1066 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1069 allocate_optimized_out_value (struct type *type)
1071 struct value *retval = allocate_value_lazy (type);
1073 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1074 set_value_lazy (retval, 0);
1078 /* Accessor methods. */
1081 value_type (const struct value *value)
1086 deprecated_set_value_type (struct value *value, struct type *type)
1092 value_offset (const struct value *value)
1094 return value->offset;
1097 set_value_offset (struct value *value, LONGEST offset)
1099 value->offset = offset;
1103 value_bitpos (const struct value *value)
1105 return value->bitpos;
1108 set_value_bitpos (struct value *value, LONGEST bit)
1110 value->bitpos = bit;
1114 value_bitsize (const struct value *value)
1116 return value->bitsize;
1119 set_value_bitsize (struct value *value, LONGEST bit)
1121 value->bitsize = bit;
1125 value_parent (const struct value *value)
1127 return value->parent.get ();
1133 set_value_parent (struct value *value, struct value *parent)
1135 value->parent = value_ref_ptr::new_reference (parent);
1139 value_contents_raw (struct value *value)
1141 struct gdbarch *arch = get_value_arch (value);
1142 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1144 allocate_value_contents (value);
1145 return value->contents.get () + value->embedded_offset * unit_size;
1149 value_contents_all_raw (struct value *value)
1151 allocate_value_contents (value);
1152 return value->contents.get ();
1156 value_enclosing_type (const struct value *value)
1158 return value->enclosing_type;
1161 /* Look at value.h for description. */
1164 value_actual_type (struct value *value, int resolve_simple_types,
1165 int *real_type_found)
1167 struct value_print_options opts;
1168 struct type *result;
1170 get_user_print_options (&opts);
1172 if (real_type_found)
1173 *real_type_found = 0;
1174 result = value_type (value);
1175 if (opts.objectprint)
1177 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1178 fetch its rtti type. */
1179 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
1180 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1182 && !value_optimized_out (value))
1184 struct type *real_type;
1186 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1189 if (real_type_found)
1190 *real_type_found = 1;
1194 else if (resolve_simple_types)
1196 if (real_type_found)
1197 *real_type_found = 1;
1198 result = value_enclosing_type (value);
1206 error_value_optimized_out (void)
1208 error (_("value has been optimized out"));
1212 require_not_optimized_out (const struct value *value)
1214 if (!value->optimized_out.empty ())
1216 if (value->lval == lval_register)
1217 error (_("register has not been saved in frame"));
1219 error_value_optimized_out ();
1224 require_available (const struct value *value)
1226 if (!value->unavailable.empty ())
1227 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1231 value_contents_for_printing (struct value *value)
1234 value_fetch_lazy (value);
1235 return value->contents.get ();
1239 value_contents_for_printing_const (const struct value *value)
1241 gdb_assert (!value->lazy);
1242 return value->contents.get ();
1246 value_contents_all (struct value *value)
1248 const gdb_byte *result = value_contents_for_printing (value);
1249 require_not_optimized_out (value);
1250 require_available (value);
1254 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1255 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1258 ranges_copy_adjusted (std::vector<range> *dst_range, int dst_bit_offset,
1259 const std::vector<range> &src_range, int src_bit_offset,
1262 for (const range &r : src_range)
1266 l = std::max (r.offset, (LONGEST) src_bit_offset);
1267 h = std::min (r.offset + r.length,
1268 (LONGEST) src_bit_offset + bit_length);
1271 insert_into_bit_range_vector (dst_range,
1272 dst_bit_offset + (l - src_bit_offset),
1277 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1278 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1281 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1282 const struct value *src, int src_bit_offset,
1285 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1286 src->unavailable, src_bit_offset,
1288 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1289 src->optimized_out, src_bit_offset,
1293 /* Copy LENGTH target addressable memory units of SRC value's (all) contents
1294 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1295 contents, starting at DST_OFFSET. If unavailable contents are
1296 being copied from SRC, the corresponding DST contents are marked
1297 unavailable accordingly. Neither DST nor SRC may be lazy
1300 It is assumed the contents of DST in the [DST_OFFSET,
1301 DST_OFFSET+LENGTH) range are wholly available. */
1304 value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1305 struct value *src, LONGEST src_offset, LONGEST length)
1307 LONGEST src_bit_offset, dst_bit_offset, bit_length;
1308 struct gdbarch *arch = get_value_arch (src);
1309 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1311 /* A lazy DST would make that this copy operation useless, since as
1312 soon as DST's contents were un-lazied (by a later value_contents
1313 call, say), the contents would be overwritten. A lazy SRC would
1314 mean we'd be copying garbage. */
1315 gdb_assert (!dst->lazy && !src->lazy);
1317 /* The overwritten DST range gets unavailability ORed in, not
1318 replaced. Make sure to remember to implement replacing if it
1319 turns out actually necessary. */
1320 gdb_assert (value_bytes_available (dst, dst_offset, length));
1321 gdb_assert (!value_bits_any_optimized_out (dst,
1322 TARGET_CHAR_BIT * dst_offset,
1323 TARGET_CHAR_BIT * length));
1325 /* Copy the data. */
1326 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1327 value_contents_all_raw (src) + src_offset * unit_size,
1328 length * unit_size);
1330 /* Copy the meta-data, adjusted. */
1331 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1332 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1333 bit_length = length * unit_size * HOST_CHAR_BIT;
1335 value_ranges_copy_adjusted (dst, dst_bit_offset,
1336 src, src_bit_offset,
1340 /* Copy LENGTH bytes of SRC value's (all) contents
1341 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1342 (all) contents, starting at DST_OFFSET. If unavailable contents
1343 are being copied from SRC, the corresponding DST contents are
1344 marked unavailable accordingly. DST must not be lazy. If SRC is
1345 lazy, it will be fetched now.
1347 It is assumed the contents of DST in the [DST_OFFSET,
1348 DST_OFFSET+LENGTH) range are wholly available. */
1351 value_contents_copy (struct value *dst, LONGEST dst_offset,
1352 struct value *src, LONGEST src_offset, LONGEST length)
1355 value_fetch_lazy (src);
1357 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1361 value_lazy (const struct value *value)
1367 set_value_lazy (struct value *value, int val)
1373 value_stack (const struct value *value)
1375 return value->stack;
1379 set_value_stack (struct value *value, int val)
1385 value_contents (struct value *value)
1387 const gdb_byte *result = value_contents_writeable (value);
1388 require_not_optimized_out (value);
1389 require_available (value);
1394 value_contents_writeable (struct value *value)
1397 value_fetch_lazy (value);
1398 return value_contents_raw (value);
1402 value_optimized_out (struct value *value)
1404 /* We can only know if a value is optimized out once we have tried to
1406 if (value->optimized_out.empty () && value->lazy)
1410 value_fetch_lazy (value);
1412 catch (const gdb_exception_error &ex)
1414 /* Fall back to checking value->optimized_out. */
1418 return !value->optimized_out.empty ();
1421 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1422 the following LENGTH bytes. */
1425 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1427 mark_value_bits_optimized_out (value,
1428 offset * TARGET_CHAR_BIT,
1429 length * TARGET_CHAR_BIT);
1435 mark_value_bits_optimized_out (struct value *value,
1436 LONGEST offset, LONGEST length)
1438 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1442 value_bits_synthetic_pointer (const struct value *value,
1443 LONGEST offset, LONGEST length)
1445 if (value->lval != lval_computed
1446 || !value->location.computed.funcs->check_synthetic_pointer)
1448 return value->location.computed.funcs->check_synthetic_pointer (value,
1454 value_embedded_offset (const struct value *value)
1456 return value->embedded_offset;
1460 set_value_embedded_offset (struct value *value, LONGEST val)
1462 value->embedded_offset = val;
1466 value_pointed_to_offset (const struct value *value)
1468 return value->pointed_to_offset;
1472 set_value_pointed_to_offset (struct value *value, LONGEST val)
1474 value->pointed_to_offset = val;
1477 const struct lval_funcs *
1478 value_computed_funcs (const struct value *v)
1480 gdb_assert (value_lval_const (v) == lval_computed);
1482 return v->location.computed.funcs;
1486 value_computed_closure (const struct value *v)
1488 gdb_assert (v->lval == lval_computed);
1490 return v->location.computed.closure;
1494 deprecated_value_lval_hack (struct value *value)
1496 return &value->lval;
1500 value_lval_const (const struct value *value)
1506 value_address (const struct value *value)
1508 if (value->lval != lval_memory)
1510 if (value->parent != NULL)
1511 return value_address (value->parent.get ()) + value->offset;
1512 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1514 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1515 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1518 return value->location.address + value->offset;
1522 value_raw_address (const struct value *value)
1524 if (value->lval != lval_memory)
1526 return value->location.address;
1530 set_value_address (struct value *value, CORE_ADDR addr)
1532 gdb_assert (value->lval == lval_memory);
1533 value->location.address = addr;
1536 struct internalvar **
1537 deprecated_value_internalvar_hack (struct value *value)
1539 return &value->location.internalvar;
1543 deprecated_value_next_frame_id_hack (struct value *value)
1545 gdb_assert (value->lval == lval_register);
1546 return &value->location.reg.next_frame_id;
1550 deprecated_value_regnum_hack (struct value *value)
1552 gdb_assert (value->lval == lval_register);
1553 return &value->location.reg.regnum;
1557 deprecated_value_modifiable (const struct value *value)
1559 return value->modifiable;
1562 /* Return a mark in the value chain. All values allocated after the
1563 mark is obtained (except for those released) are subject to being freed
1564 if a subsequent value_free_to_mark is passed the mark. */
1568 if (all_values.empty ())
1570 return all_values.back ().get ();
1576 value_incref (struct value *val)
1578 val->reference_count++;
1581 /* Release a reference to VAL, which was acquired with value_incref.
1582 This function is also called to deallocate values from the value
1586 value_decref (struct value *val)
1590 gdb_assert (val->reference_count > 0);
1591 val->reference_count--;
1592 if (val->reference_count == 0)
1597 /* Free all values allocated since MARK was obtained by value_mark
1598 (except for those released). */
1600 value_free_to_mark (const struct value *mark)
1602 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1603 if (iter == all_values.end ())
1604 all_values.clear ();
1606 all_values.erase (iter + 1, all_values.end ());
1609 /* Remove VAL from the chain all_values
1610 so it will not be freed automatically. */
1613 release_value (struct value *val)
1616 return value_ref_ptr ();
1618 std::vector<value_ref_ptr>::reverse_iterator iter;
1619 for (iter = all_values.rbegin (); iter != all_values.rend (); ++iter)
1623 value_ref_ptr result = *iter;
1624 all_values.erase (iter.base () - 1);
1629 /* We must always return an owned reference. Normally this happens
1630 because we transfer the reference from the value chain, but in
1631 this case the value was not on the chain. */
1632 return value_ref_ptr::new_reference (val);
1637 std::vector<value_ref_ptr>
1638 value_release_to_mark (const struct value *mark)
1640 std::vector<value_ref_ptr> result;
1642 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1643 if (iter == all_values.end ())
1644 std::swap (result, all_values);
1647 std::move (iter + 1, all_values.end (), std::back_inserter (result));
1648 all_values.erase (iter + 1, all_values.end ());
1650 std::reverse (result.begin (), result.end ());
1654 /* Return a copy of the value ARG.
1655 It contains the same contents, for same memory address,
1656 but it's a different block of storage. */
1659 value_copy (struct value *arg)
1661 struct type *encl_type = value_enclosing_type (arg);
1664 if (value_lazy (arg))
1665 val = allocate_value_lazy (encl_type);
1667 val = allocate_value (encl_type);
1668 val->type = arg->type;
1669 VALUE_LVAL (val) = VALUE_LVAL (arg);
1670 val->location = arg->location;
1671 val->offset = arg->offset;
1672 val->bitpos = arg->bitpos;
1673 val->bitsize = arg->bitsize;
1674 val->lazy = arg->lazy;
1675 val->embedded_offset = value_embedded_offset (arg);
1676 val->pointed_to_offset = arg->pointed_to_offset;
1677 val->modifiable = arg->modifiable;
1678 if (!value_lazy (val))
1680 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1681 TYPE_LENGTH (value_enclosing_type (arg)));
1684 val->unavailable = arg->unavailable;
1685 val->optimized_out = arg->optimized_out;
1686 val->parent = arg->parent;
1687 if (VALUE_LVAL (val) == lval_computed)
1689 const struct lval_funcs *funcs = val->location.computed.funcs;
1691 if (funcs->copy_closure)
1692 val->location.computed.closure = funcs->copy_closure (val);
1697 /* Return a "const" and/or "volatile" qualified version of the value V.
1698 If CNST is true, then the returned value will be qualified with
1700 if VOLTL is true, then the returned value will be qualified with
1704 make_cv_value (int cnst, int voltl, struct value *v)
1706 struct type *val_type = value_type (v);
1707 struct type *enclosing_type = value_enclosing_type (v);
1708 struct value *cv_val = value_copy (v);
1710 deprecated_set_value_type (cv_val,
1711 make_cv_type (cnst, voltl, val_type, NULL));
1712 set_value_enclosing_type (cv_val,
1713 make_cv_type (cnst, voltl, enclosing_type, NULL));
1718 /* Return a version of ARG that is non-lvalue. */
1721 value_non_lval (struct value *arg)
1723 if (VALUE_LVAL (arg) != not_lval)
1725 struct type *enc_type = value_enclosing_type (arg);
1726 struct value *val = allocate_value (enc_type);
1728 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1729 TYPE_LENGTH (enc_type));
1730 val->type = arg->type;
1731 set_value_embedded_offset (val, value_embedded_offset (arg));
1732 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1738 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1741 value_force_lval (struct value *v, CORE_ADDR addr)
1743 gdb_assert (VALUE_LVAL (v) == not_lval);
1745 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1746 v->lval = lval_memory;
1747 v->location.address = addr;
1751 set_value_component_location (struct value *component,
1752 const struct value *whole)
1756 gdb_assert (whole->lval != lval_xcallable);
1758 if (whole->lval == lval_internalvar)
1759 VALUE_LVAL (component) = lval_internalvar_component;
1761 VALUE_LVAL (component) = whole->lval;
1763 component->location = whole->location;
1764 if (whole->lval == lval_computed)
1766 const struct lval_funcs *funcs = whole->location.computed.funcs;
1768 if (funcs->copy_closure)
1769 component->location.computed.closure = funcs->copy_closure (whole);
1772 /* If type has a dynamic resolved location property
1773 update it's value address. */
1774 type = value_type (whole);
1775 if (NULL != TYPE_DATA_LOCATION (type)
1776 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1777 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1780 /* Access to the value history. */
1782 /* Record a new value in the value history.
1783 Returns the absolute history index of the entry. */
1786 record_latest_value (struct value *val)
1788 /* We don't want this value to have anything to do with the inferior anymore.
1789 In particular, "set $1 = 50" should not affect the variable from which
1790 the value was taken, and fast watchpoints should be able to assume that
1791 a value on the value history never changes. */
1792 if (value_lazy (val))
1793 value_fetch_lazy (val);
1794 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1795 from. This is a bit dubious, because then *&$1 does not just return $1
1796 but the current contents of that location. c'est la vie... */
1797 val->modifiable = 0;
1799 value_history.push_back (release_value (val));
1801 return value_history.size ();
1804 /* Return a copy of the value in the history with sequence number NUM. */
1807 access_value_history (int num)
1812 absnum += value_history.size ();
1817 error (_("The history is empty."));
1819 error (_("There is only one value in the history."));
1821 error (_("History does not go back to $$%d."), -num);
1823 if (absnum > value_history.size ())
1824 error (_("History has not yet reached $%d."), absnum);
1828 return value_copy (value_history[absnum].get ());
1832 show_values (const char *num_exp, int from_tty)
1840 /* "show values +" should print from the stored position.
1841 "show values <exp>" should print around value number <exp>. */
1842 if (num_exp[0] != '+' || num_exp[1] != '\0')
1843 num = parse_and_eval_long (num_exp) - 5;
1847 /* "show values" means print the last 10 values. */
1848 num = value_history.size () - 9;
1854 for (i = num; i < num + 10 && i <= value_history.size (); i++)
1856 struct value_print_options opts;
1858 val = access_value_history (i);
1859 printf_filtered (("$%d = "), i);
1860 get_user_print_options (&opts);
1861 value_print (val, gdb_stdout, &opts);
1862 printf_filtered (("\n"));
1865 /* The next "show values +" should start after what we just printed. */
1868 /* Hitting just return after this command should do the same thing as
1869 "show values +". If num_exp is null, this is unnecessary, since
1870 "show values +" is not useful after "show values". */
1871 if (from_tty && num_exp)
1872 set_repeat_arguments ("+");
1875 enum internalvar_kind
1877 /* The internal variable is empty. */
1880 /* The value of the internal variable is provided directly as
1881 a GDB value object. */
1884 /* A fresh value is computed via a call-back routine on every
1885 access to the internal variable. */
1886 INTERNALVAR_MAKE_VALUE,
1888 /* The internal variable holds a GDB internal convenience function. */
1889 INTERNALVAR_FUNCTION,
1891 /* The variable holds an integer value. */
1892 INTERNALVAR_INTEGER,
1894 /* The variable holds a GDB-provided string. */
1898 union internalvar_data
1900 /* A value object used with INTERNALVAR_VALUE. */
1901 struct value *value;
1903 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1906 /* The functions to call. */
1907 const struct internalvar_funcs *functions;
1909 /* The function's user-data. */
1913 /* The internal function used with INTERNALVAR_FUNCTION. */
1916 struct internal_function *function;
1917 /* True if this is the canonical name for the function. */
1921 /* An integer value used with INTERNALVAR_INTEGER. */
1924 /* If type is non-NULL, it will be used as the type to generate
1925 a value for this internal variable. If type is NULL, a default
1926 integer type for the architecture is used. */
1931 /* A string value used with INTERNALVAR_STRING. */
1935 /* Internal variables. These are variables within the debugger
1936 that hold values assigned by debugger commands.
1937 The user refers to them with a '$' prefix
1938 that does not appear in the variable names stored internally. */
1942 struct internalvar *next;
1945 /* We support various different kinds of content of an internal variable.
1946 enum internalvar_kind specifies the kind, and union internalvar_data
1947 provides the data associated with this particular kind. */
1949 enum internalvar_kind kind;
1951 union internalvar_data u;
1954 static struct internalvar *internalvars;
1956 /* If the variable does not already exist create it and give it the
1957 value given. If no value is given then the default is zero. */
1959 init_if_undefined_command (const char* args, int from_tty)
1961 struct internalvar* intvar;
1963 /* Parse the expression - this is taken from set_command(). */
1964 expression_up expr = parse_expression (args);
1966 /* Validate the expression.
1967 Was the expression an assignment?
1968 Or even an expression at all? */
1969 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1970 error (_("Init-if-undefined requires an assignment expression."));
1972 /* Extract the variable from the parsed expression.
1973 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1974 if (expr->elts[1].opcode != OP_INTERNALVAR)
1975 error (_("The first parameter to init-if-undefined "
1976 "should be a GDB variable."));
1977 intvar = expr->elts[2].internalvar;
1979 /* Only evaluate the expression if the lvalue is void.
1980 This may still fail if the expresssion is invalid. */
1981 if (intvar->kind == INTERNALVAR_VOID)
1982 evaluate_expression (expr.get ());
1986 /* Look up an internal variable with name NAME. NAME should not
1987 normally include a dollar sign.
1989 If the specified internal variable does not exist,
1990 the return value is NULL. */
1992 struct internalvar *
1993 lookup_only_internalvar (const char *name)
1995 struct internalvar *var;
1997 for (var = internalvars; var; var = var->next)
1998 if (strcmp (var->name, name) == 0)
2004 /* Complete NAME by comparing it to the names of internal
2008 complete_internalvar (completion_tracker &tracker, const char *name)
2010 struct internalvar *var;
2013 len = strlen (name);
2015 for (var = internalvars; var; var = var->next)
2016 if (strncmp (var->name, name, len) == 0)
2017 tracker.add_completion (make_unique_xstrdup (var->name));
2020 /* Create an internal variable with name NAME and with a void value.
2021 NAME should not normally include a dollar sign. */
2023 struct internalvar *
2024 create_internalvar (const char *name)
2026 struct internalvar *var = XNEW (struct internalvar);
2028 var->name = xstrdup (name);
2029 var->kind = INTERNALVAR_VOID;
2030 var->next = internalvars;
2035 /* Create an internal variable with name NAME and register FUN as the
2036 function that value_of_internalvar uses to create a value whenever
2037 this variable is referenced. NAME should not normally include a
2038 dollar sign. DATA is passed uninterpreted to FUN when it is
2039 called. CLEANUP, if not NULL, is called when the internal variable
2040 is destroyed. It is passed DATA as its only argument. */
2042 struct internalvar *
2043 create_internalvar_type_lazy (const char *name,
2044 const struct internalvar_funcs *funcs,
2047 struct internalvar *var = create_internalvar (name);
2049 var->kind = INTERNALVAR_MAKE_VALUE;
2050 var->u.make_value.functions = funcs;
2051 var->u.make_value.data = data;
2055 /* See documentation in value.h. */
2058 compile_internalvar_to_ax (struct internalvar *var,
2059 struct agent_expr *expr,
2060 struct axs_value *value)
2062 if (var->kind != INTERNALVAR_MAKE_VALUE
2063 || var->u.make_value.functions->compile_to_ax == NULL)
2066 var->u.make_value.functions->compile_to_ax (var, expr, value,
2067 var->u.make_value.data);
2071 /* Look up an internal variable with name NAME. NAME should not
2072 normally include a dollar sign.
2074 If the specified internal variable does not exist,
2075 one is created, with a void value. */
2077 struct internalvar *
2078 lookup_internalvar (const char *name)
2080 struct internalvar *var;
2082 var = lookup_only_internalvar (name);
2086 return create_internalvar (name);
2089 /* Return current value of internal variable VAR. For variables that
2090 are not inherently typed, use a value type appropriate for GDBARCH. */
2093 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2096 struct trace_state_variable *tsv;
2098 /* If there is a trace state variable of the same name, assume that
2099 is what we really want to see. */
2100 tsv = find_trace_state_variable (var->name);
2103 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2105 if (tsv->value_known)
2106 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2109 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2115 case INTERNALVAR_VOID:
2116 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2119 case INTERNALVAR_FUNCTION:
2120 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2123 case INTERNALVAR_INTEGER:
2124 if (!var->u.integer.type)
2125 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2126 var->u.integer.val);
2128 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2131 case INTERNALVAR_STRING:
2132 val = value_cstring (var->u.string, strlen (var->u.string),
2133 builtin_type (gdbarch)->builtin_char);
2136 case INTERNALVAR_VALUE:
2137 val = value_copy (var->u.value);
2138 if (value_lazy (val))
2139 value_fetch_lazy (val);
2142 case INTERNALVAR_MAKE_VALUE:
2143 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2144 var->u.make_value.data);
2148 internal_error (__FILE__, __LINE__, _("bad kind"));
2151 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2152 on this value go back to affect the original internal variable.
2154 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2155 no underlying modifyable state in the internal variable.
2157 Likewise, if the variable's value is a computed lvalue, we want
2158 references to it to produce another computed lvalue, where
2159 references and assignments actually operate through the
2160 computed value's functions.
2162 This means that internal variables with computed values
2163 behave a little differently from other internal variables:
2164 assignments to them don't just replace the previous value
2165 altogether. At the moment, this seems like the behavior we
2168 if (var->kind != INTERNALVAR_MAKE_VALUE
2169 && val->lval != lval_computed)
2171 VALUE_LVAL (val) = lval_internalvar;
2172 VALUE_INTERNALVAR (val) = var;
2179 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2181 if (var->kind == INTERNALVAR_INTEGER)
2183 *result = var->u.integer.val;
2187 if (var->kind == INTERNALVAR_VALUE)
2189 struct type *type = check_typedef (value_type (var->u.value));
2191 if (TYPE_CODE (type) == TYPE_CODE_INT)
2193 *result = value_as_long (var->u.value);
2202 get_internalvar_function (struct internalvar *var,
2203 struct internal_function **result)
2207 case INTERNALVAR_FUNCTION:
2208 *result = var->u.fn.function;
2217 set_internalvar_component (struct internalvar *var,
2218 LONGEST offset, LONGEST bitpos,
2219 LONGEST bitsize, struct value *newval)
2222 struct gdbarch *arch;
2227 case INTERNALVAR_VALUE:
2228 addr = value_contents_writeable (var->u.value);
2229 arch = get_value_arch (var->u.value);
2230 unit_size = gdbarch_addressable_memory_unit_size (arch);
2233 modify_field (value_type (var->u.value), addr + offset,
2234 value_as_long (newval), bitpos, bitsize);
2236 memcpy (addr + offset * unit_size, value_contents (newval),
2237 TYPE_LENGTH (value_type (newval)));
2241 /* We can never get a component of any other kind. */
2242 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2247 set_internalvar (struct internalvar *var, struct value *val)
2249 enum internalvar_kind new_kind;
2250 union internalvar_data new_data = { 0 };
2252 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2253 error (_("Cannot overwrite convenience function %s"), var->name);
2255 /* Prepare new contents. */
2256 switch (TYPE_CODE (check_typedef (value_type (val))))
2258 case TYPE_CODE_VOID:
2259 new_kind = INTERNALVAR_VOID;
2262 case TYPE_CODE_INTERNAL_FUNCTION:
2263 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2264 new_kind = INTERNALVAR_FUNCTION;
2265 get_internalvar_function (VALUE_INTERNALVAR (val),
2266 &new_data.fn.function);
2267 /* Copies created here are never canonical. */
2271 new_kind = INTERNALVAR_VALUE;
2272 struct value *copy = value_copy (val);
2273 copy->modifiable = 1;
2275 /* Force the value to be fetched from the target now, to avoid problems
2276 later when this internalvar is referenced and the target is gone or
2278 if (value_lazy (copy))
2279 value_fetch_lazy (copy);
2281 /* Release the value from the value chain to prevent it from being
2282 deleted by free_all_values. From here on this function should not
2283 call error () until new_data is installed into the var->u to avoid
2285 new_data.value = release_value (copy).release ();
2287 /* Internal variables which are created from values with a dynamic
2288 location don't need the location property of the origin anymore.
2289 The resolved dynamic location is used prior then any other address
2290 when accessing the value.
2291 If we keep it, we would still refer to the origin value.
2292 Remove the location property in case it exist. */
2293 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2298 /* Clean up old contents. */
2299 clear_internalvar (var);
2302 var->kind = new_kind;
2304 /* End code which must not call error(). */
2308 set_internalvar_integer (struct internalvar *var, LONGEST l)
2310 /* Clean up old contents. */
2311 clear_internalvar (var);
2313 var->kind = INTERNALVAR_INTEGER;
2314 var->u.integer.type = NULL;
2315 var->u.integer.val = l;
2319 set_internalvar_string (struct internalvar *var, const char *string)
2321 /* Clean up old contents. */
2322 clear_internalvar (var);
2324 var->kind = INTERNALVAR_STRING;
2325 var->u.string = xstrdup (string);
2329 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2331 /* Clean up old contents. */
2332 clear_internalvar (var);
2334 var->kind = INTERNALVAR_FUNCTION;
2335 var->u.fn.function = f;
2336 var->u.fn.canonical = 1;
2337 /* Variables installed here are always the canonical version. */
2341 clear_internalvar (struct internalvar *var)
2343 /* Clean up old contents. */
2346 case INTERNALVAR_VALUE:
2347 value_decref (var->u.value);
2350 case INTERNALVAR_STRING:
2351 xfree (var->u.string);
2354 case INTERNALVAR_MAKE_VALUE:
2355 if (var->u.make_value.functions->destroy != NULL)
2356 var->u.make_value.functions->destroy (var->u.make_value.data);
2363 /* Reset to void kind. */
2364 var->kind = INTERNALVAR_VOID;
2368 internalvar_name (const struct internalvar *var)
2373 static struct internal_function *
2374 create_internal_function (const char *name,
2375 internal_function_fn handler, void *cookie)
2377 struct internal_function *ifn = XNEW (struct internal_function);
2379 ifn->name = xstrdup (name);
2380 ifn->handler = handler;
2381 ifn->cookie = cookie;
2386 value_internal_function_name (struct value *val)
2388 struct internal_function *ifn;
2391 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2392 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2393 gdb_assert (result);
2399 call_internal_function (struct gdbarch *gdbarch,
2400 const struct language_defn *language,
2401 struct value *func, int argc, struct value **argv)
2403 struct internal_function *ifn;
2406 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2407 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2408 gdb_assert (result);
2410 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2413 /* The 'function' command. This does nothing -- it is just a
2414 placeholder to let "help function NAME" work. This is also used as
2415 the implementation of the sub-command that is created when
2416 registering an internal function. */
2418 function_command (const char *command, int from_tty)
2423 /* Clean up if an internal function's command is destroyed. */
2425 function_destroyer (struct cmd_list_element *self, void *ignore)
2427 xfree ((char *) self->name);
2428 xfree ((char *) self->doc);
2431 /* Add a new internal function. NAME is the name of the function; DOC
2432 is a documentation string describing the function. HANDLER is
2433 called when the function is invoked. COOKIE is an arbitrary
2434 pointer which is passed to HANDLER and is intended for "user
2437 add_internal_function (const char *name, const char *doc,
2438 internal_function_fn handler, void *cookie)
2440 struct cmd_list_element *cmd;
2441 struct internal_function *ifn;
2442 struct internalvar *var = lookup_internalvar (name);
2444 ifn = create_internal_function (name, handler, cookie);
2445 set_internalvar_function (var, ifn);
2447 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2449 cmd->destroyer = function_destroyer;
2452 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2453 prevent cycles / duplicates. */
2456 preserve_one_value (struct value *value, struct objfile *objfile,
2457 htab_t copied_types)
2459 if (TYPE_OBJFILE (value->type) == objfile)
2460 value->type = copy_type_recursive (objfile, value->type, copied_types);
2462 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2463 value->enclosing_type = copy_type_recursive (objfile,
2464 value->enclosing_type,
2468 /* Likewise for internal variable VAR. */
2471 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2472 htab_t copied_types)
2476 case INTERNALVAR_INTEGER:
2477 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2479 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2482 case INTERNALVAR_VALUE:
2483 preserve_one_value (var->u.value, objfile, copied_types);
2488 /* Update the internal variables and value history when OBJFILE is
2489 discarded; we must copy the types out of the objfile. New global types
2490 will be created for every convenience variable which currently points to
2491 this objfile's types, and the convenience variables will be adjusted to
2492 use the new global types. */
2495 preserve_values (struct objfile *objfile)
2497 htab_t copied_types;
2498 struct internalvar *var;
2500 /* Create the hash table. We allocate on the objfile's obstack, since
2501 it is soon to be deleted. */
2502 copied_types = create_copied_types_hash (objfile);
2504 for (const value_ref_ptr &item : value_history)
2505 preserve_one_value (item.get (), objfile, copied_types);
2507 for (var = internalvars; var; var = var->next)
2508 preserve_one_internalvar (var, objfile, copied_types);
2510 preserve_ext_lang_values (objfile, copied_types);
2512 htab_delete (copied_types);
2516 show_convenience (const char *ignore, int from_tty)
2518 struct gdbarch *gdbarch = get_current_arch ();
2519 struct internalvar *var;
2521 struct value_print_options opts;
2523 get_user_print_options (&opts);
2524 for (var = internalvars; var; var = var->next)
2531 printf_filtered (("$%s = "), var->name);
2537 val = value_of_internalvar (gdbarch, var);
2538 value_print (val, gdb_stdout, &opts);
2540 catch (const gdb_exception_error &ex)
2542 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.what ());
2545 printf_filtered (("\n"));
2549 /* This text does not mention convenience functions on purpose.
2550 The user can't create them except via Python, and if Python support
2551 is installed this message will never be printed ($_streq will
2553 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2554 "Convenience variables have "
2555 "names starting with \"$\";\n"
2556 "use \"set\" as in \"set "
2557 "$foo = 5\" to define them.\n"));
2565 value_from_xmethod (xmethod_worker_up &&worker)
2569 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2570 v->lval = lval_xcallable;
2571 v->location.xm_worker = worker.release ();
2577 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2580 result_type_of_xmethod (struct value *method, gdb::array_view<value *> argv)
2582 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2583 && method->lval == lval_xcallable && !argv.empty ());
2585 return method->location.xm_worker->get_result_type (argv[0], argv.slice (1));
2588 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2591 call_xmethod (struct value *method, gdb::array_view<value *> argv)
2593 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2594 && method->lval == lval_xcallable && !argv.empty ());
2596 return method->location.xm_worker->invoke (argv[0], argv.slice (1));
2599 /* Extract a value as a C number (either long or double).
2600 Knows how to convert fixed values to double, or
2601 floating values to long.
2602 Does not deallocate the value. */
2605 value_as_long (struct value *val)
2607 /* This coerces arrays and functions, which is necessary (e.g.
2608 in disassemble_command). It also dereferences references, which
2609 I suspect is the most logical thing to do. */
2610 val = coerce_array (val);
2611 return unpack_long (value_type (val), value_contents (val));
2614 /* Extract a value as a C pointer. Does not deallocate the value.
2615 Note that val's type may not actually be a pointer; value_as_long
2616 handles all the cases. */
2618 value_as_address (struct value *val)
2620 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2622 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2623 whether we want this to be true eventually. */
2625 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2626 non-address (e.g. argument to "signal", "info break", etc.), or
2627 for pointers to char, in which the low bits *are* significant. */
2628 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2631 /* There are several targets (IA-64, PowerPC, and others) which
2632 don't represent pointers to functions as simply the address of
2633 the function's entry point. For example, on the IA-64, a
2634 function pointer points to a two-word descriptor, generated by
2635 the linker, which contains the function's entry point, and the
2636 value the IA-64 "global pointer" register should have --- to
2637 support position-independent code. The linker generates
2638 descriptors only for those functions whose addresses are taken.
2640 On such targets, it's difficult for GDB to convert an arbitrary
2641 function address into a function pointer; it has to either find
2642 an existing descriptor for that function, or call malloc and
2643 build its own. On some targets, it is impossible for GDB to
2644 build a descriptor at all: the descriptor must contain a jump
2645 instruction; data memory cannot be executed; and code memory
2648 Upon entry to this function, if VAL is a value of type `function'
2649 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2650 value_address (val) is the address of the function. This is what
2651 you'll get if you evaluate an expression like `main'. The call
2652 to COERCE_ARRAY below actually does all the usual unary
2653 conversions, which includes converting values of type `function'
2654 to `pointer to function'. This is the challenging conversion
2655 discussed above. Then, `unpack_long' will convert that pointer
2656 back into an address.
2658 So, suppose the user types `disassemble foo' on an architecture
2659 with a strange function pointer representation, on which GDB
2660 cannot build its own descriptors, and suppose further that `foo'
2661 has no linker-built descriptor. The address->pointer conversion
2662 will signal an error and prevent the command from running, even
2663 though the next step would have been to convert the pointer
2664 directly back into the same address.
2666 The following shortcut avoids this whole mess. If VAL is a
2667 function, just return its address directly. */
2668 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2669 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2670 return value_address (val);
2672 val = coerce_array (val);
2674 /* Some architectures (e.g. Harvard), map instruction and data
2675 addresses onto a single large unified address space. For
2676 instance: An architecture may consider a large integer in the
2677 range 0x10000000 .. 0x1000ffff to already represent a data
2678 addresses (hence not need a pointer to address conversion) while
2679 a small integer would still need to be converted integer to
2680 pointer to address. Just assume such architectures handle all
2681 integer conversions in a single function. */
2685 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2686 must admonish GDB hackers to make sure its behavior matches the
2687 compiler's, whenever possible.
2689 In general, I think GDB should evaluate expressions the same way
2690 the compiler does. When the user copies an expression out of
2691 their source code and hands it to a `print' command, they should
2692 get the same value the compiler would have computed. Any
2693 deviation from this rule can cause major confusion and annoyance,
2694 and needs to be justified carefully. In other words, GDB doesn't
2695 really have the freedom to do these conversions in clever and
2698 AndrewC pointed out that users aren't complaining about how GDB
2699 casts integers to pointers; they are complaining that they can't
2700 take an address from a disassembly listing and give it to `x/i'.
2701 This is certainly important.
2703 Adding an architecture method like integer_to_address() certainly
2704 makes it possible for GDB to "get it right" in all circumstances
2705 --- the target has complete control over how things get done, so
2706 people can Do The Right Thing for their target without breaking
2707 anyone else. The standard doesn't specify how integers get
2708 converted to pointers; usually, the ABI doesn't either, but
2709 ABI-specific code is a more reasonable place to handle it. */
2711 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2712 && !TYPE_IS_REFERENCE (value_type (val))
2713 && gdbarch_integer_to_address_p (gdbarch))
2714 return gdbarch_integer_to_address (gdbarch, value_type (val),
2715 value_contents (val));
2717 return unpack_long (value_type (val), value_contents (val));
2721 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2722 as a long, or as a double, assuming the raw data is described
2723 by type TYPE. Knows how to convert different sizes of values
2724 and can convert between fixed and floating point. We don't assume
2725 any alignment for the raw data. Return value is in host byte order.
2727 If you want functions and arrays to be coerced to pointers, and
2728 references to be dereferenced, call value_as_long() instead.
2730 C++: It is assumed that the front-end has taken care of
2731 all matters concerning pointers to members. A pointer
2732 to member which reaches here is considered to be equivalent
2733 to an INT (or some size). After all, it is only an offset. */
2736 unpack_long (struct type *type, const gdb_byte *valaddr)
2738 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2739 enum type_code code = TYPE_CODE (type);
2740 int len = TYPE_LENGTH (type);
2741 int nosign = TYPE_UNSIGNED (type);
2745 case TYPE_CODE_TYPEDEF:
2746 return unpack_long (check_typedef (type), valaddr);
2747 case TYPE_CODE_ENUM:
2748 case TYPE_CODE_FLAGS:
2749 case TYPE_CODE_BOOL:
2751 case TYPE_CODE_CHAR:
2752 case TYPE_CODE_RANGE:
2753 case TYPE_CODE_MEMBERPTR:
2755 return extract_unsigned_integer (valaddr, len, byte_order);
2757 return extract_signed_integer (valaddr, len, byte_order);
2760 case TYPE_CODE_DECFLOAT:
2761 return target_float_to_longest (valaddr, type);
2765 case TYPE_CODE_RVALUE_REF:
2766 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2767 whether we want this to be true eventually. */
2768 return extract_typed_address (valaddr, type);
2771 error (_("Value can't be converted to integer."));
2775 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2776 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2777 We don't assume any alignment for the raw data. Return value is in
2780 If you want functions and arrays to be coerced to pointers, and
2781 references to be dereferenced, call value_as_address() instead.
2783 C++: It is assumed that the front-end has taken care of
2784 all matters concerning pointers to members. A pointer
2785 to member which reaches here is considered to be equivalent
2786 to an INT (or some size). After all, it is only an offset. */
2789 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2791 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2792 whether we want this to be true eventually. */
2793 return unpack_long (type, valaddr);
2797 is_floating_value (struct value *val)
2799 struct type *type = check_typedef (value_type (val));
2801 if (is_floating_type (type))
2803 if (!target_float_is_valid (value_contents (val), type))
2804 error (_("Invalid floating value found in program."));
2812 /* Get the value of the FIELDNO'th field (which must be static) of
2816 value_static_field (struct type *type, int fieldno)
2818 struct value *retval;
2820 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2822 case FIELD_LOC_KIND_PHYSADDR:
2823 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2824 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2826 case FIELD_LOC_KIND_PHYSNAME:
2828 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2829 /* TYPE_FIELD_NAME (type, fieldno); */
2830 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2832 if (sym.symbol == NULL)
2834 /* With some compilers, e.g. HP aCC, static data members are
2835 reported as non-debuggable symbols. */
2836 struct bound_minimal_symbol msym
2837 = lookup_minimal_symbol (phys_name, NULL, NULL);
2838 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2841 retval = allocate_optimized_out_value (field_type);
2843 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
2846 retval = value_of_variable (sym.symbol, sym.block);
2850 gdb_assert_not_reached ("unexpected field location kind");
2856 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2857 You have to be careful here, since the size of the data area for the value
2858 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2859 than the old enclosing type, you have to allocate more space for the
2863 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2865 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2867 check_type_length_before_alloc (new_encl_type);
2869 .reset ((gdb_byte *) xrealloc (val->contents.release (),
2870 TYPE_LENGTH (new_encl_type)));
2873 val->enclosing_type = new_encl_type;
2876 /* Given a value ARG1 (offset by OFFSET bytes)
2877 of a struct or union type ARG_TYPE,
2878 extract and return the value of one of its (non-static) fields.
2879 FIELDNO says which field. */
2882 value_primitive_field (struct value *arg1, LONGEST offset,
2883 int fieldno, struct type *arg_type)
2887 struct gdbarch *arch = get_value_arch (arg1);
2888 int unit_size = gdbarch_addressable_memory_unit_size (arch);
2890 arg_type = check_typedef (arg_type);
2891 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2893 /* Call check_typedef on our type to make sure that, if TYPE
2894 is a TYPE_CODE_TYPEDEF, its length is set to the length
2895 of the target type instead of zero. However, we do not
2896 replace the typedef type by the target type, because we want
2897 to keep the typedef in order to be able to print the type
2898 description correctly. */
2899 check_typedef (type);
2901 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2903 /* Handle packed fields.
2905 Create a new value for the bitfield, with bitpos and bitsize
2906 set. If possible, arrange offset and bitpos so that we can
2907 do a single aligned read of the size of the containing type.
2908 Otherwise, adjust offset to the byte containing the first
2909 bit. Assume that the address, offset, and embedded offset
2910 are sufficiently aligned. */
2912 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2913 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
2915 v = allocate_value_lazy (type);
2916 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2917 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2918 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2919 v->bitpos = bitpos % container_bitsize;
2921 v->bitpos = bitpos % 8;
2922 v->offset = (value_embedded_offset (arg1)
2924 + (bitpos - v->bitpos) / 8);
2925 set_value_parent (v, arg1);
2926 if (!value_lazy (arg1))
2927 value_fetch_lazy (v);
2929 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2931 /* This field is actually a base subobject, so preserve the
2932 entire object's contents for later references to virtual
2936 /* Lazy register values with offsets are not supported. */
2937 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2938 value_fetch_lazy (arg1);
2940 /* We special case virtual inheritance here because this
2941 requires access to the contents, which we would rather avoid
2942 for references to ordinary fields of unavailable values. */
2943 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2944 boffset = baseclass_offset (arg_type, fieldno,
2945 value_contents (arg1),
2946 value_embedded_offset (arg1),
2947 value_address (arg1),
2950 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2952 if (value_lazy (arg1))
2953 v = allocate_value_lazy (value_enclosing_type (arg1));
2956 v = allocate_value (value_enclosing_type (arg1));
2957 value_contents_copy_raw (v, 0, arg1, 0,
2958 TYPE_LENGTH (value_enclosing_type (arg1)));
2961 v->offset = value_offset (arg1);
2962 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2964 else if (NULL != TYPE_DATA_LOCATION (type))
2966 /* Field is a dynamic data member. */
2968 gdb_assert (0 == offset);
2969 /* We expect an already resolved data location. */
2970 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
2971 /* For dynamic data types defer memory allocation
2972 until we actual access the value. */
2973 v = allocate_value_lazy (type);
2977 /* Plain old data member */
2978 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
2979 / (HOST_CHAR_BIT * unit_size));
2981 /* Lazy register values with offsets are not supported. */
2982 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2983 value_fetch_lazy (arg1);
2985 if (value_lazy (arg1))
2986 v = allocate_value_lazy (type);
2989 v = allocate_value (type);
2990 value_contents_copy_raw (v, value_embedded_offset (v),
2991 arg1, value_embedded_offset (arg1) + offset,
2992 type_length_units (type));
2994 v->offset = (value_offset (arg1) + offset
2995 + value_embedded_offset (arg1));
2997 set_value_component_location (v, arg1);
3001 /* Given a value ARG1 of a struct or union type,
3002 extract and return the value of one of its (non-static) fields.
3003 FIELDNO says which field. */
3006 value_field (struct value *arg1, int fieldno)
3008 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3011 /* Return a non-virtual function as a value.
3012 F is the list of member functions which contains the desired method.
3013 J is an index into F which provides the desired method.
3015 We only use the symbol for its address, so be happy with either a
3016 full symbol or a minimal symbol. */
3019 value_fn_field (struct value **arg1p, struct fn_field *f,
3020 int j, struct type *type,
3024 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3025 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3027 struct bound_minimal_symbol msym;
3029 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
3032 memset (&msym, 0, sizeof (msym));
3036 gdb_assert (sym == NULL);
3037 msym = lookup_bound_minimal_symbol (physname);
3038 if (msym.minsym == NULL)
3042 v = allocate_value (ftype);
3043 VALUE_LVAL (v) = lval_memory;
3046 set_value_address (v, BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)));
3050 /* The minimal symbol might point to a function descriptor;
3051 resolve it to the actual code address instead. */
3052 struct objfile *objfile = msym.objfile;
3053 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3055 set_value_address (v,
3056 gdbarch_convert_from_func_ptr_addr
3057 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), current_top_target ()));
3062 if (type != value_type (*arg1p))
3063 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3064 value_addr (*arg1p)));
3066 /* Move the `this' pointer according to the offset.
3067 VALUE_OFFSET (*arg1p) += offset; */
3075 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3076 VALADDR, and store the result in *RESULT.
3077 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
3078 BITSIZE is zero, then the length is taken from FIELD_TYPE.
3080 Extracting bits depends on endianness of the machine. Compute the
3081 number of least significant bits to discard. For big endian machines,
3082 we compute the total number of bits in the anonymous object, subtract
3083 off the bit count from the MSB of the object to the MSB of the
3084 bitfield, then the size of the bitfield, which leaves the LSB discard
3085 count. For little endian machines, the discard count is simply the
3086 number of bits from the LSB of the anonymous object to the LSB of the
3089 If the field is signed, we also do sign extension. */
3092 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3093 LONGEST bitpos, LONGEST bitsize)
3095 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3100 LONGEST read_offset;
3102 /* Read the minimum number of bytes required; there may not be
3103 enough bytes to read an entire ULONGEST. */
3104 field_type = check_typedef (field_type);
3106 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3109 bytes_read = TYPE_LENGTH (field_type);
3110 bitsize = 8 * bytes_read;
3113 read_offset = bitpos / 8;
3115 val = extract_unsigned_integer (valaddr + read_offset,
3116 bytes_read, byte_order);
3118 /* Extract bits. See comment above. */
3120 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3121 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3123 lsbcount = (bitpos % 8);
3126 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3127 If the field is signed, and is negative, then sign extend. */
3129 if (bitsize < 8 * (int) sizeof (val))
3131 valmask = (((ULONGEST) 1) << bitsize) - 1;
3133 if (!TYPE_UNSIGNED (field_type))
3135 if (val & (valmask ^ (valmask >> 1)))
3145 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3146 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3147 ORIGINAL_VALUE, which must not be NULL. See
3148 unpack_value_bits_as_long for more details. */
3151 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3152 LONGEST embedded_offset, int fieldno,
3153 const struct value *val, LONGEST *result)
3155 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3156 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3157 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3160 gdb_assert (val != NULL);
3162 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3163 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3164 || !value_bits_available (val, bit_offset, bitsize))
3167 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3172 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3173 object at VALADDR. See unpack_bits_as_long for more details. */
3176 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3178 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3179 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3180 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3182 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3185 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3186 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3187 the contents in DEST_VAL, zero or sign extending if the type of
3188 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3189 VAL. If the VAL's contents required to extract the bitfield from
3190 are unavailable/optimized out, DEST_VAL is correspondingly
3191 marked unavailable/optimized out. */
3194 unpack_value_bitfield (struct value *dest_val,
3195 LONGEST bitpos, LONGEST bitsize,
3196 const gdb_byte *valaddr, LONGEST embedded_offset,
3197 const struct value *val)
3199 enum bfd_endian byte_order;
3202 struct type *field_type = value_type (dest_val);
3204 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3206 /* First, unpack and sign extend the bitfield as if it was wholly
3207 valid. Optimized out/unavailable bits are read as zero, but
3208 that's OK, as they'll end up marked below. If the VAL is
3209 wholly-invalid we may have skipped allocating its contents,
3210 though. See allocate_optimized_out_value. */
3211 if (valaddr != NULL)
3215 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3217 store_signed_integer (value_contents_raw (dest_val),
3218 TYPE_LENGTH (field_type), byte_order, num);
3221 /* Now copy the optimized out / unavailability ranges to the right
3223 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3224 if (byte_order == BFD_ENDIAN_BIG)
3225 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3228 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3229 val, src_bit_offset, bitsize);
3232 /* Return a new value with type TYPE, which is FIELDNO field of the
3233 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3234 of VAL. If the VAL's contents required to extract the bitfield
3235 from are unavailable/optimized out, the new value is
3236 correspondingly marked unavailable/optimized out. */
3239 value_field_bitfield (struct type *type, int fieldno,
3240 const gdb_byte *valaddr,
3241 LONGEST embedded_offset, const struct value *val)
3243 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3244 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3245 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
3247 unpack_value_bitfield (res_val, bitpos, bitsize,
3248 valaddr, embedded_offset, val);
3253 /* Modify the value of a bitfield. ADDR points to a block of memory in
3254 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3255 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3256 indicate which bits (in target bit order) comprise the bitfield.
3257 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3258 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3261 modify_field (struct type *type, gdb_byte *addr,
3262 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
3264 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3266 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3269 /* Normalize BITPOS. */
3273 /* If a negative fieldval fits in the field in question, chop
3274 off the sign extension bits. */
3275 if ((~fieldval & ~(mask >> 1)) == 0)
3278 /* Warn if value is too big to fit in the field in question. */
3279 if (0 != (fieldval & ~mask))
3281 /* FIXME: would like to include fieldval in the message, but
3282 we don't have a sprintf_longest. */
3283 warning (_("Value does not fit in %s bits."), plongest (bitsize));
3285 /* Truncate it, otherwise adjoining fields may be corrupted. */
3289 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3290 false valgrind reports. */
3292 bytesize = (bitpos + bitsize + 7) / 8;
3293 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3295 /* Shifting for bit field depends on endianness of the target machine. */
3296 if (gdbarch_bits_big_endian (get_type_arch (type)))
3297 bitpos = bytesize * 8 - bitpos - bitsize;
3299 oword &= ~(mask << bitpos);
3300 oword |= fieldval << bitpos;
3302 store_unsigned_integer (addr, bytesize, byte_order, oword);
3305 /* Pack NUM into BUF using a target format of TYPE. */
3308 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3310 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3313 type = check_typedef (type);
3314 len = TYPE_LENGTH (type);
3316 switch (TYPE_CODE (type))
3319 case TYPE_CODE_CHAR:
3320 case TYPE_CODE_ENUM:
3321 case TYPE_CODE_FLAGS:
3322 case TYPE_CODE_BOOL:
3323 case TYPE_CODE_RANGE:
3324 case TYPE_CODE_MEMBERPTR:
3325 store_signed_integer (buf, len, byte_order, num);
3329 case TYPE_CODE_RVALUE_REF:
3331 store_typed_address (buf, type, (CORE_ADDR) num);
3335 case TYPE_CODE_DECFLOAT:
3336 target_float_from_longest (buf, type, num);
3340 error (_("Unexpected type (%d) encountered for integer constant."),
3346 /* Pack NUM into BUF using a target format of TYPE. */
3349 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3352 enum bfd_endian byte_order;
3354 type = check_typedef (type);
3355 len = TYPE_LENGTH (type);
3356 byte_order = gdbarch_byte_order (get_type_arch (type));
3358 switch (TYPE_CODE (type))
3361 case TYPE_CODE_CHAR:
3362 case TYPE_CODE_ENUM:
3363 case TYPE_CODE_FLAGS:
3364 case TYPE_CODE_BOOL:
3365 case TYPE_CODE_RANGE:
3366 case TYPE_CODE_MEMBERPTR:
3367 store_unsigned_integer (buf, len, byte_order, num);
3371 case TYPE_CODE_RVALUE_REF:
3373 store_typed_address (buf, type, (CORE_ADDR) num);
3377 case TYPE_CODE_DECFLOAT:
3378 target_float_from_ulongest (buf, type, num);
3382 error (_("Unexpected type (%d) encountered "
3383 "for unsigned integer constant."),
3389 /* Convert C numbers into newly allocated values. */
3392 value_from_longest (struct type *type, LONGEST num)
3394 struct value *val = allocate_value (type);
3396 pack_long (value_contents_raw (val), type, num);
3401 /* Convert C unsigned numbers into newly allocated values. */
3404 value_from_ulongest (struct type *type, ULONGEST num)
3406 struct value *val = allocate_value (type);
3408 pack_unsigned_long (value_contents_raw (val), type, num);
3414 /* Create a value representing a pointer of type TYPE to the address
3418 value_from_pointer (struct type *type, CORE_ADDR addr)
3420 struct value *val = allocate_value (type);
3422 store_typed_address (value_contents_raw (val),
3423 check_typedef (type), addr);
3427 /* Create and return a value object of TYPE containing the value D. The
3428 TYPE must be of TYPE_CODE_FLT, and must be large enough to hold D once
3429 it is converted to target format. */
3432 value_from_host_double (struct type *type, double d)
3434 struct value *value = allocate_value (type);
3435 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
3436 target_float_from_host_double (value_contents_raw (value),
3437 value_type (value), d);
3441 /* Create a value of type TYPE whose contents come from VALADDR, if it
3442 is non-null, and whose memory address (in the inferior) is
3443 ADDRESS. The type of the created value may differ from the passed
3444 type TYPE. Make sure to retrieve values new type after this call.
3445 Note that TYPE is not passed through resolve_dynamic_type; this is
3446 a special API intended for use only by Ada. */
3449 value_from_contents_and_address_unresolved (struct type *type,
3450 const gdb_byte *valaddr,
3455 if (valaddr == NULL)
3456 v = allocate_value_lazy (type);
3458 v = value_from_contents (type, valaddr);
3459 VALUE_LVAL (v) = lval_memory;
3460 set_value_address (v, address);
3464 /* Create a value of type TYPE whose contents come from VALADDR, if it
3465 is non-null, and whose memory address (in the inferior) is
3466 ADDRESS. The type of the created value may differ from the passed
3467 type TYPE. Make sure to retrieve values new type after this call. */
3470 value_from_contents_and_address (struct type *type,
3471 const gdb_byte *valaddr,
3474 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
3475 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3478 if (valaddr == NULL)
3479 v = allocate_value_lazy (resolved_type);
3481 v = value_from_contents (resolved_type, valaddr);
3482 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3483 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3484 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3485 VALUE_LVAL (v) = lval_memory;
3486 set_value_address (v, address);
3490 /* Create a value of type TYPE holding the contents CONTENTS.
3491 The new value is `not_lval'. */
3494 value_from_contents (struct type *type, const gdb_byte *contents)
3496 struct value *result;
3498 result = allocate_value (type);
3499 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3503 /* Extract a value from the history file. Input will be of the form
3504 $digits or $$digits. See block comment above 'write_dollar_variable'
3508 value_from_history_ref (const char *h, const char **endp)
3520 /* Find length of numeral string. */
3521 for (; isdigit (h[len]); len++)
3524 /* Make sure numeral string is not part of an identifier. */
3525 if (h[len] == '_' || isalpha (h[len]))
3528 /* Now collect the index value. */
3533 /* For some bizarre reason, "$$" is equivalent to "$$1",
3534 rather than to "$$0" as it ought to be! */
3542 index = -strtol (&h[2], &local_end, 10);
3550 /* "$" is equivalent to "$0". */
3558 index = strtol (&h[1], &local_end, 10);
3563 return access_value_history (index);
3566 /* Get the component value (offset by OFFSET bytes) of a struct or
3567 union WHOLE. Component's type is TYPE. */
3570 value_from_component (struct value *whole, struct type *type, LONGEST offset)
3574 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3575 v = allocate_value_lazy (type);
3578 v = allocate_value (type);
3579 value_contents_copy (v, value_embedded_offset (v),
3580 whole, value_embedded_offset (whole) + offset,
3581 type_length_units (type));
3583 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3584 set_value_component_location (v, whole);
3590 coerce_ref_if_computed (const struct value *arg)
3592 const struct lval_funcs *funcs;
3594 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
3597 if (value_lval_const (arg) != lval_computed)
3600 funcs = value_computed_funcs (arg);
3601 if (funcs->coerce_ref == NULL)
3604 return funcs->coerce_ref (arg);
3607 /* Look at value.h for description. */
3610 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3611 const struct type *original_type,
3612 const struct value *original_value)
3614 /* Re-adjust type. */
3615 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3617 /* Add embedding info. */
3618 set_value_enclosing_type (value, enc_type);
3619 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3621 /* We may be pointing to an object of some derived type. */
3622 return value_full_object (value, NULL, 0, 0, 0);
3626 coerce_ref (struct value *arg)
3628 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3629 struct value *retval;
3630 struct type *enc_type;
3632 retval = coerce_ref_if_computed (arg);
3636 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
3639 enc_type = check_typedef (value_enclosing_type (arg));
3640 enc_type = TYPE_TARGET_TYPE (enc_type);
3642 retval = value_at_lazy (enc_type,
3643 unpack_pointer (value_type (arg),
3644 value_contents (arg)));
3645 enc_type = value_type (retval);
3646 return readjust_indirect_value_type (retval, enc_type,
3647 value_type_arg_tmp, arg);
3651 coerce_array (struct value *arg)
3655 arg = coerce_ref (arg);
3656 type = check_typedef (value_type (arg));
3658 switch (TYPE_CODE (type))
3660 case TYPE_CODE_ARRAY:
3661 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3662 arg = value_coerce_array (arg);
3664 case TYPE_CODE_FUNC:
3665 arg = value_coerce_function (arg);
3672 /* Return the return value convention that will be used for the
3675 enum return_value_convention
3676 struct_return_convention (struct gdbarch *gdbarch,
3677 struct value *function, struct type *value_type)
3679 enum type_code code = TYPE_CODE (value_type);
3681 if (code == TYPE_CODE_ERROR)
3682 error (_("Function return type unknown."));
3684 /* Probe the architecture for the return-value convention. */
3685 return gdbarch_return_value (gdbarch, function, value_type,
3689 /* Return true if the function returning the specified type is using
3690 the convention of returning structures in memory (passing in the
3691 address as a hidden first parameter). */
3694 using_struct_return (struct gdbarch *gdbarch,
3695 struct value *function, struct type *value_type)
3697 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3698 /* A void return value is never in memory. See also corresponding
3699 code in "print_return_value". */
3702 return (struct_return_convention (gdbarch, function, value_type)
3703 != RETURN_VALUE_REGISTER_CONVENTION);
3706 /* Set the initialized field in a value struct. */
3709 set_value_initialized (struct value *val, int status)
3711 val->initialized = status;
3714 /* Return the initialized field in a value struct. */
3717 value_initialized (const struct value *val)
3719 return val->initialized;
3722 /* Helper for value_fetch_lazy when the value is a bitfield. */
3725 value_fetch_lazy_bitfield (struct value *val)
3727 gdb_assert (value_bitsize (val) != 0);
3729 /* To read a lazy bitfield, read the entire enclosing value. This
3730 prevents reading the same block of (possibly volatile) memory once
3731 per bitfield. It would be even better to read only the containing
3732 word, but we have no way to record that just specific bits of a
3733 value have been fetched. */
3734 struct value *parent = value_parent (val);
3736 if (value_lazy (parent))
3737 value_fetch_lazy (parent);
3739 unpack_value_bitfield (val, value_bitpos (val), value_bitsize (val),
3740 value_contents_for_printing (parent),
3741 value_offset (val), parent);
3744 /* Helper for value_fetch_lazy when the value is in memory. */
3747 value_fetch_lazy_memory (struct value *val)
3749 gdb_assert (VALUE_LVAL (val) == lval_memory);
3751 CORE_ADDR addr = value_address (val);
3752 struct type *type = check_typedef (value_enclosing_type (val));
3754 if (TYPE_LENGTH (type))
3755 read_value_memory (val, 0, value_stack (val),
3756 addr, value_contents_all_raw (val),
3757 type_length_units (type));
3760 /* Helper for value_fetch_lazy when the value is in a register. */
3763 value_fetch_lazy_register (struct value *val)
3765 struct frame_info *next_frame;
3767 struct type *type = check_typedef (value_type (val));
3768 struct value *new_val = val, *mark = value_mark ();
3770 /* Offsets are not supported here; lazy register values must
3771 refer to the entire register. */
3772 gdb_assert (value_offset (val) == 0);
3774 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3776 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
3778 next_frame = frame_find_by_id (next_frame_id);
3779 regnum = VALUE_REGNUM (new_val);
3781 gdb_assert (next_frame != NULL);
3783 /* Convertible register routines are used for multi-register
3784 values and for interpretation in different types
3785 (e.g. float or int from a double register). Lazy
3786 register values should have the register's natural type,
3787 so they do not apply. */
3788 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
3791 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3792 Since a "->next" operation was performed when setting
3793 this field, we do not need to perform a "next" operation
3794 again when unwinding the register. That's why
3795 frame_unwind_register_value() is called here instead of
3796 get_frame_register_value(). */
3797 new_val = frame_unwind_register_value (next_frame, regnum);
3799 /* If we get another lazy lval_register value, it means the
3800 register is found by reading it from NEXT_FRAME's next frame.
3801 frame_unwind_register_value should never return a value with
3802 the frame id pointing to NEXT_FRAME. If it does, it means we
3803 either have two consecutive frames with the same frame id
3804 in the frame chain, or some code is trying to unwind
3805 behind get_prev_frame's back (e.g., a frame unwind
3806 sniffer trying to unwind), bypassing its validations. In
3807 any case, it should always be an internal error to end up
3808 in this situation. */
3809 if (VALUE_LVAL (new_val) == lval_register
3810 && value_lazy (new_val)
3811 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
3812 internal_error (__FILE__, __LINE__,
3813 _("infinite loop while fetching a register"));
3816 /* If it's still lazy (for instance, a saved register on the
3817 stack), fetch it. */
3818 if (value_lazy (new_val))
3819 value_fetch_lazy (new_val);
3821 /* Copy the contents and the unavailability/optimized-out
3822 meta-data from NEW_VAL to VAL. */
3823 set_value_lazy (val, 0);
3824 value_contents_copy (val, value_embedded_offset (val),
3825 new_val, value_embedded_offset (new_val),
3826 type_length_units (type));
3830 struct gdbarch *gdbarch;
3831 struct frame_info *frame;
3832 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3833 so that the frame level will be shown correctly. */
3834 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3835 regnum = VALUE_REGNUM (val);
3836 gdbarch = get_frame_arch (frame);
3838 fprintf_unfiltered (gdb_stdlog,
3839 "{ value_fetch_lazy "
3840 "(frame=%d,regnum=%d(%s),...) ",
3841 frame_relative_level (frame), regnum,
3842 user_reg_map_regnum_to_name (gdbarch, regnum));
3844 fprintf_unfiltered (gdb_stdlog, "->");
3845 if (value_optimized_out (new_val))
3847 fprintf_unfiltered (gdb_stdlog, " ");
3848 val_print_optimized_out (new_val, gdb_stdlog);
3853 const gdb_byte *buf = value_contents (new_val);
3855 if (VALUE_LVAL (new_val) == lval_register)
3856 fprintf_unfiltered (gdb_stdlog, " register=%d",
3857 VALUE_REGNUM (new_val));
3858 else if (VALUE_LVAL (new_val) == lval_memory)
3859 fprintf_unfiltered (gdb_stdlog, " address=%s",
3861 value_address (new_val)));
3863 fprintf_unfiltered (gdb_stdlog, " computed");
3865 fprintf_unfiltered (gdb_stdlog, " bytes=");
3866 fprintf_unfiltered (gdb_stdlog, "[");
3867 for (i = 0; i < register_size (gdbarch, regnum); i++)
3868 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3869 fprintf_unfiltered (gdb_stdlog, "]");
3872 fprintf_unfiltered (gdb_stdlog, " }\n");
3875 /* Dispose of the intermediate values. This prevents
3876 watchpoints from trying to watch the saved frame pointer. */
3877 value_free_to_mark (mark);
3880 /* Load the actual content of a lazy value. Fetch the data from the
3881 user's process and clear the lazy flag to indicate that the data in
3882 the buffer is valid.
3884 If the value is zero-length, we avoid calling read_memory, which
3885 would abort. We mark the value as fetched anyway -- all 0 bytes of
3889 value_fetch_lazy (struct value *val)
3891 gdb_assert (value_lazy (val));
3892 allocate_value_contents (val);
3893 /* A value is either lazy, or fully fetched. The
3894 availability/validity is only established as we try to fetch a
3896 gdb_assert (val->optimized_out.empty ());
3897 gdb_assert (val->unavailable.empty ());
3898 if (value_bitsize (val))
3899 value_fetch_lazy_bitfield (val);
3900 else if (VALUE_LVAL (val) == lval_memory)
3901 value_fetch_lazy_memory (val);
3902 else if (VALUE_LVAL (val) == lval_register)
3903 value_fetch_lazy_register (val);
3904 else if (VALUE_LVAL (val) == lval_computed
3905 && value_computed_funcs (val)->read != NULL)
3906 value_computed_funcs (val)->read (val);
3908 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3910 set_value_lazy (val, 0);
3913 /* Implementation of the convenience function $_isvoid. */
3915 static struct value *
3916 isvoid_internal_fn (struct gdbarch *gdbarch,
3917 const struct language_defn *language,
3918 void *cookie, int argc, struct value **argv)
3923 error (_("You must provide one argument for $_isvoid."));
3925 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3927 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3930 /* Implementation of the convenience function $_cimag. Extracts the
3931 real part from a complex number. */
3933 static struct value *
3934 creal_internal_fn (struct gdbarch *gdbarch,
3935 const struct language_defn *language,
3936 void *cookie, int argc, struct value **argv)
3939 error (_("You must provide one argument for $_creal."));
3941 value *cval = argv[0];
3942 type *ctype = check_typedef (value_type (cval));
3943 if (TYPE_CODE (ctype) != TYPE_CODE_COMPLEX)
3944 error (_("expected a complex number"));
3945 return value_from_component (cval, TYPE_TARGET_TYPE (ctype), 0);
3948 /* Implementation of the convenience function $_cimag. Extracts the
3949 imaginary part from a complex number. */
3951 static struct value *
3952 cimag_internal_fn (struct gdbarch *gdbarch,
3953 const struct language_defn *language,
3954 void *cookie, int argc,
3955 struct value **argv)
3958 error (_("You must provide one argument for $_cimag."));
3960 value *cval = argv[0];
3961 type *ctype = check_typedef (value_type (cval));
3962 if (TYPE_CODE (ctype) != TYPE_CODE_COMPLEX)
3963 error (_("expected a complex number"));
3964 return value_from_component (cval, TYPE_TARGET_TYPE (ctype),
3965 TYPE_LENGTH (TYPE_TARGET_TYPE (ctype)));
3972 /* Test the ranges_contain function. */
3975 test_ranges_contain ()
3977 std::vector<range> ranges;
3983 ranges.push_back (r);
3988 ranges.push_back (r);
3991 SELF_CHECK (!ranges_contain (ranges, 2, 5));
3993 SELF_CHECK (ranges_contain (ranges, 9, 5));
3995 SELF_CHECK (ranges_contain (ranges, 10, 2));
3997 SELF_CHECK (ranges_contain (ranges, 10, 5));
3999 SELF_CHECK (ranges_contain (ranges, 13, 6));
4001 SELF_CHECK (ranges_contain (ranges, 14, 5));
4003 SELF_CHECK (!ranges_contain (ranges, 15, 4));
4005 SELF_CHECK (!ranges_contain (ranges, 16, 4));
4007 SELF_CHECK (ranges_contain (ranges, 16, 6));
4009 SELF_CHECK (ranges_contain (ranges, 21, 1));
4011 SELF_CHECK (ranges_contain (ranges, 21, 5));
4013 SELF_CHECK (!ranges_contain (ranges, 26, 3));
4016 /* Check that RANGES contains the same ranges as EXPECTED. */
4019 check_ranges_vector (gdb::array_view<const range> ranges,
4020 gdb::array_view<const range> expected)
4022 return ranges == expected;
4025 /* Test the insert_into_bit_range_vector function. */
4028 test_insert_into_bit_range_vector ()
4030 std::vector<range> ranges;
4034 insert_into_bit_range_vector (&ranges, 10, 5);
4035 static const range expected[] = {
4038 SELF_CHECK (check_ranges_vector (ranges, expected));
4043 insert_into_bit_range_vector (&ranges, 11, 4);
4044 static const range expected = {10, 5};
4045 SELF_CHECK (check_ranges_vector (ranges, expected));
4048 /* [10, 14] [20, 24] */
4050 insert_into_bit_range_vector (&ranges, 20, 5);
4051 static const range expected[] = {
4055 SELF_CHECK (check_ranges_vector (ranges, expected));
4058 /* [10, 14] [17, 24] */
4060 insert_into_bit_range_vector (&ranges, 17, 5);
4061 static const range expected[] = {
4065 SELF_CHECK (check_ranges_vector (ranges, expected));
4068 /* [2, 8] [10, 14] [17, 24] */
4070 insert_into_bit_range_vector (&ranges, 2, 7);
4071 static const range expected[] = {
4076 SELF_CHECK (check_ranges_vector (ranges, expected));
4079 /* [2, 14] [17, 24] */
4081 insert_into_bit_range_vector (&ranges, 9, 1);
4082 static const range expected[] = {
4086 SELF_CHECK (check_ranges_vector (ranges, expected));
4089 /* [2, 14] [17, 24] */
4091 insert_into_bit_range_vector (&ranges, 9, 1);
4092 static const range expected[] = {
4096 SELF_CHECK (check_ranges_vector (ranges, expected));
4101 insert_into_bit_range_vector (&ranges, 4, 30);
4102 static const range expected = {2, 32};
4103 SELF_CHECK (check_ranges_vector (ranges, expected));
4107 } /* namespace selftests */
4108 #endif /* GDB_SELF_TEST */
4111 _initialize_values (void)
4113 add_cmd ("convenience", no_class, show_convenience, _("\
4114 Debugger convenience (\"$foo\") variables and functions.\n\
4115 Convenience variables are created when you assign them values;\n\
4116 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
4118 A few convenience variables are given values automatically:\n\
4119 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
4120 \"$__\" holds the contents of the last address examined with \"x\"."
4123 Convenience functions are defined via the Python API."
4126 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
4128 add_cmd ("values", no_set_class, show_values, _("\
4129 Elements of value history around item number IDX (or last ten)."),
4132 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4133 Initialize a convenience variable if necessary.\n\
4134 init-if-undefined VARIABLE = EXPRESSION\n\
4135 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4136 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4137 VARIABLE is already initialized."));
4139 add_prefix_cmd ("function", no_class, function_command, _("\
4140 Placeholder command for showing help on convenience functions."),
4141 &functionlist, "function ", 0, &cmdlist);
4143 add_internal_function ("_isvoid", _("\
4144 Check whether an expression is void.\n\
4145 Usage: $_isvoid (expression)\n\
4146 Return 1 if the expression is void, zero otherwise."),
4147 isvoid_internal_fn, NULL);
4149 add_internal_function ("_creal", _("\
4150 Extract the real part of a complex number.\n\
4151 Usage: $_creal (expression)\n\
4152 Return the real part of a complex number, the type depends on the\n\
4153 type of a complex number."),
4154 creal_internal_fn, NULL);
4156 add_internal_function ("_cimag", _("\
4157 Extract the imaginary part of a complex number.\n\
4158 Usage: $_cimag (expression)\n\
4159 Return the imaginary part of a complex number, the type depends on the\n\
4160 type of a complex number."),
4161 cimag_internal_fn, NULL);
4163 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4164 class_support, &max_value_size, _("\
4165 Set maximum sized value gdb will load from the inferior."), _("\
4166 Show maximum sized value gdb will load from the inferior."), _("\
4167 Use this to control the maximum size, in bytes, of a value that gdb\n\
4168 will load from the inferior. Setting this value to 'unlimited'\n\
4169 disables checking.\n\
4170 Setting this does not invalidate already allocated values, it only\n\
4171 prevents future values, larger than this size, from being allocated."),
4173 show_max_value_size,
4174 &setlist, &showlist);
4176 selftests::register_test ("ranges_contain", selftests::test_ranges_contain);
4177 selftests::register_test ("insert_into_bit_range_vector",
4178 selftests::test_insert_into_bit_range_vector);
4187 all_values.clear ();