1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "arch-utils.h"
33 #include "gdb_assert.h"
39 #include "cli/cli-decode.h"
40 #include "exceptions.h"
41 #include "extension.h"
43 #include "tracepoint.h"
45 #include "user-regs.h"
47 /* Prototypes for exported functions. */
49 void _initialize_values (void);
51 /* Definition of a user function. */
52 struct internal_function
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
60 internal_function_fn handler;
62 /* User data for the handler. */
66 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
70 /* Lowest offset in the range. */
73 /* Length of the range. */
77 typedef struct range range_s;
81 /* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
85 ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
95 /* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
101 range_lessthan (const range_s *r1, const range_s *r2)
103 return r1->offset < r2->offset;
106 /* Returns true if RANGES contains any range that overlaps [OFFSET,
110 ranges_contain (VEC(range_s) *ranges, int offset, int length)
115 what.offset = offset;
116 what.length = length;
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
128 |---| |---| |------| ... |--|
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
138 Then we need to check if the I range overlaps the I range itself.
143 |---| |---| |-------| ... |--|
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
159 if (i < VEC_length (range_s, ranges))
161 struct range *r = VEC_index (range_s, ranges, i);
163 if (ranges_overlap (r->offset, r->length, offset, length))
170 static struct cmd_list_element *functionlist;
172 /* Note that the fields in this structure are arranged to save a bit
177 /* Type of value; either not an lval, or one of the various
178 different possible kinds of lval. */
181 /* Is it modifiable? Only relevant if lval != not_lval. */
182 unsigned int modifiable : 1;
184 /* If zero, contents of this value are in the contents field. If
185 nonzero, contents are in inferior. If the lval field is lval_memory,
186 the contents are in inferior memory at location.address plus offset.
187 The lval field may also be lval_register.
189 WARNING: This field is used by the code which handles watchpoints
190 (see breakpoint.c) to decide whether a particular value can be
191 watched by hardware watchpoints. If the lazy flag is set for
192 some member of a value chain, it is assumed that this member of
193 the chain doesn't need to be watched as part of watching the
194 value itself. This is how GDB avoids watching the entire struct
195 or array when the user wants to watch a single struct member or
196 array element. If you ever change the way lazy flag is set and
197 reset, be sure to consider this use as well! */
198 unsigned int lazy : 1;
200 /* If nonzero, this is the value of a variable that does not
201 actually exist in the program. If nonzero, and LVAL is
202 lval_register, this is a register ($pc, $sp, etc., never a
203 program variable) that has not been saved in the frame. All
204 optimized-out values are treated pretty much the same, except
205 registers have a different string representation and related
207 unsigned int optimized_out : 1;
209 /* If value is a variable, is it initialized or not. */
210 unsigned int initialized : 1;
212 /* If value is from the stack. If this is set, read_stack will be
213 used instead of read_memory to enable extra caching. */
214 unsigned int stack : 1;
216 /* If the value has been released. */
217 unsigned int released : 1;
219 /* Register number if the value is from a register. */
222 /* Location of value (if lval). */
225 /* If lval == lval_memory, this is the address in the inferior.
226 If lval == lval_register, this is the byte offset into the
227 registers structure. */
230 /* Pointer to internal variable. */
231 struct internalvar *internalvar;
233 /* If lval == lval_computed, this is a set of function pointers
234 to use to access and describe the value, and a closure pointer
238 /* Functions to call. */
239 const struct lval_funcs *funcs;
241 /* Closure for those functions to use. */
246 /* Describes offset of a value within lval of a structure in bytes.
247 If lval == lval_memory, this is an offset to the address. If
248 lval == lval_register, this is a further offset from
249 location.address within the registers structure. Note also the
250 member embedded_offset below. */
253 /* Only used for bitfields; number of bits contained in them. */
256 /* Only used for bitfields; position of start of field. For
257 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
258 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
261 /* The number of references to this value. When a value is created,
262 the value chain holds a reference, so REFERENCE_COUNT is 1. If
263 release_value is called, this value is removed from the chain but
264 the caller of release_value now has a reference to this value.
265 The caller must arrange for a call to value_free later. */
268 /* Only used for bitfields; the containing value. This allows a
269 single read from the target when displaying multiple
271 struct value *parent;
273 /* Frame register value is relative to. This will be described in
274 the lval enum above as "lval_register". */
275 struct frame_id frame_id;
277 /* Type of the value. */
280 /* If a value represents a C++ object, then the `type' field gives
281 the object's compile-time type. If the object actually belongs
282 to some class derived from `type', perhaps with other base
283 classes and additional members, then `type' is just a subobject
284 of the real thing, and the full object is probably larger than
285 `type' would suggest.
287 If `type' is a dynamic class (i.e. one with a vtable), then GDB
288 can actually determine the object's run-time type by looking at
289 the run-time type information in the vtable. When this
290 information is available, we may elect to read in the entire
291 object, for several reasons:
293 - When printing the value, the user would probably rather see the
294 full object, not just the limited portion apparent from the
297 - If `type' has virtual base classes, then even printing `type'
298 alone may require reaching outside the `type' portion of the
299 object to wherever the virtual base class has been stored.
301 When we store the entire object, `enclosing_type' is the run-time
302 type -- the complete object -- and `embedded_offset' is the
303 offset of `type' within that larger type, in bytes. The
304 value_contents() macro takes `embedded_offset' into account, so
305 most GDB code continues to see the `type' portion of the value,
306 just as the inferior would.
308 If `type' is a pointer to an object, then `enclosing_type' is a
309 pointer to the object's run-time type, and `pointed_to_offset' is
310 the offset in bytes from the full object to the pointed-to object
311 -- that is, the value `embedded_offset' would have if we followed
312 the pointer and fetched the complete object. (I don't really see
313 the point. Why not just determine the run-time type when you
314 indirect, and avoid the special case? The contents don't matter
315 until you indirect anyway.)
317 If we're not doing anything fancy, `enclosing_type' is equal to
318 `type', and `embedded_offset' is zero, so everything works
320 struct type *enclosing_type;
322 int pointed_to_offset;
324 /* Values are stored in a chain, so that they can be deleted easily
325 over calls to the inferior. Values assigned to internal
326 variables, put into the value history or exposed to Python are
327 taken off this list. */
330 /* Actual contents of the value. Target byte-order. NULL or not
331 valid if lazy is nonzero. */
334 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
335 rather than available, since the common and default case is for a
336 value to be available. This is filled in at value read time. The
337 unavailable ranges are tracked in bits. */
338 VEC(range_s) *unavailable;
342 value_bits_available (const struct value *value, int offset, int length)
344 gdb_assert (!value->lazy);
346 return !ranges_contain (value->unavailable, offset, length);
350 value_bytes_available (const struct value *value, int offset, int length)
352 return value_bits_available (value,
353 offset * TARGET_CHAR_BIT,
354 length * TARGET_CHAR_BIT);
358 value_entirely_available (struct value *value)
360 /* We can only tell whether the whole value is available when we try
363 value_fetch_lazy (value);
365 if (VEC_empty (range_s, value->unavailable))
371 value_entirely_unavailable (struct value *value)
373 /* We can only tell whether the whole value is available when we try
376 value_fetch_lazy (value);
378 if (VEC_length (range_s, value->unavailable) == 1)
380 struct range *t = VEC_index (range_s, value->unavailable, 0);
383 && t->length == (TARGET_CHAR_BIT
384 * TYPE_LENGTH (value_enclosing_type (value))))
392 mark_value_bits_unavailable (struct value *value, int offset, int length)
397 /* Insert the range sorted. If there's overlap or the new range
398 would be contiguous with an existing range, merge. */
400 newr.offset = offset;
401 newr.length = length;
403 /* Do a binary search for the position the given range would be
404 inserted if we only considered the starting OFFSET of ranges.
405 Call that position I. Since we also have LENGTH to care for
406 (this is a range afterall), we need to check if the _previous_
407 range overlaps the I range. E.g., calling R the new range:
409 #1 - overlaps with previous
413 |---| |---| |------| ... |--|
418 In the case #1 above, the binary search would return `I=1',
419 meaning, this OFFSET should be inserted at position 1, and the
420 current position 1 should be pushed further (and become 2). But,
421 note that `0' overlaps with R, so we want to merge them.
423 A similar consideration needs to be taken if the new range would
424 be contiguous with the previous range:
426 #2 - contiguous with previous
430 |--| |---| |------| ... |--|
435 If there's no overlap with the previous range, as in:
437 #3 - not overlapping and not contiguous
441 |--| |---| |------| ... |--|
448 #4 - R is the range with lowest offset
452 |--| |---| |------| ... |--|
457 ... we just push the new range to I.
459 All the 4 cases above need to consider that the new range may
460 also overlap several of the ranges that follow, or that R may be
461 contiguous with the following range, and merge. E.g.,
463 #5 - overlapping following ranges
466 |------------------------|
467 |--| |---| |------| ... |--|
476 |--| |---| |------| ... |--|
483 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
486 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
488 if (ranges_overlap (bef->offset, bef->length, offset, length))
491 ULONGEST l = min (bef->offset, offset);
492 ULONGEST h = max (bef->offset + bef->length, offset + length);
498 else if (offset == bef->offset + bef->length)
501 bef->length += length;
507 VEC_safe_insert (range_s, value->unavailable, i, &newr);
513 VEC_safe_insert (range_s, value->unavailable, i, &newr);
516 /* Check whether the ranges following the one we've just added or
517 touched can be folded in (#5 above). */
518 if (i + 1 < VEC_length (range_s, value->unavailable))
525 /* Get the range we just touched. */
526 t = VEC_index (range_s, value->unavailable, i);
530 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
531 if (r->offset <= t->offset + t->length)
535 l = min (t->offset, r->offset);
536 h = max (t->offset + t->length, r->offset + r->length);
545 /* If we couldn't merge this one, we won't be able to
546 merge following ones either, since the ranges are
547 always sorted by OFFSET. */
552 VEC_block_remove (range_s, value->unavailable, next, removed);
557 mark_value_bytes_unavailable (struct value *value, int offset, int length)
559 mark_value_bits_unavailable (value,
560 offset * TARGET_CHAR_BIT,
561 length * TARGET_CHAR_BIT);
564 /* Find the first range in RANGES that overlaps the range defined by
565 OFFSET and LENGTH, starting at element POS in the RANGES vector,
566 Returns the index into RANGES where such overlapping range was
567 found, or -1 if none was found. */
570 find_first_range_overlap (VEC(range_s) *ranges, int pos,
571 int offset, int length)
576 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
577 if (ranges_overlap (r->offset, r->length, offset, length))
583 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
584 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
587 It must always be the case that:
588 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
590 It is assumed that memory can be accessed from:
591 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
593 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
594 / TARGET_CHAR_BIT) */
596 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
597 const gdb_byte *ptr2, size_t offset2_bits,
600 gdb_assert (offset1_bits % TARGET_CHAR_BIT
601 == offset2_bits % TARGET_CHAR_BIT);
603 if (offset1_bits % TARGET_CHAR_BIT != 0)
606 gdb_byte mask, b1, b2;
608 /* The offset from the base pointers PTR1 and PTR2 is not a complete
609 number of bytes. A number of bits up to either the next exact
610 byte boundary, or LENGTH_BITS (which ever is sooner) will be
612 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
613 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
614 mask = (1 << bits) - 1;
616 if (length_bits < bits)
618 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
622 /* Now load the two bytes and mask off the bits we care about. */
623 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
624 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
629 /* Now update the length and offsets to take account of the bits
630 we've just compared. */
632 offset1_bits += bits;
633 offset2_bits += bits;
636 if (length_bits % TARGET_CHAR_BIT != 0)
640 gdb_byte mask, b1, b2;
642 /* The length is not an exact number of bytes. After the previous
643 IF.. block then the offsets are byte aligned, or the
644 length is zero (in which case this code is not reached). Compare
645 a number of bits at the end of the region, starting from an exact
647 bits = length_bits % TARGET_CHAR_BIT;
648 o1 = offset1_bits + length_bits - bits;
649 o2 = offset2_bits + length_bits - bits;
651 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
652 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
654 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
655 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
657 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
658 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
668 /* We've now taken care of any stray "bits" at the start, or end of
669 the region to compare, the remainder can be covered with a simple
671 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
672 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
673 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
675 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
676 ptr2 + offset2_bits / TARGET_CHAR_BIT,
677 length_bits / TARGET_CHAR_BIT);
680 /* Length is zero, regions match. */
684 /* Helper function for value_available_contents_eq. The only difference is
685 that this function is bit rather than byte based.
687 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits with
688 LENGTH bits of VAL2's contents starting at OFFSET2 bits. Return true
689 if the available bits match. */
692 value_available_contents_bits_eq (const struct value *val1, int offset1,
693 const struct value *val2, int offset2,
696 int idx1 = 0, idx2 = 0;
698 /* See function description in value.h. */
699 gdb_assert (!val1->lazy && !val2->lazy);
707 idx1 = find_first_range_overlap (val1->unavailable, idx1,
709 idx2 = find_first_range_overlap (val2->unavailable, idx2,
712 /* The usual case is for both values to be completely available. */
713 if (idx1 == -1 && idx2 == -1)
714 return (memcmp_with_bit_offsets (val1->contents, offset1,
715 val2->contents, offset2,
717 /* The contents only match equal if the available set matches as
719 else if (idx1 == -1 || idx2 == -1)
722 gdb_assert (idx1 != -1 && idx2 != -1);
724 r1 = VEC_index (range_s, val1->unavailable, idx1);
725 r2 = VEC_index (range_s, val2->unavailable, idx2);
727 /* Get the unavailable windows intersected by the incoming
728 ranges. The first and last ranges that overlap the argument
729 range may be wider than said incoming arguments ranges. */
730 l1 = max (offset1, r1->offset);
731 h1 = min (offset1 + length, r1->offset + r1->length);
733 l2 = max (offset2, r2->offset);
734 h2 = min (offset2 + length, r2->offset + r2->length);
736 /* Make them relative to the respective start offsets, so we can
737 compare them for equality. */
744 /* Different availability, no match. */
745 if (l1 != l2 || h1 != h2)
748 /* Compare the _available_ contents. */
749 if (memcmp_with_bit_offsets (val1->contents, offset1,
750 val2->contents, offset2, l1) != 0)
762 value_available_contents_eq (const struct value *val1, int offset1,
763 const struct value *val2, int offset2,
766 return value_available_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
767 val2, offset2 * TARGET_CHAR_BIT,
768 length * TARGET_CHAR_BIT);
771 /* Prototypes for local functions. */
773 static void show_values (char *, int);
775 static void show_convenience (char *, int);
778 /* The value-history records all the values printed
779 by print commands during this session. Each chunk
780 records 60 consecutive values. The first chunk on
781 the chain records the most recent values.
782 The total number of values is in value_history_count. */
784 #define VALUE_HISTORY_CHUNK 60
786 struct value_history_chunk
788 struct value_history_chunk *next;
789 struct value *values[VALUE_HISTORY_CHUNK];
792 /* Chain of chunks now in use. */
794 static struct value_history_chunk *value_history_chain;
796 static int value_history_count; /* Abs number of last entry stored. */
799 /* List of all value objects currently allocated
800 (except for those released by calls to release_value)
801 This is so they can be freed after each command. */
803 static struct value *all_values;
805 /* Allocate a lazy value for type TYPE. Its actual content is
806 "lazily" allocated too: the content field of the return value is
807 NULL; it will be allocated when it is fetched from the target. */
810 allocate_value_lazy (struct type *type)
814 /* Call check_typedef on our type to make sure that, if TYPE
815 is a TYPE_CODE_TYPEDEF, its length is set to the length
816 of the target type instead of zero. However, we do not
817 replace the typedef type by the target type, because we want
818 to keep the typedef in order to be able to set the VAL's type
819 description correctly. */
820 check_typedef (type);
822 val = (struct value *) xzalloc (sizeof (struct value));
823 val->contents = NULL;
824 val->next = all_values;
827 val->enclosing_type = type;
828 VALUE_LVAL (val) = not_lval;
829 val->location.address = 0;
830 VALUE_FRAME_ID (val) = null_frame_id;
834 VALUE_REGNUM (val) = -1;
836 val->optimized_out = 0;
837 val->embedded_offset = 0;
838 val->pointed_to_offset = 0;
840 val->initialized = 1; /* Default to initialized. */
842 /* Values start out on the all_values chain. */
843 val->reference_count = 1;
848 /* Allocate the contents of VAL if it has not been allocated yet. */
851 allocate_value_contents (struct value *val)
854 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
857 /* Allocate a value and its contents for type TYPE. */
860 allocate_value (struct type *type)
862 struct value *val = allocate_value_lazy (type);
864 allocate_value_contents (val);
869 /* Allocate a value that has the correct length
870 for COUNT repetitions of type TYPE. */
873 allocate_repeat_value (struct type *type, int count)
875 int low_bound = current_language->string_lower_bound; /* ??? */
876 /* FIXME-type-allocation: need a way to free this type when we are
878 struct type *array_type
879 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
881 return allocate_value (array_type);
885 allocate_computed_value (struct type *type,
886 const struct lval_funcs *funcs,
889 struct value *v = allocate_value_lazy (type);
891 VALUE_LVAL (v) = lval_computed;
892 v->location.computed.funcs = funcs;
893 v->location.computed.closure = closure;
898 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
901 allocate_optimized_out_value (struct type *type)
903 struct value *retval = allocate_value_lazy (type);
905 set_value_optimized_out (retval, 1);
906 set_value_lazy (retval, 0);
910 /* Accessor methods. */
913 value_next (struct value *value)
919 value_type (const struct value *value)
924 deprecated_set_value_type (struct value *value, struct type *type)
930 value_offset (const struct value *value)
932 return value->offset;
935 set_value_offset (struct value *value, int offset)
937 value->offset = offset;
941 value_bitpos (const struct value *value)
943 return value->bitpos;
946 set_value_bitpos (struct value *value, int bit)
952 value_bitsize (const struct value *value)
954 return value->bitsize;
957 set_value_bitsize (struct value *value, int bit)
959 value->bitsize = bit;
963 value_parent (struct value *value)
965 return value->parent;
971 set_value_parent (struct value *value, struct value *parent)
973 struct value *old = value->parent;
975 value->parent = parent;
977 value_incref (parent);
982 value_contents_raw (struct value *value)
984 allocate_value_contents (value);
985 return value->contents + value->embedded_offset;
989 value_contents_all_raw (struct value *value)
991 allocate_value_contents (value);
992 return value->contents;
996 value_enclosing_type (struct value *value)
998 return value->enclosing_type;
1001 /* Look at value.h for description. */
1004 value_actual_type (struct value *value, int resolve_simple_types,
1005 int *real_type_found)
1007 struct value_print_options opts;
1008 struct type *result;
1010 get_user_print_options (&opts);
1012 if (real_type_found)
1013 *real_type_found = 0;
1014 result = value_type (value);
1015 if (opts.objectprint)
1017 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1018 fetch its rtti type. */
1019 if ((TYPE_CODE (result) == TYPE_CODE_PTR
1020 || TYPE_CODE (result) == TYPE_CODE_REF)
1021 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1022 == TYPE_CODE_STRUCT)
1024 struct type *real_type;
1026 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1029 if (real_type_found)
1030 *real_type_found = 1;
1034 else if (resolve_simple_types)
1036 if (real_type_found)
1037 *real_type_found = 1;
1038 result = value_enclosing_type (value);
1046 error_value_optimized_out (void)
1048 error (_("value has been optimized out"));
1052 require_not_optimized_out (const struct value *value)
1054 if (value->optimized_out)
1056 if (value->lval == lval_register)
1057 error (_("register has not been saved in frame"));
1059 error_value_optimized_out ();
1064 require_available (const struct value *value)
1066 if (!VEC_empty (range_s, value->unavailable))
1067 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1071 value_contents_for_printing (struct value *value)
1074 value_fetch_lazy (value);
1075 return value->contents;
1079 value_contents_for_printing_const (const struct value *value)
1081 gdb_assert (!value->lazy);
1082 return value->contents;
1086 value_contents_all (struct value *value)
1088 const gdb_byte *result = value_contents_for_printing (value);
1089 require_not_optimized_out (value);
1090 require_available (value);
1094 /* Copy LENGTH bytes of SRC value's (all) contents
1095 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1096 contents, starting at DST_OFFSET. If unavailable contents are
1097 being copied from SRC, the corresponding DST contents are marked
1098 unavailable accordingly. Neither DST nor SRC may be lazy
1101 It is assumed the contents of DST in the [DST_OFFSET,
1102 DST_OFFSET+LENGTH) range are wholly available. */
1105 value_contents_copy_raw (struct value *dst, int dst_offset,
1106 struct value *src, int src_offset, int length)
1110 int src_bit_offset, dst_bit_offset, bit_length;
1112 /* A lazy DST would make that this copy operation useless, since as
1113 soon as DST's contents were un-lazied (by a later value_contents
1114 call, say), the contents would be overwritten. A lazy SRC would
1115 mean we'd be copying garbage. */
1116 gdb_assert (!dst->lazy && !src->lazy);
1118 /* The overwritten DST range gets unavailability ORed in, not
1119 replaced. Make sure to remember to implement replacing if it
1120 turns out actually necessary. */
1121 gdb_assert (value_bytes_available (dst, dst_offset, length));
1123 /* Copy the data. */
1124 memcpy (value_contents_all_raw (dst) + dst_offset,
1125 value_contents_all_raw (src) + src_offset,
1128 /* Copy the meta-data, adjusted. */
1129 src_bit_offset = src_offset * TARGET_CHAR_BIT;
1130 dst_bit_offset = dst_offset * TARGET_CHAR_BIT;
1131 bit_length = length * TARGET_CHAR_BIT;
1132 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
1136 l = max (r->offset, src_bit_offset);
1137 h = min (r->offset + r->length, src_bit_offset + bit_length);
1140 mark_value_bits_unavailable (dst,
1141 dst_bit_offset + (l - src_bit_offset),
1146 /* Copy LENGTH bytes of SRC value's (all) contents
1147 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1148 (all) contents, starting at DST_OFFSET. If unavailable contents
1149 are being copied from SRC, the corresponding DST contents are
1150 marked unavailable accordingly. DST must not be lazy. If SRC is
1151 lazy, it will be fetched now. If SRC is not valid (is optimized
1152 out), an error is thrown.
1154 It is assumed the contents of DST in the [DST_OFFSET,
1155 DST_OFFSET+LENGTH) range are wholly available. */
1158 value_contents_copy (struct value *dst, int dst_offset,
1159 struct value *src, int src_offset, int length)
1161 require_not_optimized_out (src);
1164 value_fetch_lazy (src);
1166 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1170 value_lazy (struct value *value)
1176 set_value_lazy (struct value *value, int val)
1182 value_stack (struct value *value)
1184 return value->stack;
1188 set_value_stack (struct value *value, int val)
1194 value_contents (struct value *value)
1196 const gdb_byte *result = value_contents_writeable (value);
1197 require_not_optimized_out (value);
1198 require_available (value);
1203 value_contents_writeable (struct value *value)
1206 value_fetch_lazy (value);
1207 return value_contents_raw (value);
1210 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1211 this function is different from value_equal; in C the operator ==
1212 can return 0 even if the two values being compared are equal. */
1215 value_contents_equal (struct value *val1, struct value *val2)
1220 type1 = check_typedef (value_type (val1));
1221 type2 = check_typedef (value_type (val2));
1222 if (TYPE_LENGTH (type1) != TYPE_LENGTH (type2))
1225 return (memcmp (value_contents (val1), value_contents (val2),
1226 TYPE_LENGTH (type1)) == 0);
1230 value_optimized_out (struct value *value)
1232 /* We can only know if a value is optimized out once we have tried to
1234 if (!value->optimized_out && value->lazy)
1235 value_fetch_lazy (value);
1237 return value->optimized_out;
1241 value_optimized_out_const (const struct value *value)
1243 return value->optimized_out;
1247 set_value_optimized_out (struct value *value, int val)
1249 value->optimized_out = val;
1253 value_entirely_optimized_out (const struct value *value)
1255 if (!value->optimized_out)
1257 if (value->lval != lval_computed
1258 || !value->location.computed.funcs->check_any_valid)
1260 return !value->location.computed.funcs->check_any_valid (value);
1264 value_bits_valid (const struct value *value, int offset, int length)
1266 if (!value->optimized_out)
1268 if (value->lval != lval_computed
1269 || !value->location.computed.funcs->check_validity)
1271 return value->location.computed.funcs->check_validity (value, offset,
1276 value_bits_synthetic_pointer (const struct value *value,
1277 int offset, int length)
1279 if (value->lval != lval_computed
1280 || !value->location.computed.funcs->check_synthetic_pointer)
1282 return value->location.computed.funcs->check_synthetic_pointer (value,
1288 value_embedded_offset (struct value *value)
1290 return value->embedded_offset;
1294 set_value_embedded_offset (struct value *value, int val)
1296 value->embedded_offset = val;
1300 value_pointed_to_offset (struct value *value)
1302 return value->pointed_to_offset;
1306 set_value_pointed_to_offset (struct value *value, int val)
1308 value->pointed_to_offset = val;
1311 const struct lval_funcs *
1312 value_computed_funcs (const struct value *v)
1314 gdb_assert (value_lval_const (v) == lval_computed);
1316 return v->location.computed.funcs;
1320 value_computed_closure (const struct value *v)
1322 gdb_assert (v->lval == lval_computed);
1324 return v->location.computed.closure;
1328 deprecated_value_lval_hack (struct value *value)
1330 return &value->lval;
1334 value_lval_const (const struct value *value)
1340 value_address (const struct value *value)
1342 if (value->lval == lval_internalvar
1343 || value->lval == lval_internalvar_component)
1345 if (value->parent != NULL)
1346 return value_address (value->parent) + value->offset;
1348 return value->location.address + value->offset;
1352 value_raw_address (struct value *value)
1354 if (value->lval == lval_internalvar
1355 || value->lval == lval_internalvar_component)
1357 return value->location.address;
1361 set_value_address (struct value *value, CORE_ADDR addr)
1363 gdb_assert (value->lval != lval_internalvar
1364 && value->lval != lval_internalvar_component);
1365 value->location.address = addr;
1368 struct internalvar **
1369 deprecated_value_internalvar_hack (struct value *value)
1371 return &value->location.internalvar;
1375 deprecated_value_frame_id_hack (struct value *value)
1377 return &value->frame_id;
1381 deprecated_value_regnum_hack (struct value *value)
1383 return &value->regnum;
1387 deprecated_value_modifiable (struct value *value)
1389 return value->modifiable;
1392 /* Return a mark in the value chain. All values allocated after the
1393 mark is obtained (except for those released) are subject to being freed
1394 if a subsequent value_free_to_mark is passed the mark. */
1401 /* Take a reference to VAL. VAL will not be deallocated until all
1402 references are released. */
1405 value_incref (struct value *val)
1407 val->reference_count++;
1410 /* Release a reference to VAL, which was acquired with value_incref.
1411 This function is also called to deallocate values from the value
1415 value_free (struct value *val)
1419 gdb_assert (val->reference_count > 0);
1420 val->reference_count--;
1421 if (val->reference_count > 0)
1424 /* If there's an associated parent value, drop our reference to
1426 if (val->parent != NULL)
1427 value_free (val->parent);
1429 if (VALUE_LVAL (val) == lval_computed)
1431 const struct lval_funcs *funcs = val->location.computed.funcs;
1433 if (funcs->free_closure)
1434 funcs->free_closure (val);
1437 xfree (val->contents);
1438 VEC_free (range_s, val->unavailable);
1443 /* Free all values allocated since MARK was obtained by value_mark
1444 (except for those released). */
1446 value_free_to_mark (struct value *mark)
1451 for (val = all_values; val && val != mark; val = next)
1460 /* Free all the values that have been allocated (except for those released).
1461 Call after each command, successful or not.
1462 In practice this is called before each command, which is sufficient. */
1465 free_all_values (void)
1470 for (val = all_values; val; val = next)
1480 /* Frees all the elements in a chain of values. */
1483 free_value_chain (struct value *v)
1489 next = value_next (v);
1494 /* Remove VAL from the chain all_values
1495 so it will not be freed automatically. */
1498 release_value (struct value *val)
1502 if (all_values == val)
1504 all_values = val->next;
1510 for (v = all_values; v; v = v->next)
1514 v->next = val->next;
1522 /* If the value is not already released, release it.
1523 If the value is already released, increment its reference count.
1524 That is, this function ensures that the value is released from the
1525 value chain and that the caller owns a reference to it. */
1528 release_value_or_incref (struct value *val)
1533 release_value (val);
1536 /* Release all values up to mark */
1538 value_release_to_mark (struct value *mark)
1543 for (val = next = all_values; next; next = next->next)
1545 if (next->next == mark)
1547 all_values = next->next;
1557 /* Return a copy of the value ARG.
1558 It contains the same contents, for same memory address,
1559 but it's a different block of storage. */
1562 value_copy (struct value *arg)
1564 struct type *encl_type = value_enclosing_type (arg);
1567 if (value_lazy (arg))
1568 val = allocate_value_lazy (encl_type);
1570 val = allocate_value (encl_type);
1571 val->type = arg->type;
1572 VALUE_LVAL (val) = VALUE_LVAL (arg);
1573 val->location = arg->location;
1574 val->offset = arg->offset;
1575 val->bitpos = arg->bitpos;
1576 val->bitsize = arg->bitsize;
1577 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1578 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1579 val->lazy = arg->lazy;
1580 val->optimized_out = arg->optimized_out;
1581 val->embedded_offset = value_embedded_offset (arg);
1582 val->pointed_to_offset = arg->pointed_to_offset;
1583 val->modifiable = arg->modifiable;
1584 if (!value_lazy (val))
1586 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1587 TYPE_LENGTH (value_enclosing_type (arg)));
1590 val->unavailable = VEC_copy (range_s, arg->unavailable);
1591 set_value_parent (val, arg->parent);
1592 if (VALUE_LVAL (val) == lval_computed)
1594 const struct lval_funcs *funcs = val->location.computed.funcs;
1596 if (funcs->copy_closure)
1597 val->location.computed.closure = funcs->copy_closure (val);
1602 /* Return a version of ARG that is non-lvalue. */
1605 value_non_lval (struct value *arg)
1607 if (VALUE_LVAL (arg) != not_lval)
1609 struct type *enc_type = value_enclosing_type (arg);
1610 struct value *val = allocate_value (enc_type);
1612 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1613 TYPE_LENGTH (enc_type));
1614 val->type = arg->type;
1615 set_value_embedded_offset (val, value_embedded_offset (arg));
1616 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1623 set_value_component_location (struct value *component,
1624 const struct value *whole)
1626 if (whole->lval == lval_internalvar)
1627 VALUE_LVAL (component) = lval_internalvar_component;
1629 VALUE_LVAL (component) = whole->lval;
1631 component->location = whole->location;
1632 if (whole->lval == lval_computed)
1634 const struct lval_funcs *funcs = whole->location.computed.funcs;
1636 if (funcs->copy_closure)
1637 component->location.computed.closure = funcs->copy_closure (whole);
1642 /* Access to the value history. */
1644 /* Record a new value in the value history.
1645 Returns the absolute history index of the entry. */
1648 record_latest_value (struct value *val)
1652 /* We don't want this value to have anything to do with the inferior anymore.
1653 In particular, "set $1 = 50" should not affect the variable from which
1654 the value was taken, and fast watchpoints should be able to assume that
1655 a value on the value history never changes. */
1656 if (value_lazy (val))
1657 value_fetch_lazy (val);
1658 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1659 from. This is a bit dubious, because then *&$1 does not just return $1
1660 but the current contents of that location. c'est la vie... */
1661 val->modifiable = 0;
1663 /* The value may have already been released, in which case we're adding a
1664 new reference for its entry in the history. That is why we call
1665 release_value_or_incref here instead of release_value. */
1666 release_value_or_incref (val);
1668 /* Here we treat value_history_count as origin-zero
1669 and applying to the value being stored now. */
1671 i = value_history_count % VALUE_HISTORY_CHUNK;
1674 struct value_history_chunk *new
1675 = (struct value_history_chunk *)
1677 xmalloc (sizeof (struct value_history_chunk));
1678 memset (new->values, 0, sizeof new->values);
1679 new->next = value_history_chain;
1680 value_history_chain = new;
1683 value_history_chain->values[i] = val;
1685 /* Now we regard value_history_count as origin-one
1686 and applying to the value just stored. */
1688 return ++value_history_count;
1691 /* Return a copy of the value in the history with sequence number NUM. */
1694 access_value_history (int num)
1696 struct value_history_chunk *chunk;
1701 absnum += value_history_count;
1706 error (_("The history is empty."));
1708 error (_("There is only one value in the history."));
1710 error (_("History does not go back to $$%d."), -num);
1712 if (absnum > value_history_count)
1713 error (_("History has not yet reached $%d."), absnum);
1717 /* Now absnum is always absolute and origin zero. */
1719 chunk = value_history_chain;
1720 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1721 - absnum / VALUE_HISTORY_CHUNK;
1723 chunk = chunk->next;
1725 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1729 show_values (char *num_exp, int from_tty)
1737 /* "show values +" should print from the stored position.
1738 "show values <exp>" should print around value number <exp>. */
1739 if (num_exp[0] != '+' || num_exp[1] != '\0')
1740 num = parse_and_eval_long (num_exp) - 5;
1744 /* "show values" means print the last 10 values. */
1745 num = value_history_count - 9;
1751 for (i = num; i < num + 10 && i <= value_history_count; i++)
1753 struct value_print_options opts;
1755 val = access_value_history (i);
1756 printf_filtered (("$%d = "), i);
1757 get_user_print_options (&opts);
1758 value_print (val, gdb_stdout, &opts);
1759 printf_filtered (("\n"));
1762 /* The next "show values +" should start after what we just printed. */
1765 /* Hitting just return after this command should do the same thing as
1766 "show values +". If num_exp is null, this is unnecessary, since
1767 "show values +" is not useful after "show values". */
1768 if (from_tty && num_exp)
1775 /* Internal variables. These are variables within the debugger
1776 that hold values assigned by debugger commands.
1777 The user refers to them with a '$' prefix
1778 that does not appear in the variable names stored internally. */
1782 struct internalvar *next;
1785 /* We support various different kinds of content of an internal variable.
1786 enum internalvar_kind specifies the kind, and union internalvar_data
1787 provides the data associated with this particular kind. */
1789 enum internalvar_kind
1791 /* The internal variable is empty. */
1794 /* The value of the internal variable is provided directly as
1795 a GDB value object. */
1798 /* A fresh value is computed via a call-back routine on every
1799 access to the internal variable. */
1800 INTERNALVAR_MAKE_VALUE,
1802 /* The internal variable holds a GDB internal convenience function. */
1803 INTERNALVAR_FUNCTION,
1805 /* The variable holds an integer value. */
1806 INTERNALVAR_INTEGER,
1808 /* The variable holds a GDB-provided string. */
1813 union internalvar_data
1815 /* A value object used with INTERNALVAR_VALUE. */
1816 struct value *value;
1818 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1821 /* The functions to call. */
1822 const struct internalvar_funcs *functions;
1824 /* The function's user-data. */
1828 /* The internal function used with INTERNALVAR_FUNCTION. */
1831 struct internal_function *function;
1832 /* True if this is the canonical name for the function. */
1836 /* An integer value used with INTERNALVAR_INTEGER. */
1839 /* If type is non-NULL, it will be used as the type to generate
1840 a value for this internal variable. If type is NULL, a default
1841 integer type for the architecture is used. */
1846 /* A string value used with INTERNALVAR_STRING. */
1851 static struct internalvar *internalvars;
1853 /* If the variable does not already exist create it and give it the
1854 value given. If no value is given then the default is zero. */
1856 init_if_undefined_command (char* args, int from_tty)
1858 struct internalvar* intvar;
1860 /* Parse the expression - this is taken from set_command(). */
1861 struct expression *expr = parse_expression (args);
1862 register struct cleanup *old_chain =
1863 make_cleanup (free_current_contents, &expr);
1865 /* Validate the expression.
1866 Was the expression an assignment?
1867 Or even an expression at all? */
1868 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1869 error (_("Init-if-undefined requires an assignment expression."));
1871 /* Extract the variable from the parsed expression.
1872 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1873 if (expr->elts[1].opcode != OP_INTERNALVAR)
1874 error (_("The first parameter to init-if-undefined "
1875 "should be a GDB variable."));
1876 intvar = expr->elts[2].internalvar;
1878 /* Only evaluate the expression if the lvalue is void.
1879 This may still fail if the expresssion is invalid. */
1880 if (intvar->kind == INTERNALVAR_VOID)
1881 evaluate_expression (expr);
1883 do_cleanups (old_chain);
1887 /* Look up an internal variable with name NAME. NAME should not
1888 normally include a dollar sign.
1890 If the specified internal variable does not exist,
1891 the return value is NULL. */
1893 struct internalvar *
1894 lookup_only_internalvar (const char *name)
1896 struct internalvar *var;
1898 for (var = internalvars; var; var = var->next)
1899 if (strcmp (var->name, name) == 0)
1905 /* Complete NAME by comparing it to the names of internal variables.
1906 Returns a vector of newly allocated strings, or NULL if no matches
1910 complete_internalvar (const char *name)
1912 VEC (char_ptr) *result = NULL;
1913 struct internalvar *var;
1916 len = strlen (name);
1918 for (var = internalvars; var; var = var->next)
1919 if (strncmp (var->name, name, len) == 0)
1921 char *r = xstrdup (var->name);
1923 VEC_safe_push (char_ptr, result, r);
1929 /* Create an internal variable with name NAME and with a void value.
1930 NAME should not normally include a dollar sign. */
1932 struct internalvar *
1933 create_internalvar (const char *name)
1935 struct internalvar *var;
1937 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1938 var->name = concat (name, (char *)NULL);
1939 var->kind = INTERNALVAR_VOID;
1940 var->next = internalvars;
1945 /* Create an internal variable with name NAME and register FUN as the
1946 function that value_of_internalvar uses to create a value whenever
1947 this variable is referenced. NAME should not normally include a
1948 dollar sign. DATA is passed uninterpreted to FUN when it is
1949 called. CLEANUP, if not NULL, is called when the internal variable
1950 is destroyed. It is passed DATA as its only argument. */
1952 struct internalvar *
1953 create_internalvar_type_lazy (const char *name,
1954 const struct internalvar_funcs *funcs,
1957 struct internalvar *var = create_internalvar (name);
1959 var->kind = INTERNALVAR_MAKE_VALUE;
1960 var->u.make_value.functions = funcs;
1961 var->u.make_value.data = data;
1965 /* See documentation in value.h. */
1968 compile_internalvar_to_ax (struct internalvar *var,
1969 struct agent_expr *expr,
1970 struct axs_value *value)
1972 if (var->kind != INTERNALVAR_MAKE_VALUE
1973 || var->u.make_value.functions->compile_to_ax == NULL)
1976 var->u.make_value.functions->compile_to_ax (var, expr, value,
1977 var->u.make_value.data);
1981 /* Look up an internal variable with name NAME. NAME should not
1982 normally include a dollar sign.
1984 If the specified internal variable does not exist,
1985 one is created, with a void value. */
1987 struct internalvar *
1988 lookup_internalvar (const char *name)
1990 struct internalvar *var;
1992 var = lookup_only_internalvar (name);
1996 return create_internalvar (name);
1999 /* Return current value of internal variable VAR. For variables that
2000 are not inherently typed, use a value type appropriate for GDBARCH. */
2003 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2006 struct trace_state_variable *tsv;
2008 /* If there is a trace state variable of the same name, assume that
2009 is what we really want to see. */
2010 tsv = find_trace_state_variable (var->name);
2013 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2015 if (tsv->value_known)
2016 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2019 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2025 case INTERNALVAR_VOID:
2026 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2029 case INTERNALVAR_FUNCTION:
2030 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2033 case INTERNALVAR_INTEGER:
2034 if (!var->u.integer.type)
2035 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2036 var->u.integer.val);
2038 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2041 case INTERNALVAR_STRING:
2042 val = value_cstring (var->u.string, strlen (var->u.string),
2043 builtin_type (gdbarch)->builtin_char);
2046 case INTERNALVAR_VALUE:
2047 val = value_copy (var->u.value);
2048 if (value_lazy (val))
2049 value_fetch_lazy (val);
2052 case INTERNALVAR_MAKE_VALUE:
2053 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2054 var->u.make_value.data);
2058 internal_error (__FILE__, __LINE__, _("bad kind"));
2061 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2062 on this value go back to affect the original internal variable.
2064 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2065 no underlying modifyable state in the internal variable.
2067 Likewise, if the variable's value is a computed lvalue, we want
2068 references to it to produce another computed lvalue, where
2069 references and assignments actually operate through the
2070 computed value's functions.
2072 This means that internal variables with computed values
2073 behave a little differently from other internal variables:
2074 assignments to them don't just replace the previous value
2075 altogether. At the moment, this seems like the behavior we
2078 if (var->kind != INTERNALVAR_MAKE_VALUE
2079 && val->lval != lval_computed)
2081 VALUE_LVAL (val) = lval_internalvar;
2082 VALUE_INTERNALVAR (val) = var;
2089 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2091 if (var->kind == INTERNALVAR_INTEGER)
2093 *result = var->u.integer.val;
2097 if (var->kind == INTERNALVAR_VALUE)
2099 struct type *type = check_typedef (value_type (var->u.value));
2101 if (TYPE_CODE (type) == TYPE_CODE_INT)
2103 *result = value_as_long (var->u.value);
2112 get_internalvar_function (struct internalvar *var,
2113 struct internal_function **result)
2117 case INTERNALVAR_FUNCTION:
2118 *result = var->u.fn.function;
2127 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
2128 int bitsize, struct value *newval)
2134 case INTERNALVAR_VALUE:
2135 addr = value_contents_writeable (var->u.value);
2138 modify_field (value_type (var->u.value), addr + offset,
2139 value_as_long (newval), bitpos, bitsize);
2141 memcpy (addr + offset, value_contents (newval),
2142 TYPE_LENGTH (value_type (newval)));
2146 /* We can never get a component of any other kind. */
2147 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2152 set_internalvar (struct internalvar *var, struct value *val)
2154 enum internalvar_kind new_kind;
2155 union internalvar_data new_data = { 0 };
2157 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2158 error (_("Cannot overwrite convenience function %s"), var->name);
2160 /* Prepare new contents. */
2161 switch (TYPE_CODE (check_typedef (value_type (val))))
2163 case TYPE_CODE_VOID:
2164 new_kind = INTERNALVAR_VOID;
2167 case TYPE_CODE_INTERNAL_FUNCTION:
2168 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2169 new_kind = INTERNALVAR_FUNCTION;
2170 get_internalvar_function (VALUE_INTERNALVAR (val),
2171 &new_data.fn.function);
2172 /* Copies created here are never canonical. */
2176 new_kind = INTERNALVAR_VALUE;
2177 new_data.value = value_copy (val);
2178 new_data.value->modifiable = 1;
2180 /* Force the value to be fetched from the target now, to avoid problems
2181 later when this internalvar is referenced and the target is gone or
2183 if (value_lazy (new_data.value))
2184 value_fetch_lazy (new_data.value);
2186 /* Release the value from the value chain to prevent it from being
2187 deleted by free_all_values. From here on this function should not
2188 call error () until new_data is installed into the var->u to avoid
2190 release_value (new_data.value);
2194 /* Clean up old contents. */
2195 clear_internalvar (var);
2198 var->kind = new_kind;
2200 /* End code which must not call error(). */
2204 set_internalvar_integer (struct internalvar *var, LONGEST l)
2206 /* Clean up old contents. */
2207 clear_internalvar (var);
2209 var->kind = INTERNALVAR_INTEGER;
2210 var->u.integer.type = NULL;
2211 var->u.integer.val = l;
2215 set_internalvar_string (struct internalvar *var, const char *string)
2217 /* Clean up old contents. */
2218 clear_internalvar (var);
2220 var->kind = INTERNALVAR_STRING;
2221 var->u.string = xstrdup (string);
2225 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2227 /* Clean up old contents. */
2228 clear_internalvar (var);
2230 var->kind = INTERNALVAR_FUNCTION;
2231 var->u.fn.function = f;
2232 var->u.fn.canonical = 1;
2233 /* Variables installed here are always the canonical version. */
2237 clear_internalvar (struct internalvar *var)
2239 /* Clean up old contents. */
2242 case INTERNALVAR_VALUE:
2243 value_free (var->u.value);
2246 case INTERNALVAR_STRING:
2247 xfree (var->u.string);
2250 case INTERNALVAR_MAKE_VALUE:
2251 if (var->u.make_value.functions->destroy != NULL)
2252 var->u.make_value.functions->destroy (var->u.make_value.data);
2259 /* Reset to void kind. */
2260 var->kind = INTERNALVAR_VOID;
2264 internalvar_name (struct internalvar *var)
2269 static struct internal_function *
2270 create_internal_function (const char *name,
2271 internal_function_fn handler, void *cookie)
2273 struct internal_function *ifn = XNEW (struct internal_function);
2275 ifn->name = xstrdup (name);
2276 ifn->handler = handler;
2277 ifn->cookie = cookie;
2282 value_internal_function_name (struct value *val)
2284 struct internal_function *ifn;
2287 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2288 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2289 gdb_assert (result);
2295 call_internal_function (struct gdbarch *gdbarch,
2296 const struct language_defn *language,
2297 struct value *func, int argc, struct value **argv)
2299 struct internal_function *ifn;
2302 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2303 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2304 gdb_assert (result);
2306 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2309 /* The 'function' command. This does nothing -- it is just a
2310 placeholder to let "help function NAME" work. This is also used as
2311 the implementation of the sub-command that is created when
2312 registering an internal function. */
2314 function_command (char *command, int from_tty)
2319 /* Clean up if an internal function's command is destroyed. */
2321 function_destroyer (struct cmd_list_element *self, void *ignore)
2323 xfree ((char *) self->name);
2327 /* Add a new internal function. NAME is the name of the function; DOC
2328 is a documentation string describing the function. HANDLER is
2329 called when the function is invoked. COOKIE is an arbitrary
2330 pointer which is passed to HANDLER and is intended for "user
2333 add_internal_function (const char *name, const char *doc,
2334 internal_function_fn handler, void *cookie)
2336 struct cmd_list_element *cmd;
2337 struct internal_function *ifn;
2338 struct internalvar *var = lookup_internalvar (name);
2340 ifn = create_internal_function (name, handler, cookie);
2341 set_internalvar_function (var, ifn);
2343 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2345 cmd->destroyer = function_destroyer;
2348 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2349 prevent cycles / duplicates. */
2352 preserve_one_value (struct value *value, struct objfile *objfile,
2353 htab_t copied_types)
2355 if (TYPE_OBJFILE (value->type) == objfile)
2356 value->type = copy_type_recursive (objfile, value->type, copied_types);
2358 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2359 value->enclosing_type = copy_type_recursive (objfile,
2360 value->enclosing_type,
2364 /* Likewise for internal variable VAR. */
2367 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2368 htab_t copied_types)
2372 case INTERNALVAR_INTEGER:
2373 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2375 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2378 case INTERNALVAR_VALUE:
2379 preserve_one_value (var->u.value, objfile, copied_types);
2384 /* Update the internal variables and value history when OBJFILE is
2385 discarded; we must copy the types out of the objfile. New global types
2386 will be created for every convenience variable which currently points to
2387 this objfile's types, and the convenience variables will be adjusted to
2388 use the new global types. */
2391 preserve_values (struct objfile *objfile)
2393 htab_t copied_types;
2394 struct value_history_chunk *cur;
2395 struct internalvar *var;
2398 /* Create the hash table. We allocate on the objfile's obstack, since
2399 it is soon to be deleted. */
2400 copied_types = create_copied_types_hash (objfile);
2402 for (cur = value_history_chain; cur; cur = cur->next)
2403 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2405 preserve_one_value (cur->values[i], objfile, copied_types);
2407 for (var = internalvars; var; var = var->next)
2408 preserve_one_internalvar (var, objfile, copied_types);
2410 preserve_ext_lang_values (objfile, copied_types);
2412 htab_delete (copied_types);
2416 show_convenience (char *ignore, int from_tty)
2418 struct gdbarch *gdbarch = get_current_arch ();
2419 struct internalvar *var;
2421 struct value_print_options opts;
2423 get_user_print_options (&opts);
2424 for (var = internalvars; var; var = var->next)
2426 volatile struct gdb_exception ex;
2432 printf_filtered (("$%s = "), var->name);
2434 TRY_CATCH (ex, RETURN_MASK_ERROR)
2438 val = value_of_internalvar (gdbarch, var);
2439 value_print (val, gdb_stdout, &opts);
2442 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2443 printf_filtered (("\n"));
2447 /* This text does not mention convenience functions on purpose.
2448 The user can't create them except via Python, and if Python support
2449 is installed this message will never be printed ($_streq will
2451 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2452 "Convenience variables have "
2453 "names starting with \"$\";\n"
2454 "use \"set\" as in \"set "
2455 "$foo = 5\" to define them.\n"));
2459 /* Extract a value as a C number (either long or double).
2460 Knows how to convert fixed values to double, or
2461 floating values to long.
2462 Does not deallocate the value. */
2465 value_as_long (struct value *val)
2467 /* This coerces arrays and functions, which is necessary (e.g.
2468 in disassemble_command). It also dereferences references, which
2469 I suspect is the most logical thing to do. */
2470 val = coerce_array (val);
2471 return unpack_long (value_type (val), value_contents (val));
2475 value_as_double (struct value *val)
2480 foo = unpack_double (value_type (val), value_contents (val), &inv);
2482 error (_("Invalid floating value found in program."));
2486 /* Extract a value as a C pointer. Does not deallocate the value.
2487 Note that val's type may not actually be a pointer; value_as_long
2488 handles all the cases. */
2490 value_as_address (struct value *val)
2492 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2494 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2495 whether we want this to be true eventually. */
2497 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2498 non-address (e.g. argument to "signal", "info break", etc.), or
2499 for pointers to char, in which the low bits *are* significant. */
2500 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2503 /* There are several targets (IA-64, PowerPC, and others) which
2504 don't represent pointers to functions as simply the address of
2505 the function's entry point. For example, on the IA-64, a
2506 function pointer points to a two-word descriptor, generated by
2507 the linker, which contains the function's entry point, and the
2508 value the IA-64 "global pointer" register should have --- to
2509 support position-independent code. The linker generates
2510 descriptors only for those functions whose addresses are taken.
2512 On such targets, it's difficult for GDB to convert an arbitrary
2513 function address into a function pointer; it has to either find
2514 an existing descriptor for that function, or call malloc and
2515 build its own. On some targets, it is impossible for GDB to
2516 build a descriptor at all: the descriptor must contain a jump
2517 instruction; data memory cannot be executed; and code memory
2520 Upon entry to this function, if VAL is a value of type `function'
2521 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2522 value_address (val) is the address of the function. This is what
2523 you'll get if you evaluate an expression like `main'. The call
2524 to COERCE_ARRAY below actually does all the usual unary
2525 conversions, which includes converting values of type `function'
2526 to `pointer to function'. This is the challenging conversion
2527 discussed above. Then, `unpack_long' will convert that pointer
2528 back into an address.
2530 So, suppose the user types `disassemble foo' on an architecture
2531 with a strange function pointer representation, on which GDB
2532 cannot build its own descriptors, and suppose further that `foo'
2533 has no linker-built descriptor. The address->pointer conversion
2534 will signal an error and prevent the command from running, even
2535 though the next step would have been to convert the pointer
2536 directly back into the same address.
2538 The following shortcut avoids this whole mess. If VAL is a
2539 function, just return its address directly. */
2540 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2541 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2542 return value_address (val);
2544 val = coerce_array (val);
2546 /* Some architectures (e.g. Harvard), map instruction and data
2547 addresses onto a single large unified address space. For
2548 instance: An architecture may consider a large integer in the
2549 range 0x10000000 .. 0x1000ffff to already represent a data
2550 addresses (hence not need a pointer to address conversion) while
2551 a small integer would still need to be converted integer to
2552 pointer to address. Just assume such architectures handle all
2553 integer conversions in a single function. */
2557 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2558 must admonish GDB hackers to make sure its behavior matches the
2559 compiler's, whenever possible.
2561 In general, I think GDB should evaluate expressions the same way
2562 the compiler does. When the user copies an expression out of
2563 their source code and hands it to a `print' command, they should
2564 get the same value the compiler would have computed. Any
2565 deviation from this rule can cause major confusion and annoyance,
2566 and needs to be justified carefully. In other words, GDB doesn't
2567 really have the freedom to do these conversions in clever and
2570 AndrewC pointed out that users aren't complaining about how GDB
2571 casts integers to pointers; they are complaining that they can't
2572 take an address from a disassembly listing and give it to `x/i'.
2573 This is certainly important.
2575 Adding an architecture method like integer_to_address() certainly
2576 makes it possible for GDB to "get it right" in all circumstances
2577 --- the target has complete control over how things get done, so
2578 people can Do The Right Thing for their target without breaking
2579 anyone else. The standard doesn't specify how integers get
2580 converted to pointers; usually, the ABI doesn't either, but
2581 ABI-specific code is a more reasonable place to handle it. */
2583 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2584 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2585 && gdbarch_integer_to_address_p (gdbarch))
2586 return gdbarch_integer_to_address (gdbarch, value_type (val),
2587 value_contents (val));
2589 return unpack_long (value_type (val), value_contents (val));
2593 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2594 as a long, or as a double, assuming the raw data is described
2595 by type TYPE. Knows how to convert different sizes of values
2596 and can convert between fixed and floating point. We don't assume
2597 any alignment for the raw data. Return value is in host byte order.
2599 If you want functions and arrays to be coerced to pointers, and
2600 references to be dereferenced, call value_as_long() instead.
2602 C++: It is assumed that the front-end has taken care of
2603 all matters concerning pointers to members. A pointer
2604 to member which reaches here is considered to be equivalent
2605 to an INT (or some size). After all, it is only an offset. */
2608 unpack_long (struct type *type, const gdb_byte *valaddr)
2610 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2611 enum type_code code = TYPE_CODE (type);
2612 int len = TYPE_LENGTH (type);
2613 int nosign = TYPE_UNSIGNED (type);
2617 case TYPE_CODE_TYPEDEF:
2618 return unpack_long (check_typedef (type), valaddr);
2619 case TYPE_CODE_ENUM:
2620 case TYPE_CODE_FLAGS:
2621 case TYPE_CODE_BOOL:
2623 case TYPE_CODE_CHAR:
2624 case TYPE_CODE_RANGE:
2625 case TYPE_CODE_MEMBERPTR:
2627 return extract_unsigned_integer (valaddr, len, byte_order);
2629 return extract_signed_integer (valaddr, len, byte_order);
2632 return extract_typed_floating (valaddr, type);
2634 case TYPE_CODE_DECFLOAT:
2635 /* libdecnumber has a function to convert from decimal to integer, but
2636 it doesn't work when the decimal number has a fractional part. */
2637 return decimal_to_doublest (valaddr, len, byte_order);
2641 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2642 whether we want this to be true eventually. */
2643 return extract_typed_address (valaddr, type);
2646 error (_("Value can't be converted to integer."));
2648 return 0; /* Placate lint. */
2651 /* Return a double value from the specified type and address.
2652 INVP points to an int which is set to 0 for valid value,
2653 1 for invalid value (bad float format). In either case,
2654 the returned double is OK to use. Argument is in target
2655 format, result is in host format. */
2658 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2660 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2661 enum type_code code;
2665 *invp = 0; /* Assume valid. */
2666 CHECK_TYPEDEF (type);
2667 code = TYPE_CODE (type);
2668 len = TYPE_LENGTH (type);
2669 nosign = TYPE_UNSIGNED (type);
2670 if (code == TYPE_CODE_FLT)
2672 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2673 floating-point value was valid (using the macro
2674 INVALID_FLOAT). That test/macro have been removed.
2676 It turns out that only the VAX defined this macro and then
2677 only in a non-portable way. Fixing the portability problem
2678 wouldn't help since the VAX floating-point code is also badly
2679 bit-rotten. The target needs to add definitions for the
2680 methods gdbarch_float_format and gdbarch_double_format - these
2681 exactly describe the target floating-point format. The
2682 problem here is that the corresponding floatformat_vax_f and
2683 floatformat_vax_d values these methods should be set to are
2684 also not defined either. Oops!
2686 Hopefully someone will add both the missing floatformat
2687 definitions and the new cases for floatformat_is_valid (). */
2689 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2695 return extract_typed_floating (valaddr, type);
2697 else if (code == TYPE_CODE_DECFLOAT)
2698 return decimal_to_doublest (valaddr, len, byte_order);
2701 /* Unsigned -- be sure we compensate for signed LONGEST. */
2702 return (ULONGEST) unpack_long (type, valaddr);
2706 /* Signed -- we are OK with unpack_long. */
2707 return unpack_long (type, valaddr);
2711 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2712 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2713 We don't assume any alignment for the raw data. Return value is in
2716 If you want functions and arrays to be coerced to pointers, and
2717 references to be dereferenced, call value_as_address() instead.
2719 C++: It is assumed that the front-end has taken care of
2720 all matters concerning pointers to members. A pointer
2721 to member which reaches here is considered to be equivalent
2722 to an INT (or some size). After all, it is only an offset. */
2725 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2727 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2728 whether we want this to be true eventually. */
2729 return unpack_long (type, valaddr);
2733 /* Get the value of the FIELDNO'th field (which must be static) of
2737 value_static_field (struct type *type, int fieldno)
2739 struct value *retval;
2741 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2743 case FIELD_LOC_KIND_PHYSADDR:
2744 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2745 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2747 case FIELD_LOC_KIND_PHYSNAME:
2749 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2750 /* TYPE_FIELD_NAME (type, fieldno); */
2751 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2755 /* With some compilers, e.g. HP aCC, static data members are
2756 reported as non-debuggable symbols. */
2757 struct bound_minimal_symbol msym
2758 = lookup_minimal_symbol (phys_name, NULL, NULL);
2761 return allocate_optimized_out_value (type);
2764 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2765 BMSYMBOL_VALUE_ADDRESS (msym));
2769 retval = value_of_variable (sym, NULL);
2773 gdb_assert_not_reached ("unexpected field location kind");
2779 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2780 You have to be careful here, since the size of the data area for the value
2781 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2782 than the old enclosing type, you have to allocate more space for the
2786 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2788 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2790 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2792 val->enclosing_type = new_encl_type;
2795 /* Given a value ARG1 (offset by OFFSET bytes)
2796 of a struct or union type ARG_TYPE,
2797 extract and return the value of one of its (non-static) fields.
2798 FIELDNO says which field. */
2801 value_primitive_field (struct value *arg1, int offset,
2802 int fieldno, struct type *arg_type)
2807 CHECK_TYPEDEF (arg_type);
2808 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2810 /* Call check_typedef on our type to make sure that, if TYPE
2811 is a TYPE_CODE_TYPEDEF, its length is set to the length
2812 of the target type instead of zero. However, we do not
2813 replace the typedef type by the target type, because we want
2814 to keep the typedef in order to be able to print the type
2815 description correctly. */
2816 check_typedef (type);
2818 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2820 /* Handle packed fields.
2822 Create a new value for the bitfield, with bitpos and bitsize
2823 set. If possible, arrange offset and bitpos so that we can
2824 do a single aligned read of the size of the containing type.
2825 Otherwise, adjust offset to the byte containing the first
2826 bit. Assume that the address, offset, and embedded offset
2827 are sufficiently aligned. */
2829 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2830 int container_bitsize = TYPE_LENGTH (type) * 8;
2832 if (arg1->optimized_out)
2833 v = allocate_optimized_out_value (type);
2836 v = allocate_value_lazy (type);
2837 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2838 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2839 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2840 v->bitpos = bitpos % container_bitsize;
2842 v->bitpos = bitpos % 8;
2843 v->offset = (value_embedded_offset (arg1)
2845 + (bitpos - v->bitpos) / 8);
2846 set_value_parent (v, arg1);
2847 if (!value_lazy (arg1))
2848 value_fetch_lazy (v);
2851 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2853 /* This field is actually a base subobject, so preserve the
2854 entire object's contents for later references to virtual
2858 /* Lazy register values with offsets are not supported. */
2859 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2860 value_fetch_lazy (arg1);
2862 /* The optimized_out flag is only set correctly once a lazy value is
2863 loaded, having just loaded some lazy values we should check the
2864 optimized out case now. */
2865 if (arg1->optimized_out)
2866 v = allocate_optimized_out_value (type);
2869 /* We special case virtual inheritance here because this
2870 requires access to the contents, which we would rather avoid
2871 for references to ordinary fields of unavailable values. */
2872 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2873 boffset = baseclass_offset (arg_type, fieldno,
2874 value_contents (arg1),
2875 value_embedded_offset (arg1),
2876 value_address (arg1),
2879 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2881 if (value_lazy (arg1))
2882 v = allocate_value_lazy (value_enclosing_type (arg1));
2885 v = allocate_value (value_enclosing_type (arg1));
2886 value_contents_copy_raw (v, 0, arg1, 0,
2887 TYPE_LENGTH (value_enclosing_type (arg1)));
2890 v->offset = value_offset (arg1);
2891 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2896 /* Plain old data member */
2897 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2899 /* Lazy register values with offsets are not supported. */
2900 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2901 value_fetch_lazy (arg1);
2903 /* The optimized_out flag is only set correctly once a lazy value is
2904 loaded, having just loaded some lazy values we should check for
2905 the optimized out case now. */
2906 if (arg1->optimized_out)
2907 v = allocate_optimized_out_value (type);
2908 else if (value_lazy (arg1))
2909 v = allocate_value_lazy (type);
2912 v = allocate_value (type);
2913 value_contents_copy_raw (v, value_embedded_offset (v),
2914 arg1, value_embedded_offset (arg1) + offset,
2915 TYPE_LENGTH (type));
2917 v->offset = (value_offset (arg1) + offset
2918 + value_embedded_offset (arg1));
2920 set_value_component_location (v, arg1);
2921 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2922 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2926 /* Given a value ARG1 of a struct or union type,
2927 extract and return the value of one of its (non-static) fields.
2928 FIELDNO says which field. */
2931 value_field (struct value *arg1, int fieldno)
2933 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2936 /* Return a non-virtual function as a value.
2937 F is the list of member functions which contains the desired method.
2938 J is an index into F which provides the desired method.
2940 We only use the symbol for its address, so be happy with either a
2941 full symbol or a minimal symbol. */
2944 value_fn_field (struct value **arg1p, struct fn_field *f,
2945 int j, struct type *type,
2949 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2950 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2952 struct bound_minimal_symbol msym;
2954 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2957 memset (&msym, 0, sizeof (msym));
2961 gdb_assert (sym == NULL);
2962 msym = lookup_bound_minimal_symbol (physname);
2963 if (msym.minsym == NULL)
2967 v = allocate_value (ftype);
2970 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2974 /* The minimal symbol might point to a function descriptor;
2975 resolve it to the actual code address instead. */
2976 struct objfile *objfile = msym.objfile;
2977 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2979 set_value_address (v,
2980 gdbarch_convert_from_func_ptr_addr
2981 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), ¤t_target));
2986 if (type != value_type (*arg1p))
2987 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2988 value_addr (*arg1p)));
2990 /* Move the `this' pointer according to the offset.
2991 VALUE_OFFSET (*arg1p) += offset; */
2999 /* Helper function for both unpack_value_bits_as_long and
3000 unpack_bits_as_long. See those functions for more details on the
3001 interface; the only difference is that this function accepts either
3002 a NULL or a non-NULL ORIGINAL_VALUE. */
3005 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
3006 int embedded_offset, int bitpos, int bitsize,
3007 const struct value *original_value,
3010 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3017 /* Read the minimum number of bytes required; there may not be
3018 enough bytes to read an entire ULONGEST. */
3019 CHECK_TYPEDEF (field_type);
3021 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3023 bytes_read = TYPE_LENGTH (field_type);
3025 read_offset = bitpos / 8;
3027 if (original_value != NULL
3028 && !value_bits_available (original_value, embedded_offset + bitpos,
3032 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
3033 bytes_read, byte_order);
3035 /* Extract bits. See comment above. */
3037 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3038 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3040 lsbcount = (bitpos % 8);
3043 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3044 If the field is signed, and is negative, then sign extend. */
3046 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3048 valmask = (((ULONGEST) 1) << bitsize) - 1;
3050 if (!TYPE_UNSIGNED (field_type))
3052 if (val & (valmask ^ (valmask >> 1)))
3063 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3064 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
3065 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
3066 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
3069 Returns false if the value contents are unavailable, otherwise
3070 returns true, indicating a valid value has been stored in *RESULT.
3072 Extracting bits depends on endianness of the machine. Compute the
3073 number of least significant bits to discard. For big endian machines,
3074 we compute the total number of bits in the anonymous object, subtract
3075 off the bit count from the MSB of the object to the MSB of the
3076 bitfield, then the size of the bitfield, which leaves the LSB discard
3077 count. For little endian machines, the discard count is simply the
3078 number of bits from the LSB of the anonymous object to the LSB of the
3081 If the field is signed, we also do sign extension. */
3084 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3085 int embedded_offset, int bitpos, int bitsize,
3086 const struct value *original_value,
3089 gdb_assert (original_value != NULL);
3091 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
3092 bitpos, bitsize, original_value, result);
3096 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3097 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3098 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
3102 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
3103 int embedded_offset, int fieldno,
3104 const struct value *val, LONGEST *result)
3106 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3107 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3108 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3110 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
3111 bitpos, bitsize, val,
3115 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3116 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3117 ORIGINAL_VALUE, which must not be NULL. See
3118 unpack_value_bits_as_long for more details. */
3121 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3122 int embedded_offset, int fieldno,
3123 const struct value *val, LONGEST *result)
3125 gdb_assert (val != NULL);
3127 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
3128 fieldno, val, result);
3131 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3132 object at VALADDR. See unpack_value_bits_as_long for more details.
3133 This function differs from unpack_value_field_as_long in that it
3134 operates without a struct value object. */
3137 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3141 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
3145 /* Return a new value with type TYPE, which is FIELDNO field of the
3146 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3147 of VAL. If the VAL's contents required to extract the bitfield
3148 from are unavailable, the new value is correspondingly marked as
3152 value_field_bitfield (struct type *type, int fieldno,
3153 const gdb_byte *valaddr,
3154 int embedded_offset, const struct value *val)
3158 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
3161 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3162 struct value *retval = allocate_value (field_type);
3163 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
3168 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
3172 /* Modify the value of a bitfield. ADDR points to a block of memory in
3173 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3174 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3175 indicate which bits (in target bit order) comprise the bitfield.
3176 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3177 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3180 modify_field (struct type *type, gdb_byte *addr,
3181 LONGEST fieldval, int bitpos, int bitsize)
3183 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3185 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3188 /* Normalize BITPOS. */
3192 /* If a negative fieldval fits in the field in question, chop
3193 off the sign extension bits. */
3194 if ((~fieldval & ~(mask >> 1)) == 0)
3197 /* Warn if value is too big to fit in the field in question. */
3198 if (0 != (fieldval & ~mask))
3200 /* FIXME: would like to include fieldval in the message, but
3201 we don't have a sprintf_longest. */
3202 warning (_("Value does not fit in %d bits."), bitsize);
3204 /* Truncate it, otherwise adjoining fields may be corrupted. */
3208 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3209 false valgrind reports. */
3211 bytesize = (bitpos + bitsize + 7) / 8;
3212 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3214 /* Shifting for bit field depends on endianness of the target machine. */
3215 if (gdbarch_bits_big_endian (get_type_arch (type)))
3216 bitpos = bytesize * 8 - bitpos - bitsize;
3218 oword &= ~(mask << bitpos);
3219 oword |= fieldval << bitpos;
3221 store_unsigned_integer (addr, bytesize, byte_order, oword);
3224 /* Pack NUM into BUF using a target format of TYPE. */
3227 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3229 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3232 type = check_typedef (type);
3233 len = TYPE_LENGTH (type);
3235 switch (TYPE_CODE (type))
3238 case TYPE_CODE_CHAR:
3239 case TYPE_CODE_ENUM:
3240 case TYPE_CODE_FLAGS:
3241 case TYPE_CODE_BOOL:
3242 case TYPE_CODE_RANGE:
3243 case TYPE_CODE_MEMBERPTR:
3244 store_signed_integer (buf, len, byte_order, num);
3249 store_typed_address (buf, type, (CORE_ADDR) num);
3253 error (_("Unexpected type (%d) encountered for integer constant."),
3259 /* Pack NUM into BUF using a target format of TYPE. */
3262 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3265 enum bfd_endian byte_order;
3267 type = check_typedef (type);
3268 len = TYPE_LENGTH (type);
3269 byte_order = gdbarch_byte_order (get_type_arch (type));
3271 switch (TYPE_CODE (type))
3274 case TYPE_CODE_CHAR:
3275 case TYPE_CODE_ENUM:
3276 case TYPE_CODE_FLAGS:
3277 case TYPE_CODE_BOOL:
3278 case TYPE_CODE_RANGE:
3279 case TYPE_CODE_MEMBERPTR:
3280 store_unsigned_integer (buf, len, byte_order, num);
3285 store_typed_address (buf, type, (CORE_ADDR) num);
3289 error (_("Unexpected type (%d) encountered "
3290 "for unsigned integer constant."),
3296 /* Convert C numbers into newly allocated values. */
3299 value_from_longest (struct type *type, LONGEST num)
3301 struct value *val = allocate_value (type);
3303 pack_long (value_contents_raw (val), type, num);
3308 /* Convert C unsigned numbers into newly allocated values. */
3311 value_from_ulongest (struct type *type, ULONGEST num)
3313 struct value *val = allocate_value (type);
3315 pack_unsigned_long (value_contents_raw (val), type, num);
3321 /* Create a value representing a pointer of type TYPE to the address
3322 ADDR. The type of the created value may differ from the passed
3323 type TYPE. Make sure to retrieve the returned values's new type
3324 after this call e.g. in case of an variable length array. */
3327 value_from_pointer (struct type *type, CORE_ADDR addr)
3329 struct type *resolved_type = resolve_dynamic_type (type, addr);
3330 struct value *val = allocate_value (resolved_type);
3332 store_typed_address (value_contents_raw (val),
3333 check_typedef (resolved_type), addr);
3338 /* Create a value of type TYPE whose contents come from VALADDR, if it
3339 is non-null, and whose memory address (in the inferior) is
3340 ADDRESS. The type of the created value may differ from the passed
3341 type TYPE. Make sure to retrieve values new type after this call. */
3344 value_from_contents_and_address (struct type *type,
3345 const gdb_byte *valaddr,
3348 struct type *resolved_type = resolve_dynamic_type (type, address);
3351 if (valaddr == NULL)
3352 v = allocate_value_lazy (resolved_type);
3354 v = value_from_contents (resolved_type, valaddr);
3355 set_value_address (v, address);
3356 VALUE_LVAL (v) = lval_memory;
3360 /* Create a value of type TYPE holding the contents CONTENTS.
3361 The new value is `not_lval'. */
3364 value_from_contents (struct type *type, const gdb_byte *contents)
3366 struct value *result;
3368 result = allocate_value (type);
3369 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3374 value_from_double (struct type *type, DOUBLEST num)
3376 struct value *val = allocate_value (type);
3377 struct type *base_type = check_typedef (type);
3378 enum type_code code = TYPE_CODE (base_type);
3380 if (code == TYPE_CODE_FLT)
3382 store_typed_floating (value_contents_raw (val), base_type, num);
3385 error (_("Unexpected type encountered for floating constant."));
3391 value_from_decfloat (struct type *type, const gdb_byte *dec)
3393 struct value *val = allocate_value (type);
3395 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3399 /* Extract a value from the history file. Input will be of the form
3400 $digits or $$digits. See block comment above 'write_dollar_variable'
3404 value_from_history_ref (char *h, char **endp)
3416 /* Find length of numeral string. */
3417 for (; isdigit (h[len]); len++)
3420 /* Make sure numeral string is not part of an identifier. */
3421 if (h[len] == '_' || isalpha (h[len]))
3424 /* Now collect the index value. */
3429 /* For some bizarre reason, "$$" is equivalent to "$$1",
3430 rather than to "$$0" as it ought to be! */
3435 index = -strtol (&h[2], endp, 10);
3441 /* "$" is equivalent to "$0". */
3446 index = strtol (&h[1], endp, 10);
3449 return access_value_history (index);
3453 coerce_ref_if_computed (const struct value *arg)
3455 const struct lval_funcs *funcs;
3457 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3460 if (value_lval_const (arg) != lval_computed)
3463 funcs = value_computed_funcs (arg);
3464 if (funcs->coerce_ref == NULL)
3467 return funcs->coerce_ref (arg);
3470 /* Look at value.h for description. */
3473 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3474 struct type *original_type,
3475 struct value *original_value)
3477 /* Re-adjust type. */
3478 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3480 /* Add embedding info. */
3481 set_value_enclosing_type (value, enc_type);
3482 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3484 /* We may be pointing to an object of some derived type. */
3485 return value_full_object (value, NULL, 0, 0, 0);
3489 coerce_ref (struct value *arg)
3491 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3492 struct value *retval;
3493 struct type *enc_type;
3495 retval = coerce_ref_if_computed (arg);
3499 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3502 enc_type = check_typedef (value_enclosing_type (arg));
3503 enc_type = TYPE_TARGET_TYPE (enc_type);
3505 retval = value_at_lazy (enc_type,
3506 unpack_pointer (value_type (arg),
3507 value_contents (arg)));
3508 enc_type = value_type (retval);
3509 return readjust_indirect_value_type (retval, enc_type,
3510 value_type_arg_tmp, arg);
3514 coerce_array (struct value *arg)
3518 arg = coerce_ref (arg);
3519 type = check_typedef (value_type (arg));
3521 switch (TYPE_CODE (type))
3523 case TYPE_CODE_ARRAY:
3524 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3525 arg = value_coerce_array (arg);
3527 case TYPE_CODE_FUNC:
3528 arg = value_coerce_function (arg);
3535 /* Return the return value convention that will be used for the
3538 enum return_value_convention
3539 struct_return_convention (struct gdbarch *gdbarch,
3540 struct value *function, struct type *value_type)
3542 enum type_code code = TYPE_CODE (value_type);
3544 if (code == TYPE_CODE_ERROR)
3545 error (_("Function return type unknown."));
3547 /* Probe the architecture for the return-value convention. */
3548 return gdbarch_return_value (gdbarch, function, value_type,
3552 /* Return true if the function returning the specified type is using
3553 the convention of returning structures in memory (passing in the
3554 address as a hidden first parameter). */
3557 using_struct_return (struct gdbarch *gdbarch,
3558 struct value *function, struct type *value_type)
3560 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3561 /* A void return value is never in memory. See also corresponding
3562 code in "print_return_value". */
3565 return (struct_return_convention (gdbarch, function, value_type)
3566 != RETURN_VALUE_REGISTER_CONVENTION);
3569 /* Set the initialized field in a value struct. */
3572 set_value_initialized (struct value *val, int status)
3574 val->initialized = status;
3577 /* Return the initialized field in a value struct. */
3580 value_initialized (struct value *val)
3582 return val->initialized;
3585 /* Called only from the value_contents and value_contents_all()
3586 macros, if the current data for a variable needs to be loaded into
3587 value_contents(VAL). Fetches the data from the user's process, and
3588 clears the lazy flag to indicate that the data in the buffer is
3591 If the value is zero-length, we avoid calling read_memory, which
3592 would abort. We mark the value as fetched anyway -- all 0 bytes of
3595 This function returns a value because it is used in the
3596 value_contents macro as part of an expression, where a void would
3597 not work. The value is ignored. */
3600 value_fetch_lazy (struct value *val)
3602 gdb_assert (value_lazy (val));
3603 allocate_value_contents (val);
3604 if (value_bitsize (val))
3606 /* To read a lazy bitfield, read the entire enclosing value. This
3607 prevents reading the same block of (possibly volatile) memory once
3608 per bitfield. It would be even better to read only the containing
3609 word, but we have no way to record that just specific bits of a
3610 value have been fetched. */
3611 struct type *type = check_typedef (value_type (val));
3612 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3613 struct value *parent = value_parent (val);
3614 LONGEST offset = value_offset (val);
3617 if (value_lazy (parent))
3618 value_fetch_lazy (parent);
3620 if (!value_bits_valid (parent,
3621 TARGET_CHAR_BIT * offset + value_bitpos (val),
3622 value_bitsize (val)))
3623 set_value_optimized_out (val, 1);
3624 else if (!unpack_value_bits_as_long (value_type (val),
3625 value_contents_for_printing (parent),
3628 value_bitsize (val), parent, &num))
3629 mark_value_bytes_unavailable (val,
3630 value_embedded_offset (val),
3631 TYPE_LENGTH (type));
3633 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
3636 else if (VALUE_LVAL (val) == lval_memory)
3638 CORE_ADDR addr = value_address (val);
3639 struct type *type = check_typedef (value_enclosing_type (val));
3641 if (TYPE_LENGTH (type))
3642 read_value_memory (val, 0, value_stack (val),
3643 addr, value_contents_all_raw (val),
3644 TYPE_LENGTH (type));
3646 else if (VALUE_LVAL (val) == lval_register)
3648 struct frame_info *frame;
3650 struct type *type = check_typedef (value_type (val));
3651 struct value *new_val = val, *mark = value_mark ();
3653 /* Offsets are not supported here; lazy register values must
3654 refer to the entire register. */
3655 gdb_assert (value_offset (val) == 0);
3657 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3659 struct frame_id frame_id = VALUE_FRAME_ID (new_val);
3661 frame = frame_find_by_id (frame_id);
3662 regnum = VALUE_REGNUM (new_val);
3664 gdb_assert (frame != NULL);
3666 /* Convertible register routines are used for multi-register
3667 values and for interpretation in different types
3668 (e.g. float or int from a double register). Lazy
3669 register values should have the register's natural type,
3670 so they do not apply. */
3671 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3674 new_val = get_frame_register_value (frame, regnum);
3676 /* If we get another lazy lval_register value, it means the
3677 register is found by reading it from the next frame.
3678 get_frame_register_value should never return a value with
3679 the frame id pointing to FRAME. If it does, it means we
3680 either have two consecutive frames with the same frame id
3681 in the frame chain, or some code is trying to unwind
3682 behind get_prev_frame's back (e.g., a frame unwind
3683 sniffer trying to unwind), bypassing its validations. In
3684 any case, it should always be an internal error to end up
3685 in this situation. */
3686 if (VALUE_LVAL (new_val) == lval_register
3687 && value_lazy (new_val)
3688 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id))
3689 internal_error (__FILE__, __LINE__,
3690 _("infinite loop while fetching a register"));
3693 /* If it's still lazy (for instance, a saved register on the
3694 stack), fetch it. */
3695 if (value_lazy (new_val))
3696 value_fetch_lazy (new_val);
3698 /* If the register was not saved, mark it optimized out. */
3699 if (value_optimized_out (new_val))
3700 set_value_optimized_out (val, 1);
3703 set_value_lazy (val, 0);
3704 value_contents_copy (val, value_embedded_offset (val),
3705 new_val, value_embedded_offset (new_val),
3706 TYPE_LENGTH (type));
3711 struct gdbarch *gdbarch;
3712 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3713 regnum = VALUE_REGNUM (val);
3714 gdbarch = get_frame_arch (frame);
3716 fprintf_unfiltered (gdb_stdlog,
3717 "{ value_fetch_lazy "
3718 "(frame=%d,regnum=%d(%s),...) ",
3719 frame_relative_level (frame), regnum,
3720 user_reg_map_regnum_to_name (gdbarch, regnum));
3722 fprintf_unfiltered (gdb_stdlog, "->");
3723 if (value_optimized_out (new_val))
3725 fprintf_unfiltered (gdb_stdlog, " ");
3726 val_print_optimized_out (new_val, gdb_stdlog);
3731 const gdb_byte *buf = value_contents (new_val);
3733 if (VALUE_LVAL (new_val) == lval_register)
3734 fprintf_unfiltered (gdb_stdlog, " register=%d",
3735 VALUE_REGNUM (new_val));
3736 else if (VALUE_LVAL (new_val) == lval_memory)
3737 fprintf_unfiltered (gdb_stdlog, " address=%s",
3739 value_address (new_val)));
3741 fprintf_unfiltered (gdb_stdlog, " computed");
3743 fprintf_unfiltered (gdb_stdlog, " bytes=");
3744 fprintf_unfiltered (gdb_stdlog, "[");
3745 for (i = 0; i < register_size (gdbarch, regnum); i++)
3746 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3747 fprintf_unfiltered (gdb_stdlog, "]");
3750 fprintf_unfiltered (gdb_stdlog, " }\n");
3753 /* Dispose of the intermediate values. This prevents
3754 watchpoints from trying to watch the saved frame pointer. */
3755 value_free_to_mark (mark);
3757 else if (VALUE_LVAL (val) == lval_computed
3758 && value_computed_funcs (val)->read != NULL)
3759 value_computed_funcs (val)->read (val);
3760 /* Don't call value_optimized_out on val, doing so would result in a
3761 recursive call back to value_fetch_lazy, instead check the
3762 optimized_out flag directly. */
3763 else if (val->optimized_out)
3764 /* Keep it optimized out. */;
3766 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3768 set_value_lazy (val, 0);
3772 /* Implementation of the convenience function $_isvoid. */
3774 static struct value *
3775 isvoid_internal_fn (struct gdbarch *gdbarch,
3776 const struct language_defn *language,
3777 void *cookie, int argc, struct value **argv)
3782 error (_("You must provide one argument for $_isvoid."));
3784 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3786 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3790 _initialize_values (void)
3792 add_cmd ("convenience", no_class, show_convenience, _("\
3793 Debugger convenience (\"$foo\") variables and functions.\n\
3794 Convenience variables are created when you assign them values;\n\
3795 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3797 A few convenience variables are given values automatically:\n\
3798 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3799 \"$__\" holds the contents of the last address examined with \"x\"."
3802 Convenience functions are defined via the Python API."
3805 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
3807 add_cmd ("values", no_set_class, show_values, _("\
3808 Elements of value history around item number IDX (or last ten)."),
3811 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3812 Initialize a convenience variable if necessary.\n\
3813 init-if-undefined VARIABLE = EXPRESSION\n\
3814 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3815 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3816 VARIABLE is already initialized."));
3818 add_prefix_cmd ("function", no_class, function_command, _("\
3819 Placeholder command for showing help on convenience functions."),
3820 &functionlist, "function ", 0, &cmdlist);
3822 add_internal_function ("_isvoid", _("\
3823 Check whether an expression is void.\n\
3824 Usage: $_isvoid (expression)\n\
3825 Return 1 if the expression is void, zero otherwise."),
3826 isvoid_internal_fn, NULL);