1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "arch-utils.h"
33 #include "gdb_assert.h"
39 #include "cli/cli-decode.h"
40 #include "exceptions.h"
41 #include "python/python.h"
43 #include "tracepoint.h"
45 #include "user-regs.h"
47 /* Prototypes for exported functions. */
49 void _initialize_values (void);
51 /* Definition of a user function. */
52 struct internal_function
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
60 internal_function_fn handler;
62 /* User data for the handler. */
66 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
70 /* Lowest offset in the range. */
73 /* Length of the range. */
77 typedef struct range range_s;
81 /* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
85 ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
95 /* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
101 range_lessthan (const range_s *r1, const range_s *r2)
103 return r1->offset < r2->offset;
106 /* Returns true if RANGES contains any range that overlaps [OFFSET,
110 ranges_contain (VEC(range_s) *ranges, int offset, int length)
115 what.offset = offset;
116 what.length = length;
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
128 |---| |---| |------| ... |--|
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
138 Then we need to check if the I range overlaps the I range itself.
143 |---| |---| |-------| ... |--|
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
159 if (i < VEC_length (range_s, ranges))
161 struct range *r = VEC_index (range_s, ranges, i);
163 if (ranges_overlap (r->offset, r->length, offset, length))
170 static struct cmd_list_element *functionlist;
172 /* Note that the fields in this structure are arranged to save a bit
177 /* Type of value; either not an lval, or one of the various
178 different possible kinds of lval. */
181 /* Is it modifiable? Only relevant if lval != not_lval. */
182 unsigned int modifiable : 1;
184 /* If zero, contents of this value are in the contents field. If
185 nonzero, contents are in inferior. If the lval field is lval_memory,
186 the contents are in inferior memory at location.address plus offset.
187 The lval field may also be lval_register.
189 WARNING: This field is used by the code which handles watchpoints
190 (see breakpoint.c) to decide whether a particular value can be
191 watched by hardware watchpoints. If the lazy flag is set for
192 some member of a value chain, it is assumed that this member of
193 the chain doesn't need to be watched as part of watching the
194 value itself. This is how GDB avoids watching the entire struct
195 or array when the user wants to watch a single struct member or
196 array element. If you ever change the way lazy flag is set and
197 reset, be sure to consider this use as well! */
198 unsigned int lazy : 1;
200 /* If nonzero, this is the value of a variable that does not
201 actually exist in the program. If nonzero, and LVAL is
202 lval_register, this is a register ($pc, $sp, etc., never a
203 program variable) that has not been saved in the frame. All
204 optimized-out values are treated pretty much the same, except
205 registers have a different string representation and related
207 unsigned int optimized_out : 1;
209 /* If value is a variable, is it initialized or not. */
210 unsigned int initialized : 1;
212 /* If value is from the stack. If this is set, read_stack will be
213 used instead of read_memory to enable extra caching. */
214 unsigned int stack : 1;
216 /* If the value has been released. */
217 unsigned int released : 1;
219 /* Location of value (if lval). */
222 /* If lval == lval_memory, this is the address in the inferior.
223 If lval == lval_register, this is the byte offset into the
224 registers structure. */
227 /* Pointer to internal variable. */
228 struct internalvar *internalvar;
230 /* If lval == lval_computed, this is a set of function pointers
231 to use to access and describe the value, and a closure pointer
235 /* Functions to call. */
236 const struct lval_funcs *funcs;
238 /* Closure for those functions to use. */
243 /* Describes offset of a value within lval of a structure in bytes.
244 If lval == lval_memory, this is an offset to the address. If
245 lval == lval_register, this is a further offset from
246 location.address within the registers structure. Note also the
247 member embedded_offset below. */
250 /* Only used for bitfields; number of bits contained in them. */
253 /* Only used for bitfields; position of start of field. For
254 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
255 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
258 /* The number of references to this value. When a value is created,
259 the value chain holds a reference, so REFERENCE_COUNT is 1. If
260 release_value is called, this value is removed from the chain but
261 the caller of release_value now has a reference to this value.
262 The caller must arrange for a call to value_free later. */
265 /* Only used for bitfields; the containing value. This allows a
266 single read from the target when displaying multiple
268 struct value *parent;
270 /* Frame register value is relative to. This will be described in
271 the lval enum above as "lval_register". */
272 struct frame_id frame_id;
274 /* Type of the value. */
277 /* If a value represents a C++ object, then the `type' field gives
278 the object's compile-time type. If the object actually belongs
279 to some class derived from `type', perhaps with other base
280 classes and additional members, then `type' is just a subobject
281 of the real thing, and the full object is probably larger than
282 `type' would suggest.
284 If `type' is a dynamic class (i.e. one with a vtable), then GDB
285 can actually determine the object's run-time type by looking at
286 the run-time type information in the vtable. When this
287 information is available, we may elect to read in the entire
288 object, for several reasons:
290 - When printing the value, the user would probably rather see the
291 full object, not just the limited portion apparent from the
294 - If `type' has virtual base classes, then even printing `type'
295 alone may require reaching outside the `type' portion of the
296 object to wherever the virtual base class has been stored.
298 When we store the entire object, `enclosing_type' is the run-time
299 type -- the complete object -- and `embedded_offset' is the
300 offset of `type' within that larger type, in bytes. The
301 value_contents() macro takes `embedded_offset' into account, so
302 most GDB code continues to see the `type' portion of the value,
303 just as the inferior would.
305 If `type' is a pointer to an object, then `enclosing_type' is a
306 pointer to the object's run-time type, and `pointed_to_offset' is
307 the offset in bytes from the full object to the pointed-to object
308 -- that is, the value `embedded_offset' would have if we followed
309 the pointer and fetched the complete object. (I don't really see
310 the point. Why not just determine the run-time type when you
311 indirect, and avoid the special case? The contents don't matter
312 until you indirect anyway.)
314 If we're not doing anything fancy, `enclosing_type' is equal to
315 `type', and `embedded_offset' is zero, so everything works
317 struct type *enclosing_type;
319 int pointed_to_offset;
321 /* Values are stored in a chain, so that they can be deleted easily
322 over calls to the inferior. Values assigned to internal
323 variables, put into the value history or exposed to Python are
324 taken off this list. */
327 /* Register number if the value is from a register. */
330 /* Actual contents of the value. Target byte-order. NULL or not
331 valid if lazy is nonzero. */
334 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
335 rather than available, since the common and default case is for a
336 value to be available. This is filled in at value read time. */
337 VEC(range_s) *unavailable;
341 value_bytes_available (const struct value *value, int offset, int length)
343 gdb_assert (!value->lazy);
345 return !ranges_contain (value->unavailable, offset, length);
349 value_entirely_available (struct value *value)
351 /* We can only tell whether the whole value is available when we try
354 value_fetch_lazy (value);
356 if (VEC_empty (range_s, value->unavailable))
362 value_entirely_unavailable (struct value *value)
364 /* We can only tell whether the whole value is available when we try
367 value_fetch_lazy (value);
369 if (VEC_length (range_s, value->unavailable) == 1)
371 struct range *t = VEC_index (range_s, value->unavailable, 0);
374 && t->length == TYPE_LENGTH (value_enclosing_type (value)))
382 mark_value_bytes_unavailable (struct value *value, int offset, int length)
387 /* Insert the range sorted. If there's overlap or the new range
388 would be contiguous with an existing range, merge. */
390 newr.offset = offset;
391 newr.length = length;
393 /* Do a binary search for the position the given range would be
394 inserted if we only considered the starting OFFSET of ranges.
395 Call that position I. Since we also have LENGTH to care for
396 (this is a range afterall), we need to check if the _previous_
397 range overlaps the I range. E.g., calling R the new range:
399 #1 - overlaps with previous
403 |---| |---| |------| ... |--|
408 In the case #1 above, the binary search would return `I=1',
409 meaning, this OFFSET should be inserted at position 1, and the
410 current position 1 should be pushed further (and become 2). But,
411 note that `0' overlaps with R, so we want to merge them.
413 A similar consideration needs to be taken if the new range would
414 be contiguous with the previous range:
416 #2 - contiguous with previous
420 |--| |---| |------| ... |--|
425 If there's no overlap with the previous range, as in:
427 #3 - not overlapping and not contiguous
431 |--| |---| |------| ... |--|
438 #4 - R is the range with lowest offset
442 |--| |---| |------| ... |--|
447 ... we just push the new range to I.
449 All the 4 cases above need to consider that the new range may
450 also overlap several of the ranges that follow, or that R may be
451 contiguous with the following range, and merge. E.g.,
453 #5 - overlapping following ranges
456 |------------------------|
457 |--| |---| |------| ... |--|
466 |--| |---| |------| ... |--|
473 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
476 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
478 if (ranges_overlap (bef->offset, bef->length, offset, length))
481 ULONGEST l = min (bef->offset, offset);
482 ULONGEST h = max (bef->offset + bef->length, offset + length);
488 else if (offset == bef->offset + bef->length)
491 bef->length += length;
497 VEC_safe_insert (range_s, value->unavailable, i, &newr);
503 VEC_safe_insert (range_s, value->unavailable, i, &newr);
506 /* Check whether the ranges following the one we've just added or
507 touched can be folded in (#5 above). */
508 if (i + 1 < VEC_length (range_s, value->unavailable))
515 /* Get the range we just touched. */
516 t = VEC_index (range_s, value->unavailable, i);
520 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
521 if (r->offset <= t->offset + t->length)
525 l = min (t->offset, r->offset);
526 h = max (t->offset + t->length, r->offset + r->length);
535 /* If we couldn't merge this one, we won't be able to
536 merge following ones either, since the ranges are
537 always sorted by OFFSET. */
542 VEC_block_remove (range_s, value->unavailable, next, removed);
546 /* Find the first range in RANGES that overlaps the range defined by
547 OFFSET and LENGTH, starting at element POS in the RANGES vector,
548 Returns the index into RANGES where such overlapping range was
549 found, or -1 if none was found. */
552 find_first_range_overlap (VEC(range_s) *ranges, int pos,
553 int offset, int length)
558 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
559 if (ranges_overlap (r->offset, r->length, offset, length))
566 value_available_contents_eq (const struct value *val1, int offset1,
567 const struct value *val2, int offset2,
570 int idx1 = 0, idx2 = 0;
572 /* See function description in value.h. */
573 gdb_assert (!val1->lazy && !val2->lazy);
581 idx1 = find_first_range_overlap (val1->unavailable, idx1,
583 idx2 = find_first_range_overlap (val2->unavailable, idx2,
586 /* The usual case is for both values to be completely available. */
587 if (idx1 == -1 && idx2 == -1)
588 return (memcmp (val1->contents + offset1,
589 val2->contents + offset2,
591 /* The contents only match equal if the available set matches as
593 else if (idx1 == -1 || idx2 == -1)
596 gdb_assert (idx1 != -1 && idx2 != -1);
598 r1 = VEC_index (range_s, val1->unavailable, idx1);
599 r2 = VEC_index (range_s, val2->unavailable, idx2);
601 /* Get the unavailable windows intersected by the incoming
602 ranges. The first and last ranges that overlap the argument
603 range may be wider than said incoming arguments ranges. */
604 l1 = max (offset1, r1->offset);
605 h1 = min (offset1 + length, r1->offset + r1->length);
607 l2 = max (offset2, r2->offset);
608 h2 = min (offset2 + length, r2->offset + r2->length);
610 /* Make them relative to the respective start offsets, so we can
611 compare them for equality. */
618 /* Different availability, no match. */
619 if (l1 != l2 || h1 != h2)
622 /* Compare the _available_ contents. */
623 if (memcmp (val1->contents + offset1,
624 val2->contents + offset2,
636 /* Prototypes for local functions. */
638 static void show_values (char *, int);
640 static void show_convenience (char *, int);
643 /* The value-history records all the values printed
644 by print commands during this session. Each chunk
645 records 60 consecutive values. The first chunk on
646 the chain records the most recent values.
647 The total number of values is in value_history_count. */
649 #define VALUE_HISTORY_CHUNK 60
651 struct value_history_chunk
653 struct value_history_chunk *next;
654 struct value *values[VALUE_HISTORY_CHUNK];
657 /* Chain of chunks now in use. */
659 static struct value_history_chunk *value_history_chain;
661 static int value_history_count; /* Abs number of last entry stored. */
664 /* List of all value objects currently allocated
665 (except for those released by calls to release_value)
666 This is so they can be freed after each command. */
668 static struct value *all_values;
670 /* Allocate a lazy value for type TYPE. Its actual content is
671 "lazily" allocated too: the content field of the return value is
672 NULL; it will be allocated when it is fetched from the target. */
675 allocate_value_lazy (struct type *type)
679 /* Call check_typedef on our type to make sure that, if TYPE
680 is a TYPE_CODE_TYPEDEF, its length is set to the length
681 of the target type instead of zero. However, we do not
682 replace the typedef type by the target type, because we want
683 to keep the typedef in order to be able to set the VAL's type
684 description correctly. */
685 check_typedef (type);
687 val = (struct value *) xzalloc (sizeof (struct value));
688 val->contents = NULL;
689 val->next = all_values;
692 val->enclosing_type = type;
693 VALUE_LVAL (val) = not_lval;
694 val->location.address = 0;
695 VALUE_FRAME_ID (val) = null_frame_id;
699 VALUE_REGNUM (val) = -1;
701 val->optimized_out = 0;
702 val->embedded_offset = 0;
703 val->pointed_to_offset = 0;
705 val->initialized = 1; /* Default to initialized. */
707 /* Values start out on the all_values chain. */
708 val->reference_count = 1;
713 /* Allocate the contents of VAL if it has not been allocated yet. */
716 allocate_value_contents (struct value *val)
719 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
722 /* Allocate a value and its contents for type TYPE. */
725 allocate_value (struct type *type)
727 struct value *val = allocate_value_lazy (type);
729 allocate_value_contents (val);
734 /* Allocate a value that has the correct length
735 for COUNT repetitions of type TYPE. */
738 allocate_repeat_value (struct type *type, int count)
740 int low_bound = current_language->string_lower_bound; /* ??? */
741 /* FIXME-type-allocation: need a way to free this type when we are
743 struct type *array_type
744 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
746 return allocate_value (array_type);
750 allocate_computed_value (struct type *type,
751 const struct lval_funcs *funcs,
754 struct value *v = allocate_value_lazy (type);
756 VALUE_LVAL (v) = lval_computed;
757 v->location.computed.funcs = funcs;
758 v->location.computed.closure = closure;
763 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
766 allocate_optimized_out_value (struct type *type)
768 struct value *retval = allocate_value_lazy (type);
770 set_value_optimized_out (retval, 1);
771 set_value_lazy (retval, 0);
775 /* Accessor methods. */
778 value_next (struct value *value)
784 value_type (const struct value *value)
789 deprecated_set_value_type (struct value *value, struct type *type)
795 value_offset (const struct value *value)
797 return value->offset;
800 set_value_offset (struct value *value, int offset)
802 value->offset = offset;
806 value_bitpos (const struct value *value)
808 return value->bitpos;
811 set_value_bitpos (struct value *value, int bit)
817 value_bitsize (const struct value *value)
819 return value->bitsize;
822 set_value_bitsize (struct value *value, int bit)
824 value->bitsize = bit;
828 value_parent (struct value *value)
830 return value->parent;
836 set_value_parent (struct value *value, struct value *parent)
838 struct value *old = value->parent;
840 value->parent = parent;
842 value_incref (parent);
847 value_contents_raw (struct value *value)
849 allocate_value_contents (value);
850 return value->contents + value->embedded_offset;
854 value_contents_all_raw (struct value *value)
856 allocate_value_contents (value);
857 return value->contents;
861 value_enclosing_type (struct value *value)
863 return value->enclosing_type;
866 /* Look at value.h for description. */
869 value_actual_type (struct value *value, int resolve_simple_types,
870 int *real_type_found)
872 struct value_print_options opts;
875 get_user_print_options (&opts);
878 *real_type_found = 0;
879 result = value_type (value);
880 if (opts.objectprint)
882 /* If result's target type is TYPE_CODE_STRUCT, proceed to
883 fetch its rtti type. */
884 if ((TYPE_CODE (result) == TYPE_CODE_PTR
885 || TYPE_CODE (result) == TYPE_CODE_REF)
886 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
889 struct type *real_type;
891 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
895 *real_type_found = 1;
899 else if (resolve_simple_types)
902 *real_type_found = 1;
903 result = value_enclosing_type (value);
911 error_value_optimized_out (void)
913 error (_("value has been optimized out"));
917 require_not_optimized_out (const struct value *value)
919 if (value->optimized_out)
921 if (value->lval == lval_register)
922 error (_("register has not been saved in frame"));
924 error_value_optimized_out ();
929 require_available (const struct value *value)
931 if (!VEC_empty (range_s, value->unavailable))
932 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
936 value_contents_for_printing (struct value *value)
939 value_fetch_lazy (value);
940 return value->contents;
944 value_contents_for_printing_const (const struct value *value)
946 gdb_assert (!value->lazy);
947 return value->contents;
951 value_contents_all (struct value *value)
953 const gdb_byte *result = value_contents_for_printing (value);
954 require_not_optimized_out (value);
955 require_available (value);
959 /* Copy LENGTH bytes of SRC value's (all) contents
960 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
961 contents, starting at DST_OFFSET. If unavailable contents are
962 being copied from SRC, the corresponding DST contents are marked
963 unavailable accordingly. Neither DST nor SRC may be lazy
966 It is assumed the contents of DST in the [DST_OFFSET,
967 DST_OFFSET+LENGTH) range are wholly available. */
970 value_contents_copy_raw (struct value *dst, int dst_offset,
971 struct value *src, int src_offset, int length)
976 /* A lazy DST would make that this copy operation useless, since as
977 soon as DST's contents were un-lazied (by a later value_contents
978 call, say), the contents would be overwritten. A lazy SRC would
979 mean we'd be copying garbage. */
980 gdb_assert (!dst->lazy && !src->lazy);
982 /* The overwritten DST range gets unavailability ORed in, not
983 replaced. Make sure to remember to implement replacing if it
984 turns out actually necessary. */
985 gdb_assert (value_bytes_available (dst, dst_offset, length));
988 memcpy (value_contents_all_raw (dst) + dst_offset,
989 value_contents_all_raw (src) + src_offset,
992 /* Copy the meta-data, adjusted. */
993 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
997 l = max (r->offset, src_offset);
998 h = min (r->offset + r->length, src_offset + length);
1001 mark_value_bytes_unavailable (dst,
1002 dst_offset + (l - src_offset),
1007 /* Copy LENGTH bytes of SRC value's (all) contents
1008 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1009 (all) contents, starting at DST_OFFSET. If unavailable contents
1010 are being copied from SRC, the corresponding DST contents are
1011 marked unavailable accordingly. DST must not be lazy. If SRC is
1012 lazy, it will be fetched now. If SRC is not valid (is optimized
1013 out), an error is thrown.
1015 It is assumed the contents of DST in the [DST_OFFSET,
1016 DST_OFFSET+LENGTH) range are wholly available. */
1019 value_contents_copy (struct value *dst, int dst_offset,
1020 struct value *src, int src_offset, int length)
1022 require_not_optimized_out (src);
1025 value_fetch_lazy (src);
1027 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1031 value_lazy (struct value *value)
1037 set_value_lazy (struct value *value, int val)
1043 value_stack (struct value *value)
1045 return value->stack;
1049 set_value_stack (struct value *value, int val)
1055 value_contents (struct value *value)
1057 const gdb_byte *result = value_contents_writeable (value);
1058 require_not_optimized_out (value);
1059 require_available (value);
1064 value_contents_writeable (struct value *value)
1067 value_fetch_lazy (value);
1068 return value_contents_raw (value);
1071 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1072 this function is different from value_equal; in C the operator ==
1073 can return 0 even if the two values being compared are equal. */
1076 value_contents_equal (struct value *val1, struct value *val2)
1081 type1 = check_typedef (value_type (val1));
1082 type2 = check_typedef (value_type (val2));
1083 if (TYPE_LENGTH (type1) != TYPE_LENGTH (type2))
1086 return (memcmp (value_contents (val1), value_contents (val2),
1087 TYPE_LENGTH (type1)) == 0);
1091 value_optimized_out (struct value *value)
1093 /* We can only know if a value is optimized out once we have tried to
1095 if (!value->optimized_out && value->lazy)
1096 value_fetch_lazy (value);
1098 return value->optimized_out;
1102 value_optimized_out_const (const struct value *value)
1104 return value->optimized_out;
1108 set_value_optimized_out (struct value *value, int val)
1110 value->optimized_out = val;
1114 value_entirely_optimized_out (const struct value *value)
1116 if (!value->optimized_out)
1118 if (value->lval != lval_computed
1119 || !value->location.computed.funcs->check_any_valid)
1121 return !value->location.computed.funcs->check_any_valid (value);
1125 value_bits_valid (const struct value *value, int offset, int length)
1127 if (!value->optimized_out)
1129 if (value->lval != lval_computed
1130 || !value->location.computed.funcs->check_validity)
1132 return value->location.computed.funcs->check_validity (value, offset,
1137 value_bits_synthetic_pointer (const struct value *value,
1138 int offset, int length)
1140 if (value->lval != lval_computed
1141 || !value->location.computed.funcs->check_synthetic_pointer)
1143 return value->location.computed.funcs->check_synthetic_pointer (value,
1149 value_embedded_offset (struct value *value)
1151 return value->embedded_offset;
1155 set_value_embedded_offset (struct value *value, int val)
1157 value->embedded_offset = val;
1161 value_pointed_to_offset (struct value *value)
1163 return value->pointed_to_offset;
1167 set_value_pointed_to_offset (struct value *value, int val)
1169 value->pointed_to_offset = val;
1172 const struct lval_funcs *
1173 value_computed_funcs (const struct value *v)
1175 gdb_assert (value_lval_const (v) == lval_computed);
1177 return v->location.computed.funcs;
1181 value_computed_closure (const struct value *v)
1183 gdb_assert (v->lval == lval_computed);
1185 return v->location.computed.closure;
1189 deprecated_value_lval_hack (struct value *value)
1191 return &value->lval;
1195 value_lval_const (const struct value *value)
1201 value_address (const struct value *value)
1203 if (value->lval == lval_internalvar
1204 || value->lval == lval_internalvar_component)
1206 if (value->parent != NULL)
1207 return value_address (value->parent) + value->offset;
1209 return value->location.address + value->offset;
1213 value_raw_address (struct value *value)
1215 if (value->lval == lval_internalvar
1216 || value->lval == lval_internalvar_component)
1218 return value->location.address;
1222 set_value_address (struct value *value, CORE_ADDR addr)
1224 gdb_assert (value->lval != lval_internalvar
1225 && value->lval != lval_internalvar_component);
1226 value->location.address = addr;
1229 struct internalvar **
1230 deprecated_value_internalvar_hack (struct value *value)
1232 return &value->location.internalvar;
1236 deprecated_value_frame_id_hack (struct value *value)
1238 return &value->frame_id;
1242 deprecated_value_regnum_hack (struct value *value)
1244 return &value->regnum;
1248 deprecated_value_modifiable (struct value *value)
1250 return value->modifiable;
1253 /* Return a mark in the value chain. All values allocated after the
1254 mark is obtained (except for those released) are subject to being freed
1255 if a subsequent value_free_to_mark is passed the mark. */
1262 /* Take a reference to VAL. VAL will not be deallocated until all
1263 references are released. */
1266 value_incref (struct value *val)
1268 val->reference_count++;
1271 /* Release a reference to VAL, which was acquired with value_incref.
1272 This function is also called to deallocate values from the value
1276 value_free (struct value *val)
1280 gdb_assert (val->reference_count > 0);
1281 val->reference_count--;
1282 if (val->reference_count > 0)
1285 /* If there's an associated parent value, drop our reference to
1287 if (val->parent != NULL)
1288 value_free (val->parent);
1290 if (VALUE_LVAL (val) == lval_computed)
1292 const struct lval_funcs *funcs = val->location.computed.funcs;
1294 if (funcs->free_closure)
1295 funcs->free_closure (val);
1298 xfree (val->contents);
1299 VEC_free (range_s, val->unavailable);
1304 /* Free all values allocated since MARK was obtained by value_mark
1305 (except for those released). */
1307 value_free_to_mark (struct value *mark)
1312 for (val = all_values; val && val != mark; val = next)
1321 /* Free all the values that have been allocated (except for those released).
1322 Call after each command, successful or not.
1323 In practice this is called before each command, which is sufficient. */
1326 free_all_values (void)
1331 for (val = all_values; val; val = next)
1341 /* Frees all the elements in a chain of values. */
1344 free_value_chain (struct value *v)
1350 next = value_next (v);
1355 /* Remove VAL from the chain all_values
1356 so it will not be freed automatically. */
1359 release_value (struct value *val)
1363 if (all_values == val)
1365 all_values = val->next;
1371 for (v = all_values; v; v = v->next)
1375 v->next = val->next;
1383 /* If the value is not already released, release it.
1384 If the value is already released, increment its reference count.
1385 That is, this function ensures that the value is released from the
1386 value chain and that the caller owns a reference to it. */
1389 release_value_or_incref (struct value *val)
1394 release_value (val);
1397 /* Release all values up to mark */
1399 value_release_to_mark (struct value *mark)
1404 for (val = next = all_values; next; next = next->next)
1406 if (next->next == mark)
1408 all_values = next->next;
1418 /* Return a copy of the value ARG.
1419 It contains the same contents, for same memory address,
1420 but it's a different block of storage. */
1423 value_copy (struct value *arg)
1425 struct type *encl_type = value_enclosing_type (arg);
1428 if (value_lazy (arg))
1429 val = allocate_value_lazy (encl_type);
1431 val = allocate_value (encl_type);
1432 val->type = arg->type;
1433 VALUE_LVAL (val) = VALUE_LVAL (arg);
1434 val->location = arg->location;
1435 val->offset = arg->offset;
1436 val->bitpos = arg->bitpos;
1437 val->bitsize = arg->bitsize;
1438 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1439 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1440 val->lazy = arg->lazy;
1441 val->optimized_out = arg->optimized_out;
1442 val->embedded_offset = value_embedded_offset (arg);
1443 val->pointed_to_offset = arg->pointed_to_offset;
1444 val->modifiable = arg->modifiable;
1445 if (!value_lazy (val))
1447 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1448 TYPE_LENGTH (value_enclosing_type (arg)));
1451 val->unavailable = VEC_copy (range_s, arg->unavailable);
1452 set_value_parent (val, arg->parent);
1453 if (VALUE_LVAL (val) == lval_computed)
1455 const struct lval_funcs *funcs = val->location.computed.funcs;
1457 if (funcs->copy_closure)
1458 val->location.computed.closure = funcs->copy_closure (val);
1463 /* Return a version of ARG that is non-lvalue. */
1466 value_non_lval (struct value *arg)
1468 if (VALUE_LVAL (arg) != not_lval)
1470 struct type *enc_type = value_enclosing_type (arg);
1471 struct value *val = allocate_value (enc_type);
1473 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1474 TYPE_LENGTH (enc_type));
1475 val->type = arg->type;
1476 set_value_embedded_offset (val, value_embedded_offset (arg));
1477 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1484 set_value_component_location (struct value *component,
1485 const struct value *whole)
1487 if (whole->lval == lval_internalvar)
1488 VALUE_LVAL (component) = lval_internalvar_component;
1490 VALUE_LVAL (component) = whole->lval;
1492 component->location = whole->location;
1493 if (whole->lval == lval_computed)
1495 const struct lval_funcs *funcs = whole->location.computed.funcs;
1497 if (funcs->copy_closure)
1498 component->location.computed.closure = funcs->copy_closure (whole);
1503 /* Access to the value history. */
1505 /* Record a new value in the value history.
1506 Returns the absolute history index of the entry.
1507 Result of -1 indicates the value was not saved; otherwise it is the
1508 value history index of this new item. */
1511 record_latest_value (struct value *val)
1515 /* We don't want this value to have anything to do with the inferior anymore.
1516 In particular, "set $1 = 50" should not affect the variable from which
1517 the value was taken, and fast watchpoints should be able to assume that
1518 a value on the value history never changes. */
1519 if (value_lazy (val))
1520 value_fetch_lazy (val);
1521 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1522 from. This is a bit dubious, because then *&$1 does not just return $1
1523 but the current contents of that location. c'est la vie... */
1524 val->modifiable = 0;
1525 release_value (val);
1527 /* Here we treat value_history_count as origin-zero
1528 and applying to the value being stored now. */
1530 i = value_history_count % VALUE_HISTORY_CHUNK;
1533 struct value_history_chunk *new
1534 = (struct value_history_chunk *)
1536 xmalloc (sizeof (struct value_history_chunk));
1537 memset (new->values, 0, sizeof new->values);
1538 new->next = value_history_chain;
1539 value_history_chain = new;
1542 value_history_chain->values[i] = val;
1544 /* Now we regard value_history_count as origin-one
1545 and applying to the value just stored. */
1547 return ++value_history_count;
1550 /* Return a copy of the value in the history with sequence number NUM. */
1553 access_value_history (int num)
1555 struct value_history_chunk *chunk;
1560 absnum += value_history_count;
1565 error (_("The history is empty."));
1567 error (_("There is only one value in the history."));
1569 error (_("History does not go back to $$%d."), -num);
1571 if (absnum > value_history_count)
1572 error (_("History has not yet reached $%d."), absnum);
1576 /* Now absnum is always absolute and origin zero. */
1578 chunk = value_history_chain;
1579 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1580 - absnum / VALUE_HISTORY_CHUNK;
1582 chunk = chunk->next;
1584 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1588 show_values (char *num_exp, int from_tty)
1596 /* "show values +" should print from the stored position.
1597 "show values <exp>" should print around value number <exp>. */
1598 if (num_exp[0] != '+' || num_exp[1] != '\0')
1599 num = parse_and_eval_long (num_exp) - 5;
1603 /* "show values" means print the last 10 values. */
1604 num = value_history_count - 9;
1610 for (i = num; i < num + 10 && i <= value_history_count; i++)
1612 struct value_print_options opts;
1614 val = access_value_history (i);
1615 printf_filtered (("$%d = "), i);
1616 get_user_print_options (&opts);
1617 value_print (val, gdb_stdout, &opts);
1618 printf_filtered (("\n"));
1621 /* The next "show values +" should start after what we just printed. */
1624 /* Hitting just return after this command should do the same thing as
1625 "show values +". If num_exp is null, this is unnecessary, since
1626 "show values +" is not useful after "show values". */
1627 if (from_tty && num_exp)
1634 /* Internal variables. These are variables within the debugger
1635 that hold values assigned by debugger commands.
1636 The user refers to them with a '$' prefix
1637 that does not appear in the variable names stored internally. */
1641 struct internalvar *next;
1644 /* We support various different kinds of content of an internal variable.
1645 enum internalvar_kind specifies the kind, and union internalvar_data
1646 provides the data associated with this particular kind. */
1648 enum internalvar_kind
1650 /* The internal variable is empty. */
1653 /* The value of the internal variable is provided directly as
1654 a GDB value object. */
1657 /* A fresh value is computed via a call-back routine on every
1658 access to the internal variable. */
1659 INTERNALVAR_MAKE_VALUE,
1661 /* The internal variable holds a GDB internal convenience function. */
1662 INTERNALVAR_FUNCTION,
1664 /* The variable holds an integer value. */
1665 INTERNALVAR_INTEGER,
1667 /* The variable holds a GDB-provided string. */
1672 union internalvar_data
1674 /* A value object used with INTERNALVAR_VALUE. */
1675 struct value *value;
1677 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1680 /* The functions to call. */
1681 const struct internalvar_funcs *functions;
1683 /* The function's user-data. */
1687 /* The internal function used with INTERNALVAR_FUNCTION. */
1690 struct internal_function *function;
1691 /* True if this is the canonical name for the function. */
1695 /* An integer value used with INTERNALVAR_INTEGER. */
1698 /* If type is non-NULL, it will be used as the type to generate
1699 a value for this internal variable. If type is NULL, a default
1700 integer type for the architecture is used. */
1705 /* A string value used with INTERNALVAR_STRING. */
1710 static struct internalvar *internalvars;
1712 /* If the variable does not already exist create it and give it the
1713 value given. If no value is given then the default is zero. */
1715 init_if_undefined_command (char* args, int from_tty)
1717 struct internalvar* intvar;
1719 /* Parse the expression - this is taken from set_command(). */
1720 struct expression *expr = parse_expression (args);
1721 register struct cleanup *old_chain =
1722 make_cleanup (free_current_contents, &expr);
1724 /* Validate the expression.
1725 Was the expression an assignment?
1726 Or even an expression at all? */
1727 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1728 error (_("Init-if-undefined requires an assignment expression."));
1730 /* Extract the variable from the parsed expression.
1731 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1732 if (expr->elts[1].opcode != OP_INTERNALVAR)
1733 error (_("The first parameter to init-if-undefined "
1734 "should be a GDB variable."));
1735 intvar = expr->elts[2].internalvar;
1737 /* Only evaluate the expression if the lvalue is void.
1738 This may still fail if the expresssion is invalid. */
1739 if (intvar->kind == INTERNALVAR_VOID)
1740 evaluate_expression (expr);
1742 do_cleanups (old_chain);
1746 /* Look up an internal variable with name NAME. NAME should not
1747 normally include a dollar sign.
1749 If the specified internal variable does not exist,
1750 the return value is NULL. */
1752 struct internalvar *
1753 lookup_only_internalvar (const char *name)
1755 struct internalvar *var;
1757 for (var = internalvars; var; var = var->next)
1758 if (strcmp (var->name, name) == 0)
1764 /* Complete NAME by comparing it to the names of internal variables.
1765 Returns a vector of newly allocated strings, or NULL if no matches
1769 complete_internalvar (const char *name)
1771 VEC (char_ptr) *result = NULL;
1772 struct internalvar *var;
1775 len = strlen (name);
1777 for (var = internalvars; var; var = var->next)
1778 if (strncmp (var->name, name, len) == 0)
1780 char *r = xstrdup (var->name);
1782 VEC_safe_push (char_ptr, result, r);
1788 /* Create an internal variable with name NAME and with a void value.
1789 NAME should not normally include a dollar sign. */
1791 struct internalvar *
1792 create_internalvar (const char *name)
1794 struct internalvar *var;
1796 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1797 var->name = concat (name, (char *)NULL);
1798 var->kind = INTERNALVAR_VOID;
1799 var->next = internalvars;
1804 /* Create an internal variable with name NAME and register FUN as the
1805 function that value_of_internalvar uses to create a value whenever
1806 this variable is referenced. NAME should not normally include a
1807 dollar sign. DATA is passed uninterpreted to FUN when it is
1808 called. CLEANUP, if not NULL, is called when the internal variable
1809 is destroyed. It is passed DATA as its only argument. */
1811 struct internalvar *
1812 create_internalvar_type_lazy (const char *name,
1813 const struct internalvar_funcs *funcs,
1816 struct internalvar *var = create_internalvar (name);
1818 var->kind = INTERNALVAR_MAKE_VALUE;
1819 var->u.make_value.functions = funcs;
1820 var->u.make_value.data = data;
1824 /* See documentation in value.h. */
1827 compile_internalvar_to_ax (struct internalvar *var,
1828 struct agent_expr *expr,
1829 struct axs_value *value)
1831 if (var->kind != INTERNALVAR_MAKE_VALUE
1832 || var->u.make_value.functions->compile_to_ax == NULL)
1835 var->u.make_value.functions->compile_to_ax (var, expr, value,
1836 var->u.make_value.data);
1840 /* Look up an internal variable with name NAME. NAME should not
1841 normally include a dollar sign.
1843 If the specified internal variable does not exist,
1844 one is created, with a void value. */
1846 struct internalvar *
1847 lookup_internalvar (const char *name)
1849 struct internalvar *var;
1851 var = lookup_only_internalvar (name);
1855 return create_internalvar (name);
1858 /* Return current value of internal variable VAR. For variables that
1859 are not inherently typed, use a value type appropriate for GDBARCH. */
1862 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1865 struct trace_state_variable *tsv;
1867 /* If there is a trace state variable of the same name, assume that
1868 is what we really want to see. */
1869 tsv = find_trace_state_variable (var->name);
1872 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1874 if (tsv->value_known)
1875 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1878 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1884 case INTERNALVAR_VOID:
1885 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1888 case INTERNALVAR_FUNCTION:
1889 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1892 case INTERNALVAR_INTEGER:
1893 if (!var->u.integer.type)
1894 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1895 var->u.integer.val);
1897 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1900 case INTERNALVAR_STRING:
1901 val = value_cstring (var->u.string, strlen (var->u.string),
1902 builtin_type (gdbarch)->builtin_char);
1905 case INTERNALVAR_VALUE:
1906 val = value_copy (var->u.value);
1907 if (value_lazy (val))
1908 value_fetch_lazy (val);
1911 case INTERNALVAR_MAKE_VALUE:
1912 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
1913 var->u.make_value.data);
1917 internal_error (__FILE__, __LINE__, _("bad kind"));
1920 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1921 on this value go back to affect the original internal variable.
1923 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1924 no underlying modifyable state in the internal variable.
1926 Likewise, if the variable's value is a computed lvalue, we want
1927 references to it to produce another computed lvalue, where
1928 references and assignments actually operate through the
1929 computed value's functions.
1931 This means that internal variables with computed values
1932 behave a little differently from other internal variables:
1933 assignments to them don't just replace the previous value
1934 altogether. At the moment, this seems like the behavior we
1937 if (var->kind != INTERNALVAR_MAKE_VALUE
1938 && val->lval != lval_computed)
1940 VALUE_LVAL (val) = lval_internalvar;
1941 VALUE_INTERNALVAR (val) = var;
1948 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1950 if (var->kind == INTERNALVAR_INTEGER)
1952 *result = var->u.integer.val;
1956 if (var->kind == INTERNALVAR_VALUE)
1958 struct type *type = check_typedef (value_type (var->u.value));
1960 if (TYPE_CODE (type) == TYPE_CODE_INT)
1962 *result = value_as_long (var->u.value);
1971 get_internalvar_function (struct internalvar *var,
1972 struct internal_function **result)
1976 case INTERNALVAR_FUNCTION:
1977 *result = var->u.fn.function;
1986 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1987 int bitsize, struct value *newval)
1993 case INTERNALVAR_VALUE:
1994 addr = value_contents_writeable (var->u.value);
1997 modify_field (value_type (var->u.value), addr + offset,
1998 value_as_long (newval), bitpos, bitsize);
2000 memcpy (addr + offset, value_contents (newval),
2001 TYPE_LENGTH (value_type (newval)));
2005 /* We can never get a component of any other kind. */
2006 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2011 set_internalvar (struct internalvar *var, struct value *val)
2013 enum internalvar_kind new_kind;
2014 union internalvar_data new_data = { 0 };
2016 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2017 error (_("Cannot overwrite convenience function %s"), var->name);
2019 /* Prepare new contents. */
2020 switch (TYPE_CODE (check_typedef (value_type (val))))
2022 case TYPE_CODE_VOID:
2023 new_kind = INTERNALVAR_VOID;
2026 case TYPE_CODE_INTERNAL_FUNCTION:
2027 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2028 new_kind = INTERNALVAR_FUNCTION;
2029 get_internalvar_function (VALUE_INTERNALVAR (val),
2030 &new_data.fn.function);
2031 /* Copies created here are never canonical. */
2035 new_kind = INTERNALVAR_VALUE;
2036 new_data.value = value_copy (val);
2037 new_data.value->modifiable = 1;
2039 /* Force the value to be fetched from the target now, to avoid problems
2040 later when this internalvar is referenced and the target is gone or
2042 if (value_lazy (new_data.value))
2043 value_fetch_lazy (new_data.value);
2045 /* Release the value from the value chain to prevent it from being
2046 deleted by free_all_values. From here on this function should not
2047 call error () until new_data is installed into the var->u to avoid
2049 release_value (new_data.value);
2053 /* Clean up old contents. */
2054 clear_internalvar (var);
2057 var->kind = new_kind;
2059 /* End code which must not call error(). */
2063 set_internalvar_integer (struct internalvar *var, LONGEST l)
2065 /* Clean up old contents. */
2066 clear_internalvar (var);
2068 var->kind = INTERNALVAR_INTEGER;
2069 var->u.integer.type = NULL;
2070 var->u.integer.val = l;
2074 set_internalvar_string (struct internalvar *var, const char *string)
2076 /* Clean up old contents. */
2077 clear_internalvar (var);
2079 var->kind = INTERNALVAR_STRING;
2080 var->u.string = xstrdup (string);
2084 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2086 /* Clean up old contents. */
2087 clear_internalvar (var);
2089 var->kind = INTERNALVAR_FUNCTION;
2090 var->u.fn.function = f;
2091 var->u.fn.canonical = 1;
2092 /* Variables installed here are always the canonical version. */
2096 clear_internalvar (struct internalvar *var)
2098 /* Clean up old contents. */
2101 case INTERNALVAR_VALUE:
2102 value_free (var->u.value);
2105 case INTERNALVAR_STRING:
2106 xfree (var->u.string);
2109 case INTERNALVAR_MAKE_VALUE:
2110 if (var->u.make_value.functions->destroy != NULL)
2111 var->u.make_value.functions->destroy (var->u.make_value.data);
2118 /* Reset to void kind. */
2119 var->kind = INTERNALVAR_VOID;
2123 internalvar_name (struct internalvar *var)
2128 static struct internal_function *
2129 create_internal_function (const char *name,
2130 internal_function_fn handler, void *cookie)
2132 struct internal_function *ifn = XNEW (struct internal_function);
2134 ifn->name = xstrdup (name);
2135 ifn->handler = handler;
2136 ifn->cookie = cookie;
2141 value_internal_function_name (struct value *val)
2143 struct internal_function *ifn;
2146 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2147 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2148 gdb_assert (result);
2154 call_internal_function (struct gdbarch *gdbarch,
2155 const struct language_defn *language,
2156 struct value *func, int argc, struct value **argv)
2158 struct internal_function *ifn;
2161 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2162 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2163 gdb_assert (result);
2165 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2168 /* The 'function' command. This does nothing -- it is just a
2169 placeholder to let "help function NAME" work. This is also used as
2170 the implementation of the sub-command that is created when
2171 registering an internal function. */
2173 function_command (char *command, int from_tty)
2178 /* Clean up if an internal function's command is destroyed. */
2180 function_destroyer (struct cmd_list_element *self, void *ignore)
2182 xfree ((char *) self->name);
2186 /* Add a new internal function. NAME is the name of the function; DOC
2187 is a documentation string describing the function. HANDLER is
2188 called when the function is invoked. COOKIE is an arbitrary
2189 pointer which is passed to HANDLER and is intended for "user
2192 add_internal_function (const char *name, const char *doc,
2193 internal_function_fn handler, void *cookie)
2195 struct cmd_list_element *cmd;
2196 struct internal_function *ifn;
2197 struct internalvar *var = lookup_internalvar (name);
2199 ifn = create_internal_function (name, handler, cookie);
2200 set_internalvar_function (var, ifn);
2202 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2204 cmd->destroyer = function_destroyer;
2207 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2208 prevent cycles / duplicates. */
2211 preserve_one_value (struct value *value, struct objfile *objfile,
2212 htab_t copied_types)
2214 if (TYPE_OBJFILE (value->type) == objfile)
2215 value->type = copy_type_recursive (objfile, value->type, copied_types);
2217 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2218 value->enclosing_type = copy_type_recursive (objfile,
2219 value->enclosing_type,
2223 /* Likewise for internal variable VAR. */
2226 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2227 htab_t copied_types)
2231 case INTERNALVAR_INTEGER:
2232 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2234 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2237 case INTERNALVAR_VALUE:
2238 preserve_one_value (var->u.value, objfile, copied_types);
2243 /* Update the internal variables and value history when OBJFILE is
2244 discarded; we must copy the types out of the objfile. New global types
2245 will be created for every convenience variable which currently points to
2246 this objfile's types, and the convenience variables will be adjusted to
2247 use the new global types. */
2250 preserve_values (struct objfile *objfile)
2252 htab_t copied_types;
2253 struct value_history_chunk *cur;
2254 struct internalvar *var;
2257 /* Create the hash table. We allocate on the objfile's obstack, since
2258 it is soon to be deleted. */
2259 copied_types = create_copied_types_hash (objfile);
2261 for (cur = value_history_chain; cur; cur = cur->next)
2262 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2264 preserve_one_value (cur->values[i], objfile, copied_types);
2266 for (var = internalvars; var; var = var->next)
2267 preserve_one_internalvar (var, objfile, copied_types);
2269 preserve_python_values (objfile, copied_types);
2271 htab_delete (copied_types);
2275 show_convenience (char *ignore, int from_tty)
2277 struct gdbarch *gdbarch = get_current_arch ();
2278 struct internalvar *var;
2280 struct value_print_options opts;
2282 get_user_print_options (&opts);
2283 for (var = internalvars; var; var = var->next)
2285 volatile struct gdb_exception ex;
2291 printf_filtered (("$%s = "), var->name);
2293 TRY_CATCH (ex, RETURN_MASK_ERROR)
2297 val = value_of_internalvar (gdbarch, var);
2298 value_print (val, gdb_stdout, &opts);
2301 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2302 printf_filtered (("\n"));
2306 /* This text does not mention convenience functions on purpose.
2307 The user can't create them except via Python, and if Python support
2308 is installed this message will never be printed ($_streq will
2310 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2311 "Convenience variables have "
2312 "names starting with \"$\";\n"
2313 "use \"set\" as in \"set "
2314 "$foo = 5\" to define them.\n"));
2318 /* Extract a value as a C number (either long or double).
2319 Knows how to convert fixed values to double, or
2320 floating values to long.
2321 Does not deallocate the value. */
2324 value_as_long (struct value *val)
2326 /* This coerces arrays and functions, which is necessary (e.g.
2327 in disassemble_command). It also dereferences references, which
2328 I suspect is the most logical thing to do. */
2329 val = coerce_array (val);
2330 return unpack_long (value_type (val), value_contents (val));
2334 value_as_double (struct value *val)
2339 foo = unpack_double (value_type (val), value_contents (val), &inv);
2341 error (_("Invalid floating value found in program."));
2345 /* Extract a value as a C pointer. Does not deallocate the value.
2346 Note that val's type may not actually be a pointer; value_as_long
2347 handles all the cases. */
2349 value_as_address (struct value *val)
2351 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2353 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2354 whether we want this to be true eventually. */
2356 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2357 non-address (e.g. argument to "signal", "info break", etc.), or
2358 for pointers to char, in which the low bits *are* significant. */
2359 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2362 /* There are several targets (IA-64, PowerPC, and others) which
2363 don't represent pointers to functions as simply the address of
2364 the function's entry point. For example, on the IA-64, a
2365 function pointer points to a two-word descriptor, generated by
2366 the linker, which contains the function's entry point, and the
2367 value the IA-64 "global pointer" register should have --- to
2368 support position-independent code. The linker generates
2369 descriptors only for those functions whose addresses are taken.
2371 On such targets, it's difficult for GDB to convert an arbitrary
2372 function address into a function pointer; it has to either find
2373 an existing descriptor for that function, or call malloc and
2374 build its own. On some targets, it is impossible for GDB to
2375 build a descriptor at all: the descriptor must contain a jump
2376 instruction; data memory cannot be executed; and code memory
2379 Upon entry to this function, if VAL is a value of type `function'
2380 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2381 value_address (val) is the address of the function. This is what
2382 you'll get if you evaluate an expression like `main'. The call
2383 to COERCE_ARRAY below actually does all the usual unary
2384 conversions, which includes converting values of type `function'
2385 to `pointer to function'. This is the challenging conversion
2386 discussed above. Then, `unpack_long' will convert that pointer
2387 back into an address.
2389 So, suppose the user types `disassemble foo' on an architecture
2390 with a strange function pointer representation, on which GDB
2391 cannot build its own descriptors, and suppose further that `foo'
2392 has no linker-built descriptor. The address->pointer conversion
2393 will signal an error and prevent the command from running, even
2394 though the next step would have been to convert the pointer
2395 directly back into the same address.
2397 The following shortcut avoids this whole mess. If VAL is a
2398 function, just return its address directly. */
2399 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2400 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2401 return value_address (val);
2403 val = coerce_array (val);
2405 /* Some architectures (e.g. Harvard), map instruction and data
2406 addresses onto a single large unified address space. For
2407 instance: An architecture may consider a large integer in the
2408 range 0x10000000 .. 0x1000ffff to already represent a data
2409 addresses (hence not need a pointer to address conversion) while
2410 a small integer would still need to be converted integer to
2411 pointer to address. Just assume such architectures handle all
2412 integer conversions in a single function. */
2416 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2417 must admonish GDB hackers to make sure its behavior matches the
2418 compiler's, whenever possible.
2420 In general, I think GDB should evaluate expressions the same way
2421 the compiler does. When the user copies an expression out of
2422 their source code and hands it to a `print' command, they should
2423 get the same value the compiler would have computed. Any
2424 deviation from this rule can cause major confusion and annoyance,
2425 and needs to be justified carefully. In other words, GDB doesn't
2426 really have the freedom to do these conversions in clever and
2429 AndrewC pointed out that users aren't complaining about how GDB
2430 casts integers to pointers; they are complaining that they can't
2431 take an address from a disassembly listing and give it to `x/i'.
2432 This is certainly important.
2434 Adding an architecture method like integer_to_address() certainly
2435 makes it possible for GDB to "get it right" in all circumstances
2436 --- the target has complete control over how things get done, so
2437 people can Do The Right Thing for their target without breaking
2438 anyone else. The standard doesn't specify how integers get
2439 converted to pointers; usually, the ABI doesn't either, but
2440 ABI-specific code is a more reasonable place to handle it. */
2442 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2443 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2444 && gdbarch_integer_to_address_p (gdbarch))
2445 return gdbarch_integer_to_address (gdbarch, value_type (val),
2446 value_contents (val));
2448 return unpack_long (value_type (val), value_contents (val));
2452 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2453 as a long, or as a double, assuming the raw data is described
2454 by type TYPE. Knows how to convert different sizes of values
2455 and can convert between fixed and floating point. We don't assume
2456 any alignment for the raw data. Return value is in host byte order.
2458 If you want functions and arrays to be coerced to pointers, and
2459 references to be dereferenced, call value_as_long() instead.
2461 C++: It is assumed that the front-end has taken care of
2462 all matters concerning pointers to members. A pointer
2463 to member which reaches here is considered to be equivalent
2464 to an INT (or some size). After all, it is only an offset. */
2467 unpack_long (struct type *type, const gdb_byte *valaddr)
2469 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2470 enum type_code code = TYPE_CODE (type);
2471 int len = TYPE_LENGTH (type);
2472 int nosign = TYPE_UNSIGNED (type);
2476 case TYPE_CODE_TYPEDEF:
2477 return unpack_long (check_typedef (type), valaddr);
2478 case TYPE_CODE_ENUM:
2479 case TYPE_CODE_FLAGS:
2480 case TYPE_CODE_BOOL:
2482 case TYPE_CODE_CHAR:
2483 case TYPE_CODE_RANGE:
2484 case TYPE_CODE_MEMBERPTR:
2486 return extract_unsigned_integer (valaddr, len, byte_order);
2488 return extract_signed_integer (valaddr, len, byte_order);
2491 return extract_typed_floating (valaddr, type);
2493 case TYPE_CODE_DECFLOAT:
2494 /* libdecnumber has a function to convert from decimal to integer, but
2495 it doesn't work when the decimal number has a fractional part. */
2496 return decimal_to_doublest (valaddr, len, byte_order);
2500 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2501 whether we want this to be true eventually. */
2502 return extract_typed_address (valaddr, type);
2505 error (_("Value can't be converted to integer."));
2507 return 0; /* Placate lint. */
2510 /* Return a double value from the specified type and address.
2511 INVP points to an int which is set to 0 for valid value,
2512 1 for invalid value (bad float format). In either case,
2513 the returned double is OK to use. Argument is in target
2514 format, result is in host format. */
2517 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2519 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2520 enum type_code code;
2524 *invp = 0; /* Assume valid. */
2525 CHECK_TYPEDEF (type);
2526 code = TYPE_CODE (type);
2527 len = TYPE_LENGTH (type);
2528 nosign = TYPE_UNSIGNED (type);
2529 if (code == TYPE_CODE_FLT)
2531 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2532 floating-point value was valid (using the macro
2533 INVALID_FLOAT). That test/macro have been removed.
2535 It turns out that only the VAX defined this macro and then
2536 only in a non-portable way. Fixing the portability problem
2537 wouldn't help since the VAX floating-point code is also badly
2538 bit-rotten. The target needs to add definitions for the
2539 methods gdbarch_float_format and gdbarch_double_format - these
2540 exactly describe the target floating-point format. The
2541 problem here is that the corresponding floatformat_vax_f and
2542 floatformat_vax_d values these methods should be set to are
2543 also not defined either. Oops!
2545 Hopefully someone will add both the missing floatformat
2546 definitions and the new cases for floatformat_is_valid (). */
2548 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2554 return extract_typed_floating (valaddr, type);
2556 else if (code == TYPE_CODE_DECFLOAT)
2557 return decimal_to_doublest (valaddr, len, byte_order);
2560 /* Unsigned -- be sure we compensate for signed LONGEST. */
2561 return (ULONGEST) unpack_long (type, valaddr);
2565 /* Signed -- we are OK with unpack_long. */
2566 return unpack_long (type, valaddr);
2570 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2571 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2572 We don't assume any alignment for the raw data. Return value is in
2575 If you want functions and arrays to be coerced to pointers, and
2576 references to be dereferenced, call value_as_address() instead.
2578 C++: It is assumed that the front-end has taken care of
2579 all matters concerning pointers to members. A pointer
2580 to member which reaches here is considered to be equivalent
2581 to an INT (or some size). After all, it is only an offset. */
2584 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2586 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2587 whether we want this to be true eventually. */
2588 return unpack_long (type, valaddr);
2592 /* Get the value of the FIELDNO'th field (which must be static) of
2596 value_static_field (struct type *type, int fieldno)
2598 struct value *retval;
2600 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2602 case FIELD_LOC_KIND_PHYSADDR:
2603 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2604 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2606 case FIELD_LOC_KIND_PHYSNAME:
2608 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2609 /* TYPE_FIELD_NAME (type, fieldno); */
2610 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2614 /* With some compilers, e.g. HP aCC, static data members are
2615 reported as non-debuggable symbols. */
2616 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2620 return allocate_optimized_out_value (type);
2623 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2624 SYMBOL_VALUE_ADDRESS (msym));
2628 retval = value_of_variable (sym, NULL);
2632 gdb_assert_not_reached ("unexpected field location kind");
2638 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2639 You have to be careful here, since the size of the data area for the value
2640 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2641 than the old enclosing type, you have to allocate more space for the
2645 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2647 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2649 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2651 val->enclosing_type = new_encl_type;
2654 /* Given a value ARG1 (offset by OFFSET bytes)
2655 of a struct or union type ARG_TYPE,
2656 extract and return the value of one of its (non-static) fields.
2657 FIELDNO says which field. */
2660 value_primitive_field (struct value *arg1, int offset,
2661 int fieldno, struct type *arg_type)
2666 CHECK_TYPEDEF (arg_type);
2667 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2669 /* Call check_typedef on our type to make sure that, if TYPE
2670 is a TYPE_CODE_TYPEDEF, its length is set to the length
2671 of the target type instead of zero. However, we do not
2672 replace the typedef type by the target type, because we want
2673 to keep the typedef in order to be able to print the type
2674 description correctly. */
2675 check_typedef (type);
2677 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2679 /* Handle packed fields.
2681 Create a new value for the bitfield, with bitpos and bitsize
2682 set. If possible, arrange offset and bitpos so that we can
2683 do a single aligned read of the size of the containing type.
2684 Otherwise, adjust offset to the byte containing the first
2685 bit. Assume that the address, offset, and embedded offset
2686 are sufficiently aligned. */
2688 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2689 int container_bitsize = TYPE_LENGTH (type) * 8;
2691 if (arg1->optimized_out)
2692 v = allocate_optimized_out_value (type);
2695 v = allocate_value_lazy (type);
2696 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2697 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2698 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2699 v->bitpos = bitpos % container_bitsize;
2701 v->bitpos = bitpos % 8;
2702 v->offset = (value_embedded_offset (arg1)
2704 + (bitpos - v->bitpos) / 8);
2705 set_value_parent (v, arg1);
2706 if (!value_lazy (arg1))
2707 value_fetch_lazy (v);
2710 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2712 /* This field is actually a base subobject, so preserve the
2713 entire object's contents for later references to virtual
2717 /* Lazy register values with offsets are not supported. */
2718 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2719 value_fetch_lazy (arg1);
2721 /* The optimized_out flag is only set correctly once a lazy value is
2722 loaded, having just loaded some lazy values we should check the
2723 optimized out case now. */
2724 if (arg1->optimized_out)
2725 v = allocate_optimized_out_value (type);
2728 /* We special case virtual inheritance here because this
2729 requires access to the contents, which we would rather avoid
2730 for references to ordinary fields of unavailable values. */
2731 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2732 boffset = baseclass_offset (arg_type, fieldno,
2733 value_contents (arg1),
2734 value_embedded_offset (arg1),
2735 value_address (arg1),
2738 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2740 if (value_lazy (arg1))
2741 v = allocate_value_lazy (value_enclosing_type (arg1));
2744 v = allocate_value (value_enclosing_type (arg1));
2745 value_contents_copy_raw (v, 0, arg1, 0,
2746 TYPE_LENGTH (value_enclosing_type (arg1)));
2749 v->offset = value_offset (arg1);
2750 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2755 /* Plain old data member */
2756 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2758 /* Lazy register values with offsets are not supported. */
2759 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2760 value_fetch_lazy (arg1);
2762 /* The optimized_out flag is only set correctly once a lazy value is
2763 loaded, having just loaded some lazy values we should check for
2764 the optimized out case now. */
2765 if (arg1->optimized_out)
2766 v = allocate_optimized_out_value (type);
2767 else if (value_lazy (arg1))
2768 v = allocate_value_lazy (type);
2771 v = allocate_value (type);
2772 value_contents_copy_raw (v, value_embedded_offset (v),
2773 arg1, value_embedded_offset (arg1) + offset,
2774 TYPE_LENGTH (type));
2776 v->offset = (value_offset (arg1) + offset
2777 + value_embedded_offset (arg1));
2779 set_value_component_location (v, arg1);
2780 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2781 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2785 /* Given a value ARG1 of a struct or union type,
2786 extract and return the value of one of its (non-static) fields.
2787 FIELDNO says which field. */
2790 value_field (struct value *arg1, int fieldno)
2792 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2795 /* Return a non-virtual function as a value.
2796 F is the list of member functions which contains the desired method.
2797 J is an index into F which provides the desired method.
2799 We only use the symbol for its address, so be happy with either a
2800 full symbol or a minimal symbol. */
2803 value_fn_field (struct value **arg1p, struct fn_field *f,
2804 int j, struct type *type,
2808 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2809 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2811 struct bound_minimal_symbol msym;
2813 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2816 memset (&msym, 0, sizeof (msym));
2820 gdb_assert (sym == NULL);
2821 msym = lookup_bound_minimal_symbol (physname);
2822 if (msym.minsym == NULL)
2826 v = allocate_value (ftype);
2829 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2833 /* The minimal symbol might point to a function descriptor;
2834 resolve it to the actual code address instead. */
2835 struct objfile *objfile = msym.objfile;
2836 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2838 set_value_address (v,
2839 gdbarch_convert_from_func_ptr_addr
2840 (gdbarch, SYMBOL_VALUE_ADDRESS (msym.minsym), ¤t_target));
2845 if (type != value_type (*arg1p))
2846 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2847 value_addr (*arg1p)));
2849 /* Move the `this' pointer according to the offset.
2850 VALUE_OFFSET (*arg1p) += offset; */
2858 /* Helper function for both unpack_value_bits_as_long and
2859 unpack_bits_as_long. See those functions for more details on the
2860 interface; the only difference is that this function accepts either
2861 a NULL or a non-NULL ORIGINAL_VALUE. */
2864 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2865 int embedded_offset, int bitpos, int bitsize,
2866 const struct value *original_value,
2869 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2876 /* Read the minimum number of bytes required; there may not be
2877 enough bytes to read an entire ULONGEST. */
2878 CHECK_TYPEDEF (field_type);
2880 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2882 bytes_read = TYPE_LENGTH (field_type);
2884 read_offset = bitpos / 8;
2886 if (original_value != NULL
2887 && !value_bytes_available (original_value, embedded_offset + read_offset,
2891 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
2892 bytes_read, byte_order);
2894 /* Extract bits. See comment above. */
2896 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2897 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2899 lsbcount = (bitpos % 8);
2902 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2903 If the field is signed, and is negative, then sign extend. */
2905 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2907 valmask = (((ULONGEST) 1) << bitsize) - 1;
2909 if (!TYPE_UNSIGNED (field_type))
2911 if (val & (valmask ^ (valmask >> 1)))
2922 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2923 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2924 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2925 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2928 Returns false if the value contents are unavailable, otherwise
2929 returns true, indicating a valid value has been stored in *RESULT.
2931 Extracting bits depends on endianness of the machine. Compute the
2932 number of least significant bits to discard. For big endian machines,
2933 we compute the total number of bits in the anonymous object, subtract
2934 off the bit count from the MSB of the object to the MSB of the
2935 bitfield, then the size of the bitfield, which leaves the LSB discard
2936 count. For little endian machines, the discard count is simply the
2937 number of bits from the LSB of the anonymous object to the LSB of the
2940 If the field is signed, we also do sign extension. */
2943 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2944 int embedded_offset, int bitpos, int bitsize,
2945 const struct value *original_value,
2948 gdb_assert (original_value != NULL);
2950 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2951 bitpos, bitsize, original_value, result);
2955 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2956 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2957 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2961 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2962 int embedded_offset, int fieldno,
2963 const struct value *val, LONGEST *result)
2965 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2966 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2967 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2969 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2970 bitpos, bitsize, val,
2974 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2975 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2976 ORIGINAL_VALUE, which must not be NULL. See
2977 unpack_value_bits_as_long for more details. */
2980 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2981 int embedded_offset, int fieldno,
2982 const struct value *val, LONGEST *result)
2984 gdb_assert (val != NULL);
2986 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2987 fieldno, val, result);
2990 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2991 object at VALADDR. See unpack_value_bits_as_long for more details.
2992 This function differs from unpack_value_field_as_long in that it
2993 operates without a struct value object. */
2996 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3000 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
3004 /* Return a new value with type TYPE, which is FIELDNO field of the
3005 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3006 of VAL. If the VAL's contents required to extract the bitfield
3007 from are unavailable, the new value is correspondingly marked as
3011 value_field_bitfield (struct type *type, int fieldno,
3012 const gdb_byte *valaddr,
3013 int embedded_offset, const struct value *val)
3017 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
3020 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3021 struct value *retval = allocate_value (field_type);
3022 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
3027 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
3031 /* Modify the value of a bitfield. ADDR points to a block of memory in
3032 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3033 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3034 indicate which bits (in target bit order) comprise the bitfield.
3035 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3036 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3039 modify_field (struct type *type, gdb_byte *addr,
3040 LONGEST fieldval, int bitpos, int bitsize)
3042 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3044 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3047 /* Normalize BITPOS. */
3051 /* If a negative fieldval fits in the field in question, chop
3052 off the sign extension bits. */
3053 if ((~fieldval & ~(mask >> 1)) == 0)
3056 /* Warn if value is too big to fit in the field in question. */
3057 if (0 != (fieldval & ~mask))
3059 /* FIXME: would like to include fieldval in the message, but
3060 we don't have a sprintf_longest. */
3061 warning (_("Value does not fit in %d bits."), bitsize);
3063 /* Truncate it, otherwise adjoining fields may be corrupted. */
3067 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3068 false valgrind reports. */
3070 bytesize = (bitpos + bitsize + 7) / 8;
3071 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3073 /* Shifting for bit field depends on endianness of the target machine. */
3074 if (gdbarch_bits_big_endian (get_type_arch (type)))
3075 bitpos = bytesize * 8 - bitpos - bitsize;
3077 oword &= ~(mask << bitpos);
3078 oword |= fieldval << bitpos;
3080 store_unsigned_integer (addr, bytesize, byte_order, oword);
3083 /* Pack NUM into BUF using a target format of TYPE. */
3086 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3088 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3091 type = check_typedef (type);
3092 len = TYPE_LENGTH (type);
3094 switch (TYPE_CODE (type))
3097 case TYPE_CODE_CHAR:
3098 case TYPE_CODE_ENUM:
3099 case TYPE_CODE_FLAGS:
3100 case TYPE_CODE_BOOL:
3101 case TYPE_CODE_RANGE:
3102 case TYPE_CODE_MEMBERPTR:
3103 store_signed_integer (buf, len, byte_order, num);
3108 store_typed_address (buf, type, (CORE_ADDR) num);
3112 error (_("Unexpected type (%d) encountered for integer constant."),
3118 /* Pack NUM into BUF using a target format of TYPE. */
3121 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3124 enum bfd_endian byte_order;
3126 type = check_typedef (type);
3127 len = TYPE_LENGTH (type);
3128 byte_order = gdbarch_byte_order (get_type_arch (type));
3130 switch (TYPE_CODE (type))
3133 case TYPE_CODE_CHAR:
3134 case TYPE_CODE_ENUM:
3135 case TYPE_CODE_FLAGS:
3136 case TYPE_CODE_BOOL:
3137 case TYPE_CODE_RANGE:
3138 case TYPE_CODE_MEMBERPTR:
3139 store_unsigned_integer (buf, len, byte_order, num);
3144 store_typed_address (buf, type, (CORE_ADDR) num);
3148 error (_("Unexpected type (%d) encountered "
3149 "for unsigned integer constant."),
3155 /* Convert C numbers into newly allocated values. */
3158 value_from_longest (struct type *type, LONGEST num)
3160 struct value *val = allocate_value (type);
3162 pack_long (value_contents_raw (val), type, num);
3167 /* Convert C unsigned numbers into newly allocated values. */
3170 value_from_ulongest (struct type *type, ULONGEST num)
3172 struct value *val = allocate_value (type);
3174 pack_unsigned_long (value_contents_raw (val), type, num);
3180 /* Create a value representing a pointer of type TYPE to the address
3183 value_from_pointer (struct type *type, CORE_ADDR addr)
3185 struct value *val = allocate_value (type);
3187 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
3192 /* Create a value of type TYPE whose contents come from VALADDR, if it
3193 is non-null, and whose memory address (in the inferior) is
3197 value_from_contents_and_address (struct type *type,
3198 const gdb_byte *valaddr,
3203 if (valaddr == NULL)
3204 v = allocate_value_lazy (type);
3206 v = value_from_contents (type, valaddr);
3207 set_value_address (v, address);
3208 VALUE_LVAL (v) = lval_memory;
3212 /* Create a value of type TYPE holding the contents CONTENTS.
3213 The new value is `not_lval'. */
3216 value_from_contents (struct type *type, const gdb_byte *contents)
3218 struct value *result;
3220 result = allocate_value (type);
3221 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3226 value_from_double (struct type *type, DOUBLEST num)
3228 struct value *val = allocate_value (type);
3229 struct type *base_type = check_typedef (type);
3230 enum type_code code = TYPE_CODE (base_type);
3232 if (code == TYPE_CODE_FLT)
3234 store_typed_floating (value_contents_raw (val), base_type, num);
3237 error (_("Unexpected type encountered for floating constant."));
3243 value_from_decfloat (struct type *type, const gdb_byte *dec)
3245 struct value *val = allocate_value (type);
3247 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3251 /* Extract a value from the history file. Input will be of the form
3252 $digits or $$digits. See block comment above 'write_dollar_variable'
3256 value_from_history_ref (char *h, char **endp)
3268 /* Find length of numeral string. */
3269 for (; isdigit (h[len]); len++)
3272 /* Make sure numeral string is not part of an identifier. */
3273 if (h[len] == '_' || isalpha (h[len]))
3276 /* Now collect the index value. */
3281 /* For some bizarre reason, "$$" is equivalent to "$$1",
3282 rather than to "$$0" as it ought to be! */
3287 index = -strtol (&h[2], endp, 10);
3293 /* "$" is equivalent to "$0". */
3298 index = strtol (&h[1], endp, 10);
3301 return access_value_history (index);
3305 coerce_ref_if_computed (const struct value *arg)
3307 const struct lval_funcs *funcs;
3309 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3312 if (value_lval_const (arg) != lval_computed)
3315 funcs = value_computed_funcs (arg);
3316 if (funcs->coerce_ref == NULL)
3319 return funcs->coerce_ref (arg);
3322 /* Look at value.h for description. */
3325 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3326 struct type *original_type,
3327 struct value *original_value)
3329 /* Re-adjust type. */
3330 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3332 /* Add embedding info. */
3333 set_value_enclosing_type (value, enc_type);
3334 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3336 /* We may be pointing to an object of some derived type. */
3337 return value_full_object (value, NULL, 0, 0, 0);
3341 coerce_ref (struct value *arg)
3343 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3344 struct value *retval;
3345 struct type *enc_type;
3347 retval = coerce_ref_if_computed (arg);
3351 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3354 enc_type = check_typedef (value_enclosing_type (arg));
3355 enc_type = TYPE_TARGET_TYPE (enc_type);
3357 retval = value_at_lazy (enc_type,
3358 unpack_pointer (value_type (arg),
3359 value_contents (arg)));
3360 return readjust_indirect_value_type (retval, enc_type,
3361 value_type_arg_tmp, arg);
3365 coerce_array (struct value *arg)
3369 arg = coerce_ref (arg);
3370 type = check_typedef (value_type (arg));
3372 switch (TYPE_CODE (type))
3374 case TYPE_CODE_ARRAY:
3375 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3376 arg = value_coerce_array (arg);
3378 case TYPE_CODE_FUNC:
3379 arg = value_coerce_function (arg);
3386 /* Return the return value convention that will be used for the
3389 enum return_value_convention
3390 struct_return_convention (struct gdbarch *gdbarch,
3391 struct value *function, struct type *value_type)
3393 enum type_code code = TYPE_CODE (value_type);
3395 if (code == TYPE_CODE_ERROR)
3396 error (_("Function return type unknown."));
3398 /* Probe the architecture for the return-value convention. */
3399 return gdbarch_return_value (gdbarch, function, value_type,
3403 /* Return true if the function returning the specified type is using
3404 the convention of returning structures in memory (passing in the
3405 address as a hidden first parameter). */
3408 using_struct_return (struct gdbarch *gdbarch,
3409 struct value *function, struct type *value_type)
3411 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3412 /* A void return value is never in memory. See also corresponding
3413 code in "print_return_value". */
3416 return (struct_return_convention (gdbarch, function, value_type)
3417 != RETURN_VALUE_REGISTER_CONVENTION);
3420 /* Set the initialized field in a value struct. */
3423 set_value_initialized (struct value *val, int status)
3425 val->initialized = status;
3428 /* Return the initialized field in a value struct. */
3431 value_initialized (struct value *val)
3433 return val->initialized;
3436 /* Called only from the value_contents and value_contents_all()
3437 macros, if the current data for a variable needs to be loaded into
3438 value_contents(VAL). Fetches the data from the user's process, and
3439 clears the lazy flag to indicate that the data in the buffer is
3442 If the value is zero-length, we avoid calling read_memory, which
3443 would abort. We mark the value as fetched anyway -- all 0 bytes of
3446 This function returns a value because it is used in the
3447 value_contents macro as part of an expression, where a void would
3448 not work. The value is ignored. */
3451 value_fetch_lazy (struct value *val)
3453 gdb_assert (value_lazy (val));
3454 allocate_value_contents (val);
3455 if (value_bitsize (val))
3457 /* To read a lazy bitfield, read the entire enclosing value. This
3458 prevents reading the same block of (possibly volatile) memory once
3459 per bitfield. It would be even better to read only the containing
3460 word, but we have no way to record that just specific bits of a
3461 value have been fetched. */
3462 struct type *type = check_typedef (value_type (val));
3463 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3464 struct value *parent = value_parent (val);
3465 LONGEST offset = value_offset (val);
3468 if (value_lazy (parent))
3469 value_fetch_lazy (parent);
3471 if (!value_bits_valid (parent,
3472 TARGET_CHAR_BIT * offset + value_bitpos (val),
3473 value_bitsize (val)))
3474 set_value_optimized_out (val, 1);
3475 else if (!unpack_value_bits_as_long (value_type (val),
3476 value_contents_for_printing (parent),
3479 value_bitsize (val), parent, &num))
3480 mark_value_bytes_unavailable (val,
3481 value_embedded_offset (val),
3482 TYPE_LENGTH (type));
3484 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
3487 else if (VALUE_LVAL (val) == lval_memory)
3489 CORE_ADDR addr = value_address (val);
3490 struct type *type = check_typedef (value_enclosing_type (val));
3492 if (TYPE_LENGTH (type))
3493 read_value_memory (val, 0, value_stack (val),
3494 addr, value_contents_all_raw (val),
3495 TYPE_LENGTH (type));
3497 else if (VALUE_LVAL (val) == lval_register)
3499 struct frame_info *frame;
3501 struct type *type = check_typedef (value_type (val));
3502 struct value *new_val = val, *mark = value_mark ();
3504 /* Offsets are not supported here; lazy register values must
3505 refer to the entire register. */
3506 gdb_assert (value_offset (val) == 0);
3508 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3510 struct frame_id frame_id = VALUE_FRAME_ID (new_val);
3512 frame = frame_find_by_id (frame_id);
3513 regnum = VALUE_REGNUM (new_val);
3515 gdb_assert (frame != NULL);
3517 /* Convertible register routines are used for multi-register
3518 values and for interpretation in different types
3519 (e.g. float or int from a double register). Lazy
3520 register values should have the register's natural type,
3521 so they do not apply. */
3522 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3525 new_val = get_frame_register_value (frame, regnum);
3527 /* If we get another lazy lval_register value, it means the
3528 register is found by reading it from the next frame.
3529 get_frame_register_value should never return a value with
3530 the frame id pointing to FRAME. If it does, it means we
3531 either have two consecutive frames with the same frame id
3532 in the frame chain, or some code is trying to unwind
3533 behind get_prev_frame's back (e.g., a frame unwind
3534 sniffer trying to unwind), bypassing its validations. In
3535 any case, it should always be an internal error to end up
3536 in this situation. */
3537 if (VALUE_LVAL (new_val) == lval_register
3538 && value_lazy (new_val)
3539 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id))
3540 internal_error (__FILE__, __LINE__,
3541 _("infinite loop while fetching a register"));
3544 /* If it's still lazy (for instance, a saved register on the
3545 stack), fetch it. */
3546 if (value_lazy (new_val))
3547 value_fetch_lazy (new_val);
3549 /* If the register was not saved, mark it optimized out. */
3550 if (value_optimized_out (new_val))
3551 set_value_optimized_out (val, 1);
3554 set_value_lazy (val, 0);
3555 value_contents_copy (val, value_embedded_offset (val),
3556 new_val, value_embedded_offset (new_val),
3557 TYPE_LENGTH (type));
3562 struct gdbarch *gdbarch;
3563 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3564 regnum = VALUE_REGNUM (val);
3565 gdbarch = get_frame_arch (frame);
3567 fprintf_unfiltered (gdb_stdlog,
3568 "{ value_fetch_lazy "
3569 "(frame=%d,regnum=%d(%s),...) ",
3570 frame_relative_level (frame), regnum,
3571 user_reg_map_regnum_to_name (gdbarch, regnum));
3573 fprintf_unfiltered (gdb_stdlog, "->");
3574 if (value_optimized_out (new_val))
3576 fprintf_unfiltered (gdb_stdlog, " ");
3577 val_print_optimized_out (new_val, gdb_stdlog);
3582 const gdb_byte *buf = value_contents (new_val);
3584 if (VALUE_LVAL (new_val) == lval_register)
3585 fprintf_unfiltered (gdb_stdlog, " register=%d",
3586 VALUE_REGNUM (new_val));
3587 else if (VALUE_LVAL (new_val) == lval_memory)
3588 fprintf_unfiltered (gdb_stdlog, " address=%s",
3590 value_address (new_val)));
3592 fprintf_unfiltered (gdb_stdlog, " computed");
3594 fprintf_unfiltered (gdb_stdlog, " bytes=");
3595 fprintf_unfiltered (gdb_stdlog, "[");
3596 for (i = 0; i < register_size (gdbarch, regnum); i++)
3597 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3598 fprintf_unfiltered (gdb_stdlog, "]");
3601 fprintf_unfiltered (gdb_stdlog, " }\n");
3604 /* Dispose of the intermediate values. This prevents
3605 watchpoints from trying to watch the saved frame pointer. */
3606 value_free_to_mark (mark);
3608 else if (VALUE_LVAL (val) == lval_computed
3609 && value_computed_funcs (val)->read != NULL)
3610 value_computed_funcs (val)->read (val);
3611 /* Don't call value_optimized_out on val, doing so would result in a
3612 recursive call back to value_fetch_lazy, instead check the
3613 optimized_out flag directly. */
3614 else if (val->optimized_out)
3615 /* Keep it optimized out. */;
3617 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3619 set_value_lazy (val, 0);
3623 /* Implementation of the convenience function $_isvoid. */
3625 static struct value *
3626 isvoid_internal_fn (struct gdbarch *gdbarch,
3627 const struct language_defn *language,
3628 void *cookie, int argc, struct value **argv)
3633 error (_("You must provide one argument for $_isvoid."));
3635 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3637 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3641 _initialize_values (void)
3643 add_cmd ("convenience", no_class, show_convenience, _("\
3644 Debugger convenience (\"$foo\") variables and functions.\n\
3645 Convenience variables are created when you assign them values;\n\
3646 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3648 A few convenience variables are given values automatically:\n\
3649 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3650 \"$__\" holds the contents of the last address examined with \"x\"."
3653 Convenience functions are defined via the Python API."
3656 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
3658 add_cmd ("values", no_set_class, show_values, _("\
3659 Elements of value history around item number IDX (or last ten)."),
3662 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3663 Initialize a convenience variable if necessary.\n\
3664 init-if-undefined VARIABLE = EXPRESSION\n\
3665 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3666 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3667 VARIABLE is already initialized."));
3669 add_prefix_cmd ("function", no_class, function_command, _("\
3670 Placeholder command for showing help on convenience functions."),
3671 &functionlist, "function ", 0, &cmdlist);
3673 add_internal_function ("_isvoid", _("\
3674 Check whether an expression is void.\n\
3675 Usage: $_isvoid (expression)\n\
3676 Return 1 if the expression is void, zero otherwise."),
3677 isvoid_internal_fn, NULL);