1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "arch-utils.h"
33 #include "target-float.h"
36 #include "cli/cli-decode.h"
37 #include "extension.h"
39 #include "tracepoint.h"
41 #include "user-regs.h"
43 #include "completer.h"
44 #include "common/selftest.h"
45 #include "common/array-view.h"
47 /* Definition of a user function. */
48 struct internal_function
50 /* The name of the function. It is a bit odd to have this in the
51 function itself -- the user might use a differently-named
52 convenience variable to hold the function. */
56 internal_function_fn handler;
58 /* User data for the handler. */
62 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
66 /* Lowest offset in the range. */
69 /* Length of the range. */
72 /* Returns true if THIS is strictly less than OTHER, useful for
73 searching. We keep ranges sorted by offset and coalesce
74 overlapping and contiguous ranges, so this just compares the
77 bool operator< (const range &other) const
79 return offset < other.offset;
82 /* Returns true if THIS is equal to OTHER. */
83 bool operator== (const range &other) const
85 return offset == other.offset && length == other.length;
89 /* Returns true if the ranges defined by [offset1, offset1+len1) and
90 [offset2, offset2+len2) overlap. */
93 ranges_overlap (LONGEST offset1, LONGEST len1,
94 LONGEST offset2, LONGEST len2)
98 l = std::max (offset1, offset2);
99 h = std::min (offset1 + len1, offset2 + len2);
103 /* Returns true if RANGES contains any range that overlaps [OFFSET,
107 ranges_contain (const std::vector<range> &ranges, LONGEST offset,
112 what.offset = offset;
113 what.length = length;
115 /* We keep ranges sorted by offset and coalesce overlapping and
116 contiguous ranges, so to check if a range list contains a given
117 range, we can do a binary search for the position the given range
118 would be inserted if we only considered the starting OFFSET of
119 ranges. We call that position I. Since we also have LENGTH to
120 care for (this is a range afterall), we need to check if the
121 _previous_ range overlaps the I range. E.g.,
125 |---| |---| |------| ... |--|
130 In the case above, the binary search would return `I=1', meaning,
131 this OFFSET should be inserted at position 1, and the current
132 position 1 should be pushed further (and before 2). But, `0'
135 Then we need to check if the I range overlaps the I range itself.
140 |---| |---| |-------| ... |--|
147 auto i = std::lower_bound (ranges.begin (), ranges.end (), what);
149 if (i > ranges.begin ())
151 const struct range &bef = *(i - 1);
153 if (ranges_overlap (bef.offset, bef.length, offset, length))
157 if (i < ranges.end ())
159 const struct range &r = *i;
161 if (ranges_overlap (r.offset, r.length, offset, length))
168 static struct cmd_list_element *functionlist;
170 /* Note that the fields in this structure are arranged to save a bit
175 explicit value (struct type *type_)
181 enclosing_type (type_)
187 if (VALUE_LVAL (this) == lval_computed)
189 const struct lval_funcs *funcs = location.computed.funcs;
191 if (funcs->free_closure)
192 funcs->free_closure (this);
194 else if (VALUE_LVAL (this) == lval_xcallable)
195 delete location.xm_worker;
198 DISABLE_COPY_AND_ASSIGN (value);
200 /* Type of value; either not an lval, or one of the various
201 different possible kinds of lval. */
202 enum lval_type lval = not_lval;
204 /* Is it modifiable? Only relevant if lval != not_lval. */
205 unsigned int modifiable : 1;
207 /* If zero, contents of this value are in the contents field. If
208 nonzero, contents are in inferior. If the lval field is lval_memory,
209 the contents are in inferior memory at location.address plus offset.
210 The lval field may also be lval_register.
212 WARNING: This field is used by the code which handles watchpoints
213 (see breakpoint.c) to decide whether a particular value can be
214 watched by hardware watchpoints. If the lazy flag is set for
215 some member of a value chain, it is assumed that this member of
216 the chain doesn't need to be watched as part of watching the
217 value itself. This is how GDB avoids watching the entire struct
218 or array when the user wants to watch a single struct member or
219 array element. If you ever change the way lazy flag is set and
220 reset, be sure to consider this use as well! */
221 unsigned int lazy : 1;
223 /* If value is a variable, is it initialized or not. */
224 unsigned int initialized : 1;
226 /* If value is from the stack. If this is set, read_stack will be
227 used instead of read_memory to enable extra caching. */
228 unsigned int stack : 1;
230 /* Location of value (if lval). */
233 /* If lval == lval_memory, this is the address in the inferior */
236 /*If lval == lval_register, the value is from a register. */
239 /* Register number. */
241 /* Frame ID of "next" frame to which a register value is relative.
242 If the register value is found relative to frame F, then the
243 frame id of F->next will be stored in next_frame_id. */
244 struct frame_id next_frame_id;
247 /* Pointer to internal variable. */
248 struct internalvar *internalvar;
250 /* Pointer to xmethod worker. */
251 struct xmethod_worker *xm_worker;
253 /* If lval == lval_computed, this is a set of function pointers
254 to use to access and describe the value, and a closure pointer
258 /* Functions to call. */
259 const struct lval_funcs *funcs;
261 /* Closure for those functions to use. */
266 /* Describes offset of a value within lval of a structure in target
267 addressable memory units. Note also the member embedded_offset
271 /* Only used for bitfields; number of bits contained in them. */
274 /* Only used for bitfields; position of start of field. For
275 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
276 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
279 /* The number of references to this value. When a value is created,
280 the value chain holds a reference, so REFERENCE_COUNT is 1. If
281 release_value is called, this value is removed from the chain but
282 the caller of release_value now has a reference to this value.
283 The caller must arrange for a call to value_free later. */
284 int reference_count = 1;
286 /* Only used for bitfields; the containing value. This allows a
287 single read from the target when displaying multiple
289 value_ref_ptr parent;
291 /* Type of the value. */
294 /* If a value represents a C++ object, then the `type' field gives
295 the object's compile-time type. If the object actually belongs
296 to some class derived from `type', perhaps with other base
297 classes and additional members, then `type' is just a subobject
298 of the real thing, and the full object is probably larger than
299 `type' would suggest.
301 If `type' is a dynamic class (i.e. one with a vtable), then GDB
302 can actually determine the object's run-time type by looking at
303 the run-time type information in the vtable. When this
304 information is available, we may elect to read in the entire
305 object, for several reasons:
307 - When printing the value, the user would probably rather see the
308 full object, not just the limited portion apparent from the
311 - If `type' has virtual base classes, then even printing `type'
312 alone may require reaching outside the `type' portion of the
313 object to wherever the virtual base class has been stored.
315 When we store the entire object, `enclosing_type' is the run-time
316 type -- the complete object -- and `embedded_offset' is the
317 offset of `type' within that larger type, in target addressable memory
318 units. The value_contents() macro takes `embedded_offset' into account,
319 so most GDB code continues to see the `type' portion of the value, just
320 as the inferior would.
322 If `type' is a pointer to an object, then `enclosing_type' is a
323 pointer to the object's run-time type, and `pointed_to_offset' is
324 the offset in target addressable memory units from the full object
325 to the pointed-to object -- that is, the value `embedded_offset' would
326 have if we followed the pointer and fetched the complete object.
327 (I don't really see the point. Why not just determine the
328 run-time type when you indirect, and avoid the special case? The
329 contents don't matter until you indirect anyway.)
331 If we're not doing anything fancy, `enclosing_type' is equal to
332 `type', and `embedded_offset' is zero, so everything works
334 struct type *enclosing_type;
335 LONGEST embedded_offset = 0;
336 LONGEST pointed_to_offset = 0;
338 /* Actual contents of the value. Target byte-order. NULL or not
339 valid if lazy is nonzero. */
340 gdb::unique_xmalloc_ptr<gdb_byte> contents;
342 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
343 rather than available, since the common and default case is for a
344 value to be available. This is filled in at value read time.
345 The unavailable ranges are tracked in bits. Note that a contents
346 bit that has been optimized out doesn't really exist in the
347 program, so it can't be marked unavailable either. */
348 std::vector<range> unavailable;
350 /* Likewise, but for optimized out contents (a chunk of the value of
351 a variable that does not actually exist in the program). If LVAL
352 is lval_register, this is a register ($pc, $sp, etc., never a
353 program variable) that has not been saved in the frame. Not
354 saved registers and optimized-out program variables values are
355 treated pretty much the same, except not-saved registers have a
356 different string representation and related error strings. */
357 std::vector<range> optimized_out;
363 get_value_arch (const struct value *value)
365 return get_type_arch (value_type (value));
369 value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
371 gdb_assert (!value->lazy);
373 return !ranges_contain (value->unavailable, offset, length);
377 value_bytes_available (const struct value *value,
378 LONGEST offset, LONGEST length)
380 return value_bits_available (value,
381 offset * TARGET_CHAR_BIT,
382 length * TARGET_CHAR_BIT);
386 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
388 gdb_assert (!value->lazy);
390 return ranges_contain (value->optimized_out, bit_offset, bit_length);
394 value_entirely_available (struct value *value)
396 /* We can only tell whether the whole value is available when we try
399 value_fetch_lazy (value);
401 if (value->unavailable.empty ())
406 /* Returns true if VALUE is entirely covered by RANGES. If the value
407 is lazy, it'll be read now. Note that RANGE is a pointer to
408 pointer because reading the value might change *RANGE. */
411 value_entirely_covered_by_range_vector (struct value *value,
412 const std::vector<range> &ranges)
414 /* We can only tell whether the whole value is optimized out /
415 unavailable when we try to read it. */
417 value_fetch_lazy (value);
419 if (ranges.size () == 1)
421 const struct range &t = ranges[0];
424 && t.length == (TARGET_CHAR_BIT
425 * TYPE_LENGTH (value_enclosing_type (value))))
433 value_entirely_unavailable (struct value *value)
435 return value_entirely_covered_by_range_vector (value, value->unavailable);
439 value_entirely_optimized_out (struct value *value)
441 return value_entirely_covered_by_range_vector (value, value->optimized_out);
444 /* Insert into the vector pointed to by VECTORP the bit range starting of
445 OFFSET bits, and extending for the next LENGTH bits. */
448 insert_into_bit_range_vector (std::vector<range> *vectorp,
449 LONGEST offset, LONGEST length)
453 /* Insert the range sorted. If there's overlap or the new range
454 would be contiguous with an existing range, merge. */
456 newr.offset = offset;
457 newr.length = length;
459 /* Do a binary search for the position the given range would be
460 inserted if we only considered the starting OFFSET of ranges.
461 Call that position I. Since we also have LENGTH to care for
462 (this is a range afterall), we need to check if the _previous_
463 range overlaps the I range. E.g., calling R the new range:
465 #1 - overlaps with previous
469 |---| |---| |------| ... |--|
474 In the case #1 above, the binary search would return `I=1',
475 meaning, this OFFSET should be inserted at position 1, and the
476 current position 1 should be pushed further (and become 2). But,
477 note that `0' overlaps with R, so we want to merge them.
479 A similar consideration needs to be taken if the new range would
480 be contiguous with the previous range:
482 #2 - contiguous with previous
486 |--| |---| |------| ... |--|
491 If there's no overlap with the previous range, as in:
493 #3 - not overlapping and not contiguous
497 |--| |---| |------| ... |--|
504 #4 - R is the range with lowest offset
508 |--| |---| |------| ... |--|
513 ... we just push the new range to I.
515 All the 4 cases above need to consider that the new range may
516 also overlap several of the ranges that follow, or that R may be
517 contiguous with the following range, and merge. E.g.,
519 #5 - overlapping following ranges
522 |------------------------|
523 |--| |---| |------| ... |--|
532 |--| |---| |------| ... |--|
539 auto i = std::lower_bound (vectorp->begin (), vectorp->end (), newr);
540 if (i > vectorp->begin ())
542 struct range &bef = *(i - 1);
544 if (ranges_overlap (bef.offset, bef.length, offset, length))
547 ULONGEST l = std::min (bef.offset, offset);
548 ULONGEST h = std::max (bef.offset + bef.length, offset + length);
554 else if (offset == bef.offset + bef.length)
557 bef.length += length;
563 i = vectorp->insert (i, newr);
569 i = vectorp->insert (i, newr);
572 /* Check whether the ranges following the one we've just added or
573 touched can be folded in (#5 above). */
574 if (i != vectorp->end () && i + 1 < vectorp->end ())
579 /* Get the range we just touched. */
580 struct range &t = *i;
584 for (; i < vectorp->end (); i++)
586 struct range &r = *i;
587 if (r.offset <= t.offset + t.length)
591 l = std::min (t.offset, r.offset);
592 h = std::max (t.offset + t.length, r.offset + r.length);
601 /* If we couldn't merge this one, we won't be able to
602 merge following ones either, since the ranges are
603 always sorted by OFFSET. */
609 vectorp->erase (next, next + removed);
614 mark_value_bits_unavailable (struct value *value,
615 LONGEST offset, LONGEST length)
617 insert_into_bit_range_vector (&value->unavailable, offset, length);
621 mark_value_bytes_unavailable (struct value *value,
622 LONGEST offset, LONGEST length)
624 mark_value_bits_unavailable (value,
625 offset * TARGET_CHAR_BIT,
626 length * TARGET_CHAR_BIT);
629 /* Find the first range in RANGES that overlaps the range defined by
630 OFFSET and LENGTH, starting at element POS in the RANGES vector,
631 Returns the index into RANGES where such overlapping range was
632 found, or -1 if none was found. */
635 find_first_range_overlap (const std::vector<range> *ranges, int pos,
636 LONGEST offset, LONGEST length)
640 for (i = pos; i < ranges->size (); i++)
642 const range &r = (*ranges)[i];
643 if (ranges_overlap (r.offset, r.length, offset, length))
650 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
651 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
654 It must always be the case that:
655 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
657 It is assumed that memory can be accessed from:
658 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
660 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
661 / TARGET_CHAR_BIT) */
663 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
664 const gdb_byte *ptr2, size_t offset2_bits,
667 gdb_assert (offset1_bits % TARGET_CHAR_BIT
668 == offset2_bits % TARGET_CHAR_BIT);
670 if (offset1_bits % TARGET_CHAR_BIT != 0)
673 gdb_byte mask, b1, b2;
675 /* The offset from the base pointers PTR1 and PTR2 is not a complete
676 number of bytes. A number of bits up to either the next exact
677 byte boundary, or LENGTH_BITS (which ever is sooner) will be
679 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
680 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
681 mask = (1 << bits) - 1;
683 if (length_bits < bits)
685 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
689 /* Now load the two bytes and mask off the bits we care about. */
690 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
691 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
696 /* Now update the length and offsets to take account of the bits
697 we've just compared. */
699 offset1_bits += bits;
700 offset2_bits += bits;
703 if (length_bits % TARGET_CHAR_BIT != 0)
707 gdb_byte mask, b1, b2;
709 /* The length is not an exact number of bytes. After the previous
710 IF.. block then the offsets are byte aligned, or the
711 length is zero (in which case this code is not reached). Compare
712 a number of bits at the end of the region, starting from an exact
714 bits = length_bits % TARGET_CHAR_BIT;
715 o1 = offset1_bits + length_bits - bits;
716 o2 = offset2_bits + length_bits - bits;
718 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
719 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
721 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
722 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
724 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
725 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
735 /* We've now taken care of any stray "bits" at the start, or end of
736 the region to compare, the remainder can be covered with a simple
738 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
739 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
740 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
742 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
743 ptr2 + offset2_bits / TARGET_CHAR_BIT,
744 length_bits / TARGET_CHAR_BIT);
747 /* Length is zero, regions match. */
751 /* Helper struct for find_first_range_overlap_and_match and
752 value_contents_bits_eq. Keep track of which slot of a given ranges
753 vector have we last looked at. */
755 struct ranges_and_idx
758 const std::vector<range> *ranges;
760 /* The range we've last found in RANGES. Given ranges are sorted,
761 we can start the next lookup here. */
765 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
766 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
767 ranges starting at OFFSET2 bits. Return true if the ranges match
768 and fill in *L and *H with the overlapping window relative to
769 (both) OFFSET1 or OFFSET2. */
772 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
773 struct ranges_and_idx *rp2,
774 LONGEST offset1, LONGEST offset2,
775 LONGEST length, ULONGEST *l, ULONGEST *h)
777 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
779 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
782 if (rp1->idx == -1 && rp2->idx == -1)
788 else if (rp1->idx == -1 || rp2->idx == -1)
792 const range *r1, *r2;
796 r1 = &(*rp1->ranges)[rp1->idx];
797 r2 = &(*rp2->ranges)[rp2->idx];
799 /* Get the unavailable windows intersected by the incoming
800 ranges. The first and last ranges that overlap the argument
801 range may be wider than said incoming arguments ranges. */
802 l1 = std::max (offset1, r1->offset);
803 h1 = std::min (offset1 + length, r1->offset + r1->length);
805 l2 = std::max (offset2, r2->offset);
806 h2 = std::min (offset2 + length, offset2 + r2->length);
808 /* Make them relative to the respective start offsets, so we can
809 compare them for equality. */
816 /* Different ranges, no match. */
817 if (l1 != l2 || h1 != h2)
826 /* Helper function for value_contents_eq. The only difference is that
827 this function is bit rather than byte based.
829 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
830 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
831 Return true if the available bits match. */
834 value_contents_bits_eq (const struct value *val1, int offset1,
835 const struct value *val2, int offset2,
838 /* Each array element corresponds to a ranges source (unavailable,
839 optimized out). '1' is for VAL1, '2' for VAL2. */
840 struct ranges_and_idx rp1[2], rp2[2];
842 /* See function description in value.h. */
843 gdb_assert (!val1->lazy && !val2->lazy);
845 /* We shouldn't be trying to compare past the end of the values. */
846 gdb_assert (offset1 + length
847 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
848 gdb_assert (offset2 + length
849 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
851 memset (&rp1, 0, sizeof (rp1));
852 memset (&rp2, 0, sizeof (rp2));
853 rp1[0].ranges = &val1->unavailable;
854 rp2[0].ranges = &val2->unavailable;
855 rp1[1].ranges = &val1->optimized_out;
856 rp2[1].ranges = &val2->optimized_out;
860 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
863 for (i = 0; i < 2; i++)
865 ULONGEST l_tmp, h_tmp;
867 /* The contents only match equal if the invalid/unavailable
868 contents ranges match as well. */
869 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
870 offset1, offset2, length,
874 /* We're interested in the lowest/first range found. */
875 if (i == 0 || l_tmp < l)
882 /* Compare the available/valid contents. */
883 if (memcmp_with_bit_offsets (val1->contents.get (), offset1,
884 val2->contents.get (), offset2, l) != 0)
896 value_contents_eq (const struct value *val1, LONGEST offset1,
897 const struct value *val2, LONGEST offset2,
900 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
901 val2, offset2 * TARGET_CHAR_BIT,
902 length * TARGET_CHAR_BIT);
906 /* The value-history records all the values printed by print commands
907 during this session. */
909 static std::vector<value_ref_ptr> value_history;
912 /* List of all value objects currently allocated
913 (except for those released by calls to release_value)
914 This is so they can be freed after each command. */
916 static std::vector<value_ref_ptr> all_values;
918 /* Allocate a lazy value for type TYPE. Its actual content is
919 "lazily" allocated too: the content field of the return value is
920 NULL; it will be allocated when it is fetched from the target. */
923 allocate_value_lazy (struct type *type)
927 /* Call check_typedef on our type to make sure that, if TYPE
928 is a TYPE_CODE_TYPEDEF, its length is set to the length
929 of the target type instead of zero. However, we do not
930 replace the typedef type by the target type, because we want
931 to keep the typedef in order to be able to set the VAL's type
932 description correctly. */
933 check_typedef (type);
935 val = new struct value (type);
937 /* Values start out on the all_values chain. */
938 all_values.emplace_back (val);
943 /* The maximum size, in bytes, that GDB will try to allocate for a value.
944 The initial value of 64k was not selected for any specific reason, it is
945 just a reasonable starting point. */
947 static int max_value_size = 65536; /* 64k bytes */
949 /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
950 LONGEST, otherwise GDB will not be able to parse integer values from the
951 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
952 be unable to parse "set max-value-size 2".
954 As we want a consistent GDB experience across hosts with different sizes
955 of LONGEST, this arbitrary minimum value was selected, so long as this
956 is bigger than LONGEST on all GDB supported hosts we're fine. */
958 #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
959 gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
961 /* Implement the "set max-value-size" command. */
964 set_max_value_size (const char *args, int from_tty,
965 struct cmd_list_element *c)
967 gdb_assert (max_value_size == -1 || max_value_size >= 0);
969 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
971 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
972 error (_("max-value-size set too low, increasing to %d bytes"),
977 /* Implement the "show max-value-size" command. */
980 show_max_value_size (struct ui_file *file, int from_tty,
981 struct cmd_list_element *c, const char *value)
983 if (max_value_size == -1)
984 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
986 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
990 /* Called before we attempt to allocate or reallocate a buffer for the
991 contents of a value. TYPE is the type of the value for which we are
992 allocating the buffer. If the buffer is too large (based on the user
993 controllable setting) then throw an error. If this function returns
994 then we should attempt to allocate the buffer. */
997 check_type_length_before_alloc (const struct type *type)
999 unsigned int length = TYPE_LENGTH (type);
1001 if (max_value_size > -1 && length > max_value_size)
1003 if (TYPE_NAME (type) != NULL)
1004 error (_("value of type `%s' requires %u bytes, which is more "
1005 "than max-value-size"), TYPE_NAME (type), length);
1007 error (_("value requires %u bytes, which is more than "
1008 "max-value-size"), length);
1012 /* Allocate the contents of VAL if it has not been allocated yet. */
1015 allocate_value_contents (struct value *val)
1019 check_type_length_before_alloc (val->enclosing_type);
1021 ((gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)));
1025 /* Allocate a value and its contents for type TYPE. */
1028 allocate_value (struct type *type)
1030 struct value *val = allocate_value_lazy (type);
1032 allocate_value_contents (val);
1037 /* Allocate a value that has the correct length
1038 for COUNT repetitions of type TYPE. */
1041 allocate_repeat_value (struct type *type, int count)
1043 int low_bound = current_language->string_lower_bound; /* ??? */
1044 /* FIXME-type-allocation: need a way to free this type when we are
1046 struct type *array_type
1047 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
1049 return allocate_value (array_type);
1053 allocate_computed_value (struct type *type,
1054 const struct lval_funcs *funcs,
1057 struct value *v = allocate_value_lazy (type);
1059 VALUE_LVAL (v) = lval_computed;
1060 v->location.computed.funcs = funcs;
1061 v->location.computed.closure = closure;
1066 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1069 allocate_optimized_out_value (struct type *type)
1071 struct value *retval = allocate_value_lazy (type);
1073 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1074 set_value_lazy (retval, 0);
1078 /* Accessor methods. */
1081 value_type (const struct value *value)
1086 deprecated_set_value_type (struct value *value, struct type *type)
1092 value_offset (const struct value *value)
1094 return value->offset;
1097 set_value_offset (struct value *value, LONGEST offset)
1099 value->offset = offset;
1103 value_bitpos (const struct value *value)
1105 return value->bitpos;
1108 set_value_bitpos (struct value *value, LONGEST bit)
1110 value->bitpos = bit;
1114 value_bitsize (const struct value *value)
1116 return value->bitsize;
1119 set_value_bitsize (struct value *value, LONGEST bit)
1121 value->bitsize = bit;
1125 value_parent (const struct value *value)
1127 return value->parent.get ();
1133 set_value_parent (struct value *value, struct value *parent)
1135 value->parent = value_ref_ptr::new_reference (parent);
1139 value_contents_raw (struct value *value)
1141 struct gdbarch *arch = get_value_arch (value);
1142 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1144 allocate_value_contents (value);
1145 return value->contents.get () + value->embedded_offset * unit_size;
1149 value_contents_all_raw (struct value *value)
1151 allocate_value_contents (value);
1152 return value->contents.get ();
1156 value_enclosing_type (const struct value *value)
1158 return value->enclosing_type;
1161 /* Look at value.h for description. */
1164 value_actual_type (struct value *value, int resolve_simple_types,
1165 int *real_type_found)
1167 struct value_print_options opts;
1168 struct type *result;
1170 get_user_print_options (&opts);
1172 if (real_type_found)
1173 *real_type_found = 0;
1174 result = value_type (value);
1175 if (opts.objectprint)
1177 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1178 fetch its rtti type. */
1179 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
1180 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1182 && !value_optimized_out (value))
1184 struct type *real_type;
1186 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1189 if (real_type_found)
1190 *real_type_found = 1;
1194 else if (resolve_simple_types)
1196 if (real_type_found)
1197 *real_type_found = 1;
1198 result = value_enclosing_type (value);
1206 error_value_optimized_out (void)
1208 error (_("value has been optimized out"));
1212 require_not_optimized_out (const struct value *value)
1214 if (!value->optimized_out.empty ())
1216 if (value->lval == lval_register)
1217 error (_("register has not been saved in frame"));
1219 error_value_optimized_out ();
1224 require_available (const struct value *value)
1226 if (!value->unavailable.empty ())
1227 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1231 value_contents_for_printing (struct value *value)
1234 value_fetch_lazy (value);
1235 return value->contents.get ();
1239 value_contents_for_printing_const (const struct value *value)
1241 gdb_assert (!value->lazy);
1242 return value->contents.get ();
1246 value_contents_all (struct value *value)
1248 const gdb_byte *result = value_contents_for_printing (value);
1249 require_not_optimized_out (value);
1250 require_available (value);
1254 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1255 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1258 ranges_copy_adjusted (std::vector<range> *dst_range, int dst_bit_offset,
1259 const std::vector<range> &src_range, int src_bit_offset,
1262 for (const range &r : src_range)
1266 l = std::max (r.offset, (LONGEST) src_bit_offset);
1267 h = std::min (r.offset + r.length,
1268 (LONGEST) src_bit_offset + bit_length);
1271 insert_into_bit_range_vector (dst_range,
1272 dst_bit_offset + (l - src_bit_offset),
1277 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1278 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1281 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1282 const struct value *src, int src_bit_offset,
1285 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1286 src->unavailable, src_bit_offset,
1288 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1289 src->optimized_out, src_bit_offset,
1293 /* Copy LENGTH target addressable memory units of SRC value's (all) contents
1294 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1295 contents, starting at DST_OFFSET. If unavailable contents are
1296 being copied from SRC, the corresponding DST contents are marked
1297 unavailable accordingly. Neither DST nor SRC may be lazy
1300 It is assumed the contents of DST in the [DST_OFFSET,
1301 DST_OFFSET+LENGTH) range are wholly available. */
1304 value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1305 struct value *src, LONGEST src_offset, LONGEST length)
1307 LONGEST src_bit_offset, dst_bit_offset, bit_length;
1308 struct gdbarch *arch = get_value_arch (src);
1309 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1311 /* A lazy DST would make that this copy operation useless, since as
1312 soon as DST's contents were un-lazied (by a later value_contents
1313 call, say), the contents would be overwritten. A lazy SRC would
1314 mean we'd be copying garbage. */
1315 gdb_assert (!dst->lazy && !src->lazy);
1317 /* The overwritten DST range gets unavailability ORed in, not
1318 replaced. Make sure to remember to implement replacing if it
1319 turns out actually necessary. */
1320 gdb_assert (value_bytes_available (dst, dst_offset, length));
1321 gdb_assert (!value_bits_any_optimized_out (dst,
1322 TARGET_CHAR_BIT * dst_offset,
1323 TARGET_CHAR_BIT * length));
1325 /* Copy the data. */
1326 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1327 value_contents_all_raw (src) + src_offset * unit_size,
1328 length * unit_size);
1330 /* Copy the meta-data, adjusted. */
1331 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1332 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1333 bit_length = length * unit_size * HOST_CHAR_BIT;
1335 value_ranges_copy_adjusted (dst, dst_bit_offset,
1336 src, src_bit_offset,
1340 /* Copy LENGTH bytes of SRC value's (all) contents
1341 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1342 (all) contents, starting at DST_OFFSET. If unavailable contents
1343 are being copied from SRC, the corresponding DST contents are
1344 marked unavailable accordingly. DST must not be lazy. If SRC is
1345 lazy, it will be fetched now.
1347 It is assumed the contents of DST in the [DST_OFFSET,
1348 DST_OFFSET+LENGTH) range are wholly available. */
1351 value_contents_copy (struct value *dst, LONGEST dst_offset,
1352 struct value *src, LONGEST src_offset, LONGEST length)
1355 value_fetch_lazy (src);
1357 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1361 value_lazy (const struct value *value)
1367 set_value_lazy (struct value *value, int val)
1373 value_stack (const struct value *value)
1375 return value->stack;
1379 set_value_stack (struct value *value, int val)
1385 value_contents (struct value *value)
1387 const gdb_byte *result = value_contents_writeable (value);
1388 require_not_optimized_out (value);
1389 require_available (value);
1394 value_contents_writeable (struct value *value)
1397 value_fetch_lazy (value);
1398 return value_contents_raw (value);
1402 value_optimized_out (struct value *value)
1404 /* We can only know if a value is optimized out once we have tried to
1406 if (value->optimized_out.empty () && value->lazy)
1410 value_fetch_lazy (value);
1412 CATCH (ex, RETURN_MASK_ERROR)
1414 /* Fall back to checking value->optimized_out. */
1419 return !value->optimized_out.empty ();
1422 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1423 the following LENGTH bytes. */
1426 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1428 mark_value_bits_optimized_out (value,
1429 offset * TARGET_CHAR_BIT,
1430 length * TARGET_CHAR_BIT);
1436 mark_value_bits_optimized_out (struct value *value,
1437 LONGEST offset, LONGEST length)
1439 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1443 value_bits_synthetic_pointer (const struct value *value,
1444 LONGEST offset, LONGEST length)
1446 if (value->lval != lval_computed
1447 || !value->location.computed.funcs->check_synthetic_pointer)
1449 return value->location.computed.funcs->check_synthetic_pointer (value,
1455 value_embedded_offset (const struct value *value)
1457 return value->embedded_offset;
1461 set_value_embedded_offset (struct value *value, LONGEST val)
1463 value->embedded_offset = val;
1467 value_pointed_to_offset (const struct value *value)
1469 return value->pointed_to_offset;
1473 set_value_pointed_to_offset (struct value *value, LONGEST val)
1475 value->pointed_to_offset = val;
1478 const struct lval_funcs *
1479 value_computed_funcs (const struct value *v)
1481 gdb_assert (value_lval_const (v) == lval_computed);
1483 return v->location.computed.funcs;
1487 value_computed_closure (const struct value *v)
1489 gdb_assert (v->lval == lval_computed);
1491 return v->location.computed.closure;
1495 deprecated_value_lval_hack (struct value *value)
1497 return &value->lval;
1501 value_lval_const (const struct value *value)
1507 value_address (const struct value *value)
1509 if (value->lval != lval_memory)
1511 if (value->parent != NULL)
1512 return value_address (value->parent.get ()) + value->offset;
1513 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1515 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1516 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1519 return value->location.address + value->offset;
1523 value_raw_address (const struct value *value)
1525 if (value->lval != lval_memory)
1527 return value->location.address;
1531 set_value_address (struct value *value, CORE_ADDR addr)
1533 gdb_assert (value->lval == lval_memory);
1534 value->location.address = addr;
1537 struct internalvar **
1538 deprecated_value_internalvar_hack (struct value *value)
1540 return &value->location.internalvar;
1544 deprecated_value_next_frame_id_hack (struct value *value)
1546 gdb_assert (value->lval == lval_register);
1547 return &value->location.reg.next_frame_id;
1551 deprecated_value_regnum_hack (struct value *value)
1553 gdb_assert (value->lval == lval_register);
1554 return &value->location.reg.regnum;
1558 deprecated_value_modifiable (const struct value *value)
1560 return value->modifiable;
1563 /* Return a mark in the value chain. All values allocated after the
1564 mark is obtained (except for those released) are subject to being freed
1565 if a subsequent value_free_to_mark is passed the mark. */
1569 if (all_values.empty ())
1571 return all_values.back ().get ();
1577 value_incref (struct value *val)
1579 val->reference_count++;
1582 /* Release a reference to VAL, which was acquired with value_incref.
1583 This function is also called to deallocate values from the value
1587 value_decref (struct value *val)
1591 gdb_assert (val->reference_count > 0);
1592 val->reference_count--;
1593 if (val->reference_count == 0)
1598 /* Free all values allocated since MARK was obtained by value_mark
1599 (except for those released). */
1601 value_free_to_mark (const struct value *mark)
1603 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1604 if (iter == all_values.end ())
1605 all_values.clear ();
1607 all_values.erase (iter + 1, all_values.end ());
1610 /* Remove VAL from the chain all_values
1611 so it will not be freed automatically. */
1614 release_value (struct value *val)
1617 return value_ref_ptr ();
1619 std::vector<value_ref_ptr>::reverse_iterator iter;
1620 for (iter = all_values.rbegin (); iter != all_values.rend (); ++iter)
1624 value_ref_ptr result = *iter;
1625 all_values.erase (iter.base () - 1);
1630 /* We must always return an owned reference. Normally this happens
1631 because we transfer the reference from the value chain, but in
1632 this case the value was not on the chain. */
1633 return value_ref_ptr::new_reference (val);
1638 std::vector<value_ref_ptr>
1639 value_release_to_mark (const struct value *mark)
1641 std::vector<value_ref_ptr> result;
1643 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1644 if (iter == all_values.end ())
1645 std::swap (result, all_values);
1648 std::move (iter + 1, all_values.end (), std::back_inserter (result));
1649 all_values.erase (iter + 1, all_values.end ());
1651 std::reverse (result.begin (), result.end ());
1655 /* Return a copy of the value ARG.
1656 It contains the same contents, for same memory address,
1657 but it's a different block of storage. */
1660 value_copy (struct value *arg)
1662 struct type *encl_type = value_enclosing_type (arg);
1665 if (value_lazy (arg))
1666 val = allocate_value_lazy (encl_type);
1668 val = allocate_value (encl_type);
1669 val->type = arg->type;
1670 VALUE_LVAL (val) = VALUE_LVAL (arg);
1671 val->location = arg->location;
1672 val->offset = arg->offset;
1673 val->bitpos = arg->bitpos;
1674 val->bitsize = arg->bitsize;
1675 val->lazy = arg->lazy;
1676 val->embedded_offset = value_embedded_offset (arg);
1677 val->pointed_to_offset = arg->pointed_to_offset;
1678 val->modifiable = arg->modifiable;
1679 if (!value_lazy (val))
1681 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1682 TYPE_LENGTH (value_enclosing_type (arg)));
1685 val->unavailable = arg->unavailable;
1686 val->optimized_out = arg->optimized_out;
1687 val->parent = arg->parent;
1688 if (VALUE_LVAL (val) == lval_computed)
1690 const struct lval_funcs *funcs = val->location.computed.funcs;
1692 if (funcs->copy_closure)
1693 val->location.computed.closure = funcs->copy_closure (val);
1698 /* Return a "const" and/or "volatile" qualified version of the value V.
1699 If CNST is true, then the returned value will be qualified with
1701 if VOLTL is true, then the returned value will be qualified with
1705 make_cv_value (int cnst, int voltl, struct value *v)
1707 struct type *val_type = value_type (v);
1708 struct type *enclosing_type = value_enclosing_type (v);
1709 struct value *cv_val = value_copy (v);
1711 deprecated_set_value_type (cv_val,
1712 make_cv_type (cnst, voltl, val_type, NULL));
1713 set_value_enclosing_type (cv_val,
1714 make_cv_type (cnst, voltl, enclosing_type, NULL));
1719 /* Return a version of ARG that is non-lvalue. */
1722 value_non_lval (struct value *arg)
1724 if (VALUE_LVAL (arg) != not_lval)
1726 struct type *enc_type = value_enclosing_type (arg);
1727 struct value *val = allocate_value (enc_type);
1729 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1730 TYPE_LENGTH (enc_type));
1731 val->type = arg->type;
1732 set_value_embedded_offset (val, value_embedded_offset (arg));
1733 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1739 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1742 value_force_lval (struct value *v, CORE_ADDR addr)
1744 gdb_assert (VALUE_LVAL (v) == not_lval);
1746 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1747 v->lval = lval_memory;
1748 v->location.address = addr;
1752 set_value_component_location (struct value *component,
1753 const struct value *whole)
1757 gdb_assert (whole->lval != lval_xcallable);
1759 if (whole->lval == lval_internalvar)
1760 VALUE_LVAL (component) = lval_internalvar_component;
1762 VALUE_LVAL (component) = whole->lval;
1764 component->location = whole->location;
1765 if (whole->lval == lval_computed)
1767 const struct lval_funcs *funcs = whole->location.computed.funcs;
1769 if (funcs->copy_closure)
1770 component->location.computed.closure = funcs->copy_closure (whole);
1773 /* If type has a dynamic resolved location property
1774 update it's value address. */
1775 type = value_type (whole);
1776 if (NULL != TYPE_DATA_LOCATION (type)
1777 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1778 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1781 /* Access to the value history. */
1783 /* Record a new value in the value history.
1784 Returns the absolute history index of the entry. */
1787 record_latest_value (struct value *val)
1789 /* We don't want this value to have anything to do with the inferior anymore.
1790 In particular, "set $1 = 50" should not affect the variable from which
1791 the value was taken, and fast watchpoints should be able to assume that
1792 a value on the value history never changes. */
1793 if (value_lazy (val))
1794 value_fetch_lazy (val);
1795 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1796 from. This is a bit dubious, because then *&$1 does not just return $1
1797 but the current contents of that location. c'est la vie... */
1798 val->modifiable = 0;
1800 value_history.push_back (release_value (val));
1802 return value_history.size ();
1805 /* Return a copy of the value in the history with sequence number NUM. */
1808 access_value_history (int num)
1813 absnum += value_history.size ();
1818 error (_("The history is empty."));
1820 error (_("There is only one value in the history."));
1822 error (_("History does not go back to $$%d."), -num);
1824 if (absnum > value_history.size ())
1825 error (_("History has not yet reached $%d."), absnum);
1829 return value_copy (value_history[absnum].get ());
1833 show_values (const char *num_exp, int from_tty)
1841 /* "show values +" should print from the stored position.
1842 "show values <exp>" should print around value number <exp>. */
1843 if (num_exp[0] != '+' || num_exp[1] != '\0')
1844 num = parse_and_eval_long (num_exp) - 5;
1848 /* "show values" means print the last 10 values. */
1849 num = value_history.size () - 9;
1855 for (i = num; i < num + 10 && i <= value_history.size (); i++)
1857 struct value_print_options opts;
1859 val = access_value_history (i);
1860 printf_filtered (("$%d = "), i);
1861 get_user_print_options (&opts);
1862 value_print (val, gdb_stdout, &opts);
1863 printf_filtered (("\n"));
1866 /* The next "show values +" should start after what we just printed. */
1869 /* Hitting just return after this command should do the same thing as
1870 "show values +". If num_exp is null, this is unnecessary, since
1871 "show values +" is not useful after "show values". */
1872 if (from_tty && num_exp)
1873 set_repeat_arguments ("+");
1876 enum internalvar_kind
1878 /* The internal variable is empty. */
1881 /* The value of the internal variable is provided directly as
1882 a GDB value object. */
1885 /* A fresh value is computed via a call-back routine on every
1886 access to the internal variable. */
1887 INTERNALVAR_MAKE_VALUE,
1889 /* The internal variable holds a GDB internal convenience function. */
1890 INTERNALVAR_FUNCTION,
1892 /* The variable holds an integer value. */
1893 INTERNALVAR_INTEGER,
1895 /* The variable holds a GDB-provided string. */
1899 union internalvar_data
1901 /* A value object used with INTERNALVAR_VALUE. */
1902 struct value *value;
1904 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1907 /* The functions to call. */
1908 const struct internalvar_funcs *functions;
1910 /* The function's user-data. */
1914 /* The internal function used with INTERNALVAR_FUNCTION. */
1917 struct internal_function *function;
1918 /* True if this is the canonical name for the function. */
1922 /* An integer value used with INTERNALVAR_INTEGER. */
1925 /* If type is non-NULL, it will be used as the type to generate
1926 a value for this internal variable. If type is NULL, a default
1927 integer type for the architecture is used. */
1932 /* A string value used with INTERNALVAR_STRING. */
1936 /* Internal variables. These are variables within the debugger
1937 that hold values assigned by debugger commands.
1938 The user refers to them with a '$' prefix
1939 that does not appear in the variable names stored internally. */
1943 struct internalvar *next;
1946 /* We support various different kinds of content of an internal variable.
1947 enum internalvar_kind specifies the kind, and union internalvar_data
1948 provides the data associated with this particular kind. */
1950 enum internalvar_kind kind;
1952 union internalvar_data u;
1955 static struct internalvar *internalvars;
1957 /* If the variable does not already exist create it and give it the
1958 value given. If no value is given then the default is zero. */
1960 init_if_undefined_command (const char* args, int from_tty)
1962 struct internalvar* intvar;
1964 /* Parse the expression - this is taken from set_command(). */
1965 expression_up expr = parse_expression (args);
1967 /* Validate the expression.
1968 Was the expression an assignment?
1969 Or even an expression at all? */
1970 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1971 error (_("Init-if-undefined requires an assignment expression."));
1973 /* Extract the variable from the parsed expression.
1974 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1975 if (expr->elts[1].opcode != OP_INTERNALVAR)
1976 error (_("The first parameter to init-if-undefined "
1977 "should be a GDB variable."));
1978 intvar = expr->elts[2].internalvar;
1980 /* Only evaluate the expression if the lvalue is void.
1981 This may still fail if the expresssion is invalid. */
1982 if (intvar->kind == INTERNALVAR_VOID)
1983 evaluate_expression (expr.get ());
1987 /* Look up an internal variable with name NAME. NAME should not
1988 normally include a dollar sign.
1990 If the specified internal variable does not exist,
1991 the return value is NULL. */
1993 struct internalvar *
1994 lookup_only_internalvar (const char *name)
1996 struct internalvar *var;
1998 for (var = internalvars; var; var = var->next)
1999 if (strcmp (var->name, name) == 0)
2005 /* Complete NAME by comparing it to the names of internal
2009 complete_internalvar (completion_tracker &tracker, const char *name)
2011 struct internalvar *var;
2014 len = strlen (name);
2016 for (var = internalvars; var; var = var->next)
2017 if (strncmp (var->name, name, len) == 0)
2019 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name));
2021 tracker.add_completion (std::move (copy));
2025 /* Create an internal variable with name NAME and with a void value.
2026 NAME should not normally include a dollar sign. */
2028 struct internalvar *
2029 create_internalvar (const char *name)
2031 struct internalvar *var = XNEW (struct internalvar);
2033 var->name = concat (name, (char *)NULL);
2034 var->kind = INTERNALVAR_VOID;
2035 var->next = internalvars;
2040 /* Create an internal variable with name NAME and register FUN as the
2041 function that value_of_internalvar uses to create a value whenever
2042 this variable is referenced. NAME should not normally include a
2043 dollar sign. DATA is passed uninterpreted to FUN when it is
2044 called. CLEANUP, if not NULL, is called when the internal variable
2045 is destroyed. It is passed DATA as its only argument. */
2047 struct internalvar *
2048 create_internalvar_type_lazy (const char *name,
2049 const struct internalvar_funcs *funcs,
2052 struct internalvar *var = create_internalvar (name);
2054 var->kind = INTERNALVAR_MAKE_VALUE;
2055 var->u.make_value.functions = funcs;
2056 var->u.make_value.data = data;
2060 /* See documentation in value.h. */
2063 compile_internalvar_to_ax (struct internalvar *var,
2064 struct agent_expr *expr,
2065 struct axs_value *value)
2067 if (var->kind != INTERNALVAR_MAKE_VALUE
2068 || var->u.make_value.functions->compile_to_ax == NULL)
2071 var->u.make_value.functions->compile_to_ax (var, expr, value,
2072 var->u.make_value.data);
2076 /* Look up an internal variable with name NAME. NAME should not
2077 normally include a dollar sign.
2079 If the specified internal variable does not exist,
2080 one is created, with a void value. */
2082 struct internalvar *
2083 lookup_internalvar (const char *name)
2085 struct internalvar *var;
2087 var = lookup_only_internalvar (name);
2091 return create_internalvar (name);
2094 /* Return current value of internal variable VAR. For variables that
2095 are not inherently typed, use a value type appropriate for GDBARCH. */
2098 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2101 struct trace_state_variable *tsv;
2103 /* If there is a trace state variable of the same name, assume that
2104 is what we really want to see. */
2105 tsv = find_trace_state_variable (var->name);
2108 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2110 if (tsv->value_known)
2111 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2114 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2120 case INTERNALVAR_VOID:
2121 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2124 case INTERNALVAR_FUNCTION:
2125 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2128 case INTERNALVAR_INTEGER:
2129 if (!var->u.integer.type)
2130 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2131 var->u.integer.val);
2133 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2136 case INTERNALVAR_STRING:
2137 val = value_cstring (var->u.string, strlen (var->u.string),
2138 builtin_type (gdbarch)->builtin_char);
2141 case INTERNALVAR_VALUE:
2142 val = value_copy (var->u.value);
2143 if (value_lazy (val))
2144 value_fetch_lazy (val);
2147 case INTERNALVAR_MAKE_VALUE:
2148 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2149 var->u.make_value.data);
2153 internal_error (__FILE__, __LINE__, _("bad kind"));
2156 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2157 on this value go back to affect the original internal variable.
2159 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2160 no underlying modifyable state in the internal variable.
2162 Likewise, if the variable's value is a computed lvalue, we want
2163 references to it to produce another computed lvalue, where
2164 references and assignments actually operate through the
2165 computed value's functions.
2167 This means that internal variables with computed values
2168 behave a little differently from other internal variables:
2169 assignments to them don't just replace the previous value
2170 altogether. At the moment, this seems like the behavior we
2173 if (var->kind != INTERNALVAR_MAKE_VALUE
2174 && val->lval != lval_computed)
2176 VALUE_LVAL (val) = lval_internalvar;
2177 VALUE_INTERNALVAR (val) = var;
2184 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2186 if (var->kind == INTERNALVAR_INTEGER)
2188 *result = var->u.integer.val;
2192 if (var->kind == INTERNALVAR_VALUE)
2194 struct type *type = check_typedef (value_type (var->u.value));
2196 if (TYPE_CODE (type) == TYPE_CODE_INT)
2198 *result = value_as_long (var->u.value);
2207 get_internalvar_function (struct internalvar *var,
2208 struct internal_function **result)
2212 case INTERNALVAR_FUNCTION:
2213 *result = var->u.fn.function;
2222 set_internalvar_component (struct internalvar *var,
2223 LONGEST offset, LONGEST bitpos,
2224 LONGEST bitsize, struct value *newval)
2227 struct gdbarch *arch;
2232 case INTERNALVAR_VALUE:
2233 addr = value_contents_writeable (var->u.value);
2234 arch = get_value_arch (var->u.value);
2235 unit_size = gdbarch_addressable_memory_unit_size (arch);
2238 modify_field (value_type (var->u.value), addr + offset,
2239 value_as_long (newval), bitpos, bitsize);
2241 memcpy (addr + offset * unit_size, value_contents (newval),
2242 TYPE_LENGTH (value_type (newval)));
2246 /* We can never get a component of any other kind. */
2247 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2252 set_internalvar (struct internalvar *var, struct value *val)
2254 enum internalvar_kind new_kind;
2255 union internalvar_data new_data = { 0 };
2257 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2258 error (_("Cannot overwrite convenience function %s"), var->name);
2260 /* Prepare new contents. */
2261 switch (TYPE_CODE (check_typedef (value_type (val))))
2263 case TYPE_CODE_VOID:
2264 new_kind = INTERNALVAR_VOID;
2267 case TYPE_CODE_INTERNAL_FUNCTION:
2268 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2269 new_kind = INTERNALVAR_FUNCTION;
2270 get_internalvar_function (VALUE_INTERNALVAR (val),
2271 &new_data.fn.function);
2272 /* Copies created here are never canonical. */
2276 new_kind = INTERNALVAR_VALUE;
2277 new_data.value = value_copy (val);
2278 new_data.value->modifiable = 1;
2280 /* Force the value to be fetched from the target now, to avoid problems
2281 later when this internalvar is referenced and the target is gone or
2283 if (value_lazy (new_data.value))
2284 value_fetch_lazy (new_data.value);
2286 /* Release the value from the value chain to prevent it from being
2287 deleted by free_all_values. From here on this function should not
2288 call error () until new_data is installed into the var->u to avoid
2290 release_value (new_data.value).release ();
2292 /* Internal variables which are created from values with a dynamic
2293 location don't need the location property of the origin anymore.
2294 The resolved dynamic location is used prior then any other address
2295 when accessing the value.
2296 If we keep it, we would still refer to the origin value.
2297 Remove the location property in case it exist. */
2298 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2303 /* Clean up old contents. */
2304 clear_internalvar (var);
2307 var->kind = new_kind;
2309 /* End code which must not call error(). */
2313 set_internalvar_integer (struct internalvar *var, LONGEST l)
2315 /* Clean up old contents. */
2316 clear_internalvar (var);
2318 var->kind = INTERNALVAR_INTEGER;
2319 var->u.integer.type = NULL;
2320 var->u.integer.val = l;
2324 set_internalvar_string (struct internalvar *var, const char *string)
2326 /* Clean up old contents. */
2327 clear_internalvar (var);
2329 var->kind = INTERNALVAR_STRING;
2330 var->u.string = xstrdup (string);
2334 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2336 /* Clean up old contents. */
2337 clear_internalvar (var);
2339 var->kind = INTERNALVAR_FUNCTION;
2340 var->u.fn.function = f;
2341 var->u.fn.canonical = 1;
2342 /* Variables installed here are always the canonical version. */
2346 clear_internalvar (struct internalvar *var)
2348 /* Clean up old contents. */
2351 case INTERNALVAR_VALUE:
2352 value_decref (var->u.value);
2355 case INTERNALVAR_STRING:
2356 xfree (var->u.string);
2359 case INTERNALVAR_MAKE_VALUE:
2360 if (var->u.make_value.functions->destroy != NULL)
2361 var->u.make_value.functions->destroy (var->u.make_value.data);
2368 /* Reset to void kind. */
2369 var->kind = INTERNALVAR_VOID;
2373 internalvar_name (const struct internalvar *var)
2378 static struct internal_function *
2379 create_internal_function (const char *name,
2380 internal_function_fn handler, void *cookie)
2382 struct internal_function *ifn = XNEW (struct internal_function);
2384 ifn->name = xstrdup (name);
2385 ifn->handler = handler;
2386 ifn->cookie = cookie;
2391 value_internal_function_name (struct value *val)
2393 struct internal_function *ifn;
2396 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2397 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2398 gdb_assert (result);
2404 call_internal_function (struct gdbarch *gdbarch,
2405 const struct language_defn *language,
2406 struct value *func, int argc, struct value **argv)
2408 struct internal_function *ifn;
2411 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2412 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2413 gdb_assert (result);
2415 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2418 /* The 'function' command. This does nothing -- it is just a
2419 placeholder to let "help function NAME" work. This is also used as
2420 the implementation of the sub-command that is created when
2421 registering an internal function. */
2423 function_command (const char *command, int from_tty)
2428 /* Clean up if an internal function's command is destroyed. */
2430 function_destroyer (struct cmd_list_element *self, void *ignore)
2432 xfree ((char *) self->name);
2433 xfree ((char *) self->doc);
2436 /* Add a new internal function. NAME is the name of the function; DOC
2437 is a documentation string describing the function. HANDLER is
2438 called when the function is invoked. COOKIE is an arbitrary
2439 pointer which is passed to HANDLER and is intended for "user
2442 add_internal_function (const char *name, const char *doc,
2443 internal_function_fn handler, void *cookie)
2445 struct cmd_list_element *cmd;
2446 struct internal_function *ifn;
2447 struct internalvar *var = lookup_internalvar (name);
2449 ifn = create_internal_function (name, handler, cookie);
2450 set_internalvar_function (var, ifn);
2452 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2454 cmd->destroyer = function_destroyer;
2457 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2458 prevent cycles / duplicates. */
2461 preserve_one_value (struct value *value, struct objfile *objfile,
2462 htab_t copied_types)
2464 if (TYPE_OBJFILE (value->type) == objfile)
2465 value->type = copy_type_recursive (objfile, value->type, copied_types);
2467 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2468 value->enclosing_type = copy_type_recursive (objfile,
2469 value->enclosing_type,
2473 /* Likewise for internal variable VAR. */
2476 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2477 htab_t copied_types)
2481 case INTERNALVAR_INTEGER:
2482 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2484 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2487 case INTERNALVAR_VALUE:
2488 preserve_one_value (var->u.value, objfile, copied_types);
2493 /* Update the internal variables and value history when OBJFILE is
2494 discarded; we must copy the types out of the objfile. New global types
2495 will be created for every convenience variable which currently points to
2496 this objfile's types, and the convenience variables will be adjusted to
2497 use the new global types. */
2500 preserve_values (struct objfile *objfile)
2502 htab_t copied_types;
2503 struct internalvar *var;
2505 /* Create the hash table. We allocate on the objfile's obstack, since
2506 it is soon to be deleted. */
2507 copied_types = create_copied_types_hash (objfile);
2509 for (const value_ref_ptr &item : value_history)
2510 preserve_one_value (item.get (), objfile, copied_types);
2512 for (var = internalvars; var; var = var->next)
2513 preserve_one_internalvar (var, objfile, copied_types);
2515 preserve_ext_lang_values (objfile, copied_types);
2517 htab_delete (copied_types);
2521 show_convenience (const char *ignore, int from_tty)
2523 struct gdbarch *gdbarch = get_current_arch ();
2524 struct internalvar *var;
2526 struct value_print_options opts;
2528 get_user_print_options (&opts);
2529 for (var = internalvars; var; var = var->next)
2536 printf_filtered (("$%s = "), var->name);
2542 val = value_of_internalvar (gdbarch, var);
2543 value_print (val, gdb_stdout, &opts);
2545 CATCH (ex, RETURN_MASK_ERROR)
2547 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2551 printf_filtered (("\n"));
2555 /* This text does not mention convenience functions on purpose.
2556 The user can't create them except via Python, and if Python support
2557 is installed this message will never be printed ($_streq will
2559 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2560 "Convenience variables have "
2561 "names starting with \"$\";\n"
2562 "use \"set\" as in \"set "
2563 "$foo = 5\" to define them.\n"));
2571 value_from_xmethod (xmethod_worker_up &&worker)
2575 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2576 v->lval = lval_xcallable;
2577 v->location.xm_worker = worker.release ();
2583 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2586 result_type_of_xmethod (struct value *method, gdb::array_view<value *> argv)
2588 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2589 && method->lval == lval_xcallable && !argv.empty ());
2591 return method->location.xm_worker->get_result_type (argv[0], argv.slice (1));
2594 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2597 call_xmethod (struct value *method, gdb::array_view<value *> argv)
2599 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2600 && method->lval == lval_xcallable && !argv.empty ());
2602 return method->location.xm_worker->invoke (argv[0], argv.slice (1));
2605 /* Extract a value as a C number (either long or double).
2606 Knows how to convert fixed values to double, or
2607 floating values to long.
2608 Does not deallocate the value. */
2611 value_as_long (struct value *val)
2613 /* This coerces arrays and functions, which is necessary (e.g.
2614 in disassemble_command). It also dereferences references, which
2615 I suspect is the most logical thing to do. */
2616 val = coerce_array (val);
2617 return unpack_long (value_type (val), value_contents (val));
2620 /* Extract a value as a C pointer. Does not deallocate the value.
2621 Note that val's type may not actually be a pointer; value_as_long
2622 handles all the cases. */
2624 value_as_address (struct value *val)
2626 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2628 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2629 whether we want this to be true eventually. */
2631 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2632 non-address (e.g. argument to "signal", "info break", etc.), or
2633 for pointers to char, in which the low bits *are* significant. */
2634 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2637 /* There are several targets (IA-64, PowerPC, and others) which
2638 don't represent pointers to functions as simply the address of
2639 the function's entry point. For example, on the IA-64, a
2640 function pointer points to a two-word descriptor, generated by
2641 the linker, which contains the function's entry point, and the
2642 value the IA-64 "global pointer" register should have --- to
2643 support position-independent code. The linker generates
2644 descriptors only for those functions whose addresses are taken.
2646 On such targets, it's difficult for GDB to convert an arbitrary
2647 function address into a function pointer; it has to either find
2648 an existing descriptor for that function, or call malloc and
2649 build its own. On some targets, it is impossible for GDB to
2650 build a descriptor at all: the descriptor must contain a jump
2651 instruction; data memory cannot be executed; and code memory
2654 Upon entry to this function, if VAL is a value of type `function'
2655 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2656 value_address (val) is the address of the function. This is what
2657 you'll get if you evaluate an expression like `main'. The call
2658 to COERCE_ARRAY below actually does all the usual unary
2659 conversions, which includes converting values of type `function'
2660 to `pointer to function'. This is the challenging conversion
2661 discussed above. Then, `unpack_long' will convert that pointer
2662 back into an address.
2664 So, suppose the user types `disassemble foo' on an architecture
2665 with a strange function pointer representation, on which GDB
2666 cannot build its own descriptors, and suppose further that `foo'
2667 has no linker-built descriptor. The address->pointer conversion
2668 will signal an error and prevent the command from running, even
2669 though the next step would have been to convert the pointer
2670 directly back into the same address.
2672 The following shortcut avoids this whole mess. If VAL is a
2673 function, just return its address directly. */
2674 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2675 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2676 return value_address (val);
2678 val = coerce_array (val);
2680 /* Some architectures (e.g. Harvard), map instruction and data
2681 addresses onto a single large unified address space. For
2682 instance: An architecture may consider a large integer in the
2683 range 0x10000000 .. 0x1000ffff to already represent a data
2684 addresses (hence not need a pointer to address conversion) while
2685 a small integer would still need to be converted integer to
2686 pointer to address. Just assume such architectures handle all
2687 integer conversions in a single function. */
2691 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2692 must admonish GDB hackers to make sure its behavior matches the
2693 compiler's, whenever possible.
2695 In general, I think GDB should evaluate expressions the same way
2696 the compiler does. When the user copies an expression out of
2697 their source code and hands it to a `print' command, they should
2698 get the same value the compiler would have computed. Any
2699 deviation from this rule can cause major confusion and annoyance,
2700 and needs to be justified carefully. In other words, GDB doesn't
2701 really have the freedom to do these conversions in clever and
2704 AndrewC pointed out that users aren't complaining about how GDB
2705 casts integers to pointers; they are complaining that they can't
2706 take an address from a disassembly listing and give it to `x/i'.
2707 This is certainly important.
2709 Adding an architecture method like integer_to_address() certainly
2710 makes it possible for GDB to "get it right" in all circumstances
2711 --- the target has complete control over how things get done, so
2712 people can Do The Right Thing for their target without breaking
2713 anyone else. The standard doesn't specify how integers get
2714 converted to pointers; usually, the ABI doesn't either, but
2715 ABI-specific code is a more reasonable place to handle it. */
2717 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2718 && !TYPE_IS_REFERENCE (value_type (val))
2719 && gdbarch_integer_to_address_p (gdbarch))
2720 return gdbarch_integer_to_address (gdbarch, value_type (val),
2721 value_contents (val));
2723 return unpack_long (value_type (val), value_contents (val));
2727 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2728 as a long, or as a double, assuming the raw data is described
2729 by type TYPE. Knows how to convert different sizes of values
2730 and can convert between fixed and floating point. We don't assume
2731 any alignment for the raw data. Return value is in host byte order.
2733 If you want functions and arrays to be coerced to pointers, and
2734 references to be dereferenced, call value_as_long() instead.
2736 C++: It is assumed that the front-end has taken care of
2737 all matters concerning pointers to members. A pointer
2738 to member which reaches here is considered to be equivalent
2739 to an INT (or some size). After all, it is only an offset. */
2742 unpack_long (struct type *type, const gdb_byte *valaddr)
2744 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2745 enum type_code code = TYPE_CODE (type);
2746 int len = TYPE_LENGTH (type);
2747 int nosign = TYPE_UNSIGNED (type);
2751 case TYPE_CODE_TYPEDEF:
2752 return unpack_long (check_typedef (type), valaddr);
2753 case TYPE_CODE_ENUM:
2754 case TYPE_CODE_FLAGS:
2755 case TYPE_CODE_BOOL:
2757 case TYPE_CODE_CHAR:
2758 case TYPE_CODE_RANGE:
2759 case TYPE_CODE_MEMBERPTR:
2761 return extract_unsigned_integer (valaddr, len, byte_order);
2763 return extract_signed_integer (valaddr, len, byte_order);
2766 case TYPE_CODE_DECFLOAT:
2767 return target_float_to_longest (valaddr, type);
2771 case TYPE_CODE_RVALUE_REF:
2772 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2773 whether we want this to be true eventually. */
2774 return extract_typed_address (valaddr, type);
2777 error (_("Value can't be converted to integer."));
2781 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2782 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2783 We don't assume any alignment for the raw data. Return value is in
2786 If you want functions and arrays to be coerced to pointers, and
2787 references to be dereferenced, call value_as_address() instead.
2789 C++: It is assumed that the front-end has taken care of
2790 all matters concerning pointers to members. A pointer
2791 to member which reaches here is considered to be equivalent
2792 to an INT (or some size). After all, it is only an offset. */
2795 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2797 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2798 whether we want this to be true eventually. */
2799 return unpack_long (type, valaddr);
2803 is_floating_value (struct value *val)
2805 struct type *type = check_typedef (value_type (val));
2807 if (is_floating_type (type))
2809 if (!target_float_is_valid (value_contents (val), type))
2810 error (_("Invalid floating value found in program."));
2818 /* Get the value of the FIELDNO'th field (which must be static) of
2822 value_static_field (struct type *type, int fieldno)
2824 struct value *retval;
2826 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2828 case FIELD_LOC_KIND_PHYSADDR:
2829 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2830 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2832 case FIELD_LOC_KIND_PHYSNAME:
2834 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2835 /* TYPE_FIELD_NAME (type, fieldno); */
2836 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2838 if (sym.symbol == NULL)
2840 /* With some compilers, e.g. HP aCC, static data members are
2841 reported as non-debuggable symbols. */
2842 struct bound_minimal_symbol msym
2843 = lookup_minimal_symbol (phys_name, NULL, NULL);
2844 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2847 retval = allocate_optimized_out_value (field_type);
2849 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
2852 retval = value_of_variable (sym.symbol, sym.block);
2856 gdb_assert_not_reached ("unexpected field location kind");
2862 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2863 You have to be careful here, since the size of the data area for the value
2864 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2865 than the old enclosing type, you have to allocate more space for the
2869 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2871 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2873 check_type_length_before_alloc (new_encl_type);
2875 .reset ((gdb_byte *) xrealloc (val->contents.release (),
2876 TYPE_LENGTH (new_encl_type)));
2879 val->enclosing_type = new_encl_type;
2882 /* Given a value ARG1 (offset by OFFSET bytes)
2883 of a struct or union type ARG_TYPE,
2884 extract and return the value of one of its (non-static) fields.
2885 FIELDNO says which field. */
2888 value_primitive_field (struct value *arg1, LONGEST offset,
2889 int fieldno, struct type *arg_type)
2893 struct gdbarch *arch = get_value_arch (arg1);
2894 int unit_size = gdbarch_addressable_memory_unit_size (arch);
2896 arg_type = check_typedef (arg_type);
2897 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2899 /* Call check_typedef on our type to make sure that, if TYPE
2900 is a TYPE_CODE_TYPEDEF, its length is set to the length
2901 of the target type instead of zero. However, we do not
2902 replace the typedef type by the target type, because we want
2903 to keep the typedef in order to be able to print the type
2904 description correctly. */
2905 check_typedef (type);
2907 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2909 /* Handle packed fields.
2911 Create a new value for the bitfield, with bitpos and bitsize
2912 set. If possible, arrange offset and bitpos so that we can
2913 do a single aligned read of the size of the containing type.
2914 Otherwise, adjust offset to the byte containing the first
2915 bit. Assume that the address, offset, and embedded offset
2916 are sufficiently aligned. */
2918 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2919 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
2921 v = allocate_value_lazy (type);
2922 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2923 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2924 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2925 v->bitpos = bitpos % container_bitsize;
2927 v->bitpos = bitpos % 8;
2928 v->offset = (value_embedded_offset (arg1)
2930 + (bitpos - v->bitpos) / 8);
2931 set_value_parent (v, arg1);
2932 if (!value_lazy (arg1))
2933 value_fetch_lazy (v);
2935 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2937 /* This field is actually a base subobject, so preserve the
2938 entire object's contents for later references to virtual
2942 /* Lazy register values with offsets are not supported. */
2943 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2944 value_fetch_lazy (arg1);
2946 /* We special case virtual inheritance here because this
2947 requires access to the contents, which we would rather avoid
2948 for references to ordinary fields of unavailable values. */
2949 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2950 boffset = baseclass_offset (arg_type, fieldno,
2951 value_contents (arg1),
2952 value_embedded_offset (arg1),
2953 value_address (arg1),
2956 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2958 if (value_lazy (arg1))
2959 v = allocate_value_lazy (value_enclosing_type (arg1));
2962 v = allocate_value (value_enclosing_type (arg1));
2963 value_contents_copy_raw (v, 0, arg1, 0,
2964 TYPE_LENGTH (value_enclosing_type (arg1)));
2967 v->offset = value_offset (arg1);
2968 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2970 else if (NULL != TYPE_DATA_LOCATION (type))
2972 /* Field is a dynamic data member. */
2974 gdb_assert (0 == offset);
2975 /* We expect an already resolved data location. */
2976 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
2977 /* For dynamic data types defer memory allocation
2978 until we actual access the value. */
2979 v = allocate_value_lazy (type);
2983 /* Plain old data member */
2984 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
2985 / (HOST_CHAR_BIT * unit_size));
2987 /* Lazy register values with offsets are not supported. */
2988 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2989 value_fetch_lazy (arg1);
2991 if (value_lazy (arg1))
2992 v = allocate_value_lazy (type);
2995 v = allocate_value (type);
2996 value_contents_copy_raw (v, value_embedded_offset (v),
2997 arg1, value_embedded_offset (arg1) + offset,
2998 type_length_units (type));
3000 v->offset = (value_offset (arg1) + offset
3001 + value_embedded_offset (arg1));
3003 set_value_component_location (v, arg1);
3007 /* Given a value ARG1 of a struct or union type,
3008 extract and return the value of one of its (non-static) fields.
3009 FIELDNO says which field. */
3012 value_field (struct value *arg1, int fieldno)
3014 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3017 /* Return a non-virtual function as a value.
3018 F is the list of member functions which contains the desired method.
3019 J is an index into F which provides the desired method.
3021 We only use the symbol for its address, so be happy with either a
3022 full symbol or a minimal symbol. */
3025 value_fn_field (struct value **arg1p, struct fn_field *f,
3026 int j, struct type *type,
3030 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3031 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3033 struct bound_minimal_symbol msym;
3035 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
3038 memset (&msym, 0, sizeof (msym));
3042 gdb_assert (sym == NULL);
3043 msym = lookup_bound_minimal_symbol (physname);
3044 if (msym.minsym == NULL)
3048 v = allocate_value (ftype);
3049 VALUE_LVAL (v) = lval_memory;
3052 set_value_address (v, BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)));
3056 /* The minimal symbol might point to a function descriptor;
3057 resolve it to the actual code address instead. */
3058 struct objfile *objfile = msym.objfile;
3059 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3061 set_value_address (v,
3062 gdbarch_convert_from_func_ptr_addr
3063 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), current_top_target ()));
3068 if (type != value_type (*arg1p))
3069 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3070 value_addr (*arg1p)));
3072 /* Move the `this' pointer according to the offset.
3073 VALUE_OFFSET (*arg1p) += offset; */
3081 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3082 VALADDR, and store the result in *RESULT.
3083 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
3084 BITSIZE is zero, then the length is taken from FIELD_TYPE.
3086 Extracting bits depends on endianness of the machine. Compute the
3087 number of least significant bits to discard. For big endian machines,
3088 we compute the total number of bits in the anonymous object, subtract
3089 off the bit count from the MSB of the object to the MSB of the
3090 bitfield, then the size of the bitfield, which leaves the LSB discard
3091 count. For little endian machines, the discard count is simply the
3092 number of bits from the LSB of the anonymous object to the LSB of the
3095 If the field is signed, we also do sign extension. */
3098 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3099 LONGEST bitpos, LONGEST bitsize)
3101 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3106 LONGEST read_offset;
3108 /* Read the minimum number of bytes required; there may not be
3109 enough bytes to read an entire ULONGEST. */
3110 field_type = check_typedef (field_type);
3112 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3115 bytes_read = TYPE_LENGTH (field_type);
3116 bitsize = 8 * bytes_read;
3119 read_offset = bitpos / 8;
3121 val = extract_unsigned_integer (valaddr + read_offset,
3122 bytes_read, byte_order);
3124 /* Extract bits. See comment above. */
3126 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3127 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3129 lsbcount = (bitpos % 8);
3132 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3133 If the field is signed, and is negative, then sign extend. */
3135 if (bitsize < 8 * (int) sizeof (val))
3137 valmask = (((ULONGEST) 1) << bitsize) - 1;
3139 if (!TYPE_UNSIGNED (field_type))
3141 if (val & (valmask ^ (valmask >> 1)))
3151 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3152 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3153 ORIGINAL_VALUE, which must not be NULL. See
3154 unpack_value_bits_as_long for more details. */
3157 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3158 LONGEST embedded_offset, int fieldno,
3159 const struct value *val, LONGEST *result)
3161 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3162 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3163 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3166 gdb_assert (val != NULL);
3168 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3169 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3170 || !value_bits_available (val, bit_offset, bitsize))
3173 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3178 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3179 object at VALADDR. See unpack_bits_as_long for more details. */
3182 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3184 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3185 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3186 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3188 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3191 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3192 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3193 the contents in DEST_VAL, zero or sign extending if the type of
3194 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3195 VAL. If the VAL's contents required to extract the bitfield from
3196 are unavailable/optimized out, DEST_VAL is correspondingly
3197 marked unavailable/optimized out. */
3200 unpack_value_bitfield (struct value *dest_val,
3201 LONGEST bitpos, LONGEST bitsize,
3202 const gdb_byte *valaddr, LONGEST embedded_offset,
3203 const struct value *val)
3205 enum bfd_endian byte_order;
3208 struct type *field_type = value_type (dest_val);
3210 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3212 /* First, unpack and sign extend the bitfield as if it was wholly
3213 valid. Optimized out/unavailable bits are read as zero, but
3214 that's OK, as they'll end up marked below. If the VAL is
3215 wholly-invalid we may have skipped allocating its contents,
3216 though. See allocate_optimized_out_value. */
3217 if (valaddr != NULL)
3221 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3223 store_signed_integer (value_contents_raw (dest_val),
3224 TYPE_LENGTH (field_type), byte_order, num);
3227 /* Now copy the optimized out / unavailability ranges to the right
3229 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3230 if (byte_order == BFD_ENDIAN_BIG)
3231 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3234 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3235 val, src_bit_offset, bitsize);
3238 /* Return a new value with type TYPE, which is FIELDNO field of the
3239 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3240 of VAL. If the VAL's contents required to extract the bitfield
3241 from are unavailable/optimized out, the new value is
3242 correspondingly marked unavailable/optimized out. */
3245 value_field_bitfield (struct type *type, int fieldno,
3246 const gdb_byte *valaddr,
3247 LONGEST embedded_offset, const struct value *val)
3249 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3250 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3251 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
3253 unpack_value_bitfield (res_val, bitpos, bitsize,
3254 valaddr, embedded_offset, val);
3259 /* Modify the value of a bitfield. ADDR points to a block of memory in
3260 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3261 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3262 indicate which bits (in target bit order) comprise the bitfield.
3263 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3264 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3267 modify_field (struct type *type, gdb_byte *addr,
3268 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
3270 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3272 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3275 /* Normalize BITPOS. */
3279 /* If a negative fieldval fits in the field in question, chop
3280 off the sign extension bits. */
3281 if ((~fieldval & ~(mask >> 1)) == 0)
3284 /* Warn if value is too big to fit in the field in question. */
3285 if (0 != (fieldval & ~mask))
3287 /* FIXME: would like to include fieldval in the message, but
3288 we don't have a sprintf_longest. */
3289 warning (_("Value does not fit in %s bits."), plongest (bitsize));
3291 /* Truncate it, otherwise adjoining fields may be corrupted. */
3295 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3296 false valgrind reports. */
3298 bytesize = (bitpos + bitsize + 7) / 8;
3299 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3301 /* Shifting for bit field depends on endianness of the target machine. */
3302 if (gdbarch_bits_big_endian (get_type_arch (type)))
3303 bitpos = bytesize * 8 - bitpos - bitsize;
3305 oword &= ~(mask << bitpos);
3306 oword |= fieldval << bitpos;
3308 store_unsigned_integer (addr, bytesize, byte_order, oword);
3311 /* Pack NUM into BUF using a target format of TYPE. */
3314 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3316 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3319 type = check_typedef (type);
3320 len = TYPE_LENGTH (type);
3322 switch (TYPE_CODE (type))
3325 case TYPE_CODE_CHAR:
3326 case TYPE_CODE_ENUM:
3327 case TYPE_CODE_FLAGS:
3328 case TYPE_CODE_BOOL:
3329 case TYPE_CODE_RANGE:
3330 case TYPE_CODE_MEMBERPTR:
3331 store_signed_integer (buf, len, byte_order, num);
3335 case TYPE_CODE_RVALUE_REF:
3337 store_typed_address (buf, type, (CORE_ADDR) num);
3341 case TYPE_CODE_DECFLOAT:
3342 target_float_from_longest (buf, type, num);
3346 error (_("Unexpected type (%d) encountered for integer constant."),
3352 /* Pack NUM into BUF using a target format of TYPE. */
3355 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3358 enum bfd_endian byte_order;
3360 type = check_typedef (type);
3361 len = TYPE_LENGTH (type);
3362 byte_order = gdbarch_byte_order (get_type_arch (type));
3364 switch (TYPE_CODE (type))
3367 case TYPE_CODE_CHAR:
3368 case TYPE_CODE_ENUM:
3369 case TYPE_CODE_FLAGS:
3370 case TYPE_CODE_BOOL:
3371 case TYPE_CODE_RANGE:
3372 case TYPE_CODE_MEMBERPTR:
3373 store_unsigned_integer (buf, len, byte_order, num);
3377 case TYPE_CODE_RVALUE_REF:
3379 store_typed_address (buf, type, (CORE_ADDR) num);
3383 case TYPE_CODE_DECFLOAT:
3384 target_float_from_ulongest (buf, type, num);
3388 error (_("Unexpected type (%d) encountered "
3389 "for unsigned integer constant."),
3395 /* Convert C numbers into newly allocated values. */
3398 value_from_longest (struct type *type, LONGEST num)
3400 struct value *val = allocate_value (type);
3402 pack_long (value_contents_raw (val), type, num);
3407 /* Convert C unsigned numbers into newly allocated values. */
3410 value_from_ulongest (struct type *type, ULONGEST num)
3412 struct value *val = allocate_value (type);
3414 pack_unsigned_long (value_contents_raw (val), type, num);
3420 /* Create a value representing a pointer of type TYPE to the address
3424 value_from_pointer (struct type *type, CORE_ADDR addr)
3426 struct value *val = allocate_value (type);
3428 store_typed_address (value_contents_raw (val),
3429 check_typedef (type), addr);
3434 /* Create a value of type TYPE whose contents come from VALADDR, if it
3435 is non-null, and whose memory address (in the inferior) is
3436 ADDRESS. The type of the created value may differ from the passed
3437 type TYPE. Make sure to retrieve values new type after this call.
3438 Note that TYPE is not passed through resolve_dynamic_type; this is
3439 a special API intended for use only by Ada. */
3442 value_from_contents_and_address_unresolved (struct type *type,
3443 const gdb_byte *valaddr,
3448 if (valaddr == NULL)
3449 v = allocate_value_lazy (type);
3451 v = value_from_contents (type, valaddr);
3452 VALUE_LVAL (v) = lval_memory;
3453 set_value_address (v, address);
3457 /* Create a value of type TYPE whose contents come from VALADDR, if it
3458 is non-null, and whose memory address (in the inferior) is
3459 ADDRESS. The type of the created value may differ from the passed
3460 type TYPE. Make sure to retrieve values new type after this call. */
3463 value_from_contents_and_address (struct type *type,
3464 const gdb_byte *valaddr,
3467 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
3468 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3471 if (valaddr == NULL)
3472 v = allocate_value_lazy (resolved_type);
3474 v = value_from_contents (resolved_type, valaddr);
3475 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3476 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3477 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3478 VALUE_LVAL (v) = lval_memory;
3479 set_value_address (v, address);
3483 /* Create a value of type TYPE holding the contents CONTENTS.
3484 The new value is `not_lval'. */
3487 value_from_contents (struct type *type, const gdb_byte *contents)
3489 struct value *result;
3491 result = allocate_value (type);
3492 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3496 /* Extract a value from the history file. Input will be of the form
3497 $digits or $$digits. See block comment above 'write_dollar_variable'
3501 value_from_history_ref (const char *h, const char **endp)
3513 /* Find length of numeral string. */
3514 for (; isdigit (h[len]); len++)
3517 /* Make sure numeral string is not part of an identifier. */
3518 if (h[len] == '_' || isalpha (h[len]))
3521 /* Now collect the index value. */
3526 /* For some bizarre reason, "$$" is equivalent to "$$1",
3527 rather than to "$$0" as it ought to be! */
3535 index = -strtol (&h[2], &local_end, 10);
3543 /* "$" is equivalent to "$0". */
3551 index = strtol (&h[1], &local_end, 10);
3556 return access_value_history (index);
3559 /* Get the component value (offset by OFFSET bytes) of a struct or
3560 union WHOLE. Component's type is TYPE. */
3563 value_from_component (struct value *whole, struct type *type, LONGEST offset)
3567 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3568 v = allocate_value_lazy (type);
3571 v = allocate_value (type);
3572 value_contents_copy (v, value_embedded_offset (v),
3573 whole, value_embedded_offset (whole) + offset,
3574 type_length_units (type));
3576 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3577 set_value_component_location (v, whole);
3583 coerce_ref_if_computed (const struct value *arg)
3585 const struct lval_funcs *funcs;
3587 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
3590 if (value_lval_const (arg) != lval_computed)
3593 funcs = value_computed_funcs (arg);
3594 if (funcs->coerce_ref == NULL)
3597 return funcs->coerce_ref (arg);
3600 /* Look at value.h for description. */
3603 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3604 const struct type *original_type,
3605 const struct value *original_value)
3607 /* Re-adjust type. */
3608 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3610 /* Add embedding info. */
3611 set_value_enclosing_type (value, enc_type);
3612 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3614 /* We may be pointing to an object of some derived type. */
3615 return value_full_object (value, NULL, 0, 0, 0);
3619 coerce_ref (struct value *arg)
3621 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3622 struct value *retval;
3623 struct type *enc_type;
3625 retval = coerce_ref_if_computed (arg);
3629 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
3632 enc_type = check_typedef (value_enclosing_type (arg));
3633 enc_type = TYPE_TARGET_TYPE (enc_type);
3635 retval = value_at_lazy (enc_type,
3636 unpack_pointer (value_type (arg),
3637 value_contents (arg)));
3638 enc_type = value_type (retval);
3639 return readjust_indirect_value_type (retval, enc_type,
3640 value_type_arg_tmp, arg);
3644 coerce_array (struct value *arg)
3648 arg = coerce_ref (arg);
3649 type = check_typedef (value_type (arg));
3651 switch (TYPE_CODE (type))
3653 case TYPE_CODE_ARRAY:
3654 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3655 arg = value_coerce_array (arg);
3657 case TYPE_CODE_FUNC:
3658 arg = value_coerce_function (arg);
3665 /* Return the return value convention that will be used for the
3668 enum return_value_convention
3669 struct_return_convention (struct gdbarch *gdbarch,
3670 struct value *function, struct type *value_type)
3672 enum type_code code = TYPE_CODE (value_type);
3674 if (code == TYPE_CODE_ERROR)
3675 error (_("Function return type unknown."));
3677 /* Probe the architecture for the return-value convention. */
3678 return gdbarch_return_value (gdbarch, function, value_type,
3682 /* Return true if the function returning the specified type is using
3683 the convention of returning structures in memory (passing in the
3684 address as a hidden first parameter). */
3687 using_struct_return (struct gdbarch *gdbarch,
3688 struct value *function, struct type *value_type)
3690 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3691 /* A void return value is never in memory. See also corresponding
3692 code in "print_return_value". */
3695 return (struct_return_convention (gdbarch, function, value_type)
3696 != RETURN_VALUE_REGISTER_CONVENTION);
3699 /* Set the initialized field in a value struct. */
3702 set_value_initialized (struct value *val, int status)
3704 val->initialized = status;
3707 /* Return the initialized field in a value struct. */
3710 value_initialized (const struct value *val)
3712 return val->initialized;
3715 /* Helper for value_fetch_lazy when the value is a bitfield. */
3718 value_fetch_lazy_bitfield (struct value *val)
3720 gdb_assert (value_bitsize (val) != 0);
3722 /* To read a lazy bitfield, read the entire enclosing value. This
3723 prevents reading the same block of (possibly volatile) memory once
3724 per bitfield. It would be even better to read only the containing
3725 word, but we have no way to record that just specific bits of a
3726 value have been fetched. */
3727 struct value *parent = value_parent (val);
3729 if (value_lazy (parent))
3730 value_fetch_lazy (parent);
3732 unpack_value_bitfield (val, value_bitpos (val), value_bitsize (val),
3733 value_contents_for_printing (parent),
3734 value_offset (val), parent);
3737 /* Helper for value_fetch_lazy when the value is in memory. */
3740 value_fetch_lazy_memory (struct value *val)
3742 gdb_assert (VALUE_LVAL (val) == lval_memory);
3744 CORE_ADDR addr = value_address (val);
3745 struct type *type = check_typedef (value_enclosing_type (val));
3747 if (TYPE_LENGTH (type))
3748 read_value_memory (val, 0, value_stack (val),
3749 addr, value_contents_all_raw (val),
3750 type_length_units (type));
3753 /* Helper for value_fetch_lazy when the value is in a register. */
3756 value_fetch_lazy_register (struct value *val)
3758 struct frame_info *next_frame;
3760 struct type *type = check_typedef (value_type (val));
3761 struct value *new_val = val, *mark = value_mark ();
3763 /* Offsets are not supported here; lazy register values must
3764 refer to the entire register. */
3765 gdb_assert (value_offset (val) == 0);
3767 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3769 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
3771 next_frame = frame_find_by_id (next_frame_id);
3772 regnum = VALUE_REGNUM (new_val);
3774 gdb_assert (next_frame != NULL);
3776 /* Convertible register routines are used for multi-register
3777 values and for interpretation in different types
3778 (e.g. float or int from a double register). Lazy
3779 register values should have the register's natural type,
3780 so they do not apply. */
3781 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
3784 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3785 Since a "->next" operation was performed when setting
3786 this field, we do not need to perform a "next" operation
3787 again when unwinding the register. That's why
3788 frame_unwind_register_value() is called here instead of
3789 get_frame_register_value(). */
3790 new_val = frame_unwind_register_value (next_frame, regnum);
3792 /* If we get another lazy lval_register value, it means the
3793 register is found by reading it from NEXT_FRAME's next frame.
3794 frame_unwind_register_value should never return a value with
3795 the frame id pointing to NEXT_FRAME. If it does, it means we
3796 either have two consecutive frames with the same frame id
3797 in the frame chain, or some code is trying to unwind
3798 behind get_prev_frame's back (e.g., a frame unwind
3799 sniffer trying to unwind), bypassing its validations. In
3800 any case, it should always be an internal error to end up
3801 in this situation. */
3802 if (VALUE_LVAL (new_val) == lval_register
3803 && value_lazy (new_val)
3804 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
3805 internal_error (__FILE__, __LINE__,
3806 _("infinite loop while fetching a register"));
3809 /* If it's still lazy (for instance, a saved register on the
3810 stack), fetch it. */
3811 if (value_lazy (new_val))
3812 value_fetch_lazy (new_val);
3814 /* Copy the contents and the unavailability/optimized-out
3815 meta-data from NEW_VAL to VAL. */
3816 set_value_lazy (val, 0);
3817 value_contents_copy (val, value_embedded_offset (val),
3818 new_val, value_embedded_offset (new_val),
3819 type_length_units (type));
3823 struct gdbarch *gdbarch;
3824 struct frame_info *frame;
3825 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3826 so that the frame level will be shown correctly. */
3827 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3828 regnum = VALUE_REGNUM (val);
3829 gdbarch = get_frame_arch (frame);
3831 fprintf_unfiltered (gdb_stdlog,
3832 "{ value_fetch_lazy "
3833 "(frame=%d,regnum=%d(%s),...) ",
3834 frame_relative_level (frame), regnum,
3835 user_reg_map_regnum_to_name (gdbarch, regnum));
3837 fprintf_unfiltered (gdb_stdlog, "->");
3838 if (value_optimized_out (new_val))
3840 fprintf_unfiltered (gdb_stdlog, " ");
3841 val_print_optimized_out (new_val, gdb_stdlog);
3846 const gdb_byte *buf = value_contents (new_val);
3848 if (VALUE_LVAL (new_val) == lval_register)
3849 fprintf_unfiltered (gdb_stdlog, " register=%d",
3850 VALUE_REGNUM (new_val));
3851 else if (VALUE_LVAL (new_val) == lval_memory)
3852 fprintf_unfiltered (gdb_stdlog, " address=%s",
3854 value_address (new_val)));
3856 fprintf_unfiltered (gdb_stdlog, " computed");
3858 fprintf_unfiltered (gdb_stdlog, " bytes=");
3859 fprintf_unfiltered (gdb_stdlog, "[");
3860 for (i = 0; i < register_size (gdbarch, regnum); i++)
3861 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3862 fprintf_unfiltered (gdb_stdlog, "]");
3865 fprintf_unfiltered (gdb_stdlog, " }\n");
3868 /* Dispose of the intermediate values. This prevents
3869 watchpoints from trying to watch the saved frame pointer. */
3870 value_free_to_mark (mark);
3873 /* Load the actual content of a lazy value. Fetch the data from the
3874 user's process and clear the lazy flag to indicate that the data in
3875 the buffer is valid.
3877 If the value is zero-length, we avoid calling read_memory, which
3878 would abort. We mark the value as fetched anyway -- all 0 bytes of
3882 value_fetch_lazy (struct value *val)
3884 gdb_assert (value_lazy (val));
3885 allocate_value_contents (val);
3886 /* A value is either lazy, or fully fetched. The
3887 availability/validity is only established as we try to fetch a
3889 gdb_assert (val->optimized_out.empty ());
3890 gdb_assert (val->unavailable.empty ());
3891 if (value_bitsize (val))
3892 value_fetch_lazy_bitfield (val);
3893 else if (VALUE_LVAL (val) == lval_memory)
3894 value_fetch_lazy_memory (val);
3895 else if (VALUE_LVAL (val) == lval_register)
3896 value_fetch_lazy_register (val);
3897 else if (VALUE_LVAL (val) == lval_computed
3898 && value_computed_funcs (val)->read != NULL)
3899 value_computed_funcs (val)->read (val);
3901 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3903 set_value_lazy (val, 0);
3906 /* Implementation of the convenience function $_isvoid. */
3908 static struct value *
3909 isvoid_internal_fn (struct gdbarch *gdbarch,
3910 const struct language_defn *language,
3911 void *cookie, int argc, struct value **argv)
3916 error (_("You must provide one argument for $_isvoid."));
3918 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3920 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3927 /* Test the ranges_contain function. */
3930 test_ranges_contain ()
3932 std::vector<range> ranges;
3938 ranges.push_back (r);
3943 ranges.push_back (r);
3946 SELF_CHECK (!ranges_contain (ranges, 2, 5));
3948 SELF_CHECK (ranges_contain (ranges, 9, 5));
3950 SELF_CHECK (ranges_contain (ranges, 10, 2));
3952 SELF_CHECK (ranges_contain (ranges, 10, 5));
3954 SELF_CHECK (ranges_contain (ranges, 13, 6));
3956 SELF_CHECK (ranges_contain (ranges, 14, 5));
3958 SELF_CHECK (!ranges_contain (ranges, 15, 4));
3960 SELF_CHECK (!ranges_contain (ranges, 16, 4));
3962 SELF_CHECK (ranges_contain (ranges, 16, 6));
3964 SELF_CHECK (ranges_contain (ranges, 21, 1));
3966 SELF_CHECK (ranges_contain (ranges, 21, 5));
3968 SELF_CHECK (!ranges_contain (ranges, 26, 3));
3971 /* Check that RANGES contains the same ranges as EXPECTED. */
3974 check_ranges_vector (gdb::array_view<const range> ranges,
3975 gdb::array_view<const range> expected)
3977 return ranges == expected;
3980 /* Test the insert_into_bit_range_vector function. */
3983 test_insert_into_bit_range_vector ()
3985 std::vector<range> ranges;
3989 insert_into_bit_range_vector (&ranges, 10, 5);
3990 static const range expected[] = {
3993 SELF_CHECK (check_ranges_vector (ranges, expected));
3998 insert_into_bit_range_vector (&ranges, 11, 4);
3999 static const range expected = {10, 5};
4000 SELF_CHECK (check_ranges_vector (ranges, expected));
4003 /* [10, 14] [20, 24] */
4005 insert_into_bit_range_vector (&ranges, 20, 5);
4006 static const range expected[] = {
4010 SELF_CHECK (check_ranges_vector (ranges, expected));
4013 /* [10, 14] [17, 24] */
4015 insert_into_bit_range_vector (&ranges, 17, 5);
4016 static const range expected[] = {
4020 SELF_CHECK (check_ranges_vector (ranges, expected));
4023 /* [2, 8] [10, 14] [17, 24] */
4025 insert_into_bit_range_vector (&ranges, 2, 7);
4026 static const range expected[] = {
4031 SELF_CHECK (check_ranges_vector (ranges, expected));
4034 /* [2, 14] [17, 24] */
4036 insert_into_bit_range_vector (&ranges, 9, 1);
4037 static const range expected[] = {
4041 SELF_CHECK (check_ranges_vector (ranges, expected));
4044 /* [2, 14] [17, 24] */
4046 insert_into_bit_range_vector (&ranges, 9, 1);
4047 static const range expected[] = {
4051 SELF_CHECK (check_ranges_vector (ranges, expected));
4056 insert_into_bit_range_vector (&ranges, 4, 30);
4057 static const range expected = {2, 32};
4058 SELF_CHECK (check_ranges_vector (ranges, expected));
4062 } /* namespace selftests */
4063 #endif /* GDB_SELF_TEST */
4066 _initialize_values (void)
4068 add_cmd ("convenience", no_class, show_convenience, _("\
4069 Debugger convenience (\"$foo\") variables and functions.\n\
4070 Convenience variables are created when you assign them values;\n\
4071 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
4073 A few convenience variables are given values automatically:\n\
4074 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
4075 \"$__\" holds the contents of the last address examined with \"x\"."
4078 Convenience functions are defined via the Python API."
4081 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
4083 add_cmd ("values", no_set_class, show_values, _("\
4084 Elements of value history around item number IDX (or last ten)."),
4087 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4088 Initialize a convenience variable if necessary.\n\
4089 init-if-undefined VARIABLE = EXPRESSION\n\
4090 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4091 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4092 VARIABLE is already initialized."));
4094 add_prefix_cmd ("function", no_class, function_command, _("\
4095 Placeholder command for showing help on convenience functions."),
4096 &functionlist, "function ", 0, &cmdlist);
4098 add_internal_function ("_isvoid", _("\
4099 Check whether an expression is void.\n\
4100 Usage: $_isvoid (expression)\n\
4101 Return 1 if the expression is void, zero otherwise."),
4102 isvoid_internal_fn, NULL);
4104 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4105 class_support, &max_value_size, _("\
4106 Set maximum sized value gdb will load from the inferior."), _("\
4107 Show maximum sized value gdb will load from the inferior."), _("\
4108 Use this to control the maximum size, in bytes, of a value that gdb\n\
4109 will load from the inferior. Setting this value to 'unlimited'\n\
4110 disables checking.\n\
4111 Setting this does not invalidate already allocated values, it only\n\
4112 prevents future values, larger than this size, from being allocated."),
4114 show_max_value_size,
4115 &setlist, &showlist);
4117 selftests::register_test ("ranges_contain", selftests::test_ranges_contain);
4118 selftests::register_test ("insert_into_bit_range_vector",
4119 selftests::test_insert_into_bit_range_vector);