1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "arch-utils.h"
22 #include "gdb_string.h"
33 #include "gdb_assert.h"
39 #include "cli/cli-decode.h"
40 #include "exceptions.h"
41 #include "python/python.h"
43 #include "tracepoint.h"
45 #include "user-regs.h"
47 /* Prototypes for exported functions. */
49 void _initialize_values (void);
51 /* Definition of a user function. */
52 struct internal_function
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
60 internal_function_fn handler;
62 /* User data for the handler. */
66 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
70 /* Lowest offset in the range. */
73 /* Length of the range. */
77 typedef struct range range_s;
81 /* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
85 ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
95 /* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
101 range_lessthan (const range_s *r1, const range_s *r2)
103 return r1->offset < r2->offset;
106 /* Returns true if RANGES contains any range that overlaps [OFFSET,
110 ranges_contain (VEC(range_s) *ranges, int offset, int length)
115 what.offset = offset;
116 what.length = length;
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
128 |---| |---| |------| ... |--|
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
138 Then we need to check if the I range overlaps the I range itself.
143 |---| |---| |-------| ... |--|
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
159 if (i < VEC_length (range_s, ranges))
161 struct range *r = VEC_index (range_s, ranges, i);
163 if (ranges_overlap (r->offset, r->length, offset, length))
170 static struct cmd_list_element *functionlist;
172 /* Note that the fields in this structure are arranged to save a bit
177 /* Type of value; either not an lval, or one of the various
178 different possible kinds of lval. */
181 /* Is it modifiable? Only relevant if lval != not_lval. */
182 unsigned int modifiable : 1;
184 /* If zero, contents of this value are in the contents field. If
185 nonzero, contents are in inferior. If the lval field is lval_memory,
186 the contents are in inferior memory at location.address plus offset.
187 The lval field may also be lval_register.
189 WARNING: This field is used by the code which handles watchpoints
190 (see breakpoint.c) to decide whether a particular value can be
191 watched by hardware watchpoints. If the lazy flag is set for
192 some member of a value chain, it is assumed that this member of
193 the chain doesn't need to be watched as part of watching the
194 value itself. This is how GDB avoids watching the entire struct
195 or array when the user wants to watch a single struct member or
196 array element. If you ever change the way lazy flag is set and
197 reset, be sure to consider this use as well! */
198 unsigned int lazy : 1;
200 /* If nonzero, this is the value of a variable which does not
201 actually exist in the program. */
202 unsigned int optimized_out : 1;
204 /* If value is a variable, is it initialized or not. */
205 unsigned int initialized : 1;
207 /* If value is from the stack. If this is set, read_stack will be
208 used instead of read_memory to enable extra caching. */
209 unsigned int stack : 1;
211 /* If the value has been released. */
212 unsigned int released : 1;
214 /* Location of value (if lval). */
217 /* If lval == lval_memory, this is the address in the inferior.
218 If lval == lval_register, this is the byte offset into the
219 registers structure. */
222 /* Pointer to internal variable. */
223 struct internalvar *internalvar;
225 /* If lval == lval_computed, this is a set of function pointers
226 to use to access and describe the value, and a closure pointer
230 /* Functions to call. */
231 const struct lval_funcs *funcs;
233 /* Closure for those functions to use. */
238 /* Describes offset of a value within lval of a structure in bytes.
239 If lval == lval_memory, this is an offset to the address. If
240 lval == lval_register, this is a further offset from
241 location.address within the registers structure. Note also the
242 member embedded_offset below. */
245 /* Only used for bitfields; number of bits contained in them. */
248 /* Only used for bitfields; position of start of field. For
249 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
250 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
253 /* The number of references to this value. When a value is created,
254 the value chain holds a reference, so REFERENCE_COUNT is 1. If
255 release_value is called, this value is removed from the chain but
256 the caller of release_value now has a reference to this value.
257 The caller must arrange for a call to value_free later. */
260 /* Only used for bitfields; the containing value. This allows a
261 single read from the target when displaying multiple
263 struct value *parent;
265 /* Frame register value is relative to. This will be described in
266 the lval enum above as "lval_register". */
267 struct frame_id frame_id;
269 /* Type of the value. */
272 /* If a value represents a C++ object, then the `type' field gives
273 the object's compile-time type. If the object actually belongs
274 to some class derived from `type', perhaps with other base
275 classes and additional members, then `type' is just a subobject
276 of the real thing, and the full object is probably larger than
277 `type' would suggest.
279 If `type' is a dynamic class (i.e. one with a vtable), then GDB
280 can actually determine the object's run-time type by looking at
281 the run-time type information in the vtable. When this
282 information is available, we may elect to read in the entire
283 object, for several reasons:
285 - When printing the value, the user would probably rather see the
286 full object, not just the limited portion apparent from the
289 - If `type' has virtual base classes, then even printing `type'
290 alone may require reaching outside the `type' portion of the
291 object to wherever the virtual base class has been stored.
293 When we store the entire object, `enclosing_type' is the run-time
294 type -- the complete object -- and `embedded_offset' is the
295 offset of `type' within that larger type, in bytes. The
296 value_contents() macro takes `embedded_offset' into account, so
297 most GDB code continues to see the `type' portion of the value,
298 just as the inferior would.
300 If `type' is a pointer to an object, then `enclosing_type' is a
301 pointer to the object's run-time type, and `pointed_to_offset' is
302 the offset in bytes from the full object to the pointed-to object
303 -- that is, the value `embedded_offset' would have if we followed
304 the pointer and fetched the complete object. (I don't really see
305 the point. Why not just determine the run-time type when you
306 indirect, and avoid the special case? The contents don't matter
307 until you indirect anyway.)
309 If we're not doing anything fancy, `enclosing_type' is equal to
310 `type', and `embedded_offset' is zero, so everything works
312 struct type *enclosing_type;
314 int pointed_to_offset;
316 /* Values are stored in a chain, so that they can be deleted easily
317 over calls to the inferior. Values assigned to internal
318 variables, put into the value history or exposed to Python are
319 taken off this list. */
322 /* Register number if the value is from a register. */
325 /* Actual contents of the value. Target byte-order. NULL or not
326 valid if lazy is nonzero. */
329 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
330 rather than available, since the common and default case is for a
331 value to be available. This is filled in at value read time. */
332 VEC(range_s) *unavailable;
336 value_bytes_available (const struct value *value, int offset, int length)
338 gdb_assert (!value->lazy);
340 return !ranges_contain (value->unavailable, offset, length);
344 value_entirely_available (struct value *value)
346 /* We can only tell whether the whole value is available when we try
349 value_fetch_lazy (value);
351 if (VEC_empty (range_s, value->unavailable))
357 mark_value_bytes_unavailable (struct value *value, int offset, int length)
362 /* Insert the range sorted. If there's overlap or the new range
363 would be contiguous with an existing range, merge. */
365 newr.offset = offset;
366 newr.length = length;
368 /* Do a binary search for the position the given range would be
369 inserted if we only considered the starting OFFSET of ranges.
370 Call that position I. Since we also have LENGTH to care for
371 (this is a range afterall), we need to check if the _previous_
372 range overlaps the I range. E.g., calling R the new range:
374 #1 - overlaps with previous
378 |---| |---| |------| ... |--|
383 In the case #1 above, the binary search would return `I=1',
384 meaning, this OFFSET should be inserted at position 1, and the
385 current position 1 should be pushed further (and become 2). But,
386 note that `0' overlaps with R, so we want to merge them.
388 A similar consideration needs to be taken if the new range would
389 be contiguous with the previous range:
391 #2 - contiguous with previous
395 |--| |---| |------| ... |--|
400 If there's no overlap with the previous range, as in:
402 #3 - not overlapping and not contiguous
406 |--| |---| |------| ... |--|
413 #4 - R is the range with lowest offset
417 |--| |---| |------| ... |--|
422 ... we just push the new range to I.
424 All the 4 cases above need to consider that the new range may
425 also overlap several of the ranges that follow, or that R may be
426 contiguous with the following range, and merge. E.g.,
428 #5 - overlapping following ranges
431 |------------------------|
432 |--| |---| |------| ... |--|
441 |--| |---| |------| ... |--|
448 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
451 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
453 if (ranges_overlap (bef->offset, bef->length, offset, length))
456 ULONGEST l = min (bef->offset, offset);
457 ULONGEST h = max (bef->offset + bef->length, offset + length);
463 else if (offset == bef->offset + bef->length)
466 bef->length += length;
472 VEC_safe_insert (range_s, value->unavailable, i, &newr);
478 VEC_safe_insert (range_s, value->unavailable, i, &newr);
481 /* Check whether the ranges following the one we've just added or
482 touched can be folded in (#5 above). */
483 if (i + 1 < VEC_length (range_s, value->unavailable))
490 /* Get the range we just touched. */
491 t = VEC_index (range_s, value->unavailable, i);
495 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
496 if (r->offset <= t->offset + t->length)
500 l = min (t->offset, r->offset);
501 h = max (t->offset + t->length, r->offset + r->length);
510 /* If we couldn't merge this one, we won't be able to
511 merge following ones either, since the ranges are
512 always sorted by OFFSET. */
517 VEC_block_remove (range_s, value->unavailable, next, removed);
521 /* Find the first range in RANGES that overlaps the range defined by
522 OFFSET and LENGTH, starting at element POS in the RANGES vector,
523 Returns the index into RANGES where such overlapping range was
524 found, or -1 if none was found. */
527 find_first_range_overlap (VEC(range_s) *ranges, int pos,
528 int offset, int length)
533 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
534 if (ranges_overlap (r->offset, r->length, offset, length))
541 value_available_contents_eq (const struct value *val1, int offset1,
542 const struct value *val2, int offset2,
545 int idx1 = 0, idx2 = 0;
547 /* See function description in value.h. */
548 gdb_assert (!val1->lazy && !val2->lazy);
556 idx1 = find_first_range_overlap (val1->unavailable, idx1,
558 idx2 = find_first_range_overlap (val2->unavailable, idx2,
561 /* The usual case is for both values to be completely available. */
562 if (idx1 == -1 && idx2 == -1)
563 return (memcmp (val1->contents + offset1,
564 val2->contents + offset2,
566 /* The contents only match equal if the available set matches as
568 else if (idx1 == -1 || idx2 == -1)
571 gdb_assert (idx1 != -1 && idx2 != -1);
573 r1 = VEC_index (range_s, val1->unavailable, idx1);
574 r2 = VEC_index (range_s, val2->unavailable, idx2);
576 /* Get the unavailable windows intersected by the incoming
577 ranges. The first and last ranges that overlap the argument
578 range may be wider than said incoming arguments ranges. */
579 l1 = max (offset1, r1->offset);
580 h1 = min (offset1 + length, r1->offset + r1->length);
582 l2 = max (offset2, r2->offset);
583 h2 = min (offset2 + length, r2->offset + r2->length);
585 /* Make them relative to the respective start offsets, so we can
586 compare them for equality. */
593 /* Different availability, no match. */
594 if (l1 != l2 || h1 != h2)
597 /* Compare the _available_ contents. */
598 if (memcmp (val1->contents + offset1,
599 val2->contents + offset2,
611 /* Prototypes for local functions. */
613 static void show_values (char *, int);
615 static void show_convenience (char *, int);
618 /* The value-history records all the values printed
619 by print commands during this session. Each chunk
620 records 60 consecutive values. The first chunk on
621 the chain records the most recent values.
622 The total number of values is in value_history_count. */
624 #define VALUE_HISTORY_CHUNK 60
626 struct value_history_chunk
628 struct value_history_chunk *next;
629 struct value *values[VALUE_HISTORY_CHUNK];
632 /* Chain of chunks now in use. */
634 static struct value_history_chunk *value_history_chain;
636 static int value_history_count; /* Abs number of last entry stored. */
639 /* List of all value objects currently allocated
640 (except for those released by calls to release_value)
641 This is so they can be freed after each command. */
643 static struct value *all_values;
645 /* Allocate a lazy value for type TYPE. Its actual content is
646 "lazily" allocated too: the content field of the return value is
647 NULL; it will be allocated when it is fetched from the target. */
650 allocate_value_lazy (struct type *type)
654 /* Call check_typedef on our type to make sure that, if TYPE
655 is a TYPE_CODE_TYPEDEF, its length is set to the length
656 of the target type instead of zero. However, we do not
657 replace the typedef type by the target type, because we want
658 to keep the typedef in order to be able to set the VAL's type
659 description correctly. */
660 check_typedef (type);
662 val = (struct value *) xzalloc (sizeof (struct value));
663 val->contents = NULL;
664 val->next = all_values;
667 val->enclosing_type = type;
668 VALUE_LVAL (val) = not_lval;
669 val->location.address = 0;
670 VALUE_FRAME_ID (val) = null_frame_id;
674 VALUE_REGNUM (val) = -1;
676 val->optimized_out = 0;
677 val->embedded_offset = 0;
678 val->pointed_to_offset = 0;
680 val->initialized = 1; /* Default to initialized. */
682 /* Values start out on the all_values chain. */
683 val->reference_count = 1;
688 /* Allocate the contents of VAL if it has not been allocated yet. */
691 allocate_value_contents (struct value *val)
694 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
697 /* Allocate a value and its contents for type TYPE. */
700 allocate_value (struct type *type)
702 struct value *val = allocate_value_lazy (type);
704 allocate_value_contents (val);
709 /* Allocate a value that has the correct length
710 for COUNT repetitions of type TYPE. */
713 allocate_repeat_value (struct type *type, int count)
715 int low_bound = current_language->string_lower_bound; /* ??? */
716 /* FIXME-type-allocation: need a way to free this type when we are
718 struct type *array_type
719 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
721 return allocate_value (array_type);
725 allocate_computed_value (struct type *type,
726 const struct lval_funcs *funcs,
729 struct value *v = allocate_value_lazy (type);
731 VALUE_LVAL (v) = lval_computed;
732 v->location.computed.funcs = funcs;
733 v->location.computed.closure = closure;
738 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
741 allocate_optimized_out_value (struct type *type)
743 struct value *retval = allocate_value_lazy (type);
745 set_value_optimized_out (retval, 1);
750 /* Accessor methods. */
753 value_next (struct value *value)
759 value_type (const struct value *value)
764 deprecated_set_value_type (struct value *value, struct type *type)
770 value_offset (const struct value *value)
772 return value->offset;
775 set_value_offset (struct value *value, int offset)
777 value->offset = offset;
781 value_bitpos (const struct value *value)
783 return value->bitpos;
786 set_value_bitpos (struct value *value, int bit)
792 value_bitsize (const struct value *value)
794 return value->bitsize;
797 set_value_bitsize (struct value *value, int bit)
799 value->bitsize = bit;
803 value_parent (struct value *value)
805 return value->parent;
811 set_value_parent (struct value *value, struct value *parent)
813 struct value *old = value->parent;
815 value->parent = parent;
817 value_incref (parent);
822 value_contents_raw (struct value *value)
824 allocate_value_contents (value);
825 return value->contents + value->embedded_offset;
829 value_contents_all_raw (struct value *value)
831 allocate_value_contents (value);
832 return value->contents;
836 value_enclosing_type (struct value *value)
838 return value->enclosing_type;
841 /* Look at value.h for description. */
844 value_actual_type (struct value *value, int resolve_simple_types,
845 int *real_type_found)
847 struct value_print_options opts;
850 get_user_print_options (&opts);
853 *real_type_found = 0;
854 result = value_type (value);
855 if (opts.objectprint)
857 /* If result's target type is TYPE_CODE_STRUCT, proceed to
858 fetch its rtti type. */
859 if ((TYPE_CODE (result) == TYPE_CODE_PTR
860 || TYPE_CODE (result) == TYPE_CODE_REF)
861 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
864 struct type *real_type;
866 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
870 *real_type_found = 1;
874 else if (resolve_simple_types)
877 *real_type_found = 1;
878 result = value_enclosing_type (value);
886 require_not_optimized_out (const struct value *value)
888 if (value->optimized_out)
889 error (_("value has been optimized out"));
893 require_available (const struct value *value)
895 if (!VEC_empty (range_s, value->unavailable))
896 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
900 value_contents_for_printing (struct value *value)
903 value_fetch_lazy (value);
904 return value->contents;
908 value_contents_for_printing_const (const struct value *value)
910 gdb_assert (!value->lazy);
911 return value->contents;
915 value_contents_all (struct value *value)
917 const gdb_byte *result = value_contents_for_printing (value);
918 require_not_optimized_out (value);
919 require_available (value);
923 /* Copy LENGTH bytes of SRC value's (all) contents
924 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
925 contents, starting at DST_OFFSET. If unavailable contents are
926 being copied from SRC, the corresponding DST contents are marked
927 unavailable accordingly. Neither DST nor SRC may be lazy
930 It is assumed the contents of DST in the [DST_OFFSET,
931 DST_OFFSET+LENGTH) range are wholly available. */
934 value_contents_copy_raw (struct value *dst, int dst_offset,
935 struct value *src, int src_offset, int length)
940 /* A lazy DST would make that this copy operation useless, since as
941 soon as DST's contents were un-lazied (by a later value_contents
942 call, say), the contents would be overwritten. A lazy SRC would
943 mean we'd be copying garbage. */
944 gdb_assert (!dst->lazy && !src->lazy);
946 /* The overwritten DST range gets unavailability ORed in, not
947 replaced. Make sure to remember to implement replacing if it
948 turns out actually necessary. */
949 gdb_assert (value_bytes_available (dst, dst_offset, length));
952 memcpy (value_contents_all_raw (dst) + dst_offset,
953 value_contents_all_raw (src) + src_offset,
956 /* Copy the meta-data, adjusted. */
957 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
961 l = max (r->offset, src_offset);
962 h = min (r->offset + r->length, src_offset + length);
965 mark_value_bytes_unavailable (dst,
966 dst_offset + (l - src_offset),
971 /* Copy LENGTH bytes of SRC value's (all) contents
972 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
973 (all) contents, starting at DST_OFFSET. If unavailable contents
974 are being copied from SRC, the corresponding DST contents are
975 marked unavailable accordingly. DST must not be lazy. If SRC is
976 lazy, it will be fetched now. If SRC is not valid (is optimized
977 out), an error is thrown.
979 It is assumed the contents of DST in the [DST_OFFSET,
980 DST_OFFSET+LENGTH) range are wholly available. */
983 value_contents_copy (struct value *dst, int dst_offset,
984 struct value *src, int src_offset, int length)
986 require_not_optimized_out (src);
989 value_fetch_lazy (src);
991 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
995 value_lazy (struct value *value)
1001 set_value_lazy (struct value *value, int val)
1007 value_stack (struct value *value)
1009 return value->stack;
1013 set_value_stack (struct value *value, int val)
1019 value_contents (struct value *value)
1021 const gdb_byte *result = value_contents_writeable (value);
1022 require_not_optimized_out (value);
1023 require_available (value);
1028 value_contents_writeable (struct value *value)
1031 value_fetch_lazy (value);
1032 return value_contents_raw (value);
1035 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1036 this function is different from value_equal; in C the operator ==
1037 can return 0 even if the two values being compared are equal. */
1040 value_contents_equal (struct value *val1, struct value *val2)
1045 type1 = check_typedef (value_type (val1));
1046 type2 = check_typedef (value_type (val2));
1047 if (TYPE_LENGTH (type1) != TYPE_LENGTH (type2))
1050 return (memcmp (value_contents (val1), value_contents (val2),
1051 TYPE_LENGTH (type1)) == 0);
1055 value_optimized_out (struct value *value)
1057 /* We can only know if a value is optimized out once we have tried to
1059 if (!value->optimized_out && value->lazy)
1060 value_fetch_lazy (value);
1062 return value->optimized_out;
1066 value_optimized_out_const (const struct value *value)
1068 return value->optimized_out;
1072 set_value_optimized_out (struct value *value, int val)
1074 value->optimized_out = val;
1078 value_entirely_optimized_out (const struct value *value)
1080 if (!value->optimized_out)
1082 if (value->lval != lval_computed
1083 || !value->location.computed.funcs->check_any_valid)
1085 return !value->location.computed.funcs->check_any_valid (value);
1089 value_bits_valid (const struct value *value, int offset, int length)
1091 if (!value->optimized_out)
1093 if (value->lval != lval_computed
1094 || !value->location.computed.funcs->check_validity)
1096 return value->location.computed.funcs->check_validity (value, offset,
1101 value_bits_synthetic_pointer (const struct value *value,
1102 int offset, int length)
1104 if (value->lval != lval_computed
1105 || !value->location.computed.funcs->check_synthetic_pointer)
1107 return value->location.computed.funcs->check_synthetic_pointer (value,
1113 value_embedded_offset (struct value *value)
1115 return value->embedded_offset;
1119 set_value_embedded_offset (struct value *value, int val)
1121 value->embedded_offset = val;
1125 value_pointed_to_offset (struct value *value)
1127 return value->pointed_to_offset;
1131 set_value_pointed_to_offset (struct value *value, int val)
1133 value->pointed_to_offset = val;
1136 const struct lval_funcs *
1137 value_computed_funcs (const struct value *v)
1139 gdb_assert (value_lval_const (v) == lval_computed);
1141 return v->location.computed.funcs;
1145 value_computed_closure (const struct value *v)
1147 gdb_assert (v->lval == lval_computed);
1149 return v->location.computed.closure;
1153 deprecated_value_lval_hack (struct value *value)
1155 return &value->lval;
1159 value_lval_const (const struct value *value)
1165 value_address (const struct value *value)
1167 if (value->lval == lval_internalvar
1168 || value->lval == lval_internalvar_component)
1170 if (value->parent != NULL)
1171 return value_address (value->parent) + value->offset;
1173 return value->location.address + value->offset;
1177 value_raw_address (struct value *value)
1179 if (value->lval == lval_internalvar
1180 || value->lval == lval_internalvar_component)
1182 return value->location.address;
1186 set_value_address (struct value *value, CORE_ADDR addr)
1188 gdb_assert (value->lval != lval_internalvar
1189 && value->lval != lval_internalvar_component);
1190 value->location.address = addr;
1193 struct internalvar **
1194 deprecated_value_internalvar_hack (struct value *value)
1196 return &value->location.internalvar;
1200 deprecated_value_frame_id_hack (struct value *value)
1202 return &value->frame_id;
1206 deprecated_value_regnum_hack (struct value *value)
1208 return &value->regnum;
1212 deprecated_value_modifiable (struct value *value)
1214 return value->modifiable;
1217 /* Return a mark in the value chain. All values allocated after the
1218 mark is obtained (except for those released) are subject to being freed
1219 if a subsequent value_free_to_mark is passed the mark. */
1226 /* Take a reference to VAL. VAL will not be deallocated until all
1227 references are released. */
1230 value_incref (struct value *val)
1232 val->reference_count++;
1235 /* Release a reference to VAL, which was acquired with value_incref.
1236 This function is also called to deallocate values from the value
1240 value_free (struct value *val)
1244 gdb_assert (val->reference_count > 0);
1245 val->reference_count--;
1246 if (val->reference_count > 0)
1249 /* If there's an associated parent value, drop our reference to
1251 if (val->parent != NULL)
1252 value_free (val->parent);
1254 if (VALUE_LVAL (val) == lval_computed)
1256 const struct lval_funcs *funcs = val->location.computed.funcs;
1258 if (funcs->free_closure)
1259 funcs->free_closure (val);
1262 xfree (val->contents);
1263 VEC_free (range_s, val->unavailable);
1268 /* Free all values allocated since MARK was obtained by value_mark
1269 (except for those released). */
1271 value_free_to_mark (struct value *mark)
1276 for (val = all_values; val && val != mark; val = next)
1285 /* Free all the values that have been allocated (except for those released).
1286 Call after each command, successful or not.
1287 In practice this is called before each command, which is sufficient. */
1290 free_all_values (void)
1295 for (val = all_values; val; val = next)
1305 /* Frees all the elements in a chain of values. */
1308 free_value_chain (struct value *v)
1314 next = value_next (v);
1319 /* Remove VAL from the chain all_values
1320 so it will not be freed automatically. */
1323 release_value (struct value *val)
1327 if (all_values == val)
1329 all_values = val->next;
1335 for (v = all_values; v; v = v->next)
1339 v->next = val->next;
1347 /* If the value is not already released, release it.
1348 If the value is already released, increment its reference count.
1349 That is, this function ensures that the value is released from the
1350 value chain and that the caller owns a reference to it. */
1353 release_value_or_incref (struct value *val)
1358 release_value (val);
1361 /* Release all values up to mark */
1363 value_release_to_mark (struct value *mark)
1368 for (val = next = all_values; next; next = next->next)
1370 if (next->next == mark)
1372 all_values = next->next;
1382 /* Return a copy of the value ARG.
1383 It contains the same contents, for same memory address,
1384 but it's a different block of storage. */
1387 value_copy (struct value *arg)
1389 struct type *encl_type = value_enclosing_type (arg);
1392 if (value_lazy (arg))
1393 val = allocate_value_lazy (encl_type);
1395 val = allocate_value (encl_type);
1396 val->type = arg->type;
1397 VALUE_LVAL (val) = VALUE_LVAL (arg);
1398 val->location = arg->location;
1399 val->offset = arg->offset;
1400 val->bitpos = arg->bitpos;
1401 val->bitsize = arg->bitsize;
1402 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1403 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1404 val->lazy = arg->lazy;
1405 val->optimized_out = arg->optimized_out;
1406 val->embedded_offset = value_embedded_offset (arg);
1407 val->pointed_to_offset = arg->pointed_to_offset;
1408 val->modifiable = arg->modifiable;
1409 if (!value_lazy (val))
1411 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1412 TYPE_LENGTH (value_enclosing_type (arg)));
1415 val->unavailable = VEC_copy (range_s, arg->unavailable);
1416 set_value_parent (val, arg->parent);
1417 if (VALUE_LVAL (val) == lval_computed)
1419 const struct lval_funcs *funcs = val->location.computed.funcs;
1421 if (funcs->copy_closure)
1422 val->location.computed.closure = funcs->copy_closure (val);
1427 /* Return a version of ARG that is non-lvalue. */
1430 value_non_lval (struct value *arg)
1432 if (VALUE_LVAL (arg) != not_lval)
1434 struct type *enc_type = value_enclosing_type (arg);
1435 struct value *val = allocate_value (enc_type);
1437 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1438 TYPE_LENGTH (enc_type));
1439 val->type = arg->type;
1440 set_value_embedded_offset (val, value_embedded_offset (arg));
1441 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1448 set_value_component_location (struct value *component,
1449 const struct value *whole)
1451 if (whole->lval == lval_internalvar)
1452 VALUE_LVAL (component) = lval_internalvar_component;
1454 VALUE_LVAL (component) = whole->lval;
1456 component->location = whole->location;
1457 if (whole->lval == lval_computed)
1459 const struct lval_funcs *funcs = whole->location.computed.funcs;
1461 if (funcs->copy_closure)
1462 component->location.computed.closure = funcs->copy_closure (whole);
1467 /* Access to the value history. */
1469 /* Record a new value in the value history.
1470 Returns the absolute history index of the entry.
1471 Result of -1 indicates the value was not saved; otherwise it is the
1472 value history index of this new item. */
1475 record_latest_value (struct value *val)
1479 /* We don't want this value to have anything to do with the inferior anymore.
1480 In particular, "set $1 = 50" should not affect the variable from which
1481 the value was taken, and fast watchpoints should be able to assume that
1482 a value on the value history never changes. */
1483 if (value_lazy (val))
1484 value_fetch_lazy (val);
1485 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1486 from. This is a bit dubious, because then *&$1 does not just return $1
1487 but the current contents of that location. c'est la vie... */
1488 val->modifiable = 0;
1489 release_value (val);
1491 /* Here we treat value_history_count as origin-zero
1492 and applying to the value being stored now. */
1494 i = value_history_count % VALUE_HISTORY_CHUNK;
1497 struct value_history_chunk *new
1498 = (struct value_history_chunk *)
1500 xmalloc (sizeof (struct value_history_chunk));
1501 memset (new->values, 0, sizeof new->values);
1502 new->next = value_history_chain;
1503 value_history_chain = new;
1506 value_history_chain->values[i] = val;
1508 /* Now we regard value_history_count as origin-one
1509 and applying to the value just stored. */
1511 return ++value_history_count;
1514 /* Return a copy of the value in the history with sequence number NUM. */
1517 access_value_history (int num)
1519 struct value_history_chunk *chunk;
1524 absnum += value_history_count;
1529 error (_("The history is empty."));
1531 error (_("There is only one value in the history."));
1533 error (_("History does not go back to $$%d."), -num);
1535 if (absnum > value_history_count)
1536 error (_("History has not yet reached $%d."), absnum);
1540 /* Now absnum is always absolute and origin zero. */
1542 chunk = value_history_chain;
1543 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1544 - absnum / VALUE_HISTORY_CHUNK;
1546 chunk = chunk->next;
1548 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1552 show_values (char *num_exp, int from_tty)
1560 /* "show values +" should print from the stored position.
1561 "show values <exp>" should print around value number <exp>. */
1562 if (num_exp[0] != '+' || num_exp[1] != '\0')
1563 num = parse_and_eval_long (num_exp) - 5;
1567 /* "show values" means print the last 10 values. */
1568 num = value_history_count - 9;
1574 for (i = num; i < num + 10 && i <= value_history_count; i++)
1576 struct value_print_options opts;
1578 val = access_value_history (i);
1579 printf_filtered (("$%d = "), i);
1580 get_user_print_options (&opts);
1581 value_print (val, gdb_stdout, &opts);
1582 printf_filtered (("\n"));
1585 /* The next "show values +" should start after what we just printed. */
1588 /* Hitting just return after this command should do the same thing as
1589 "show values +". If num_exp is null, this is unnecessary, since
1590 "show values +" is not useful after "show values". */
1591 if (from_tty && num_exp)
1598 /* Internal variables. These are variables within the debugger
1599 that hold values assigned by debugger commands.
1600 The user refers to them with a '$' prefix
1601 that does not appear in the variable names stored internally. */
1605 struct internalvar *next;
1608 /* We support various different kinds of content of an internal variable.
1609 enum internalvar_kind specifies the kind, and union internalvar_data
1610 provides the data associated with this particular kind. */
1612 enum internalvar_kind
1614 /* The internal variable is empty. */
1617 /* The value of the internal variable is provided directly as
1618 a GDB value object. */
1621 /* A fresh value is computed via a call-back routine on every
1622 access to the internal variable. */
1623 INTERNALVAR_MAKE_VALUE,
1625 /* The internal variable holds a GDB internal convenience function. */
1626 INTERNALVAR_FUNCTION,
1628 /* The variable holds an integer value. */
1629 INTERNALVAR_INTEGER,
1631 /* The variable holds a GDB-provided string. */
1636 union internalvar_data
1638 /* A value object used with INTERNALVAR_VALUE. */
1639 struct value *value;
1641 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1644 /* The functions to call. */
1645 const struct internalvar_funcs *functions;
1647 /* The function's user-data. */
1651 /* The internal function used with INTERNALVAR_FUNCTION. */
1654 struct internal_function *function;
1655 /* True if this is the canonical name for the function. */
1659 /* An integer value used with INTERNALVAR_INTEGER. */
1662 /* If type is non-NULL, it will be used as the type to generate
1663 a value for this internal variable. If type is NULL, a default
1664 integer type for the architecture is used. */
1669 /* A string value used with INTERNALVAR_STRING. */
1674 static struct internalvar *internalvars;
1676 /* If the variable does not already exist create it and give it the
1677 value given. If no value is given then the default is zero. */
1679 init_if_undefined_command (char* args, int from_tty)
1681 struct internalvar* intvar;
1683 /* Parse the expression - this is taken from set_command(). */
1684 struct expression *expr = parse_expression (args);
1685 register struct cleanup *old_chain =
1686 make_cleanup (free_current_contents, &expr);
1688 /* Validate the expression.
1689 Was the expression an assignment?
1690 Or even an expression at all? */
1691 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1692 error (_("Init-if-undefined requires an assignment expression."));
1694 /* Extract the variable from the parsed expression.
1695 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1696 if (expr->elts[1].opcode != OP_INTERNALVAR)
1697 error (_("The first parameter to init-if-undefined "
1698 "should be a GDB variable."));
1699 intvar = expr->elts[2].internalvar;
1701 /* Only evaluate the expression if the lvalue is void.
1702 This may still fail if the expresssion is invalid. */
1703 if (intvar->kind == INTERNALVAR_VOID)
1704 evaluate_expression (expr);
1706 do_cleanups (old_chain);
1710 /* Look up an internal variable with name NAME. NAME should not
1711 normally include a dollar sign.
1713 If the specified internal variable does not exist,
1714 the return value is NULL. */
1716 struct internalvar *
1717 lookup_only_internalvar (const char *name)
1719 struct internalvar *var;
1721 for (var = internalvars; var; var = var->next)
1722 if (strcmp (var->name, name) == 0)
1728 /* Complete NAME by comparing it to the names of internal variables.
1729 Returns a vector of newly allocated strings, or NULL if no matches
1733 complete_internalvar (const char *name)
1735 VEC (char_ptr) *result = NULL;
1736 struct internalvar *var;
1739 len = strlen (name);
1741 for (var = internalvars; var; var = var->next)
1742 if (strncmp (var->name, name, len) == 0)
1744 char *r = xstrdup (var->name);
1746 VEC_safe_push (char_ptr, result, r);
1752 /* Create an internal variable with name NAME and with a void value.
1753 NAME should not normally include a dollar sign. */
1755 struct internalvar *
1756 create_internalvar (const char *name)
1758 struct internalvar *var;
1760 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1761 var->name = concat (name, (char *)NULL);
1762 var->kind = INTERNALVAR_VOID;
1763 var->next = internalvars;
1768 /* Create an internal variable with name NAME and register FUN as the
1769 function that value_of_internalvar uses to create a value whenever
1770 this variable is referenced. NAME should not normally include a
1771 dollar sign. DATA is passed uninterpreted to FUN when it is
1772 called. CLEANUP, if not NULL, is called when the internal variable
1773 is destroyed. It is passed DATA as its only argument. */
1775 struct internalvar *
1776 create_internalvar_type_lazy (const char *name,
1777 const struct internalvar_funcs *funcs,
1780 struct internalvar *var = create_internalvar (name);
1782 var->kind = INTERNALVAR_MAKE_VALUE;
1783 var->u.make_value.functions = funcs;
1784 var->u.make_value.data = data;
1788 /* See documentation in value.h. */
1791 compile_internalvar_to_ax (struct internalvar *var,
1792 struct agent_expr *expr,
1793 struct axs_value *value)
1795 if (var->kind != INTERNALVAR_MAKE_VALUE
1796 || var->u.make_value.functions->compile_to_ax == NULL)
1799 var->u.make_value.functions->compile_to_ax (var, expr, value,
1800 var->u.make_value.data);
1804 /* Look up an internal variable with name NAME. NAME should not
1805 normally include a dollar sign.
1807 If the specified internal variable does not exist,
1808 one is created, with a void value. */
1810 struct internalvar *
1811 lookup_internalvar (const char *name)
1813 struct internalvar *var;
1815 var = lookup_only_internalvar (name);
1819 return create_internalvar (name);
1822 /* Return current value of internal variable VAR. For variables that
1823 are not inherently typed, use a value type appropriate for GDBARCH. */
1826 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1829 struct trace_state_variable *tsv;
1831 /* If there is a trace state variable of the same name, assume that
1832 is what we really want to see. */
1833 tsv = find_trace_state_variable (var->name);
1836 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1838 if (tsv->value_known)
1839 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1842 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1848 case INTERNALVAR_VOID:
1849 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1852 case INTERNALVAR_FUNCTION:
1853 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1856 case INTERNALVAR_INTEGER:
1857 if (!var->u.integer.type)
1858 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1859 var->u.integer.val);
1861 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1864 case INTERNALVAR_STRING:
1865 val = value_cstring (var->u.string, strlen (var->u.string),
1866 builtin_type (gdbarch)->builtin_char);
1869 case INTERNALVAR_VALUE:
1870 val = value_copy (var->u.value);
1871 if (value_lazy (val))
1872 value_fetch_lazy (val);
1875 case INTERNALVAR_MAKE_VALUE:
1876 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
1877 var->u.make_value.data);
1881 internal_error (__FILE__, __LINE__, _("bad kind"));
1884 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1885 on this value go back to affect the original internal variable.
1887 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1888 no underlying modifyable state in the internal variable.
1890 Likewise, if the variable's value is a computed lvalue, we want
1891 references to it to produce another computed lvalue, where
1892 references and assignments actually operate through the
1893 computed value's functions.
1895 This means that internal variables with computed values
1896 behave a little differently from other internal variables:
1897 assignments to them don't just replace the previous value
1898 altogether. At the moment, this seems like the behavior we
1901 if (var->kind != INTERNALVAR_MAKE_VALUE
1902 && val->lval != lval_computed)
1904 VALUE_LVAL (val) = lval_internalvar;
1905 VALUE_INTERNALVAR (val) = var;
1912 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1914 if (var->kind == INTERNALVAR_INTEGER)
1916 *result = var->u.integer.val;
1920 if (var->kind == INTERNALVAR_VALUE)
1922 struct type *type = check_typedef (value_type (var->u.value));
1924 if (TYPE_CODE (type) == TYPE_CODE_INT)
1926 *result = value_as_long (var->u.value);
1935 get_internalvar_function (struct internalvar *var,
1936 struct internal_function **result)
1940 case INTERNALVAR_FUNCTION:
1941 *result = var->u.fn.function;
1950 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1951 int bitsize, struct value *newval)
1957 case INTERNALVAR_VALUE:
1958 addr = value_contents_writeable (var->u.value);
1961 modify_field (value_type (var->u.value), addr + offset,
1962 value_as_long (newval), bitpos, bitsize);
1964 memcpy (addr + offset, value_contents (newval),
1965 TYPE_LENGTH (value_type (newval)));
1969 /* We can never get a component of any other kind. */
1970 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
1975 set_internalvar (struct internalvar *var, struct value *val)
1977 enum internalvar_kind new_kind;
1978 union internalvar_data new_data = { 0 };
1980 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1981 error (_("Cannot overwrite convenience function %s"), var->name);
1983 /* Prepare new contents. */
1984 switch (TYPE_CODE (check_typedef (value_type (val))))
1986 case TYPE_CODE_VOID:
1987 new_kind = INTERNALVAR_VOID;
1990 case TYPE_CODE_INTERNAL_FUNCTION:
1991 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1992 new_kind = INTERNALVAR_FUNCTION;
1993 get_internalvar_function (VALUE_INTERNALVAR (val),
1994 &new_data.fn.function);
1995 /* Copies created here are never canonical. */
1999 new_kind = INTERNALVAR_VALUE;
2000 new_data.value = value_copy (val);
2001 new_data.value->modifiable = 1;
2003 /* Force the value to be fetched from the target now, to avoid problems
2004 later when this internalvar is referenced and the target is gone or
2006 if (value_lazy (new_data.value))
2007 value_fetch_lazy (new_data.value);
2009 /* Release the value from the value chain to prevent it from being
2010 deleted by free_all_values. From here on this function should not
2011 call error () until new_data is installed into the var->u to avoid
2013 release_value (new_data.value);
2017 /* Clean up old contents. */
2018 clear_internalvar (var);
2021 var->kind = new_kind;
2023 /* End code which must not call error(). */
2027 set_internalvar_integer (struct internalvar *var, LONGEST l)
2029 /* Clean up old contents. */
2030 clear_internalvar (var);
2032 var->kind = INTERNALVAR_INTEGER;
2033 var->u.integer.type = NULL;
2034 var->u.integer.val = l;
2038 set_internalvar_string (struct internalvar *var, const char *string)
2040 /* Clean up old contents. */
2041 clear_internalvar (var);
2043 var->kind = INTERNALVAR_STRING;
2044 var->u.string = xstrdup (string);
2048 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2050 /* Clean up old contents. */
2051 clear_internalvar (var);
2053 var->kind = INTERNALVAR_FUNCTION;
2054 var->u.fn.function = f;
2055 var->u.fn.canonical = 1;
2056 /* Variables installed here are always the canonical version. */
2060 clear_internalvar (struct internalvar *var)
2062 /* Clean up old contents. */
2065 case INTERNALVAR_VALUE:
2066 value_free (var->u.value);
2069 case INTERNALVAR_STRING:
2070 xfree (var->u.string);
2073 case INTERNALVAR_MAKE_VALUE:
2074 if (var->u.make_value.functions->destroy != NULL)
2075 var->u.make_value.functions->destroy (var->u.make_value.data);
2082 /* Reset to void kind. */
2083 var->kind = INTERNALVAR_VOID;
2087 internalvar_name (struct internalvar *var)
2092 static struct internal_function *
2093 create_internal_function (const char *name,
2094 internal_function_fn handler, void *cookie)
2096 struct internal_function *ifn = XNEW (struct internal_function);
2098 ifn->name = xstrdup (name);
2099 ifn->handler = handler;
2100 ifn->cookie = cookie;
2105 value_internal_function_name (struct value *val)
2107 struct internal_function *ifn;
2110 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2111 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2112 gdb_assert (result);
2118 call_internal_function (struct gdbarch *gdbarch,
2119 const struct language_defn *language,
2120 struct value *func, int argc, struct value **argv)
2122 struct internal_function *ifn;
2125 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2126 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2127 gdb_assert (result);
2129 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2132 /* The 'function' command. This does nothing -- it is just a
2133 placeholder to let "help function NAME" work. This is also used as
2134 the implementation of the sub-command that is created when
2135 registering an internal function. */
2137 function_command (char *command, int from_tty)
2142 /* Clean up if an internal function's command is destroyed. */
2144 function_destroyer (struct cmd_list_element *self, void *ignore)
2146 xfree ((char *) self->name);
2150 /* Add a new internal function. NAME is the name of the function; DOC
2151 is a documentation string describing the function. HANDLER is
2152 called when the function is invoked. COOKIE is an arbitrary
2153 pointer which is passed to HANDLER and is intended for "user
2156 add_internal_function (const char *name, const char *doc,
2157 internal_function_fn handler, void *cookie)
2159 struct cmd_list_element *cmd;
2160 struct internal_function *ifn;
2161 struct internalvar *var = lookup_internalvar (name);
2163 ifn = create_internal_function (name, handler, cookie);
2164 set_internalvar_function (var, ifn);
2166 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2168 cmd->destroyer = function_destroyer;
2171 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2172 prevent cycles / duplicates. */
2175 preserve_one_value (struct value *value, struct objfile *objfile,
2176 htab_t copied_types)
2178 if (TYPE_OBJFILE (value->type) == objfile)
2179 value->type = copy_type_recursive (objfile, value->type, copied_types);
2181 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2182 value->enclosing_type = copy_type_recursive (objfile,
2183 value->enclosing_type,
2187 /* Likewise for internal variable VAR. */
2190 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2191 htab_t copied_types)
2195 case INTERNALVAR_INTEGER:
2196 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2198 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2201 case INTERNALVAR_VALUE:
2202 preserve_one_value (var->u.value, objfile, copied_types);
2207 /* Update the internal variables and value history when OBJFILE is
2208 discarded; we must copy the types out of the objfile. New global types
2209 will be created for every convenience variable which currently points to
2210 this objfile's types, and the convenience variables will be adjusted to
2211 use the new global types. */
2214 preserve_values (struct objfile *objfile)
2216 htab_t copied_types;
2217 struct value_history_chunk *cur;
2218 struct internalvar *var;
2221 /* Create the hash table. We allocate on the objfile's obstack, since
2222 it is soon to be deleted. */
2223 copied_types = create_copied_types_hash (objfile);
2225 for (cur = value_history_chain; cur; cur = cur->next)
2226 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2228 preserve_one_value (cur->values[i], objfile, copied_types);
2230 for (var = internalvars; var; var = var->next)
2231 preserve_one_internalvar (var, objfile, copied_types);
2233 preserve_python_values (objfile, copied_types);
2235 htab_delete (copied_types);
2239 show_convenience (char *ignore, int from_tty)
2241 struct gdbarch *gdbarch = get_current_arch ();
2242 struct internalvar *var;
2244 struct value_print_options opts;
2246 get_user_print_options (&opts);
2247 for (var = internalvars; var; var = var->next)
2249 volatile struct gdb_exception ex;
2255 printf_filtered (("$%s = "), var->name);
2257 TRY_CATCH (ex, RETURN_MASK_ERROR)
2261 val = value_of_internalvar (gdbarch, var);
2262 value_print (val, gdb_stdout, &opts);
2265 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2266 printf_filtered (("\n"));
2270 /* This text does not mention convenience functions on purpose.
2271 The user can't create them except via Python, and if Python support
2272 is installed this message will never be printed ($_streq will
2274 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2275 "Convenience variables have "
2276 "names starting with \"$\";\n"
2277 "use \"set\" as in \"set "
2278 "$foo = 5\" to define them.\n"));
2282 /* Extract a value as a C number (either long or double).
2283 Knows how to convert fixed values to double, or
2284 floating values to long.
2285 Does not deallocate the value. */
2288 value_as_long (struct value *val)
2290 /* This coerces arrays and functions, which is necessary (e.g.
2291 in disassemble_command). It also dereferences references, which
2292 I suspect is the most logical thing to do. */
2293 val = coerce_array (val);
2294 return unpack_long (value_type (val), value_contents (val));
2298 value_as_double (struct value *val)
2303 foo = unpack_double (value_type (val), value_contents (val), &inv);
2305 error (_("Invalid floating value found in program."));
2309 /* Extract a value as a C pointer. Does not deallocate the value.
2310 Note that val's type may not actually be a pointer; value_as_long
2311 handles all the cases. */
2313 value_as_address (struct value *val)
2315 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2317 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2318 whether we want this to be true eventually. */
2320 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2321 non-address (e.g. argument to "signal", "info break", etc.), or
2322 for pointers to char, in which the low bits *are* significant. */
2323 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2326 /* There are several targets (IA-64, PowerPC, and others) which
2327 don't represent pointers to functions as simply the address of
2328 the function's entry point. For example, on the IA-64, a
2329 function pointer points to a two-word descriptor, generated by
2330 the linker, which contains the function's entry point, and the
2331 value the IA-64 "global pointer" register should have --- to
2332 support position-independent code. The linker generates
2333 descriptors only for those functions whose addresses are taken.
2335 On such targets, it's difficult for GDB to convert an arbitrary
2336 function address into a function pointer; it has to either find
2337 an existing descriptor for that function, or call malloc and
2338 build its own. On some targets, it is impossible for GDB to
2339 build a descriptor at all: the descriptor must contain a jump
2340 instruction; data memory cannot be executed; and code memory
2343 Upon entry to this function, if VAL is a value of type `function'
2344 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2345 value_address (val) is the address of the function. This is what
2346 you'll get if you evaluate an expression like `main'. The call
2347 to COERCE_ARRAY below actually does all the usual unary
2348 conversions, which includes converting values of type `function'
2349 to `pointer to function'. This is the challenging conversion
2350 discussed above. Then, `unpack_long' will convert that pointer
2351 back into an address.
2353 So, suppose the user types `disassemble foo' on an architecture
2354 with a strange function pointer representation, on which GDB
2355 cannot build its own descriptors, and suppose further that `foo'
2356 has no linker-built descriptor. The address->pointer conversion
2357 will signal an error and prevent the command from running, even
2358 though the next step would have been to convert the pointer
2359 directly back into the same address.
2361 The following shortcut avoids this whole mess. If VAL is a
2362 function, just return its address directly. */
2363 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2364 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2365 return value_address (val);
2367 val = coerce_array (val);
2369 /* Some architectures (e.g. Harvard), map instruction and data
2370 addresses onto a single large unified address space. For
2371 instance: An architecture may consider a large integer in the
2372 range 0x10000000 .. 0x1000ffff to already represent a data
2373 addresses (hence not need a pointer to address conversion) while
2374 a small integer would still need to be converted integer to
2375 pointer to address. Just assume such architectures handle all
2376 integer conversions in a single function. */
2380 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2381 must admonish GDB hackers to make sure its behavior matches the
2382 compiler's, whenever possible.
2384 In general, I think GDB should evaluate expressions the same way
2385 the compiler does. When the user copies an expression out of
2386 their source code and hands it to a `print' command, they should
2387 get the same value the compiler would have computed. Any
2388 deviation from this rule can cause major confusion and annoyance,
2389 and needs to be justified carefully. In other words, GDB doesn't
2390 really have the freedom to do these conversions in clever and
2393 AndrewC pointed out that users aren't complaining about how GDB
2394 casts integers to pointers; they are complaining that they can't
2395 take an address from a disassembly listing and give it to `x/i'.
2396 This is certainly important.
2398 Adding an architecture method like integer_to_address() certainly
2399 makes it possible for GDB to "get it right" in all circumstances
2400 --- the target has complete control over how things get done, so
2401 people can Do The Right Thing for their target without breaking
2402 anyone else. The standard doesn't specify how integers get
2403 converted to pointers; usually, the ABI doesn't either, but
2404 ABI-specific code is a more reasonable place to handle it. */
2406 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2407 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2408 && gdbarch_integer_to_address_p (gdbarch))
2409 return gdbarch_integer_to_address (gdbarch, value_type (val),
2410 value_contents (val));
2412 return unpack_long (value_type (val), value_contents (val));
2416 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2417 as a long, or as a double, assuming the raw data is described
2418 by type TYPE. Knows how to convert different sizes of values
2419 and can convert between fixed and floating point. We don't assume
2420 any alignment for the raw data. Return value is in host byte order.
2422 If you want functions and arrays to be coerced to pointers, and
2423 references to be dereferenced, call value_as_long() instead.
2425 C++: It is assumed that the front-end has taken care of
2426 all matters concerning pointers to members. A pointer
2427 to member which reaches here is considered to be equivalent
2428 to an INT (or some size). After all, it is only an offset. */
2431 unpack_long (struct type *type, const gdb_byte *valaddr)
2433 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2434 enum type_code code = TYPE_CODE (type);
2435 int len = TYPE_LENGTH (type);
2436 int nosign = TYPE_UNSIGNED (type);
2440 case TYPE_CODE_TYPEDEF:
2441 return unpack_long (check_typedef (type), valaddr);
2442 case TYPE_CODE_ENUM:
2443 case TYPE_CODE_FLAGS:
2444 case TYPE_CODE_BOOL:
2446 case TYPE_CODE_CHAR:
2447 case TYPE_CODE_RANGE:
2448 case TYPE_CODE_MEMBERPTR:
2450 return extract_unsigned_integer (valaddr, len, byte_order);
2452 return extract_signed_integer (valaddr, len, byte_order);
2455 return extract_typed_floating (valaddr, type);
2457 case TYPE_CODE_DECFLOAT:
2458 /* libdecnumber has a function to convert from decimal to integer, but
2459 it doesn't work when the decimal number has a fractional part. */
2460 return decimal_to_doublest (valaddr, len, byte_order);
2464 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2465 whether we want this to be true eventually. */
2466 return extract_typed_address (valaddr, type);
2469 error (_("Value can't be converted to integer."));
2471 return 0; /* Placate lint. */
2474 /* Return a double value from the specified type and address.
2475 INVP points to an int which is set to 0 for valid value,
2476 1 for invalid value (bad float format). In either case,
2477 the returned double is OK to use. Argument is in target
2478 format, result is in host format. */
2481 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2483 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2484 enum type_code code;
2488 *invp = 0; /* Assume valid. */
2489 CHECK_TYPEDEF (type);
2490 code = TYPE_CODE (type);
2491 len = TYPE_LENGTH (type);
2492 nosign = TYPE_UNSIGNED (type);
2493 if (code == TYPE_CODE_FLT)
2495 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2496 floating-point value was valid (using the macro
2497 INVALID_FLOAT). That test/macro have been removed.
2499 It turns out that only the VAX defined this macro and then
2500 only in a non-portable way. Fixing the portability problem
2501 wouldn't help since the VAX floating-point code is also badly
2502 bit-rotten. The target needs to add definitions for the
2503 methods gdbarch_float_format and gdbarch_double_format - these
2504 exactly describe the target floating-point format. The
2505 problem here is that the corresponding floatformat_vax_f and
2506 floatformat_vax_d values these methods should be set to are
2507 also not defined either. Oops!
2509 Hopefully someone will add both the missing floatformat
2510 definitions and the new cases for floatformat_is_valid (). */
2512 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2518 return extract_typed_floating (valaddr, type);
2520 else if (code == TYPE_CODE_DECFLOAT)
2521 return decimal_to_doublest (valaddr, len, byte_order);
2524 /* Unsigned -- be sure we compensate for signed LONGEST. */
2525 return (ULONGEST) unpack_long (type, valaddr);
2529 /* Signed -- we are OK with unpack_long. */
2530 return unpack_long (type, valaddr);
2534 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2535 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2536 We don't assume any alignment for the raw data. Return value is in
2539 If you want functions and arrays to be coerced to pointers, and
2540 references to be dereferenced, call value_as_address() instead.
2542 C++: It is assumed that the front-end has taken care of
2543 all matters concerning pointers to members. A pointer
2544 to member which reaches here is considered to be equivalent
2545 to an INT (or some size). After all, it is only an offset. */
2548 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2550 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2551 whether we want this to be true eventually. */
2552 return unpack_long (type, valaddr);
2556 /* Get the value of the FIELDNO'th field (which must be static) of
2557 TYPE. Return NULL if the field doesn't exist or has been
2561 value_static_field (struct type *type, int fieldno)
2563 struct value *retval;
2565 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2567 case FIELD_LOC_KIND_PHYSADDR:
2568 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2569 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2571 case FIELD_LOC_KIND_PHYSNAME:
2573 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2574 /* TYPE_FIELD_NAME (type, fieldno); */
2575 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2579 /* With some compilers, e.g. HP aCC, static data members are
2580 reported as non-debuggable symbols. */
2581 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2588 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2589 SYMBOL_VALUE_ADDRESS (msym));
2593 retval = value_of_variable (sym, NULL);
2597 gdb_assert_not_reached ("unexpected field location kind");
2603 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2604 You have to be careful here, since the size of the data area for the value
2605 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2606 than the old enclosing type, you have to allocate more space for the
2610 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2612 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2614 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2616 val->enclosing_type = new_encl_type;
2619 /* Given a value ARG1 (offset by OFFSET bytes)
2620 of a struct or union type ARG_TYPE,
2621 extract and return the value of one of its (non-static) fields.
2622 FIELDNO says which field. */
2625 value_primitive_field (struct value *arg1, int offset,
2626 int fieldno, struct type *arg_type)
2631 CHECK_TYPEDEF (arg_type);
2632 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2634 /* Call check_typedef on our type to make sure that, if TYPE
2635 is a TYPE_CODE_TYPEDEF, its length is set to the length
2636 of the target type instead of zero. However, we do not
2637 replace the typedef type by the target type, because we want
2638 to keep the typedef in order to be able to print the type
2639 description correctly. */
2640 check_typedef (type);
2642 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2644 /* Handle packed fields.
2646 Create a new value for the bitfield, with bitpos and bitsize
2647 set. If possible, arrange offset and bitpos so that we can
2648 do a single aligned read of the size of the containing type.
2649 Otherwise, adjust offset to the byte containing the first
2650 bit. Assume that the address, offset, and embedded offset
2651 are sufficiently aligned. */
2653 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2654 int container_bitsize = TYPE_LENGTH (type) * 8;
2656 if (arg1->optimized_out)
2657 v = allocate_optimized_out_value (type);
2660 v = allocate_value_lazy (type);
2661 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2662 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2663 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2664 v->bitpos = bitpos % container_bitsize;
2666 v->bitpos = bitpos % 8;
2667 v->offset = (value_embedded_offset (arg1)
2669 + (bitpos - v->bitpos) / 8);
2670 set_value_parent (v, arg1);
2671 if (!value_lazy (arg1))
2672 value_fetch_lazy (v);
2675 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2677 /* This field is actually a base subobject, so preserve the
2678 entire object's contents for later references to virtual
2682 /* Lazy register values with offsets are not supported. */
2683 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2684 value_fetch_lazy (arg1);
2686 /* The optimized_out flag is only set correctly once a lazy value is
2687 loaded, having just loaded some lazy values we should check the
2688 optimized out case now. */
2689 if (arg1->optimized_out)
2690 v = allocate_optimized_out_value (type);
2693 /* We special case virtual inheritance here because this
2694 requires access to the contents, which we would rather avoid
2695 for references to ordinary fields of unavailable values. */
2696 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2697 boffset = baseclass_offset (arg_type, fieldno,
2698 value_contents (arg1),
2699 value_embedded_offset (arg1),
2700 value_address (arg1),
2703 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2705 if (value_lazy (arg1))
2706 v = allocate_value_lazy (value_enclosing_type (arg1));
2709 v = allocate_value (value_enclosing_type (arg1));
2710 value_contents_copy_raw (v, 0, arg1, 0,
2711 TYPE_LENGTH (value_enclosing_type (arg1)));
2714 v->offset = value_offset (arg1);
2715 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2720 /* Plain old data member */
2721 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2723 /* Lazy register values with offsets are not supported. */
2724 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2725 value_fetch_lazy (arg1);
2727 /* The optimized_out flag is only set correctly once a lazy value is
2728 loaded, having just loaded some lazy values we should check for
2729 the optimized out case now. */
2730 if (arg1->optimized_out)
2731 v = allocate_optimized_out_value (type);
2732 else if (value_lazy (arg1))
2733 v = allocate_value_lazy (type);
2736 v = allocate_value (type);
2737 value_contents_copy_raw (v, value_embedded_offset (v),
2738 arg1, value_embedded_offset (arg1) + offset,
2739 TYPE_LENGTH (type));
2741 v->offset = (value_offset (arg1) + offset
2742 + value_embedded_offset (arg1));
2744 set_value_component_location (v, arg1);
2745 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2746 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2750 /* Given a value ARG1 of a struct or union type,
2751 extract and return the value of one of its (non-static) fields.
2752 FIELDNO says which field. */
2755 value_field (struct value *arg1, int fieldno)
2757 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2760 /* Return a non-virtual function as a value.
2761 F is the list of member functions which contains the desired method.
2762 J is an index into F which provides the desired method.
2764 We only use the symbol for its address, so be happy with either a
2765 full symbol or a minimal symbol. */
2768 value_fn_field (struct value **arg1p, struct fn_field *f,
2769 int j, struct type *type,
2773 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2774 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2776 struct minimal_symbol *msym;
2778 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2785 gdb_assert (sym == NULL);
2786 msym = lookup_minimal_symbol (physname, NULL, NULL);
2791 v = allocate_value (ftype);
2794 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2798 /* The minimal symbol might point to a function descriptor;
2799 resolve it to the actual code address instead. */
2800 struct objfile *objfile = msymbol_objfile (msym);
2801 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2803 set_value_address (v,
2804 gdbarch_convert_from_func_ptr_addr
2805 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), ¤t_target));
2810 if (type != value_type (*arg1p))
2811 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2812 value_addr (*arg1p)));
2814 /* Move the `this' pointer according to the offset.
2815 VALUE_OFFSET (*arg1p) += offset; */
2823 /* Helper function for both unpack_value_bits_as_long and
2824 unpack_bits_as_long. See those functions for more details on the
2825 interface; the only difference is that this function accepts either
2826 a NULL or a non-NULL ORIGINAL_VALUE. */
2829 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2830 int embedded_offset, int bitpos, int bitsize,
2831 const struct value *original_value,
2834 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2841 /* Read the minimum number of bytes required; there may not be
2842 enough bytes to read an entire ULONGEST. */
2843 CHECK_TYPEDEF (field_type);
2845 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2847 bytes_read = TYPE_LENGTH (field_type);
2849 read_offset = bitpos / 8;
2851 if (original_value != NULL
2852 && !value_bytes_available (original_value, embedded_offset + read_offset,
2856 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
2857 bytes_read, byte_order);
2859 /* Extract bits. See comment above. */
2861 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2862 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2864 lsbcount = (bitpos % 8);
2867 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2868 If the field is signed, and is negative, then sign extend. */
2870 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2872 valmask = (((ULONGEST) 1) << bitsize) - 1;
2874 if (!TYPE_UNSIGNED (field_type))
2876 if (val & (valmask ^ (valmask >> 1)))
2887 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2888 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2889 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2890 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2893 Returns false if the value contents are unavailable, otherwise
2894 returns true, indicating a valid value has been stored in *RESULT.
2896 Extracting bits depends on endianness of the machine. Compute the
2897 number of least significant bits to discard. For big endian machines,
2898 we compute the total number of bits in the anonymous object, subtract
2899 off the bit count from the MSB of the object to the MSB of the
2900 bitfield, then the size of the bitfield, which leaves the LSB discard
2901 count. For little endian machines, the discard count is simply the
2902 number of bits from the LSB of the anonymous object to the LSB of the
2905 If the field is signed, we also do sign extension. */
2908 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2909 int embedded_offset, int bitpos, int bitsize,
2910 const struct value *original_value,
2913 gdb_assert (original_value != NULL);
2915 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2916 bitpos, bitsize, original_value, result);
2920 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2921 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2922 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2926 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2927 int embedded_offset, int fieldno,
2928 const struct value *val, LONGEST *result)
2930 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2931 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2932 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2934 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2935 bitpos, bitsize, val,
2939 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2940 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2941 ORIGINAL_VALUE, which must not be NULL. See
2942 unpack_value_bits_as_long for more details. */
2945 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2946 int embedded_offset, int fieldno,
2947 const struct value *val, LONGEST *result)
2949 gdb_assert (val != NULL);
2951 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2952 fieldno, val, result);
2955 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2956 object at VALADDR. See unpack_value_bits_as_long for more details.
2957 This function differs from unpack_value_field_as_long in that it
2958 operates without a struct value object. */
2961 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2965 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
2969 /* Return a new value with type TYPE, which is FIELDNO field of the
2970 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
2971 of VAL. If the VAL's contents required to extract the bitfield
2972 from are unavailable, the new value is correspondingly marked as
2976 value_field_bitfield (struct type *type, int fieldno,
2977 const gdb_byte *valaddr,
2978 int embedded_offset, const struct value *val)
2982 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
2985 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2986 struct value *retval = allocate_value (field_type);
2987 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
2992 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
2996 /* Modify the value of a bitfield. ADDR points to a block of memory in
2997 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2998 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2999 indicate which bits (in target bit order) comprise the bitfield.
3000 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3001 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3004 modify_field (struct type *type, gdb_byte *addr,
3005 LONGEST fieldval, int bitpos, int bitsize)
3007 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3009 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3012 /* Normalize BITPOS. */
3016 /* If a negative fieldval fits in the field in question, chop
3017 off the sign extension bits. */
3018 if ((~fieldval & ~(mask >> 1)) == 0)
3021 /* Warn if value is too big to fit in the field in question. */
3022 if (0 != (fieldval & ~mask))
3024 /* FIXME: would like to include fieldval in the message, but
3025 we don't have a sprintf_longest. */
3026 warning (_("Value does not fit in %d bits."), bitsize);
3028 /* Truncate it, otherwise adjoining fields may be corrupted. */
3032 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3033 false valgrind reports. */
3035 bytesize = (bitpos + bitsize + 7) / 8;
3036 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3038 /* Shifting for bit field depends on endianness of the target machine. */
3039 if (gdbarch_bits_big_endian (get_type_arch (type)))
3040 bitpos = bytesize * 8 - bitpos - bitsize;
3042 oword &= ~(mask << bitpos);
3043 oword |= fieldval << bitpos;
3045 store_unsigned_integer (addr, bytesize, byte_order, oword);
3048 /* Pack NUM into BUF using a target format of TYPE. */
3051 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3053 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3056 type = check_typedef (type);
3057 len = TYPE_LENGTH (type);
3059 switch (TYPE_CODE (type))
3062 case TYPE_CODE_CHAR:
3063 case TYPE_CODE_ENUM:
3064 case TYPE_CODE_FLAGS:
3065 case TYPE_CODE_BOOL:
3066 case TYPE_CODE_RANGE:
3067 case TYPE_CODE_MEMBERPTR:
3068 store_signed_integer (buf, len, byte_order, num);
3073 store_typed_address (buf, type, (CORE_ADDR) num);
3077 error (_("Unexpected type (%d) encountered for integer constant."),
3083 /* Pack NUM into BUF using a target format of TYPE. */
3086 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3089 enum bfd_endian byte_order;
3091 type = check_typedef (type);
3092 len = TYPE_LENGTH (type);
3093 byte_order = gdbarch_byte_order (get_type_arch (type));
3095 switch (TYPE_CODE (type))
3098 case TYPE_CODE_CHAR:
3099 case TYPE_CODE_ENUM:
3100 case TYPE_CODE_FLAGS:
3101 case TYPE_CODE_BOOL:
3102 case TYPE_CODE_RANGE:
3103 case TYPE_CODE_MEMBERPTR:
3104 store_unsigned_integer (buf, len, byte_order, num);
3109 store_typed_address (buf, type, (CORE_ADDR) num);
3113 error (_("Unexpected type (%d) encountered "
3114 "for unsigned integer constant."),
3120 /* Convert C numbers into newly allocated values. */
3123 value_from_longest (struct type *type, LONGEST num)
3125 struct value *val = allocate_value (type);
3127 pack_long (value_contents_raw (val), type, num);
3132 /* Convert C unsigned numbers into newly allocated values. */
3135 value_from_ulongest (struct type *type, ULONGEST num)
3137 struct value *val = allocate_value (type);
3139 pack_unsigned_long (value_contents_raw (val), type, num);
3145 /* Create a value representing a pointer of type TYPE to the address
3148 value_from_pointer (struct type *type, CORE_ADDR addr)
3150 struct value *val = allocate_value (type);
3152 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
3157 /* Create a value of type TYPE whose contents come from VALADDR, if it
3158 is non-null, and whose memory address (in the inferior) is
3162 value_from_contents_and_address (struct type *type,
3163 const gdb_byte *valaddr,
3168 if (valaddr == NULL)
3169 v = allocate_value_lazy (type);
3172 v = allocate_value (type);
3173 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
3175 set_value_address (v, address);
3176 VALUE_LVAL (v) = lval_memory;
3180 /* Create a value of type TYPE holding the contents CONTENTS.
3181 The new value is `not_lval'. */
3184 value_from_contents (struct type *type, const gdb_byte *contents)
3186 struct value *result;
3188 result = allocate_value (type);
3189 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3194 value_from_double (struct type *type, DOUBLEST num)
3196 struct value *val = allocate_value (type);
3197 struct type *base_type = check_typedef (type);
3198 enum type_code code = TYPE_CODE (base_type);
3200 if (code == TYPE_CODE_FLT)
3202 store_typed_floating (value_contents_raw (val), base_type, num);
3205 error (_("Unexpected type encountered for floating constant."));
3211 value_from_decfloat (struct type *type, const gdb_byte *dec)
3213 struct value *val = allocate_value (type);
3215 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3219 /* Extract a value from the history file. Input will be of the form
3220 $digits or $$digits. See block comment above 'write_dollar_variable'
3224 value_from_history_ref (char *h, char **endp)
3236 /* Find length of numeral string. */
3237 for (; isdigit (h[len]); len++)
3240 /* Make sure numeral string is not part of an identifier. */
3241 if (h[len] == '_' || isalpha (h[len]))
3244 /* Now collect the index value. */
3249 /* For some bizarre reason, "$$" is equivalent to "$$1",
3250 rather than to "$$0" as it ought to be! */
3255 index = -strtol (&h[2], endp, 10);
3261 /* "$" is equivalent to "$0". */
3266 index = strtol (&h[1], endp, 10);
3269 return access_value_history (index);
3273 coerce_ref_if_computed (const struct value *arg)
3275 const struct lval_funcs *funcs;
3277 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3280 if (value_lval_const (arg) != lval_computed)
3283 funcs = value_computed_funcs (arg);
3284 if (funcs->coerce_ref == NULL)
3287 return funcs->coerce_ref (arg);
3290 /* Look at value.h for description. */
3293 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3294 struct type *original_type,
3295 struct value *original_value)
3297 /* Re-adjust type. */
3298 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3300 /* Add embedding info. */
3301 set_value_enclosing_type (value, enc_type);
3302 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3304 /* We may be pointing to an object of some derived type. */
3305 return value_full_object (value, NULL, 0, 0, 0);
3309 coerce_ref (struct value *arg)
3311 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3312 struct value *retval;
3313 struct type *enc_type;
3315 retval = coerce_ref_if_computed (arg);
3319 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3322 enc_type = check_typedef (value_enclosing_type (arg));
3323 enc_type = TYPE_TARGET_TYPE (enc_type);
3325 retval = value_at_lazy (enc_type,
3326 unpack_pointer (value_type (arg),
3327 value_contents (arg)));
3328 return readjust_indirect_value_type (retval, enc_type,
3329 value_type_arg_tmp, arg);
3333 coerce_array (struct value *arg)
3337 arg = coerce_ref (arg);
3338 type = check_typedef (value_type (arg));
3340 switch (TYPE_CODE (type))
3342 case TYPE_CODE_ARRAY:
3343 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3344 arg = value_coerce_array (arg);
3346 case TYPE_CODE_FUNC:
3347 arg = value_coerce_function (arg);
3354 /* Return the return value convention that will be used for the
3357 enum return_value_convention
3358 struct_return_convention (struct gdbarch *gdbarch,
3359 struct value *function, struct type *value_type)
3361 enum type_code code = TYPE_CODE (value_type);
3363 if (code == TYPE_CODE_ERROR)
3364 error (_("Function return type unknown."));
3366 /* Probe the architecture for the return-value convention. */
3367 return gdbarch_return_value (gdbarch, function, value_type,
3371 /* Return true if the function returning the specified type is using
3372 the convention of returning structures in memory (passing in the
3373 address as a hidden first parameter). */
3376 using_struct_return (struct gdbarch *gdbarch,
3377 struct value *function, struct type *value_type)
3379 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3380 /* A void return value is never in memory. See also corresponding
3381 code in "print_return_value". */
3384 return (struct_return_convention (gdbarch, function, value_type)
3385 != RETURN_VALUE_REGISTER_CONVENTION);
3388 /* Set the initialized field in a value struct. */
3391 set_value_initialized (struct value *val, int status)
3393 val->initialized = status;
3396 /* Return the initialized field in a value struct. */
3399 value_initialized (struct value *val)
3401 return val->initialized;
3404 /* Called only from the value_contents and value_contents_all()
3405 macros, if the current data for a variable needs to be loaded into
3406 value_contents(VAL). Fetches the data from the user's process, and
3407 clears the lazy flag to indicate that the data in the buffer is
3410 If the value is zero-length, we avoid calling read_memory, which
3411 would abort. We mark the value as fetched anyway -- all 0 bytes of
3414 This function returns a value because it is used in the
3415 value_contents macro as part of an expression, where a void would
3416 not work. The value is ignored. */
3419 value_fetch_lazy (struct value *val)
3421 gdb_assert (value_lazy (val));
3422 allocate_value_contents (val);
3423 if (value_bitsize (val))
3425 /* To read a lazy bitfield, read the entire enclosing value. This
3426 prevents reading the same block of (possibly volatile) memory once
3427 per bitfield. It would be even better to read only the containing
3428 word, but we have no way to record that just specific bits of a
3429 value have been fetched. */
3430 struct type *type = check_typedef (value_type (val));
3431 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3432 struct value *parent = value_parent (val);
3433 LONGEST offset = value_offset (val);
3436 if (!value_bits_valid (val,
3437 TARGET_CHAR_BIT * offset + value_bitpos (val),
3438 value_bitsize (val)))
3439 error (_("value has been optimized out"));
3441 if (!unpack_value_bits_as_long (value_type (val),
3442 value_contents_for_printing (parent),
3445 value_bitsize (val), parent, &num))
3446 mark_value_bytes_unavailable (val,
3447 value_embedded_offset (val),
3448 TYPE_LENGTH (type));
3450 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
3453 else if (VALUE_LVAL (val) == lval_memory)
3455 CORE_ADDR addr = value_address (val);
3456 struct type *type = check_typedef (value_enclosing_type (val));
3458 if (TYPE_LENGTH (type))
3459 read_value_memory (val, 0, value_stack (val),
3460 addr, value_contents_all_raw (val),
3461 TYPE_LENGTH (type));
3463 else if (VALUE_LVAL (val) == lval_register)
3465 struct frame_info *frame;
3467 struct type *type = check_typedef (value_type (val));
3468 struct value *new_val = val, *mark = value_mark ();
3470 /* Offsets are not supported here; lazy register values must
3471 refer to the entire register. */
3472 gdb_assert (value_offset (val) == 0);
3474 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3476 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
3477 regnum = VALUE_REGNUM (new_val);
3479 gdb_assert (frame != NULL);
3481 /* Convertible register routines are used for multi-register
3482 values and for interpretation in different types
3483 (e.g. float or int from a double register). Lazy
3484 register values should have the register's natural type,
3485 so they do not apply. */
3486 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3489 new_val = get_frame_register_value (frame, regnum);
3492 /* If it's still lazy (for instance, a saved register on the
3493 stack), fetch it. */
3494 if (value_lazy (new_val))
3495 value_fetch_lazy (new_val);
3497 /* If the register was not saved, mark it optimized out. */
3498 if (value_optimized_out (new_val))
3499 set_value_optimized_out (val, 1);
3502 set_value_lazy (val, 0);
3503 value_contents_copy (val, value_embedded_offset (val),
3504 new_val, value_embedded_offset (new_val),
3505 TYPE_LENGTH (type));
3510 struct gdbarch *gdbarch;
3511 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3512 regnum = VALUE_REGNUM (val);
3513 gdbarch = get_frame_arch (frame);
3515 fprintf_unfiltered (gdb_stdlog,
3516 "{ value_fetch_lazy "
3517 "(frame=%d,regnum=%d(%s),...) ",
3518 frame_relative_level (frame), regnum,
3519 user_reg_map_regnum_to_name (gdbarch, regnum));
3521 fprintf_unfiltered (gdb_stdlog, "->");
3522 if (value_optimized_out (new_val))
3523 fprintf_unfiltered (gdb_stdlog, " optimized out");
3527 const gdb_byte *buf = value_contents (new_val);
3529 if (VALUE_LVAL (new_val) == lval_register)
3530 fprintf_unfiltered (gdb_stdlog, " register=%d",
3531 VALUE_REGNUM (new_val));
3532 else if (VALUE_LVAL (new_val) == lval_memory)
3533 fprintf_unfiltered (gdb_stdlog, " address=%s",
3535 value_address (new_val)));
3537 fprintf_unfiltered (gdb_stdlog, " computed");
3539 fprintf_unfiltered (gdb_stdlog, " bytes=");
3540 fprintf_unfiltered (gdb_stdlog, "[");
3541 for (i = 0; i < register_size (gdbarch, regnum); i++)
3542 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3543 fprintf_unfiltered (gdb_stdlog, "]");
3546 fprintf_unfiltered (gdb_stdlog, " }\n");
3549 /* Dispose of the intermediate values. This prevents
3550 watchpoints from trying to watch the saved frame pointer. */
3551 value_free_to_mark (mark);
3553 else if (VALUE_LVAL (val) == lval_computed
3554 && value_computed_funcs (val)->read != NULL)
3555 value_computed_funcs (val)->read (val);
3556 /* Don't call value_optimized_out on val, doing so would result in a
3557 recursive call back to value_fetch_lazy, instead check the
3558 optimized_out flag directly. */
3559 else if (val->optimized_out)
3560 /* Keep it optimized out. */;
3562 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3564 set_value_lazy (val, 0);
3569 _initialize_values (void)
3571 add_cmd ("convenience", no_class, show_convenience, _("\
3572 Debugger convenience (\"$foo\") variables and functions.\n\
3573 Convenience variables are created when you assign them values;\n\
3574 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3576 A few convenience variables are given values automatically:\n\
3577 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3578 \"$__\" holds the contents of the last address examined with \"x\"."
3581 Convenience functions are defined via the Python API."
3584 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
3586 add_cmd ("values", no_set_class, show_values, _("\
3587 Elements of value history around item number IDX (or last ten)."),
3590 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3591 Initialize a convenience variable if necessary.\n\
3592 init-if-undefined VARIABLE = EXPRESSION\n\
3593 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3594 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3595 VARIABLE is already initialized."));
3597 add_prefix_cmd ("function", no_class, function_command, _("\
3598 Placeholder command for showing help on convenience functions."),
3599 &functionlist, "function ", 0, &cmdlist);