1 /* Print values for GDB, the GNU debugger.
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
30 #include "floatformat.h"
33 #include "extension.h"
35 #include "gdb_obstack.h"
37 #include "typeprint.h"
40 #include "common/byte-vector.h"
42 /* Maximum number of wchars returned from wchar_iterate. */
45 /* A convenience macro to compute the size of a wchar_t buffer containing X
47 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
49 /* Character buffer size saved while iterating over wchars. */
50 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
52 /* A structure to encapsulate state information from iterated
53 character conversions. */
54 struct converted_character
56 /* The number of characters converted. */
59 /* The result of the conversion. See charset.h for more. */
60 enum wchar_iterate_result result;
62 /* The (saved) converted character(s). */
63 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
65 /* The first converted target byte. */
68 /* The number of bytes converted. */
71 /* How many times this character(s) is repeated. */
75 typedef struct converted_character converted_character_d;
76 DEF_VEC_O (converted_character_d);
78 /* Command lists for set/show print raw. */
79 struct cmd_list_element *setprintrawlist;
80 struct cmd_list_element *showprintrawlist;
82 /* Prototypes for local functions */
84 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
85 int len, int *errptr);
87 static void set_input_radix (char *, int, struct cmd_list_element *);
89 static void set_input_radix_1 (int, unsigned);
91 static void set_output_radix (char *, int, struct cmd_list_element *);
93 static void set_output_radix_1 (int, unsigned);
95 static void val_print_type_code_flags (struct type *type,
96 const gdb_byte *valaddr,
97 struct ui_file *stream);
99 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
101 struct value_print_options user_print_options =
103 Val_prettyformat_default, /* prettyformat */
104 0, /* prettyformat_arrays */
105 0, /* prettyformat_structs */
108 1, /* addressprint */
110 PRINT_MAX_DEFAULT, /* print_max */
111 10, /* repeat_count_threshold */
112 0, /* output_format */
114 0, /* stop_print_at_null */
115 0, /* print_array_indexes */
117 1, /* static_field_print */
118 1, /* pascal_static_field_print */
124 /* Initialize *OPTS to be a copy of the user print options. */
126 get_user_print_options (struct value_print_options *opts)
128 *opts = user_print_options;
131 /* Initialize *OPTS to be a copy of the user print options, but with
132 pretty-formatting disabled. */
134 get_no_prettyformat_print_options (struct value_print_options *opts)
136 *opts = user_print_options;
137 opts->prettyformat = Val_no_prettyformat;
140 /* Initialize *OPTS to be a copy of the user print options, but using
141 FORMAT as the formatting option. */
143 get_formatted_print_options (struct value_print_options *opts,
146 *opts = user_print_options;
147 opts->format = format;
151 show_print_max (struct ui_file *file, int from_tty,
152 struct cmd_list_element *c, const char *value)
154 fprintf_filtered (file,
155 _("Limit on string chars or array "
156 "elements to print is %s.\n"),
161 /* Default input and output radixes, and output format letter. */
163 unsigned input_radix = 10;
165 show_input_radix (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
168 fprintf_filtered (file,
169 _("Default input radix for entering numbers is %s.\n"),
173 unsigned output_radix = 10;
175 show_output_radix (struct ui_file *file, int from_tty,
176 struct cmd_list_element *c, const char *value)
178 fprintf_filtered (file,
179 _("Default output radix for printing of values is %s.\n"),
183 /* By default we print arrays without printing the index of each element in
184 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
187 show_print_array_indexes (struct ui_file *file, int from_tty,
188 struct cmd_list_element *c, const char *value)
190 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
193 /* Print repeat counts if there are more than this many repetitions of an
194 element in an array. Referenced by the low level language dependent
198 show_repeat_count_threshold (struct ui_file *file, int from_tty,
199 struct cmd_list_element *c, const char *value)
201 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
205 /* If nonzero, stops printing of char arrays at first null. */
208 show_stop_print_at_null (struct ui_file *file, int from_tty,
209 struct cmd_list_element *c, const char *value)
211 fprintf_filtered (file,
212 _("Printing of char arrays to stop "
213 "at first null char is %s.\n"),
217 /* Controls pretty printing of structures. */
220 show_prettyformat_structs (struct ui_file *file, int from_tty,
221 struct cmd_list_element *c, const char *value)
223 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
226 /* Controls pretty printing of arrays. */
229 show_prettyformat_arrays (struct ui_file *file, int from_tty,
230 struct cmd_list_element *c, const char *value)
232 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
235 /* If nonzero, causes unions inside structures or other unions to be
239 show_unionprint (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
242 fprintf_filtered (file,
243 _("Printing of unions interior to structures is %s.\n"),
247 /* If nonzero, causes machine addresses to be printed in certain contexts. */
250 show_addressprint (struct ui_file *file, int from_tty,
251 struct cmd_list_element *c, const char *value)
253 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
257 show_symbol_print (struct ui_file *file, int from_tty,
258 struct cmd_list_element *c, const char *value)
260 fprintf_filtered (file,
261 _("Printing of symbols when printing pointers is %s.\n"),
267 /* A helper function for val_print. When printing in "summary" mode,
268 we want to print scalar arguments, but not aggregate arguments.
269 This function distinguishes between the two. */
272 val_print_scalar_type_p (struct type *type)
274 type = check_typedef (type);
275 while (TYPE_IS_REFERENCE (type))
277 type = TYPE_TARGET_TYPE (type);
278 type = check_typedef (type);
280 switch (TYPE_CODE (type))
282 case TYPE_CODE_ARRAY:
283 case TYPE_CODE_STRUCT:
284 case TYPE_CODE_UNION:
286 case TYPE_CODE_STRING:
293 /* See its definition in value.h. */
296 valprint_check_validity (struct ui_file *stream,
298 LONGEST embedded_offset,
299 const struct value *val)
301 type = check_typedef (type);
303 if (type_not_associated (type))
305 val_print_not_associated (stream);
309 if (type_not_allocated (type))
311 val_print_not_allocated (stream);
315 if (TYPE_CODE (type) != TYPE_CODE_UNION
316 && TYPE_CODE (type) != TYPE_CODE_STRUCT
317 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
319 if (value_bits_any_optimized_out (val,
320 TARGET_CHAR_BIT * embedded_offset,
321 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
323 val_print_optimized_out (val, stream);
327 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
328 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
330 const int is_ref = TYPE_CODE (type) == TYPE_CODE_REF;
331 int ref_is_addressable = 0;
335 const struct value *deref_val = coerce_ref_if_computed (val);
337 if (deref_val != NULL)
338 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
341 if (!is_ref || !ref_is_addressable)
342 fputs_filtered (_("<synthetic pointer>"), stream);
344 /* C++ references should be valid even if they're synthetic. */
348 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
350 val_print_unavailable (stream);
359 val_print_optimized_out (const struct value *val, struct ui_file *stream)
361 if (val != NULL && value_lval_const (val) == lval_register)
362 val_print_not_saved (stream);
364 fprintf_filtered (stream, _("<optimized out>"));
368 val_print_not_saved (struct ui_file *stream)
370 fprintf_filtered (stream, _("<not saved>"));
374 val_print_unavailable (struct ui_file *stream)
376 fprintf_filtered (stream, _("<unavailable>"));
380 val_print_invalid_address (struct ui_file *stream)
382 fprintf_filtered (stream, _("<invalid address>"));
385 /* Print a pointer based on the type of its target.
387 Arguments to this functions are roughly the same as those in
388 generic_val_print. A difference is that ADDRESS is the address to print,
389 with embedded_offset already added. ELTTYPE represents
390 the pointed type after check_typedef. */
393 print_unpacked_pointer (struct type *type, struct type *elttype,
394 CORE_ADDR address, struct ui_file *stream,
395 const struct value_print_options *options)
397 struct gdbarch *gdbarch = get_type_arch (type);
399 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
401 /* Try to print what function it points to. */
402 print_function_pointer_address (options, gdbarch, address, stream);
406 if (options->symbol_print)
407 print_address_demangle (options, gdbarch, address, stream, demangle);
408 else if (options->addressprint)
409 fputs_filtered (paddress (gdbarch, address), stream);
412 /* generic_val_print helper for TYPE_CODE_ARRAY. */
415 generic_val_print_array (struct type *type,
416 int embedded_offset, CORE_ADDR address,
417 struct ui_file *stream, int recurse,
418 struct value *original_value,
419 const struct value_print_options *options,
421 generic_val_print_decorations *decorations)
423 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
424 struct type *elttype = check_typedef (unresolved_elttype);
426 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
428 LONGEST low_bound, high_bound;
430 if (!get_array_bounds (type, &low_bound, &high_bound))
431 error (_("Could not determine the array high bound"));
433 if (options->prettyformat_arrays)
435 print_spaces_filtered (2 + 2 * recurse, stream);
438 fputs_filtered (decorations->array_start, stream);
439 val_print_array_elements (type, embedded_offset,
441 recurse, original_value, options, 0);
442 fputs_filtered (decorations->array_end, stream);
446 /* Array of unspecified length: treat like pointer to first elt. */
447 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
453 /* generic_val_print helper for TYPE_CODE_PTR. */
456 generic_val_print_ptr (struct type *type,
457 int embedded_offset, struct ui_file *stream,
458 struct value *original_value,
459 const struct value_print_options *options)
461 struct gdbarch *gdbarch = get_type_arch (type);
462 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
464 if (options->format && options->format != 's')
466 val_print_scalar_formatted (type, embedded_offset,
467 original_value, options, 0, stream);
471 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
472 struct type *elttype = check_typedef (unresolved_elttype);
473 const gdb_byte *valaddr = value_contents_for_printing (original_value);
474 CORE_ADDR addr = unpack_pointer (type,
475 valaddr + embedded_offset * unit_size);
477 print_unpacked_pointer (type, elttype, addr, stream, options);
482 /* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
485 generic_val_print_memberptr (struct type *type,
486 int embedded_offset, struct ui_file *stream,
487 struct value *original_value,
488 const struct value_print_options *options)
490 val_print_scalar_formatted (type, embedded_offset,
491 original_value, options, 0, stream);
494 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
497 print_ref_address (struct type *type, const gdb_byte *address_buffer,
498 int embedded_offset, struct ui_file *stream)
500 struct gdbarch *gdbarch = get_type_arch (type);
502 if (address_buffer != NULL)
505 = extract_typed_address (address_buffer + embedded_offset, type);
507 fprintf_filtered (stream, "@");
508 fputs_filtered (paddress (gdbarch, address), stream);
510 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
513 /* If VAL is addressable, return the value contents buffer of a value that
514 represents a pointer to VAL. Otherwise return NULL. */
516 static const gdb_byte *
517 get_value_addr_contents (struct value *deref_val)
519 gdb_assert (deref_val != NULL);
521 if (value_lval_const (deref_val) == lval_memory)
522 return value_contents_for_printing_const (value_addr (deref_val));
525 /* We have a non-addressable value, such as a DW_AT_const_value. */
530 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
533 generic_val_print_ref (struct type *type,
534 int embedded_offset, struct ui_file *stream, int recurse,
535 struct value *original_value,
536 const struct value_print_options *options)
538 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
539 struct value *deref_val = NULL;
540 const int value_is_synthetic
541 = value_bits_synthetic_pointer (original_value,
542 TARGET_CHAR_BIT * embedded_offset,
543 TARGET_CHAR_BIT * TYPE_LENGTH (type));
544 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
545 || options->deref_ref);
546 const int type_is_defined = TYPE_CODE (elttype) != TYPE_CODE_UNDEF;
547 const gdb_byte *valaddr = value_contents_for_printing (original_value);
549 if (must_coerce_ref && type_is_defined)
551 deref_val = coerce_ref_if_computed (original_value);
553 if (deref_val != NULL)
555 /* More complicated computed references are not supported. */
556 gdb_assert (embedded_offset == 0);
559 deref_val = value_at (TYPE_TARGET_TYPE (type),
560 unpack_pointer (type, valaddr + embedded_offset));
562 /* Else, original_value isn't a synthetic reference or we don't have to print
563 the reference's contents.
565 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
566 cause original_value to be a not_lval instead of an lval_computed,
567 which will make value_bits_synthetic_pointer return false.
568 This happens because if options->objectprint is true, c_value_print will
569 overwrite original_value's contents with the result of coercing
570 the reference through value_addr, and then set its type back to
571 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
572 we can simply treat it as non-synthetic and move on. */
574 if (options->addressprint)
576 const gdb_byte *address = (value_is_synthetic && type_is_defined
577 ? get_value_addr_contents (deref_val)
580 print_ref_address (type, address, embedded_offset, stream);
582 if (options->deref_ref)
583 fputs_filtered (": ", stream);
586 if (options->deref_ref)
589 common_val_print (deref_val, stream, recurse, options,
592 fputs_filtered ("???", stream);
596 /* Helper function for generic_val_print_enum.
597 This is also used to print enums in TYPE_CODE_FLAGS values. */
600 generic_val_print_enum_1 (struct type *type, LONGEST val,
601 struct ui_file *stream)
606 len = TYPE_NFIELDS (type);
607 for (i = 0; i < len; i++)
610 if (val == TYPE_FIELD_ENUMVAL (type, i))
617 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
619 else if (TYPE_FLAG_ENUM (type))
623 /* We have a "flag" enum, so we try to decompose it into
624 pieces as appropriate. A flag enum has disjoint
625 constants by definition. */
626 fputs_filtered ("(", stream);
627 for (i = 0; i < len; ++i)
631 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
634 fputs_filtered (" | ", stream);
637 val &= ~TYPE_FIELD_ENUMVAL (type, i);
638 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
642 if (first || val != 0)
645 fputs_filtered (" | ", stream);
646 fputs_filtered ("unknown: ", stream);
647 print_longest (stream, 'd', 0, val);
650 fputs_filtered (")", stream);
653 print_longest (stream, 'd', 0, val);
656 /* generic_val_print helper for TYPE_CODE_ENUM. */
659 generic_val_print_enum (struct type *type,
660 int embedded_offset, struct ui_file *stream,
661 struct value *original_value,
662 const struct value_print_options *options)
665 struct gdbarch *gdbarch = get_type_arch (type);
666 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
670 val_print_scalar_formatted (type, embedded_offset,
671 original_value, options, 0, stream);
675 const gdb_byte *valaddr = value_contents_for_printing (original_value);
677 val = unpack_long (type, valaddr + embedded_offset * unit_size);
679 generic_val_print_enum_1 (type, val, stream);
683 /* generic_val_print helper for TYPE_CODE_FLAGS. */
686 generic_val_print_flags (struct type *type,
687 int embedded_offset, struct ui_file *stream,
688 struct value *original_value,
689 const struct value_print_options *options)
693 val_print_scalar_formatted (type, embedded_offset, original_value,
697 const gdb_byte *valaddr = value_contents_for_printing (original_value);
699 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
703 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
706 generic_val_print_func (struct type *type,
707 int embedded_offset, CORE_ADDR address,
708 struct ui_file *stream,
709 struct value *original_value,
710 const struct value_print_options *options)
712 struct gdbarch *gdbarch = get_type_arch (type);
716 val_print_scalar_formatted (type, embedded_offset,
717 original_value, options, 0, stream);
721 /* FIXME, we should consider, at least for ANSI C language,
722 eliminating the distinction made between FUNCs and POINTERs
724 fprintf_filtered (stream, "{");
725 type_print (type, "", stream, -1);
726 fprintf_filtered (stream, "} ");
727 /* Try to print what function it points to, and its address. */
728 print_address_demangle (options, gdbarch, address, stream, demangle);
732 /* generic_val_print helper for TYPE_CODE_BOOL. */
735 generic_val_print_bool (struct type *type,
736 int embedded_offset, struct ui_file *stream,
737 struct value *original_value,
738 const struct value_print_options *options,
739 const struct generic_val_print_decorations *decorations)
742 struct gdbarch *gdbarch = get_type_arch (type);
743 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
745 if (options->format || options->output_format)
747 struct value_print_options opts = *options;
748 opts.format = (options->format ? options->format
749 : options->output_format);
750 val_print_scalar_formatted (type, embedded_offset,
751 original_value, &opts, 0, stream);
755 const gdb_byte *valaddr = value_contents_for_printing (original_value);
757 val = unpack_long (type, valaddr + embedded_offset * unit_size);
759 fputs_filtered (decorations->false_name, stream);
761 fputs_filtered (decorations->true_name, stream);
763 print_longest (stream, 'd', 0, val);
767 /* generic_val_print helper for TYPE_CODE_INT. */
770 generic_val_print_int (struct type *type,
771 int embedded_offset, struct ui_file *stream,
772 struct value *original_value,
773 const struct value_print_options *options)
775 struct value_print_options opts = *options;
777 opts.format = (options->format ? options->format
778 : options->output_format);
779 val_print_scalar_formatted (type, embedded_offset,
780 original_value, &opts, 0, stream);
783 /* generic_val_print helper for TYPE_CODE_CHAR. */
786 generic_val_print_char (struct type *type, struct type *unresolved_type,
788 struct ui_file *stream,
789 struct value *original_value,
790 const struct value_print_options *options)
793 struct gdbarch *gdbarch = get_type_arch (type);
794 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
796 if (options->format || options->output_format)
798 struct value_print_options opts = *options;
800 opts.format = (options->format ? options->format
801 : options->output_format);
802 val_print_scalar_formatted (type, embedded_offset,
803 original_value, &opts, 0, stream);
807 const gdb_byte *valaddr = value_contents_for_printing (original_value);
809 val = unpack_long (type, valaddr + embedded_offset * unit_size);
810 if (TYPE_UNSIGNED (type))
811 fprintf_filtered (stream, "%u", (unsigned int) val);
813 fprintf_filtered (stream, "%d", (int) val);
814 fputs_filtered (" ", stream);
815 LA_PRINT_CHAR (val, unresolved_type, stream);
819 /* generic_val_print helper for TYPE_CODE_FLT. */
822 generic_val_print_float (struct type *type,
823 int embedded_offset, struct ui_file *stream,
824 struct value *original_value,
825 const struct value_print_options *options)
827 struct gdbarch *gdbarch = get_type_arch (type);
828 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
832 val_print_scalar_formatted (type, embedded_offset,
833 original_value, options, 0, stream);
837 const gdb_byte *valaddr = value_contents_for_printing (original_value);
839 print_floating (valaddr + embedded_offset * unit_size, type, stream);
843 /* generic_val_print helper for TYPE_CODE_DECFLOAT. */
846 generic_val_print_decfloat (struct type *type,
847 int embedded_offset, struct ui_file *stream,
848 struct value *original_value,
849 const struct value_print_options *options)
851 struct gdbarch *gdbarch = get_type_arch (type);
852 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
855 val_print_scalar_formatted (type, embedded_offset, original_value,
859 const gdb_byte *valaddr = value_contents_for_printing (original_value);
861 print_decimal_floating (valaddr + embedded_offset * unit_size, type,
866 /* generic_val_print helper for TYPE_CODE_COMPLEX. */
869 generic_val_print_complex (struct type *type,
870 int embedded_offset, struct ui_file *stream,
871 struct value *original_value,
872 const struct value_print_options *options,
873 const struct generic_val_print_decorations
876 struct gdbarch *gdbarch = get_type_arch (type);
877 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
878 const gdb_byte *valaddr = value_contents_for_printing (original_value);
880 fprintf_filtered (stream, "%s", decorations->complex_prefix);
882 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
883 embedded_offset, original_value, options, 0,
886 print_floating (valaddr + embedded_offset * unit_size,
887 TYPE_TARGET_TYPE (type), stream);
888 fprintf_filtered (stream, "%s", decorations->complex_infix);
890 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
892 + type_length_units (TYPE_TARGET_TYPE (type)),
893 original_value, options, 0, stream);
895 print_floating (valaddr + embedded_offset * unit_size
896 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
897 TYPE_TARGET_TYPE (type), stream);
898 fprintf_filtered (stream, "%s", decorations->complex_suffix);
901 /* A generic val_print that is suitable for use by language
902 implementations of the la_val_print method. This function can
903 handle most type codes, though not all, notably exception
904 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
907 Most arguments are as to val_print.
909 The additional DECORATIONS argument can be used to customize the
910 output in some small, language-specific ways. */
913 generic_val_print (struct type *type,
914 int embedded_offset, CORE_ADDR address,
915 struct ui_file *stream, int recurse,
916 struct value *original_value,
917 const struct value_print_options *options,
918 const struct generic_val_print_decorations *decorations)
920 struct type *unresolved_type = type;
922 type = check_typedef (type);
923 switch (TYPE_CODE (type))
925 case TYPE_CODE_ARRAY:
926 generic_val_print_array (type, embedded_offset, address, stream,
927 recurse, original_value, options, decorations);
930 case TYPE_CODE_MEMBERPTR:
931 generic_val_print_memberptr (type, embedded_offset, stream,
932 original_value, options);
936 generic_val_print_ptr (type, embedded_offset, stream,
937 original_value, options);
941 case TYPE_CODE_RVALUE_REF:
942 generic_val_print_ref (type, embedded_offset, stream, recurse,
943 original_value, options);
947 generic_val_print_enum (type, embedded_offset, stream,
948 original_value, options);
951 case TYPE_CODE_FLAGS:
952 generic_val_print_flags (type, embedded_offset, stream,
953 original_value, options);
957 case TYPE_CODE_METHOD:
958 generic_val_print_func (type, embedded_offset, address, stream,
959 original_value, options);
963 generic_val_print_bool (type, embedded_offset, stream,
964 original_value, options, decorations);
967 case TYPE_CODE_RANGE:
968 /* FIXME: create_static_range_type does not set the unsigned bit in a
969 range type (I think it probably should copy it from the
970 target type), so we won't print values which are too large to
971 fit in a signed integer correctly. */
972 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
973 print with the target type, though, because the size of our
974 type and the target type might differ). */
979 generic_val_print_int (type, embedded_offset, stream,
980 original_value, options);
984 generic_val_print_char (type, unresolved_type, embedded_offset,
985 stream, original_value, options);
989 generic_val_print_float (type, embedded_offset, stream,
990 original_value, options);
993 case TYPE_CODE_DECFLOAT:
994 generic_val_print_decfloat (type, embedded_offset, stream,
995 original_value, options);
999 fputs_filtered (decorations->void_name, stream);
1002 case TYPE_CODE_ERROR:
1003 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
1006 case TYPE_CODE_UNDEF:
1007 /* This happens (without TYPE_STUB set) on systems which don't use
1008 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
1009 and no complete type for struct foo in that file. */
1010 fprintf_filtered (stream, _("<incomplete type>"));
1013 case TYPE_CODE_COMPLEX:
1014 generic_val_print_complex (type, embedded_offset, stream,
1015 original_value, options, decorations);
1018 case TYPE_CODE_UNION:
1019 case TYPE_CODE_STRUCT:
1020 case TYPE_CODE_METHODPTR:
1022 error (_("Unhandled type code %d in symbol table."),
1028 /* Print using the given LANGUAGE the data of type TYPE located at
1029 VAL's contents buffer + EMBEDDED_OFFSET (within GDB), which came
1030 from the inferior at address ADDRESS + EMBEDDED_OFFSET, onto
1031 stdio stream STREAM according to OPTIONS. VAL is the whole object
1032 that came from ADDRESS.
1034 The language printers will pass down an adjusted EMBEDDED_OFFSET to
1035 further helper subroutines as subfields of TYPE are printed. In
1036 such cases, VAL is passed down unadjusted, so
1037 that VAL can be queried for metadata about the contents data being
1038 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
1039 buffer. For example: "has this field been optimized out", or "I'm
1040 printing an object while inspecting a traceframe; has this
1041 particular piece of data been collected?".
1043 RECURSE indicates the amount of indentation to supply before
1044 continuation lines; this amount is roughly twice the value of
1048 val_print (struct type *type, LONGEST embedded_offset,
1049 CORE_ADDR address, struct ui_file *stream, int recurse,
1051 const struct value_print_options *options,
1052 const struct language_defn *language)
1055 struct value_print_options local_opts = *options;
1056 struct type *real_type = check_typedef (type);
1058 if (local_opts.prettyformat == Val_prettyformat_default)
1059 local_opts.prettyformat = (local_opts.prettyformat_structs
1060 ? Val_prettyformat : Val_no_prettyformat);
1064 /* Ensure that the type is complete and not just a stub. If the type is
1065 only a stub and we can't find and substitute its complete type, then
1066 print appropriate string and return. */
1068 if (TYPE_STUB (real_type))
1070 fprintf_filtered (stream, _("<incomplete type>"));
1075 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
1080 ret = apply_ext_lang_val_pretty_printer (type, embedded_offset,
1081 address, stream, recurse,
1082 val, options, language);
1087 /* Handle summary mode. If the value is a scalar, print it;
1088 otherwise, print an ellipsis. */
1089 if (options->summary && !val_print_scalar_type_p (type))
1091 fprintf_filtered (stream, "...");
1097 language->la_val_print (type, embedded_offset, address,
1098 stream, recurse, val,
1101 CATCH (except, RETURN_MASK_ERROR)
1103 fprintf_filtered (stream, _("<error reading variable>"));
1108 /* Check whether the value VAL is printable. Return 1 if it is;
1109 return 0 and print an appropriate error message to STREAM according to
1110 OPTIONS if it is not. */
1113 value_check_printable (struct value *val, struct ui_file *stream,
1114 const struct value_print_options *options)
1118 fprintf_filtered (stream, _("<address of value unknown>"));
1122 if (value_entirely_optimized_out (val))
1124 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1125 fprintf_filtered (stream, "...");
1127 val_print_optimized_out (val, stream);
1131 if (value_entirely_unavailable (val))
1133 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1134 fprintf_filtered (stream, "...");
1136 val_print_unavailable (stream);
1140 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
1142 fprintf_filtered (stream, _("<internal function %s>"),
1143 value_internal_function_name (val));
1147 if (type_not_associated (value_type (val)))
1149 val_print_not_associated (stream);
1153 if (type_not_allocated (value_type (val)))
1155 val_print_not_allocated (stream);
1162 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1165 This is a preferable interface to val_print, above, because it uses
1166 GDB's value mechanism. */
1169 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1170 const struct value_print_options *options,
1171 const struct language_defn *language)
1173 if (!value_check_printable (val, stream, options))
1176 if (language->la_language == language_ada)
1177 /* The value might have a dynamic type, which would cause trouble
1178 below when trying to extract the value contents (since the value
1179 size is determined from the type size which is unknown). So
1180 get a fixed representation of our value. */
1181 val = ada_to_fixed_value (val);
1183 if (value_lazy (val))
1184 value_fetch_lazy (val);
1186 val_print (value_type (val),
1187 value_embedded_offset (val), value_address (val),
1189 val, options, language);
1192 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1193 is printed using the current_language syntax. */
1196 value_print (struct value *val, struct ui_file *stream,
1197 const struct value_print_options *options)
1199 if (!value_check_printable (val, stream, options))
1205 = apply_ext_lang_val_pretty_printer (value_type (val),
1206 value_embedded_offset (val),
1207 value_address (val),
1209 val, options, current_language);
1215 LA_VALUE_PRINT (val, stream, options);
1219 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1220 struct ui_file *stream)
1222 ULONGEST val = unpack_long (type, valaddr);
1223 int field, nfields = TYPE_NFIELDS (type);
1224 struct gdbarch *gdbarch = get_type_arch (type);
1225 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1227 fputs_filtered ("[", stream);
1228 for (field = 0; field < nfields; field++)
1230 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1232 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1234 if (field_type == bool_type
1235 /* We require boolean types here to be one bit wide. This is a
1236 problematic place to notify the user of an internal error
1237 though. Instead just fall through and print the field as an
1239 && TYPE_FIELD_BITSIZE (type, field) == 1)
1241 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1242 fprintf_filtered (stream, " %s",
1243 TYPE_FIELD_NAME (type, field));
1247 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1249 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1251 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1252 field_val &= ((ULONGEST) 1 << field_len) - 1;
1253 fprintf_filtered (stream, " %s=",
1254 TYPE_FIELD_NAME (type, field));
1255 if (TYPE_CODE (field_type) == TYPE_CODE_ENUM)
1256 generic_val_print_enum_1 (field_type, field_val, stream);
1258 print_longest (stream, 'd', 0, field_val);
1262 fputs_filtered (" ]", stream);
1265 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1266 according to OPTIONS and SIZE on STREAM. Format i is not supported
1269 This is how the elements of an array or structure are printed
1273 val_print_scalar_formatted (struct type *type,
1274 LONGEST embedded_offset,
1276 const struct value_print_options *options,
1278 struct ui_file *stream)
1280 struct gdbarch *arch = get_type_arch (type);
1281 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1283 gdb_assert (val != NULL);
1285 /* If we get here with a string format, try again without it. Go
1286 all the way back to the language printers, which may call us
1288 if (options->format == 's')
1290 struct value_print_options opts = *options;
1293 val_print (type, embedded_offset, 0, stream, 0, val, &opts,
1298 /* value_contents_for_printing fetches all VAL's contents. They are
1299 needed to check whether VAL is optimized-out or unavailable
1301 const gdb_byte *valaddr = value_contents_for_printing (val);
1303 /* A scalar object that does not have all bits available can't be
1304 printed, because all bits contribute to its representation. */
1305 if (value_bits_any_optimized_out (val,
1306 TARGET_CHAR_BIT * embedded_offset,
1307 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1308 val_print_optimized_out (val, stream);
1309 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1310 val_print_unavailable (stream);
1312 print_scalar_formatted (valaddr + embedded_offset * unit_size, type,
1313 options, size, stream);
1316 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1317 The raison d'etre of this function is to consolidate printing of
1318 LONG_LONG's into this one function. The format chars b,h,w,g are
1319 from print_scalar_formatted(). Numbers are printed using C
1322 USE_C_FORMAT means to use C format in all cases. Without it,
1323 'o' and 'x' format do not include the standard C radix prefix
1326 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1327 and was intended to request formating according to the current
1328 language and would be used for most integers that GDB prints. The
1329 exceptional cases were things like protocols where the format of
1330 the integer is a protocol thing, not a user-visible thing). The
1331 parameter remains to preserve the information of what things might
1332 be printed with language-specific format, should we ever resurrect
1336 print_longest (struct ui_file *stream, int format, int use_c_format,
1344 val = int_string (val_long, 10, 1, 0, 1); break;
1346 val = int_string (val_long, 10, 0, 0, 1); break;
1348 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1350 val = int_string (val_long, 16, 0, 2, 1); break;
1352 val = int_string (val_long, 16, 0, 4, 1); break;
1354 val = int_string (val_long, 16, 0, 8, 1); break;
1356 val = int_string (val_long, 16, 0, 16, 1); break;
1359 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1361 internal_error (__FILE__, __LINE__,
1362 _("failed internal consistency check"));
1364 fputs_filtered (val, stream);
1367 /* This used to be a macro, but I don't think it is called often enough
1368 to merit such treatment. */
1369 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1370 arguments to a function, number in a value history, register number, etc.)
1371 where the value must not be larger than can fit in an int. */
1374 longest_to_int (LONGEST arg)
1376 /* Let the compiler do the work. */
1377 int rtnval = (int) arg;
1379 /* Check for overflows or underflows. */
1380 if (sizeof (LONGEST) > sizeof (int))
1384 error (_("Value out of range."));
1390 /* Print a floating point value of type TYPE (not always a
1391 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
1394 print_floating (const gdb_byte *valaddr, struct type *type,
1395 struct ui_file *stream)
1399 const struct floatformat *fmt = NULL;
1400 unsigned len = TYPE_LENGTH (type);
1401 enum float_kind kind;
1403 /* If it is a floating-point, check for obvious problems. */
1404 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1405 fmt = floatformat_from_type (type);
1408 kind = floatformat_classify (fmt, valaddr);
1409 if (kind == float_nan)
1411 if (floatformat_is_negative (fmt, valaddr))
1412 fprintf_filtered (stream, "-");
1413 fprintf_filtered (stream, "nan(");
1414 fputs_filtered ("0x", stream);
1415 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1416 fprintf_filtered (stream, ")");
1419 else if (kind == float_infinite)
1421 if (floatformat_is_negative (fmt, valaddr))
1422 fputs_filtered ("-", stream);
1423 fputs_filtered ("inf", stream);
1428 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1429 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1430 needs to be used as that takes care of any necessary type
1431 conversions. Such conversions are of course direct to DOUBLEST
1432 and disregard any possible target floating point limitations.
1433 For instance, a u64 would be converted and displayed exactly on a
1434 host with 80 bit DOUBLEST but with loss of information on a host
1435 with 64 bit DOUBLEST. */
1437 doub = unpack_double (type, valaddr, &inv);
1440 fprintf_filtered (stream, "<invalid float value>");
1444 /* FIXME: kettenis/2001-01-20: The following code makes too much
1445 assumptions about the host and target floating point format. */
1447 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1448 not necessarily be a TYPE_CODE_FLT, the below ignores that and
1449 instead uses the type's length to determine the precision of the
1450 floating-point value being printed. */
1452 if (len < sizeof (double))
1453 fprintf_filtered (stream, "%.9g", (double) doub);
1454 else if (len == sizeof (double))
1455 fprintf_filtered (stream, "%.17g", (double) doub);
1457 #ifdef PRINTF_HAS_LONG_DOUBLE
1458 fprintf_filtered (stream, "%.35Lg", doub);
1460 /* This at least wins with values that are representable as
1462 fprintf_filtered (stream, "%.17g", (double) doub);
1467 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1468 struct ui_file *stream)
1470 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1471 unsigned len = TYPE_LENGTH (type);
1473 std::string str = decimal_to_string (valaddr, len, byte_order);
1474 fputs_filtered (str.c_str (), stream);
1478 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1479 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1484 bool seen_a_one = false;
1486 /* Declared "int" so it will be signed.
1487 This ensures that right shift will shift in zeros. */
1489 const int mask = 0x080;
1491 if (byte_order == BFD_ENDIAN_BIG)
1497 /* Every byte has 8 binary characters; peel off
1498 and print from the MSB end. */
1500 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1502 if (*p & (mask >> i))
1507 if (zero_pad || seen_a_one || b == '1')
1508 fputc_filtered (b, stream);
1516 for (p = valaddr + len - 1;
1520 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1522 if (*p & (mask >> i))
1527 if (zero_pad || seen_a_one || b == '1')
1528 fputc_filtered (b, stream);
1535 /* When not zero-padding, ensure that something is printed when the
1537 if (!zero_pad && !seen_a_one)
1538 fputc_filtered ('0', stream);
1541 /* A helper for print_octal_chars that emits a single octal digit,
1542 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1545 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1547 if (*seen_a_one || digit != 0)
1548 fprintf_filtered (stream, "%o", digit);
1553 /* VALADDR points to an integer of LEN bytes.
1554 Print it in octal on stream or format it in buf. */
1557 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1558 unsigned len, enum bfd_endian byte_order)
1561 unsigned char octa1, octa2, octa3, carry;
1564 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1565 * the extra bits, which cycle every three bytes:
1567 * Byte side: 0 1 2 3
1569 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1571 * Octal side: 0 1 carry 3 4 carry ...
1573 * Cycle number: 0 1 2
1575 * But of course we are printing from the high side, so we have to
1576 * figure out where in the cycle we are so that we end up with no
1577 * left over bits at the end.
1579 #define BITS_IN_OCTAL 3
1580 #define HIGH_ZERO 0340
1581 #define LOW_ZERO 0034
1582 #define CARRY_ZERO 0003
1583 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1584 "cycle zero constants are wrong");
1585 #define HIGH_ONE 0200
1586 #define MID_ONE 0160
1587 #define LOW_ONE 0016
1588 #define CARRY_ONE 0001
1589 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1590 "cycle one constants are wrong");
1591 #define HIGH_TWO 0300
1592 #define MID_TWO 0070
1593 #define LOW_TWO 0007
1594 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1595 "cycle two constants are wrong");
1597 /* For 32 we start in cycle 2, with two bits and one bit carry;
1598 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1600 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1603 fputs_filtered ("0", stream);
1604 bool seen_a_one = false;
1605 if (byte_order == BFD_ENDIAN_BIG)
1614 /* No carry in, carry out two bits. */
1616 octa1 = (HIGH_ZERO & *p) >> 5;
1617 octa2 = (LOW_ZERO & *p) >> 2;
1618 carry = (CARRY_ZERO & *p);
1619 emit_octal_digit (stream, &seen_a_one, octa1);
1620 emit_octal_digit (stream, &seen_a_one, octa2);
1624 /* Carry in two bits, carry out one bit. */
1626 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1627 octa2 = (MID_ONE & *p) >> 4;
1628 octa3 = (LOW_ONE & *p) >> 1;
1629 carry = (CARRY_ONE & *p);
1630 emit_octal_digit (stream, &seen_a_one, octa1);
1631 emit_octal_digit (stream, &seen_a_one, octa2);
1632 emit_octal_digit (stream, &seen_a_one, octa3);
1636 /* Carry in one bit, no carry out. */
1638 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1639 octa2 = (MID_TWO & *p) >> 3;
1640 octa3 = (LOW_TWO & *p);
1642 emit_octal_digit (stream, &seen_a_one, octa1);
1643 emit_octal_digit (stream, &seen_a_one, octa2);
1644 emit_octal_digit (stream, &seen_a_one, octa3);
1648 error (_("Internal error in octal conversion;"));
1652 cycle = cycle % BITS_IN_OCTAL;
1657 for (p = valaddr + len - 1;
1664 /* Carry out, no carry in */
1666 octa1 = (HIGH_ZERO & *p) >> 5;
1667 octa2 = (LOW_ZERO & *p) >> 2;
1668 carry = (CARRY_ZERO & *p);
1669 emit_octal_digit (stream, &seen_a_one, octa1);
1670 emit_octal_digit (stream, &seen_a_one, octa2);
1674 /* Carry in, carry out */
1676 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1677 octa2 = (MID_ONE & *p) >> 4;
1678 octa3 = (LOW_ONE & *p) >> 1;
1679 carry = (CARRY_ONE & *p);
1680 emit_octal_digit (stream, &seen_a_one, octa1);
1681 emit_octal_digit (stream, &seen_a_one, octa2);
1682 emit_octal_digit (stream, &seen_a_one, octa3);
1686 /* Carry in, no carry out */
1688 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1689 octa2 = (MID_TWO & *p) >> 3;
1690 octa3 = (LOW_TWO & *p);
1692 emit_octal_digit (stream, &seen_a_one, octa1);
1693 emit_octal_digit (stream, &seen_a_one, octa2);
1694 emit_octal_digit (stream, &seen_a_one, octa3);
1698 error (_("Internal error in octal conversion;"));
1702 cycle = cycle % BITS_IN_OCTAL;
1708 /* Possibly negate the integer represented by BYTES. It contains LEN
1709 bytes in the specified byte order. If the integer is negative,
1710 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1711 nothing and return false. */
1714 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1715 enum bfd_endian byte_order,
1716 gdb::byte_vector *out_vec)
1719 if (byte_order == BFD_ENDIAN_BIG)
1720 sign_byte = bytes[0];
1722 sign_byte = bytes[len - 1];
1723 if ((sign_byte & 0x80) == 0)
1726 out_vec->resize (len);
1728 /* Compute -x == 1 + ~x. */
1729 if (byte_order == BFD_ENDIAN_LITTLE)
1732 for (unsigned i = 0; i < len; ++i)
1734 unsigned tem = (0xff & ~bytes[i]) + carry;
1735 (*out_vec)[i] = tem & 0xff;
1742 for (unsigned i = len; i > 0; --i)
1744 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1745 (*out_vec)[i - 1] = tem & 0xff;
1753 /* VALADDR points to an integer of LEN bytes.
1754 Print it in decimal on stream or format it in buf. */
1757 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1758 unsigned len, bool is_signed,
1759 enum bfd_endian byte_order)
1762 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1763 #define CARRY_LEFT( x ) ((x) % TEN)
1764 #define SHIFT( x ) ((x) << 4)
1765 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1766 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1771 int i, j, decimal_digits;
1775 gdb::byte_vector negated_bytes;
1777 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1779 fputs_filtered ("-", stream);
1780 valaddr = negated_bytes.data ();
1783 /* Base-ten number is less than twice as many digits
1784 as the base 16 number, which is 2 digits per byte. */
1786 decimal_len = len * 2 * 2;
1787 std::vector<unsigned char> digits (decimal_len, 0);
1789 /* Ok, we have an unknown number of bytes of data to be printed in
1792 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1793 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1794 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1796 * The trick is that "digits" holds a base-10 number, but sometimes
1797 * the individual digits are > 10.
1799 * Outer loop is per nibble (hex digit) of input, from MSD end to
1802 decimal_digits = 0; /* Number of decimal digits so far */
1803 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1805 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1808 * Multiply current base-ten number by 16 in place.
1809 * Each digit was between 0 and 9, now is between
1812 for (j = 0; j < decimal_digits; j++)
1814 digits[j] = SHIFT (digits[j]);
1817 /* Take the next nibble off the input and add it to what
1818 * we've got in the LSB position. Bottom 'digit' is now
1819 * between 0 and 159.
1821 * "flip" is used to run this loop twice for each byte.
1825 /* Take top nibble. */
1827 digits[0] += HIGH_NIBBLE (*p);
1832 /* Take low nibble and bump our pointer "p". */
1834 digits[0] += LOW_NIBBLE (*p);
1835 if (byte_order == BFD_ENDIAN_BIG)
1842 /* Re-decimalize. We have to do this often enough
1843 * that we don't overflow, but once per nibble is
1844 * overkill. Easier this way, though. Note that the
1845 * carry is often larger than 10 (e.g. max initial
1846 * carry out of lowest nibble is 15, could bubble all
1847 * the way up greater than 10). So we have to do
1848 * the carrying beyond the last current digit.
1851 for (j = 0; j < decimal_len - 1; j++)
1855 /* "/" won't handle an unsigned char with
1856 * a value that if signed would be negative.
1857 * So extend to longword int via "dummy".
1860 carry = CARRY_OUT (dummy);
1861 digits[j] = CARRY_LEFT (dummy);
1863 if (j >= decimal_digits && carry == 0)
1866 * All higher digits are 0 and we
1867 * no longer have a carry.
1869 * Note: "j" is 0-based, "decimal_digits" is
1872 decimal_digits = j + 1;
1878 /* Ok, now "digits" is the decimal representation, with
1879 the "decimal_digits" actual digits. Print! */
1881 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1886 fprintf_filtered (stream, "%1d", digits[i]);
1890 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1893 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1894 unsigned len, enum bfd_endian byte_order,
1899 fputs_filtered ("0x", stream);
1900 if (byte_order == BFD_ENDIAN_BIG)
1906 /* Strip leading 0 bytes, but be sure to leave at least a
1907 single byte at the end. */
1908 for (; p < valaddr + len - 1 && !*p; ++p)
1912 const gdb_byte *first = p;
1917 /* When not zero-padding, use a different format for the
1918 very first byte printed. */
1919 if (!zero_pad && p == first)
1920 fprintf_filtered (stream, "%x", *p);
1922 fprintf_filtered (stream, "%02x", *p);
1927 p = valaddr + len - 1;
1931 /* Strip leading 0 bytes, but be sure to leave at least a
1932 single byte at the end. */
1933 for (; p >= valaddr + 1 && !*p; --p)
1937 const gdb_byte *first = p;
1942 /* When not zero-padding, use a different format for the
1943 very first byte printed. */
1944 if (!zero_pad && p == first)
1945 fprintf_filtered (stream, "%x", *p);
1947 fprintf_filtered (stream, "%02x", *p);
1952 /* VALADDR points to a char integer of LEN bytes.
1953 Print it out in appropriate language form on stream.
1954 Omit any leading zero chars. */
1957 print_char_chars (struct ui_file *stream, struct type *type,
1958 const gdb_byte *valaddr,
1959 unsigned len, enum bfd_endian byte_order)
1963 if (byte_order == BFD_ENDIAN_BIG)
1966 while (p < valaddr + len - 1 && *p == 0)
1969 while (p < valaddr + len)
1971 LA_EMIT_CHAR (*p, type, stream, '\'');
1977 p = valaddr + len - 1;
1978 while (p > valaddr && *p == 0)
1981 while (p >= valaddr)
1983 LA_EMIT_CHAR (*p, type, stream, '\'');
1989 /* Print function pointer with inferior address ADDRESS onto stdio
1993 print_function_pointer_address (const struct value_print_options *options,
1994 struct gdbarch *gdbarch,
1996 struct ui_file *stream)
1999 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
2002 /* If the function pointer is represented by a description, print
2003 the address of the description. */
2004 if (options->addressprint && func_addr != address)
2006 fputs_filtered ("@", stream);
2007 fputs_filtered (paddress (gdbarch, address), stream);
2008 fputs_filtered (": ", stream);
2010 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
2014 /* Print on STREAM using the given OPTIONS the index for the element
2015 at INDEX of an array whose index type is INDEX_TYPE. */
2018 maybe_print_array_index (struct type *index_type, LONGEST index,
2019 struct ui_file *stream,
2020 const struct value_print_options *options)
2022 struct value *index_value;
2024 if (!options->print_array_indexes)
2027 index_value = value_from_longest (index_type, index);
2029 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
2032 /* Called by various <lang>_val_print routines to print elements of an
2033 array in the form "<elem1>, <elem2>, <elem3>, ...".
2035 (FIXME?) Assumes array element separator is a comma, which is correct
2036 for all languages currently handled.
2037 (FIXME?) Some languages have a notation for repeated array elements,
2038 perhaps we should try to use that notation when appropriate. */
2041 val_print_array_elements (struct type *type,
2042 LONGEST embedded_offset,
2043 CORE_ADDR address, struct ui_file *stream,
2046 const struct value_print_options *options,
2049 unsigned int things_printed = 0;
2051 struct type *elttype, *index_type, *base_index_type;
2053 /* Position of the array element we are examining to see
2054 whether it is repeated. */
2056 /* Number of repetitions we have detected so far. */
2058 LONGEST low_bound, high_bound;
2059 LONGEST low_pos, high_pos;
2061 elttype = TYPE_TARGET_TYPE (type);
2062 eltlen = type_length_units (check_typedef (elttype));
2063 index_type = TYPE_INDEX_TYPE (type);
2065 if (get_array_bounds (type, &low_bound, &high_bound))
2067 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
2068 base_index_type = TYPE_TARGET_TYPE (index_type);
2070 base_index_type = index_type;
2072 /* Non-contiguous enumerations types can by used as index types
2073 in some languages (e.g. Ada). In this case, the array length
2074 shall be computed from the positions of the first and last
2075 literal in the enumeration type, and not from the values
2076 of these literals. */
2077 if (!discrete_position (base_index_type, low_bound, &low_pos)
2078 || !discrete_position (base_index_type, high_bound, &high_pos))
2080 warning (_("unable to get positions in array, use bounds instead"));
2081 low_pos = low_bound;
2082 high_pos = high_bound;
2085 /* The array length should normally be HIGH_POS - LOW_POS + 1.
2086 But we have to be a little extra careful, because some languages
2087 such as Ada allow LOW_POS to be greater than HIGH_POS for
2088 empty arrays. In that situation, the array length is just zero,
2090 if (low_pos > high_pos)
2093 len = high_pos - low_pos + 1;
2097 warning (_("unable to get bounds of array, assuming null array"));
2102 annotate_array_section_begin (i, elttype);
2104 for (; i < len && things_printed < options->print_max; i++)
2108 if (options->prettyformat_arrays)
2110 fprintf_filtered (stream, ",\n");
2111 print_spaces_filtered (2 + 2 * recurse, stream);
2115 fprintf_filtered (stream, ", ");
2118 wrap_here (n_spaces (2 + 2 * recurse));
2119 maybe_print_array_index (index_type, i + low_bound,
2124 /* Only check for reps if repeat_count_threshold is not set to
2125 UINT_MAX (unlimited). */
2126 if (options->repeat_count_threshold < UINT_MAX)
2129 && value_contents_eq (val,
2130 embedded_offset + i * eltlen,
2141 if (reps > options->repeat_count_threshold)
2143 val_print (elttype, embedded_offset + i * eltlen,
2144 address, stream, recurse + 1, val, options,
2146 annotate_elt_rep (reps);
2147 fprintf_filtered (stream, " <repeats %u times>", reps);
2148 annotate_elt_rep_end ();
2151 things_printed += options->repeat_count_threshold;
2155 val_print (elttype, embedded_offset + i * eltlen,
2157 stream, recurse + 1, val, options, current_language);
2162 annotate_array_section_end ();
2165 fprintf_filtered (stream, "...");
2169 /* Read LEN bytes of target memory at address MEMADDR, placing the
2170 results in GDB's memory at MYADDR. Returns a count of the bytes
2171 actually read, and optionally a target_xfer_status value in the
2172 location pointed to by ERRPTR if ERRPTR is non-null. */
2174 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
2175 function be eliminated. */
2178 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
2179 int len, int *errptr)
2181 int nread; /* Number of bytes actually read. */
2182 int errcode; /* Error from last read. */
2184 /* First try a complete read. */
2185 errcode = target_read_memory (memaddr, myaddr, len);
2193 /* Loop, reading one byte at a time until we get as much as we can. */
2194 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2196 errcode = target_read_memory (memaddr++, myaddr++, 1);
2198 /* If an error, the last read was unsuccessful, so adjust count. */
2211 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
2212 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
2213 allocated buffer containing the string, which the caller is responsible to
2214 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
2215 success, or a target_xfer_status on failure.
2217 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2218 (including eventual NULs in the middle or end of the string).
2220 If LEN is -1, stops at the first null character (not necessarily
2221 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2222 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2225 Unless an exception is thrown, BUFFER will always be allocated, even on
2226 failure. In this case, some characters might have been read before the
2227 failure happened. Check BYTES_READ to recognize this situation.
2229 Note: There was a FIXME asking to make this code use target_read_string,
2230 but this function is more general (can read past null characters, up to
2231 given LEN). Besides, it is used much more often than target_read_string
2232 so it is more tested. Perhaps callers of target_read_string should use
2233 this function instead? */
2236 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2237 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
2239 int errcode; /* Errno returned from bad reads. */
2240 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2241 gdb_byte *bufptr; /* Pointer to next available byte in
2243 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2245 /* Loop until we either have all the characters, or we encounter
2246 some error, such as bumping into the end of the address space. */
2250 old_chain = make_cleanup (free_current_contents, buffer);
2254 /* We want fetchlimit chars, so we might as well read them all in
2256 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2258 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
2261 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2263 addr += nfetch * width;
2264 bufptr += nfetch * width;
2268 unsigned long bufsize = 0;
2269 unsigned int chunksize; /* Size of each fetch, in chars. */
2270 int found_nul; /* Non-zero if we found the nul char. */
2271 gdb_byte *limit; /* First location past end of fetch buffer. */
2274 /* We are looking for a NUL terminator to end the fetching, so we
2275 might as well read in blocks that are large enough to be efficient,
2276 but not so large as to be slow if fetchlimit happens to be large.
2277 So we choose the minimum of 8 and fetchlimit. We used to use 200
2278 instead of 8 but 200 is way too big for remote debugging over a
2280 chunksize = std::min (8u, fetchlimit);
2285 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2287 if (*buffer == NULL)
2288 *buffer = (gdb_byte *) xmalloc (nfetch * width);
2290 *buffer = (gdb_byte *) xrealloc (*buffer,
2291 (nfetch + bufsize) * width);
2293 bufptr = *buffer + bufsize * width;
2296 /* Read as much as we can. */
2297 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2300 /* Scan this chunk for the null character that terminates the string
2301 to print. If found, we don't need to fetch any more. Note
2302 that bufptr is explicitly left pointing at the next character
2303 after the null character, or at the next character after the end
2306 limit = bufptr + nfetch * width;
2307 while (bufptr < limit)
2311 c = extract_unsigned_integer (bufptr, width, byte_order);
2316 /* We don't care about any error which happened after
2317 the NUL terminator. */
2324 while (errcode == 0 /* no error */
2325 && bufptr - *buffer < fetchlimit * width /* no overrun */
2326 && !found_nul); /* haven't found NUL yet */
2329 { /* Length of string is really 0! */
2330 /* We always allocate *buffer. */
2331 *buffer = bufptr = (gdb_byte *) xmalloc (1);
2335 /* bufptr and addr now point immediately beyond the last byte which we
2336 consider part of the string (including a '\0' which ends the string). */
2337 *bytes_read = bufptr - *buffer;
2341 discard_cleanups (old_chain);
2346 /* Return true if print_wchar can display W without resorting to a
2347 numeric escape, false otherwise. */
2350 wchar_printable (gdb_wchar_t w)
2352 return (gdb_iswprint (w)
2353 || w == LCST ('\a') || w == LCST ('\b')
2354 || w == LCST ('\f') || w == LCST ('\n')
2355 || w == LCST ('\r') || w == LCST ('\t')
2356 || w == LCST ('\v'));
2359 /* A helper function that converts the contents of STRING to wide
2360 characters and then appends them to OUTPUT. */
2363 append_string_as_wide (const char *string,
2364 struct obstack *output)
2366 for (; *string; ++string)
2368 gdb_wchar_t w = gdb_btowc (*string);
2369 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2373 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2374 original (target) bytes representing the character, ORIG_LEN is the
2375 number of valid bytes. WIDTH is the number of bytes in a base
2376 characters of the type. OUTPUT is an obstack to which wide
2377 characters are emitted. QUOTER is a (narrow) character indicating
2378 the style of quotes surrounding the character to be printed.
2379 NEED_ESCAPE is an in/out flag which is used to track numeric
2380 escapes across calls. */
2383 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2384 int orig_len, int width,
2385 enum bfd_endian byte_order,
2386 struct obstack *output,
2387 int quoter, int *need_escapep)
2389 int need_escape = *need_escapep;
2393 /* iswprint implementation on Windows returns 1 for tab character.
2394 In order to avoid different printout on this host, we explicitly
2395 use wchar_printable function. */
2399 obstack_grow_wstr (output, LCST ("\\a"));
2402 obstack_grow_wstr (output, LCST ("\\b"));
2405 obstack_grow_wstr (output, LCST ("\\f"));
2408 obstack_grow_wstr (output, LCST ("\\n"));
2411 obstack_grow_wstr (output, LCST ("\\r"));
2414 obstack_grow_wstr (output, LCST ("\\t"));
2417 obstack_grow_wstr (output, LCST ("\\v"));
2421 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2423 && w != LCST ('9'))))
2425 gdb_wchar_t wchar = w;
2427 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2428 obstack_grow_wstr (output, LCST ("\\"));
2429 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2435 for (i = 0; i + width <= orig_len; i += width)
2440 value = extract_unsigned_integer (&orig[i], width,
2442 /* If the value fits in 3 octal digits, print it that
2443 way. Otherwise, print it as a hex escape. */
2445 xsnprintf (octal, sizeof (octal), "\\%.3o",
2446 (int) (value & 0777));
2448 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2449 append_string_as_wide (octal, output);
2451 /* If we somehow have extra bytes, print them now. */
2452 while (i < orig_len)
2456 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2457 append_string_as_wide (octal, output);
2468 /* Print the character C on STREAM as part of the contents of a
2469 literal string whose delimiter is QUOTER. ENCODING names the
2473 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2474 int quoter, const char *encoding)
2476 enum bfd_endian byte_order
2477 = gdbarch_byte_order (get_type_arch (type));
2479 int need_escape = 0;
2481 buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2482 pack_long (buf, type, c);
2484 wchar_iterator iter (buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2486 /* This holds the printable form of the wchar_t data. */
2487 auto_obstack wchar_buf;
2493 const gdb_byte *buf;
2495 int print_escape = 1;
2496 enum wchar_iterate_result result;
2498 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2503 /* If all characters are printable, print them. Otherwise,
2504 we're going to have to print an escape sequence. We
2505 check all characters because we want to print the target
2506 bytes in the escape sequence, and we don't know character
2507 boundaries there. */
2511 for (i = 0; i < num_chars; ++i)
2512 if (!wchar_printable (chars[i]))
2520 for (i = 0; i < num_chars; ++i)
2521 print_wchar (chars[i], buf, buflen,
2522 TYPE_LENGTH (type), byte_order,
2523 &wchar_buf, quoter, &need_escape);
2527 /* This handles the NUM_CHARS == 0 case as well. */
2529 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2530 byte_order, &wchar_buf, quoter, &need_escape);
2533 /* The output in the host encoding. */
2534 auto_obstack output;
2536 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2537 (gdb_byte *) obstack_base (&wchar_buf),
2538 obstack_object_size (&wchar_buf),
2539 sizeof (gdb_wchar_t), &output, translit_char);
2540 obstack_1grow (&output, '\0');
2542 fputs_filtered ((const char *) obstack_base (&output), stream);
2545 /* Return the repeat count of the next character/byte in ITER,
2546 storing the result in VEC. */
2549 count_next_character (wchar_iterator *iter,
2550 VEC (converted_character_d) **vec)
2552 struct converted_character *current;
2554 if (VEC_empty (converted_character_d, *vec))
2556 struct converted_character tmp;
2560 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2561 if (tmp.num_chars > 0)
2563 gdb_assert (tmp.num_chars < MAX_WCHARS);
2564 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2566 VEC_safe_push (converted_character_d, *vec, &tmp);
2569 current = VEC_last (converted_character_d, *vec);
2571 /* Count repeated characters or bytes. */
2572 current->repeat_count = 1;
2573 if (current->num_chars == -1)
2581 struct converted_character d;
2588 /* Get the next character. */
2589 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2591 /* If a character was successfully converted, save the character
2592 into the converted character. */
2593 if (d.num_chars > 0)
2595 gdb_assert (d.num_chars < MAX_WCHARS);
2596 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2599 /* Determine if the current character is the same as this
2601 if (d.num_chars == current->num_chars && d.result == current->result)
2603 /* There are two cases to consider:
2605 1) Equality of converted character (num_chars > 0)
2606 2) Equality of non-converted character (num_chars == 0) */
2607 if ((current->num_chars > 0
2608 && memcmp (current->chars, d.chars,
2609 WCHAR_BUFLEN (current->num_chars)) == 0)
2610 || (current->num_chars == 0
2611 && current->buflen == d.buflen
2612 && memcmp (current->buf, d.buf, current->buflen) == 0))
2613 ++current->repeat_count;
2621 /* Push this next converted character onto the result vector. */
2622 repeat = current->repeat_count;
2623 VEC_safe_push (converted_character_d, *vec, &d);
2628 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2629 character to use with string output. WIDTH is the size of the output
2630 character type. BYTE_ORDER is the the target byte order. OPTIONS
2631 is the user's print options. */
2634 print_converted_chars_to_obstack (struct obstack *obstack,
2635 VEC (converted_character_d) *chars,
2636 int quote_char, int width,
2637 enum bfd_endian byte_order,
2638 const struct value_print_options *options)
2641 struct converted_character *elem;
2642 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2643 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2644 int need_escape = 0;
2646 /* Set the start state. */
2648 last = state = START;
2656 /* Nothing to do. */
2663 /* We are outputting a single character
2664 (< options->repeat_count_threshold). */
2668 /* We were outputting some other type of content, so we
2669 must output and a comma and a quote. */
2671 obstack_grow_wstr (obstack, LCST (", "));
2672 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2674 /* Output the character. */
2675 for (j = 0; j < elem->repeat_count; ++j)
2677 if (elem->result == wchar_iterate_ok)
2678 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2679 byte_order, obstack, quote_char, &need_escape);
2681 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2682 byte_order, obstack, quote_char, &need_escape);
2692 /* We are outputting a character with a repeat count
2693 greater than options->repeat_count_threshold. */
2697 /* We were outputting a single string. Terminate the
2699 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2702 obstack_grow_wstr (obstack, LCST (", "));
2704 /* Output the character and repeat string. */
2705 obstack_grow_wstr (obstack, LCST ("'"));
2706 if (elem->result == wchar_iterate_ok)
2707 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2708 byte_order, obstack, quote_char, &need_escape);
2710 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2711 byte_order, obstack, quote_char, &need_escape);
2712 obstack_grow_wstr (obstack, LCST ("'"));
2713 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2714 for (j = 0; s[j]; ++j)
2716 gdb_wchar_t w = gdb_btowc (s[j]);
2717 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2724 /* We are outputting an incomplete sequence. */
2727 /* If we were outputting a string of SINGLE characters,
2728 terminate the quote. */
2729 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2732 obstack_grow_wstr (obstack, LCST (", "));
2734 /* Output the incomplete sequence string. */
2735 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2736 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2737 obstack, 0, &need_escape);
2738 obstack_grow_wstr (obstack, LCST (">"));
2740 /* We do not attempt to outupt anything after this. */
2745 /* All done. If we were outputting a string of SINGLE
2746 characters, the string must be terminated. Otherwise,
2747 REPEAT and INCOMPLETE are always left properly terminated. */
2749 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2754 /* Get the next element and state. */
2756 if (state != FINISH)
2758 elem = VEC_index (converted_character_d, chars, idx++);
2759 switch (elem->result)
2761 case wchar_iterate_ok:
2762 case wchar_iterate_invalid:
2763 if (elem->repeat_count > options->repeat_count_threshold)
2769 case wchar_iterate_incomplete:
2773 case wchar_iterate_eof:
2781 /* Print the character string STRING, printing at most LENGTH
2782 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2783 the type of each character. OPTIONS holds the printing options;
2784 printing stops early if the number hits print_max; repeat counts
2785 are printed as appropriate. Print ellipses at the end if we had to
2786 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2787 QUOTE_CHAR is the character to print at each end of the string. If
2788 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2792 generic_printstr (struct ui_file *stream, struct type *type,
2793 const gdb_byte *string, unsigned int length,
2794 const char *encoding, int force_ellipses,
2795 int quote_char, int c_style_terminator,
2796 const struct value_print_options *options)
2798 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2800 int width = TYPE_LENGTH (type);
2801 struct cleanup *cleanup;
2803 struct converted_character *last;
2804 VEC (converted_character_d) *converted_chars;
2808 unsigned long current_char = 1;
2810 for (i = 0; current_char; ++i)
2813 current_char = extract_unsigned_integer (string + i * width,
2819 /* If the string was not truncated due to `set print elements', and
2820 the last byte of it is a null, we don't print that, in
2821 traditional C style. */
2822 if (c_style_terminator
2825 && (extract_unsigned_integer (string + (length - 1) * width,
2826 width, byte_order) == 0))
2831 fputs_filtered ("\"\"", stream);
2835 /* Arrange to iterate over the characters, in wchar_t form. */
2836 wchar_iterator iter (string, length * width, encoding, width);
2837 converted_chars = NULL;
2838 cleanup = make_cleanup (VEC_cleanup (converted_character_d),
2841 /* Convert characters until the string is over or the maximum
2842 number of printed characters has been reached. */
2844 while (i < options->print_max)
2850 /* Grab the next character and repeat count. */
2851 r = count_next_character (&iter, &converted_chars);
2853 /* If less than zero, the end of the input string was reached. */
2857 /* Otherwise, add the count to the total print count and get
2858 the next character. */
2862 /* Get the last element and determine if the entire string was
2864 last = VEC_last (converted_character_d, converted_chars);
2865 finished = (last->result == wchar_iterate_eof);
2867 /* Ensure that CONVERTED_CHARS is terminated. */
2868 last->result = wchar_iterate_eof;
2870 /* WCHAR_BUF is the obstack we use to represent the string in
2872 auto_obstack wchar_buf;
2874 /* Print the output string to the obstack. */
2875 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2876 width, byte_order, options);
2878 if (force_ellipses || !finished)
2879 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2881 /* OUTPUT is where we collect `char's for printing. */
2882 auto_obstack output;
2884 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2885 (gdb_byte *) obstack_base (&wchar_buf),
2886 obstack_object_size (&wchar_buf),
2887 sizeof (gdb_wchar_t), &output, translit_char);
2888 obstack_1grow (&output, '\0');
2890 fputs_filtered ((const char *) obstack_base (&output), stream);
2892 do_cleanups (cleanup);
2895 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2896 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2897 stops at the first null byte, otherwise printing proceeds (including null
2898 bytes) until either print_max or LEN characters have been printed,
2899 whichever is smaller. ENCODING is the name of the string's
2900 encoding. It can be NULL, in which case the target encoding is
2904 val_print_string (struct type *elttype, const char *encoding,
2905 CORE_ADDR addr, int len,
2906 struct ui_file *stream,
2907 const struct value_print_options *options)
2909 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2910 int err; /* Non-zero if we got a bad read. */
2911 int found_nul; /* Non-zero if we found the nul char. */
2912 unsigned int fetchlimit; /* Maximum number of chars to print. */
2914 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2915 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
2916 struct gdbarch *gdbarch = get_type_arch (elttype);
2917 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2918 int width = TYPE_LENGTH (elttype);
2920 /* First we need to figure out the limit on the number of characters we are
2921 going to attempt to fetch and print. This is actually pretty simple. If
2922 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2923 LEN is -1, then the limit is print_max. This is true regardless of
2924 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2925 because finding the null byte (or available memory) is what actually
2926 limits the fetch. */
2928 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2929 options->print_max));
2931 err = read_string (addr, len, width, fetchlimit, byte_order,
2932 &buffer, &bytes_read);
2933 old_chain = make_cleanup (xfree, buffer);
2937 /* We now have either successfully filled the buffer to fetchlimit,
2938 or terminated early due to an error or finding a null char when
2941 /* Determine found_nul by looking at the last character read. */
2943 if (bytes_read >= width)
2944 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2946 if (len == -1 && !found_nul)
2950 /* We didn't find a NUL terminator we were looking for. Attempt
2951 to peek at the next character. If not successful, or it is not
2952 a null byte, then force ellipsis to be printed. */
2954 peekbuf = (gdb_byte *) alloca (width);
2956 if (target_read_memory (addr, peekbuf, width) == 0
2957 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2960 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2962 /* Getting an error when we have a requested length, or fetching less
2963 than the number of characters actually requested, always make us
2968 /* If we get an error before fetching anything, don't print a string.
2969 But if we fetch something and then get an error, print the string
2970 and then the error message. */
2971 if (err == 0 || bytes_read > 0)
2973 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2974 encoding, force_ellipsis, options);
2979 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2981 fprintf_filtered (stream, "<error: ");
2982 fputs_filtered (str.c_str (), stream);
2983 fprintf_filtered (stream, ">");
2987 do_cleanups (old_chain);
2989 return (bytes_read / width);
2993 /* The 'set input-radix' command writes to this auxiliary variable.
2994 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2995 it is left unchanged. */
2997 static unsigned input_radix_1 = 10;
2999 /* Validate an input or output radix setting, and make sure the user
3000 knows what they really did here. Radix setting is confusing, e.g.
3001 setting the input radix to "10" never changes it! */
3004 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
3006 set_input_radix_1 (from_tty, input_radix_1);
3010 set_input_radix_1 (int from_tty, unsigned radix)
3012 /* We don't currently disallow any input radix except 0 or 1, which don't
3013 make any mathematical sense. In theory, we can deal with any input
3014 radix greater than 1, even if we don't have unique digits for every
3015 value from 0 to radix-1, but in practice we lose on large radix values.
3016 We should either fix the lossage or restrict the radix range more.
3021 input_radix_1 = input_radix;
3022 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
3025 input_radix_1 = input_radix = radix;
3028 printf_filtered (_("Input radix now set to "
3029 "decimal %u, hex %x, octal %o.\n"),
3030 radix, radix, radix);
3034 /* The 'set output-radix' command writes to this auxiliary variable.
3035 If the requested radix is valid, OUTPUT_RADIX is updated,
3036 otherwise, it is left unchanged. */
3038 static unsigned output_radix_1 = 10;
3041 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
3043 set_output_radix_1 (from_tty, output_radix_1);
3047 set_output_radix_1 (int from_tty, unsigned radix)
3049 /* Validate the radix and disallow ones that we aren't prepared to
3050 handle correctly, leaving the radix unchanged. */
3054 user_print_options.output_format = 'x'; /* hex */
3057 user_print_options.output_format = 0; /* decimal */
3060 user_print_options.output_format = 'o'; /* octal */
3063 output_radix_1 = output_radix;
3064 error (_("Unsupported output radix ``decimal %u''; "
3065 "output radix unchanged."),
3068 output_radix_1 = output_radix = radix;
3071 printf_filtered (_("Output radix now set to "
3072 "decimal %u, hex %x, octal %o.\n"),
3073 radix, radix, radix);
3077 /* Set both the input and output radix at once. Try to set the output radix
3078 first, since it has the most restrictive range. An radix that is valid as
3079 an output radix is also valid as an input radix.
3081 It may be useful to have an unusual input radix. If the user wishes to
3082 set an input radix that is not valid as an output radix, he needs to use
3083 the 'set input-radix' command. */
3086 set_radix (const char *arg, int from_tty)
3090 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
3091 set_output_radix_1 (0, radix);
3092 set_input_radix_1 (0, radix);
3095 printf_filtered (_("Input and output radices now set to "
3096 "decimal %u, hex %x, octal %o.\n"),
3097 radix, radix, radix);
3101 /* Show both the input and output radices. */
3104 show_radix (const char *arg, int from_tty)
3108 if (input_radix == output_radix)
3110 printf_filtered (_("Input and output radices set to "
3111 "decimal %u, hex %x, octal %o.\n"),
3112 input_radix, input_radix, input_radix);
3116 printf_filtered (_("Input radix set to decimal "
3117 "%u, hex %x, octal %o.\n"),
3118 input_radix, input_radix, input_radix);
3119 printf_filtered (_("Output radix set to decimal "
3120 "%u, hex %x, octal %o.\n"),
3121 output_radix, output_radix, output_radix);
3128 set_print (const char *arg, int from_tty)
3131 "\"set print\" must be followed by the name of a print subcommand.\n");
3132 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
3136 show_print (const char *args, int from_tty)
3138 cmd_show_list (showprintlist, from_tty, "");
3142 set_print_raw (const char *arg, int from_tty)
3145 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
3146 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
3150 show_print_raw (const char *args, int from_tty)
3152 cmd_show_list (showprintrawlist, from_tty, "");
3157 _initialize_valprint (void)
3159 add_prefix_cmd ("print", no_class, set_print,
3160 _("Generic command for setting how things print."),
3161 &setprintlist, "set print ", 0, &setlist);
3162 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3163 /* Prefer set print to set prompt. */
3164 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3166 add_prefix_cmd ("print", no_class, show_print,
3167 _("Generic command for showing print settings."),
3168 &showprintlist, "show print ", 0, &showlist);
3169 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3170 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3172 add_prefix_cmd ("raw", no_class, set_print_raw,
3174 Generic command for setting what things to print in \"raw\" mode."),
3175 &setprintrawlist, "set print raw ", 0, &setprintlist);
3176 add_prefix_cmd ("raw", no_class, show_print_raw,
3177 _("Generic command for showing \"print raw\" settings."),
3178 &showprintrawlist, "show print raw ", 0, &showprintlist);
3180 add_setshow_uinteger_cmd ("elements", no_class,
3181 &user_print_options.print_max, _("\
3182 Set limit on string chars or array elements to print."), _("\
3183 Show limit on string chars or array elements to print."), _("\
3184 \"set print elements unlimited\" causes there to be no limit."),
3187 &setprintlist, &showprintlist);
3189 add_setshow_boolean_cmd ("null-stop", no_class,
3190 &user_print_options.stop_print_at_null, _("\
3191 Set printing of char arrays to stop at first null char."), _("\
3192 Show printing of char arrays to stop at first null char."), NULL,
3194 show_stop_print_at_null,
3195 &setprintlist, &showprintlist);
3197 add_setshow_uinteger_cmd ("repeats", no_class,
3198 &user_print_options.repeat_count_threshold, _("\
3199 Set threshold for repeated print elements."), _("\
3200 Show threshold for repeated print elements."), _("\
3201 \"set print repeats unlimited\" causes all elements to be individually printed."),
3203 show_repeat_count_threshold,
3204 &setprintlist, &showprintlist);
3206 add_setshow_boolean_cmd ("pretty", class_support,
3207 &user_print_options.prettyformat_structs, _("\
3208 Set pretty formatting of structures."), _("\
3209 Show pretty formatting of structures."), NULL,
3211 show_prettyformat_structs,
3212 &setprintlist, &showprintlist);
3214 add_setshow_boolean_cmd ("union", class_support,
3215 &user_print_options.unionprint, _("\
3216 Set printing of unions interior to structures."), _("\
3217 Show printing of unions interior to structures."), NULL,
3220 &setprintlist, &showprintlist);
3222 add_setshow_boolean_cmd ("array", class_support,
3223 &user_print_options.prettyformat_arrays, _("\
3224 Set pretty formatting of arrays."), _("\
3225 Show pretty formatting of arrays."), NULL,
3227 show_prettyformat_arrays,
3228 &setprintlist, &showprintlist);
3230 add_setshow_boolean_cmd ("address", class_support,
3231 &user_print_options.addressprint, _("\
3232 Set printing of addresses."), _("\
3233 Show printing of addresses."), NULL,
3236 &setprintlist, &showprintlist);
3238 add_setshow_boolean_cmd ("symbol", class_support,
3239 &user_print_options.symbol_print, _("\
3240 Set printing of symbol names when printing pointers."), _("\
3241 Show printing of symbol names when printing pointers."),
3244 &setprintlist, &showprintlist);
3246 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3248 Set default input radix for entering numbers."), _("\
3249 Show default input radix for entering numbers."), NULL,
3252 &setlist, &showlist);
3254 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3256 Set default output radix for printing of values."), _("\
3257 Show default output radix for printing of values."), NULL,
3260 &setlist, &showlist);
3262 /* The "set radix" and "show radix" commands are special in that
3263 they are like normal set and show commands but allow two normally
3264 independent variables to be either set or shown with a single
3265 command. So the usual deprecated_add_set_cmd() and [deleted]
3266 add_show_from_set() commands aren't really appropriate. */
3267 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3268 longer true - show can display anything. */
3269 add_cmd ("radix", class_support, set_radix, _("\
3270 Set default input and output number radices.\n\
3271 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3272 Without an argument, sets both radices back to the default value of 10."),
3274 add_cmd ("radix", class_support, show_radix, _("\
3275 Show the default input and output number radices.\n\
3276 Use 'show input-radix' or 'show output-radix' to independently show each."),
3279 add_setshow_boolean_cmd ("array-indexes", class_support,
3280 &user_print_options.print_array_indexes, _("\
3281 Set printing of array indexes."), _("\
3282 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
3283 &setprintlist, &showprintlist);