1 /* Perform non-arithmetic operations on values, for GDB.
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
37 #include "dictionary.h"
38 #include "cp-support.h"
40 #include "user-regs.h"
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
50 extern int overload_debug;
51 /* Local functions. */
53 static int typecmp (int staticp, int varargs, int nargs,
54 struct field t1[], struct value *t2[]);
56 static struct value *search_struct_field (char *, struct value *,
57 int, struct type *, int);
59 static struct value *search_struct_method (char *, struct value **,
61 int, int *, struct type *);
63 static int find_oload_champ_namespace (struct type **, int,
64 const char *, const char *,
66 struct badness_vector **);
69 int find_oload_champ_namespace_loop (struct type **, int,
70 const char *, const char *,
71 int, struct symbol ***,
72 struct badness_vector **, int *);
74 static int find_oload_champ (struct type **, int, int, int,
75 struct fn_field *, struct symbol **,
76 struct badness_vector **);
78 static int oload_method_static (int, struct fn_field *, int);
80 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
83 oload_classification classify_oload_match (struct badness_vector *,
86 static struct value *value_struct_elt_for_reference (struct type *,
92 static struct value *value_namespace_elt (const struct type *,
93 char *, int , enum noside);
95 static struct value *value_maybe_namespace_elt (const struct type *,
99 static CORE_ADDR allocate_space_in_inferior (int);
101 static struct value *cast_into_complex (struct type *, struct value *);
103 static struct fn_field *find_method_list (struct value **, char *,
104 int, struct type *, int *,
105 struct type **, int *);
107 void _initialize_valops (void);
110 /* Flag for whether we want to abandon failed expression evals by
113 static int auto_abandon = 0;
116 int overload_resolution = 0;
118 show_overload_resolution (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c,
122 fprintf_filtered (file, _("\
123 Overload resolution in evaluating C++ functions is %s.\n"),
127 /* Find the address of function name NAME in the inferior. If OBJF_P
128 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
132 find_function_in_inferior (const char *name, struct objfile **objf_p)
135 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
138 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
140 error (_("\"%s\" exists in this program but is not a function."),
145 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
147 return value_of_variable (sym, NULL);
151 struct minimal_symbol *msymbol =
152 lookup_minimal_symbol (name, NULL, NULL);
155 struct objfile *objfile = msymbol_objfile (msymbol);
156 struct gdbarch *gdbarch = get_objfile_arch (objfile);
160 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
161 type = lookup_function_type (type);
162 type = lookup_pointer_type (type);
163 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
168 return value_from_pointer (type, maddr);
172 if (!target_has_execution)
173 error (_("evaluation of this expression requires the target program to be active"));
175 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
180 /* Allocate NBYTES of space in the inferior using the inferior's
181 malloc and return a value that is a pointer to the allocated
185 value_allocate_space_in_inferior (int len)
187 struct objfile *objf;
188 struct value *val = find_function_in_inferior ("malloc", &objf);
189 struct gdbarch *gdbarch = get_objfile_arch (objf);
190 struct value *blocklen;
192 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
193 val = call_function_by_hand (val, 1, &blocklen);
194 if (value_logical_not (val))
196 if (!target_has_execution)
197 error (_("No memory available to program now: you need to start the target first"));
199 error (_("No memory available to program: call to malloc failed"));
205 allocate_space_in_inferior (int len)
207 return value_as_long (value_allocate_space_in_inferior (len));
210 /* Cast struct value VAL to type TYPE and return as a value.
211 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
212 for this to work. Typedef to one of the codes is permitted.
213 Returns NULL if the cast is neither an upcast nor a downcast. */
215 static struct value *
216 value_cast_structs (struct type *type, struct value *v2)
222 gdb_assert (type != NULL && v2 != NULL);
224 t1 = check_typedef (type);
225 t2 = check_typedef (value_type (v2));
227 /* Check preconditions. */
228 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
229 || TYPE_CODE (t1) == TYPE_CODE_UNION)
230 && !!"Precondition is that type is of STRUCT or UNION kind.");
231 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
232 || TYPE_CODE (t2) == TYPE_CODE_UNION)
233 && !!"Precondition is that value is of STRUCT or UNION kind");
235 /* Upcasting: look in the type of the source to see if it contains the
236 type of the target as a superclass. If so, we'll need to
237 offset the pointer rather than just change its type. */
238 if (TYPE_NAME (t1) != NULL)
240 v = search_struct_field (type_name_no_tag (t1),
246 /* Downcasting: look in the type of the target to see if it contains the
247 type of the source as a superclass. If so, we'll need to
248 offset the pointer rather than just change its type.
249 FIXME: This fails silently with virtual inheritance. */
250 if (TYPE_NAME (t2) != NULL)
252 v = search_struct_field (type_name_no_tag (t2),
253 value_zero (t1, not_lval), 0, t1, 1);
256 /* Downcasting is possible (t1 is superclass of v2). */
257 CORE_ADDR addr2 = value_address (v2);
258 addr2 -= value_address (v) + value_embedded_offset (v);
259 return value_at (type, addr2);
266 /* Cast one pointer or reference type to another. Both TYPE and
267 the type of ARG2 should be pointer types, or else both should be
268 reference types. Returns the new pointer or reference. */
271 value_cast_pointers (struct type *type, struct value *arg2)
273 struct type *type1 = check_typedef (type);
274 struct type *type2 = check_typedef (value_type (arg2));
275 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
276 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
278 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
279 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
280 && !value_logical_not (arg2))
284 if (TYPE_CODE (type2) == TYPE_CODE_REF)
285 v2 = coerce_ref (arg2);
287 v2 = value_ind (arg2);
288 gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
289 && !!"Why did coercion fail?");
290 v2 = value_cast_structs (t1, v2);
291 /* At this point we have what we can have, un-dereference if needed. */
294 struct value *v = value_addr (v2);
295 deprecated_set_value_type (v, type);
300 /* No superclass found, just change the pointer type. */
301 arg2 = value_copy (arg2);
302 deprecated_set_value_type (arg2, type);
303 arg2 = value_change_enclosing_type (arg2, type);
304 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
308 /* Cast value ARG2 to type TYPE and return as a value.
309 More general than a C cast: accepts any two types of the same length,
310 and if ARG2 is an lvalue it can be cast into anything at all. */
311 /* In C++, casts may change pointer or object representations. */
314 value_cast (struct type *type, struct value *arg2)
316 enum type_code code1;
317 enum type_code code2;
321 int convert_to_boolean = 0;
323 if (value_type (arg2) == type)
326 code1 = TYPE_CODE (check_typedef (type));
328 /* Check if we are casting struct reference to struct reference. */
329 if (code1 == TYPE_CODE_REF)
331 /* We dereference type; then we recurse and finally
332 we generate value of the given reference. Nothing wrong with
334 struct type *t1 = check_typedef (type);
335 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
336 struct value *val = value_cast (dereftype, arg2);
337 return value_ref (val);
340 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
342 if (code2 == TYPE_CODE_REF)
343 /* We deref the value and then do the cast. */
344 return value_cast (type, coerce_ref (arg2));
346 CHECK_TYPEDEF (type);
347 code1 = TYPE_CODE (type);
348 arg2 = coerce_ref (arg2);
349 type2 = check_typedef (value_type (arg2));
351 /* You can't cast to a reference type. See value_cast_pointers
353 gdb_assert (code1 != TYPE_CODE_REF);
355 /* A cast to an undetermined-length array_type, such as
356 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
357 where N is sizeof(OBJECT)/sizeof(TYPE). */
358 if (code1 == TYPE_CODE_ARRAY)
360 struct type *element_type = TYPE_TARGET_TYPE (type);
361 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
362 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
364 struct type *range_type = TYPE_INDEX_TYPE (type);
365 int val_length = TYPE_LENGTH (type2);
366 LONGEST low_bound, high_bound, new_length;
367 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
368 low_bound = 0, high_bound = 0;
369 new_length = val_length / element_length;
370 if (val_length % element_length != 0)
371 warning (_("array element type size does not divide object size in cast"));
372 /* FIXME-type-allocation: need a way to free this type when
373 we are done with it. */
374 range_type = create_range_type ((struct type *) NULL,
375 TYPE_TARGET_TYPE (range_type),
377 new_length + low_bound - 1);
378 deprecated_set_value_type (arg2,
379 create_array_type ((struct type *) NULL,
386 if (current_language->c_style_arrays
387 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
388 arg2 = value_coerce_array (arg2);
390 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
391 arg2 = value_coerce_function (arg2);
393 type2 = check_typedef (value_type (arg2));
394 code2 = TYPE_CODE (type2);
396 if (code1 == TYPE_CODE_COMPLEX)
397 return cast_into_complex (type, arg2);
398 if (code1 == TYPE_CODE_BOOL)
400 code1 = TYPE_CODE_INT;
401 convert_to_boolean = 1;
403 if (code1 == TYPE_CODE_CHAR)
404 code1 = TYPE_CODE_INT;
405 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
406 code2 = TYPE_CODE_INT;
408 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
409 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
410 || code2 == TYPE_CODE_RANGE);
412 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
413 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
414 && TYPE_NAME (type) != 0)
416 struct value *v = value_cast_structs (type, arg2);
421 if (code1 == TYPE_CODE_FLT && scalar)
422 return value_from_double (type, value_as_double (arg2));
423 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
425 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
426 int dec_len = TYPE_LENGTH (type);
429 if (code2 == TYPE_CODE_FLT)
430 decimal_from_floating (arg2, dec, dec_len, byte_order);
431 else if (code2 == TYPE_CODE_DECFLOAT)
432 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
433 byte_order, dec, dec_len, byte_order);
435 /* The only option left is an integral type. */
436 decimal_from_integral (arg2, dec, dec_len, byte_order);
438 return value_from_decfloat (type, dec);
440 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
441 || code1 == TYPE_CODE_RANGE)
442 && (scalar || code2 == TYPE_CODE_PTR
443 || code2 == TYPE_CODE_MEMBERPTR))
447 /* When we cast pointers to integers, we mustn't use
448 gdbarch_pointer_to_address to find the address the pointer
449 represents, as value_as_long would. GDB should evaluate
450 expressions just as the compiler would --- and the compiler
451 sees a cast as a simple reinterpretation of the pointer's
453 if (code2 == TYPE_CODE_PTR)
454 longest = extract_unsigned_integer
455 (value_contents (arg2), TYPE_LENGTH (type2),
456 gdbarch_byte_order (get_type_arch (type2)));
458 longest = value_as_long (arg2);
459 return value_from_longest (type, convert_to_boolean ?
460 (LONGEST) (longest ? 1 : 0) : longest);
462 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
463 || code2 == TYPE_CODE_ENUM
464 || code2 == TYPE_CODE_RANGE))
466 /* TYPE_LENGTH (type) is the length of a pointer, but we really
467 want the length of an address! -- we are really dealing with
468 addresses (i.e., gdb representations) not pointers (i.e.,
469 target representations) here.
471 This allows things like "print *(int *)0x01000234" to work
472 without printing a misleading message -- which would
473 otherwise occur when dealing with a target having two byte
474 pointers and four byte addresses. */
476 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
478 LONGEST longest = value_as_long (arg2);
479 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
481 if (longest >= ((LONGEST) 1 << addr_bit)
482 || longest <= -((LONGEST) 1 << addr_bit))
483 warning (_("value truncated"));
485 return value_from_longest (type, longest);
487 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
488 && value_as_long (arg2) == 0)
490 struct value *result = allocate_value (type);
491 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
494 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
495 && value_as_long (arg2) == 0)
497 /* The Itanium C++ ABI represents NULL pointers to members as
498 minus one, instead of biasing the normal case. */
499 return value_from_longest (type, -1);
501 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
503 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
504 return value_cast_pointers (type, arg2);
506 arg2 = value_copy (arg2);
507 deprecated_set_value_type (arg2, type);
508 arg2 = value_change_enclosing_type (arg2, type);
509 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
512 else if (VALUE_LVAL (arg2) == lval_memory)
513 return value_at_lazy (type, value_address (arg2));
514 else if (code1 == TYPE_CODE_VOID)
516 return value_zero (type, not_lval);
520 error (_("Invalid cast."));
525 /* Create a value of type TYPE that is zero, and return it. */
528 value_zero (struct type *type, enum lval_type lv)
530 struct value *val = allocate_value (type);
531 VALUE_LVAL (val) = lv;
536 /* Create a value of numeric type TYPE that is one, and return it. */
539 value_one (struct type *type, enum lval_type lv)
541 struct type *type1 = check_typedef (type);
544 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
546 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
548 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
549 val = value_from_decfloat (type, v);
551 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
553 val = value_from_double (type, (DOUBLEST) 1);
555 else if (is_integral_type (type1))
557 val = value_from_longest (type, (LONGEST) 1);
561 error (_("Not a numeric type."));
564 VALUE_LVAL (val) = lv;
568 /* Return a value with type TYPE located at ADDR.
570 Call value_at only if the data needs to be fetched immediately;
571 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
572 value_at_lazy instead. value_at_lazy simply records the address of
573 the data and sets the lazy-evaluation-required flag. The lazy flag
574 is tested in the value_contents macro, which is used if and when
575 the contents are actually required.
577 Note: value_at does *NOT* handle embedded offsets; perform such
578 adjustments before or after calling it. */
581 value_at (struct type *type, CORE_ADDR addr)
585 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
586 error (_("Attempt to dereference a generic pointer."));
588 val = allocate_value (type);
590 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
592 VALUE_LVAL (val) = lval_memory;
593 set_value_address (val, addr);
598 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
601 value_at_lazy (struct type *type, CORE_ADDR addr)
605 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
606 error (_("Attempt to dereference a generic pointer."));
608 val = allocate_value_lazy (type);
610 VALUE_LVAL (val) = lval_memory;
611 set_value_address (val, addr);
616 /* Called only from the value_contents and value_contents_all()
617 macros, if the current data for a variable needs to be loaded into
618 value_contents(VAL). Fetches the data from the user's process, and
619 clears the lazy flag to indicate that the data in the buffer is
622 If the value is zero-length, we avoid calling read_memory, which
623 would abort. We mark the value as fetched anyway -- all 0 bytes of
626 This function returns a value because it is used in the
627 value_contents macro as part of an expression, where a void would
628 not work. The value is ignored. */
631 value_fetch_lazy (struct value *val)
633 gdb_assert (value_lazy (val));
634 allocate_value_contents (val);
635 if (VALUE_LVAL (val) == lval_memory)
637 CORE_ADDR addr = value_address (val);
638 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
641 read_memory (addr, value_contents_all_raw (val), length);
643 else if (VALUE_LVAL (val) == lval_register)
645 struct frame_info *frame;
647 struct type *type = check_typedef (value_type (val));
648 struct value *new_val = val, *mark = value_mark ();
650 /* Offsets are not supported here; lazy register values must
651 refer to the entire register. */
652 gdb_assert (value_offset (val) == 0);
654 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
656 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
657 regnum = VALUE_REGNUM (new_val);
659 gdb_assert (frame != NULL);
661 /* Convertible register routines are used for multi-register
662 values and for interpretation in different types
663 (e.g. float or int from a double register). Lazy
664 register values should have the register's natural type,
665 so they do not apply. */
666 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
669 new_val = get_frame_register_value (frame, regnum);
672 /* If it's still lazy (for instance, a saved register on the
674 if (value_lazy (new_val))
675 value_fetch_lazy (new_val);
677 /* If the register was not saved, mark it unavailable. */
678 if (value_optimized_out (new_val))
679 set_value_optimized_out (val, 1);
681 memcpy (value_contents_raw (val), value_contents (new_val),
686 struct gdbarch *gdbarch;
687 frame = frame_find_by_id (VALUE_FRAME_ID (val));
688 regnum = VALUE_REGNUM (val);
689 gdbarch = get_frame_arch (frame);
691 fprintf_unfiltered (gdb_stdlog, "\
692 { value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
693 frame_relative_level (frame), regnum,
694 user_reg_map_regnum_to_name (gdbarch, regnum));
696 fprintf_unfiltered (gdb_stdlog, "->");
697 if (value_optimized_out (new_val))
698 fprintf_unfiltered (gdb_stdlog, " optimized out");
702 const gdb_byte *buf = value_contents (new_val);
704 if (VALUE_LVAL (new_val) == lval_register)
705 fprintf_unfiltered (gdb_stdlog, " register=%d",
706 VALUE_REGNUM (new_val));
707 else if (VALUE_LVAL (new_val) == lval_memory)
708 fprintf_unfiltered (gdb_stdlog, " address=%s",
710 value_address (new_val)));
712 fprintf_unfiltered (gdb_stdlog, " computed");
714 fprintf_unfiltered (gdb_stdlog, " bytes=");
715 fprintf_unfiltered (gdb_stdlog, "[");
716 for (i = 0; i < register_size (gdbarch, regnum); i++)
717 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
718 fprintf_unfiltered (gdb_stdlog, "]");
721 fprintf_unfiltered (gdb_stdlog, " }\n");
724 /* Dispose of the intermediate values. This prevents
725 watchpoints from trying to watch the saved frame pointer. */
726 value_free_to_mark (mark);
728 else if (VALUE_LVAL (val) == lval_computed)
729 value_computed_funcs (val)->read (val);
731 internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
733 set_value_lazy (val, 0);
738 /* Store the contents of FROMVAL into the location of TOVAL.
739 Return a new value with the location of TOVAL and contents of FROMVAL. */
742 value_assign (struct value *toval, struct value *fromval)
746 struct frame_id old_frame;
748 if (!deprecated_value_modifiable (toval))
749 error (_("Left operand of assignment is not a modifiable lvalue."));
751 toval = coerce_ref (toval);
753 type = value_type (toval);
754 if (VALUE_LVAL (toval) != lval_internalvar)
756 toval = value_coerce_to_target (toval);
757 fromval = value_cast (type, fromval);
761 /* Coerce arrays and functions to pointers, except for arrays
762 which only live in GDB's storage. */
763 if (!value_must_coerce_to_target (fromval))
764 fromval = coerce_array (fromval);
767 CHECK_TYPEDEF (type);
769 /* Since modifying a register can trash the frame chain, and
770 modifying memory can trash the frame cache, we save the old frame
771 and then restore the new frame afterwards. */
772 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
774 switch (VALUE_LVAL (toval))
776 case lval_internalvar:
777 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
778 val = value_copy (fromval);
779 val = value_change_enclosing_type (val,
780 value_enclosing_type (fromval));
781 set_value_embedded_offset (val, value_embedded_offset (fromval));
782 set_value_pointed_to_offset (val,
783 value_pointed_to_offset (fromval));
786 case lval_internalvar_component:
787 set_internalvar_component (VALUE_INTERNALVAR (toval),
788 value_offset (toval),
789 value_bitpos (toval),
790 value_bitsize (toval),
796 const gdb_byte *dest_buffer;
797 CORE_ADDR changed_addr;
799 gdb_byte buffer[sizeof (LONGEST)];
801 if (value_bitsize (toval))
803 /* We assume that the argument to read_memory is in units
804 of host chars. FIXME: Is that correct? */
805 changed_len = (value_bitpos (toval)
806 + value_bitsize (toval)
810 if (changed_len > (int) sizeof (LONGEST))
811 error (_("Can't handle bitfields which don't fit in a %d bit word."),
812 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
814 read_memory (value_address (toval), buffer, changed_len);
815 modify_field (type, buffer, value_as_long (fromval),
816 value_bitpos (toval), value_bitsize (toval));
817 changed_addr = value_address (toval);
818 dest_buffer = buffer;
822 changed_addr = value_address (toval);
823 changed_len = TYPE_LENGTH (type);
824 dest_buffer = value_contents (fromval);
827 write_memory (changed_addr, dest_buffer, changed_len);
828 if (deprecated_memory_changed_hook)
829 deprecated_memory_changed_hook (changed_addr, changed_len);
835 struct frame_info *frame;
836 struct gdbarch *gdbarch;
839 /* Figure out which frame this is in currently. */
840 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
841 value_reg = VALUE_REGNUM (toval);
844 error (_("Value being assigned to is no longer active."));
846 gdbarch = get_frame_arch (frame);
847 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
849 /* If TOVAL is a special machine register requiring
850 conversion of program values to a special raw
852 gdbarch_value_to_register (gdbarch, frame,
853 VALUE_REGNUM (toval), type,
854 value_contents (fromval));
858 if (value_bitsize (toval))
861 gdb_byte buffer[sizeof (LONGEST)];
863 changed_len = (value_bitpos (toval)
864 + value_bitsize (toval)
868 if (changed_len > (int) sizeof (LONGEST))
869 error (_("Can't handle bitfields which don't fit in a %d bit word."),
870 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
872 get_frame_register_bytes (frame, value_reg,
873 value_offset (toval),
874 changed_len, buffer);
876 modify_field (type, buffer, value_as_long (fromval),
877 value_bitpos (toval), value_bitsize (toval));
879 put_frame_register_bytes (frame, value_reg,
880 value_offset (toval),
881 changed_len, buffer);
885 put_frame_register_bytes (frame, value_reg,
886 value_offset (toval),
888 value_contents (fromval));
892 if (deprecated_register_changed_hook)
893 deprecated_register_changed_hook (-1);
894 observer_notify_target_changed (¤t_target);
900 struct lval_funcs *funcs = value_computed_funcs (toval);
902 funcs->write (toval, fromval);
907 error (_("Left operand of assignment is not an lvalue."));
910 /* Assigning to the stack pointer, frame pointer, and other
911 (architecture and calling convention specific) registers may
912 cause the frame cache to be out of date. Assigning to memory
913 also can. We just do this on all assignments to registers or
914 memory, for simplicity's sake; I doubt the slowdown matters. */
915 switch (VALUE_LVAL (toval))
920 reinit_frame_cache ();
922 /* Having destroyed the frame cache, restore the selected
925 /* FIXME: cagney/2002-11-02: There has to be a better way of
926 doing this. Instead of constantly saving/restoring the
927 frame. Why not create a get_selected_frame() function that,
928 having saved the selected frame's ID can automatically
929 re-find the previously selected frame automatically. */
932 struct frame_info *fi = frame_find_by_id (old_frame);
942 /* If the field does not entirely fill a LONGEST, then zero the sign
943 bits. If the field is signed, and is negative, then sign
945 if ((value_bitsize (toval) > 0)
946 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
948 LONGEST fieldval = value_as_long (fromval);
949 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
952 if (!TYPE_UNSIGNED (type)
953 && (fieldval & (valmask ^ (valmask >> 1))))
954 fieldval |= ~valmask;
956 fromval = value_from_longest (type, fieldval);
959 val = value_copy (toval);
960 memcpy (value_contents_raw (val), value_contents (fromval),
962 deprecated_set_value_type (val, type);
963 val = value_change_enclosing_type (val,
964 value_enclosing_type (fromval));
965 set_value_embedded_offset (val, value_embedded_offset (fromval));
966 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
971 /* Extend a value VAL to COUNT repetitions of its type. */
974 value_repeat (struct value *arg1, int count)
978 if (VALUE_LVAL (arg1) != lval_memory)
979 error (_("Only values in memory can be extended with '@'."));
981 error (_("Invalid number %d of repetitions."), count);
983 val = allocate_repeat_value (value_enclosing_type (arg1), count);
985 read_memory (value_address (arg1),
986 value_contents_all_raw (val),
987 TYPE_LENGTH (value_enclosing_type (val)));
988 VALUE_LVAL (val) = lval_memory;
989 set_value_address (val, value_address (arg1));
995 value_of_variable (struct symbol *var, struct block *b)
998 struct frame_info *frame;
1000 if (!symbol_read_needs_frame (var))
1003 frame = get_selected_frame (_("No frame selected."));
1006 frame = block_innermost_frame (b);
1009 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1010 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1011 error (_("No frame is currently executing in block %s."),
1012 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1014 error (_("No frame is currently executing in specified block"));
1018 val = read_var_value (var, frame);
1020 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1026 address_of_variable (struct symbol *var, struct block *b)
1028 struct type *type = SYMBOL_TYPE (var);
1031 /* Evaluate it first; if the result is a memory address, we're fine.
1032 Lazy evaluation pays off here. */
1034 val = value_of_variable (var, b);
1036 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1037 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1039 CORE_ADDR addr = value_address (val);
1040 return value_from_pointer (lookup_pointer_type (type), addr);
1043 /* Not a memory address; check what the problem was. */
1044 switch (VALUE_LVAL (val))
1048 struct frame_info *frame;
1049 const char *regname;
1051 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1054 regname = gdbarch_register_name (get_frame_arch (frame),
1055 VALUE_REGNUM (val));
1056 gdb_assert (regname && *regname);
1058 error (_("Address requested for identifier "
1059 "\"%s\" which is in register $%s"),
1060 SYMBOL_PRINT_NAME (var), regname);
1065 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1066 SYMBOL_PRINT_NAME (var));
1073 /* Return one if VAL does not live in target memory, but should in order
1074 to operate on it. Otherwise return zero. */
1077 value_must_coerce_to_target (struct value *val)
1079 struct type *valtype;
1081 /* The only lval kinds which do not live in target memory. */
1082 if (VALUE_LVAL (val) != not_lval
1083 && VALUE_LVAL (val) != lval_internalvar)
1086 valtype = check_typedef (value_type (val));
1088 switch (TYPE_CODE (valtype))
1090 case TYPE_CODE_ARRAY:
1091 case TYPE_CODE_STRING:
1098 /* Make sure that VAL lives in target memory if it's supposed to. For instance,
1099 strings are constructed as character arrays in GDB's storage, and this
1100 function copies them to the target. */
1103 value_coerce_to_target (struct value *val)
1108 if (!value_must_coerce_to_target (val))
1111 length = TYPE_LENGTH (check_typedef (value_type (val)));
1112 addr = allocate_space_in_inferior (length);
1113 write_memory (addr, value_contents (val), length);
1114 return value_at_lazy (value_type (val), addr);
1117 /* Given a value which is an array, return a value which is a pointer
1118 to its first element, regardless of whether or not the array has a
1119 nonzero lower bound.
1121 FIXME: A previous comment here indicated that this routine should
1122 be substracting the array's lower bound. It's not clear to me that
1123 this is correct. Given an array subscripting operation, it would
1124 certainly work to do the adjustment here, essentially computing:
1126 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1128 However I believe a more appropriate and logical place to account
1129 for the lower bound is to do so in value_subscript, essentially
1132 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1134 As further evidence consider what would happen with operations
1135 other than array subscripting, where the caller would get back a
1136 value that had an address somewhere before the actual first element
1137 of the array, and the information about the lower bound would be
1138 lost because of the coercion to pointer type.
1142 value_coerce_array (struct value *arg1)
1144 struct type *type = check_typedef (value_type (arg1));
1146 /* If the user tries to do something requiring a pointer with an
1147 array that has not yet been pushed to the target, then this would
1148 be a good time to do so. */
1149 arg1 = value_coerce_to_target (arg1);
1151 if (VALUE_LVAL (arg1) != lval_memory)
1152 error (_("Attempt to take address of value not located in memory."));
1154 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1155 value_address (arg1));
1158 /* Given a value which is a function, return a value which is a pointer
1162 value_coerce_function (struct value *arg1)
1164 struct value *retval;
1166 if (VALUE_LVAL (arg1) != lval_memory)
1167 error (_("Attempt to take address of value not located in memory."));
1169 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1170 value_address (arg1));
1174 /* Return a pointer value for the object for which ARG1 is the
1178 value_addr (struct value *arg1)
1182 struct type *type = check_typedef (value_type (arg1));
1183 if (TYPE_CODE (type) == TYPE_CODE_REF)
1185 /* Copy the value, but change the type from (T&) to (T*). We
1186 keep the same location information, which is efficient, and
1187 allows &(&X) to get the location containing the reference. */
1188 arg2 = value_copy (arg1);
1189 deprecated_set_value_type (arg2,
1190 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1193 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1194 return value_coerce_function (arg1);
1196 /* If this is an array that has not yet been pushed to the target,
1197 then this would be a good time to force it to memory. */
1198 arg1 = value_coerce_to_target (arg1);
1200 if (VALUE_LVAL (arg1) != lval_memory)
1201 error (_("Attempt to take address of value not located in memory."));
1203 /* Get target memory address */
1204 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1205 (value_address (arg1)
1206 + value_embedded_offset (arg1)));
1208 /* This may be a pointer to a base subobject; so remember the
1209 full derived object's type ... */
1210 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
1211 /* ... and also the relative position of the subobject in the full
1213 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1217 /* Return a reference value for the object for which ARG1 is the
1221 value_ref (struct value *arg1)
1225 struct type *type = check_typedef (value_type (arg1));
1226 if (TYPE_CODE (type) == TYPE_CODE_REF)
1229 arg2 = value_addr (arg1);
1230 deprecated_set_value_type (arg2, lookup_reference_type (type));
1234 /* Given a value of a pointer type, apply the C unary * operator to
1238 value_ind (struct value *arg1)
1240 struct type *base_type;
1243 arg1 = coerce_array (arg1);
1245 base_type = check_typedef (value_type (arg1));
1247 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1249 struct type *enc_type;
1250 /* We may be pointing to something embedded in a larger object.
1251 Get the real type of the enclosing object. */
1252 enc_type = check_typedef (value_enclosing_type (arg1));
1253 enc_type = TYPE_TARGET_TYPE (enc_type);
1255 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1256 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1257 /* For functions, go through find_function_addr, which knows
1258 how to handle function descriptors. */
1259 arg2 = value_at_lazy (enc_type,
1260 find_function_addr (arg1, NULL));
1262 /* Retrieve the enclosing object pointed to */
1263 arg2 = value_at_lazy (enc_type,
1264 (value_as_address (arg1)
1265 - value_pointed_to_offset (arg1)));
1267 /* Re-adjust type. */
1268 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1269 /* Add embedding info. */
1270 arg2 = value_change_enclosing_type (arg2, enc_type);
1271 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1273 /* We may be pointing to an object of some derived type. */
1274 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1278 error (_("Attempt to take contents of a non-pointer value."));
1279 return 0; /* For lint -- never reached. */
1282 /* Create a value for an array by allocating space in GDB, copying
1283 copying the data into that space, and then setting up an array
1286 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1287 is populated from the values passed in ELEMVEC.
1289 The element type of the array is inherited from the type of the
1290 first element, and all elements must have the same size (though we
1291 don't currently enforce any restriction on their types). */
1294 value_array (int lowbound, int highbound, struct value **elemvec)
1298 unsigned int typelength;
1300 struct type *arraytype;
1303 /* Validate that the bounds are reasonable and that each of the
1304 elements have the same size. */
1306 nelem = highbound - lowbound + 1;
1309 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1311 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1312 for (idx = 1; idx < nelem; idx++)
1314 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1316 error (_("array elements must all be the same size"));
1320 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1321 lowbound, highbound);
1323 if (!current_language->c_style_arrays)
1325 val = allocate_value (arraytype);
1326 for (idx = 0; idx < nelem; idx++)
1328 memcpy (value_contents_all_raw (val) + (idx * typelength),
1329 value_contents_all (elemvec[idx]),
1335 /* Allocate space to store the array, and then initialize it by
1336 copying in each element. */
1338 val = allocate_value (arraytype);
1339 for (idx = 0; idx < nelem; idx++)
1340 memcpy (value_contents_writeable (val) + (idx * typelength),
1341 value_contents_all (elemvec[idx]),
1347 value_cstring (char *ptr, int len, struct type *char_type)
1350 int lowbound = current_language->string_lower_bound;
1351 int highbound = len / TYPE_LENGTH (char_type);
1352 struct type *stringtype
1353 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1355 val = allocate_value (stringtype);
1356 memcpy (value_contents_raw (val), ptr, len);
1360 /* Create a value for a string constant by allocating space in the
1361 inferior, copying the data into that space, and returning the
1362 address with type TYPE_CODE_STRING. PTR points to the string
1363 constant data; LEN is number of characters.
1365 Note that string types are like array of char types with a lower
1366 bound of zero and an upper bound of LEN - 1. Also note that the
1367 string may contain embedded null bytes. */
1370 value_string (char *ptr, int len, struct type *char_type)
1373 int lowbound = current_language->string_lower_bound;
1374 int highbound = len / TYPE_LENGTH (char_type);
1375 struct type *stringtype
1376 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1378 val = allocate_value (stringtype);
1379 memcpy (value_contents_raw (val), ptr, len);
1384 value_bitstring (char *ptr, int len, struct type *index_type)
1387 struct type *domain_type
1388 = create_range_type (NULL, index_type, 0, len - 1);
1389 struct type *type = create_set_type (NULL, domain_type);
1390 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1391 val = allocate_value (type);
1392 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1396 /* See if we can pass arguments in T2 to a function which takes
1397 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1398 a NULL-terminated vector. If some arguments need coercion of some
1399 sort, then the coerced values are written into T2. Return value is
1400 0 if the arguments could be matched, or the position at which they
1403 STATICP is nonzero if the T1 argument list came from a static
1404 member function. T2 will still include the ``this'' pointer, but
1407 For non-static member functions, we ignore the first argument,
1408 which is the type of the instance variable. This is because we
1409 want to handle calls with objects from derived classes. This is
1410 not entirely correct: we should actually check to make sure that a
1411 requested operation is type secure, shouldn't we? FIXME. */
1414 typecmp (int staticp, int varargs, int nargs,
1415 struct field t1[], struct value *t2[])
1420 internal_error (__FILE__, __LINE__,
1421 _("typecmp: no argument list"));
1423 /* Skip ``this'' argument if applicable. T2 will always include
1429 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1432 struct type *tt1, *tt2;
1437 tt1 = check_typedef (t1[i].type);
1438 tt2 = check_typedef (value_type (t2[i]));
1440 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1441 /* We should be doing hairy argument matching, as below. */
1442 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1444 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1445 t2[i] = value_coerce_array (t2[i]);
1447 t2[i] = value_ref (t2[i]);
1451 /* djb - 20000715 - Until the new type structure is in the
1452 place, and we can attempt things like implicit conversions,
1453 we need to do this so you can take something like a map<const
1454 char *>, and properly access map["hello"], because the
1455 argument to [] will be a reference to a pointer to a char,
1456 and the argument will be a pointer to a char. */
1457 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1458 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1460 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1462 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1463 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1464 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1466 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1468 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1470 /* Array to pointer is a `trivial conversion' according to the
1473 /* We should be doing much hairier argument matching (see
1474 section 13.2 of the ARM), but as a quick kludge, just check
1475 for the same type code. */
1476 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1479 if (varargs || t2[i] == NULL)
1484 /* Helper function used by value_struct_elt to recurse through
1485 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1486 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1487 TYPE. If found, return value, else return NULL.
1489 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1490 fields, look for a baseclass named NAME. */
1492 static struct value *
1493 search_struct_field (char *name, struct value *arg1, int offset,
1494 struct type *type, int looking_for_baseclass)
1497 int nbases = TYPE_N_BASECLASSES (type);
1499 CHECK_TYPEDEF (type);
1501 if (!looking_for_baseclass)
1502 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1504 char *t_field_name = TYPE_FIELD_NAME (type, i);
1506 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1509 if (field_is_static (&TYPE_FIELD (type, i)))
1511 v = value_static_field (type, i);
1513 error (_("field %s is nonexistent or has been optimised out"),
1518 v = value_primitive_field (arg1, offset, i, type);
1520 error (_("there is no field named %s"), name);
1526 && (t_field_name[0] == '\0'
1527 || (TYPE_CODE (type) == TYPE_CODE_UNION
1528 && (strcmp_iw (t_field_name, "else") == 0))))
1530 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1531 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1532 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1534 /* Look for a match through the fields of an anonymous
1535 union, or anonymous struct. C++ provides anonymous
1538 In the GNU Chill (now deleted from GDB)
1539 implementation of variant record types, each
1540 <alternative field> has an (anonymous) union type,
1541 each member of the union represents a <variant
1542 alternative>. Each <variant alternative> is
1543 represented as a struct, with a member for each
1547 int new_offset = offset;
1549 /* This is pretty gross. In G++, the offset in an
1550 anonymous union is relative to the beginning of the
1551 enclosing struct. In the GNU Chill (now deleted
1552 from GDB) implementation of variant records, the
1553 bitpos is zero in an anonymous union field, so we
1554 have to add the offset of the union here. */
1555 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1556 || (TYPE_NFIELDS (field_type) > 0
1557 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1558 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1560 v = search_struct_field (name, arg1, new_offset,
1562 looking_for_baseclass);
1569 for (i = 0; i < nbases; i++)
1572 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1573 /* If we are looking for baseclasses, this is what we get when
1574 we hit them. But it could happen that the base part's member
1575 name is not yet filled in. */
1576 int found_baseclass = (looking_for_baseclass
1577 && TYPE_BASECLASS_NAME (type, i) != NULL
1578 && (strcmp_iw (name,
1579 TYPE_BASECLASS_NAME (type,
1582 if (BASETYPE_VIA_VIRTUAL (type, i))
1587 boffset = baseclass_offset (type, i,
1588 value_contents (arg1) + offset,
1589 value_address (arg1) + offset);
1591 error (_("virtual baseclass botch"));
1593 /* The virtual base class pointer might have been clobbered
1594 by the user program. Make sure that it still points to a
1595 valid memory location. */
1598 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1600 CORE_ADDR base_addr;
1602 v2 = allocate_value (basetype);
1603 base_addr = value_address (arg1) + boffset;
1604 if (target_read_memory (base_addr,
1605 value_contents_raw (v2),
1606 TYPE_LENGTH (basetype)) != 0)
1607 error (_("virtual baseclass botch"));
1608 VALUE_LVAL (v2) = lval_memory;
1609 set_value_address (v2, base_addr);
1613 if (VALUE_LVAL (arg1) == lval_memory && value_lazy (arg1))
1614 v2 = allocate_value_lazy (basetype);
1617 v2 = allocate_value (basetype);
1618 memcpy (value_contents_raw (v2),
1619 value_contents_raw (arg1) + boffset,
1620 TYPE_LENGTH (basetype));
1622 set_value_component_location (v2, arg1);
1623 VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1);
1624 set_value_offset (v2, value_offset (arg1) + boffset);
1627 if (found_baseclass)
1629 v = search_struct_field (name, v2, 0,
1630 TYPE_BASECLASS (type, i),
1631 looking_for_baseclass);
1633 else if (found_baseclass)
1634 v = value_primitive_field (arg1, offset, i, type);
1636 v = search_struct_field (name, arg1,
1637 offset + TYPE_BASECLASS_BITPOS (type,
1639 basetype, looking_for_baseclass);
1646 /* Helper function used by value_struct_elt to recurse through
1647 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1648 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1651 If found, return value, else if name matched and args not return
1652 (value) -1, else return NULL. */
1654 static struct value *
1655 search_struct_method (char *name, struct value **arg1p,
1656 struct value **args, int offset,
1657 int *static_memfuncp, struct type *type)
1661 int name_matched = 0;
1662 char dem_opname[64];
1664 CHECK_TYPEDEF (type);
1665 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1667 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1668 /* FIXME! May need to check for ARM demangling here */
1669 if (strncmp (t_field_name, "__", 2) == 0 ||
1670 strncmp (t_field_name, "op", 2) == 0 ||
1671 strncmp (t_field_name, "type", 4) == 0)
1673 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1674 t_field_name = dem_opname;
1675 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1676 t_field_name = dem_opname;
1678 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1680 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1681 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1684 check_stub_method_group (type, i);
1685 if (j > 0 && args == 0)
1686 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
1687 else if (j == 0 && args == 0)
1689 v = value_fn_field (arg1p, f, j, type, offset);
1696 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1697 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1698 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1699 TYPE_FN_FIELD_ARGS (f, j), args))
1701 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1702 return value_virtual_fn_field (arg1p, f, j,
1704 if (TYPE_FN_FIELD_STATIC_P (f, j)
1706 *static_memfuncp = 1;
1707 v = value_fn_field (arg1p, f, j, type, offset);
1716 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1720 if (BASETYPE_VIA_VIRTUAL (type, i))
1722 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1723 const gdb_byte *base_valaddr;
1725 /* The virtual base class pointer might have been
1726 clobbered by the user program. Make sure that it
1727 still points to a valid memory location. */
1729 if (offset < 0 || offset >= TYPE_LENGTH (type))
1731 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
1732 if (target_read_memory (value_address (*arg1p) + offset,
1733 tmp, TYPE_LENGTH (baseclass)) != 0)
1734 error (_("virtual baseclass botch"));
1738 base_valaddr = value_contents (*arg1p) + offset;
1740 base_offset = baseclass_offset (type, i, base_valaddr,
1741 value_address (*arg1p) + offset);
1742 if (base_offset == -1)
1743 error (_("virtual baseclass botch"));
1747 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1749 v = search_struct_method (name, arg1p, args, base_offset + offset,
1750 static_memfuncp, TYPE_BASECLASS (type, i));
1751 if (v == (struct value *) - 1)
1757 /* FIXME-bothner: Why is this commented out? Why is it here? */
1758 /* *arg1p = arg1_tmp; */
1763 return (struct value *) - 1;
1768 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1769 extract the component named NAME from the ultimate target
1770 structure/union and return it as a value with its appropriate type.
1771 ERR is used in the error message if *ARGP's type is wrong.
1773 C++: ARGS is a list of argument types to aid in the selection of
1774 an appropriate method. Also, handle derived types.
1776 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1777 where the truthvalue of whether the function that was resolved was
1778 a static member function or not is stored.
1780 ERR is an error message to be printed in case the field is not
1784 value_struct_elt (struct value **argp, struct value **args,
1785 char *name, int *static_memfuncp, char *err)
1790 *argp = coerce_array (*argp);
1792 t = check_typedef (value_type (*argp));
1794 /* Follow pointers until we get to a non-pointer. */
1796 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1798 *argp = value_ind (*argp);
1799 /* Don't coerce fn pointer to fn and then back again! */
1800 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1801 *argp = coerce_array (*argp);
1802 t = check_typedef (value_type (*argp));
1805 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1806 && TYPE_CODE (t) != TYPE_CODE_UNION)
1807 error (_("Attempt to extract a component of a value that is not a %s."), err);
1809 /* Assume it's not, unless we see that it is. */
1810 if (static_memfuncp)
1811 *static_memfuncp = 0;
1815 /* if there are no arguments ...do this... */
1817 /* Try as a field first, because if we succeed, there is less
1819 v = search_struct_field (name, *argp, 0, t, 0);
1823 /* C++: If it was not found as a data field, then try to
1824 return it as a pointer to a method. */
1825 v = search_struct_method (name, argp, args, 0,
1826 static_memfuncp, t);
1828 if (v == (struct value *) - 1)
1829 error (_("Cannot take address of method %s."), name);
1832 if (TYPE_NFN_FIELDS (t))
1833 error (_("There is no member or method named %s."), name);
1835 error (_("There is no member named %s."), name);
1840 v = search_struct_method (name, argp, args, 0,
1841 static_memfuncp, t);
1843 if (v == (struct value *) - 1)
1845 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
1849 /* See if user tried to invoke data as function. If so, hand it
1850 back. If it's not callable (i.e., a pointer to function),
1851 gdb should give an error. */
1852 v = search_struct_field (name, *argp, 0, t, 0);
1853 /* If we found an ordinary field, then it is not a method call.
1854 So, treat it as if it were a static member function. */
1855 if (v && static_memfuncp)
1856 *static_memfuncp = 1;
1860 error (_("Structure has no component named %s."), name);
1864 /* Search through the methods of an object (and its bases) to find a
1865 specified method. Return the pointer to the fn_field list of
1866 overloaded instances.
1868 Helper function for value_find_oload_list.
1869 ARGP is a pointer to a pointer to a value (the object).
1870 METHOD is a string containing the method name.
1871 OFFSET is the offset within the value.
1872 TYPE is the assumed type of the object.
1873 NUM_FNS is the number of overloaded instances.
1874 BASETYPE is set to the actual type of the subobject where the
1876 BOFFSET is the offset of the base subobject where the method is found.
1879 static struct fn_field *
1880 find_method_list (struct value **argp, char *method,
1881 int offset, struct type *type, int *num_fns,
1882 struct type **basetype, int *boffset)
1886 CHECK_TYPEDEF (type);
1890 /* First check in object itself. */
1891 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1893 /* pai: FIXME What about operators and type conversions? */
1894 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1895 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1897 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1898 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1904 /* Resolve any stub methods. */
1905 check_stub_method_group (type, i);
1911 /* Not found in object, check in base subobjects. */
1912 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1915 if (BASETYPE_VIA_VIRTUAL (type, i))
1917 base_offset = value_offset (*argp) + offset;
1918 base_offset = baseclass_offset (type, i,
1919 value_contents (*argp) + base_offset,
1920 value_address (*argp) + base_offset);
1921 if (base_offset == -1)
1922 error (_("virtual baseclass botch"));
1924 else /* Non-virtual base, simply use bit position from debug
1927 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1929 f = find_method_list (argp, method, base_offset + offset,
1930 TYPE_BASECLASS (type, i), num_fns,
1938 /* Return the list of overloaded methods of a specified name.
1940 ARGP is a pointer to a pointer to a value (the object).
1941 METHOD is the method name.
1942 OFFSET is the offset within the value contents.
1943 NUM_FNS is the number of overloaded instances.
1944 BASETYPE is set to the type of the base subobject that defines the
1946 BOFFSET is the offset of the base subobject which defines the method.
1950 value_find_oload_method_list (struct value **argp, char *method,
1951 int offset, int *num_fns,
1952 struct type **basetype, int *boffset)
1956 t = check_typedef (value_type (*argp));
1958 /* Code snarfed from value_struct_elt. */
1959 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1961 *argp = value_ind (*argp);
1962 /* Don't coerce fn pointer to fn and then back again! */
1963 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1964 *argp = coerce_array (*argp);
1965 t = check_typedef (value_type (*argp));
1968 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1969 && TYPE_CODE (t) != TYPE_CODE_UNION)
1970 error (_("Attempt to extract a component of a value that is not a struct or union"));
1972 return find_method_list (argp, method, 0, t, num_fns,
1976 /* Given an array of argument types (ARGTYPES) (which includes an
1977 entry for "this" in the case of C++ methods), the number of
1978 arguments NARGS, the NAME of a function whether it's a method or
1979 not (METHOD), and the degree of laxness (LAX) in conforming to
1980 overload resolution rules in ANSI C++, find the best function that
1981 matches on the argument types according to the overload resolution
1984 In the case of class methods, the parameter OBJ is an object value
1985 in which to search for overloaded methods.
1987 In the case of non-method functions, the parameter FSYM is a symbol
1988 corresponding to one of the overloaded functions.
1990 Return value is an integer: 0 -> good match, 10 -> debugger applied
1991 non-standard coercions, 100 -> incompatible.
1993 If a method is being searched for, VALP will hold the value.
1994 If a non-method is being searched for, SYMP will hold the symbol
1997 If a method is being searched for, and it is a static method,
1998 then STATICP will point to a non-zero value.
2000 Note: This function does *not* check the value of
2001 overload_resolution. Caller must check it to see whether overload
2002 resolution is permitted.
2006 find_overload_match (struct type **arg_types, int nargs,
2007 char *name, int method, int lax,
2008 struct value **objp, struct symbol *fsym,
2009 struct value **valp, struct symbol **symp,
2012 struct value *obj = (objp ? *objp : NULL);
2013 /* Index of best overloaded function. */
2015 /* The measure for the current best match. */
2016 struct badness_vector *oload_champ_bv = NULL;
2017 struct value *temp = obj;
2018 /* For methods, the list of overloaded methods. */
2019 struct fn_field *fns_ptr = NULL;
2020 /* For non-methods, the list of overloaded function symbols. */
2021 struct symbol **oload_syms = NULL;
2022 /* Number of overloaded instances being considered. */
2024 struct type *basetype = NULL;
2028 struct cleanup *old_cleanups = NULL;
2030 const char *obj_type_name = NULL;
2031 char *func_name = NULL;
2032 enum oload_classification match_quality;
2034 /* Get the list of overloaded methods or functions. */
2038 obj_type_name = TYPE_NAME (value_type (obj));
2039 /* Hack: evaluate_subexp_standard often passes in a pointer
2040 value rather than the object itself, so try again. */
2041 if ((!obj_type_name || !*obj_type_name)
2042 && (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
2043 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
2045 fns_ptr = value_find_oload_method_list (&temp, name,
2047 &basetype, &boffset);
2048 if (!fns_ptr || !num_fns)
2049 error (_("Couldn't find method %s%s%s"),
2051 (obj_type_name && *obj_type_name) ? "::" : "",
2053 /* If we are dealing with stub method types, they should have
2054 been resolved by find_method_list via
2055 value_find_oload_method_list above. */
2056 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2057 oload_champ = find_oload_champ (arg_types, nargs, method,
2059 oload_syms, &oload_champ_bv);
2063 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
2065 /* If we have a C++ name, try to extract just the function
2068 func_name = cp_func_name (qualified_name);
2070 /* If there was no C++ name, this must be a C-style function.
2071 Just return the same symbol. Do the same if cp_func_name
2072 fails for some reason. */
2073 if (func_name == NULL)
2079 old_cleanups = make_cleanup (xfree, func_name);
2080 make_cleanup (xfree, oload_syms);
2081 make_cleanup (xfree, oload_champ_bv);
2083 oload_champ = find_oload_champ_namespace (arg_types, nargs,
2090 /* Check how bad the best match is. */
2093 classify_oload_match (oload_champ_bv, nargs,
2094 oload_method_static (method, fns_ptr,
2097 if (match_quality == INCOMPATIBLE)
2100 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2102 (obj_type_name && *obj_type_name) ? "::" : "",
2105 error (_("Cannot resolve function %s to any overloaded instance"),
2108 else if (match_quality == NON_STANDARD)
2111 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
2113 (obj_type_name && *obj_type_name) ? "::" : "",
2116 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
2122 if (staticp != NULL)
2123 *staticp = oload_method_static (method, fns_ptr, oload_champ);
2124 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2125 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ,
2128 *valp = value_fn_field (&temp, fns_ptr, oload_champ,
2133 *symp = oload_syms[oload_champ];
2138 struct type *temp_type = check_typedef (value_type (temp));
2139 struct type *obj_type = check_typedef (value_type (*objp));
2140 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2141 && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2142 || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2144 temp = value_addr (temp);
2148 if (old_cleanups != NULL)
2149 do_cleanups (old_cleanups);
2151 switch (match_quality)
2157 default: /* STANDARD */
2162 /* Find the best overload match, searching for FUNC_NAME in namespaces
2163 contained in QUALIFIED_NAME until it either finds a good match or
2164 runs out of namespaces. It stores the overloaded functions in
2165 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2166 calling function is responsible for freeing *OLOAD_SYMS and
2170 find_oload_champ_namespace (struct type **arg_types, int nargs,
2171 const char *func_name,
2172 const char *qualified_name,
2173 struct symbol ***oload_syms,
2174 struct badness_vector **oload_champ_bv)
2178 find_oload_champ_namespace_loop (arg_types, nargs,
2181 oload_syms, oload_champ_bv,
2187 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2188 how deep we've looked for namespaces, and the champ is stored in
2189 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2192 It is the caller's responsibility to free *OLOAD_SYMS and
2196 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2197 const char *func_name,
2198 const char *qualified_name,
2200 struct symbol ***oload_syms,
2201 struct badness_vector **oload_champ_bv,
2204 int next_namespace_len = namespace_len;
2205 int searched_deeper = 0;
2207 struct cleanup *old_cleanups;
2208 int new_oload_champ;
2209 struct symbol **new_oload_syms;
2210 struct badness_vector *new_oload_champ_bv;
2211 char *new_namespace;
2213 if (next_namespace_len != 0)
2215 gdb_assert (qualified_name[next_namespace_len] == ':');
2216 next_namespace_len += 2;
2218 next_namespace_len +=
2219 cp_find_first_component (qualified_name + next_namespace_len);
2221 /* Initialize these to values that can safely be xfree'd. */
2223 *oload_champ_bv = NULL;
2225 /* First, see if we have a deeper namespace we can search in.
2226 If we get a good match there, use it. */
2228 if (qualified_name[next_namespace_len] == ':')
2230 searched_deeper = 1;
2232 if (find_oload_champ_namespace_loop (arg_types, nargs,
2233 func_name, qualified_name,
2235 oload_syms, oload_champ_bv,
2242 /* If we reach here, either we're in the deepest namespace or we
2243 didn't find a good match in a deeper namespace. But, in the
2244 latter case, we still have a bad match in a deeper namespace;
2245 note that we might not find any match at all in the current
2246 namespace. (There's always a match in the deepest namespace,
2247 because this overload mechanism only gets called if there's a
2248 function symbol to start off with.) */
2250 old_cleanups = make_cleanup (xfree, *oload_syms);
2251 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2252 new_namespace = alloca (namespace_len + 1);
2253 strncpy (new_namespace, qualified_name, namespace_len);
2254 new_namespace[namespace_len] = '\0';
2255 new_oload_syms = make_symbol_overload_list (func_name,
2257 while (new_oload_syms[num_fns])
2260 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2261 NULL, new_oload_syms,
2262 &new_oload_champ_bv);
2264 /* Case 1: We found a good match. Free earlier matches (if any),
2265 and return it. Case 2: We didn't find a good match, but we're
2266 not the deepest function. Then go with the bad match that the
2267 deeper function found. Case 3: We found a bad match, and we're
2268 the deepest function. Then return what we found, even though
2269 it's a bad match. */
2271 if (new_oload_champ != -1
2272 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2274 *oload_syms = new_oload_syms;
2275 *oload_champ = new_oload_champ;
2276 *oload_champ_bv = new_oload_champ_bv;
2277 do_cleanups (old_cleanups);
2280 else if (searched_deeper)
2282 xfree (new_oload_syms);
2283 xfree (new_oload_champ_bv);
2284 discard_cleanups (old_cleanups);
2289 gdb_assert (new_oload_champ != -1);
2290 *oload_syms = new_oload_syms;
2291 *oload_champ = new_oload_champ;
2292 *oload_champ_bv = new_oload_champ_bv;
2293 discard_cleanups (old_cleanups);
2298 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2299 the best match from among the overloaded methods or functions
2300 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2301 The number of methods/functions in the list is given by NUM_FNS.
2302 Return the index of the best match; store an indication of the
2303 quality of the match in OLOAD_CHAMP_BV.
2305 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2308 find_oload_champ (struct type **arg_types, int nargs, int method,
2309 int num_fns, struct fn_field *fns_ptr,
2310 struct symbol **oload_syms,
2311 struct badness_vector **oload_champ_bv)
2314 /* A measure of how good an overloaded instance is. */
2315 struct badness_vector *bv;
2316 /* Index of best overloaded function. */
2317 int oload_champ = -1;
2318 /* Current ambiguity state for overload resolution. */
2319 int oload_ambiguous = 0;
2320 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2322 *oload_champ_bv = NULL;
2324 /* Consider each candidate in turn. */
2325 for (ix = 0; ix < num_fns; ix++)
2328 int static_offset = oload_method_static (method, fns_ptr, ix);
2330 struct type **parm_types;
2334 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2338 /* If it's not a method, this is the proper place. */
2339 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2342 /* Prepare array of parameter types. */
2343 parm_types = (struct type **)
2344 xmalloc (nparms * (sizeof (struct type *)));
2345 for (jj = 0; jj < nparms; jj++)
2346 parm_types[jj] = (method
2347 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2348 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2351 /* Compare parameter types to supplied argument types. Skip
2352 THIS for static methods. */
2353 bv = rank_function (parm_types, nparms,
2354 arg_types + static_offset,
2355 nargs - static_offset);
2357 if (!*oload_champ_bv)
2359 *oload_champ_bv = bv;
2362 else /* See whether current candidate is better or worse than
2364 switch (compare_badness (bv, *oload_champ_bv))
2366 case 0: /* Top two contenders are equally good. */
2367 oload_ambiguous = 1;
2369 case 1: /* Incomparable top contenders. */
2370 oload_ambiguous = 2;
2372 case 2: /* New champion, record details. */
2373 *oload_champ_bv = bv;
2374 oload_ambiguous = 0;
2385 fprintf_filtered (gdb_stderr,
2386 "Overloaded method instance %s, # of parms %d\n",
2387 fns_ptr[ix].physname, nparms);
2389 fprintf_filtered (gdb_stderr,
2390 "Overloaded function instance %s # of parms %d\n",
2391 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2393 for (jj = 0; jj < nargs - static_offset; jj++)
2394 fprintf_filtered (gdb_stderr,
2395 "...Badness @ %d : %d\n",
2397 fprintf_filtered (gdb_stderr,
2398 "Overload resolution champion is %d, ambiguous? %d\n",
2399 oload_champ, oload_ambiguous);
2406 /* Return 1 if we're looking at a static method, 0 if we're looking at
2407 a non-static method or a function that isn't a method. */
2410 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2412 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2418 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2420 static enum oload_classification
2421 classify_oload_match (struct badness_vector *oload_champ_bv,
2427 for (ix = 1; ix <= nargs - static_offset; ix++)
2429 if (oload_champ_bv->rank[ix] >= 100)
2430 return INCOMPATIBLE; /* Truly mismatched types. */
2431 else if (oload_champ_bv->rank[ix] >= 10)
2432 return NON_STANDARD; /* Non-standard type conversions
2436 return STANDARD; /* Only standard conversions needed. */
2439 /* C++: return 1 is NAME is a legitimate name for the destructor of
2440 type TYPE. If TYPE does not have a destructor, or if NAME is
2441 inappropriate for TYPE, an error is signaled. */
2443 destructor_name_p (const char *name, const struct type *type)
2447 char *dname = type_name_no_tag (type);
2448 char *cp = strchr (dname, '<');
2451 /* Do not compare the template part for template classes. */
2453 len = strlen (dname);
2456 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2457 error (_("name of destructor must equal name of class"));
2464 /* Given TYPE, a structure/union,
2465 return 1 if the component named NAME from the ultimate target
2466 structure/union is defined, otherwise, return 0. */
2469 check_field (struct type *type, const char *name)
2473 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2475 char *t_field_name = TYPE_FIELD_NAME (type, i);
2476 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2480 /* C++: If it was not found as a data field, then try to return it
2481 as a pointer to a method. */
2483 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2485 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2489 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2490 if (check_field (TYPE_BASECLASS (type, i), name))
2496 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2497 return the appropriate member (or the address of the member, if
2498 WANT_ADDRESS). This function is used to resolve user expressions
2499 of the form "DOMAIN::NAME". For more details on what happens, see
2500 the comment before value_struct_elt_for_reference. */
2503 value_aggregate_elt (struct type *curtype,
2504 char *name, int want_address,
2507 switch (TYPE_CODE (curtype))
2509 case TYPE_CODE_STRUCT:
2510 case TYPE_CODE_UNION:
2511 return value_struct_elt_for_reference (curtype, 0, curtype,
2513 want_address, noside);
2514 case TYPE_CODE_NAMESPACE:
2515 return value_namespace_elt (curtype, name,
2516 want_address, noside);
2518 internal_error (__FILE__, __LINE__,
2519 _("non-aggregate type in value_aggregate_elt"));
2523 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2524 return the address of this member as a "pointer to member" type.
2525 If INTYPE is non-null, then it will be the type of the member we
2526 are looking for. This will help us resolve "pointers to member
2527 functions". This function is used to resolve user expressions of
2528 the form "DOMAIN::NAME". */
2530 static struct value *
2531 value_struct_elt_for_reference (struct type *domain, int offset,
2532 struct type *curtype, char *name,
2533 struct type *intype,
2537 struct type *t = curtype;
2539 struct value *v, *result;
2541 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2542 && TYPE_CODE (t) != TYPE_CODE_UNION)
2543 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2545 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2547 char *t_field_name = TYPE_FIELD_NAME (t, i);
2549 if (t_field_name && strcmp (t_field_name, name) == 0)
2551 if (field_is_static (&TYPE_FIELD (t, i)))
2553 v = value_static_field (t, i);
2555 error (_("static field %s has been optimized out"),
2561 if (TYPE_FIELD_PACKED (t, i))
2562 error (_("pointers to bitfield members not allowed"));
2565 return value_from_longest
2566 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
2567 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2568 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2569 return allocate_value (TYPE_FIELD_TYPE (t, i));
2571 error (_("Cannot reference non-static field \"%s\""), name);
2575 /* C++: If it was not found as a data field, then try to return it
2576 as a pointer to a method. */
2578 /* Perform all necessary dereferencing. */
2579 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2580 intype = TYPE_TARGET_TYPE (intype);
2582 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2584 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2585 char dem_opname[64];
2587 if (strncmp (t_field_name, "__", 2) == 0
2588 || strncmp (t_field_name, "op", 2) == 0
2589 || strncmp (t_field_name, "type", 4) == 0)
2591 if (cplus_demangle_opname (t_field_name,
2592 dem_opname, DMGL_ANSI))
2593 t_field_name = dem_opname;
2594 else if (cplus_demangle_opname (t_field_name,
2596 t_field_name = dem_opname;
2598 if (t_field_name && strcmp (t_field_name, name) == 0)
2600 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2601 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2603 check_stub_method_group (t, i);
2605 if (intype == 0 && j > 1)
2606 error (_("non-unique member `%s' requires type instantiation"), name);
2610 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2613 error (_("no member function matches that type instantiation"));
2618 if (TYPE_FN_FIELD_STATIC_P (f, j))
2621 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2627 return value_addr (read_var_value (s, 0));
2629 return read_var_value (s, 0);
2632 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2636 result = allocate_value
2637 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2638 cplus_make_method_ptr (value_type (result),
2639 value_contents_writeable (result),
2640 TYPE_FN_FIELD_VOFFSET (f, j), 1);
2642 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2643 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
2645 error (_("Cannot reference virtual member function \"%s\""),
2651 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2656 v = read_var_value (s, 0);
2661 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2662 cplus_make_method_ptr (value_type (result),
2663 value_contents_writeable (result),
2664 value_address (v), 0);
2670 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2675 if (BASETYPE_VIA_VIRTUAL (t, i))
2678 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2679 v = value_struct_elt_for_reference (domain,
2680 offset + base_offset,
2681 TYPE_BASECLASS (t, i),
2683 want_address, noside);
2688 /* As a last chance, pretend that CURTYPE is a namespace, and look
2689 it up that way; this (frequently) works for types nested inside
2692 return value_maybe_namespace_elt (curtype, name,
2693 want_address, noside);
2696 /* C++: Return the member NAME of the namespace given by the type
2699 static struct value *
2700 value_namespace_elt (const struct type *curtype,
2701 char *name, int want_address,
2704 struct value *retval = value_maybe_namespace_elt (curtype, name,
2709 error (_("No symbol \"%s\" in namespace \"%s\"."),
2710 name, TYPE_TAG_NAME (curtype));
2715 /* A helper function used by value_namespace_elt and
2716 value_struct_elt_for_reference. It looks up NAME inside the
2717 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2718 is a class and NAME refers to a type in CURTYPE itself (as opposed
2719 to, say, some base class of CURTYPE). */
2721 static struct value *
2722 value_maybe_namespace_elt (const struct type *curtype,
2723 char *name, int want_address,
2726 const char *namespace_name = TYPE_TAG_NAME (curtype);
2728 struct value *result;
2730 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2731 get_selected_block (0),
2736 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2737 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2738 result = allocate_value (SYMBOL_TYPE (sym));
2740 result = value_of_variable (sym, get_selected_block (0));
2742 if (result && want_address)
2743 result = value_addr (result);
2748 /* Given a pointer value V, find the real (RTTI) type of the object it
2751 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2752 and refer to the values computed for the object pointed to. */
2755 value_rtti_target_type (struct value *v, int *full,
2756 int *top, int *using_enc)
2758 struct value *target;
2760 target = value_ind (v);
2762 return value_rtti_type (target, full, top, using_enc);
2765 /* Given a value pointed to by ARGP, check its real run-time type, and
2766 if that is different from the enclosing type, create a new value
2767 using the real run-time type as the enclosing type (and of the same
2768 type as ARGP) and return it, with the embedded offset adjusted to
2769 be the correct offset to the enclosed object. RTYPE is the type,
2770 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
2771 by value_rtti_type(). If these are available, they can be supplied
2772 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
2773 NULL if they're not available. */
2776 value_full_object (struct value *argp,
2778 int xfull, int xtop,
2781 struct type *real_type;
2785 struct value *new_val;
2792 using_enc = xusing_enc;
2795 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2797 /* If no RTTI data, or if object is already complete, do nothing. */
2798 if (!real_type || real_type == value_enclosing_type (argp))
2801 /* If we have the full object, but for some reason the enclosing
2802 type is wrong, set it. */
2803 /* pai: FIXME -- sounds iffy */
2806 argp = value_change_enclosing_type (argp, real_type);
2810 /* Check if object is in memory */
2811 if (VALUE_LVAL (argp) != lval_memory)
2813 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
2814 TYPE_NAME (real_type));
2819 /* All other cases -- retrieve the complete object. */
2820 /* Go back by the computed top_offset from the beginning of the
2821 object, adjusting for the embedded offset of argp if that's what
2822 value_rtti_type used for its computation. */
2823 new_val = value_at_lazy (real_type, value_address (argp) - top +
2824 (using_enc ? 0 : value_embedded_offset (argp)));
2825 deprecated_set_value_type (new_val, value_type (argp));
2826 set_value_embedded_offset (new_val, (using_enc
2827 ? top + value_embedded_offset (argp)
2833 /* Return the value of the local variable, if one exists.
2834 Flag COMPLAIN signals an error if the request is made in an
2835 inappropriate context. */
2838 value_of_local (const char *name, int complain)
2840 struct symbol *func, *sym;
2843 struct frame_info *frame;
2846 frame = get_selected_frame (_("no frame selected"));
2849 frame = deprecated_safe_get_selected_frame ();
2854 func = get_frame_function (frame);
2858 error (_("no `%s' in nameless context"), name);
2863 b = SYMBOL_BLOCK_VALUE (func);
2864 if (dict_empty (BLOCK_DICT (b)))
2867 error (_("no args, no `%s'"), name);
2872 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2873 symbol instead of the LOC_ARG one (if both exist). */
2874 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2878 error (_("current stack frame does not contain a variable named `%s'"),
2884 ret = read_var_value (sym, frame);
2885 if (ret == 0 && complain)
2886 error (_("`%s' argument unreadable"), name);
2890 /* C++/Objective-C: return the value of the class instance variable,
2891 if one exists. Flag COMPLAIN signals an error if the request is
2892 made in an inappropriate context. */
2895 value_of_this (int complain)
2897 if (!current_language->la_name_of_this)
2899 return value_of_local (current_language->la_name_of_this, complain);
2902 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
2903 elements long, starting at LOWBOUND. The result has the same lower
2904 bound as the original ARRAY. */
2907 value_slice (struct value *array, int lowbound, int length)
2909 struct type *slice_range_type, *slice_type, *range_type;
2910 LONGEST lowerbound, upperbound;
2911 struct value *slice;
2912 struct type *array_type;
2914 array_type = check_typedef (value_type (array));
2915 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2916 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2917 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2918 error (_("cannot take slice of non-array"));
2920 range_type = TYPE_INDEX_TYPE (array_type);
2921 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2922 error (_("slice from bad array or bitstring"));
2924 if (lowbound < lowerbound || length < 0
2925 || lowbound + length - 1 > upperbound)
2926 error (_("slice out of range"));
2928 /* FIXME-type-allocation: need a way to free this type when we are
2930 slice_range_type = create_range_type ((struct type *) NULL,
2931 TYPE_TARGET_TYPE (range_type),
2933 lowbound + length - 1);
2934 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2938 slice_type = create_set_type ((struct type *) NULL,
2940 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2941 slice = value_zero (slice_type, not_lval);
2943 for (i = 0; i < length; i++)
2945 int element = value_bit_index (array_type,
2946 value_contents (array),
2949 error (_("internal error accessing bitstring"));
2950 else if (element > 0)
2952 int j = i % TARGET_CHAR_BIT;
2953 if (gdbarch_bits_big_endian (get_type_arch (array_type)))
2954 j = TARGET_CHAR_BIT - 1 - j;
2955 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2958 /* We should set the address, bitssize, and bitspos, so the
2959 slice can be used on the LHS, but that may require extensions
2960 to value_assign. For now, just leave as a non_lval.
2965 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2967 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2969 slice_type = create_array_type ((struct type *) NULL,
2972 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
2974 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
2975 slice = allocate_value_lazy (slice_type);
2978 slice = allocate_value (slice_type);
2979 memcpy (value_contents_writeable (slice),
2980 value_contents (array) + offset,
2981 TYPE_LENGTH (slice_type));
2984 set_value_component_location (slice, array);
2985 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
2986 set_value_offset (slice, value_offset (array) + offset);
2991 /* Create a value for a FORTRAN complex number. Currently most of the
2992 time values are coerced to COMPLEX*16 (i.e. a complex number
2993 composed of 2 doubles. This really should be a smarter routine
2994 that figures out precision inteligently as opposed to assuming
2995 doubles. FIXME: fmb */
2998 value_literal_complex (struct value *arg1,
3003 struct type *real_type = TYPE_TARGET_TYPE (type);
3005 val = allocate_value (type);
3006 arg1 = value_cast (real_type, arg1);
3007 arg2 = value_cast (real_type, arg2);
3009 memcpy (value_contents_raw (val),
3010 value_contents (arg1), TYPE_LENGTH (real_type));
3011 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3012 value_contents (arg2), TYPE_LENGTH (real_type));
3016 /* Cast a value into the appropriate complex data type. */
3018 static struct value *
3019 cast_into_complex (struct type *type, struct value *val)
3021 struct type *real_type = TYPE_TARGET_TYPE (type);
3023 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3025 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3026 struct value *re_val = allocate_value (val_real_type);
3027 struct value *im_val = allocate_value (val_real_type);
3029 memcpy (value_contents_raw (re_val),
3030 value_contents (val), TYPE_LENGTH (val_real_type));
3031 memcpy (value_contents_raw (im_val),
3032 value_contents (val) + TYPE_LENGTH (val_real_type),
3033 TYPE_LENGTH (val_real_type));
3035 return value_literal_complex (re_val, im_val, type);
3037 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3038 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3039 return value_literal_complex (val,
3040 value_zero (real_type, not_lval),
3043 error (_("cannot cast non-number to complex"));
3047 _initialize_valops (void)
3049 add_setshow_boolean_cmd ("overload-resolution", class_support,
3050 &overload_resolution, _("\
3051 Set overload resolution in evaluating C++ functions."), _("\
3052 Show overload resolution in evaluating C++ functions."),
3054 show_overload_resolution,
3055 &setlist, &showlist);
3056 overload_resolution = 1;