1 /* Perform non-arithmetic operations on values, for GDB.
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
35 #include "dictionary.h"
36 #include "cp-support.h"
38 #include "tracepoint.h"
41 #include "gdb_assert.h"
44 #include "exceptions.h"
46 extern unsigned int overload_debug;
47 /* Local functions. */
49 static int typecmp (int staticp, int varargs, int nargs,
50 struct field t1[], struct value *t2[]);
52 static struct value *search_struct_field (const char *, struct value *,
53 int, struct type *, int);
55 static struct value *search_struct_method (const char *, struct value **,
57 int, int *, struct type *);
59 static int find_oload_champ_namespace (struct value **, int,
60 const char *, const char *,
62 struct badness_vector **,
66 int find_oload_champ_namespace_loop (struct value **, int,
67 const char *, const char *,
68 int, struct symbol ***,
69 struct badness_vector **, int *,
72 static int find_oload_champ (struct value **, int, int,
73 struct fn_field *, struct symbol **,
74 struct badness_vector **);
76 static int oload_method_static (int, struct fn_field *, int);
78 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
81 oload_classification classify_oload_match (struct badness_vector *,
84 static struct value *value_struct_elt_for_reference (struct type *,
90 static struct value *value_namespace_elt (const struct type *,
91 char *, int , enum noside);
93 static struct value *value_maybe_namespace_elt (const struct type *,
97 static CORE_ADDR allocate_space_in_inferior (int);
99 static struct value *cast_into_complex (struct type *, struct value *);
101 static struct fn_field *find_method_list (struct value **, const char *,
102 int, struct type *, int *,
103 struct type **, int *);
105 void _initialize_valops (void);
108 /* Flag for whether we want to abandon failed expression evals by
111 static int auto_abandon = 0;
114 int overload_resolution = 0;
116 show_overload_resolution (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c,
120 fprintf_filtered (file, _("Overload resolution in evaluating "
121 "C++ functions is %s.\n"),
125 /* Find the address of function name NAME in the inferior. If OBJF_P
126 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
130 find_function_in_inferior (const char *name, struct objfile **objf_p)
134 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
137 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
139 error (_("\"%s\" exists in this program but is not a function."),
144 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
146 return value_of_variable (sym, NULL);
150 struct bound_minimal_symbol msymbol =
151 lookup_bound_minimal_symbol (name);
153 if (msymbol.minsym != NULL)
155 struct objfile *objfile = msymbol.objfile;
156 struct gdbarch *gdbarch = get_objfile_arch (objfile);
160 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
161 type = lookup_function_type (type);
162 type = lookup_pointer_type (type);
163 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
168 return value_from_pointer (type, maddr);
172 if (!target_has_execution)
173 error (_("evaluation of this expression "
174 "requires the target program to be active"));
176 error (_("evaluation of this expression requires the "
177 "program to have a function \"%s\"."),
183 /* Allocate NBYTES of space in the inferior using the inferior's
184 malloc and return a value that is a pointer to the allocated
188 value_allocate_space_in_inferior (int len)
190 struct objfile *objf;
191 struct value *val = find_function_in_inferior ("malloc", &objf);
192 struct gdbarch *gdbarch = get_objfile_arch (objf);
193 struct value *blocklen;
195 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
196 val = call_function_by_hand (val, 1, &blocklen);
197 if (value_logical_not (val))
199 if (!target_has_execution)
200 error (_("No memory available to program now: "
201 "you need to start the target first"));
203 error (_("No memory available to program: call to malloc failed"));
209 allocate_space_in_inferior (int len)
211 return value_as_long (value_allocate_space_in_inferior (len));
214 /* Cast struct value VAL to type TYPE and return as a value.
215 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
216 for this to work. Typedef to one of the codes is permitted.
217 Returns NULL if the cast is neither an upcast nor a downcast. */
219 static struct value *
220 value_cast_structs (struct type *type, struct value *v2)
226 gdb_assert (type != NULL && v2 != NULL);
228 t1 = check_typedef (type);
229 t2 = check_typedef (value_type (v2));
231 /* Check preconditions. */
232 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
233 || TYPE_CODE (t1) == TYPE_CODE_UNION)
234 && !!"Precondition is that type is of STRUCT or UNION kind.");
235 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
236 || TYPE_CODE (t2) == TYPE_CODE_UNION)
237 && !!"Precondition is that value is of STRUCT or UNION kind");
239 if (TYPE_NAME (t1) != NULL
240 && TYPE_NAME (t2) != NULL
241 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
244 /* Upcasting: look in the type of the source to see if it contains the
245 type of the target as a superclass. If so, we'll need to
246 offset the pointer rather than just change its type. */
247 if (TYPE_NAME (t1) != NULL)
249 v = search_struct_field (type_name_no_tag (t1),
255 /* Downcasting: look in the type of the target to see if it contains the
256 type of the source as a superclass. If so, we'll need to
257 offset the pointer rather than just change its type. */
258 if (TYPE_NAME (t2) != NULL)
260 /* Try downcasting using the run-time type of the value. */
261 int full, top, using_enc;
262 struct type *real_type;
264 real_type = value_rtti_type (v2, &full, &top, &using_enc);
267 v = value_full_object (v2, real_type, full, top, using_enc);
268 v = value_at_lazy (real_type, value_address (v));
269 real_type = value_type (v);
271 /* We might be trying to cast to the outermost enclosing
272 type, in which case search_struct_field won't work. */
273 if (TYPE_NAME (real_type) != NULL
274 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
277 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
282 /* Try downcasting using information from the destination type
283 T2. This wouldn't work properly for classes with virtual
284 bases, but those were handled above. */
285 v = search_struct_field (type_name_no_tag (t2),
286 value_zero (t1, not_lval), 0, t1, 1);
289 /* Downcasting is possible (t1 is superclass of v2). */
290 CORE_ADDR addr2 = value_address (v2);
292 addr2 -= value_address (v) + value_embedded_offset (v);
293 return value_at (type, addr2);
300 /* Cast one pointer or reference type to another. Both TYPE and
301 the type of ARG2 should be pointer types, or else both should be
302 reference types. If SUBCLASS_CHECK is non-zero, this will force a
303 check to see whether TYPE is a superclass of ARG2's type. If
304 SUBCLASS_CHECK is zero, then the subclass check is done only when
305 ARG2 is itself non-zero. Returns the new pointer or reference. */
308 value_cast_pointers (struct type *type, struct value *arg2,
311 struct type *type1 = check_typedef (type);
312 struct type *type2 = check_typedef (value_type (arg2));
313 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
314 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
316 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
317 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
318 && (subclass_check || !value_logical_not (arg2)))
322 if (TYPE_CODE (type2) == TYPE_CODE_REF)
323 v2 = coerce_ref (arg2);
325 v2 = value_ind (arg2);
326 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
327 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
328 v2 = value_cast_structs (t1, v2);
329 /* At this point we have what we can have, un-dereference if needed. */
332 struct value *v = value_addr (v2);
334 deprecated_set_value_type (v, type);
339 /* No superclass found, just change the pointer type. */
340 arg2 = value_copy (arg2);
341 deprecated_set_value_type (arg2, type);
342 set_value_enclosing_type (arg2, type);
343 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
347 /* Cast value ARG2 to type TYPE and return as a value.
348 More general than a C cast: accepts any two types of the same length,
349 and if ARG2 is an lvalue it can be cast into anything at all. */
350 /* In C++, casts may change pointer or object representations. */
353 value_cast (struct type *type, struct value *arg2)
355 enum type_code code1;
356 enum type_code code2;
360 int convert_to_boolean = 0;
362 if (value_type (arg2) == type)
365 code1 = TYPE_CODE (check_typedef (type));
367 /* Check if we are casting struct reference to struct reference. */
368 if (code1 == TYPE_CODE_REF)
370 /* We dereference type; then we recurse and finally
371 we generate value of the given reference. Nothing wrong with
373 struct type *t1 = check_typedef (type);
374 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
375 struct value *val = value_cast (dereftype, arg2);
377 return value_ref (val);
380 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
382 if (code2 == TYPE_CODE_REF)
383 /* We deref the value and then do the cast. */
384 return value_cast (type, coerce_ref (arg2));
386 CHECK_TYPEDEF (type);
387 code1 = TYPE_CODE (type);
388 arg2 = coerce_ref (arg2);
389 type2 = check_typedef (value_type (arg2));
391 /* You can't cast to a reference type. See value_cast_pointers
393 gdb_assert (code1 != TYPE_CODE_REF);
395 /* A cast to an undetermined-length array_type, such as
396 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
397 where N is sizeof(OBJECT)/sizeof(TYPE). */
398 if (code1 == TYPE_CODE_ARRAY)
400 struct type *element_type = TYPE_TARGET_TYPE (type);
401 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
403 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
405 struct type *range_type = TYPE_INDEX_TYPE (type);
406 int val_length = TYPE_LENGTH (type2);
407 LONGEST low_bound, high_bound, new_length;
409 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
410 low_bound = 0, high_bound = 0;
411 new_length = val_length / element_length;
412 if (val_length % element_length != 0)
413 warning (_("array element type size does not "
414 "divide object size in cast"));
415 /* FIXME-type-allocation: need a way to free this type when
416 we are done with it. */
417 range_type = create_static_range_type ((struct type *) NULL,
418 TYPE_TARGET_TYPE (range_type),
420 new_length + low_bound - 1);
421 deprecated_set_value_type (arg2,
422 create_array_type ((struct type *) NULL,
429 if (current_language->c_style_arrays
430 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
431 && !TYPE_VECTOR (type2))
432 arg2 = value_coerce_array (arg2);
434 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
435 arg2 = value_coerce_function (arg2);
437 type2 = check_typedef (value_type (arg2));
438 code2 = TYPE_CODE (type2);
440 if (code1 == TYPE_CODE_COMPLEX)
441 return cast_into_complex (type, arg2);
442 if (code1 == TYPE_CODE_BOOL)
444 code1 = TYPE_CODE_INT;
445 convert_to_boolean = 1;
447 if (code1 == TYPE_CODE_CHAR)
448 code1 = TYPE_CODE_INT;
449 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
450 code2 = TYPE_CODE_INT;
452 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
453 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
454 || code2 == TYPE_CODE_RANGE);
456 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
457 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
458 && TYPE_NAME (type) != 0)
460 struct value *v = value_cast_structs (type, arg2);
466 if (code1 == TYPE_CODE_FLT && scalar)
467 return value_from_double (type, value_as_double (arg2));
468 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
470 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
471 int dec_len = TYPE_LENGTH (type);
474 if (code2 == TYPE_CODE_FLT)
475 decimal_from_floating (arg2, dec, dec_len, byte_order);
476 else if (code2 == TYPE_CODE_DECFLOAT)
477 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
478 byte_order, dec, dec_len, byte_order);
480 /* The only option left is an integral type. */
481 decimal_from_integral (arg2, dec, dec_len, byte_order);
483 return value_from_decfloat (type, dec);
485 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
486 || code1 == TYPE_CODE_RANGE)
487 && (scalar || code2 == TYPE_CODE_PTR
488 || code2 == TYPE_CODE_MEMBERPTR))
492 /* When we cast pointers to integers, we mustn't use
493 gdbarch_pointer_to_address to find the address the pointer
494 represents, as value_as_long would. GDB should evaluate
495 expressions just as the compiler would --- and the compiler
496 sees a cast as a simple reinterpretation of the pointer's
498 if (code2 == TYPE_CODE_PTR)
499 longest = extract_unsigned_integer
500 (value_contents (arg2), TYPE_LENGTH (type2),
501 gdbarch_byte_order (get_type_arch (type2)));
503 longest = value_as_long (arg2);
504 return value_from_longest (type, convert_to_boolean ?
505 (LONGEST) (longest ? 1 : 0) : longest);
507 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
508 || code2 == TYPE_CODE_ENUM
509 || code2 == TYPE_CODE_RANGE))
511 /* TYPE_LENGTH (type) is the length of a pointer, but we really
512 want the length of an address! -- we are really dealing with
513 addresses (i.e., gdb representations) not pointers (i.e.,
514 target representations) here.
516 This allows things like "print *(int *)0x01000234" to work
517 without printing a misleading message -- which would
518 otherwise occur when dealing with a target having two byte
519 pointers and four byte addresses. */
521 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
522 LONGEST longest = value_as_long (arg2);
524 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
526 if (longest >= ((LONGEST) 1 << addr_bit)
527 || longest <= -((LONGEST) 1 << addr_bit))
528 warning (_("value truncated"));
530 return value_from_longest (type, longest);
532 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
533 && value_as_long (arg2) == 0)
535 struct value *result = allocate_value (type);
537 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
540 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
541 && value_as_long (arg2) == 0)
543 /* The Itanium C++ ABI represents NULL pointers to members as
544 minus one, instead of biasing the normal case. */
545 return value_from_longest (type, -1);
547 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
548 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
549 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
550 error (_("Cannot convert between vector values of different sizes"));
551 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
552 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
553 error (_("can only cast scalar to vector of same size"));
554 else if (code1 == TYPE_CODE_VOID)
556 return value_zero (type, not_lval);
558 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
560 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
561 return value_cast_pointers (type, arg2, 0);
563 arg2 = value_copy (arg2);
564 deprecated_set_value_type (arg2, type);
565 set_value_enclosing_type (arg2, type);
566 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
569 else if (VALUE_LVAL (arg2) == lval_memory)
570 return value_at_lazy (type, value_address (arg2));
573 error (_("Invalid cast."));
578 /* The C++ reinterpret_cast operator. */
581 value_reinterpret_cast (struct type *type, struct value *arg)
583 struct value *result;
584 struct type *real_type = check_typedef (type);
585 struct type *arg_type, *dest_type;
587 enum type_code dest_code, arg_code;
589 /* Do reference, function, and array conversion. */
590 arg = coerce_array (arg);
592 /* Attempt to preserve the type the user asked for. */
595 /* If we are casting to a reference type, transform
596 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
597 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
600 arg = value_addr (arg);
601 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
602 real_type = lookup_pointer_type (real_type);
605 arg_type = value_type (arg);
607 dest_code = TYPE_CODE (real_type);
608 arg_code = TYPE_CODE (arg_type);
610 /* We can convert pointer types, or any pointer type to int, or int
612 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
613 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
614 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
615 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
616 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
617 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
618 || (dest_code == arg_code
619 && (dest_code == TYPE_CODE_PTR
620 || dest_code == TYPE_CODE_METHODPTR
621 || dest_code == TYPE_CODE_MEMBERPTR)))
622 result = value_cast (dest_type, arg);
624 error (_("Invalid reinterpret_cast"));
627 result = value_cast (type, value_ref (value_ind (result)));
632 /* A helper for value_dynamic_cast. This implements the first of two
633 runtime checks: we iterate over all the base classes of the value's
634 class which are equal to the desired class; if only one of these
635 holds the value, then it is the answer. */
638 dynamic_cast_check_1 (struct type *desired_type,
639 const gdb_byte *valaddr,
643 struct type *search_type,
645 struct type *arg_type,
646 struct value **result)
648 int i, result_count = 0;
650 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
652 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
655 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
657 if (address + embedded_offset + offset >= arg_addr
658 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
662 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
663 address + embedded_offset + offset);
667 result_count += dynamic_cast_check_1 (desired_type,
669 embedded_offset + offset,
671 TYPE_BASECLASS (search_type, i),
680 /* A helper for value_dynamic_cast. This implements the second of two
681 runtime checks: we look for a unique public sibling class of the
682 argument's declared class. */
685 dynamic_cast_check_2 (struct type *desired_type,
686 const gdb_byte *valaddr,
690 struct type *search_type,
691 struct value **result)
693 int i, result_count = 0;
695 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
699 if (! BASETYPE_VIA_PUBLIC (search_type, i))
702 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
704 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
708 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
709 address + embedded_offset + offset);
712 result_count += dynamic_cast_check_2 (desired_type,
714 embedded_offset + offset,
716 TYPE_BASECLASS (search_type, i),
723 /* The C++ dynamic_cast operator. */
726 value_dynamic_cast (struct type *type, struct value *arg)
728 int full, top, using_enc;
729 struct type *resolved_type = check_typedef (type);
730 struct type *arg_type = check_typedef (value_type (arg));
731 struct type *class_type, *rtti_type;
732 struct value *result, *tem, *original_arg = arg;
734 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
736 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
737 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
738 error (_("Argument to dynamic_cast must be a pointer or reference type"));
739 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
740 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
741 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
743 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
744 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
746 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
747 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
748 && value_as_long (arg) == 0))
749 error (_("Argument to dynamic_cast does not have pointer type"));
750 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
752 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
753 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
754 error (_("Argument to dynamic_cast does "
755 "not have pointer to class type"));
758 /* Handle NULL pointers. */
759 if (value_as_long (arg) == 0)
760 return value_zero (type, not_lval);
762 arg = value_ind (arg);
766 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
767 error (_("Argument to dynamic_cast does not have class type"));
770 /* If the classes are the same, just return the argument. */
771 if (class_types_same_p (class_type, arg_type))
772 return value_cast (type, arg);
774 /* If the target type is a unique base class of the argument's
775 declared type, just cast it. */
776 if (is_ancestor (class_type, arg_type))
778 if (is_unique_ancestor (class_type, arg))
779 return value_cast (type, original_arg);
780 error (_("Ambiguous dynamic_cast"));
783 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
785 error (_("Couldn't determine value's most derived type for dynamic_cast"));
787 /* Compute the most derived object's address. */
788 addr = value_address (arg);
796 addr += top + value_embedded_offset (arg);
798 /* dynamic_cast<void *> means to return a pointer to the
799 most-derived object. */
800 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
801 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
802 return value_at_lazy (type, addr);
804 tem = value_at (type, addr);
805 type = value_type (tem);
807 /* The first dynamic check specified in 5.2.7. */
808 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
810 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
813 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
814 value_contents_for_printing (tem),
815 value_embedded_offset (tem),
816 value_address (tem), tem,
820 return value_cast (type,
821 is_ref ? value_ref (result) : value_addr (result));
824 /* The second dynamic check specified in 5.2.7. */
826 if (is_public_ancestor (arg_type, rtti_type)
827 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
828 value_contents_for_printing (tem),
829 value_embedded_offset (tem),
830 value_address (tem), tem,
831 rtti_type, &result) == 1)
832 return value_cast (type,
833 is_ref ? value_ref (result) : value_addr (result));
835 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
836 return value_zero (type, not_lval);
838 error (_("dynamic_cast failed"));
841 /* Create a value of type TYPE that is zero, and return it. */
844 value_zero (struct type *type, enum lval_type lv)
846 struct value *val = allocate_value (type);
848 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
852 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
855 value_one (struct type *type)
857 struct type *type1 = check_typedef (type);
860 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
862 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
865 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
866 val = value_from_decfloat (type, v);
868 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
870 val = value_from_double (type, (DOUBLEST) 1);
872 else if (is_integral_type (type1))
874 val = value_from_longest (type, (LONGEST) 1);
876 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
878 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
880 LONGEST low_bound, high_bound;
883 if (!get_array_bounds (type1, &low_bound, &high_bound))
884 error (_("Could not determine the vector bounds"));
886 val = allocate_value (type);
887 for (i = 0; i < high_bound - low_bound + 1; i++)
889 tmp = value_one (eltype);
890 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
891 value_contents_all (tmp), TYPE_LENGTH (eltype));
896 error (_("Not a numeric type."));
899 /* value_one result is never used for assignments to. */
900 gdb_assert (VALUE_LVAL (val) == not_lval);
905 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
906 The type of the created value may differ from the passed type TYPE.
907 Make sure to retrieve the returned values's new type after this call
908 e.g. in case the type is a variable length array. */
910 static struct value *
911 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
915 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
916 error (_("Attempt to dereference a generic pointer."));
918 val = value_from_contents_and_address (type, NULL, addr);
921 value_fetch_lazy (val);
926 /* Return a value with type TYPE located at ADDR.
928 Call value_at only if the data needs to be fetched immediately;
929 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
930 value_at_lazy instead. value_at_lazy simply records the address of
931 the data and sets the lazy-evaluation-required flag. The lazy flag
932 is tested in the value_contents macro, which is used if and when
933 the contents are actually required. The type of the created value
934 may differ from the passed type TYPE. Make sure to retrieve the
935 returned values's new type after this call e.g. in case the type
936 is a variable length array.
938 Note: value_at does *NOT* handle embedded offsets; perform such
939 adjustments before or after calling it. */
942 value_at (struct type *type, CORE_ADDR addr)
944 return get_value_at (type, addr, 0);
947 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
948 The type of the created value may differ from the passed type TYPE.
949 Make sure to retrieve the returned values's new type after this call
950 e.g. in case the type is a variable length array. */
953 value_at_lazy (struct type *type, CORE_ADDR addr)
955 return get_value_at (type, addr, 1);
959 read_value_memory (struct value *val, int embedded_offset,
960 int stack, CORE_ADDR memaddr,
961 gdb_byte *buffer, size_t length)
965 while (xfered < length)
967 enum target_xfer_status status;
970 status = target_xfer_partial (current_target.beneath,
971 TARGET_OBJECT_MEMORY, NULL,
972 buffer + xfered, NULL,
973 memaddr + xfered, length - xfered,
976 if (status == TARGET_XFER_OK)
978 else if (status == TARGET_XFER_UNAVAILABLE)
979 mark_value_bytes_unavailable (val, embedded_offset + xfered,
981 else if (status == TARGET_XFER_EOF)
982 memory_error (TARGET_XFER_E_IO, memaddr + xfered);
984 memory_error (status, memaddr + xfered);
986 xfered += xfered_len;
991 /* Store the contents of FROMVAL into the location of TOVAL.
992 Return a new value with the location of TOVAL and contents of FROMVAL. */
995 value_assign (struct value *toval, struct value *fromval)
999 struct frame_id old_frame;
1001 if (!deprecated_value_modifiable (toval))
1002 error (_("Left operand of assignment is not a modifiable lvalue."));
1004 toval = coerce_ref (toval);
1006 type = value_type (toval);
1007 if (VALUE_LVAL (toval) != lval_internalvar)
1008 fromval = value_cast (type, fromval);
1011 /* Coerce arrays and functions to pointers, except for arrays
1012 which only live in GDB's storage. */
1013 if (!value_must_coerce_to_target (fromval))
1014 fromval = coerce_array (fromval);
1017 CHECK_TYPEDEF (type);
1019 /* Since modifying a register can trash the frame chain, and
1020 modifying memory can trash the frame cache, we save the old frame
1021 and then restore the new frame afterwards. */
1022 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1024 switch (VALUE_LVAL (toval))
1026 case lval_internalvar:
1027 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1028 return value_of_internalvar (get_type_arch (type),
1029 VALUE_INTERNALVAR (toval));
1031 case lval_internalvar_component:
1033 int offset = value_offset (toval);
1035 /* Are we dealing with a bitfield?
1037 It is important to mention that `value_parent (toval)' is
1038 non-NULL iff `value_bitsize (toval)' is non-zero. */
1039 if (value_bitsize (toval))
1041 /* VALUE_INTERNALVAR below refers to the parent value, while
1042 the offset is relative to this parent value. */
1043 gdb_assert (value_parent (value_parent (toval)) == NULL);
1044 offset += value_offset (value_parent (toval));
1047 set_internalvar_component (VALUE_INTERNALVAR (toval),
1049 value_bitpos (toval),
1050 value_bitsize (toval),
1057 const gdb_byte *dest_buffer;
1058 CORE_ADDR changed_addr;
1060 gdb_byte buffer[sizeof (LONGEST)];
1062 if (value_bitsize (toval))
1064 struct value *parent = value_parent (toval);
1066 changed_addr = value_address (parent) + value_offset (toval);
1067 changed_len = (value_bitpos (toval)
1068 + value_bitsize (toval)
1069 + HOST_CHAR_BIT - 1)
1072 /* If we can read-modify-write exactly the size of the
1073 containing type (e.g. short or int) then do so. This
1074 is safer for volatile bitfields mapped to hardware
1076 if (changed_len < TYPE_LENGTH (type)
1077 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1078 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1079 changed_len = TYPE_LENGTH (type);
1081 if (changed_len > (int) sizeof (LONGEST))
1082 error (_("Can't handle bitfields which "
1083 "don't fit in a %d bit word."),
1084 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1086 read_memory (changed_addr, buffer, changed_len);
1087 modify_field (type, buffer, value_as_long (fromval),
1088 value_bitpos (toval), value_bitsize (toval));
1089 dest_buffer = buffer;
1093 changed_addr = value_address (toval);
1094 changed_len = TYPE_LENGTH (type);
1095 dest_buffer = value_contents (fromval);
1098 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1104 struct frame_info *frame;
1105 struct gdbarch *gdbarch;
1108 /* Figure out which frame this is in currently. */
1109 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1110 value_reg = VALUE_REGNUM (toval);
1113 error (_("Value being assigned to is no longer active."));
1115 gdbarch = get_frame_arch (frame);
1116 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1118 /* If TOVAL is a special machine register requiring
1119 conversion of program values to a special raw
1121 gdbarch_value_to_register (gdbarch, frame,
1122 VALUE_REGNUM (toval), type,
1123 value_contents (fromval));
1127 if (value_bitsize (toval))
1129 struct value *parent = value_parent (toval);
1130 int offset = value_offset (parent) + value_offset (toval);
1132 gdb_byte buffer[sizeof (LONGEST)];
1135 changed_len = (value_bitpos (toval)
1136 + value_bitsize (toval)
1137 + HOST_CHAR_BIT - 1)
1140 if (changed_len > (int) sizeof (LONGEST))
1141 error (_("Can't handle bitfields which "
1142 "don't fit in a %d bit word."),
1143 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1145 if (!get_frame_register_bytes (frame, value_reg, offset,
1146 changed_len, buffer,
1150 throw_error (OPTIMIZED_OUT_ERROR,
1151 _("value has been optimized out"));
1153 throw_error (NOT_AVAILABLE_ERROR,
1154 _("value is not available"));
1157 modify_field (type, buffer, value_as_long (fromval),
1158 value_bitpos (toval), value_bitsize (toval));
1160 put_frame_register_bytes (frame, value_reg, offset,
1161 changed_len, buffer);
1165 put_frame_register_bytes (frame, value_reg,
1166 value_offset (toval),
1168 value_contents (fromval));
1172 if (deprecated_register_changed_hook)
1173 deprecated_register_changed_hook (-1);
1179 const struct lval_funcs *funcs = value_computed_funcs (toval);
1181 if (funcs->write != NULL)
1183 funcs->write (toval, fromval);
1190 error (_("Left operand of assignment is not an lvalue."));
1193 /* Assigning to the stack pointer, frame pointer, and other
1194 (architecture and calling convention specific) registers may
1195 cause the frame cache and regcache to be out of date. Assigning to memory
1196 also can. We just do this on all assignments to registers or
1197 memory, for simplicity's sake; I doubt the slowdown matters. */
1198 switch (VALUE_LVAL (toval))
1204 observer_notify_target_changed (¤t_target);
1206 /* Having destroyed the frame cache, restore the selected
1209 /* FIXME: cagney/2002-11-02: There has to be a better way of
1210 doing this. Instead of constantly saving/restoring the
1211 frame. Why not create a get_selected_frame() function that,
1212 having saved the selected frame's ID can automatically
1213 re-find the previously selected frame automatically. */
1216 struct frame_info *fi = frame_find_by_id (old_frame);
1227 /* If the field does not entirely fill a LONGEST, then zero the sign
1228 bits. If the field is signed, and is negative, then sign
1230 if ((value_bitsize (toval) > 0)
1231 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1233 LONGEST fieldval = value_as_long (fromval);
1234 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1236 fieldval &= valmask;
1237 if (!TYPE_UNSIGNED (type)
1238 && (fieldval & (valmask ^ (valmask >> 1))))
1239 fieldval |= ~valmask;
1241 fromval = value_from_longest (type, fieldval);
1244 /* The return value is a copy of TOVAL so it shares its location
1245 information, but its contents are updated from FROMVAL. This
1246 implies the returned value is not lazy, even if TOVAL was. */
1247 val = value_copy (toval);
1248 set_value_lazy (val, 0);
1249 memcpy (value_contents_raw (val), value_contents (fromval),
1250 TYPE_LENGTH (type));
1252 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1253 in the case of pointer types. For object types, the enclosing type
1254 and embedded offset must *not* be copied: the target object refered
1255 to by TOVAL retains its original dynamic type after assignment. */
1256 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1258 set_value_enclosing_type (val, value_enclosing_type (fromval));
1259 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1265 /* Extend a value VAL to COUNT repetitions of its type. */
1268 value_repeat (struct value *arg1, int count)
1272 if (VALUE_LVAL (arg1) != lval_memory)
1273 error (_("Only values in memory can be extended with '@'."));
1275 error (_("Invalid number %d of repetitions."), count);
1277 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1279 VALUE_LVAL (val) = lval_memory;
1280 set_value_address (val, value_address (arg1));
1282 read_value_memory (val, 0, value_stack (val), value_address (val),
1283 value_contents_all_raw (val),
1284 TYPE_LENGTH (value_enclosing_type (val)));
1290 value_of_variable (struct symbol *var, const struct block *b)
1292 struct frame_info *frame;
1294 if (!symbol_read_needs_frame (var))
1297 frame = get_selected_frame (_("No frame selected."));
1300 frame = block_innermost_frame (b);
1303 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1304 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1305 error (_("No frame is currently executing in block %s."),
1306 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1308 error (_("No frame is currently executing in specified block"));
1312 return read_var_value (var, frame);
1316 address_of_variable (struct symbol *var, const struct block *b)
1318 struct type *type = SYMBOL_TYPE (var);
1321 /* Evaluate it first; if the result is a memory address, we're fine.
1322 Lazy evaluation pays off here. */
1324 val = value_of_variable (var, b);
1325 type = value_type (val);
1327 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1328 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1330 CORE_ADDR addr = value_address (val);
1332 return value_from_pointer (lookup_pointer_type (type), addr);
1335 /* Not a memory address; check what the problem was. */
1336 switch (VALUE_LVAL (val))
1340 struct frame_info *frame;
1341 const char *regname;
1343 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1346 regname = gdbarch_register_name (get_frame_arch (frame),
1347 VALUE_REGNUM (val));
1348 gdb_assert (regname && *regname);
1350 error (_("Address requested for identifier "
1351 "\"%s\" which is in register $%s"),
1352 SYMBOL_PRINT_NAME (var), regname);
1357 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1358 SYMBOL_PRINT_NAME (var));
1365 /* Return one if VAL does not live in target memory, but should in order
1366 to operate on it. Otherwise return zero. */
1369 value_must_coerce_to_target (struct value *val)
1371 struct type *valtype;
1373 /* The only lval kinds which do not live in target memory. */
1374 if (VALUE_LVAL (val) != not_lval
1375 && VALUE_LVAL (val) != lval_internalvar)
1378 valtype = check_typedef (value_type (val));
1380 switch (TYPE_CODE (valtype))
1382 case TYPE_CODE_ARRAY:
1383 return TYPE_VECTOR (valtype) ? 0 : 1;
1384 case TYPE_CODE_STRING:
1391 /* Make sure that VAL lives in target memory if it's supposed to. For
1392 instance, strings are constructed as character arrays in GDB's
1393 storage, and this function copies them to the target. */
1396 value_coerce_to_target (struct value *val)
1401 if (!value_must_coerce_to_target (val))
1404 length = TYPE_LENGTH (check_typedef (value_type (val)));
1405 addr = allocate_space_in_inferior (length);
1406 write_memory (addr, value_contents (val), length);
1407 return value_at_lazy (value_type (val), addr);
1410 /* Given a value which is an array, return a value which is a pointer
1411 to its first element, regardless of whether or not the array has a
1412 nonzero lower bound.
1414 FIXME: A previous comment here indicated that this routine should
1415 be substracting the array's lower bound. It's not clear to me that
1416 this is correct. Given an array subscripting operation, it would
1417 certainly work to do the adjustment here, essentially computing:
1419 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1421 However I believe a more appropriate and logical place to account
1422 for the lower bound is to do so in value_subscript, essentially
1425 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1427 As further evidence consider what would happen with operations
1428 other than array subscripting, where the caller would get back a
1429 value that had an address somewhere before the actual first element
1430 of the array, and the information about the lower bound would be
1431 lost because of the coercion to pointer type. */
1434 value_coerce_array (struct value *arg1)
1436 struct type *type = check_typedef (value_type (arg1));
1438 /* If the user tries to do something requiring a pointer with an
1439 array that has not yet been pushed to the target, then this would
1440 be a good time to do so. */
1441 arg1 = value_coerce_to_target (arg1);
1443 if (VALUE_LVAL (arg1) != lval_memory)
1444 error (_("Attempt to take address of value not located in memory."));
1446 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1447 value_address (arg1));
1450 /* Given a value which is a function, return a value which is a pointer
1454 value_coerce_function (struct value *arg1)
1456 struct value *retval;
1458 if (VALUE_LVAL (arg1) != lval_memory)
1459 error (_("Attempt to take address of value not located in memory."));
1461 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1462 value_address (arg1));
1466 /* Return a pointer value for the object for which ARG1 is the
1470 value_addr (struct value *arg1)
1473 struct type *type = check_typedef (value_type (arg1));
1475 if (TYPE_CODE (type) == TYPE_CODE_REF)
1477 /* Copy the value, but change the type from (T&) to (T*). We
1478 keep the same location information, which is efficient, and
1479 allows &(&X) to get the location containing the reference. */
1480 arg2 = value_copy (arg1);
1481 deprecated_set_value_type (arg2,
1482 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1485 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1486 return value_coerce_function (arg1);
1488 /* If this is an array that has not yet been pushed to the target,
1489 then this would be a good time to force it to memory. */
1490 arg1 = value_coerce_to_target (arg1);
1492 if (VALUE_LVAL (arg1) != lval_memory)
1493 error (_("Attempt to take address of value not located in memory."));
1495 /* Get target memory address. */
1496 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1497 (value_address (arg1)
1498 + value_embedded_offset (arg1)));
1500 /* This may be a pointer to a base subobject; so remember the
1501 full derived object's type ... */
1502 set_value_enclosing_type (arg2,
1503 lookup_pointer_type (value_enclosing_type (arg1)));
1504 /* ... and also the relative position of the subobject in the full
1506 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1510 /* Return a reference value for the object for which ARG1 is the
1514 value_ref (struct value *arg1)
1517 struct type *type = check_typedef (value_type (arg1));
1519 if (TYPE_CODE (type) == TYPE_CODE_REF)
1522 arg2 = value_addr (arg1);
1523 deprecated_set_value_type (arg2, lookup_reference_type (type));
1527 /* Given a value of a pointer type, apply the C unary * operator to
1531 value_ind (struct value *arg1)
1533 struct type *base_type;
1536 arg1 = coerce_array (arg1);
1538 base_type = check_typedef (value_type (arg1));
1540 if (VALUE_LVAL (arg1) == lval_computed)
1542 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1544 if (funcs->indirect)
1546 struct value *result = funcs->indirect (arg1);
1553 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1555 struct type *enc_type;
1557 /* We may be pointing to something embedded in a larger object.
1558 Get the real type of the enclosing object. */
1559 enc_type = check_typedef (value_enclosing_type (arg1));
1560 enc_type = TYPE_TARGET_TYPE (enc_type);
1562 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1563 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1564 /* For functions, go through find_function_addr, which knows
1565 how to handle function descriptors. */
1566 arg2 = value_at_lazy (enc_type,
1567 find_function_addr (arg1, NULL));
1569 /* Retrieve the enclosing object pointed to. */
1570 arg2 = value_at_lazy (enc_type,
1571 (value_as_address (arg1)
1572 - value_pointed_to_offset (arg1)));
1574 enc_type = value_type (arg2);
1575 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1578 error (_("Attempt to take contents of a non-pointer value."));
1579 return 0; /* For lint -- never reached. */
1582 /* Create a value for an array by allocating space in GDB, copying the
1583 data into that space, and then setting up an array value.
1585 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1586 is populated from the values passed in ELEMVEC.
1588 The element type of the array is inherited from the type of the
1589 first element, and all elements must have the same size (though we
1590 don't currently enforce any restriction on their types). */
1593 value_array (int lowbound, int highbound, struct value **elemvec)
1597 unsigned int typelength;
1599 struct type *arraytype;
1601 /* Validate that the bounds are reasonable and that each of the
1602 elements have the same size. */
1604 nelem = highbound - lowbound + 1;
1607 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1609 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1610 for (idx = 1; idx < nelem; idx++)
1612 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1614 error (_("array elements must all be the same size"));
1618 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1619 lowbound, highbound);
1621 if (!current_language->c_style_arrays)
1623 val = allocate_value (arraytype);
1624 for (idx = 0; idx < nelem; idx++)
1625 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1630 /* Allocate space to store the array, and then initialize it by
1631 copying in each element. */
1633 val = allocate_value (arraytype);
1634 for (idx = 0; idx < nelem; idx++)
1635 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1640 value_cstring (char *ptr, ssize_t len, struct type *char_type)
1643 int lowbound = current_language->string_lower_bound;
1644 ssize_t highbound = len / TYPE_LENGTH (char_type);
1645 struct type *stringtype
1646 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1648 val = allocate_value (stringtype);
1649 memcpy (value_contents_raw (val), ptr, len);
1653 /* Create a value for a string constant by allocating space in the
1654 inferior, copying the data into that space, and returning the
1655 address with type TYPE_CODE_STRING. PTR points to the string
1656 constant data; LEN is number of characters.
1658 Note that string types are like array of char types with a lower
1659 bound of zero and an upper bound of LEN - 1. Also note that the
1660 string may contain embedded null bytes. */
1663 value_string (char *ptr, ssize_t len, struct type *char_type)
1666 int lowbound = current_language->string_lower_bound;
1667 ssize_t highbound = len / TYPE_LENGTH (char_type);
1668 struct type *stringtype
1669 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1671 val = allocate_value (stringtype);
1672 memcpy (value_contents_raw (val), ptr, len);
1677 /* See if we can pass arguments in T2 to a function which takes
1678 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1679 a NULL-terminated vector. If some arguments need coercion of some
1680 sort, then the coerced values are written into T2. Return value is
1681 0 if the arguments could be matched, or the position at which they
1684 STATICP is nonzero if the T1 argument list came from a static
1685 member function. T2 will still include the ``this'' pointer, but
1688 For non-static member functions, we ignore the first argument,
1689 which is the type of the instance variable. This is because we
1690 want to handle calls with objects from derived classes. This is
1691 not entirely correct: we should actually check to make sure that a
1692 requested operation is type secure, shouldn't we? FIXME. */
1695 typecmp (int staticp, int varargs, int nargs,
1696 struct field t1[], struct value *t2[])
1701 internal_error (__FILE__, __LINE__,
1702 _("typecmp: no argument list"));
1704 /* Skip ``this'' argument if applicable. T2 will always include
1710 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1713 struct type *tt1, *tt2;
1718 tt1 = check_typedef (t1[i].type);
1719 tt2 = check_typedef (value_type (t2[i]));
1721 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1722 /* We should be doing hairy argument matching, as below. */
1723 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1724 == TYPE_CODE (tt2)))
1726 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1727 t2[i] = value_coerce_array (t2[i]);
1729 t2[i] = value_ref (t2[i]);
1733 /* djb - 20000715 - Until the new type structure is in the
1734 place, and we can attempt things like implicit conversions,
1735 we need to do this so you can take something like a map<const
1736 char *>, and properly access map["hello"], because the
1737 argument to [] will be a reference to a pointer to a char,
1738 and the argument will be a pointer to a char. */
1739 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1740 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1742 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1744 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1745 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1746 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1748 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1750 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1752 /* Array to pointer is a `trivial conversion' according to the
1755 /* We should be doing much hairier argument matching (see
1756 section 13.2 of the ARM), but as a quick kludge, just check
1757 for the same type code. */
1758 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1761 if (varargs || t2[i] == NULL)
1766 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1767 and *LAST_BOFFSET, and possibly throws an exception if the field
1768 search has yielded ambiguous results. */
1771 update_search_result (struct value **result_ptr, struct value *v,
1772 int *last_boffset, int boffset,
1773 const char *name, struct type *type)
1777 if (*result_ptr != NULL
1778 /* The result is not ambiguous if all the classes that are
1779 found occupy the same space. */
1780 && *last_boffset != boffset)
1781 error (_("base class '%s' is ambiguous in type '%s'"),
1782 name, TYPE_SAFE_NAME (type));
1784 *last_boffset = boffset;
1788 /* A helper for search_struct_field. This does all the work; most
1789 arguments are as passed to search_struct_field. The result is
1790 stored in *RESULT_PTR, which must be initialized to NULL.
1791 OUTERMOST_TYPE is the type of the initial type passed to
1792 search_struct_field; this is used for error reporting when the
1793 lookup is ambiguous. */
1796 do_search_struct_field (const char *name, struct value *arg1, int offset,
1797 struct type *type, int looking_for_baseclass,
1798 struct value **result_ptr,
1800 struct type *outermost_type)
1805 CHECK_TYPEDEF (type);
1806 nbases = TYPE_N_BASECLASSES (type);
1808 if (!looking_for_baseclass)
1809 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1811 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1813 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1817 if (field_is_static (&TYPE_FIELD (type, i)))
1818 v = value_static_field (type, i);
1820 v = value_primitive_field (arg1, offset, i, type);
1826 && (t_field_name[0] == '\0'
1827 || (TYPE_CODE (type) == TYPE_CODE_UNION
1828 && (strcmp_iw (t_field_name, "else") == 0))))
1830 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1832 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1833 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1835 /* Look for a match through the fields of an anonymous
1836 union, or anonymous struct. C++ provides anonymous
1839 In the GNU Chill (now deleted from GDB)
1840 implementation of variant record types, each
1841 <alternative field> has an (anonymous) union type,
1842 each member of the union represents a <variant
1843 alternative>. Each <variant alternative> is
1844 represented as a struct, with a member for each
1847 struct value *v = NULL;
1848 int new_offset = offset;
1850 /* This is pretty gross. In G++, the offset in an
1851 anonymous union is relative to the beginning of the
1852 enclosing struct. In the GNU Chill (now deleted
1853 from GDB) implementation of variant records, the
1854 bitpos is zero in an anonymous union field, so we
1855 have to add the offset of the union here. */
1856 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1857 || (TYPE_NFIELDS (field_type) > 0
1858 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1859 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1861 do_search_struct_field (name, arg1, new_offset,
1863 looking_for_baseclass, &v,
1875 for (i = 0; i < nbases; i++)
1877 struct value *v = NULL;
1878 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1879 /* If we are looking for baseclasses, this is what we get when
1880 we hit them. But it could happen that the base part's member
1881 name is not yet filled in. */
1882 int found_baseclass = (looking_for_baseclass
1883 && TYPE_BASECLASS_NAME (type, i) != NULL
1884 && (strcmp_iw (name,
1885 TYPE_BASECLASS_NAME (type,
1887 int boffset = value_embedded_offset (arg1) + offset;
1889 if (BASETYPE_VIA_VIRTUAL (type, i))
1893 boffset = baseclass_offset (type, i,
1894 value_contents_for_printing (arg1),
1895 value_embedded_offset (arg1) + offset,
1896 value_address (arg1),
1899 /* The virtual base class pointer might have been clobbered
1900 by the user program. Make sure that it still points to a
1901 valid memory location. */
1903 boffset += value_embedded_offset (arg1) + offset;
1905 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1907 CORE_ADDR base_addr;
1909 base_addr = value_address (arg1) + boffset;
1910 v2 = value_at_lazy (basetype, base_addr);
1911 if (target_read_memory (base_addr,
1912 value_contents_raw (v2),
1913 TYPE_LENGTH (value_type (v2))) != 0)
1914 error (_("virtual baseclass botch"));
1918 v2 = value_copy (arg1);
1919 deprecated_set_value_type (v2, basetype);
1920 set_value_embedded_offset (v2, boffset);
1923 if (found_baseclass)
1927 do_search_struct_field (name, v2, 0,
1928 TYPE_BASECLASS (type, i),
1929 looking_for_baseclass,
1930 result_ptr, last_boffset,
1934 else if (found_baseclass)
1935 v = value_primitive_field (arg1, offset, i, type);
1938 do_search_struct_field (name, arg1,
1939 offset + TYPE_BASECLASS_BITPOS (type,
1941 basetype, looking_for_baseclass,
1942 result_ptr, last_boffset,
1946 update_search_result (result_ptr, v, last_boffset,
1947 boffset, name, outermost_type);
1951 /* Helper function used by value_struct_elt to recurse through
1952 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1953 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1954 TYPE. If found, return value, else return NULL.
1956 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1957 fields, look for a baseclass named NAME. */
1959 static struct value *
1960 search_struct_field (const char *name, struct value *arg1, int offset,
1961 struct type *type, int looking_for_baseclass)
1963 struct value *result = NULL;
1966 do_search_struct_field (name, arg1, offset, type, looking_for_baseclass,
1967 &result, &boffset, type);
1971 /* Helper function used by value_struct_elt to recurse through
1972 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1973 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1976 If found, return value, else if name matched and args not return
1977 (value) -1, else return NULL. */
1979 static struct value *
1980 search_struct_method (const char *name, struct value **arg1p,
1981 struct value **args, int offset,
1982 int *static_memfuncp, struct type *type)
1986 int name_matched = 0;
1987 char dem_opname[64];
1989 CHECK_TYPEDEF (type);
1990 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1992 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1994 /* FIXME! May need to check for ARM demangling here. */
1995 if (strncmp (t_field_name, "__", 2) == 0 ||
1996 strncmp (t_field_name, "op", 2) == 0 ||
1997 strncmp (t_field_name, "type", 4) == 0)
1999 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2000 t_field_name = dem_opname;
2001 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2002 t_field_name = dem_opname;
2004 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2006 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2007 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2010 check_stub_method_group (type, i);
2011 if (j > 0 && args == 0)
2012 error (_("cannot resolve overloaded method "
2013 "`%s': no arguments supplied"), name);
2014 else if (j == 0 && args == 0)
2016 v = value_fn_field (arg1p, f, j, type, offset);
2023 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2024 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2025 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2026 TYPE_FN_FIELD_ARGS (f, j), args))
2028 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2029 return value_virtual_fn_field (arg1p, f, j,
2031 if (TYPE_FN_FIELD_STATIC_P (f, j)
2033 *static_memfuncp = 1;
2034 v = value_fn_field (arg1p, f, j, type, offset);
2043 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2048 if (BASETYPE_VIA_VIRTUAL (type, i))
2050 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2051 struct value *base_val;
2052 const gdb_byte *base_valaddr;
2054 /* The virtual base class pointer might have been
2055 clobbered by the user program. Make sure that it
2056 still points to a valid memory location. */
2058 if (offset < 0 || offset >= TYPE_LENGTH (type))
2061 struct cleanup *back_to;
2064 tmp = xmalloc (TYPE_LENGTH (baseclass));
2065 back_to = make_cleanup (xfree, tmp);
2066 address = value_address (*arg1p);
2068 if (target_read_memory (address + offset,
2069 tmp, TYPE_LENGTH (baseclass)) != 0)
2070 error (_("virtual baseclass botch"));
2072 base_val = value_from_contents_and_address (baseclass,
2075 base_valaddr = value_contents_for_printing (base_val);
2077 do_cleanups (back_to);
2082 base_valaddr = value_contents_for_printing (*arg1p);
2083 this_offset = offset;
2086 base_offset = baseclass_offset (type, i, base_valaddr,
2087 this_offset, value_address (base_val),
2092 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2094 v = search_struct_method (name, arg1p, args, base_offset + offset,
2095 static_memfuncp, TYPE_BASECLASS (type, i));
2096 if (v == (struct value *) - 1)
2102 /* FIXME-bothner: Why is this commented out? Why is it here? */
2103 /* *arg1p = arg1_tmp; */
2108 return (struct value *) - 1;
2113 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2114 extract the component named NAME from the ultimate target
2115 structure/union and return it as a value with its appropriate type.
2116 ERR is used in the error message if *ARGP's type is wrong.
2118 C++: ARGS is a list of argument types to aid in the selection of
2119 an appropriate method. Also, handle derived types.
2121 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2122 where the truthvalue of whether the function that was resolved was
2123 a static member function or not is stored.
2125 ERR is an error message to be printed in case the field is not
2129 value_struct_elt (struct value **argp, struct value **args,
2130 const char *name, int *static_memfuncp, const char *err)
2135 *argp = coerce_array (*argp);
2137 t = check_typedef (value_type (*argp));
2139 /* Follow pointers until we get to a non-pointer. */
2141 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2143 *argp = value_ind (*argp);
2144 /* Don't coerce fn pointer to fn and then back again! */
2145 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2146 *argp = coerce_array (*argp);
2147 t = check_typedef (value_type (*argp));
2150 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2151 && TYPE_CODE (t) != TYPE_CODE_UNION)
2152 error (_("Attempt to extract a component of a value that is not a %s."),
2155 /* Assume it's not, unless we see that it is. */
2156 if (static_memfuncp)
2157 *static_memfuncp = 0;
2161 /* if there are no arguments ...do this... */
2163 /* Try as a field first, because if we succeed, there is less
2165 v = search_struct_field (name, *argp, 0, t, 0);
2169 /* C++: If it was not found as a data field, then try to
2170 return it as a pointer to a method. */
2171 v = search_struct_method (name, argp, args, 0,
2172 static_memfuncp, t);
2174 if (v == (struct value *) - 1)
2175 error (_("Cannot take address of method %s."), name);
2178 if (TYPE_NFN_FIELDS (t))
2179 error (_("There is no member or method named %s."), name);
2181 error (_("There is no member named %s."), name);
2186 v = search_struct_method (name, argp, args, 0,
2187 static_memfuncp, t);
2189 if (v == (struct value *) - 1)
2191 error (_("One of the arguments you tried to pass to %s could not "
2192 "be converted to what the function wants."), name);
2196 /* See if user tried to invoke data as function. If so, hand it
2197 back. If it's not callable (i.e., a pointer to function),
2198 gdb should give an error. */
2199 v = search_struct_field (name, *argp, 0, t, 0);
2200 /* If we found an ordinary field, then it is not a method call.
2201 So, treat it as if it were a static member function. */
2202 if (v && static_memfuncp)
2203 *static_memfuncp = 1;
2207 throw_error (NOT_FOUND_ERROR,
2208 _("Structure has no component named %s."), name);
2212 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2213 to a structure or union, extract and return its component (field) of
2214 type FTYPE at the specified BITPOS.
2215 Throw an exception on error. */
2218 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2226 *argp = coerce_array (*argp);
2228 t = check_typedef (value_type (*argp));
2230 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2232 *argp = value_ind (*argp);
2233 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2234 *argp = coerce_array (*argp);
2235 t = check_typedef (value_type (*argp));
2238 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2239 && TYPE_CODE (t) != TYPE_CODE_UNION)
2240 error (_("Attempt to extract a component of a value that is not a %s."),
2243 for (i = TYPE_N_BASECLASSES (t); i < TYPE_NFIELDS (t); i++)
2245 if (!field_is_static (&TYPE_FIELD (t, i))
2246 && bitpos == TYPE_FIELD_BITPOS (t, i)
2247 && types_equal (ftype, TYPE_FIELD_TYPE (t, i)))
2248 return value_primitive_field (*argp, 0, i, t);
2251 error (_("No field with matching bitpos and type."));
2257 /* Search through the methods of an object (and its bases) to find a
2258 specified method. Return the pointer to the fn_field list of
2259 overloaded instances.
2261 Helper function for value_find_oload_list.
2262 ARGP is a pointer to a pointer to a value (the object).
2263 METHOD is a string containing the method name.
2264 OFFSET is the offset within the value.
2265 TYPE is the assumed type of the object.
2266 NUM_FNS is the number of overloaded instances.
2267 BASETYPE is set to the actual type of the subobject where the
2269 BOFFSET is the offset of the base subobject where the method is found. */
2271 static struct fn_field *
2272 find_method_list (struct value **argp, const char *method,
2273 int offset, struct type *type, int *num_fns,
2274 struct type **basetype, int *boffset)
2278 CHECK_TYPEDEF (type);
2282 /* First check in object itself. */
2283 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2285 /* pai: FIXME What about operators and type conversions? */
2286 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2288 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2290 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2291 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2297 /* Resolve any stub methods. */
2298 check_stub_method_group (type, i);
2304 /* Not found in object, check in base subobjects. */
2305 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2309 if (BASETYPE_VIA_VIRTUAL (type, i))
2311 base_offset = baseclass_offset (type, i,
2312 value_contents_for_printing (*argp),
2313 value_offset (*argp) + offset,
2314 value_address (*argp), *argp);
2316 else /* Non-virtual base, simply use bit position from debug
2319 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2321 f = find_method_list (argp, method, base_offset + offset,
2322 TYPE_BASECLASS (type, i), num_fns,
2330 /* Return the list of overloaded methods of a specified name.
2332 ARGP is a pointer to a pointer to a value (the object).
2333 METHOD is the method name.
2334 OFFSET is the offset within the value contents.
2335 NUM_FNS is the number of overloaded instances.
2336 BASETYPE is set to the type of the base subobject that defines the
2338 BOFFSET is the offset of the base subobject which defines the method. */
2340 static struct fn_field *
2341 value_find_oload_method_list (struct value **argp, const char *method,
2342 int offset, int *num_fns,
2343 struct type **basetype, int *boffset)
2347 t = check_typedef (value_type (*argp));
2349 /* Code snarfed from value_struct_elt. */
2350 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2352 *argp = value_ind (*argp);
2353 /* Don't coerce fn pointer to fn and then back again! */
2354 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2355 *argp = coerce_array (*argp);
2356 t = check_typedef (value_type (*argp));
2359 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2360 && TYPE_CODE (t) != TYPE_CODE_UNION)
2361 error (_("Attempt to extract a component of a "
2362 "value that is not a struct or union"));
2364 return find_method_list (argp, method, 0, t, num_fns,
2368 /* Given an array of arguments (ARGS) (which includes an
2369 entry for "this" in the case of C++ methods), the number of
2370 arguments NARGS, the NAME of a function, and whether it's a method or
2371 not (METHOD), find the best function that matches on the argument types
2372 according to the overload resolution rules.
2374 METHOD can be one of three values:
2375 NON_METHOD for non-member functions.
2376 METHOD: for member functions.
2377 BOTH: used for overload resolution of operators where the
2378 candidates are expected to be either member or non member
2379 functions. In this case the first argument ARGTYPES
2380 (representing 'this') is expected to be a reference to the
2381 target object, and will be dereferenced when attempting the
2384 In the case of class methods, the parameter OBJ is an object value
2385 in which to search for overloaded methods.
2387 In the case of non-method functions, the parameter FSYM is a symbol
2388 corresponding to one of the overloaded functions.
2390 Return value is an integer: 0 -> good match, 10 -> debugger applied
2391 non-standard coercions, 100 -> incompatible.
2393 If a method is being searched for, VALP will hold the value.
2394 If a non-method is being searched for, SYMP will hold the symbol
2397 If a method is being searched for, and it is a static method,
2398 then STATICP will point to a non-zero value.
2400 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2401 ADL overload candidates when performing overload resolution for a fully
2404 Note: This function does *not* check the value of
2405 overload_resolution. Caller must check it to see whether overload
2406 resolution is permitted. */
2409 find_overload_match (struct value **args, int nargs,
2410 const char *name, enum oload_search_type method,
2411 struct value **objp, struct symbol *fsym,
2412 struct value **valp, struct symbol **symp,
2413 int *staticp, const int no_adl)
2415 struct value *obj = (objp ? *objp : NULL);
2416 struct type *obj_type = obj ? value_type (obj) : NULL;
2417 /* Index of best overloaded function. */
2418 int func_oload_champ = -1;
2419 int method_oload_champ = -1;
2421 /* The measure for the current best match. */
2422 struct badness_vector *method_badness = NULL;
2423 struct badness_vector *func_badness = NULL;
2425 struct value *temp = obj;
2426 /* For methods, the list of overloaded methods. */
2427 struct fn_field *fns_ptr = NULL;
2428 /* For non-methods, the list of overloaded function symbols. */
2429 struct symbol **oload_syms = NULL;
2430 /* Number of overloaded instances being considered. */
2432 struct type *basetype = NULL;
2435 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2437 const char *obj_type_name = NULL;
2438 const char *func_name = NULL;
2439 enum oload_classification match_quality;
2440 enum oload_classification method_match_quality = INCOMPATIBLE;
2441 enum oload_classification func_match_quality = INCOMPATIBLE;
2443 /* Get the list of overloaded methods or functions. */
2444 if (method == METHOD || method == BOTH)
2448 /* OBJ may be a pointer value rather than the object itself. */
2449 obj = coerce_ref (obj);
2450 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2451 obj = coerce_ref (value_ind (obj));
2452 obj_type_name = TYPE_NAME (value_type (obj));
2454 /* First check whether this is a data member, e.g. a pointer to
2456 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2458 *valp = search_struct_field (name, obj, 0,
2459 check_typedef (value_type (obj)), 0);
2463 do_cleanups (all_cleanups);
2468 /* Retrieve the list of methods with the name NAME. */
2469 fns_ptr = value_find_oload_method_list (&temp, name,
2471 &basetype, &boffset);
2472 /* If this is a method only search, and no methods were found
2473 the search has faild. */
2474 if (method == METHOD && (!fns_ptr || !num_fns))
2475 error (_("Couldn't find method %s%s%s"),
2477 (obj_type_name && *obj_type_name) ? "::" : "",
2479 /* If we are dealing with stub method types, they should have
2480 been resolved by find_method_list via
2481 value_find_oload_method_list above. */
2484 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2485 method_oload_champ = find_oload_champ (args, nargs,
2487 NULL, &method_badness);
2489 method_match_quality =
2490 classify_oload_match (method_badness, nargs,
2491 oload_method_static (method, fns_ptr,
2492 method_oload_champ));
2494 make_cleanup (xfree, method_badness);
2499 if (method == NON_METHOD || method == BOTH)
2501 const char *qualified_name = NULL;
2503 /* If the overload match is being search for both as a method
2504 and non member function, the first argument must now be
2507 args[0] = value_ind (args[0]);
2511 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2513 /* If we have a function with a C++ name, try to extract just
2514 the function part. Do not try this for non-functions (e.g.
2515 function pointers). */
2517 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2522 temp = cp_func_name (qualified_name);
2524 /* If cp_func_name did not remove anything, the name of the
2525 symbol did not include scope or argument types - it was
2526 probably a C-style function. */
2529 make_cleanup (xfree, temp);
2530 if (strcmp (temp, qualified_name) == 0)
2540 qualified_name = name;
2543 /* If there was no C++ name, this must be a C-style function or
2544 not a function at all. Just return the same symbol. Do the
2545 same if cp_func_name fails for some reason. */
2546 if (func_name == NULL)
2549 do_cleanups (all_cleanups);
2553 func_oload_champ = find_oload_champ_namespace (args, nargs,
2560 if (func_oload_champ >= 0)
2561 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2563 make_cleanup (xfree, oload_syms);
2564 make_cleanup (xfree, func_badness);
2567 /* Did we find a match ? */
2568 if (method_oload_champ == -1 && func_oload_champ == -1)
2569 throw_error (NOT_FOUND_ERROR,
2570 _("No symbol \"%s\" in current context."),
2573 /* If we have found both a method match and a function
2574 match, find out which one is better, and calculate match
2576 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2578 switch (compare_badness (func_badness, method_badness))
2580 case 0: /* Top two contenders are equally good. */
2581 /* FIXME: GDB does not support the general ambiguous case.
2582 All candidates should be collected and presented the
2584 error (_("Ambiguous overload resolution"));
2586 case 1: /* Incomparable top contenders. */
2587 /* This is an error incompatible candidates
2588 should not have been proposed. */
2589 error (_("Internal error: incompatible "
2590 "overload candidates proposed"));
2592 case 2: /* Function champion. */
2593 method_oload_champ = -1;
2594 match_quality = func_match_quality;
2596 case 3: /* Method champion. */
2597 func_oload_champ = -1;
2598 match_quality = method_match_quality;
2601 error (_("Internal error: unexpected overload comparison result"));
2607 /* We have either a method match or a function match. */
2608 if (method_oload_champ >= 0)
2609 match_quality = method_match_quality;
2611 match_quality = func_match_quality;
2614 if (match_quality == INCOMPATIBLE)
2616 if (method == METHOD)
2617 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2619 (obj_type_name && *obj_type_name) ? "::" : "",
2622 error (_("Cannot resolve function %s to any overloaded instance"),
2625 else if (match_quality == NON_STANDARD)
2627 if (method == METHOD)
2628 warning (_("Using non-standard conversion to match "
2629 "method %s%s%s to supplied arguments"),
2631 (obj_type_name && *obj_type_name) ? "::" : "",
2634 warning (_("Using non-standard conversion to match "
2635 "function %s to supplied arguments"),
2639 if (staticp != NULL)
2640 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2642 if (method_oload_champ >= 0)
2644 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2645 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2648 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2652 *symp = oload_syms[func_oload_champ];
2656 struct type *temp_type = check_typedef (value_type (temp));
2657 struct type *objtype = check_typedef (obj_type);
2659 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2660 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2661 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2663 temp = value_addr (temp);
2668 do_cleanups (all_cleanups);
2670 switch (match_quality)
2676 default: /* STANDARD */
2681 /* Find the best overload match, searching for FUNC_NAME in namespaces
2682 contained in QUALIFIED_NAME until it either finds a good match or
2683 runs out of namespaces. It stores the overloaded functions in
2684 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2685 calling function is responsible for freeing *OLOAD_SYMS and
2686 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2690 find_oload_champ_namespace (struct value **args, int nargs,
2691 const char *func_name,
2692 const char *qualified_name,
2693 struct symbol ***oload_syms,
2694 struct badness_vector **oload_champ_bv,
2699 find_oload_champ_namespace_loop (args, nargs,
2702 oload_syms, oload_champ_bv,
2709 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2710 how deep we've looked for namespaces, and the champ is stored in
2711 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2712 if it isn't. Other arguments are the same as in
2713 find_oload_champ_namespace
2715 It is the caller's responsibility to free *OLOAD_SYMS and
2719 find_oload_champ_namespace_loop (struct value **args, int nargs,
2720 const char *func_name,
2721 const char *qualified_name,
2723 struct symbol ***oload_syms,
2724 struct badness_vector **oload_champ_bv,
2728 int next_namespace_len = namespace_len;
2729 int searched_deeper = 0;
2731 struct cleanup *old_cleanups;
2732 int new_oload_champ;
2733 struct symbol **new_oload_syms;
2734 struct badness_vector *new_oload_champ_bv;
2735 char *new_namespace;
2737 if (next_namespace_len != 0)
2739 gdb_assert (qualified_name[next_namespace_len] == ':');
2740 next_namespace_len += 2;
2742 next_namespace_len +=
2743 cp_find_first_component (qualified_name + next_namespace_len);
2745 /* Initialize these to values that can safely be xfree'd. */
2747 *oload_champ_bv = NULL;
2749 /* First, see if we have a deeper namespace we can search in.
2750 If we get a good match there, use it. */
2752 if (qualified_name[next_namespace_len] == ':')
2754 searched_deeper = 1;
2756 if (find_oload_champ_namespace_loop (args, nargs,
2757 func_name, qualified_name,
2759 oload_syms, oload_champ_bv,
2760 oload_champ, no_adl))
2766 /* If we reach here, either we're in the deepest namespace or we
2767 didn't find a good match in a deeper namespace. But, in the
2768 latter case, we still have a bad match in a deeper namespace;
2769 note that we might not find any match at all in the current
2770 namespace. (There's always a match in the deepest namespace,
2771 because this overload mechanism only gets called if there's a
2772 function symbol to start off with.) */
2774 old_cleanups = make_cleanup (xfree, *oload_syms);
2775 make_cleanup (xfree, *oload_champ_bv);
2776 new_namespace = alloca (namespace_len + 1);
2777 strncpy (new_namespace, qualified_name, namespace_len);
2778 new_namespace[namespace_len] = '\0';
2779 new_oload_syms = make_symbol_overload_list (func_name,
2782 /* If we have reached the deepest level perform argument
2783 determined lookup. */
2784 if (!searched_deeper && !no_adl)
2787 struct type **arg_types;
2789 /* Prepare list of argument types for overload resolution. */
2790 arg_types = (struct type **)
2791 alloca (nargs * (sizeof (struct type *)));
2792 for (ix = 0; ix < nargs; ix++)
2793 arg_types[ix] = value_type (args[ix]);
2794 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2797 while (new_oload_syms[num_fns])
2800 new_oload_champ = find_oload_champ (args, nargs, num_fns,
2801 NULL, new_oload_syms,
2802 &new_oload_champ_bv);
2804 /* Case 1: We found a good match. Free earlier matches (if any),
2805 and return it. Case 2: We didn't find a good match, but we're
2806 not the deepest function. Then go with the bad match that the
2807 deeper function found. Case 3: We found a bad match, and we're
2808 the deepest function. Then return what we found, even though
2809 it's a bad match. */
2811 if (new_oload_champ != -1
2812 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2814 *oload_syms = new_oload_syms;
2815 *oload_champ = new_oload_champ;
2816 *oload_champ_bv = new_oload_champ_bv;
2817 do_cleanups (old_cleanups);
2820 else if (searched_deeper)
2822 xfree (new_oload_syms);
2823 xfree (new_oload_champ_bv);
2824 discard_cleanups (old_cleanups);
2829 *oload_syms = new_oload_syms;
2830 *oload_champ = new_oload_champ;
2831 *oload_champ_bv = new_oload_champ_bv;
2832 do_cleanups (old_cleanups);
2837 /* Look for a function to take NARGS args of ARGS. Find
2838 the best match from among the overloaded methods or functions
2839 given by FNS_PTR or OLOAD_SYMS, respectively. One, and only one of
2840 FNS_PTR and OLOAD_SYMS can be non-NULL. The number of
2841 methods/functions in the non-NULL list is given by NUM_FNS.
2842 Return the index of the best match; store an indication of the
2843 quality of the match in OLOAD_CHAMP_BV.
2845 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2848 find_oload_champ (struct value **args, int nargs,
2849 int num_fns, struct fn_field *fns_ptr,
2850 struct symbol **oload_syms,
2851 struct badness_vector **oload_champ_bv)
2854 /* A measure of how good an overloaded instance is. */
2855 struct badness_vector *bv;
2856 /* Index of best overloaded function. */
2857 int oload_champ = -1;
2858 /* Current ambiguity state for overload resolution. */
2859 int oload_ambiguous = 0;
2860 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2862 /* A champion can be found among methods alone, or among functions
2863 alone, but not both. */
2864 gdb_assert ((fns_ptr != NULL) + (oload_syms != NULL) == 1);
2866 *oload_champ_bv = NULL;
2868 /* Consider each candidate in turn. */
2869 for (ix = 0; ix < num_fns; ix++)
2874 struct type **parm_types;
2876 if (fns_ptr != NULL)
2878 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2879 static_offset = oload_method_static (1, fns_ptr, ix);
2883 /* If it's not a method, this is the proper place. */
2884 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2888 /* Prepare array of parameter types. */
2889 parm_types = (struct type **)
2890 xmalloc (nparms * (sizeof (struct type *)));
2891 for (jj = 0; jj < nparms; jj++)
2892 parm_types[jj] = (fns_ptr != NULL
2893 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2894 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2897 /* Compare parameter types to supplied argument types. Skip
2898 THIS for static methods. */
2899 bv = rank_function (parm_types, nparms,
2900 args + static_offset,
2901 nargs - static_offset);
2903 if (!*oload_champ_bv)
2905 *oload_champ_bv = bv;
2908 else /* See whether current candidate is better or worse than
2910 switch (compare_badness (bv, *oload_champ_bv))
2912 case 0: /* Top two contenders are equally good. */
2913 oload_ambiguous = 1;
2915 case 1: /* Incomparable top contenders. */
2916 oload_ambiguous = 2;
2918 case 2: /* New champion, record details. */
2919 *oload_champ_bv = bv;
2920 oload_ambiguous = 0;
2931 fprintf_filtered (gdb_stderr,
2932 "Overloaded method instance %s, # of parms %d\n",
2933 fns_ptr[ix].physname, nparms);
2935 fprintf_filtered (gdb_stderr,
2936 "Overloaded function instance "
2937 "%s # of parms %d\n",
2938 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2940 for (jj = 0; jj < nargs - static_offset; jj++)
2941 fprintf_filtered (gdb_stderr,
2942 "...Badness @ %d : %d\n",
2943 jj, bv->rank[jj].rank);
2944 fprintf_filtered (gdb_stderr, "Overload resolution "
2945 "champion is %d, ambiguous? %d\n",
2946 oload_champ, oload_ambiguous);
2953 /* Return 1 if we're looking at a static method, 0 if we're looking at
2954 a non-static method or a function that isn't a method. */
2957 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2959 if (method && fns_ptr && index >= 0
2960 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2966 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2968 static enum oload_classification
2969 classify_oload_match (struct badness_vector *oload_champ_bv,
2974 enum oload_classification worst = STANDARD;
2976 for (ix = 1; ix <= nargs - static_offset; ix++)
2978 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
2979 or worse return INCOMPATIBLE. */
2980 if (compare_ranks (oload_champ_bv->rank[ix],
2981 INCOMPATIBLE_TYPE_BADNESS) <= 0)
2982 return INCOMPATIBLE; /* Truly mismatched types. */
2983 /* Otherwise If this conversion is as bad as
2984 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
2985 else if (compare_ranks (oload_champ_bv->rank[ix],
2986 NS_POINTER_CONVERSION_BADNESS) <= 0)
2987 worst = NON_STANDARD; /* Non-standard type conversions
2991 /* If no INCOMPATIBLE classification was found, return the worst one
2992 that was found (if any). */
2996 /* C++: return 1 is NAME is a legitimate name for the destructor of
2997 type TYPE. If TYPE does not have a destructor, or if NAME is
2998 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
2999 have CHECK_TYPEDEF applied, this function will apply it itself. */
3002 destructor_name_p (const char *name, struct type *type)
3006 const char *dname = type_name_no_tag_or_error (type);
3007 const char *cp = strchr (dname, '<');
3010 /* Do not compare the template part for template classes. */
3012 len = strlen (dname);
3015 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3016 error (_("name of destructor must equal name of class"));
3023 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3024 return the appropriate member (or the address of the member, if
3025 WANT_ADDRESS). This function is used to resolve user expressions
3026 of the form "DOMAIN::NAME". For more details on what happens, see
3027 the comment before value_struct_elt_for_reference. */
3030 value_aggregate_elt (struct type *curtype, char *name,
3031 struct type *expect_type, int want_address,
3034 switch (TYPE_CODE (curtype))
3036 case TYPE_CODE_STRUCT:
3037 case TYPE_CODE_UNION:
3038 return value_struct_elt_for_reference (curtype, 0, curtype,
3040 want_address, noside);
3041 case TYPE_CODE_NAMESPACE:
3042 return value_namespace_elt (curtype, name,
3043 want_address, noside);
3045 internal_error (__FILE__, __LINE__,
3046 _("non-aggregate type in value_aggregate_elt"));
3050 /* Compares the two method/function types T1 and T2 for "equality"
3051 with respect to the methods' parameters. If the types of the
3052 two parameter lists are the same, returns 1; 0 otherwise. This
3053 comparison may ignore any artificial parameters in T1 if
3054 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3055 the first artificial parameter in T1, assumed to be a 'this' pointer.
3057 The type T2 is expected to have come from make_params (in eval.c). */
3060 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3064 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3067 /* If skipping artificial fields, find the first real field
3069 if (skip_artificial)
3071 while (start < TYPE_NFIELDS (t1)
3072 && TYPE_FIELD_ARTIFICIAL (t1, start))
3076 /* Now compare parameters. */
3078 /* Special case: a method taking void. T1 will contain no
3079 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3080 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3081 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3084 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3088 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3090 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3091 TYPE_FIELD_TYPE (t2, i), NULL),
3092 EXACT_MATCH_BADNESS) != 0)
3102 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3103 return the address of this member as a "pointer to member" type.
3104 If INTYPE is non-null, then it will be the type of the member we
3105 are looking for. This will help us resolve "pointers to member
3106 functions". This function is used to resolve user expressions of
3107 the form "DOMAIN::NAME". */
3109 static struct value *
3110 value_struct_elt_for_reference (struct type *domain, int offset,
3111 struct type *curtype, char *name,
3112 struct type *intype,
3116 struct type *t = curtype;
3118 struct value *v, *result;
3120 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3121 && TYPE_CODE (t) != TYPE_CODE_UNION)
3122 error (_("Internal error: non-aggregate type "
3123 "to value_struct_elt_for_reference"));
3125 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3127 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3129 if (t_field_name && strcmp (t_field_name, name) == 0)
3131 if (field_is_static (&TYPE_FIELD (t, i)))
3133 v = value_static_field (t, i);
3138 if (TYPE_FIELD_PACKED (t, i))
3139 error (_("pointers to bitfield members not allowed"));
3142 return value_from_longest
3143 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3144 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3145 else if (noside != EVAL_NORMAL)
3146 return allocate_value (TYPE_FIELD_TYPE (t, i));
3149 /* Try to evaluate NAME as a qualified name with implicit
3150 this pointer. In this case, attempt to return the
3151 equivalent to `this->*(&TYPE::NAME)'. */
3152 v = value_of_this_silent (current_language);
3157 struct type *type, *tmp;
3159 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3160 type = check_typedef (value_type (ptr));
3161 gdb_assert (type != NULL
3162 && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR);
3163 tmp = lookup_pointer_type (TYPE_DOMAIN_TYPE (type));
3164 v = value_cast_pointers (tmp, v, 1);
3165 mem_offset = value_as_long (ptr);
3166 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3167 result = value_from_pointer (tmp,
3168 value_as_long (v) + mem_offset);
3169 return value_ind (result);
3172 error (_("Cannot reference non-static field \"%s\""), name);
3177 /* C++: If it was not found as a data field, then try to return it
3178 as a pointer to a method. */
3180 /* Perform all necessary dereferencing. */
3181 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3182 intype = TYPE_TARGET_TYPE (intype);
3184 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3186 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3187 char dem_opname[64];
3189 if (strncmp (t_field_name, "__", 2) == 0
3190 || strncmp (t_field_name, "op", 2) == 0
3191 || strncmp (t_field_name, "type", 4) == 0)
3193 if (cplus_demangle_opname (t_field_name,
3194 dem_opname, DMGL_ANSI))
3195 t_field_name = dem_opname;
3196 else if (cplus_demangle_opname (t_field_name,
3198 t_field_name = dem_opname;
3200 if (t_field_name && strcmp (t_field_name, name) == 0)
3203 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3204 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3206 check_stub_method_group (t, i);
3210 for (j = 0; j < len; ++j)
3212 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3213 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3219 error (_("no member function matches "
3220 "that type instantiation"));
3227 for (ii = 0; ii < len; ++ii)
3229 /* Skip artificial methods. This is necessary if,
3230 for example, the user wants to "print
3231 subclass::subclass" with only one user-defined
3232 constructor. There is no ambiguity in this case.
3233 We are careful here to allow artificial methods
3234 if they are the unique result. */
3235 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3242 /* Desired method is ambiguous if more than one
3243 method is defined. */
3244 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3245 error (_("non-unique member `%s' requires "
3246 "type instantiation"), name);
3252 error (_("no matching member function"));
3255 if (TYPE_FN_FIELD_STATIC_P (f, j))
3258 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3265 return value_addr (read_var_value (s, 0));
3267 return read_var_value (s, 0);
3270 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3274 result = allocate_value
3275 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3276 cplus_make_method_ptr (value_type (result),
3277 value_contents_writeable (result),
3278 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3280 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3281 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3283 error (_("Cannot reference virtual member function \"%s\""),
3289 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3295 v = read_var_value (s, 0);
3300 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3301 cplus_make_method_ptr (value_type (result),
3302 value_contents_writeable (result),
3303 value_address (v), 0);
3309 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3314 if (BASETYPE_VIA_VIRTUAL (t, i))
3317 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3318 v = value_struct_elt_for_reference (domain,
3319 offset + base_offset,
3320 TYPE_BASECLASS (t, i),
3322 want_address, noside);
3327 /* As a last chance, pretend that CURTYPE is a namespace, and look
3328 it up that way; this (frequently) works for types nested inside
3331 return value_maybe_namespace_elt (curtype, name,
3332 want_address, noside);
3335 /* C++: Return the member NAME of the namespace given by the type
3338 static struct value *
3339 value_namespace_elt (const struct type *curtype,
3340 char *name, int want_address,
3343 struct value *retval = value_maybe_namespace_elt (curtype, name,
3348 error (_("No symbol \"%s\" in namespace \"%s\"."),
3349 name, TYPE_TAG_NAME (curtype));
3354 /* A helper function used by value_namespace_elt and
3355 value_struct_elt_for_reference. It looks up NAME inside the
3356 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3357 is a class and NAME refers to a type in CURTYPE itself (as opposed
3358 to, say, some base class of CURTYPE). */
3360 static struct value *
3361 value_maybe_namespace_elt (const struct type *curtype,
3362 char *name, int want_address,
3365 const char *namespace_name = TYPE_TAG_NAME (curtype);
3367 struct value *result;
3369 sym = cp_lookup_symbol_namespace (namespace_name, name,
3370 get_selected_block (0), VAR_DOMAIN);
3374 char *concatenated_name = alloca (strlen (namespace_name) + 2
3375 + strlen (name) + 1);
3377 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3378 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3383 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3384 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3385 result = allocate_value (SYMBOL_TYPE (sym));
3387 result = value_of_variable (sym, get_selected_block (0));
3389 if (result && want_address)
3390 result = value_addr (result);
3395 /* Given a pointer or a reference value V, find its real (RTTI) type.
3397 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3398 and refer to the values computed for the object pointed to. */
3401 value_rtti_indirect_type (struct value *v, int *full,
3402 int *top, int *using_enc)
3404 struct value *target;
3405 struct type *type, *real_type, *target_type;
3407 type = value_type (v);
3408 type = check_typedef (type);
3409 if (TYPE_CODE (type) == TYPE_CODE_REF)
3410 target = coerce_ref (v);
3411 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3412 target = value_ind (v);
3416 real_type = value_rtti_type (target, full, top, using_enc);
3420 /* Copy qualifiers to the referenced object. */
3421 target_type = value_type (target);
3422 real_type = make_cv_type (TYPE_CONST (target_type),
3423 TYPE_VOLATILE (target_type), real_type, NULL);
3424 if (TYPE_CODE (type) == TYPE_CODE_REF)
3425 real_type = lookup_reference_type (real_type);
3426 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3427 real_type = lookup_pointer_type (real_type);
3429 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3431 /* Copy qualifiers to the pointer/reference. */
3432 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3439 /* Given a value pointed to by ARGP, check its real run-time type, and
3440 if that is different from the enclosing type, create a new value
3441 using the real run-time type as the enclosing type (and of the same
3442 type as ARGP) and return it, with the embedded offset adjusted to
3443 be the correct offset to the enclosed object. RTYPE is the type,
3444 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3445 by value_rtti_type(). If these are available, they can be supplied
3446 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3447 NULL if they're not available. */
3450 value_full_object (struct value *argp,
3452 int xfull, int xtop,
3455 struct type *real_type;
3459 struct value *new_val;
3466 using_enc = xusing_enc;
3469 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3471 /* If no RTTI data, or if object is already complete, do nothing. */
3472 if (!real_type || real_type == value_enclosing_type (argp))
3475 /* In a destructor we might see a real type that is a superclass of
3476 the object's type. In this case it is better to leave the object
3479 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3482 /* If we have the full object, but for some reason the enclosing
3483 type is wrong, set it. */
3484 /* pai: FIXME -- sounds iffy */
3487 argp = value_copy (argp);
3488 set_value_enclosing_type (argp, real_type);
3492 /* Check if object is in memory. */
3493 if (VALUE_LVAL (argp) != lval_memory)
3495 warning (_("Couldn't retrieve complete object of RTTI "
3496 "type %s; object may be in register(s)."),
3497 TYPE_NAME (real_type));
3502 /* All other cases -- retrieve the complete object. */
3503 /* Go back by the computed top_offset from the beginning of the
3504 object, adjusting for the embedded offset of argp if that's what
3505 value_rtti_type used for its computation. */
3506 new_val = value_at_lazy (real_type, value_address (argp) - top +
3507 (using_enc ? 0 : value_embedded_offset (argp)));
3508 deprecated_set_value_type (new_val, value_type (argp));
3509 set_value_embedded_offset (new_val, (using_enc
3510 ? top + value_embedded_offset (argp)
3516 /* Return the value of the local variable, if one exists. Throw error
3517 otherwise, such as if the request is made in an inappropriate context. */
3520 value_of_this (const struct language_defn *lang)
3524 struct frame_info *frame;
3526 if (!lang->la_name_of_this)
3527 error (_("no `this' in current language"));
3529 frame = get_selected_frame (_("no frame selected"));
3531 b = get_frame_block (frame, NULL);
3533 sym = lookup_language_this (lang, b);
3535 error (_("current stack frame does not contain a variable named `%s'"),
3536 lang->la_name_of_this);
3538 return read_var_value (sym, frame);
3541 /* Return the value of the local variable, if one exists. Return NULL
3542 otherwise. Never throw error. */
3545 value_of_this_silent (const struct language_defn *lang)
3547 struct value *ret = NULL;
3548 volatile struct gdb_exception except;
3550 TRY_CATCH (except, RETURN_MASK_ERROR)
3552 ret = value_of_this (lang);
3558 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3559 elements long, starting at LOWBOUND. The result has the same lower
3560 bound as the original ARRAY. */
3563 value_slice (struct value *array, int lowbound, int length)
3565 struct type *slice_range_type, *slice_type, *range_type;
3566 LONGEST lowerbound, upperbound;
3567 struct value *slice;
3568 struct type *array_type;
3570 array_type = check_typedef (value_type (array));
3571 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3572 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3573 error (_("cannot take slice of non-array"));
3575 range_type = TYPE_INDEX_TYPE (array_type);
3576 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3577 error (_("slice from bad array or bitstring"));
3579 if (lowbound < lowerbound || length < 0
3580 || lowbound + length - 1 > upperbound)
3581 error (_("slice out of range"));
3583 /* FIXME-type-allocation: need a way to free this type when we are
3585 slice_range_type = create_static_range_type ((struct type *) NULL,
3586 TYPE_TARGET_TYPE (range_type),
3588 lowbound + length - 1);
3591 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3593 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3595 slice_type = create_array_type ((struct type *) NULL,
3598 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3600 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3601 slice = allocate_value_lazy (slice_type);
3604 slice = allocate_value (slice_type);
3605 value_contents_copy (slice, 0, array, offset,
3606 TYPE_LENGTH (slice_type));
3609 set_value_component_location (slice, array);
3610 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3611 set_value_offset (slice, value_offset (array) + offset);
3617 /* Create a value for a FORTRAN complex number. Currently most of the
3618 time values are coerced to COMPLEX*16 (i.e. a complex number
3619 composed of 2 doubles. This really should be a smarter routine
3620 that figures out precision inteligently as opposed to assuming
3621 doubles. FIXME: fmb */
3624 value_literal_complex (struct value *arg1,
3629 struct type *real_type = TYPE_TARGET_TYPE (type);
3631 val = allocate_value (type);
3632 arg1 = value_cast (real_type, arg1);
3633 arg2 = value_cast (real_type, arg2);
3635 memcpy (value_contents_raw (val),
3636 value_contents (arg1), TYPE_LENGTH (real_type));
3637 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3638 value_contents (arg2), TYPE_LENGTH (real_type));
3642 /* Cast a value into the appropriate complex data type. */
3644 static struct value *
3645 cast_into_complex (struct type *type, struct value *val)
3647 struct type *real_type = TYPE_TARGET_TYPE (type);
3649 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3651 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3652 struct value *re_val = allocate_value (val_real_type);
3653 struct value *im_val = allocate_value (val_real_type);
3655 memcpy (value_contents_raw (re_val),
3656 value_contents (val), TYPE_LENGTH (val_real_type));
3657 memcpy (value_contents_raw (im_val),
3658 value_contents (val) + TYPE_LENGTH (val_real_type),
3659 TYPE_LENGTH (val_real_type));
3661 return value_literal_complex (re_val, im_val, type);
3663 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3664 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3665 return value_literal_complex (val,
3666 value_zero (real_type, not_lval),
3669 error (_("cannot cast non-number to complex"));
3673 _initialize_valops (void)
3675 add_setshow_boolean_cmd ("overload-resolution", class_support,
3676 &overload_resolution, _("\
3677 Set overload resolution in evaluating C++ functions."), _("\
3678 Show overload resolution in evaluating C++ functions."),
3680 show_overload_resolution,
3681 &setlist, &showlist);
3682 overload_resolution = 1;