1 /* Perform non-arithmetic operations on values, for GDB.
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
35 #include "dictionary.h"
36 #include "cp-support.h"
38 #include "tracepoint.h"
40 #include "gdb_string.h"
41 #include "gdb_assert.h"
42 #include "cp-support.h"
46 #include "exceptions.h"
48 extern unsigned int overload_debug;
49 /* Local functions. */
51 static int typecmp (int staticp, int varargs, int nargs,
52 struct field t1[], struct value *t2[]);
54 static struct value *search_struct_field (const char *, struct value *,
55 int, struct type *, int);
57 static struct value *search_struct_method (const char *, struct value **,
59 int, int *, struct type *);
61 static int find_oload_champ_namespace (struct value **, int,
62 const char *, const char *,
64 struct badness_vector **,
68 int find_oload_champ_namespace_loop (struct value **, int,
69 const char *, const char *,
70 int, struct symbol ***,
71 struct badness_vector **, int *,
74 static int find_oload_champ (struct value **, int, int, int,
75 struct fn_field *, struct symbol **,
76 struct badness_vector **);
78 static int oload_method_static (int, struct fn_field *, int);
80 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
83 oload_classification classify_oload_match (struct badness_vector *,
86 static struct value *value_struct_elt_for_reference (struct type *,
92 static struct value *value_namespace_elt (const struct type *,
93 char *, int , enum noside);
95 static struct value *value_maybe_namespace_elt (const struct type *,
99 static CORE_ADDR allocate_space_in_inferior (int);
101 static struct value *cast_into_complex (struct type *, struct value *);
103 static struct fn_field *find_method_list (struct value **, const char *,
104 int, struct type *, int *,
105 struct type **, int *);
107 void _initialize_valops (void);
110 /* Flag for whether we want to abandon failed expression evals by
113 static int auto_abandon = 0;
116 int overload_resolution = 0;
118 show_overload_resolution (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c,
122 fprintf_filtered (file, _("Overload resolution in evaluating "
123 "C++ functions is %s.\n"),
127 /* Find the address of function name NAME in the inferior. If OBJF_P
128 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
132 find_function_in_inferior (const char *name, struct objfile **objf_p)
136 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
139 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
141 error (_("\"%s\" exists in this program but is not a function."),
146 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
148 return value_of_variable (sym, NULL);
152 struct minimal_symbol *msymbol =
153 lookup_minimal_symbol (name, NULL, NULL);
157 struct objfile *objfile = msymbol_objfile (msymbol);
158 struct gdbarch *gdbarch = get_objfile_arch (objfile);
162 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
163 type = lookup_function_type (type);
164 type = lookup_pointer_type (type);
165 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
170 return value_from_pointer (type, maddr);
174 if (!target_has_execution)
175 error (_("evaluation of this expression "
176 "requires the target program to be active"));
178 error (_("evaluation of this expression requires the "
179 "program to have a function \"%s\"."),
185 /* Allocate NBYTES of space in the inferior using the inferior's
186 malloc and return a value that is a pointer to the allocated
190 value_allocate_space_in_inferior (int len)
192 struct objfile *objf;
193 struct value *val = find_function_in_inferior ("malloc", &objf);
194 struct gdbarch *gdbarch = get_objfile_arch (objf);
195 struct value *blocklen;
197 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
198 val = call_function_by_hand (val, 1, &blocklen);
199 if (value_logical_not (val))
201 if (!target_has_execution)
202 error (_("No memory available to program now: "
203 "you need to start the target first"));
205 error (_("No memory available to program: call to malloc failed"));
211 allocate_space_in_inferior (int len)
213 return value_as_long (value_allocate_space_in_inferior (len));
216 /* Cast struct value VAL to type TYPE and return as a value.
217 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
218 for this to work. Typedef to one of the codes is permitted.
219 Returns NULL if the cast is neither an upcast nor a downcast. */
221 static struct value *
222 value_cast_structs (struct type *type, struct value *v2)
228 gdb_assert (type != NULL && v2 != NULL);
230 t1 = check_typedef (type);
231 t2 = check_typedef (value_type (v2));
233 /* Check preconditions. */
234 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
235 || TYPE_CODE (t1) == TYPE_CODE_UNION)
236 && !!"Precondition is that type is of STRUCT or UNION kind.");
237 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
238 || TYPE_CODE (t2) == TYPE_CODE_UNION)
239 && !!"Precondition is that value is of STRUCT or UNION kind");
241 if (TYPE_NAME (t1) != NULL
242 && TYPE_NAME (t2) != NULL
243 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
246 /* Upcasting: look in the type of the source to see if it contains the
247 type of the target as a superclass. If so, we'll need to
248 offset the pointer rather than just change its type. */
249 if (TYPE_NAME (t1) != NULL)
251 v = search_struct_field (type_name_no_tag (t1),
257 /* Downcasting: look in the type of the target to see if it contains the
258 type of the source as a superclass. If so, we'll need to
259 offset the pointer rather than just change its type. */
260 if (TYPE_NAME (t2) != NULL)
262 /* Try downcasting using the run-time type of the value. */
263 int full, top, using_enc;
264 struct type *real_type;
266 real_type = value_rtti_type (v2, &full, &top, &using_enc);
269 v = value_full_object (v2, real_type, full, top, using_enc);
270 v = value_at_lazy (real_type, value_address (v));
272 /* We might be trying to cast to the outermost enclosing
273 type, in which case search_struct_field won't work. */
274 if (TYPE_NAME (real_type) != NULL
275 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
278 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
283 /* Try downcasting using information from the destination type
284 T2. This wouldn't work properly for classes with virtual
285 bases, but those were handled above. */
286 v = search_struct_field (type_name_no_tag (t2),
287 value_zero (t1, not_lval), 0, t1, 1);
290 /* Downcasting is possible (t1 is superclass of v2). */
291 CORE_ADDR addr2 = value_address (v2);
293 addr2 -= value_address (v) + value_embedded_offset (v);
294 return value_at (type, addr2);
301 /* Cast one pointer or reference type to another. Both TYPE and
302 the type of ARG2 should be pointer types, or else both should be
303 reference types. If SUBCLASS_CHECK is non-zero, this will force a
304 check to see whether TYPE is a superclass of ARG2's type. If
305 SUBCLASS_CHECK is zero, then the subclass check is done only when
306 ARG2 is itself non-zero. Returns the new pointer or reference. */
309 value_cast_pointers (struct type *type, struct value *arg2,
312 struct type *type1 = check_typedef (type);
313 struct type *type2 = check_typedef (value_type (arg2));
314 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
315 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
317 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
318 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
319 && (subclass_check || !value_logical_not (arg2)))
323 if (TYPE_CODE (type2) == TYPE_CODE_REF)
324 v2 = coerce_ref (arg2);
326 v2 = value_ind (arg2);
327 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
328 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
329 v2 = value_cast_structs (t1, v2);
330 /* At this point we have what we can have, un-dereference if needed. */
333 struct value *v = value_addr (v2);
335 deprecated_set_value_type (v, type);
340 /* No superclass found, just change the pointer type. */
341 arg2 = value_copy (arg2);
342 deprecated_set_value_type (arg2, type);
343 set_value_enclosing_type (arg2, type);
344 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
348 /* Cast value ARG2 to type TYPE and return as a value.
349 More general than a C cast: accepts any two types of the same length,
350 and if ARG2 is an lvalue it can be cast into anything at all. */
351 /* In C++, casts may change pointer or object representations. */
354 value_cast (struct type *type, struct value *arg2)
356 enum type_code code1;
357 enum type_code code2;
361 int convert_to_boolean = 0;
363 if (value_type (arg2) == type)
366 code1 = TYPE_CODE (check_typedef (type));
368 /* Check if we are casting struct reference to struct reference. */
369 if (code1 == TYPE_CODE_REF)
371 /* We dereference type; then we recurse and finally
372 we generate value of the given reference. Nothing wrong with
374 struct type *t1 = check_typedef (type);
375 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
376 struct value *val = value_cast (dereftype, arg2);
378 return value_ref (val);
381 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
383 if (code2 == TYPE_CODE_REF)
384 /* We deref the value and then do the cast. */
385 return value_cast (type, coerce_ref (arg2));
387 CHECK_TYPEDEF (type);
388 code1 = TYPE_CODE (type);
389 arg2 = coerce_ref (arg2);
390 type2 = check_typedef (value_type (arg2));
392 /* You can't cast to a reference type. See value_cast_pointers
394 gdb_assert (code1 != TYPE_CODE_REF);
396 /* A cast to an undetermined-length array_type, such as
397 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
398 where N is sizeof(OBJECT)/sizeof(TYPE). */
399 if (code1 == TYPE_CODE_ARRAY)
401 struct type *element_type = TYPE_TARGET_TYPE (type);
402 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
404 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
406 struct type *range_type = TYPE_INDEX_TYPE (type);
407 int val_length = TYPE_LENGTH (type2);
408 LONGEST low_bound, high_bound, new_length;
410 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
411 low_bound = 0, high_bound = 0;
412 new_length = val_length / element_length;
413 if (val_length % element_length != 0)
414 warning (_("array element type size does not "
415 "divide object size in cast"));
416 /* FIXME-type-allocation: need a way to free this type when
417 we are done with it. */
418 range_type = create_range_type ((struct type *) NULL,
419 TYPE_TARGET_TYPE (range_type),
421 new_length + low_bound - 1);
422 deprecated_set_value_type (arg2,
423 create_array_type ((struct type *) NULL,
430 if (current_language->c_style_arrays
431 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
432 && !TYPE_VECTOR (type2))
433 arg2 = value_coerce_array (arg2);
435 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
436 arg2 = value_coerce_function (arg2);
438 type2 = check_typedef (value_type (arg2));
439 code2 = TYPE_CODE (type2);
441 if (code1 == TYPE_CODE_COMPLEX)
442 return cast_into_complex (type, arg2);
443 if (code1 == TYPE_CODE_BOOL)
445 code1 = TYPE_CODE_INT;
446 convert_to_boolean = 1;
448 if (code1 == TYPE_CODE_CHAR)
449 code1 = TYPE_CODE_INT;
450 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
451 code2 = TYPE_CODE_INT;
453 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
454 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
455 || code2 == TYPE_CODE_RANGE);
457 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
458 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
459 && TYPE_NAME (type) != 0)
461 struct value *v = value_cast_structs (type, arg2);
467 if (code1 == TYPE_CODE_FLT && scalar)
468 return value_from_double (type, value_as_double (arg2));
469 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
471 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
472 int dec_len = TYPE_LENGTH (type);
475 if (code2 == TYPE_CODE_FLT)
476 decimal_from_floating (arg2, dec, dec_len, byte_order);
477 else if (code2 == TYPE_CODE_DECFLOAT)
478 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
479 byte_order, dec, dec_len, byte_order);
481 /* The only option left is an integral type. */
482 decimal_from_integral (arg2, dec, dec_len, byte_order);
484 return value_from_decfloat (type, dec);
486 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
487 || code1 == TYPE_CODE_RANGE)
488 && (scalar || code2 == TYPE_CODE_PTR
489 || code2 == TYPE_CODE_MEMBERPTR))
493 /* When we cast pointers to integers, we mustn't use
494 gdbarch_pointer_to_address to find the address the pointer
495 represents, as value_as_long would. GDB should evaluate
496 expressions just as the compiler would --- and the compiler
497 sees a cast as a simple reinterpretation of the pointer's
499 if (code2 == TYPE_CODE_PTR)
500 longest = extract_unsigned_integer
501 (value_contents (arg2), TYPE_LENGTH (type2),
502 gdbarch_byte_order (get_type_arch (type2)));
504 longest = value_as_long (arg2);
505 return value_from_longest (type, convert_to_boolean ?
506 (LONGEST) (longest ? 1 : 0) : longest);
508 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
509 || code2 == TYPE_CODE_ENUM
510 || code2 == TYPE_CODE_RANGE))
512 /* TYPE_LENGTH (type) is the length of a pointer, but we really
513 want the length of an address! -- we are really dealing with
514 addresses (i.e., gdb representations) not pointers (i.e.,
515 target representations) here.
517 This allows things like "print *(int *)0x01000234" to work
518 without printing a misleading message -- which would
519 otherwise occur when dealing with a target having two byte
520 pointers and four byte addresses. */
522 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
523 LONGEST longest = value_as_long (arg2);
525 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
527 if (longest >= ((LONGEST) 1 << addr_bit)
528 || longest <= -((LONGEST) 1 << addr_bit))
529 warning (_("value truncated"));
531 return value_from_longest (type, longest);
533 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
534 && value_as_long (arg2) == 0)
536 struct value *result = allocate_value (type);
538 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
541 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
542 && value_as_long (arg2) == 0)
544 /* The Itanium C++ ABI represents NULL pointers to members as
545 minus one, instead of biasing the normal case. */
546 return value_from_longest (type, -1);
548 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
549 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
550 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
551 error (_("Cannot convert between vector values of different sizes"));
552 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
553 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
554 error (_("can only cast scalar to vector of same size"));
555 else if (code1 == TYPE_CODE_VOID)
557 return value_zero (type, not_lval);
559 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
561 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
562 return value_cast_pointers (type, arg2, 0);
564 arg2 = value_copy (arg2);
565 deprecated_set_value_type (arg2, type);
566 set_value_enclosing_type (arg2, type);
567 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
570 else if (VALUE_LVAL (arg2) == lval_memory)
571 return value_at_lazy (type, value_address (arg2));
574 error (_("Invalid cast."));
579 /* The C++ reinterpret_cast operator. */
582 value_reinterpret_cast (struct type *type, struct value *arg)
584 struct value *result;
585 struct type *real_type = check_typedef (type);
586 struct type *arg_type, *dest_type;
588 enum type_code dest_code, arg_code;
590 /* Do reference, function, and array conversion. */
591 arg = coerce_array (arg);
593 /* Attempt to preserve the type the user asked for. */
596 /* If we are casting to a reference type, transform
597 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
598 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
601 arg = value_addr (arg);
602 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
603 real_type = lookup_pointer_type (real_type);
606 arg_type = value_type (arg);
608 dest_code = TYPE_CODE (real_type);
609 arg_code = TYPE_CODE (arg_type);
611 /* We can convert pointer types, or any pointer type to int, or int
613 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
614 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
615 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
616 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
617 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
618 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
619 || (dest_code == arg_code
620 && (dest_code == TYPE_CODE_PTR
621 || dest_code == TYPE_CODE_METHODPTR
622 || dest_code == TYPE_CODE_MEMBERPTR)))
623 result = value_cast (dest_type, arg);
625 error (_("Invalid reinterpret_cast"));
628 result = value_cast (type, value_ref (value_ind (result)));
633 /* A helper for value_dynamic_cast. This implements the first of two
634 runtime checks: we iterate over all the base classes of the value's
635 class which are equal to the desired class; if only one of these
636 holds the value, then it is the answer. */
639 dynamic_cast_check_1 (struct type *desired_type,
640 const gdb_byte *valaddr,
644 struct type *search_type,
646 struct type *arg_type,
647 struct value **result)
649 int i, result_count = 0;
651 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
653 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
656 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
658 if (address + embedded_offset + offset >= arg_addr
659 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
663 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
664 address + embedded_offset + offset);
668 result_count += dynamic_cast_check_1 (desired_type,
670 embedded_offset + offset,
672 TYPE_BASECLASS (search_type, i),
681 /* A helper for value_dynamic_cast. This implements the second of two
682 runtime checks: we look for a unique public sibling class of the
683 argument's declared class. */
686 dynamic_cast_check_2 (struct type *desired_type,
687 const gdb_byte *valaddr,
691 struct type *search_type,
692 struct value **result)
694 int i, result_count = 0;
696 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
700 if (! BASETYPE_VIA_PUBLIC (search_type, i))
703 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
705 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
709 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
710 address + embedded_offset + offset);
713 result_count += dynamic_cast_check_2 (desired_type,
715 embedded_offset + offset,
717 TYPE_BASECLASS (search_type, i),
724 /* The C++ dynamic_cast operator. */
727 value_dynamic_cast (struct type *type, struct value *arg)
729 int full, top, using_enc;
730 struct type *resolved_type = check_typedef (type);
731 struct type *arg_type = check_typedef (value_type (arg));
732 struct type *class_type, *rtti_type;
733 struct value *result, *tem, *original_arg = arg;
735 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
737 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
738 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
739 error (_("Argument to dynamic_cast must be a pointer or reference type"));
740 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
741 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
742 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
744 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
745 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
747 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
748 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
749 && value_as_long (arg) == 0))
750 error (_("Argument to dynamic_cast does not have pointer type"));
751 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
753 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
754 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
755 error (_("Argument to dynamic_cast does "
756 "not have pointer to class type"));
759 /* Handle NULL pointers. */
760 if (value_as_long (arg) == 0)
761 return value_zero (type, not_lval);
763 arg = value_ind (arg);
767 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
768 error (_("Argument to dynamic_cast does not have class type"));
771 /* If the classes are the same, just return the argument. */
772 if (class_types_same_p (class_type, arg_type))
773 return value_cast (type, arg);
775 /* If the target type is a unique base class of the argument's
776 declared type, just cast it. */
777 if (is_ancestor (class_type, arg_type))
779 if (is_unique_ancestor (class_type, arg))
780 return value_cast (type, original_arg);
781 error (_("Ambiguous dynamic_cast"));
784 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
786 error (_("Couldn't determine value's most derived type for dynamic_cast"));
788 /* Compute the most derived object's address. */
789 addr = value_address (arg);
797 addr += top + value_embedded_offset (arg);
799 /* dynamic_cast<void *> means to return a pointer to the
800 most-derived object. */
801 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
802 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
803 return value_at_lazy (type, addr);
805 tem = value_at (type, addr);
807 /* The first dynamic check specified in 5.2.7. */
808 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
810 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
813 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
814 value_contents_for_printing (tem),
815 value_embedded_offset (tem),
816 value_address (tem), tem,
820 return value_cast (type,
821 is_ref ? value_ref (result) : value_addr (result));
824 /* The second dynamic check specified in 5.2.7. */
826 if (is_public_ancestor (arg_type, rtti_type)
827 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
828 value_contents_for_printing (tem),
829 value_embedded_offset (tem),
830 value_address (tem), tem,
831 rtti_type, &result) == 1)
832 return value_cast (type,
833 is_ref ? value_ref (result) : value_addr (result));
835 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
836 return value_zero (type, not_lval);
838 error (_("dynamic_cast failed"));
841 /* Create a value of type TYPE that is zero, and return it. */
844 value_zero (struct type *type, enum lval_type lv)
846 struct value *val = allocate_value (type);
848 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
852 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
855 value_one (struct type *type)
857 struct type *type1 = check_typedef (type);
860 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
862 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
865 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
866 val = value_from_decfloat (type, v);
868 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
870 val = value_from_double (type, (DOUBLEST) 1);
872 else if (is_integral_type (type1))
874 val = value_from_longest (type, (LONGEST) 1);
876 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
878 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
880 LONGEST low_bound, high_bound;
883 if (!get_array_bounds (type1, &low_bound, &high_bound))
884 error (_("Could not determine the vector bounds"));
886 val = allocate_value (type);
887 for (i = 0; i < high_bound - low_bound + 1; i++)
889 tmp = value_one (eltype);
890 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
891 value_contents_all (tmp), TYPE_LENGTH (eltype));
896 error (_("Not a numeric type."));
899 /* value_one result is never used for assignments to. */
900 gdb_assert (VALUE_LVAL (val) == not_lval);
905 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
907 static struct value *
908 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
912 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
913 error (_("Attempt to dereference a generic pointer."));
915 val = value_from_contents_and_address (type, NULL, addr);
918 value_fetch_lazy (val);
923 /* Return a value with type TYPE located at ADDR.
925 Call value_at only if the data needs to be fetched immediately;
926 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
927 value_at_lazy instead. value_at_lazy simply records the address of
928 the data and sets the lazy-evaluation-required flag. The lazy flag
929 is tested in the value_contents macro, which is used if and when
930 the contents are actually required.
932 Note: value_at does *NOT* handle embedded offsets; perform such
933 adjustments before or after calling it. */
936 value_at (struct type *type, CORE_ADDR addr)
938 return get_value_at (type, addr, 0);
941 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
944 value_at_lazy (struct type *type, CORE_ADDR addr)
946 return get_value_at (type, addr, 1);
950 read_value_memory (struct value *val, int embedded_offset,
951 int stack, CORE_ADDR memaddr,
952 gdb_byte *buffer, size_t length)
956 VEC(mem_range_s) *available_memory;
958 if (!traceframe_available_memory (&available_memory, memaddr, length))
961 read_stack (memaddr, buffer, length);
963 read_memory (memaddr, buffer, length);
967 struct target_section_table *table;
968 struct cleanup *old_chain;
973 /* Fallback to reading from read-only sections. */
974 table = target_get_section_table (&exec_ops);
976 section_table_available_memory (available_memory,
979 table->sections_end);
981 old_chain = make_cleanup (VEC_cleanup(mem_range_s),
984 normalize_mem_ranges (available_memory);
986 /* Mark which bytes are unavailable, and read those which
992 VEC_iterate (mem_range_s, available_memory, i, r);
995 if (mem_ranges_overlap (r->start, r->length,
998 CORE_ADDR lo1, hi1, lo2, hi2;
999 CORE_ADDR start, end;
1001 /* Get the intersection window. */
1003 hi1 = memaddr + length;
1005 hi2 = r->start + r->length;
1006 start = max (lo1, lo2);
1007 end = min (hi1, hi2);
1009 gdb_assert (end - memaddr <= length);
1011 if (start > unavail)
1012 mark_value_bytes_unavailable (val,
1014 + unavail - memaddr),
1018 read_memory (start, buffer + start - memaddr, end - start);
1022 if (unavail != memaddr + length)
1023 mark_value_bytes_unavailable (val,
1024 embedded_offset + unavail - memaddr,
1025 (memaddr + length) - unavail);
1027 do_cleanups (old_chain);
1032 /* Store the contents of FROMVAL into the location of TOVAL.
1033 Return a new value with the location of TOVAL and contents of FROMVAL. */
1036 value_assign (struct value *toval, struct value *fromval)
1040 struct frame_id old_frame;
1042 if (!deprecated_value_modifiable (toval))
1043 error (_("Left operand of assignment is not a modifiable lvalue."));
1045 toval = coerce_ref (toval);
1047 type = value_type (toval);
1048 if (VALUE_LVAL (toval) != lval_internalvar)
1049 fromval = value_cast (type, fromval);
1052 /* Coerce arrays and functions to pointers, except for arrays
1053 which only live in GDB's storage. */
1054 if (!value_must_coerce_to_target (fromval))
1055 fromval = coerce_array (fromval);
1058 CHECK_TYPEDEF (type);
1060 /* Since modifying a register can trash the frame chain, and
1061 modifying memory can trash the frame cache, we save the old frame
1062 and then restore the new frame afterwards. */
1063 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1065 switch (VALUE_LVAL (toval))
1067 case lval_internalvar:
1068 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1069 return value_of_internalvar (get_type_arch (type),
1070 VALUE_INTERNALVAR (toval));
1072 case lval_internalvar_component:
1074 int offset = value_offset (toval);
1076 /* Are we dealing with a bitfield?
1078 It is important to mention that `value_parent (toval)' is
1079 non-NULL iff `value_bitsize (toval)' is non-zero. */
1080 if (value_bitsize (toval))
1082 /* VALUE_INTERNALVAR below refers to the parent value, while
1083 the offset is relative to this parent value. */
1084 gdb_assert (value_parent (value_parent (toval)) == NULL);
1085 offset += value_offset (value_parent (toval));
1088 set_internalvar_component (VALUE_INTERNALVAR (toval),
1090 value_bitpos (toval),
1091 value_bitsize (toval),
1098 const gdb_byte *dest_buffer;
1099 CORE_ADDR changed_addr;
1101 gdb_byte buffer[sizeof (LONGEST)];
1103 if (value_bitsize (toval))
1105 struct value *parent = value_parent (toval);
1107 changed_addr = value_address (parent) + value_offset (toval);
1108 changed_len = (value_bitpos (toval)
1109 + value_bitsize (toval)
1110 + HOST_CHAR_BIT - 1)
1113 /* If we can read-modify-write exactly the size of the
1114 containing type (e.g. short or int) then do so. This
1115 is safer for volatile bitfields mapped to hardware
1117 if (changed_len < TYPE_LENGTH (type)
1118 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1119 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1120 changed_len = TYPE_LENGTH (type);
1122 if (changed_len > (int) sizeof (LONGEST))
1123 error (_("Can't handle bitfields which "
1124 "don't fit in a %d bit word."),
1125 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1127 read_memory (changed_addr, buffer, changed_len);
1128 modify_field (type, buffer, value_as_long (fromval),
1129 value_bitpos (toval), value_bitsize (toval));
1130 dest_buffer = buffer;
1134 changed_addr = value_address (toval);
1135 changed_len = TYPE_LENGTH (type);
1136 dest_buffer = value_contents (fromval);
1139 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1145 struct frame_info *frame;
1146 struct gdbarch *gdbarch;
1149 /* Figure out which frame this is in currently. */
1150 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1151 value_reg = VALUE_REGNUM (toval);
1154 error (_("Value being assigned to is no longer active."));
1156 gdbarch = get_frame_arch (frame);
1157 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1159 /* If TOVAL is a special machine register requiring
1160 conversion of program values to a special raw
1162 gdbarch_value_to_register (gdbarch, frame,
1163 VALUE_REGNUM (toval), type,
1164 value_contents (fromval));
1168 if (value_bitsize (toval))
1170 struct value *parent = value_parent (toval);
1171 int offset = value_offset (parent) + value_offset (toval);
1173 gdb_byte buffer[sizeof (LONGEST)];
1176 changed_len = (value_bitpos (toval)
1177 + value_bitsize (toval)
1178 + HOST_CHAR_BIT - 1)
1181 if (changed_len > (int) sizeof (LONGEST))
1182 error (_("Can't handle bitfields which "
1183 "don't fit in a %d bit word."),
1184 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1186 if (!get_frame_register_bytes (frame, value_reg, offset,
1187 changed_len, buffer,
1191 error (_("value has been optimized out"));
1193 throw_error (NOT_AVAILABLE_ERROR,
1194 _("value is not available"));
1197 modify_field (type, buffer, value_as_long (fromval),
1198 value_bitpos (toval), value_bitsize (toval));
1200 put_frame_register_bytes (frame, value_reg, offset,
1201 changed_len, buffer);
1205 put_frame_register_bytes (frame, value_reg,
1206 value_offset (toval),
1208 value_contents (fromval));
1212 if (deprecated_register_changed_hook)
1213 deprecated_register_changed_hook (-1);
1219 const struct lval_funcs *funcs = value_computed_funcs (toval);
1221 if (funcs->write != NULL)
1223 funcs->write (toval, fromval);
1230 error (_("Left operand of assignment is not an lvalue."));
1233 /* Assigning to the stack pointer, frame pointer, and other
1234 (architecture and calling convention specific) registers may
1235 cause the frame cache and regcache to be out of date. Assigning to memory
1236 also can. We just do this on all assignments to registers or
1237 memory, for simplicity's sake; I doubt the slowdown matters. */
1238 switch (VALUE_LVAL (toval))
1244 observer_notify_target_changed (¤t_target);
1246 /* Having destroyed the frame cache, restore the selected
1249 /* FIXME: cagney/2002-11-02: There has to be a better way of
1250 doing this. Instead of constantly saving/restoring the
1251 frame. Why not create a get_selected_frame() function that,
1252 having saved the selected frame's ID can automatically
1253 re-find the previously selected frame automatically. */
1256 struct frame_info *fi = frame_find_by_id (old_frame);
1267 /* If the field does not entirely fill a LONGEST, then zero the sign
1268 bits. If the field is signed, and is negative, then sign
1270 if ((value_bitsize (toval) > 0)
1271 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1273 LONGEST fieldval = value_as_long (fromval);
1274 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1276 fieldval &= valmask;
1277 if (!TYPE_UNSIGNED (type)
1278 && (fieldval & (valmask ^ (valmask >> 1))))
1279 fieldval |= ~valmask;
1281 fromval = value_from_longest (type, fieldval);
1284 /* The return value is a copy of TOVAL so it shares its location
1285 information, but its contents are updated from FROMVAL. This
1286 implies the returned value is not lazy, even if TOVAL was. */
1287 val = value_copy (toval);
1288 set_value_lazy (val, 0);
1289 memcpy (value_contents_raw (val), value_contents (fromval),
1290 TYPE_LENGTH (type));
1292 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1293 in the case of pointer types. For object types, the enclosing type
1294 and embedded offset must *not* be copied: the target object refered
1295 to by TOVAL retains its original dynamic type after assignment. */
1296 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1298 set_value_enclosing_type (val, value_enclosing_type (fromval));
1299 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1305 /* Extend a value VAL to COUNT repetitions of its type. */
1308 value_repeat (struct value *arg1, int count)
1312 if (VALUE_LVAL (arg1) != lval_memory)
1313 error (_("Only values in memory can be extended with '@'."));
1315 error (_("Invalid number %d of repetitions."), count);
1317 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1319 VALUE_LVAL (val) = lval_memory;
1320 set_value_address (val, value_address (arg1));
1322 read_value_memory (val, 0, value_stack (val), value_address (val),
1323 value_contents_all_raw (val),
1324 TYPE_LENGTH (value_enclosing_type (val)));
1330 value_of_variable (struct symbol *var, const struct block *b)
1332 struct frame_info *frame;
1334 if (!symbol_read_needs_frame (var))
1337 frame = get_selected_frame (_("No frame selected."));
1340 frame = block_innermost_frame (b);
1343 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1344 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1345 error (_("No frame is currently executing in block %s."),
1346 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1348 error (_("No frame is currently executing in specified block"));
1352 return read_var_value (var, frame);
1356 address_of_variable (struct symbol *var, const struct block *b)
1358 struct type *type = SYMBOL_TYPE (var);
1361 /* Evaluate it first; if the result is a memory address, we're fine.
1362 Lazy evaluation pays off here. */
1364 val = value_of_variable (var, b);
1366 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1367 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1369 CORE_ADDR addr = value_address (val);
1371 return value_from_pointer (lookup_pointer_type (type), addr);
1374 /* Not a memory address; check what the problem was. */
1375 switch (VALUE_LVAL (val))
1379 struct frame_info *frame;
1380 const char *regname;
1382 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1385 regname = gdbarch_register_name (get_frame_arch (frame),
1386 VALUE_REGNUM (val));
1387 gdb_assert (regname && *regname);
1389 error (_("Address requested for identifier "
1390 "\"%s\" which is in register $%s"),
1391 SYMBOL_PRINT_NAME (var), regname);
1396 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1397 SYMBOL_PRINT_NAME (var));
1404 /* Return one if VAL does not live in target memory, but should in order
1405 to operate on it. Otherwise return zero. */
1408 value_must_coerce_to_target (struct value *val)
1410 struct type *valtype;
1412 /* The only lval kinds which do not live in target memory. */
1413 if (VALUE_LVAL (val) != not_lval
1414 && VALUE_LVAL (val) != lval_internalvar)
1417 valtype = check_typedef (value_type (val));
1419 switch (TYPE_CODE (valtype))
1421 case TYPE_CODE_ARRAY:
1422 return TYPE_VECTOR (valtype) ? 0 : 1;
1423 case TYPE_CODE_STRING:
1430 /* Make sure that VAL lives in target memory if it's supposed to. For
1431 instance, strings are constructed as character arrays in GDB's
1432 storage, and this function copies them to the target. */
1435 value_coerce_to_target (struct value *val)
1440 if (!value_must_coerce_to_target (val))
1443 length = TYPE_LENGTH (check_typedef (value_type (val)));
1444 addr = allocate_space_in_inferior (length);
1445 write_memory (addr, value_contents (val), length);
1446 return value_at_lazy (value_type (val), addr);
1449 /* Given a value which is an array, return a value which is a pointer
1450 to its first element, regardless of whether or not the array has a
1451 nonzero lower bound.
1453 FIXME: A previous comment here indicated that this routine should
1454 be substracting the array's lower bound. It's not clear to me that
1455 this is correct. Given an array subscripting operation, it would
1456 certainly work to do the adjustment here, essentially computing:
1458 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1460 However I believe a more appropriate and logical place to account
1461 for the lower bound is to do so in value_subscript, essentially
1464 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1466 As further evidence consider what would happen with operations
1467 other than array subscripting, where the caller would get back a
1468 value that had an address somewhere before the actual first element
1469 of the array, and the information about the lower bound would be
1470 lost because of the coercion to pointer type. */
1473 value_coerce_array (struct value *arg1)
1475 struct type *type = check_typedef (value_type (arg1));
1477 /* If the user tries to do something requiring a pointer with an
1478 array that has not yet been pushed to the target, then this would
1479 be a good time to do so. */
1480 arg1 = value_coerce_to_target (arg1);
1482 if (VALUE_LVAL (arg1) != lval_memory)
1483 error (_("Attempt to take address of value not located in memory."));
1485 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1486 value_address (arg1));
1489 /* Given a value which is a function, return a value which is a pointer
1493 value_coerce_function (struct value *arg1)
1495 struct value *retval;
1497 if (VALUE_LVAL (arg1) != lval_memory)
1498 error (_("Attempt to take address of value not located in memory."));
1500 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1501 value_address (arg1));
1505 /* Return a pointer value for the object for which ARG1 is the
1509 value_addr (struct value *arg1)
1512 struct type *type = check_typedef (value_type (arg1));
1514 if (TYPE_CODE (type) == TYPE_CODE_REF)
1516 /* Copy the value, but change the type from (T&) to (T*). We
1517 keep the same location information, which is efficient, and
1518 allows &(&X) to get the location containing the reference. */
1519 arg2 = value_copy (arg1);
1520 deprecated_set_value_type (arg2,
1521 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1524 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1525 return value_coerce_function (arg1);
1527 /* If this is an array that has not yet been pushed to the target,
1528 then this would be a good time to force it to memory. */
1529 arg1 = value_coerce_to_target (arg1);
1531 if (VALUE_LVAL (arg1) != lval_memory)
1532 error (_("Attempt to take address of value not located in memory."));
1534 /* Get target memory address. */
1535 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1536 (value_address (arg1)
1537 + value_embedded_offset (arg1)));
1539 /* This may be a pointer to a base subobject; so remember the
1540 full derived object's type ... */
1541 set_value_enclosing_type (arg2,
1542 lookup_pointer_type (value_enclosing_type (arg1)));
1543 /* ... and also the relative position of the subobject in the full
1545 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1549 /* Return a reference value for the object for which ARG1 is the
1553 value_ref (struct value *arg1)
1556 struct type *type = check_typedef (value_type (arg1));
1558 if (TYPE_CODE (type) == TYPE_CODE_REF)
1561 arg2 = value_addr (arg1);
1562 deprecated_set_value_type (arg2, lookup_reference_type (type));
1566 /* Given a value of a pointer type, apply the C unary * operator to
1570 value_ind (struct value *arg1)
1572 struct type *base_type;
1575 arg1 = coerce_array (arg1);
1577 base_type = check_typedef (value_type (arg1));
1579 if (VALUE_LVAL (arg1) == lval_computed)
1581 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1583 if (funcs->indirect)
1585 struct value *result = funcs->indirect (arg1);
1592 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1594 struct type *enc_type;
1596 /* We may be pointing to something embedded in a larger object.
1597 Get the real type of the enclosing object. */
1598 enc_type = check_typedef (value_enclosing_type (arg1));
1599 enc_type = TYPE_TARGET_TYPE (enc_type);
1601 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1602 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1603 /* For functions, go through find_function_addr, which knows
1604 how to handle function descriptors. */
1605 arg2 = value_at_lazy (enc_type,
1606 find_function_addr (arg1, NULL));
1608 /* Retrieve the enclosing object pointed to. */
1609 arg2 = value_at_lazy (enc_type,
1610 (value_as_address (arg1)
1611 - value_pointed_to_offset (arg1)));
1613 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1616 error (_("Attempt to take contents of a non-pointer value."));
1617 return 0; /* For lint -- never reached. */
1620 /* Create a value for an array by allocating space in GDB, copying the
1621 data into that space, and then setting up an array value.
1623 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1624 is populated from the values passed in ELEMVEC.
1626 The element type of the array is inherited from the type of the
1627 first element, and all elements must have the same size (though we
1628 don't currently enforce any restriction on their types). */
1631 value_array (int lowbound, int highbound, struct value **elemvec)
1635 unsigned int typelength;
1637 struct type *arraytype;
1639 /* Validate that the bounds are reasonable and that each of the
1640 elements have the same size. */
1642 nelem = highbound - lowbound + 1;
1645 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1647 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1648 for (idx = 1; idx < nelem; idx++)
1650 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1652 error (_("array elements must all be the same size"));
1656 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1657 lowbound, highbound);
1659 if (!current_language->c_style_arrays)
1661 val = allocate_value (arraytype);
1662 for (idx = 0; idx < nelem; idx++)
1663 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1668 /* Allocate space to store the array, and then initialize it by
1669 copying in each element. */
1671 val = allocate_value (arraytype);
1672 for (idx = 0; idx < nelem; idx++)
1673 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1678 value_cstring (char *ptr, ssize_t len, struct type *char_type)
1681 int lowbound = current_language->string_lower_bound;
1682 ssize_t highbound = len / TYPE_LENGTH (char_type);
1683 struct type *stringtype
1684 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1686 val = allocate_value (stringtype);
1687 memcpy (value_contents_raw (val), ptr, len);
1691 /* Create a value for a string constant by allocating space in the
1692 inferior, copying the data into that space, and returning the
1693 address with type TYPE_CODE_STRING. PTR points to the string
1694 constant data; LEN is number of characters.
1696 Note that string types are like array of char types with a lower
1697 bound of zero and an upper bound of LEN - 1. Also note that the
1698 string may contain embedded null bytes. */
1701 value_string (char *ptr, ssize_t len, struct type *char_type)
1704 int lowbound = current_language->string_lower_bound;
1705 ssize_t highbound = len / TYPE_LENGTH (char_type);
1706 struct type *stringtype
1707 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1709 val = allocate_value (stringtype);
1710 memcpy (value_contents_raw (val), ptr, len);
1715 /* See if we can pass arguments in T2 to a function which takes
1716 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1717 a NULL-terminated vector. If some arguments need coercion of some
1718 sort, then the coerced values are written into T2. Return value is
1719 0 if the arguments could be matched, or the position at which they
1722 STATICP is nonzero if the T1 argument list came from a static
1723 member function. T2 will still include the ``this'' pointer, but
1726 For non-static member functions, we ignore the first argument,
1727 which is the type of the instance variable. This is because we
1728 want to handle calls with objects from derived classes. This is
1729 not entirely correct: we should actually check to make sure that a
1730 requested operation is type secure, shouldn't we? FIXME. */
1733 typecmp (int staticp, int varargs, int nargs,
1734 struct field t1[], struct value *t2[])
1739 internal_error (__FILE__, __LINE__,
1740 _("typecmp: no argument list"));
1742 /* Skip ``this'' argument if applicable. T2 will always include
1748 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1751 struct type *tt1, *tt2;
1756 tt1 = check_typedef (t1[i].type);
1757 tt2 = check_typedef (value_type (t2[i]));
1759 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1760 /* We should be doing hairy argument matching, as below. */
1761 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1762 == TYPE_CODE (tt2)))
1764 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1765 t2[i] = value_coerce_array (t2[i]);
1767 t2[i] = value_ref (t2[i]);
1771 /* djb - 20000715 - Until the new type structure is in the
1772 place, and we can attempt things like implicit conversions,
1773 we need to do this so you can take something like a map<const
1774 char *>, and properly access map["hello"], because the
1775 argument to [] will be a reference to a pointer to a char,
1776 and the argument will be a pointer to a char. */
1777 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1778 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1780 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1782 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1783 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1784 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1786 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1788 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1790 /* Array to pointer is a `trivial conversion' according to the
1793 /* We should be doing much hairier argument matching (see
1794 section 13.2 of the ARM), but as a quick kludge, just check
1795 for the same type code. */
1796 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1799 if (varargs || t2[i] == NULL)
1804 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1805 and *LAST_BOFFSET, and possibly throws an exception if the field
1806 search has yielded ambiguous results. */
1809 update_search_result (struct value **result_ptr, struct value *v,
1810 int *last_boffset, int boffset,
1811 const char *name, struct type *type)
1815 if (*result_ptr != NULL
1816 /* The result is not ambiguous if all the classes that are
1817 found occupy the same space. */
1818 && *last_boffset != boffset)
1819 error (_("base class '%s' is ambiguous in type '%s'"),
1820 name, TYPE_SAFE_NAME (type));
1822 *last_boffset = boffset;
1826 /* A helper for search_struct_field. This does all the work; most
1827 arguments are as passed to search_struct_field. The result is
1828 stored in *RESULT_PTR, which must be initialized to NULL.
1829 OUTERMOST_TYPE is the type of the initial type passed to
1830 search_struct_field; this is used for error reporting when the
1831 lookup is ambiguous. */
1834 do_search_struct_field (const char *name, struct value *arg1, int offset,
1835 struct type *type, int looking_for_baseclass,
1836 struct value **result_ptr,
1838 struct type *outermost_type)
1843 CHECK_TYPEDEF (type);
1844 nbases = TYPE_N_BASECLASSES (type);
1846 if (!looking_for_baseclass)
1847 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1849 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1851 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1855 if (field_is_static (&TYPE_FIELD (type, i)))
1857 v = value_static_field (type, i);
1859 error (_("field %s is nonexistent or "
1860 "has been optimized out"),
1864 v = value_primitive_field (arg1, offset, i, type);
1870 && (t_field_name[0] == '\0'
1871 || (TYPE_CODE (type) == TYPE_CODE_UNION
1872 && (strcmp_iw (t_field_name, "else") == 0))))
1874 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1876 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1877 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1879 /* Look for a match through the fields of an anonymous
1880 union, or anonymous struct. C++ provides anonymous
1883 In the GNU Chill (now deleted from GDB)
1884 implementation of variant record types, each
1885 <alternative field> has an (anonymous) union type,
1886 each member of the union represents a <variant
1887 alternative>. Each <variant alternative> is
1888 represented as a struct, with a member for each
1891 struct value *v = NULL;
1892 int new_offset = offset;
1894 /* This is pretty gross. In G++, the offset in an
1895 anonymous union is relative to the beginning of the
1896 enclosing struct. In the GNU Chill (now deleted
1897 from GDB) implementation of variant records, the
1898 bitpos is zero in an anonymous union field, so we
1899 have to add the offset of the union here. */
1900 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1901 || (TYPE_NFIELDS (field_type) > 0
1902 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1903 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1905 do_search_struct_field (name, arg1, new_offset,
1907 looking_for_baseclass, &v,
1919 for (i = 0; i < nbases; i++)
1921 struct value *v = NULL;
1922 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1923 /* If we are looking for baseclasses, this is what we get when
1924 we hit them. But it could happen that the base part's member
1925 name is not yet filled in. */
1926 int found_baseclass = (looking_for_baseclass
1927 && TYPE_BASECLASS_NAME (type, i) != NULL
1928 && (strcmp_iw (name,
1929 TYPE_BASECLASS_NAME (type,
1931 int boffset = value_embedded_offset (arg1) + offset;
1933 if (BASETYPE_VIA_VIRTUAL (type, i))
1937 boffset = baseclass_offset (type, i,
1938 value_contents_for_printing (arg1),
1939 value_embedded_offset (arg1) + offset,
1940 value_address (arg1),
1943 /* The virtual base class pointer might have been clobbered
1944 by the user program. Make sure that it still points to a
1945 valid memory location. */
1947 boffset += value_embedded_offset (arg1) + offset;
1949 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1951 CORE_ADDR base_addr;
1953 v2 = allocate_value (basetype);
1954 base_addr = value_address (arg1) + boffset;
1955 if (target_read_memory (base_addr,
1956 value_contents_raw (v2),
1957 TYPE_LENGTH (basetype)) != 0)
1958 error (_("virtual baseclass botch"));
1959 VALUE_LVAL (v2) = lval_memory;
1960 set_value_address (v2, base_addr);
1964 v2 = value_copy (arg1);
1965 deprecated_set_value_type (v2, basetype);
1966 set_value_embedded_offset (v2, boffset);
1969 if (found_baseclass)
1973 do_search_struct_field (name, v2, 0,
1974 TYPE_BASECLASS (type, i),
1975 looking_for_baseclass,
1976 result_ptr, last_boffset,
1980 else if (found_baseclass)
1981 v = value_primitive_field (arg1, offset, i, type);
1984 do_search_struct_field (name, arg1,
1985 offset + TYPE_BASECLASS_BITPOS (type,
1987 basetype, looking_for_baseclass,
1988 result_ptr, last_boffset,
1992 update_search_result (result_ptr, v, last_boffset,
1993 boffset, name, outermost_type);
1997 /* Helper function used by value_struct_elt to recurse through
1998 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1999 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2000 TYPE. If found, return value, else return NULL.
2002 If LOOKING_FOR_BASECLASS, then instead of looking for struct
2003 fields, look for a baseclass named NAME. */
2005 static struct value *
2006 search_struct_field (const char *name, struct value *arg1, int offset,
2007 struct type *type, int looking_for_baseclass)
2009 struct value *result = NULL;
2012 do_search_struct_field (name, arg1, offset, type, looking_for_baseclass,
2013 &result, &boffset, type);
2017 /* Helper function used by value_struct_elt to recurse through
2018 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2019 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2022 If found, return value, else if name matched and args not return
2023 (value) -1, else return NULL. */
2025 static struct value *
2026 search_struct_method (const char *name, struct value **arg1p,
2027 struct value **args, int offset,
2028 int *static_memfuncp, struct type *type)
2032 int name_matched = 0;
2033 char dem_opname[64];
2035 CHECK_TYPEDEF (type);
2036 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2038 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2040 /* FIXME! May need to check for ARM demangling here. */
2041 if (strncmp (t_field_name, "__", 2) == 0 ||
2042 strncmp (t_field_name, "op", 2) == 0 ||
2043 strncmp (t_field_name, "type", 4) == 0)
2045 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2046 t_field_name = dem_opname;
2047 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2048 t_field_name = dem_opname;
2050 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2052 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2053 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2056 check_stub_method_group (type, i);
2057 if (j > 0 && args == 0)
2058 error (_("cannot resolve overloaded method "
2059 "`%s': no arguments supplied"), name);
2060 else if (j == 0 && args == 0)
2062 v = value_fn_field (arg1p, f, j, type, offset);
2069 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2070 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2071 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2072 TYPE_FN_FIELD_ARGS (f, j), args))
2074 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2075 return value_virtual_fn_field (arg1p, f, j,
2077 if (TYPE_FN_FIELD_STATIC_P (f, j)
2079 *static_memfuncp = 1;
2080 v = value_fn_field (arg1p, f, j, type, offset);
2089 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2094 if (BASETYPE_VIA_VIRTUAL (type, i))
2096 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2097 struct value *base_val;
2098 const gdb_byte *base_valaddr;
2100 /* The virtual base class pointer might have been
2101 clobbered by the user program. Make sure that it
2102 still points to a valid memory location. */
2104 if (offset < 0 || offset >= TYPE_LENGTH (type))
2107 struct cleanup *back_to;
2110 tmp = xmalloc (TYPE_LENGTH (baseclass));
2111 back_to = make_cleanup (xfree, tmp);
2112 address = value_address (*arg1p);
2114 if (target_read_memory (address + offset,
2115 tmp, TYPE_LENGTH (baseclass)) != 0)
2116 error (_("virtual baseclass botch"));
2118 base_val = value_from_contents_and_address (baseclass,
2121 base_valaddr = value_contents_for_printing (base_val);
2123 do_cleanups (back_to);
2128 base_valaddr = value_contents_for_printing (*arg1p);
2129 this_offset = offset;
2132 base_offset = baseclass_offset (type, i, base_valaddr,
2133 this_offset, value_address (base_val),
2138 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2140 v = search_struct_method (name, arg1p, args, base_offset + offset,
2141 static_memfuncp, TYPE_BASECLASS (type, i));
2142 if (v == (struct value *) - 1)
2148 /* FIXME-bothner: Why is this commented out? Why is it here? */
2149 /* *arg1p = arg1_tmp; */
2154 return (struct value *) - 1;
2159 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2160 extract the component named NAME from the ultimate target
2161 structure/union and return it as a value with its appropriate type.
2162 ERR is used in the error message if *ARGP's type is wrong.
2164 C++: ARGS is a list of argument types to aid in the selection of
2165 an appropriate method. Also, handle derived types.
2167 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2168 where the truthvalue of whether the function that was resolved was
2169 a static member function or not is stored.
2171 ERR is an error message to be printed in case the field is not
2175 value_struct_elt (struct value **argp, struct value **args,
2176 const char *name, int *static_memfuncp, const char *err)
2181 *argp = coerce_array (*argp);
2183 t = check_typedef (value_type (*argp));
2185 /* Follow pointers until we get to a non-pointer. */
2187 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2189 *argp = value_ind (*argp);
2190 /* Don't coerce fn pointer to fn and then back again! */
2191 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2192 *argp = coerce_array (*argp);
2193 t = check_typedef (value_type (*argp));
2196 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2197 && TYPE_CODE (t) != TYPE_CODE_UNION)
2198 error (_("Attempt to extract a component of a value that is not a %s."),
2201 /* Assume it's not, unless we see that it is. */
2202 if (static_memfuncp)
2203 *static_memfuncp = 0;
2207 /* if there are no arguments ...do this... */
2209 /* Try as a field first, because if we succeed, there is less
2211 v = search_struct_field (name, *argp, 0, t, 0);
2215 /* C++: If it was not found as a data field, then try to
2216 return it as a pointer to a method. */
2217 v = search_struct_method (name, argp, args, 0,
2218 static_memfuncp, t);
2220 if (v == (struct value *) - 1)
2221 error (_("Cannot take address of method %s."), name);
2224 if (TYPE_NFN_FIELDS (t))
2225 error (_("There is no member or method named %s."), name);
2227 error (_("There is no member named %s."), name);
2232 v = search_struct_method (name, argp, args, 0,
2233 static_memfuncp, t);
2235 if (v == (struct value *) - 1)
2237 error (_("One of the arguments you tried to pass to %s could not "
2238 "be converted to what the function wants."), name);
2242 /* See if user tried to invoke data as function. If so, hand it
2243 back. If it's not callable (i.e., a pointer to function),
2244 gdb should give an error. */
2245 v = search_struct_field (name, *argp, 0, t, 0);
2246 /* If we found an ordinary field, then it is not a method call.
2247 So, treat it as if it were a static member function. */
2248 if (v && static_memfuncp)
2249 *static_memfuncp = 1;
2253 throw_error (NOT_FOUND_ERROR,
2254 _("Structure has no component named %s."), name);
2258 /* Search through the methods of an object (and its bases) to find a
2259 specified method. Return the pointer to the fn_field list of
2260 overloaded instances.
2262 Helper function for value_find_oload_list.
2263 ARGP is a pointer to a pointer to a value (the object).
2264 METHOD is a string containing the method name.
2265 OFFSET is the offset within the value.
2266 TYPE is the assumed type of the object.
2267 NUM_FNS is the number of overloaded instances.
2268 BASETYPE is set to the actual type of the subobject where the
2270 BOFFSET is the offset of the base subobject where the method is found. */
2272 static struct fn_field *
2273 find_method_list (struct value **argp, const char *method,
2274 int offset, struct type *type, int *num_fns,
2275 struct type **basetype, int *boffset)
2279 CHECK_TYPEDEF (type);
2283 /* First check in object itself. */
2284 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2286 /* pai: FIXME What about operators and type conversions? */
2287 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2289 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2291 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2292 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2298 /* Resolve any stub methods. */
2299 check_stub_method_group (type, i);
2305 /* Not found in object, check in base subobjects. */
2306 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2310 if (BASETYPE_VIA_VIRTUAL (type, i))
2312 base_offset = baseclass_offset (type, i,
2313 value_contents_for_printing (*argp),
2314 value_offset (*argp) + offset,
2315 value_address (*argp), *argp);
2317 else /* Non-virtual base, simply use bit position from debug
2320 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2322 f = find_method_list (argp, method, base_offset + offset,
2323 TYPE_BASECLASS (type, i), num_fns,
2331 /* Return the list of overloaded methods of a specified name.
2333 ARGP is a pointer to a pointer to a value (the object).
2334 METHOD is the method name.
2335 OFFSET is the offset within the value contents.
2336 NUM_FNS is the number of overloaded instances.
2337 BASETYPE is set to the type of the base subobject that defines the
2339 BOFFSET is the offset of the base subobject which defines the method. */
2341 static struct fn_field *
2342 value_find_oload_method_list (struct value **argp, const char *method,
2343 int offset, int *num_fns,
2344 struct type **basetype, int *boffset)
2348 t = check_typedef (value_type (*argp));
2350 /* Code snarfed from value_struct_elt. */
2351 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2353 *argp = value_ind (*argp);
2354 /* Don't coerce fn pointer to fn and then back again! */
2355 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2356 *argp = coerce_array (*argp);
2357 t = check_typedef (value_type (*argp));
2360 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2361 && TYPE_CODE (t) != TYPE_CODE_UNION)
2362 error (_("Attempt to extract a component of a "
2363 "value that is not a struct or union"));
2365 return find_method_list (argp, method, 0, t, num_fns,
2369 /* Given an array of arguments (ARGS) (which includes an
2370 entry for "this" in the case of C++ methods), the number of
2371 arguments NARGS, the NAME of a function, and whether it's a method or
2372 not (METHOD), find the best function that matches on the argument types
2373 according to the overload resolution rules.
2375 METHOD can be one of three values:
2376 NON_METHOD for non-member functions.
2377 METHOD: for member functions.
2378 BOTH: used for overload resolution of operators where the
2379 candidates are expected to be either member or non member
2380 functions. In this case the first argument ARGTYPES
2381 (representing 'this') is expected to be a reference to the
2382 target object, and will be dereferenced when attempting the
2385 In the case of class methods, the parameter OBJ is an object value
2386 in which to search for overloaded methods.
2388 In the case of non-method functions, the parameter FSYM is a symbol
2389 corresponding to one of the overloaded functions.
2391 Return value is an integer: 0 -> good match, 10 -> debugger applied
2392 non-standard coercions, 100 -> incompatible.
2394 If a method is being searched for, VALP will hold the value.
2395 If a non-method is being searched for, SYMP will hold the symbol
2398 If a method is being searched for, and it is a static method,
2399 then STATICP will point to a non-zero value.
2401 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2402 ADL overload candidates when performing overload resolution for a fully
2405 Note: This function does *not* check the value of
2406 overload_resolution. Caller must check it to see whether overload
2407 resolution is permitted. */
2410 find_overload_match (struct value **args, int nargs,
2411 const char *name, enum oload_search_type method,
2412 struct value **objp, struct symbol *fsym,
2413 struct value **valp, struct symbol **symp,
2414 int *staticp, const int no_adl)
2416 struct value *obj = (objp ? *objp : NULL);
2417 struct type *obj_type = obj ? value_type (obj) : NULL;
2418 /* Index of best overloaded function. */
2419 int func_oload_champ = -1;
2420 int method_oload_champ = -1;
2422 /* The measure for the current best match. */
2423 struct badness_vector *method_badness = NULL;
2424 struct badness_vector *func_badness = NULL;
2426 struct value *temp = obj;
2427 /* For methods, the list of overloaded methods. */
2428 struct fn_field *fns_ptr = NULL;
2429 /* For non-methods, the list of overloaded function symbols. */
2430 struct symbol **oload_syms = NULL;
2431 /* Number of overloaded instances being considered. */
2433 struct type *basetype = NULL;
2436 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2438 const char *obj_type_name = NULL;
2439 const char *func_name = NULL;
2440 enum oload_classification match_quality;
2441 enum oload_classification method_match_quality = INCOMPATIBLE;
2442 enum oload_classification func_match_quality = INCOMPATIBLE;
2444 /* Get the list of overloaded methods or functions. */
2445 if (method == METHOD || method == BOTH)
2449 /* OBJ may be a pointer value rather than the object itself. */
2450 obj = coerce_ref (obj);
2451 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2452 obj = coerce_ref (value_ind (obj));
2453 obj_type_name = TYPE_NAME (value_type (obj));
2455 /* First check whether this is a data member, e.g. a pointer to
2457 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2459 *valp = search_struct_field (name, obj, 0,
2460 check_typedef (value_type (obj)), 0);
2464 do_cleanups (all_cleanups);
2469 /* Retrieve the list of methods with the name NAME. */
2470 fns_ptr = value_find_oload_method_list (&temp, name,
2472 &basetype, &boffset);
2473 /* If this is a method only search, and no methods were found
2474 the search has faild. */
2475 if (method == METHOD && (!fns_ptr || !num_fns))
2476 error (_("Couldn't find method %s%s%s"),
2478 (obj_type_name && *obj_type_name) ? "::" : "",
2480 /* If we are dealing with stub method types, they should have
2481 been resolved by find_method_list via
2482 value_find_oload_method_list above. */
2485 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2486 method_oload_champ = find_oload_champ (args, nargs, method,
2488 oload_syms, &method_badness);
2490 method_match_quality =
2491 classify_oload_match (method_badness, nargs,
2492 oload_method_static (method, fns_ptr,
2493 method_oload_champ));
2495 make_cleanup (xfree, method_badness);
2500 if (method == NON_METHOD || method == BOTH)
2502 const char *qualified_name = NULL;
2504 /* If the overload match is being search for both as a method
2505 and non member function, the first argument must now be
2508 args[0] = value_ind (args[0]);
2512 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2514 /* If we have a function with a C++ name, try to extract just
2515 the function part. Do not try this for non-functions (e.g.
2516 function pointers). */
2518 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2523 temp = cp_func_name (qualified_name);
2525 /* If cp_func_name did not remove anything, the name of the
2526 symbol did not include scope or argument types - it was
2527 probably a C-style function. */
2530 make_cleanup (xfree, temp);
2531 if (strcmp (temp, qualified_name) == 0)
2541 qualified_name = name;
2544 /* If there was no C++ name, this must be a C-style function or
2545 not a function at all. Just return the same symbol. Do the
2546 same if cp_func_name fails for some reason. */
2547 if (func_name == NULL)
2550 do_cleanups (all_cleanups);
2554 func_oload_champ = find_oload_champ_namespace (args, nargs,
2561 if (func_oload_champ >= 0)
2562 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2564 make_cleanup (xfree, oload_syms);
2565 make_cleanup (xfree, func_badness);
2568 /* Did we find a match ? */
2569 if (method_oload_champ == -1 && func_oload_champ == -1)
2570 throw_error (NOT_FOUND_ERROR,
2571 _("No symbol \"%s\" in current context."),
2574 /* If we have found both a method match and a function
2575 match, find out which one is better, and calculate match
2577 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2579 switch (compare_badness (func_badness, method_badness))
2581 case 0: /* Top two contenders are equally good. */
2582 /* FIXME: GDB does not support the general ambiguous case.
2583 All candidates should be collected and presented the
2585 error (_("Ambiguous overload resolution"));
2587 case 1: /* Incomparable top contenders. */
2588 /* This is an error incompatible candidates
2589 should not have been proposed. */
2590 error (_("Internal error: incompatible "
2591 "overload candidates proposed"));
2593 case 2: /* Function champion. */
2594 method_oload_champ = -1;
2595 match_quality = func_match_quality;
2597 case 3: /* Method champion. */
2598 func_oload_champ = -1;
2599 match_quality = method_match_quality;
2602 error (_("Internal error: unexpected overload comparison result"));
2608 /* We have either a method match or a function match. */
2609 if (method_oload_champ >= 0)
2610 match_quality = method_match_quality;
2612 match_quality = func_match_quality;
2615 if (match_quality == INCOMPATIBLE)
2617 if (method == METHOD)
2618 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2620 (obj_type_name && *obj_type_name) ? "::" : "",
2623 error (_("Cannot resolve function %s to any overloaded instance"),
2626 else if (match_quality == NON_STANDARD)
2628 if (method == METHOD)
2629 warning (_("Using non-standard conversion to match "
2630 "method %s%s%s to supplied arguments"),
2632 (obj_type_name && *obj_type_name) ? "::" : "",
2635 warning (_("Using non-standard conversion to match "
2636 "function %s to supplied arguments"),
2640 if (staticp != NULL)
2641 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2643 if (method_oload_champ >= 0)
2645 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2646 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2649 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2653 *symp = oload_syms[func_oload_champ];
2657 struct type *temp_type = check_typedef (value_type (temp));
2658 struct type *objtype = check_typedef (obj_type);
2660 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2661 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2662 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2664 temp = value_addr (temp);
2669 do_cleanups (all_cleanups);
2671 switch (match_quality)
2677 default: /* STANDARD */
2682 /* Find the best overload match, searching for FUNC_NAME in namespaces
2683 contained in QUALIFIED_NAME until it either finds a good match or
2684 runs out of namespaces. It stores the overloaded functions in
2685 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2686 calling function is responsible for freeing *OLOAD_SYMS and
2687 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2691 find_oload_champ_namespace (struct value **args, int nargs,
2692 const char *func_name,
2693 const char *qualified_name,
2694 struct symbol ***oload_syms,
2695 struct badness_vector **oload_champ_bv,
2700 find_oload_champ_namespace_loop (args, nargs,
2703 oload_syms, oload_champ_bv,
2710 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2711 how deep we've looked for namespaces, and the champ is stored in
2712 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2713 if it isn't. Other arguments are the same as in
2714 find_oload_champ_namespace
2716 It is the caller's responsibility to free *OLOAD_SYMS and
2720 find_oload_champ_namespace_loop (struct value **args, int nargs,
2721 const char *func_name,
2722 const char *qualified_name,
2724 struct symbol ***oload_syms,
2725 struct badness_vector **oload_champ_bv,
2729 int next_namespace_len = namespace_len;
2730 int searched_deeper = 0;
2732 struct cleanup *old_cleanups;
2733 int new_oload_champ;
2734 struct symbol **new_oload_syms;
2735 struct badness_vector *new_oload_champ_bv;
2736 char *new_namespace;
2738 if (next_namespace_len != 0)
2740 gdb_assert (qualified_name[next_namespace_len] == ':');
2741 next_namespace_len += 2;
2743 next_namespace_len +=
2744 cp_find_first_component (qualified_name + next_namespace_len);
2746 /* Initialize these to values that can safely be xfree'd. */
2748 *oload_champ_bv = NULL;
2750 /* First, see if we have a deeper namespace we can search in.
2751 If we get a good match there, use it. */
2753 if (qualified_name[next_namespace_len] == ':')
2755 searched_deeper = 1;
2757 if (find_oload_champ_namespace_loop (args, nargs,
2758 func_name, qualified_name,
2760 oload_syms, oload_champ_bv,
2761 oload_champ, no_adl))
2767 /* If we reach here, either we're in the deepest namespace or we
2768 didn't find a good match in a deeper namespace. But, in the
2769 latter case, we still have a bad match in a deeper namespace;
2770 note that we might not find any match at all in the current
2771 namespace. (There's always a match in the deepest namespace,
2772 because this overload mechanism only gets called if there's a
2773 function symbol to start off with.) */
2775 old_cleanups = make_cleanup (xfree, *oload_syms);
2776 make_cleanup (xfree, *oload_champ_bv);
2777 new_namespace = alloca (namespace_len + 1);
2778 strncpy (new_namespace, qualified_name, namespace_len);
2779 new_namespace[namespace_len] = '\0';
2780 new_oload_syms = make_symbol_overload_list (func_name,
2783 /* If we have reached the deepest level perform argument
2784 determined lookup. */
2785 if (!searched_deeper && !no_adl)
2788 struct type **arg_types;
2790 /* Prepare list of argument types for overload resolution. */
2791 arg_types = (struct type **)
2792 alloca (nargs * (sizeof (struct type *)));
2793 for (ix = 0; ix < nargs; ix++)
2794 arg_types[ix] = value_type (args[ix]);
2795 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2798 while (new_oload_syms[num_fns])
2801 new_oload_champ = find_oload_champ (args, nargs, 0, num_fns,
2802 NULL, new_oload_syms,
2803 &new_oload_champ_bv);
2805 /* Case 1: We found a good match. Free earlier matches (if any),
2806 and return it. Case 2: We didn't find a good match, but we're
2807 not the deepest function. Then go with the bad match that the
2808 deeper function found. Case 3: We found a bad match, and we're
2809 the deepest function. Then return what we found, even though
2810 it's a bad match. */
2812 if (new_oload_champ != -1
2813 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2815 *oload_syms = new_oload_syms;
2816 *oload_champ = new_oload_champ;
2817 *oload_champ_bv = new_oload_champ_bv;
2818 do_cleanups (old_cleanups);
2821 else if (searched_deeper)
2823 xfree (new_oload_syms);
2824 xfree (new_oload_champ_bv);
2825 discard_cleanups (old_cleanups);
2830 *oload_syms = new_oload_syms;
2831 *oload_champ = new_oload_champ;
2832 *oload_champ_bv = new_oload_champ_bv;
2833 do_cleanups (old_cleanups);
2838 /* Look for a function to take NARGS args of ARGS. Find
2839 the best match from among the overloaded methods or functions
2840 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2841 The number of methods/functions in the list is given by NUM_FNS.
2842 Return the index of the best match; store an indication of the
2843 quality of the match in OLOAD_CHAMP_BV.
2845 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2848 find_oload_champ (struct value **args, int nargs, int method,
2849 int num_fns, struct fn_field *fns_ptr,
2850 struct symbol **oload_syms,
2851 struct badness_vector **oload_champ_bv)
2854 /* A measure of how good an overloaded instance is. */
2855 struct badness_vector *bv;
2856 /* Index of best overloaded function. */
2857 int oload_champ = -1;
2858 /* Current ambiguity state for overload resolution. */
2859 int oload_ambiguous = 0;
2860 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2862 *oload_champ_bv = NULL;
2864 /* Consider each candidate in turn. */
2865 for (ix = 0; ix < num_fns; ix++)
2868 int static_offset = oload_method_static (method, fns_ptr, ix);
2870 struct type **parm_types;
2874 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2878 /* If it's not a method, this is the proper place. */
2879 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2882 /* Prepare array of parameter types. */
2883 parm_types = (struct type **)
2884 xmalloc (nparms * (sizeof (struct type *)));
2885 for (jj = 0; jj < nparms; jj++)
2886 parm_types[jj] = (method
2887 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2888 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2891 /* Compare parameter types to supplied argument types. Skip
2892 THIS for static methods. */
2893 bv = rank_function (parm_types, nparms,
2894 args + static_offset,
2895 nargs - static_offset);
2897 if (!*oload_champ_bv)
2899 *oload_champ_bv = bv;
2902 else /* See whether current candidate is better or worse than
2904 switch (compare_badness (bv, *oload_champ_bv))
2906 case 0: /* Top two contenders are equally good. */
2907 oload_ambiguous = 1;
2909 case 1: /* Incomparable top contenders. */
2910 oload_ambiguous = 2;
2912 case 2: /* New champion, record details. */
2913 *oload_champ_bv = bv;
2914 oload_ambiguous = 0;
2925 fprintf_filtered (gdb_stderr,
2926 "Overloaded method instance %s, # of parms %d\n",
2927 fns_ptr[ix].physname, nparms);
2929 fprintf_filtered (gdb_stderr,
2930 "Overloaded function instance "
2931 "%s # of parms %d\n",
2932 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2934 for (jj = 0; jj < nargs - static_offset; jj++)
2935 fprintf_filtered (gdb_stderr,
2936 "...Badness @ %d : %d\n",
2937 jj, bv->rank[jj].rank);
2938 fprintf_filtered (gdb_stderr, "Overload resolution "
2939 "champion is %d, ambiguous? %d\n",
2940 oload_champ, oload_ambiguous);
2947 /* Return 1 if we're looking at a static method, 0 if we're looking at
2948 a non-static method or a function that isn't a method. */
2951 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2953 if (method && fns_ptr && index >= 0
2954 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2960 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2962 static enum oload_classification
2963 classify_oload_match (struct badness_vector *oload_champ_bv,
2968 enum oload_classification worst = STANDARD;
2970 for (ix = 1; ix <= nargs - static_offset; ix++)
2972 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
2973 or worse return INCOMPATIBLE. */
2974 if (compare_ranks (oload_champ_bv->rank[ix],
2975 INCOMPATIBLE_TYPE_BADNESS) <= 0)
2976 return INCOMPATIBLE; /* Truly mismatched types. */
2977 /* Otherwise If this conversion is as bad as
2978 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
2979 else if (compare_ranks (oload_champ_bv->rank[ix],
2980 NS_POINTER_CONVERSION_BADNESS) <= 0)
2981 worst = NON_STANDARD; /* Non-standard type conversions
2985 /* If no INCOMPATIBLE classification was found, return the worst one
2986 that was found (if any). */
2990 /* C++: return 1 is NAME is a legitimate name for the destructor of
2991 type TYPE. If TYPE does not have a destructor, or if NAME is
2992 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
2993 have CHECK_TYPEDEF applied, this function will apply it itself. */
2996 destructor_name_p (const char *name, struct type *type)
3000 const char *dname = type_name_no_tag_or_error (type);
3001 const char *cp = strchr (dname, '<');
3004 /* Do not compare the template part for template classes. */
3006 len = strlen (dname);
3009 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3010 error (_("name of destructor must equal name of class"));
3017 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3018 return the appropriate member (or the address of the member, if
3019 WANT_ADDRESS). This function is used to resolve user expressions
3020 of the form "DOMAIN::NAME". For more details on what happens, see
3021 the comment before value_struct_elt_for_reference. */
3024 value_aggregate_elt (struct type *curtype, char *name,
3025 struct type *expect_type, int want_address,
3028 switch (TYPE_CODE (curtype))
3030 case TYPE_CODE_STRUCT:
3031 case TYPE_CODE_UNION:
3032 return value_struct_elt_for_reference (curtype, 0, curtype,
3034 want_address, noside);
3035 case TYPE_CODE_NAMESPACE:
3036 return value_namespace_elt (curtype, name,
3037 want_address, noside);
3039 internal_error (__FILE__, __LINE__,
3040 _("non-aggregate type in value_aggregate_elt"));
3044 /* Compares the two method/function types T1 and T2 for "equality"
3045 with respect to the methods' parameters. If the types of the
3046 two parameter lists are the same, returns 1; 0 otherwise. This
3047 comparison may ignore any artificial parameters in T1 if
3048 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3049 the first artificial parameter in T1, assumed to be a 'this' pointer.
3051 The type T2 is expected to have come from make_params (in eval.c). */
3054 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3058 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3061 /* If skipping artificial fields, find the first real field
3063 if (skip_artificial)
3065 while (start < TYPE_NFIELDS (t1)
3066 && TYPE_FIELD_ARTIFICIAL (t1, start))
3070 /* Now compare parameters. */
3072 /* Special case: a method taking void. T1 will contain no
3073 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3074 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3075 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3078 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3082 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3084 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3085 TYPE_FIELD_TYPE (t2, i), NULL),
3086 EXACT_MATCH_BADNESS) != 0)
3096 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3097 return the address of this member as a "pointer to member" type.
3098 If INTYPE is non-null, then it will be the type of the member we
3099 are looking for. This will help us resolve "pointers to member
3100 functions". This function is used to resolve user expressions of
3101 the form "DOMAIN::NAME". */
3103 static struct value *
3104 value_struct_elt_for_reference (struct type *domain, int offset,
3105 struct type *curtype, char *name,
3106 struct type *intype,
3110 struct type *t = curtype;
3112 struct value *v, *result;
3114 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3115 && TYPE_CODE (t) != TYPE_CODE_UNION)
3116 error (_("Internal error: non-aggregate type "
3117 "to value_struct_elt_for_reference"));
3119 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3121 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3123 if (t_field_name && strcmp (t_field_name, name) == 0)
3125 if (field_is_static (&TYPE_FIELD (t, i)))
3127 v = value_static_field (t, i);
3129 error (_("static field %s has been optimized out"),
3135 if (TYPE_FIELD_PACKED (t, i))
3136 error (_("pointers to bitfield members not allowed"));
3139 return value_from_longest
3140 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3141 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3142 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3143 return allocate_value (TYPE_FIELD_TYPE (t, i));
3145 error (_("Cannot reference non-static field \"%s\""), name);
3149 /* C++: If it was not found as a data field, then try to return it
3150 as a pointer to a method. */
3152 /* Perform all necessary dereferencing. */
3153 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3154 intype = TYPE_TARGET_TYPE (intype);
3156 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3158 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3159 char dem_opname[64];
3161 if (strncmp (t_field_name, "__", 2) == 0
3162 || strncmp (t_field_name, "op", 2) == 0
3163 || strncmp (t_field_name, "type", 4) == 0)
3165 if (cplus_demangle_opname (t_field_name,
3166 dem_opname, DMGL_ANSI))
3167 t_field_name = dem_opname;
3168 else if (cplus_demangle_opname (t_field_name,
3170 t_field_name = dem_opname;
3172 if (t_field_name && strcmp (t_field_name, name) == 0)
3175 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3176 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3178 check_stub_method_group (t, i);
3182 for (j = 0; j < len; ++j)
3184 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3185 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3191 error (_("no member function matches "
3192 "that type instantiation"));
3199 for (ii = 0; ii < len; ++ii)
3201 /* Skip artificial methods. This is necessary if,
3202 for example, the user wants to "print
3203 subclass::subclass" with only one user-defined
3204 constructor. There is no ambiguity in this case.
3205 We are careful here to allow artificial methods
3206 if they are the unique result. */
3207 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3214 /* Desired method is ambiguous if more than one
3215 method is defined. */
3216 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3217 error (_("non-unique member `%s' requires "
3218 "type instantiation"), name);
3224 error (_("no matching member function"));
3227 if (TYPE_FN_FIELD_STATIC_P (f, j))
3230 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3237 return value_addr (read_var_value (s, 0));
3239 return read_var_value (s, 0);
3242 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3246 result = allocate_value
3247 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3248 cplus_make_method_ptr (value_type (result),
3249 value_contents_writeable (result),
3250 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3252 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3253 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3255 error (_("Cannot reference virtual member function \"%s\""),
3261 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3267 v = read_var_value (s, 0);
3272 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3273 cplus_make_method_ptr (value_type (result),
3274 value_contents_writeable (result),
3275 value_address (v), 0);
3281 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3286 if (BASETYPE_VIA_VIRTUAL (t, i))
3289 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3290 v = value_struct_elt_for_reference (domain,
3291 offset + base_offset,
3292 TYPE_BASECLASS (t, i),
3294 want_address, noside);
3299 /* As a last chance, pretend that CURTYPE is a namespace, and look
3300 it up that way; this (frequently) works for types nested inside
3303 return value_maybe_namespace_elt (curtype, name,
3304 want_address, noside);
3307 /* C++: Return the member NAME of the namespace given by the type
3310 static struct value *
3311 value_namespace_elt (const struct type *curtype,
3312 char *name, int want_address,
3315 struct value *retval = value_maybe_namespace_elt (curtype, name,
3320 error (_("No symbol \"%s\" in namespace \"%s\"."),
3321 name, TYPE_TAG_NAME (curtype));
3326 /* A helper function used by value_namespace_elt and
3327 value_struct_elt_for_reference. It looks up NAME inside the
3328 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3329 is a class and NAME refers to a type in CURTYPE itself (as opposed
3330 to, say, some base class of CURTYPE). */
3332 static struct value *
3333 value_maybe_namespace_elt (const struct type *curtype,
3334 char *name, int want_address,
3337 const char *namespace_name = TYPE_TAG_NAME (curtype);
3339 struct value *result;
3341 sym = cp_lookup_symbol_namespace (namespace_name, name,
3342 get_selected_block (0), VAR_DOMAIN);
3346 char *concatenated_name = alloca (strlen (namespace_name) + 2
3347 + strlen (name) + 1);
3349 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3350 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3355 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3356 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3357 result = allocate_value (SYMBOL_TYPE (sym));
3359 result = value_of_variable (sym, get_selected_block (0));
3361 if (result && want_address)
3362 result = value_addr (result);
3367 /* Given a pointer or a reference value V, find its real (RTTI) type.
3369 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3370 and refer to the values computed for the object pointed to. */
3373 value_rtti_indirect_type (struct value *v, int *full,
3374 int *top, int *using_enc)
3376 struct value *target;
3377 struct type *type, *real_type, *target_type;
3379 type = value_type (v);
3380 type = check_typedef (type);
3381 if (TYPE_CODE (type) == TYPE_CODE_REF)
3382 target = coerce_ref (v);
3383 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3384 target = value_ind (v);
3388 real_type = value_rtti_type (target, full, top, using_enc);
3392 /* Copy qualifiers to the referenced object. */
3393 target_type = value_type (target);
3394 real_type = make_cv_type (TYPE_CONST (target_type),
3395 TYPE_VOLATILE (target_type), real_type, NULL);
3396 if (TYPE_CODE (type) == TYPE_CODE_REF)
3397 real_type = lookup_reference_type (real_type);
3398 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3399 real_type = lookup_pointer_type (real_type);
3401 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3403 /* Copy qualifiers to the pointer/reference. */
3404 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3411 /* Given a value pointed to by ARGP, check its real run-time type, and
3412 if that is different from the enclosing type, create a new value
3413 using the real run-time type as the enclosing type (and of the same
3414 type as ARGP) and return it, with the embedded offset adjusted to
3415 be the correct offset to the enclosed object. RTYPE is the type,
3416 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3417 by value_rtti_type(). If these are available, they can be supplied
3418 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3419 NULL if they're not available. */
3422 value_full_object (struct value *argp,
3424 int xfull, int xtop,
3427 struct type *real_type;
3431 struct value *new_val;
3438 using_enc = xusing_enc;
3441 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3443 /* If no RTTI data, or if object is already complete, do nothing. */
3444 if (!real_type || real_type == value_enclosing_type (argp))
3447 /* In a destructor we might see a real type that is a superclass of
3448 the object's type. In this case it is better to leave the object
3451 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3454 /* If we have the full object, but for some reason the enclosing
3455 type is wrong, set it. */
3456 /* pai: FIXME -- sounds iffy */
3459 argp = value_copy (argp);
3460 set_value_enclosing_type (argp, real_type);
3464 /* Check if object is in memory. */
3465 if (VALUE_LVAL (argp) != lval_memory)
3467 warning (_("Couldn't retrieve complete object of RTTI "
3468 "type %s; object may be in register(s)."),
3469 TYPE_NAME (real_type));
3474 /* All other cases -- retrieve the complete object. */
3475 /* Go back by the computed top_offset from the beginning of the
3476 object, adjusting for the embedded offset of argp if that's what
3477 value_rtti_type used for its computation. */
3478 new_val = value_at_lazy (real_type, value_address (argp) - top +
3479 (using_enc ? 0 : value_embedded_offset (argp)));
3480 deprecated_set_value_type (new_val, value_type (argp));
3481 set_value_embedded_offset (new_val, (using_enc
3482 ? top + value_embedded_offset (argp)
3488 /* Return the value of the local variable, if one exists. Throw error
3489 otherwise, such as if the request is made in an inappropriate context. */
3492 value_of_this (const struct language_defn *lang)
3496 struct frame_info *frame;
3498 if (!lang->la_name_of_this)
3499 error (_("no `this' in current language"));
3501 frame = get_selected_frame (_("no frame selected"));
3503 b = get_frame_block (frame, NULL);
3505 sym = lookup_language_this (lang, b);
3507 error (_("current stack frame does not contain a variable named `%s'"),
3508 lang->la_name_of_this);
3510 return read_var_value (sym, frame);
3513 /* Return the value of the local variable, if one exists. Return NULL
3514 otherwise. Never throw error. */
3517 value_of_this_silent (const struct language_defn *lang)
3519 struct value *ret = NULL;
3520 volatile struct gdb_exception except;
3522 TRY_CATCH (except, RETURN_MASK_ERROR)
3524 ret = value_of_this (lang);
3530 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3531 elements long, starting at LOWBOUND. The result has the same lower
3532 bound as the original ARRAY. */
3535 value_slice (struct value *array, int lowbound, int length)
3537 struct type *slice_range_type, *slice_type, *range_type;
3538 LONGEST lowerbound, upperbound;
3539 struct value *slice;
3540 struct type *array_type;
3542 array_type = check_typedef (value_type (array));
3543 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3544 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3545 error (_("cannot take slice of non-array"));
3547 range_type = TYPE_INDEX_TYPE (array_type);
3548 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3549 error (_("slice from bad array or bitstring"));
3551 if (lowbound < lowerbound || length < 0
3552 || lowbound + length - 1 > upperbound)
3553 error (_("slice out of range"));
3555 /* FIXME-type-allocation: need a way to free this type when we are
3557 slice_range_type = create_range_type ((struct type *) NULL,
3558 TYPE_TARGET_TYPE (range_type),
3560 lowbound + length - 1);
3563 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3565 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3567 slice_type = create_array_type ((struct type *) NULL,
3570 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3572 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3573 slice = allocate_value_lazy (slice_type);
3576 slice = allocate_value (slice_type);
3577 value_contents_copy (slice, 0, array, offset,
3578 TYPE_LENGTH (slice_type));
3581 set_value_component_location (slice, array);
3582 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3583 set_value_offset (slice, value_offset (array) + offset);
3588 /* Create a value for a FORTRAN complex number. Currently most of the
3589 time values are coerced to COMPLEX*16 (i.e. a complex number
3590 composed of 2 doubles. This really should be a smarter routine
3591 that figures out precision inteligently as opposed to assuming
3592 doubles. FIXME: fmb */
3595 value_literal_complex (struct value *arg1,
3600 struct type *real_type = TYPE_TARGET_TYPE (type);
3602 val = allocate_value (type);
3603 arg1 = value_cast (real_type, arg1);
3604 arg2 = value_cast (real_type, arg2);
3606 memcpy (value_contents_raw (val),
3607 value_contents (arg1), TYPE_LENGTH (real_type));
3608 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3609 value_contents (arg2), TYPE_LENGTH (real_type));
3613 /* Cast a value into the appropriate complex data type. */
3615 static struct value *
3616 cast_into_complex (struct type *type, struct value *val)
3618 struct type *real_type = TYPE_TARGET_TYPE (type);
3620 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3622 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3623 struct value *re_val = allocate_value (val_real_type);
3624 struct value *im_val = allocate_value (val_real_type);
3626 memcpy (value_contents_raw (re_val),
3627 value_contents (val), TYPE_LENGTH (val_real_type));
3628 memcpy (value_contents_raw (im_val),
3629 value_contents (val) + TYPE_LENGTH (val_real_type),
3630 TYPE_LENGTH (val_real_type));
3632 return value_literal_complex (re_val, im_val, type);
3634 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3635 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3636 return value_literal_complex (val,
3637 value_zero (real_type, not_lval),
3640 error (_("cannot cast non-number to complex"));
3644 _initialize_valops (void)
3646 add_setshow_boolean_cmd ("overload-resolution", class_support,
3647 &overload_resolution, _("\
3648 Set overload resolution in evaluating C++ functions."), _("\
3649 Show overload resolution in evaluating C++ functions."),
3651 show_overload_resolution,
3652 &setlist, &showlist);
3653 overload_resolution = 1;