1 /* Perform non-arithmetic operations on values, for GDB.
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
35 #include "dictionary.h"
36 #include "cp-support.h"
38 #include "tracepoint.h"
41 #include "gdb_assert.h"
44 #include "exceptions.h"
46 extern unsigned int overload_debug;
47 /* Local functions. */
49 static int typecmp (int staticp, int varargs, int nargs,
50 struct field t1[], struct value *t2[]);
52 static struct value *search_struct_field (const char *, struct value *,
53 int, struct type *, int);
55 static struct value *search_struct_method (const char *, struct value **,
57 int, int *, struct type *);
59 static int find_oload_champ_namespace (struct value **, int,
60 const char *, const char *,
62 struct badness_vector **,
66 int find_oload_champ_namespace_loop (struct value **, int,
67 const char *, const char *,
68 int, struct symbol ***,
69 struct badness_vector **, int *,
72 static int find_oload_champ (struct value **, int, int,
73 struct fn_field *, struct symbol **,
74 struct badness_vector **);
76 static int oload_method_static (int, struct fn_field *, int);
78 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
81 oload_classification classify_oload_match (struct badness_vector *,
84 static struct value *value_struct_elt_for_reference (struct type *,
90 static struct value *value_namespace_elt (const struct type *,
91 char *, int , enum noside);
93 static struct value *value_maybe_namespace_elt (const struct type *,
97 static CORE_ADDR allocate_space_in_inferior (int);
99 static struct value *cast_into_complex (struct type *, struct value *);
101 static struct fn_field *find_method_list (struct value **, const char *,
102 int, struct type *, int *,
103 struct type **, int *);
105 void _initialize_valops (void);
108 /* Flag for whether we want to abandon failed expression evals by
111 static int auto_abandon = 0;
114 int overload_resolution = 0;
116 show_overload_resolution (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c,
120 fprintf_filtered (file, _("Overload resolution in evaluating "
121 "C++ functions is %s.\n"),
125 /* Find the address of function name NAME in the inferior. If OBJF_P
126 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
130 find_function_in_inferior (const char *name, struct objfile **objf_p)
134 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
137 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
139 error (_("\"%s\" exists in this program but is not a function."),
144 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
146 return value_of_variable (sym, NULL);
150 struct bound_minimal_symbol msymbol =
151 lookup_bound_minimal_symbol (name);
153 if (msymbol.minsym != NULL)
155 struct objfile *objfile = msymbol.objfile;
156 struct gdbarch *gdbarch = get_objfile_arch (objfile);
160 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
161 type = lookup_function_type (type);
162 type = lookup_pointer_type (type);
163 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
168 return value_from_pointer (type, maddr);
172 if (!target_has_execution)
173 error (_("evaluation of this expression "
174 "requires the target program to be active"));
176 error (_("evaluation of this expression requires the "
177 "program to have a function \"%s\"."),
183 /* Allocate NBYTES of space in the inferior using the inferior's
184 malloc and return a value that is a pointer to the allocated
188 value_allocate_space_in_inferior (int len)
190 struct objfile *objf;
191 struct value *val = find_function_in_inferior ("malloc", &objf);
192 struct gdbarch *gdbarch = get_objfile_arch (objf);
193 struct value *blocklen;
195 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
196 val = call_function_by_hand (val, 1, &blocklen);
197 if (value_logical_not (val))
199 if (!target_has_execution)
200 error (_("No memory available to program now: "
201 "you need to start the target first"));
203 error (_("No memory available to program: call to malloc failed"));
209 allocate_space_in_inferior (int len)
211 return value_as_long (value_allocate_space_in_inferior (len));
214 /* Cast struct value VAL to type TYPE and return as a value.
215 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
216 for this to work. Typedef to one of the codes is permitted.
217 Returns NULL if the cast is neither an upcast nor a downcast. */
219 static struct value *
220 value_cast_structs (struct type *type, struct value *v2)
226 gdb_assert (type != NULL && v2 != NULL);
228 t1 = check_typedef (type);
229 t2 = check_typedef (value_type (v2));
231 /* Check preconditions. */
232 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
233 || TYPE_CODE (t1) == TYPE_CODE_UNION)
234 && !!"Precondition is that type is of STRUCT or UNION kind.");
235 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
236 || TYPE_CODE (t2) == TYPE_CODE_UNION)
237 && !!"Precondition is that value is of STRUCT or UNION kind");
239 if (TYPE_NAME (t1) != NULL
240 && TYPE_NAME (t2) != NULL
241 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
244 /* Upcasting: look in the type of the source to see if it contains the
245 type of the target as a superclass. If so, we'll need to
246 offset the pointer rather than just change its type. */
247 if (TYPE_NAME (t1) != NULL)
249 v = search_struct_field (type_name_no_tag (t1),
255 /* Downcasting: look in the type of the target to see if it contains the
256 type of the source as a superclass. If so, we'll need to
257 offset the pointer rather than just change its type. */
258 if (TYPE_NAME (t2) != NULL)
260 /* Try downcasting using the run-time type of the value. */
261 int full, top, using_enc;
262 struct type *real_type;
264 real_type = value_rtti_type (v2, &full, &top, &using_enc);
267 v = value_full_object (v2, real_type, full, top, using_enc);
268 v = value_at_lazy (real_type, value_address (v));
270 /* We might be trying to cast to the outermost enclosing
271 type, in which case search_struct_field won't work. */
272 if (TYPE_NAME (real_type) != NULL
273 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
276 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
281 /* Try downcasting using information from the destination type
282 T2. This wouldn't work properly for classes with virtual
283 bases, but those were handled above. */
284 v = search_struct_field (type_name_no_tag (t2),
285 value_zero (t1, not_lval), 0, t1, 1);
288 /* Downcasting is possible (t1 is superclass of v2). */
289 CORE_ADDR addr2 = value_address (v2);
291 addr2 -= value_address (v) + value_embedded_offset (v);
292 return value_at (type, addr2);
299 /* Cast one pointer or reference type to another. Both TYPE and
300 the type of ARG2 should be pointer types, or else both should be
301 reference types. If SUBCLASS_CHECK is non-zero, this will force a
302 check to see whether TYPE is a superclass of ARG2's type. If
303 SUBCLASS_CHECK is zero, then the subclass check is done only when
304 ARG2 is itself non-zero. Returns the new pointer or reference. */
307 value_cast_pointers (struct type *type, struct value *arg2,
310 struct type *type1 = check_typedef (type);
311 struct type *type2 = check_typedef (value_type (arg2));
312 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
313 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
315 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
316 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
317 && (subclass_check || !value_logical_not (arg2)))
321 if (TYPE_CODE (type2) == TYPE_CODE_REF)
322 v2 = coerce_ref (arg2);
324 v2 = value_ind (arg2);
325 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
326 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
327 v2 = value_cast_structs (t1, v2);
328 /* At this point we have what we can have, un-dereference if needed. */
331 struct value *v = value_addr (v2);
333 deprecated_set_value_type (v, type);
338 /* No superclass found, just change the pointer type. */
339 arg2 = value_copy (arg2);
340 deprecated_set_value_type (arg2, type);
341 set_value_enclosing_type (arg2, type);
342 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
346 /* Cast value ARG2 to type TYPE and return as a value.
347 More general than a C cast: accepts any two types of the same length,
348 and if ARG2 is an lvalue it can be cast into anything at all. */
349 /* In C++, casts may change pointer or object representations. */
352 value_cast (struct type *type, struct value *arg2)
354 enum type_code code1;
355 enum type_code code2;
359 int convert_to_boolean = 0;
361 if (value_type (arg2) == type)
364 code1 = TYPE_CODE (check_typedef (type));
366 /* Check if we are casting struct reference to struct reference. */
367 if (code1 == TYPE_CODE_REF)
369 /* We dereference type; then we recurse and finally
370 we generate value of the given reference. Nothing wrong with
372 struct type *t1 = check_typedef (type);
373 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
374 struct value *val = value_cast (dereftype, arg2);
376 return value_ref (val);
379 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
381 if (code2 == TYPE_CODE_REF)
382 /* We deref the value and then do the cast. */
383 return value_cast (type, coerce_ref (arg2));
385 CHECK_TYPEDEF (type);
386 code1 = TYPE_CODE (type);
387 arg2 = coerce_ref (arg2);
388 type2 = check_typedef (value_type (arg2));
390 /* You can't cast to a reference type. See value_cast_pointers
392 gdb_assert (code1 != TYPE_CODE_REF);
394 /* A cast to an undetermined-length array_type, such as
395 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
396 where N is sizeof(OBJECT)/sizeof(TYPE). */
397 if (code1 == TYPE_CODE_ARRAY)
399 struct type *element_type = TYPE_TARGET_TYPE (type);
400 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
402 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
404 struct type *range_type = TYPE_INDEX_TYPE (type);
405 int val_length = TYPE_LENGTH (type2);
406 LONGEST low_bound, high_bound, new_length;
408 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
409 low_bound = 0, high_bound = 0;
410 new_length = val_length / element_length;
411 if (val_length % element_length != 0)
412 warning (_("array element type size does not "
413 "divide object size in cast"));
414 /* FIXME-type-allocation: need a way to free this type when
415 we are done with it. */
416 range_type = create_range_type ((struct type *) NULL,
417 TYPE_TARGET_TYPE (range_type),
419 new_length + low_bound - 1);
420 deprecated_set_value_type (arg2,
421 create_array_type ((struct type *) NULL,
428 if (current_language->c_style_arrays
429 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
430 && !TYPE_VECTOR (type2))
431 arg2 = value_coerce_array (arg2);
433 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
434 arg2 = value_coerce_function (arg2);
436 type2 = check_typedef (value_type (arg2));
437 code2 = TYPE_CODE (type2);
439 if (code1 == TYPE_CODE_COMPLEX)
440 return cast_into_complex (type, arg2);
441 if (code1 == TYPE_CODE_BOOL)
443 code1 = TYPE_CODE_INT;
444 convert_to_boolean = 1;
446 if (code1 == TYPE_CODE_CHAR)
447 code1 = TYPE_CODE_INT;
448 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
449 code2 = TYPE_CODE_INT;
451 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
452 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
453 || code2 == TYPE_CODE_RANGE);
455 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
456 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
457 && TYPE_NAME (type) != 0)
459 struct value *v = value_cast_structs (type, arg2);
465 if (code1 == TYPE_CODE_FLT && scalar)
466 return value_from_double (type, value_as_double (arg2));
467 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
469 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
470 int dec_len = TYPE_LENGTH (type);
473 if (code2 == TYPE_CODE_FLT)
474 decimal_from_floating (arg2, dec, dec_len, byte_order);
475 else if (code2 == TYPE_CODE_DECFLOAT)
476 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
477 byte_order, dec, dec_len, byte_order);
479 /* The only option left is an integral type. */
480 decimal_from_integral (arg2, dec, dec_len, byte_order);
482 return value_from_decfloat (type, dec);
484 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
485 || code1 == TYPE_CODE_RANGE)
486 && (scalar || code2 == TYPE_CODE_PTR
487 || code2 == TYPE_CODE_MEMBERPTR))
491 /* When we cast pointers to integers, we mustn't use
492 gdbarch_pointer_to_address to find the address the pointer
493 represents, as value_as_long would. GDB should evaluate
494 expressions just as the compiler would --- and the compiler
495 sees a cast as a simple reinterpretation of the pointer's
497 if (code2 == TYPE_CODE_PTR)
498 longest = extract_unsigned_integer
499 (value_contents (arg2), TYPE_LENGTH (type2),
500 gdbarch_byte_order (get_type_arch (type2)));
502 longest = value_as_long (arg2);
503 return value_from_longest (type, convert_to_boolean ?
504 (LONGEST) (longest ? 1 : 0) : longest);
506 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
507 || code2 == TYPE_CODE_ENUM
508 || code2 == TYPE_CODE_RANGE))
510 /* TYPE_LENGTH (type) is the length of a pointer, but we really
511 want the length of an address! -- we are really dealing with
512 addresses (i.e., gdb representations) not pointers (i.e.,
513 target representations) here.
515 This allows things like "print *(int *)0x01000234" to work
516 without printing a misleading message -- which would
517 otherwise occur when dealing with a target having two byte
518 pointers and four byte addresses. */
520 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
521 LONGEST longest = value_as_long (arg2);
523 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
525 if (longest >= ((LONGEST) 1 << addr_bit)
526 || longest <= -((LONGEST) 1 << addr_bit))
527 warning (_("value truncated"));
529 return value_from_longest (type, longest);
531 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
532 && value_as_long (arg2) == 0)
534 struct value *result = allocate_value (type);
536 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
539 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
540 && value_as_long (arg2) == 0)
542 /* The Itanium C++ ABI represents NULL pointers to members as
543 minus one, instead of biasing the normal case. */
544 return value_from_longest (type, -1);
546 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
547 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
548 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
549 error (_("Cannot convert between vector values of different sizes"));
550 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
551 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
552 error (_("can only cast scalar to vector of same size"));
553 else if (code1 == TYPE_CODE_VOID)
555 return value_zero (type, not_lval);
557 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
559 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
560 return value_cast_pointers (type, arg2, 0);
562 arg2 = value_copy (arg2);
563 deprecated_set_value_type (arg2, type);
564 set_value_enclosing_type (arg2, type);
565 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
568 else if (VALUE_LVAL (arg2) == lval_memory)
569 return value_at_lazy (type, value_address (arg2));
572 error (_("Invalid cast."));
577 /* The C++ reinterpret_cast operator. */
580 value_reinterpret_cast (struct type *type, struct value *arg)
582 struct value *result;
583 struct type *real_type = check_typedef (type);
584 struct type *arg_type, *dest_type;
586 enum type_code dest_code, arg_code;
588 /* Do reference, function, and array conversion. */
589 arg = coerce_array (arg);
591 /* Attempt to preserve the type the user asked for. */
594 /* If we are casting to a reference type, transform
595 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
596 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
599 arg = value_addr (arg);
600 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
601 real_type = lookup_pointer_type (real_type);
604 arg_type = value_type (arg);
606 dest_code = TYPE_CODE (real_type);
607 arg_code = TYPE_CODE (arg_type);
609 /* We can convert pointer types, or any pointer type to int, or int
611 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
612 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
613 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
614 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
615 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
616 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
617 || (dest_code == arg_code
618 && (dest_code == TYPE_CODE_PTR
619 || dest_code == TYPE_CODE_METHODPTR
620 || dest_code == TYPE_CODE_MEMBERPTR)))
621 result = value_cast (dest_type, arg);
623 error (_("Invalid reinterpret_cast"));
626 result = value_cast (type, value_ref (value_ind (result)));
631 /* A helper for value_dynamic_cast. This implements the first of two
632 runtime checks: we iterate over all the base classes of the value's
633 class which are equal to the desired class; if only one of these
634 holds the value, then it is the answer. */
637 dynamic_cast_check_1 (struct type *desired_type,
638 const gdb_byte *valaddr,
642 struct type *search_type,
644 struct type *arg_type,
645 struct value **result)
647 int i, result_count = 0;
649 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
651 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
654 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
656 if (address + embedded_offset + offset >= arg_addr
657 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
661 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
662 address + embedded_offset + offset);
666 result_count += dynamic_cast_check_1 (desired_type,
668 embedded_offset + offset,
670 TYPE_BASECLASS (search_type, i),
679 /* A helper for value_dynamic_cast. This implements the second of two
680 runtime checks: we look for a unique public sibling class of the
681 argument's declared class. */
684 dynamic_cast_check_2 (struct type *desired_type,
685 const gdb_byte *valaddr,
689 struct type *search_type,
690 struct value **result)
692 int i, result_count = 0;
694 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
698 if (! BASETYPE_VIA_PUBLIC (search_type, i))
701 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
703 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
707 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
708 address + embedded_offset + offset);
711 result_count += dynamic_cast_check_2 (desired_type,
713 embedded_offset + offset,
715 TYPE_BASECLASS (search_type, i),
722 /* The C++ dynamic_cast operator. */
725 value_dynamic_cast (struct type *type, struct value *arg)
727 int full, top, using_enc;
728 struct type *resolved_type = check_typedef (type);
729 struct type *arg_type = check_typedef (value_type (arg));
730 struct type *class_type, *rtti_type;
731 struct value *result, *tem, *original_arg = arg;
733 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
735 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
736 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
737 error (_("Argument to dynamic_cast must be a pointer or reference type"));
738 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
739 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
740 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
742 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
743 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
745 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
746 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
747 && value_as_long (arg) == 0))
748 error (_("Argument to dynamic_cast does not have pointer type"));
749 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
751 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
752 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
753 error (_("Argument to dynamic_cast does "
754 "not have pointer to class type"));
757 /* Handle NULL pointers. */
758 if (value_as_long (arg) == 0)
759 return value_zero (type, not_lval);
761 arg = value_ind (arg);
765 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
766 error (_("Argument to dynamic_cast does not have class type"));
769 /* If the classes are the same, just return the argument. */
770 if (class_types_same_p (class_type, arg_type))
771 return value_cast (type, arg);
773 /* If the target type is a unique base class of the argument's
774 declared type, just cast it. */
775 if (is_ancestor (class_type, arg_type))
777 if (is_unique_ancestor (class_type, arg))
778 return value_cast (type, original_arg);
779 error (_("Ambiguous dynamic_cast"));
782 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
784 error (_("Couldn't determine value's most derived type for dynamic_cast"));
786 /* Compute the most derived object's address. */
787 addr = value_address (arg);
795 addr += top + value_embedded_offset (arg);
797 /* dynamic_cast<void *> means to return a pointer to the
798 most-derived object. */
799 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
800 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
801 return value_at_lazy (type, addr);
803 tem = value_at (type, addr);
805 /* The first dynamic check specified in 5.2.7. */
806 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
808 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
811 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
812 value_contents_for_printing (tem),
813 value_embedded_offset (tem),
814 value_address (tem), tem,
818 return value_cast (type,
819 is_ref ? value_ref (result) : value_addr (result));
822 /* The second dynamic check specified in 5.2.7. */
824 if (is_public_ancestor (arg_type, rtti_type)
825 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
826 value_contents_for_printing (tem),
827 value_embedded_offset (tem),
828 value_address (tem), tem,
829 rtti_type, &result) == 1)
830 return value_cast (type,
831 is_ref ? value_ref (result) : value_addr (result));
833 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
834 return value_zero (type, not_lval);
836 error (_("dynamic_cast failed"));
839 /* Create a value of type TYPE that is zero, and return it. */
842 value_zero (struct type *type, enum lval_type lv)
844 struct value *val = allocate_value (type);
846 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
850 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
853 value_one (struct type *type)
855 struct type *type1 = check_typedef (type);
858 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
860 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
863 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
864 val = value_from_decfloat (type, v);
866 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
868 val = value_from_double (type, (DOUBLEST) 1);
870 else if (is_integral_type (type1))
872 val = value_from_longest (type, (LONGEST) 1);
874 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
876 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
878 LONGEST low_bound, high_bound;
881 if (!get_array_bounds (type1, &low_bound, &high_bound))
882 error (_("Could not determine the vector bounds"));
884 val = allocate_value (type);
885 for (i = 0; i < high_bound - low_bound + 1; i++)
887 tmp = value_one (eltype);
888 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
889 value_contents_all (tmp), TYPE_LENGTH (eltype));
894 error (_("Not a numeric type."));
897 /* value_one result is never used for assignments to. */
898 gdb_assert (VALUE_LVAL (val) == not_lval);
903 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
905 static struct value *
906 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
910 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
911 error (_("Attempt to dereference a generic pointer."));
913 val = value_from_contents_and_address (type, NULL, addr);
916 value_fetch_lazy (val);
921 /* Return a value with type TYPE located at ADDR.
923 Call value_at only if the data needs to be fetched immediately;
924 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
925 value_at_lazy instead. value_at_lazy simply records the address of
926 the data and sets the lazy-evaluation-required flag. The lazy flag
927 is tested in the value_contents macro, which is used if and when
928 the contents are actually required.
930 Note: value_at does *NOT* handle embedded offsets; perform such
931 adjustments before or after calling it. */
934 value_at (struct type *type, CORE_ADDR addr)
936 return get_value_at (type, addr, 0);
939 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
942 value_at_lazy (struct type *type, CORE_ADDR addr)
944 return get_value_at (type, addr, 1);
948 read_value_memory (struct value *val, int embedded_offset,
949 int stack, CORE_ADDR memaddr,
950 gdb_byte *buffer, size_t length)
954 while (xfered < length)
956 enum target_xfer_status status;
959 status = target_xfer_partial (current_target.beneath,
960 TARGET_OBJECT_MEMORY, NULL,
961 buffer + xfered, NULL,
962 memaddr + xfered, length - xfered,
965 if (status == TARGET_XFER_OK)
967 else if (status == TARGET_XFER_UNAVAILABLE)
968 mark_value_bytes_unavailable (val, embedded_offset + xfered,
970 else if (status == TARGET_XFER_EOF)
971 memory_error (TARGET_XFER_E_IO, memaddr + xfered);
973 memory_error (status, memaddr + xfered);
975 xfered += xfered_len;
980 /* Store the contents of FROMVAL into the location of TOVAL.
981 Return a new value with the location of TOVAL and contents of FROMVAL. */
984 value_assign (struct value *toval, struct value *fromval)
988 struct frame_id old_frame;
990 if (!deprecated_value_modifiable (toval))
991 error (_("Left operand of assignment is not a modifiable lvalue."));
993 toval = coerce_ref (toval);
995 type = value_type (toval);
996 if (VALUE_LVAL (toval) != lval_internalvar)
997 fromval = value_cast (type, fromval);
1000 /* Coerce arrays and functions to pointers, except for arrays
1001 which only live in GDB's storage. */
1002 if (!value_must_coerce_to_target (fromval))
1003 fromval = coerce_array (fromval);
1006 CHECK_TYPEDEF (type);
1008 /* Since modifying a register can trash the frame chain, and
1009 modifying memory can trash the frame cache, we save the old frame
1010 and then restore the new frame afterwards. */
1011 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1013 switch (VALUE_LVAL (toval))
1015 case lval_internalvar:
1016 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1017 return value_of_internalvar (get_type_arch (type),
1018 VALUE_INTERNALVAR (toval));
1020 case lval_internalvar_component:
1022 int offset = value_offset (toval);
1024 /* Are we dealing with a bitfield?
1026 It is important to mention that `value_parent (toval)' is
1027 non-NULL iff `value_bitsize (toval)' is non-zero. */
1028 if (value_bitsize (toval))
1030 /* VALUE_INTERNALVAR below refers to the parent value, while
1031 the offset is relative to this parent value. */
1032 gdb_assert (value_parent (value_parent (toval)) == NULL);
1033 offset += value_offset (value_parent (toval));
1036 set_internalvar_component (VALUE_INTERNALVAR (toval),
1038 value_bitpos (toval),
1039 value_bitsize (toval),
1046 const gdb_byte *dest_buffer;
1047 CORE_ADDR changed_addr;
1049 gdb_byte buffer[sizeof (LONGEST)];
1051 if (value_bitsize (toval))
1053 struct value *parent = value_parent (toval);
1055 changed_addr = value_address (parent) + value_offset (toval);
1056 changed_len = (value_bitpos (toval)
1057 + value_bitsize (toval)
1058 + HOST_CHAR_BIT - 1)
1061 /* If we can read-modify-write exactly the size of the
1062 containing type (e.g. short or int) then do so. This
1063 is safer for volatile bitfields mapped to hardware
1065 if (changed_len < TYPE_LENGTH (type)
1066 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1067 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1068 changed_len = TYPE_LENGTH (type);
1070 if (changed_len > (int) sizeof (LONGEST))
1071 error (_("Can't handle bitfields which "
1072 "don't fit in a %d bit word."),
1073 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1075 read_memory (changed_addr, buffer, changed_len);
1076 modify_field (type, buffer, value_as_long (fromval),
1077 value_bitpos (toval), value_bitsize (toval));
1078 dest_buffer = buffer;
1082 changed_addr = value_address (toval);
1083 changed_len = TYPE_LENGTH (type);
1084 dest_buffer = value_contents (fromval);
1087 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1093 struct frame_info *frame;
1094 struct gdbarch *gdbarch;
1097 /* Figure out which frame this is in currently. */
1098 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1099 value_reg = VALUE_REGNUM (toval);
1102 error (_("Value being assigned to is no longer active."));
1104 gdbarch = get_frame_arch (frame);
1105 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1107 /* If TOVAL is a special machine register requiring
1108 conversion of program values to a special raw
1110 gdbarch_value_to_register (gdbarch, frame,
1111 VALUE_REGNUM (toval), type,
1112 value_contents (fromval));
1116 if (value_bitsize (toval))
1118 struct value *parent = value_parent (toval);
1119 int offset = value_offset (parent) + value_offset (toval);
1121 gdb_byte buffer[sizeof (LONGEST)];
1124 changed_len = (value_bitpos (toval)
1125 + value_bitsize (toval)
1126 + HOST_CHAR_BIT - 1)
1129 if (changed_len > (int) sizeof (LONGEST))
1130 error (_("Can't handle bitfields which "
1131 "don't fit in a %d bit word."),
1132 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1134 if (!get_frame_register_bytes (frame, value_reg, offset,
1135 changed_len, buffer,
1139 throw_error (OPTIMIZED_OUT_ERROR,
1140 _("value has been optimized out"));
1142 throw_error (NOT_AVAILABLE_ERROR,
1143 _("value is not available"));
1146 modify_field (type, buffer, value_as_long (fromval),
1147 value_bitpos (toval), value_bitsize (toval));
1149 put_frame_register_bytes (frame, value_reg, offset,
1150 changed_len, buffer);
1154 put_frame_register_bytes (frame, value_reg,
1155 value_offset (toval),
1157 value_contents (fromval));
1161 if (deprecated_register_changed_hook)
1162 deprecated_register_changed_hook (-1);
1168 const struct lval_funcs *funcs = value_computed_funcs (toval);
1170 if (funcs->write != NULL)
1172 funcs->write (toval, fromval);
1179 error (_("Left operand of assignment is not an lvalue."));
1182 /* Assigning to the stack pointer, frame pointer, and other
1183 (architecture and calling convention specific) registers may
1184 cause the frame cache and regcache to be out of date. Assigning to memory
1185 also can. We just do this on all assignments to registers or
1186 memory, for simplicity's sake; I doubt the slowdown matters. */
1187 switch (VALUE_LVAL (toval))
1193 observer_notify_target_changed (¤t_target);
1195 /* Having destroyed the frame cache, restore the selected
1198 /* FIXME: cagney/2002-11-02: There has to be a better way of
1199 doing this. Instead of constantly saving/restoring the
1200 frame. Why not create a get_selected_frame() function that,
1201 having saved the selected frame's ID can automatically
1202 re-find the previously selected frame automatically. */
1205 struct frame_info *fi = frame_find_by_id (old_frame);
1216 /* If the field does not entirely fill a LONGEST, then zero the sign
1217 bits. If the field is signed, and is negative, then sign
1219 if ((value_bitsize (toval) > 0)
1220 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1222 LONGEST fieldval = value_as_long (fromval);
1223 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1225 fieldval &= valmask;
1226 if (!TYPE_UNSIGNED (type)
1227 && (fieldval & (valmask ^ (valmask >> 1))))
1228 fieldval |= ~valmask;
1230 fromval = value_from_longest (type, fieldval);
1233 /* The return value is a copy of TOVAL so it shares its location
1234 information, but its contents are updated from FROMVAL. This
1235 implies the returned value is not lazy, even if TOVAL was. */
1236 val = value_copy (toval);
1237 set_value_lazy (val, 0);
1238 memcpy (value_contents_raw (val), value_contents (fromval),
1239 TYPE_LENGTH (type));
1241 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1242 in the case of pointer types. For object types, the enclosing type
1243 and embedded offset must *not* be copied: the target object refered
1244 to by TOVAL retains its original dynamic type after assignment. */
1245 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1247 set_value_enclosing_type (val, value_enclosing_type (fromval));
1248 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1254 /* Extend a value VAL to COUNT repetitions of its type. */
1257 value_repeat (struct value *arg1, int count)
1261 if (VALUE_LVAL (arg1) != lval_memory)
1262 error (_("Only values in memory can be extended with '@'."));
1264 error (_("Invalid number %d of repetitions."), count);
1266 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1268 VALUE_LVAL (val) = lval_memory;
1269 set_value_address (val, value_address (arg1));
1271 read_value_memory (val, 0, value_stack (val), value_address (val),
1272 value_contents_all_raw (val),
1273 TYPE_LENGTH (value_enclosing_type (val)));
1279 value_of_variable (struct symbol *var, const struct block *b)
1281 struct frame_info *frame;
1283 if (!symbol_read_needs_frame (var))
1286 frame = get_selected_frame (_("No frame selected."));
1289 frame = block_innermost_frame (b);
1292 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1293 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1294 error (_("No frame is currently executing in block %s."),
1295 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1297 error (_("No frame is currently executing in specified block"));
1301 return read_var_value (var, frame);
1305 address_of_variable (struct symbol *var, const struct block *b)
1307 struct type *type = SYMBOL_TYPE (var);
1310 /* Evaluate it first; if the result is a memory address, we're fine.
1311 Lazy evaluation pays off here. */
1313 val = value_of_variable (var, b);
1315 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1316 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1318 CORE_ADDR addr = value_address (val);
1320 return value_from_pointer (lookup_pointer_type (type), addr);
1323 /* Not a memory address; check what the problem was. */
1324 switch (VALUE_LVAL (val))
1328 struct frame_info *frame;
1329 const char *regname;
1331 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1334 regname = gdbarch_register_name (get_frame_arch (frame),
1335 VALUE_REGNUM (val));
1336 gdb_assert (regname && *regname);
1338 error (_("Address requested for identifier "
1339 "\"%s\" which is in register $%s"),
1340 SYMBOL_PRINT_NAME (var), regname);
1345 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1346 SYMBOL_PRINT_NAME (var));
1353 /* Return one if VAL does not live in target memory, but should in order
1354 to operate on it. Otherwise return zero. */
1357 value_must_coerce_to_target (struct value *val)
1359 struct type *valtype;
1361 /* The only lval kinds which do not live in target memory. */
1362 if (VALUE_LVAL (val) != not_lval
1363 && VALUE_LVAL (val) != lval_internalvar)
1366 valtype = check_typedef (value_type (val));
1368 switch (TYPE_CODE (valtype))
1370 case TYPE_CODE_ARRAY:
1371 return TYPE_VECTOR (valtype) ? 0 : 1;
1372 case TYPE_CODE_STRING:
1379 /* Make sure that VAL lives in target memory if it's supposed to. For
1380 instance, strings are constructed as character arrays in GDB's
1381 storage, and this function copies them to the target. */
1384 value_coerce_to_target (struct value *val)
1389 if (!value_must_coerce_to_target (val))
1392 length = TYPE_LENGTH (check_typedef (value_type (val)));
1393 addr = allocate_space_in_inferior (length);
1394 write_memory (addr, value_contents (val), length);
1395 return value_at_lazy (value_type (val), addr);
1398 /* Given a value which is an array, return a value which is a pointer
1399 to its first element, regardless of whether or not the array has a
1400 nonzero lower bound.
1402 FIXME: A previous comment here indicated that this routine should
1403 be substracting the array's lower bound. It's not clear to me that
1404 this is correct. Given an array subscripting operation, it would
1405 certainly work to do the adjustment here, essentially computing:
1407 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1409 However I believe a more appropriate and logical place to account
1410 for the lower bound is to do so in value_subscript, essentially
1413 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1415 As further evidence consider what would happen with operations
1416 other than array subscripting, where the caller would get back a
1417 value that had an address somewhere before the actual first element
1418 of the array, and the information about the lower bound would be
1419 lost because of the coercion to pointer type. */
1422 value_coerce_array (struct value *arg1)
1424 struct type *type = check_typedef (value_type (arg1));
1426 /* If the user tries to do something requiring a pointer with an
1427 array that has not yet been pushed to the target, then this would
1428 be a good time to do so. */
1429 arg1 = value_coerce_to_target (arg1);
1431 if (VALUE_LVAL (arg1) != lval_memory)
1432 error (_("Attempt to take address of value not located in memory."));
1434 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1435 value_address (arg1));
1438 /* Given a value which is a function, return a value which is a pointer
1442 value_coerce_function (struct value *arg1)
1444 struct value *retval;
1446 if (VALUE_LVAL (arg1) != lval_memory)
1447 error (_("Attempt to take address of value not located in memory."));
1449 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1450 value_address (arg1));
1454 /* Return a pointer value for the object for which ARG1 is the
1458 value_addr (struct value *arg1)
1461 struct type *type = check_typedef (value_type (arg1));
1463 if (TYPE_CODE (type) == TYPE_CODE_REF)
1465 /* Copy the value, but change the type from (T&) to (T*). We
1466 keep the same location information, which is efficient, and
1467 allows &(&X) to get the location containing the reference. */
1468 arg2 = value_copy (arg1);
1469 deprecated_set_value_type (arg2,
1470 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1473 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1474 return value_coerce_function (arg1);
1476 /* If this is an array that has not yet been pushed to the target,
1477 then this would be a good time to force it to memory. */
1478 arg1 = value_coerce_to_target (arg1);
1480 if (VALUE_LVAL (arg1) != lval_memory)
1481 error (_("Attempt to take address of value not located in memory."));
1483 /* Get target memory address. */
1484 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1485 (value_address (arg1)
1486 + value_embedded_offset (arg1)));
1488 /* This may be a pointer to a base subobject; so remember the
1489 full derived object's type ... */
1490 set_value_enclosing_type (arg2,
1491 lookup_pointer_type (value_enclosing_type (arg1)));
1492 /* ... and also the relative position of the subobject in the full
1494 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1498 /* Return a reference value for the object for which ARG1 is the
1502 value_ref (struct value *arg1)
1505 struct type *type = check_typedef (value_type (arg1));
1507 if (TYPE_CODE (type) == TYPE_CODE_REF)
1510 arg2 = value_addr (arg1);
1511 deprecated_set_value_type (arg2, lookup_reference_type (type));
1515 /* Given a value of a pointer type, apply the C unary * operator to
1519 value_ind (struct value *arg1)
1521 struct type *base_type;
1524 arg1 = coerce_array (arg1);
1526 base_type = check_typedef (value_type (arg1));
1528 if (VALUE_LVAL (arg1) == lval_computed)
1530 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1532 if (funcs->indirect)
1534 struct value *result = funcs->indirect (arg1);
1541 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1543 struct type *enc_type;
1545 /* We may be pointing to something embedded in a larger object.
1546 Get the real type of the enclosing object. */
1547 enc_type = check_typedef (value_enclosing_type (arg1));
1548 enc_type = TYPE_TARGET_TYPE (enc_type);
1550 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1551 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1552 /* For functions, go through find_function_addr, which knows
1553 how to handle function descriptors. */
1554 arg2 = value_at_lazy (enc_type,
1555 find_function_addr (arg1, NULL));
1557 /* Retrieve the enclosing object pointed to. */
1558 arg2 = value_at_lazy (enc_type,
1559 (value_as_address (arg1)
1560 - value_pointed_to_offset (arg1)));
1562 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1565 error (_("Attempt to take contents of a non-pointer value."));
1566 return 0; /* For lint -- never reached. */
1569 /* Create a value for an array by allocating space in GDB, copying the
1570 data into that space, and then setting up an array value.
1572 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1573 is populated from the values passed in ELEMVEC.
1575 The element type of the array is inherited from the type of the
1576 first element, and all elements must have the same size (though we
1577 don't currently enforce any restriction on their types). */
1580 value_array (int lowbound, int highbound, struct value **elemvec)
1584 unsigned int typelength;
1586 struct type *arraytype;
1588 /* Validate that the bounds are reasonable and that each of the
1589 elements have the same size. */
1591 nelem = highbound - lowbound + 1;
1594 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1596 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1597 for (idx = 1; idx < nelem; idx++)
1599 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1601 error (_("array elements must all be the same size"));
1605 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1606 lowbound, highbound);
1608 if (!current_language->c_style_arrays)
1610 val = allocate_value (arraytype);
1611 for (idx = 0; idx < nelem; idx++)
1612 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1617 /* Allocate space to store the array, and then initialize it by
1618 copying in each element. */
1620 val = allocate_value (arraytype);
1621 for (idx = 0; idx < nelem; idx++)
1622 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1627 value_cstring (char *ptr, ssize_t len, struct type *char_type)
1630 int lowbound = current_language->string_lower_bound;
1631 ssize_t highbound = len / TYPE_LENGTH (char_type);
1632 struct type *stringtype
1633 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1635 val = allocate_value (stringtype);
1636 memcpy (value_contents_raw (val), ptr, len);
1640 /* Create a value for a string constant by allocating space in the
1641 inferior, copying the data into that space, and returning the
1642 address with type TYPE_CODE_STRING. PTR points to the string
1643 constant data; LEN is number of characters.
1645 Note that string types are like array of char types with a lower
1646 bound of zero and an upper bound of LEN - 1. Also note that the
1647 string may contain embedded null bytes. */
1650 value_string (char *ptr, ssize_t len, struct type *char_type)
1653 int lowbound = current_language->string_lower_bound;
1654 ssize_t highbound = len / TYPE_LENGTH (char_type);
1655 struct type *stringtype
1656 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1658 val = allocate_value (stringtype);
1659 memcpy (value_contents_raw (val), ptr, len);
1664 /* See if we can pass arguments in T2 to a function which takes
1665 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1666 a NULL-terminated vector. If some arguments need coercion of some
1667 sort, then the coerced values are written into T2. Return value is
1668 0 if the arguments could be matched, or the position at which they
1671 STATICP is nonzero if the T1 argument list came from a static
1672 member function. T2 will still include the ``this'' pointer, but
1675 For non-static member functions, we ignore the first argument,
1676 which is the type of the instance variable. This is because we
1677 want to handle calls with objects from derived classes. This is
1678 not entirely correct: we should actually check to make sure that a
1679 requested operation is type secure, shouldn't we? FIXME. */
1682 typecmp (int staticp, int varargs, int nargs,
1683 struct field t1[], struct value *t2[])
1688 internal_error (__FILE__, __LINE__,
1689 _("typecmp: no argument list"));
1691 /* Skip ``this'' argument if applicable. T2 will always include
1697 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1700 struct type *tt1, *tt2;
1705 tt1 = check_typedef (t1[i].type);
1706 tt2 = check_typedef (value_type (t2[i]));
1708 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1709 /* We should be doing hairy argument matching, as below. */
1710 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1711 == TYPE_CODE (tt2)))
1713 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1714 t2[i] = value_coerce_array (t2[i]);
1716 t2[i] = value_ref (t2[i]);
1720 /* djb - 20000715 - Until the new type structure is in the
1721 place, and we can attempt things like implicit conversions,
1722 we need to do this so you can take something like a map<const
1723 char *>, and properly access map["hello"], because the
1724 argument to [] will be a reference to a pointer to a char,
1725 and the argument will be a pointer to a char. */
1726 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1727 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1729 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1731 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1732 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1733 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1735 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1737 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1739 /* Array to pointer is a `trivial conversion' according to the
1742 /* We should be doing much hairier argument matching (see
1743 section 13.2 of the ARM), but as a quick kludge, just check
1744 for the same type code. */
1745 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1748 if (varargs || t2[i] == NULL)
1753 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1754 and *LAST_BOFFSET, and possibly throws an exception if the field
1755 search has yielded ambiguous results. */
1758 update_search_result (struct value **result_ptr, struct value *v,
1759 int *last_boffset, int boffset,
1760 const char *name, struct type *type)
1764 if (*result_ptr != NULL
1765 /* The result is not ambiguous if all the classes that are
1766 found occupy the same space. */
1767 && *last_boffset != boffset)
1768 error (_("base class '%s' is ambiguous in type '%s'"),
1769 name, TYPE_SAFE_NAME (type));
1771 *last_boffset = boffset;
1775 /* A helper for search_struct_field. This does all the work; most
1776 arguments are as passed to search_struct_field. The result is
1777 stored in *RESULT_PTR, which must be initialized to NULL.
1778 OUTERMOST_TYPE is the type of the initial type passed to
1779 search_struct_field; this is used for error reporting when the
1780 lookup is ambiguous. */
1783 do_search_struct_field (const char *name, struct value *arg1, int offset,
1784 struct type *type, int looking_for_baseclass,
1785 struct value **result_ptr,
1787 struct type *outermost_type)
1792 CHECK_TYPEDEF (type);
1793 nbases = TYPE_N_BASECLASSES (type);
1795 if (!looking_for_baseclass)
1796 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1798 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1800 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1804 if (field_is_static (&TYPE_FIELD (type, i)))
1805 v = value_static_field (type, i);
1807 v = value_primitive_field (arg1, offset, i, type);
1813 && (t_field_name[0] == '\0'
1814 || (TYPE_CODE (type) == TYPE_CODE_UNION
1815 && (strcmp_iw (t_field_name, "else") == 0))))
1817 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1819 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1820 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1822 /* Look for a match through the fields of an anonymous
1823 union, or anonymous struct. C++ provides anonymous
1826 In the GNU Chill (now deleted from GDB)
1827 implementation of variant record types, each
1828 <alternative field> has an (anonymous) union type,
1829 each member of the union represents a <variant
1830 alternative>. Each <variant alternative> is
1831 represented as a struct, with a member for each
1834 struct value *v = NULL;
1835 int new_offset = offset;
1837 /* This is pretty gross. In G++, the offset in an
1838 anonymous union is relative to the beginning of the
1839 enclosing struct. In the GNU Chill (now deleted
1840 from GDB) implementation of variant records, the
1841 bitpos is zero in an anonymous union field, so we
1842 have to add the offset of the union here. */
1843 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1844 || (TYPE_NFIELDS (field_type) > 0
1845 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1846 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1848 do_search_struct_field (name, arg1, new_offset,
1850 looking_for_baseclass, &v,
1862 for (i = 0; i < nbases; i++)
1864 struct value *v = NULL;
1865 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1866 /* If we are looking for baseclasses, this is what we get when
1867 we hit them. But it could happen that the base part's member
1868 name is not yet filled in. */
1869 int found_baseclass = (looking_for_baseclass
1870 && TYPE_BASECLASS_NAME (type, i) != NULL
1871 && (strcmp_iw (name,
1872 TYPE_BASECLASS_NAME (type,
1874 int boffset = value_embedded_offset (arg1) + offset;
1876 if (BASETYPE_VIA_VIRTUAL (type, i))
1880 boffset = baseclass_offset (type, i,
1881 value_contents_for_printing (arg1),
1882 value_embedded_offset (arg1) + offset,
1883 value_address (arg1),
1886 /* The virtual base class pointer might have been clobbered
1887 by the user program. Make sure that it still points to a
1888 valid memory location. */
1890 boffset += value_embedded_offset (arg1) + offset;
1892 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1894 CORE_ADDR base_addr;
1896 base_addr = value_address (arg1) + boffset;
1897 v2 = value_at_lazy (basetype, base_addr);
1898 if (target_read_memory (base_addr,
1899 value_contents_raw (v2),
1900 TYPE_LENGTH (value_type (v2))) != 0)
1901 error (_("virtual baseclass botch"));
1905 v2 = value_copy (arg1);
1906 deprecated_set_value_type (v2, basetype);
1907 set_value_embedded_offset (v2, boffset);
1910 if (found_baseclass)
1914 do_search_struct_field (name, v2, 0,
1915 TYPE_BASECLASS (type, i),
1916 looking_for_baseclass,
1917 result_ptr, last_boffset,
1921 else if (found_baseclass)
1922 v = value_primitive_field (arg1, offset, i, type);
1925 do_search_struct_field (name, arg1,
1926 offset + TYPE_BASECLASS_BITPOS (type,
1928 basetype, looking_for_baseclass,
1929 result_ptr, last_boffset,
1933 update_search_result (result_ptr, v, last_boffset,
1934 boffset, name, outermost_type);
1938 /* Helper function used by value_struct_elt to recurse through
1939 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1940 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1941 TYPE. If found, return value, else return NULL.
1943 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1944 fields, look for a baseclass named NAME. */
1946 static struct value *
1947 search_struct_field (const char *name, struct value *arg1, int offset,
1948 struct type *type, int looking_for_baseclass)
1950 struct value *result = NULL;
1953 do_search_struct_field (name, arg1, offset, type, looking_for_baseclass,
1954 &result, &boffset, type);
1958 /* Helper function used by value_struct_elt to recurse through
1959 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1960 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1963 If found, return value, else if name matched and args not return
1964 (value) -1, else return NULL. */
1966 static struct value *
1967 search_struct_method (const char *name, struct value **arg1p,
1968 struct value **args, int offset,
1969 int *static_memfuncp, struct type *type)
1973 int name_matched = 0;
1974 char dem_opname[64];
1976 CHECK_TYPEDEF (type);
1977 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1979 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1981 /* FIXME! May need to check for ARM demangling here. */
1982 if (strncmp (t_field_name, "__", 2) == 0 ||
1983 strncmp (t_field_name, "op", 2) == 0 ||
1984 strncmp (t_field_name, "type", 4) == 0)
1986 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1987 t_field_name = dem_opname;
1988 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1989 t_field_name = dem_opname;
1991 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1993 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1994 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1997 check_stub_method_group (type, i);
1998 if (j > 0 && args == 0)
1999 error (_("cannot resolve overloaded method "
2000 "`%s': no arguments supplied"), name);
2001 else if (j == 0 && args == 0)
2003 v = value_fn_field (arg1p, f, j, type, offset);
2010 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2011 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2012 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2013 TYPE_FN_FIELD_ARGS (f, j), args))
2015 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2016 return value_virtual_fn_field (arg1p, f, j,
2018 if (TYPE_FN_FIELD_STATIC_P (f, j)
2020 *static_memfuncp = 1;
2021 v = value_fn_field (arg1p, f, j, type, offset);
2030 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2035 if (BASETYPE_VIA_VIRTUAL (type, i))
2037 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2038 struct value *base_val;
2039 const gdb_byte *base_valaddr;
2041 /* The virtual base class pointer might have been
2042 clobbered by the user program. Make sure that it
2043 still points to a valid memory location. */
2045 if (offset < 0 || offset >= TYPE_LENGTH (type))
2048 struct cleanup *back_to;
2051 tmp = xmalloc (TYPE_LENGTH (baseclass));
2052 back_to = make_cleanup (xfree, tmp);
2053 address = value_address (*arg1p);
2055 if (target_read_memory (address + offset,
2056 tmp, TYPE_LENGTH (baseclass)) != 0)
2057 error (_("virtual baseclass botch"));
2059 base_val = value_from_contents_and_address (baseclass,
2062 base_valaddr = value_contents_for_printing (base_val);
2064 do_cleanups (back_to);
2069 base_valaddr = value_contents_for_printing (*arg1p);
2070 this_offset = offset;
2073 base_offset = baseclass_offset (type, i, base_valaddr,
2074 this_offset, value_address (base_val),
2079 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2081 v = search_struct_method (name, arg1p, args, base_offset + offset,
2082 static_memfuncp, TYPE_BASECLASS (type, i));
2083 if (v == (struct value *) - 1)
2089 /* FIXME-bothner: Why is this commented out? Why is it here? */
2090 /* *arg1p = arg1_tmp; */
2095 return (struct value *) - 1;
2100 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2101 extract the component named NAME from the ultimate target
2102 structure/union and return it as a value with its appropriate type.
2103 ERR is used in the error message if *ARGP's type is wrong.
2105 C++: ARGS is a list of argument types to aid in the selection of
2106 an appropriate method. Also, handle derived types.
2108 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2109 where the truthvalue of whether the function that was resolved was
2110 a static member function or not is stored.
2112 ERR is an error message to be printed in case the field is not
2116 value_struct_elt (struct value **argp, struct value **args,
2117 const char *name, int *static_memfuncp, const char *err)
2122 *argp = coerce_array (*argp);
2124 t = check_typedef (value_type (*argp));
2126 /* Follow pointers until we get to a non-pointer. */
2128 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2130 *argp = value_ind (*argp);
2131 /* Don't coerce fn pointer to fn and then back again! */
2132 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2133 *argp = coerce_array (*argp);
2134 t = check_typedef (value_type (*argp));
2137 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2138 && TYPE_CODE (t) != TYPE_CODE_UNION)
2139 error (_("Attempt to extract a component of a value that is not a %s."),
2142 /* Assume it's not, unless we see that it is. */
2143 if (static_memfuncp)
2144 *static_memfuncp = 0;
2148 /* if there are no arguments ...do this... */
2150 /* Try as a field first, because if we succeed, there is less
2152 v = search_struct_field (name, *argp, 0, t, 0);
2156 /* C++: If it was not found as a data field, then try to
2157 return it as a pointer to a method. */
2158 v = search_struct_method (name, argp, args, 0,
2159 static_memfuncp, t);
2161 if (v == (struct value *) - 1)
2162 error (_("Cannot take address of method %s."), name);
2165 if (TYPE_NFN_FIELDS (t))
2166 error (_("There is no member or method named %s."), name);
2168 error (_("There is no member named %s."), name);
2173 v = search_struct_method (name, argp, args, 0,
2174 static_memfuncp, t);
2176 if (v == (struct value *) - 1)
2178 error (_("One of the arguments you tried to pass to %s could not "
2179 "be converted to what the function wants."), name);
2183 /* See if user tried to invoke data as function. If so, hand it
2184 back. If it's not callable (i.e., a pointer to function),
2185 gdb should give an error. */
2186 v = search_struct_field (name, *argp, 0, t, 0);
2187 /* If we found an ordinary field, then it is not a method call.
2188 So, treat it as if it were a static member function. */
2189 if (v && static_memfuncp)
2190 *static_memfuncp = 1;
2194 throw_error (NOT_FOUND_ERROR,
2195 _("Structure has no component named %s."), name);
2199 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2200 to a structure or union, extract and return its component (field) of
2201 type FTYPE at the specified BITPOS.
2202 Throw an exception on error. */
2205 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2213 *argp = coerce_array (*argp);
2215 t = check_typedef (value_type (*argp));
2217 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2219 *argp = value_ind (*argp);
2220 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2221 *argp = coerce_array (*argp);
2222 t = check_typedef (value_type (*argp));
2225 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2226 && TYPE_CODE (t) != TYPE_CODE_UNION)
2227 error (_("Attempt to extract a component of a value that is not a %s."),
2230 for (i = TYPE_N_BASECLASSES (t); i < TYPE_NFIELDS (t); i++)
2232 if (!field_is_static (&TYPE_FIELD (t, i))
2233 && bitpos == TYPE_FIELD_BITPOS (t, i)
2234 && types_equal (ftype, TYPE_FIELD_TYPE (t, i)))
2235 return value_primitive_field (*argp, 0, i, t);
2238 error (_("No field with matching bitpos and type."));
2244 /* Search through the methods of an object (and its bases) to find a
2245 specified method. Return the pointer to the fn_field list of
2246 overloaded instances.
2248 Helper function for value_find_oload_list.
2249 ARGP is a pointer to a pointer to a value (the object).
2250 METHOD is a string containing the method name.
2251 OFFSET is the offset within the value.
2252 TYPE is the assumed type of the object.
2253 NUM_FNS is the number of overloaded instances.
2254 BASETYPE is set to the actual type of the subobject where the
2256 BOFFSET is the offset of the base subobject where the method is found. */
2258 static struct fn_field *
2259 find_method_list (struct value **argp, const char *method,
2260 int offset, struct type *type, int *num_fns,
2261 struct type **basetype, int *boffset)
2265 CHECK_TYPEDEF (type);
2269 /* First check in object itself. */
2270 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2272 /* pai: FIXME What about operators and type conversions? */
2273 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2275 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2277 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2278 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2284 /* Resolve any stub methods. */
2285 check_stub_method_group (type, i);
2291 /* Not found in object, check in base subobjects. */
2292 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2296 if (BASETYPE_VIA_VIRTUAL (type, i))
2298 base_offset = baseclass_offset (type, i,
2299 value_contents_for_printing (*argp),
2300 value_offset (*argp) + offset,
2301 value_address (*argp), *argp);
2303 else /* Non-virtual base, simply use bit position from debug
2306 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2308 f = find_method_list (argp, method, base_offset + offset,
2309 TYPE_BASECLASS (type, i), num_fns,
2317 /* Return the list of overloaded methods of a specified name.
2319 ARGP is a pointer to a pointer to a value (the object).
2320 METHOD is the method name.
2321 OFFSET is the offset within the value contents.
2322 NUM_FNS is the number of overloaded instances.
2323 BASETYPE is set to the type of the base subobject that defines the
2325 BOFFSET is the offset of the base subobject which defines the method. */
2327 static struct fn_field *
2328 value_find_oload_method_list (struct value **argp, const char *method,
2329 int offset, int *num_fns,
2330 struct type **basetype, int *boffset)
2334 t = check_typedef (value_type (*argp));
2336 /* Code snarfed from value_struct_elt. */
2337 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2339 *argp = value_ind (*argp);
2340 /* Don't coerce fn pointer to fn and then back again! */
2341 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2342 *argp = coerce_array (*argp);
2343 t = check_typedef (value_type (*argp));
2346 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2347 && TYPE_CODE (t) != TYPE_CODE_UNION)
2348 error (_("Attempt to extract a component of a "
2349 "value that is not a struct or union"));
2351 return find_method_list (argp, method, 0, t, num_fns,
2355 /* Given an array of arguments (ARGS) (which includes an
2356 entry for "this" in the case of C++ methods), the number of
2357 arguments NARGS, the NAME of a function, and whether it's a method or
2358 not (METHOD), find the best function that matches on the argument types
2359 according to the overload resolution rules.
2361 METHOD can be one of three values:
2362 NON_METHOD for non-member functions.
2363 METHOD: for member functions.
2364 BOTH: used for overload resolution of operators where the
2365 candidates are expected to be either member or non member
2366 functions. In this case the first argument ARGTYPES
2367 (representing 'this') is expected to be a reference to the
2368 target object, and will be dereferenced when attempting the
2371 In the case of class methods, the parameter OBJ is an object value
2372 in which to search for overloaded methods.
2374 In the case of non-method functions, the parameter FSYM is a symbol
2375 corresponding to one of the overloaded functions.
2377 Return value is an integer: 0 -> good match, 10 -> debugger applied
2378 non-standard coercions, 100 -> incompatible.
2380 If a method is being searched for, VALP will hold the value.
2381 If a non-method is being searched for, SYMP will hold the symbol
2384 If a method is being searched for, and it is a static method,
2385 then STATICP will point to a non-zero value.
2387 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2388 ADL overload candidates when performing overload resolution for a fully
2391 Note: This function does *not* check the value of
2392 overload_resolution. Caller must check it to see whether overload
2393 resolution is permitted. */
2396 find_overload_match (struct value **args, int nargs,
2397 const char *name, enum oload_search_type method,
2398 struct value **objp, struct symbol *fsym,
2399 struct value **valp, struct symbol **symp,
2400 int *staticp, const int no_adl)
2402 struct value *obj = (objp ? *objp : NULL);
2403 struct type *obj_type = obj ? value_type (obj) : NULL;
2404 /* Index of best overloaded function. */
2405 int func_oload_champ = -1;
2406 int method_oload_champ = -1;
2408 /* The measure for the current best match. */
2409 struct badness_vector *method_badness = NULL;
2410 struct badness_vector *func_badness = NULL;
2412 struct value *temp = obj;
2413 /* For methods, the list of overloaded methods. */
2414 struct fn_field *fns_ptr = NULL;
2415 /* For non-methods, the list of overloaded function symbols. */
2416 struct symbol **oload_syms = NULL;
2417 /* Number of overloaded instances being considered. */
2419 struct type *basetype = NULL;
2422 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2424 const char *obj_type_name = NULL;
2425 const char *func_name = NULL;
2426 enum oload_classification match_quality;
2427 enum oload_classification method_match_quality = INCOMPATIBLE;
2428 enum oload_classification func_match_quality = INCOMPATIBLE;
2430 /* Get the list of overloaded methods or functions. */
2431 if (method == METHOD || method == BOTH)
2435 /* OBJ may be a pointer value rather than the object itself. */
2436 obj = coerce_ref (obj);
2437 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2438 obj = coerce_ref (value_ind (obj));
2439 obj_type_name = TYPE_NAME (value_type (obj));
2441 /* First check whether this is a data member, e.g. a pointer to
2443 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2445 *valp = search_struct_field (name, obj, 0,
2446 check_typedef (value_type (obj)), 0);
2450 do_cleanups (all_cleanups);
2455 /* Retrieve the list of methods with the name NAME. */
2456 fns_ptr = value_find_oload_method_list (&temp, name,
2458 &basetype, &boffset);
2459 /* If this is a method only search, and no methods were found
2460 the search has faild. */
2461 if (method == METHOD && (!fns_ptr || !num_fns))
2462 error (_("Couldn't find method %s%s%s"),
2464 (obj_type_name && *obj_type_name) ? "::" : "",
2466 /* If we are dealing with stub method types, they should have
2467 been resolved by find_method_list via
2468 value_find_oload_method_list above. */
2471 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2472 method_oload_champ = find_oload_champ (args, nargs,
2474 NULL, &method_badness);
2476 method_match_quality =
2477 classify_oload_match (method_badness, nargs,
2478 oload_method_static (method, fns_ptr,
2479 method_oload_champ));
2481 make_cleanup (xfree, method_badness);
2486 if (method == NON_METHOD || method == BOTH)
2488 const char *qualified_name = NULL;
2490 /* If the overload match is being search for both as a method
2491 and non member function, the first argument must now be
2494 args[0] = value_ind (args[0]);
2498 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2500 /* If we have a function with a C++ name, try to extract just
2501 the function part. Do not try this for non-functions (e.g.
2502 function pointers). */
2504 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2509 temp = cp_func_name (qualified_name);
2511 /* If cp_func_name did not remove anything, the name of the
2512 symbol did not include scope or argument types - it was
2513 probably a C-style function. */
2516 make_cleanup (xfree, temp);
2517 if (strcmp (temp, qualified_name) == 0)
2527 qualified_name = name;
2530 /* If there was no C++ name, this must be a C-style function or
2531 not a function at all. Just return the same symbol. Do the
2532 same if cp_func_name fails for some reason. */
2533 if (func_name == NULL)
2536 do_cleanups (all_cleanups);
2540 func_oload_champ = find_oload_champ_namespace (args, nargs,
2547 if (func_oload_champ >= 0)
2548 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2550 make_cleanup (xfree, oload_syms);
2551 make_cleanup (xfree, func_badness);
2554 /* Did we find a match ? */
2555 if (method_oload_champ == -1 && func_oload_champ == -1)
2556 throw_error (NOT_FOUND_ERROR,
2557 _("No symbol \"%s\" in current context."),
2560 /* If we have found both a method match and a function
2561 match, find out which one is better, and calculate match
2563 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2565 switch (compare_badness (func_badness, method_badness))
2567 case 0: /* Top two contenders are equally good. */
2568 /* FIXME: GDB does not support the general ambiguous case.
2569 All candidates should be collected and presented the
2571 error (_("Ambiguous overload resolution"));
2573 case 1: /* Incomparable top contenders. */
2574 /* This is an error incompatible candidates
2575 should not have been proposed. */
2576 error (_("Internal error: incompatible "
2577 "overload candidates proposed"));
2579 case 2: /* Function champion. */
2580 method_oload_champ = -1;
2581 match_quality = func_match_quality;
2583 case 3: /* Method champion. */
2584 func_oload_champ = -1;
2585 match_quality = method_match_quality;
2588 error (_("Internal error: unexpected overload comparison result"));
2594 /* We have either a method match or a function match. */
2595 if (method_oload_champ >= 0)
2596 match_quality = method_match_quality;
2598 match_quality = func_match_quality;
2601 if (match_quality == INCOMPATIBLE)
2603 if (method == METHOD)
2604 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2606 (obj_type_name && *obj_type_name) ? "::" : "",
2609 error (_("Cannot resolve function %s to any overloaded instance"),
2612 else if (match_quality == NON_STANDARD)
2614 if (method == METHOD)
2615 warning (_("Using non-standard conversion to match "
2616 "method %s%s%s to supplied arguments"),
2618 (obj_type_name && *obj_type_name) ? "::" : "",
2621 warning (_("Using non-standard conversion to match "
2622 "function %s to supplied arguments"),
2626 if (staticp != NULL)
2627 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2629 if (method_oload_champ >= 0)
2631 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2632 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2635 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2639 *symp = oload_syms[func_oload_champ];
2643 struct type *temp_type = check_typedef (value_type (temp));
2644 struct type *objtype = check_typedef (obj_type);
2646 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2647 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2648 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2650 temp = value_addr (temp);
2655 do_cleanups (all_cleanups);
2657 switch (match_quality)
2663 default: /* STANDARD */
2668 /* Find the best overload match, searching for FUNC_NAME in namespaces
2669 contained in QUALIFIED_NAME until it either finds a good match or
2670 runs out of namespaces. It stores the overloaded functions in
2671 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2672 calling function is responsible for freeing *OLOAD_SYMS and
2673 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2677 find_oload_champ_namespace (struct value **args, int nargs,
2678 const char *func_name,
2679 const char *qualified_name,
2680 struct symbol ***oload_syms,
2681 struct badness_vector **oload_champ_bv,
2686 find_oload_champ_namespace_loop (args, nargs,
2689 oload_syms, oload_champ_bv,
2696 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2697 how deep we've looked for namespaces, and the champ is stored in
2698 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2699 if it isn't. Other arguments are the same as in
2700 find_oload_champ_namespace
2702 It is the caller's responsibility to free *OLOAD_SYMS and
2706 find_oload_champ_namespace_loop (struct value **args, int nargs,
2707 const char *func_name,
2708 const char *qualified_name,
2710 struct symbol ***oload_syms,
2711 struct badness_vector **oload_champ_bv,
2715 int next_namespace_len = namespace_len;
2716 int searched_deeper = 0;
2718 struct cleanup *old_cleanups;
2719 int new_oload_champ;
2720 struct symbol **new_oload_syms;
2721 struct badness_vector *new_oload_champ_bv;
2722 char *new_namespace;
2724 if (next_namespace_len != 0)
2726 gdb_assert (qualified_name[next_namespace_len] == ':');
2727 next_namespace_len += 2;
2729 next_namespace_len +=
2730 cp_find_first_component (qualified_name + next_namespace_len);
2732 /* Initialize these to values that can safely be xfree'd. */
2734 *oload_champ_bv = NULL;
2736 /* First, see if we have a deeper namespace we can search in.
2737 If we get a good match there, use it. */
2739 if (qualified_name[next_namespace_len] == ':')
2741 searched_deeper = 1;
2743 if (find_oload_champ_namespace_loop (args, nargs,
2744 func_name, qualified_name,
2746 oload_syms, oload_champ_bv,
2747 oload_champ, no_adl))
2753 /* If we reach here, either we're in the deepest namespace or we
2754 didn't find a good match in a deeper namespace. But, in the
2755 latter case, we still have a bad match in a deeper namespace;
2756 note that we might not find any match at all in the current
2757 namespace. (There's always a match in the deepest namespace,
2758 because this overload mechanism only gets called if there's a
2759 function symbol to start off with.) */
2761 old_cleanups = make_cleanup (xfree, *oload_syms);
2762 make_cleanup (xfree, *oload_champ_bv);
2763 new_namespace = alloca (namespace_len + 1);
2764 strncpy (new_namespace, qualified_name, namespace_len);
2765 new_namespace[namespace_len] = '\0';
2766 new_oload_syms = make_symbol_overload_list (func_name,
2769 /* If we have reached the deepest level perform argument
2770 determined lookup. */
2771 if (!searched_deeper && !no_adl)
2774 struct type **arg_types;
2776 /* Prepare list of argument types for overload resolution. */
2777 arg_types = (struct type **)
2778 alloca (nargs * (sizeof (struct type *)));
2779 for (ix = 0; ix < nargs; ix++)
2780 arg_types[ix] = value_type (args[ix]);
2781 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2784 while (new_oload_syms[num_fns])
2787 new_oload_champ = find_oload_champ (args, nargs, num_fns,
2788 NULL, new_oload_syms,
2789 &new_oload_champ_bv);
2791 /* Case 1: We found a good match. Free earlier matches (if any),
2792 and return it. Case 2: We didn't find a good match, but we're
2793 not the deepest function. Then go with the bad match that the
2794 deeper function found. Case 3: We found a bad match, and we're
2795 the deepest function. Then return what we found, even though
2796 it's a bad match. */
2798 if (new_oload_champ != -1
2799 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2801 *oload_syms = new_oload_syms;
2802 *oload_champ = new_oload_champ;
2803 *oload_champ_bv = new_oload_champ_bv;
2804 do_cleanups (old_cleanups);
2807 else if (searched_deeper)
2809 xfree (new_oload_syms);
2810 xfree (new_oload_champ_bv);
2811 discard_cleanups (old_cleanups);
2816 *oload_syms = new_oload_syms;
2817 *oload_champ = new_oload_champ;
2818 *oload_champ_bv = new_oload_champ_bv;
2819 do_cleanups (old_cleanups);
2824 /* Look for a function to take NARGS args of ARGS. Find
2825 the best match from among the overloaded methods or functions
2826 given by FNS_PTR or OLOAD_SYMS, respectively. One, and only one of
2827 FNS_PTR and OLOAD_SYMS can be non-NULL. The number of
2828 methods/functions in the non-NULL list is given by NUM_FNS.
2829 Return the index of the best match; store an indication of the
2830 quality of the match in OLOAD_CHAMP_BV.
2832 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2835 find_oload_champ (struct value **args, int nargs,
2836 int num_fns, struct fn_field *fns_ptr,
2837 struct symbol **oload_syms,
2838 struct badness_vector **oload_champ_bv)
2841 /* A measure of how good an overloaded instance is. */
2842 struct badness_vector *bv;
2843 /* Index of best overloaded function. */
2844 int oload_champ = -1;
2845 /* Current ambiguity state for overload resolution. */
2846 int oload_ambiguous = 0;
2847 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2849 /* A champion can be found among methods alone, or among functions
2850 alone, but not both. */
2851 gdb_assert ((fns_ptr != NULL) + (oload_syms != NULL) == 1);
2853 *oload_champ_bv = NULL;
2855 /* Consider each candidate in turn. */
2856 for (ix = 0; ix < num_fns; ix++)
2861 struct type **parm_types;
2863 if (fns_ptr != NULL)
2865 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2866 static_offset = oload_method_static (1, fns_ptr, ix);
2870 /* If it's not a method, this is the proper place. */
2871 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2875 /* Prepare array of parameter types. */
2876 parm_types = (struct type **)
2877 xmalloc (nparms * (sizeof (struct type *)));
2878 for (jj = 0; jj < nparms; jj++)
2879 parm_types[jj] = (fns_ptr != NULL
2880 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2881 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2884 /* Compare parameter types to supplied argument types. Skip
2885 THIS for static methods. */
2886 bv = rank_function (parm_types, nparms,
2887 args + static_offset,
2888 nargs - static_offset);
2890 if (!*oload_champ_bv)
2892 *oload_champ_bv = bv;
2895 else /* See whether current candidate is better or worse than
2897 switch (compare_badness (bv, *oload_champ_bv))
2899 case 0: /* Top two contenders are equally good. */
2900 oload_ambiguous = 1;
2902 case 1: /* Incomparable top contenders. */
2903 oload_ambiguous = 2;
2905 case 2: /* New champion, record details. */
2906 *oload_champ_bv = bv;
2907 oload_ambiguous = 0;
2918 fprintf_filtered (gdb_stderr,
2919 "Overloaded method instance %s, # of parms %d\n",
2920 fns_ptr[ix].physname, nparms);
2922 fprintf_filtered (gdb_stderr,
2923 "Overloaded function instance "
2924 "%s # of parms %d\n",
2925 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2927 for (jj = 0; jj < nargs - static_offset; jj++)
2928 fprintf_filtered (gdb_stderr,
2929 "...Badness @ %d : %d\n",
2930 jj, bv->rank[jj].rank);
2931 fprintf_filtered (gdb_stderr, "Overload resolution "
2932 "champion is %d, ambiguous? %d\n",
2933 oload_champ, oload_ambiguous);
2940 /* Return 1 if we're looking at a static method, 0 if we're looking at
2941 a non-static method or a function that isn't a method. */
2944 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2946 if (method && fns_ptr && index >= 0
2947 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2953 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2955 static enum oload_classification
2956 classify_oload_match (struct badness_vector *oload_champ_bv,
2961 enum oload_classification worst = STANDARD;
2963 for (ix = 1; ix <= nargs - static_offset; ix++)
2965 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
2966 or worse return INCOMPATIBLE. */
2967 if (compare_ranks (oload_champ_bv->rank[ix],
2968 INCOMPATIBLE_TYPE_BADNESS) <= 0)
2969 return INCOMPATIBLE; /* Truly mismatched types. */
2970 /* Otherwise If this conversion is as bad as
2971 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
2972 else if (compare_ranks (oload_champ_bv->rank[ix],
2973 NS_POINTER_CONVERSION_BADNESS) <= 0)
2974 worst = NON_STANDARD; /* Non-standard type conversions
2978 /* If no INCOMPATIBLE classification was found, return the worst one
2979 that was found (if any). */
2983 /* C++: return 1 is NAME is a legitimate name for the destructor of
2984 type TYPE. If TYPE does not have a destructor, or if NAME is
2985 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
2986 have CHECK_TYPEDEF applied, this function will apply it itself. */
2989 destructor_name_p (const char *name, struct type *type)
2993 const char *dname = type_name_no_tag_or_error (type);
2994 const char *cp = strchr (dname, '<');
2997 /* Do not compare the template part for template classes. */
2999 len = strlen (dname);
3002 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3003 error (_("name of destructor must equal name of class"));
3010 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3011 return the appropriate member (or the address of the member, if
3012 WANT_ADDRESS). This function is used to resolve user expressions
3013 of the form "DOMAIN::NAME". For more details on what happens, see
3014 the comment before value_struct_elt_for_reference. */
3017 value_aggregate_elt (struct type *curtype, char *name,
3018 struct type *expect_type, int want_address,
3021 switch (TYPE_CODE (curtype))
3023 case TYPE_CODE_STRUCT:
3024 case TYPE_CODE_UNION:
3025 return value_struct_elt_for_reference (curtype, 0, curtype,
3027 want_address, noside);
3028 case TYPE_CODE_NAMESPACE:
3029 return value_namespace_elt (curtype, name,
3030 want_address, noside);
3032 internal_error (__FILE__, __LINE__,
3033 _("non-aggregate type in value_aggregate_elt"));
3037 /* Compares the two method/function types T1 and T2 for "equality"
3038 with respect to the methods' parameters. If the types of the
3039 two parameter lists are the same, returns 1; 0 otherwise. This
3040 comparison may ignore any artificial parameters in T1 if
3041 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3042 the first artificial parameter in T1, assumed to be a 'this' pointer.
3044 The type T2 is expected to have come from make_params (in eval.c). */
3047 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3051 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3054 /* If skipping artificial fields, find the first real field
3056 if (skip_artificial)
3058 while (start < TYPE_NFIELDS (t1)
3059 && TYPE_FIELD_ARTIFICIAL (t1, start))
3063 /* Now compare parameters. */
3065 /* Special case: a method taking void. T1 will contain no
3066 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3067 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3068 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3071 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3075 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3077 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3078 TYPE_FIELD_TYPE (t2, i), NULL),
3079 EXACT_MATCH_BADNESS) != 0)
3089 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3090 return the address of this member as a "pointer to member" type.
3091 If INTYPE is non-null, then it will be the type of the member we
3092 are looking for. This will help us resolve "pointers to member
3093 functions". This function is used to resolve user expressions of
3094 the form "DOMAIN::NAME". */
3096 static struct value *
3097 value_struct_elt_for_reference (struct type *domain, int offset,
3098 struct type *curtype, char *name,
3099 struct type *intype,
3103 struct type *t = curtype;
3105 struct value *v, *result;
3107 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3108 && TYPE_CODE (t) != TYPE_CODE_UNION)
3109 error (_("Internal error: non-aggregate type "
3110 "to value_struct_elt_for_reference"));
3112 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3114 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3116 if (t_field_name && strcmp (t_field_name, name) == 0)
3118 if (field_is_static (&TYPE_FIELD (t, i)))
3120 v = value_static_field (t, i);
3125 if (TYPE_FIELD_PACKED (t, i))
3126 error (_("pointers to bitfield members not allowed"));
3129 return value_from_longest
3130 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3131 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3132 else if (noside != EVAL_NORMAL)
3133 return allocate_value (TYPE_FIELD_TYPE (t, i));
3136 /* Try to evaluate NAME as a qualified name with implicit
3137 this pointer. In this case, attempt to return the
3138 equivalent to `this->*(&TYPE::NAME)'. */
3139 v = value_of_this_silent (current_language);
3144 struct type *type, *tmp;
3146 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3147 type = check_typedef (value_type (ptr));
3148 gdb_assert (type != NULL
3149 && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR);
3150 tmp = lookup_pointer_type (TYPE_DOMAIN_TYPE (type));
3151 v = value_cast_pointers (tmp, v, 1);
3152 mem_offset = value_as_long (ptr);
3153 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3154 result = value_from_pointer (tmp,
3155 value_as_long (v) + mem_offset);
3156 return value_ind (result);
3159 error (_("Cannot reference non-static field \"%s\""), name);
3164 /* C++: If it was not found as a data field, then try to return it
3165 as a pointer to a method. */
3167 /* Perform all necessary dereferencing. */
3168 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3169 intype = TYPE_TARGET_TYPE (intype);
3171 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3173 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3174 char dem_opname[64];
3176 if (strncmp (t_field_name, "__", 2) == 0
3177 || strncmp (t_field_name, "op", 2) == 0
3178 || strncmp (t_field_name, "type", 4) == 0)
3180 if (cplus_demangle_opname (t_field_name,
3181 dem_opname, DMGL_ANSI))
3182 t_field_name = dem_opname;
3183 else if (cplus_demangle_opname (t_field_name,
3185 t_field_name = dem_opname;
3187 if (t_field_name && strcmp (t_field_name, name) == 0)
3190 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3191 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3193 check_stub_method_group (t, i);
3197 for (j = 0; j < len; ++j)
3199 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3200 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3206 error (_("no member function matches "
3207 "that type instantiation"));
3214 for (ii = 0; ii < len; ++ii)
3216 /* Skip artificial methods. This is necessary if,
3217 for example, the user wants to "print
3218 subclass::subclass" with only one user-defined
3219 constructor. There is no ambiguity in this case.
3220 We are careful here to allow artificial methods
3221 if they are the unique result. */
3222 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3229 /* Desired method is ambiguous if more than one
3230 method is defined. */
3231 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3232 error (_("non-unique member `%s' requires "
3233 "type instantiation"), name);
3239 error (_("no matching member function"));
3242 if (TYPE_FN_FIELD_STATIC_P (f, j))
3245 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3252 return value_addr (read_var_value (s, 0));
3254 return read_var_value (s, 0);
3257 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3261 result = allocate_value
3262 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3263 cplus_make_method_ptr (value_type (result),
3264 value_contents_writeable (result),
3265 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3267 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3268 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3270 error (_("Cannot reference virtual member function \"%s\""),
3276 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3282 v = read_var_value (s, 0);
3287 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3288 cplus_make_method_ptr (value_type (result),
3289 value_contents_writeable (result),
3290 value_address (v), 0);
3296 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3301 if (BASETYPE_VIA_VIRTUAL (t, i))
3304 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3305 v = value_struct_elt_for_reference (domain,
3306 offset + base_offset,
3307 TYPE_BASECLASS (t, i),
3309 want_address, noside);
3314 /* As a last chance, pretend that CURTYPE is a namespace, and look
3315 it up that way; this (frequently) works for types nested inside
3318 return value_maybe_namespace_elt (curtype, name,
3319 want_address, noside);
3322 /* C++: Return the member NAME of the namespace given by the type
3325 static struct value *
3326 value_namespace_elt (const struct type *curtype,
3327 char *name, int want_address,
3330 struct value *retval = value_maybe_namespace_elt (curtype, name,
3335 error (_("No symbol \"%s\" in namespace \"%s\"."),
3336 name, TYPE_TAG_NAME (curtype));
3341 /* A helper function used by value_namespace_elt and
3342 value_struct_elt_for_reference. It looks up NAME inside the
3343 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3344 is a class and NAME refers to a type in CURTYPE itself (as opposed
3345 to, say, some base class of CURTYPE). */
3347 static struct value *
3348 value_maybe_namespace_elt (const struct type *curtype,
3349 char *name, int want_address,
3352 const char *namespace_name = TYPE_TAG_NAME (curtype);
3354 struct value *result;
3356 sym = cp_lookup_symbol_namespace (namespace_name, name,
3357 get_selected_block (0), VAR_DOMAIN);
3361 char *concatenated_name = alloca (strlen (namespace_name) + 2
3362 + strlen (name) + 1);
3364 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3365 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3370 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3371 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3372 result = allocate_value (SYMBOL_TYPE (sym));
3374 result = value_of_variable (sym, get_selected_block (0));
3376 if (result && want_address)
3377 result = value_addr (result);
3382 /* Given a pointer or a reference value V, find its real (RTTI) type.
3384 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3385 and refer to the values computed for the object pointed to. */
3388 value_rtti_indirect_type (struct value *v, int *full,
3389 int *top, int *using_enc)
3391 struct value *target;
3392 struct type *type, *real_type, *target_type;
3394 type = value_type (v);
3395 type = check_typedef (type);
3396 if (TYPE_CODE (type) == TYPE_CODE_REF)
3397 target = coerce_ref (v);
3398 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3399 target = value_ind (v);
3403 real_type = value_rtti_type (target, full, top, using_enc);
3407 /* Copy qualifiers to the referenced object. */
3408 target_type = value_type (target);
3409 real_type = make_cv_type (TYPE_CONST (target_type),
3410 TYPE_VOLATILE (target_type), real_type, NULL);
3411 if (TYPE_CODE (type) == TYPE_CODE_REF)
3412 real_type = lookup_reference_type (real_type);
3413 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3414 real_type = lookup_pointer_type (real_type);
3416 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3418 /* Copy qualifiers to the pointer/reference. */
3419 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3426 /* Given a value pointed to by ARGP, check its real run-time type, and
3427 if that is different from the enclosing type, create a new value
3428 using the real run-time type as the enclosing type (and of the same
3429 type as ARGP) and return it, with the embedded offset adjusted to
3430 be the correct offset to the enclosed object. RTYPE is the type,
3431 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3432 by value_rtti_type(). If these are available, they can be supplied
3433 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3434 NULL if they're not available. */
3437 value_full_object (struct value *argp,
3439 int xfull, int xtop,
3442 struct type *real_type;
3446 struct value *new_val;
3453 using_enc = xusing_enc;
3456 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3458 /* If no RTTI data, or if object is already complete, do nothing. */
3459 if (!real_type || real_type == value_enclosing_type (argp))
3462 /* In a destructor we might see a real type that is a superclass of
3463 the object's type. In this case it is better to leave the object
3466 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3469 /* If we have the full object, but for some reason the enclosing
3470 type is wrong, set it. */
3471 /* pai: FIXME -- sounds iffy */
3474 argp = value_copy (argp);
3475 set_value_enclosing_type (argp, real_type);
3479 /* Check if object is in memory. */
3480 if (VALUE_LVAL (argp) != lval_memory)
3482 warning (_("Couldn't retrieve complete object of RTTI "
3483 "type %s; object may be in register(s)."),
3484 TYPE_NAME (real_type));
3489 /* All other cases -- retrieve the complete object. */
3490 /* Go back by the computed top_offset from the beginning of the
3491 object, adjusting for the embedded offset of argp if that's what
3492 value_rtti_type used for its computation. */
3493 new_val = value_at_lazy (real_type, value_address (argp) - top +
3494 (using_enc ? 0 : value_embedded_offset (argp)));
3495 deprecated_set_value_type (new_val, value_type (argp));
3496 set_value_embedded_offset (new_val, (using_enc
3497 ? top + value_embedded_offset (argp)
3503 /* Return the value of the local variable, if one exists. Throw error
3504 otherwise, such as if the request is made in an inappropriate context. */
3507 value_of_this (const struct language_defn *lang)
3511 struct frame_info *frame;
3513 if (!lang->la_name_of_this)
3514 error (_("no `this' in current language"));
3516 frame = get_selected_frame (_("no frame selected"));
3518 b = get_frame_block (frame, NULL);
3520 sym = lookup_language_this (lang, b);
3522 error (_("current stack frame does not contain a variable named `%s'"),
3523 lang->la_name_of_this);
3525 return read_var_value (sym, frame);
3528 /* Return the value of the local variable, if one exists. Return NULL
3529 otherwise. Never throw error. */
3532 value_of_this_silent (const struct language_defn *lang)
3534 struct value *ret = NULL;
3535 volatile struct gdb_exception except;
3537 TRY_CATCH (except, RETURN_MASK_ERROR)
3539 ret = value_of_this (lang);
3545 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3546 elements long, starting at LOWBOUND. The result has the same lower
3547 bound as the original ARRAY. */
3550 value_slice (struct value *array, int lowbound, int length)
3552 struct type *slice_range_type, *slice_type, *range_type;
3553 LONGEST lowerbound, upperbound;
3554 struct value *slice;
3555 struct type *array_type;
3557 array_type = check_typedef (value_type (array));
3558 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3559 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3560 error (_("cannot take slice of non-array"));
3562 range_type = TYPE_INDEX_TYPE (array_type);
3563 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3564 error (_("slice from bad array or bitstring"));
3566 if (lowbound < lowerbound || length < 0
3567 || lowbound + length - 1 > upperbound)
3568 error (_("slice out of range"));
3570 /* FIXME-type-allocation: need a way to free this type when we are
3572 slice_range_type = create_range_type ((struct type *) NULL,
3573 TYPE_TARGET_TYPE (range_type),
3575 lowbound + length - 1);
3578 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3580 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3582 slice_type = create_array_type ((struct type *) NULL,
3585 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3587 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3588 slice = allocate_value_lazy (slice_type);
3591 slice = allocate_value (slice_type);
3592 value_contents_copy (slice, 0, array, offset,
3593 TYPE_LENGTH (slice_type));
3596 set_value_component_location (slice, array);
3597 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3598 set_value_offset (slice, value_offset (array) + offset);
3604 /* Create a value for a FORTRAN complex number. Currently most of the
3605 time values are coerced to COMPLEX*16 (i.e. a complex number
3606 composed of 2 doubles. This really should be a smarter routine
3607 that figures out precision inteligently as opposed to assuming
3608 doubles. FIXME: fmb */
3611 value_literal_complex (struct value *arg1,
3616 struct type *real_type = TYPE_TARGET_TYPE (type);
3618 val = allocate_value (type);
3619 arg1 = value_cast (real_type, arg1);
3620 arg2 = value_cast (real_type, arg2);
3622 memcpy (value_contents_raw (val),
3623 value_contents (arg1), TYPE_LENGTH (real_type));
3624 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3625 value_contents (arg2), TYPE_LENGTH (real_type));
3629 /* Cast a value into the appropriate complex data type. */
3631 static struct value *
3632 cast_into_complex (struct type *type, struct value *val)
3634 struct type *real_type = TYPE_TARGET_TYPE (type);
3636 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3638 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3639 struct value *re_val = allocate_value (val_real_type);
3640 struct value *im_val = allocate_value (val_real_type);
3642 memcpy (value_contents_raw (re_val),
3643 value_contents (val), TYPE_LENGTH (val_real_type));
3644 memcpy (value_contents_raw (im_val),
3645 value_contents (val) + TYPE_LENGTH (val_real_type),
3646 TYPE_LENGTH (val_real_type));
3648 return value_literal_complex (re_val, im_val, type);
3650 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3651 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3652 return value_literal_complex (val,
3653 value_zero (real_type, not_lval),
3656 error (_("cannot cast non-number to complex"));
3660 _initialize_valops (void)
3662 add_setshow_boolean_cmd ("overload-resolution", class_support,
3663 &overload_resolution, _("\
3664 Set overload resolution in evaluating C++ functions."), _("\
3665 Show overload resolution in evaluating C++ functions."),
3667 show_overload_resolution,
3668 &setlist, &showlist);
3669 overload_resolution = 1;