1 /* Perform non-arithmetic operations on values, for GDB.
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
35 #include "dictionary.h"
36 #include "cp-support.h"
38 #include "user-regs.h"
39 #include "tracepoint.h"
41 #include "gdb_string.h"
42 #include "gdb_assert.h"
43 #include "cp-support.h"
47 #include "exceptions.h"
49 extern unsigned int overload_debug;
50 /* Local functions. */
52 static int typecmp (int staticp, int varargs, int nargs,
53 struct field t1[], struct value *t2[]);
55 static struct value *search_struct_field (const char *, struct value *,
56 int, struct type *, int);
58 static struct value *search_struct_method (const char *, struct value **,
60 int, int *, struct type *);
62 static int find_oload_champ_namespace (struct value **, int,
63 const char *, const char *,
65 struct badness_vector **,
69 int find_oload_champ_namespace_loop (struct value **, int,
70 const char *, const char *,
71 int, struct symbol ***,
72 struct badness_vector **, int *,
75 static int find_oload_champ (struct value **, int, int, int,
76 struct fn_field *, struct symbol **,
77 struct badness_vector **);
79 static int oload_method_static (int, struct fn_field *, int);
81 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
84 oload_classification classify_oload_match (struct badness_vector *,
87 static struct value *value_struct_elt_for_reference (struct type *,
93 static struct value *value_namespace_elt (const struct type *,
94 char *, int , enum noside);
96 static struct value *value_maybe_namespace_elt (const struct type *,
100 static CORE_ADDR allocate_space_in_inferior (int);
102 static struct value *cast_into_complex (struct type *, struct value *);
104 static struct fn_field *find_method_list (struct value **, const char *,
105 int, struct type *, int *,
106 struct type **, int *);
108 void _initialize_valops (void);
111 /* Flag for whether we want to abandon failed expression evals by
114 static int auto_abandon = 0;
117 int overload_resolution = 0;
119 show_overload_resolution (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c,
123 fprintf_filtered (file, _("Overload resolution in evaluating "
124 "C++ functions is %s.\n"),
128 /* Find the address of function name NAME in the inferior. If OBJF_P
129 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
133 find_function_in_inferior (const char *name, struct objfile **objf_p)
137 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
140 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
142 error (_("\"%s\" exists in this program but is not a function."),
147 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
149 return value_of_variable (sym, NULL);
153 struct minimal_symbol *msymbol =
154 lookup_minimal_symbol (name, NULL, NULL);
158 struct objfile *objfile = msymbol_objfile (msymbol);
159 struct gdbarch *gdbarch = get_objfile_arch (objfile);
163 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
164 type = lookup_function_type (type);
165 type = lookup_pointer_type (type);
166 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
171 return value_from_pointer (type, maddr);
175 if (!target_has_execution)
176 error (_("evaluation of this expression "
177 "requires the target program to be active"));
179 error (_("evaluation of this expression requires the "
180 "program to have a function \"%s\"."),
186 /* Allocate NBYTES of space in the inferior using the inferior's
187 malloc and return a value that is a pointer to the allocated
191 value_allocate_space_in_inferior (int len)
193 struct objfile *objf;
194 struct value *val = find_function_in_inferior ("malloc", &objf);
195 struct gdbarch *gdbarch = get_objfile_arch (objf);
196 struct value *blocklen;
198 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
199 val = call_function_by_hand (val, 1, &blocklen);
200 if (value_logical_not (val))
202 if (!target_has_execution)
203 error (_("No memory available to program now: "
204 "you need to start the target first"));
206 error (_("No memory available to program: call to malloc failed"));
212 allocate_space_in_inferior (int len)
214 return value_as_long (value_allocate_space_in_inferior (len));
217 /* Cast struct value VAL to type TYPE and return as a value.
218 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
219 for this to work. Typedef to one of the codes is permitted.
220 Returns NULL if the cast is neither an upcast nor a downcast. */
222 static struct value *
223 value_cast_structs (struct type *type, struct value *v2)
229 gdb_assert (type != NULL && v2 != NULL);
231 t1 = check_typedef (type);
232 t2 = check_typedef (value_type (v2));
234 /* Check preconditions. */
235 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
236 || TYPE_CODE (t1) == TYPE_CODE_UNION)
237 && !!"Precondition is that type is of STRUCT or UNION kind.");
238 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
239 || TYPE_CODE (t2) == TYPE_CODE_UNION)
240 && !!"Precondition is that value is of STRUCT or UNION kind");
242 if (TYPE_NAME (t1) != NULL
243 && TYPE_NAME (t2) != NULL
244 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
247 /* Upcasting: look in the type of the source to see if it contains the
248 type of the target as a superclass. If so, we'll need to
249 offset the pointer rather than just change its type. */
250 if (TYPE_NAME (t1) != NULL)
252 v = search_struct_field (type_name_no_tag (t1),
258 /* Downcasting: look in the type of the target to see if it contains the
259 type of the source as a superclass. If so, we'll need to
260 offset the pointer rather than just change its type. */
261 if (TYPE_NAME (t2) != NULL)
263 /* Try downcasting using the run-time type of the value. */
264 int full, top, using_enc;
265 struct type *real_type;
267 real_type = value_rtti_type (v2, &full, &top, &using_enc);
270 v = value_full_object (v2, real_type, full, top, using_enc);
271 v = value_at_lazy (real_type, value_address (v));
273 /* We might be trying to cast to the outermost enclosing
274 type, in which case search_struct_field won't work. */
275 if (TYPE_NAME (real_type) != NULL
276 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
279 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
284 /* Try downcasting using information from the destination type
285 T2. This wouldn't work properly for classes with virtual
286 bases, but those were handled above. */
287 v = search_struct_field (type_name_no_tag (t2),
288 value_zero (t1, not_lval), 0, t1, 1);
291 /* Downcasting is possible (t1 is superclass of v2). */
292 CORE_ADDR addr2 = value_address (v2);
294 addr2 -= value_address (v) + value_embedded_offset (v);
295 return value_at (type, addr2);
302 /* Cast one pointer or reference type to another. Both TYPE and
303 the type of ARG2 should be pointer types, or else both should be
304 reference types. If SUBCLASS_CHECK is non-zero, this will force a
305 check to see whether TYPE is a superclass of ARG2's type. If
306 SUBCLASS_CHECK is zero, then the subclass check is done only when
307 ARG2 is itself non-zero. Returns the new pointer or reference. */
310 value_cast_pointers (struct type *type, struct value *arg2,
313 struct type *type1 = check_typedef (type);
314 struct type *type2 = check_typedef (value_type (arg2));
315 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
316 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
318 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
319 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
320 && (subclass_check || !value_logical_not (arg2)))
324 if (TYPE_CODE (type2) == TYPE_CODE_REF)
325 v2 = coerce_ref (arg2);
327 v2 = value_ind (arg2);
328 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
329 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
330 v2 = value_cast_structs (t1, v2);
331 /* At this point we have what we can have, un-dereference if needed. */
334 struct value *v = value_addr (v2);
336 deprecated_set_value_type (v, type);
341 /* No superclass found, just change the pointer type. */
342 arg2 = value_copy (arg2);
343 deprecated_set_value_type (arg2, type);
344 set_value_enclosing_type (arg2, type);
345 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
349 /* Cast value ARG2 to type TYPE and return as a value.
350 More general than a C cast: accepts any two types of the same length,
351 and if ARG2 is an lvalue it can be cast into anything at all. */
352 /* In C++, casts may change pointer or object representations. */
355 value_cast (struct type *type, struct value *arg2)
357 enum type_code code1;
358 enum type_code code2;
362 int convert_to_boolean = 0;
364 if (value_type (arg2) == type)
367 code1 = TYPE_CODE (check_typedef (type));
369 /* Check if we are casting struct reference to struct reference. */
370 if (code1 == TYPE_CODE_REF)
372 /* We dereference type; then we recurse and finally
373 we generate value of the given reference. Nothing wrong with
375 struct type *t1 = check_typedef (type);
376 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
377 struct value *val = value_cast (dereftype, arg2);
379 return value_ref (val);
382 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
384 if (code2 == TYPE_CODE_REF)
385 /* We deref the value and then do the cast. */
386 return value_cast (type, coerce_ref (arg2));
388 CHECK_TYPEDEF (type);
389 code1 = TYPE_CODE (type);
390 arg2 = coerce_ref (arg2);
391 type2 = check_typedef (value_type (arg2));
393 /* You can't cast to a reference type. See value_cast_pointers
395 gdb_assert (code1 != TYPE_CODE_REF);
397 /* A cast to an undetermined-length array_type, such as
398 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
399 where N is sizeof(OBJECT)/sizeof(TYPE). */
400 if (code1 == TYPE_CODE_ARRAY)
402 struct type *element_type = TYPE_TARGET_TYPE (type);
403 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
405 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
407 struct type *range_type = TYPE_INDEX_TYPE (type);
408 int val_length = TYPE_LENGTH (type2);
409 LONGEST low_bound, high_bound, new_length;
411 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
412 low_bound = 0, high_bound = 0;
413 new_length = val_length / element_length;
414 if (val_length % element_length != 0)
415 warning (_("array element type size does not "
416 "divide object size in cast"));
417 /* FIXME-type-allocation: need a way to free this type when
418 we are done with it. */
419 range_type = create_range_type ((struct type *) NULL,
420 TYPE_TARGET_TYPE (range_type),
422 new_length + low_bound - 1);
423 deprecated_set_value_type (arg2,
424 create_array_type ((struct type *) NULL,
431 if (current_language->c_style_arrays
432 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
433 && !TYPE_VECTOR (type2))
434 arg2 = value_coerce_array (arg2);
436 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
437 arg2 = value_coerce_function (arg2);
439 type2 = check_typedef (value_type (arg2));
440 code2 = TYPE_CODE (type2);
442 if (code1 == TYPE_CODE_COMPLEX)
443 return cast_into_complex (type, arg2);
444 if (code1 == TYPE_CODE_BOOL)
446 code1 = TYPE_CODE_INT;
447 convert_to_boolean = 1;
449 if (code1 == TYPE_CODE_CHAR)
450 code1 = TYPE_CODE_INT;
451 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
452 code2 = TYPE_CODE_INT;
454 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
455 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
456 || code2 == TYPE_CODE_RANGE);
458 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
459 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
460 && TYPE_NAME (type) != 0)
462 struct value *v = value_cast_structs (type, arg2);
468 if (code1 == TYPE_CODE_FLT && scalar)
469 return value_from_double (type, value_as_double (arg2));
470 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
472 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
473 int dec_len = TYPE_LENGTH (type);
476 if (code2 == TYPE_CODE_FLT)
477 decimal_from_floating (arg2, dec, dec_len, byte_order);
478 else if (code2 == TYPE_CODE_DECFLOAT)
479 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
480 byte_order, dec, dec_len, byte_order);
482 /* The only option left is an integral type. */
483 decimal_from_integral (arg2, dec, dec_len, byte_order);
485 return value_from_decfloat (type, dec);
487 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
488 || code1 == TYPE_CODE_RANGE)
489 && (scalar || code2 == TYPE_CODE_PTR
490 || code2 == TYPE_CODE_MEMBERPTR))
494 /* When we cast pointers to integers, we mustn't use
495 gdbarch_pointer_to_address to find the address the pointer
496 represents, as value_as_long would. GDB should evaluate
497 expressions just as the compiler would --- and the compiler
498 sees a cast as a simple reinterpretation of the pointer's
500 if (code2 == TYPE_CODE_PTR)
501 longest = extract_unsigned_integer
502 (value_contents (arg2), TYPE_LENGTH (type2),
503 gdbarch_byte_order (get_type_arch (type2)));
505 longest = value_as_long (arg2);
506 return value_from_longest (type, convert_to_boolean ?
507 (LONGEST) (longest ? 1 : 0) : longest);
509 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
510 || code2 == TYPE_CODE_ENUM
511 || code2 == TYPE_CODE_RANGE))
513 /* TYPE_LENGTH (type) is the length of a pointer, but we really
514 want the length of an address! -- we are really dealing with
515 addresses (i.e., gdb representations) not pointers (i.e.,
516 target representations) here.
518 This allows things like "print *(int *)0x01000234" to work
519 without printing a misleading message -- which would
520 otherwise occur when dealing with a target having two byte
521 pointers and four byte addresses. */
523 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
524 LONGEST longest = value_as_long (arg2);
526 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
528 if (longest >= ((LONGEST) 1 << addr_bit)
529 || longest <= -((LONGEST) 1 << addr_bit))
530 warning (_("value truncated"));
532 return value_from_longest (type, longest);
534 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
535 && value_as_long (arg2) == 0)
537 struct value *result = allocate_value (type);
539 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
542 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
543 && value_as_long (arg2) == 0)
545 /* The Itanium C++ ABI represents NULL pointers to members as
546 minus one, instead of biasing the normal case. */
547 return value_from_longest (type, -1);
549 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
550 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
551 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
552 error (_("Cannot convert between vector values of different sizes"));
553 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
554 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
555 error (_("can only cast scalar to vector of same size"));
556 else if (code1 == TYPE_CODE_VOID)
558 return value_zero (type, not_lval);
560 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
562 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
563 return value_cast_pointers (type, arg2, 0);
565 arg2 = value_copy (arg2);
566 deprecated_set_value_type (arg2, type);
567 set_value_enclosing_type (arg2, type);
568 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
571 else if (VALUE_LVAL (arg2) == lval_memory)
572 return value_at_lazy (type, value_address (arg2));
575 error (_("Invalid cast."));
580 /* The C++ reinterpret_cast operator. */
583 value_reinterpret_cast (struct type *type, struct value *arg)
585 struct value *result;
586 struct type *real_type = check_typedef (type);
587 struct type *arg_type, *dest_type;
589 enum type_code dest_code, arg_code;
591 /* Do reference, function, and array conversion. */
592 arg = coerce_array (arg);
594 /* Attempt to preserve the type the user asked for. */
597 /* If we are casting to a reference type, transform
598 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
599 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
602 arg = value_addr (arg);
603 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
604 real_type = lookup_pointer_type (real_type);
607 arg_type = value_type (arg);
609 dest_code = TYPE_CODE (real_type);
610 arg_code = TYPE_CODE (arg_type);
612 /* We can convert pointer types, or any pointer type to int, or int
614 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
615 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
616 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
617 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
618 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
619 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
620 || (dest_code == arg_code
621 && (dest_code == TYPE_CODE_PTR
622 || dest_code == TYPE_CODE_METHODPTR
623 || dest_code == TYPE_CODE_MEMBERPTR)))
624 result = value_cast (dest_type, arg);
626 error (_("Invalid reinterpret_cast"));
629 result = value_cast (type, value_ref (value_ind (result)));
634 /* A helper for value_dynamic_cast. This implements the first of two
635 runtime checks: we iterate over all the base classes of the value's
636 class which are equal to the desired class; if only one of these
637 holds the value, then it is the answer. */
640 dynamic_cast_check_1 (struct type *desired_type,
641 const gdb_byte *valaddr,
645 struct type *search_type,
647 struct type *arg_type,
648 struct value **result)
650 int i, result_count = 0;
652 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
654 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
657 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
659 if (address + embedded_offset + offset >= arg_addr
660 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
664 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
665 address + embedded_offset + offset);
669 result_count += dynamic_cast_check_1 (desired_type,
671 embedded_offset + offset,
673 TYPE_BASECLASS (search_type, i),
682 /* A helper for value_dynamic_cast. This implements the second of two
683 runtime checks: we look for a unique public sibling class of the
684 argument's declared class. */
687 dynamic_cast_check_2 (struct type *desired_type,
688 const gdb_byte *valaddr,
692 struct type *search_type,
693 struct value **result)
695 int i, result_count = 0;
697 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
701 if (! BASETYPE_VIA_PUBLIC (search_type, i))
704 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
706 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
710 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
711 address + embedded_offset + offset);
714 result_count += dynamic_cast_check_2 (desired_type,
716 embedded_offset + offset,
718 TYPE_BASECLASS (search_type, i),
725 /* The C++ dynamic_cast operator. */
728 value_dynamic_cast (struct type *type, struct value *arg)
730 int full, top, using_enc;
731 struct type *resolved_type = check_typedef (type);
732 struct type *arg_type = check_typedef (value_type (arg));
733 struct type *class_type, *rtti_type;
734 struct value *result, *tem, *original_arg = arg;
736 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
738 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
739 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
740 error (_("Argument to dynamic_cast must be a pointer or reference type"));
741 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
742 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
743 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
745 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
746 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
748 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
749 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
750 && value_as_long (arg) == 0))
751 error (_("Argument to dynamic_cast does not have pointer type"));
752 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
754 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
755 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
756 error (_("Argument to dynamic_cast does "
757 "not have pointer to class type"));
760 /* Handle NULL pointers. */
761 if (value_as_long (arg) == 0)
762 return value_zero (type, not_lval);
764 arg = value_ind (arg);
768 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
769 error (_("Argument to dynamic_cast does not have class type"));
772 /* If the classes are the same, just return the argument. */
773 if (class_types_same_p (class_type, arg_type))
774 return value_cast (type, arg);
776 /* If the target type is a unique base class of the argument's
777 declared type, just cast it. */
778 if (is_ancestor (class_type, arg_type))
780 if (is_unique_ancestor (class_type, arg))
781 return value_cast (type, original_arg);
782 error (_("Ambiguous dynamic_cast"));
785 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
787 error (_("Couldn't determine value's most derived type for dynamic_cast"));
789 /* Compute the most derived object's address. */
790 addr = value_address (arg);
798 addr += top + value_embedded_offset (arg);
800 /* dynamic_cast<void *> means to return a pointer to the
801 most-derived object. */
802 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
803 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
804 return value_at_lazy (type, addr);
806 tem = value_at (type, addr);
808 /* The first dynamic check specified in 5.2.7. */
809 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
811 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
814 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
815 value_contents_for_printing (tem),
816 value_embedded_offset (tem),
817 value_address (tem), tem,
821 return value_cast (type,
822 is_ref ? value_ref (result) : value_addr (result));
825 /* The second dynamic check specified in 5.2.7. */
827 if (is_public_ancestor (arg_type, rtti_type)
828 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
829 value_contents_for_printing (tem),
830 value_embedded_offset (tem),
831 value_address (tem), tem,
832 rtti_type, &result) == 1)
833 return value_cast (type,
834 is_ref ? value_ref (result) : value_addr (result));
836 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
837 return value_zero (type, not_lval);
839 error (_("dynamic_cast failed"));
842 /* Create a value of type TYPE that is zero, and return it. */
845 value_zero (struct type *type, enum lval_type lv)
847 struct value *val = allocate_value (type);
849 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
853 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
856 value_one (struct type *type)
858 struct type *type1 = check_typedef (type);
861 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
863 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
866 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
867 val = value_from_decfloat (type, v);
869 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
871 val = value_from_double (type, (DOUBLEST) 1);
873 else if (is_integral_type (type1))
875 val = value_from_longest (type, (LONGEST) 1);
877 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
879 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
881 LONGEST low_bound, high_bound;
884 if (!get_array_bounds (type1, &low_bound, &high_bound))
885 error (_("Could not determine the vector bounds"));
887 val = allocate_value (type);
888 for (i = 0; i < high_bound - low_bound + 1; i++)
890 tmp = value_one (eltype);
891 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
892 value_contents_all (tmp), TYPE_LENGTH (eltype));
897 error (_("Not a numeric type."));
900 /* value_one result is never used for assignments to. */
901 gdb_assert (VALUE_LVAL (val) == not_lval);
906 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
908 static struct value *
909 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
913 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
914 error (_("Attempt to dereference a generic pointer."));
916 val = value_from_contents_and_address (type, NULL, addr);
919 value_fetch_lazy (val);
924 /* Return a value with type TYPE located at ADDR.
926 Call value_at only if the data needs to be fetched immediately;
927 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
928 value_at_lazy instead. value_at_lazy simply records the address of
929 the data and sets the lazy-evaluation-required flag. The lazy flag
930 is tested in the value_contents macro, which is used if and when
931 the contents are actually required.
933 Note: value_at does *NOT* handle embedded offsets; perform such
934 adjustments before or after calling it. */
937 value_at (struct type *type, CORE_ADDR addr)
939 return get_value_at (type, addr, 0);
942 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
945 value_at_lazy (struct type *type, CORE_ADDR addr)
947 return get_value_at (type, addr, 1);
950 /* Called only from the value_contents and value_contents_all()
951 macros, if the current data for a variable needs to be loaded into
952 value_contents(VAL). Fetches the data from the user's process, and
953 clears the lazy flag to indicate that the data in the buffer is
956 If the value is zero-length, we avoid calling read_memory, which
957 would abort. We mark the value as fetched anyway -- all 0 bytes of
960 This function returns a value because it is used in the
961 value_contents macro as part of an expression, where a void would
962 not work. The value is ignored. */
965 value_fetch_lazy (struct value *val)
967 gdb_assert (value_lazy (val));
968 allocate_value_contents (val);
969 if (value_bitsize (val))
971 /* To read a lazy bitfield, read the entire enclosing value. This
972 prevents reading the same block of (possibly volatile) memory once
973 per bitfield. It would be even better to read only the containing
974 word, but we have no way to record that just specific bits of a
975 value have been fetched. */
976 struct type *type = check_typedef (value_type (val));
977 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
978 struct value *parent = value_parent (val);
979 LONGEST offset = value_offset (val);
982 if (!value_bits_valid (val,
983 TARGET_CHAR_BIT * offset + value_bitpos (val),
984 value_bitsize (val)))
985 error (_("value has been optimized out"));
987 if (!unpack_value_bits_as_long (value_type (val),
988 value_contents_for_printing (parent),
991 value_bitsize (val), parent, &num))
992 mark_value_bytes_unavailable (val,
993 value_embedded_offset (val),
996 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
999 else if (VALUE_LVAL (val) == lval_memory)
1001 CORE_ADDR addr = value_address (val);
1002 struct type *type = check_typedef (value_enclosing_type (val));
1004 if (TYPE_LENGTH (type))
1005 read_value_memory (val, 0, value_stack (val),
1006 addr, value_contents_all_raw (val),
1007 TYPE_LENGTH (type));
1009 else if (VALUE_LVAL (val) == lval_register)
1011 struct frame_info *frame;
1013 struct type *type = check_typedef (value_type (val));
1014 struct value *new_val = val, *mark = value_mark ();
1016 /* Offsets are not supported here; lazy register values must
1017 refer to the entire register. */
1018 gdb_assert (value_offset (val) == 0);
1020 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
1022 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
1023 regnum = VALUE_REGNUM (new_val);
1025 gdb_assert (frame != NULL);
1027 /* Convertible register routines are used for multi-register
1028 values and for interpretation in different types
1029 (e.g. float or int from a double register). Lazy
1030 register values should have the register's natural type,
1031 so they do not apply. */
1032 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
1035 new_val = get_frame_register_value (frame, regnum);
1038 /* If it's still lazy (for instance, a saved register on the
1039 stack), fetch it. */
1040 if (value_lazy (new_val))
1041 value_fetch_lazy (new_val);
1043 /* If the register was not saved, mark it optimized out. */
1044 if (value_optimized_out (new_val))
1045 set_value_optimized_out (val, 1);
1048 set_value_lazy (val, 0);
1049 value_contents_copy (val, value_embedded_offset (val),
1050 new_val, value_embedded_offset (new_val),
1051 TYPE_LENGTH (type));
1056 struct gdbarch *gdbarch;
1057 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1058 regnum = VALUE_REGNUM (val);
1059 gdbarch = get_frame_arch (frame);
1061 fprintf_unfiltered (gdb_stdlog,
1062 "{ value_fetch_lazy "
1063 "(frame=%d,regnum=%d(%s),...) ",
1064 frame_relative_level (frame), regnum,
1065 user_reg_map_regnum_to_name (gdbarch, regnum));
1067 fprintf_unfiltered (gdb_stdlog, "->");
1068 if (value_optimized_out (new_val))
1069 fprintf_unfiltered (gdb_stdlog, " optimized out");
1073 const gdb_byte *buf = value_contents (new_val);
1075 if (VALUE_LVAL (new_val) == lval_register)
1076 fprintf_unfiltered (gdb_stdlog, " register=%d",
1077 VALUE_REGNUM (new_val));
1078 else if (VALUE_LVAL (new_val) == lval_memory)
1079 fprintf_unfiltered (gdb_stdlog, " address=%s",
1081 value_address (new_val)));
1083 fprintf_unfiltered (gdb_stdlog, " computed");
1085 fprintf_unfiltered (gdb_stdlog, " bytes=");
1086 fprintf_unfiltered (gdb_stdlog, "[");
1087 for (i = 0; i < register_size (gdbarch, regnum); i++)
1088 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1089 fprintf_unfiltered (gdb_stdlog, "]");
1092 fprintf_unfiltered (gdb_stdlog, " }\n");
1095 /* Dispose of the intermediate values. This prevents
1096 watchpoints from trying to watch the saved frame pointer. */
1097 value_free_to_mark (mark);
1099 else if (VALUE_LVAL (val) == lval_computed
1100 && value_computed_funcs (val)->read != NULL)
1101 value_computed_funcs (val)->read (val);
1102 else if (value_optimized_out (val))
1103 /* Keep it optimized out. */;
1105 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
1107 set_value_lazy (val, 0);
1112 read_value_memory (struct value *val, int embedded_offset,
1113 int stack, CORE_ADDR memaddr,
1114 gdb_byte *buffer, size_t length)
1118 VEC(mem_range_s) *available_memory;
1120 if (get_traceframe_number () < 0
1121 || !traceframe_available_memory (&available_memory, memaddr, length))
1124 read_stack (memaddr, buffer, length);
1126 read_memory (memaddr, buffer, length);
1130 struct target_section_table *table;
1131 struct cleanup *old_chain;
1136 /* Fallback to reading from read-only sections. */
1137 table = target_get_section_table (&exec_ops);
1139 section_table_available_memory (available_memory,
1142 table->sections_end);
1144 old_chain = make_cleanup (VEC_cleanup(mem_range_s),
1147 normalize_mem_ranges (available_memory);
1149 /* Mark which bytes are unavailable, and read those which
1155 VEC_iterate (mem_range_s, available_memory, i, r);
1158 if (mem_ranges_overlap (r->start, r->length,
1161 CORE_ADDR lo1, hi1, lo2, hi2;
1162 CORE_ADDR start, end;
1164 /* Get the intersection window. */
1166 hi1 = memaddr + length;
1168 hi2 = r->start + r->length;
1169 start = max (lo1, lo2);
1170 end = min (hi1, hi2);
1172 gdb_assert (end - memaddr <= length);
1174 if (start > unavail)
1175 mark_value_bytes_unavailable (val,
1177 + unavail - memaddr),
1181 read_memory (start, buffer + start - memaddr, end - start);
1185 if (unavail != memaddr + length)
1186 mark_value_bytes_unavailable (val,
1187 embedded_offset + unavail - memaddr,
1188 (memaddr + length) - unavail);
1190 do_cleanups (old_chain);
1195 /* Store the contents of FROMVAL into the location of TOVAL.
1196 Return a new value with the location of TOVAL and contents of FROMVAL. */
1199 value_assign (struct value *toval, struct value *fromval)
1203 struct frame_id old_frame;
1205 if (!deprecated_value_modifiable (toval))
1206 error (_("Left operand of assignment is not a modifiable lvalue."));
1208 toval = coerce_ref (toval);
1210 type = value_type (toval);
1211 if (VALUE_LVAL (toval) != lval_internalvar)
1212 fromval = value_cast (type, fromval);
1215 /* Coerce arrays and functions to pointers, except for arrays
1216 which only live in GDB's storage. */
1217 if (!value_must_coerce_to_target (fromval))
1218 fromval = coerce_array (fromval);
1221 CHECK_TYPEDEF (type);
1223 /* Since modifying a register can trash the frame chain, and
1224 modifying memory can trash the frame cache, we save the old frame
1225 and then restore the new frame afterwards. */
1226 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1228 switch (VALUE_LVAL (toval))
1230 case lval_internalvar:
1231 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1232 return value_of_internalvar (get_type_arch (type),
1233 VALUE_INTERNALVAR (toval));
1235 case lval_internalvar_component:
1236 set_internalvar_component (VALUE_INTERNALVAR (toval),
1237 value_offset (toval),
1238 value_bitpos (toval),
1239 value_bitsize (toval),
1245 const gdb_byte *dest_buffer;
1246 CORE_ADDR changed_addr;
1248 gdb_byte buffer[sizeof (LONGEST)];
1250 if (value_bitsize (toval))
1252 struct value *parent = value_parent (toval);
1254 changed_addr = value_address (parent) + value_offset (toval);
1255 changed_len = (value_bitpos (toval)
1256 + value_bitsize (toval)
1257 + HOST_CHAR_BIT - 1)
1260 /* If we can read-modify-write exactly the size of the
1261 containing type (e.g. short or int) then do so. This
1262 is safer for volatile bitfields mapped to hardware
1264 if (changed_len < TYPE_LENGTH (type)
1265 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1266 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1267 changed_len = TYPE_LENGTH (type);
1269 if (changed_len > (int) sizeof (LONGEST))
1270 error (_("Can't handle bitfields which "
1271 "don't fit in a %d bit word."),
1272 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1274 read_memory (changed_addr, buffer, changed_len);
1275 modify_field (type, buffer, value_as_long (fromval),
1276 value_bitpos (toval), value_bitsize (toval));
1277 dest_buffer = buffer;
1281 changed_addr = value_address (toval);
1282 changed_len = TYPE_LENGTH (type);
1283 dest_buffer = value_contents (fromval);
1286 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1292 struct frame_info *frame;
1293 struct gdbarch *gdbarch;
1296 /* Figure out which frame this is in currently. */
1297 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1298 value_reg = VALUE_REGNUM (toval);
1301 error (_("Value being assigned to is no longer active."));
1303 gdbarch = get_frame_arch (frame);
1304 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1306 /* If TOVAL is a special machine register requiring
1307 conversion of program values to a special raw
1309 gdbarch_value_to_register (gdbarch, frame,
1310 VALUE_REGNUM (toval), type,
1311 value_contents (fromval));
1315 if (value_bitsize (toval))
1317 struct value *parent = value_parent (toval);
1318 int offset = value_offset (parent) + value_offset (toval);
1320 gdb_byte buffer[sizeof (LONGEST)];
1323 changed_len = (value_bitpos (toval)
1324 + value_bitsize (toval)
1325 + HOST_CHAR_BIT - 1)
1328 if (changed_len > (int) sizeof (LONGEST))
1329 error (_("Can't handle bitfields which "
1330 "don't fit in a %d bit word."),
1331 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1333 if (!get_frame_register_bytes (frame, value_reg, offset,
1334 changed_len, buffer,
1338 error (_("value has been optimized out"));
1340 throw_error (NOT_AVAILABLE_ERROR,
1341 _("value is not available"));
1344 modify_field (type, buffer, value_as_long (fromval),
1345 value_bitpos (toval), value_bitsize (toval));
1347 put_frame_register_bytes (frame, value_reg, offset,
1348 changed_len, buffer);
1352 put_frame_register_bytes (frame, value_reg,
1353 value_offset (toval),
1355 value_contents (fromval));
1359 if (deprecated_register_changed_hook)
1360 deprecated_register_changed_hook (-1);
1366 const struct lval_funcs *funcs = value_computed_funcs (toval);
1368 if (funcs->write != NULL)
1370 funcs->write (toval, fromval);
1377 error (_("Left operand of assignment is not an lvalue."));
1380 /* Assigning to the stack pointer, frame pointer, and other
1381 (architecture and calling convention specific) registers may
1382 cause the frame cache and regcache to be out of date. Assigning to memory
1383 also can. We just do this on all assignments to registers or
1384 memory, for simplicity's sake; I doubt the slowdown matters. */
1385 switch (VALUE_LVAL (toval))
1391 observer_notify_target_changed (¤t_target);
1393 /* Having destroyed the frame cache, restore the selected
1396 /* FIXME: cagney/2002-11-02: There has to be a better way of
1397 doing this. Instead of constantly saving/restoring the
1398 frame. Why not create a get_selected_frame() function that,
1399 having saved the selected frame's ID can automatically
1400 re-find the previously selected frame automatically. */
1403 struct frame_info *fi = frame_find_by_id (old_frame);
1414 /* If the field does not entirely fill a LONGEST, then zero the sign
1415 bits. If the field is signed, and is negative, then sign
1417 if ((value_bitsize (toval) > 0)
1418 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1420 LONGEST fieldval = value_as_long (fromval);
1421 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1423 fieldval &= valmask;
1424 if (!TYPE_UNSIGNED (type)
1425 && (fieldval & (valmask ^ (valmask >> 1))))
1426 fieldval |= ~valmask;
1428 fromval = value_from_longest (type, fieldval);
1431 /* The return value is a copy of TOVAL so it shares its location
1432 information, but its contents are updated from FROMVAL. This
1433 implies the returned value is not lazy, even if TOVAL was. */
1434 val = value_copy (toval);
1435 set_value_lazy (val, 0);
1436 memcpy (value_contents_raw (val), value_contents (fromval),
1437 TYPE_LENGTH (type));
1439 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1440 in the case of pointer types. For object types, the enclosing type
1441 and embedded offset must *not* be copied: the target object refered
1442 to by TOVAL retains its original dynamic type after assignment. */
1443 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1445 set_value_enclosing_type (val, value_enclosing_type (fromval));
1446 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1452 /* Extend a value VAL to COUNT repetitions of its type. */
1455 value_repeat (struct value *arg1, int count)
1459 if (VALUE_LVAL (arg1) != lval_memory)
1460 error (_("Only values in memory can be extended with '@'."));
1462 error (_("Invalid number %d of repetitions."), count);
1464 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1466 VALUE_LVAL (val) = lval_memory;
1467 set_value_address (val, value_address (arg1));
1469 read_value_memory (val, 0, value_stack (val), value_address (val),
1470 value_contents_all_raw (val),
1471 TYPE_LENGTH (value_enclosing_type (val)));
1477 value_of_variable (struct symbol *var, const struct block *b)
1479 struct frame_info *frame;
1481 if (!symbol_read_needs_frame (var))
1484 frame = get_selected_frame (_("No frame selected."));
1487 frame = block_innermost_frame (b);
1490 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1491 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1492 error (_("No frame is currently executing in block %s."),
1493 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1495 error (_("No frame is currently executing in specified block"));
1499 return read_var_value (var, frame);
1503 address_of_variable (struct symbol *var, const struct block *b)
1505 struct type *type = SYMBOL_TYPE (var);
1508 /* Evaluate it first; if the result is a memory address, we're fine.
1509 Lazy evaluation pays off here. */
1511 val = value_of_variable (var, b);
1513 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1514 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1516 CORE_ADDR addr = value_address (val);
1518 return value_from_pointer (lookup_pointer_type (type), addr);
1521 /* Not a memory address; check what the problem was. */
1522 switch (VALUE_LVAL (val))
1526 struct frame_info *frame;
1527 const char *regname;
1529 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1532 regname = gdbarch_register_name (get_frame_arch (frame),
1533 VALUE_REGNUM (val));
1534 gdb_assert (regname && *regname);
1536 error (_("Address requested for identifier "
1537 "\"%s\" which is in register $%s"),
1538 SYMBOL_PRINT_NAME (var), regname);
1543 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1544 SYMBOL_PRINT_NAME (var));
1551 /* Return one if VAL does not live in target memory, but should in order
1552 to operate on it. Otherwise return zero. */
1555 value_must_coerce_to_target (struct value *val)
1557 struct type *valtype;
1559 /* The only lval kinds which do not live in target memory. */
1560 if (VALUE_LVAL (val) != not_lval
1561 && VALUE_LVAL (val) != lval_internalvar)
1564 valtype = check_typedef (value_type (val));
1566 switch (TYPE_CODE (valtype))
1568 case TYPE_CODE_ARRAY:
1569 return TYPE_VECTOR (valtype) ? 0 : 1;
1570 case TYPE_CODE_STRING:
1577 /* Make sure that VAL lives in target memory if it's supposed to. For
1578 instance, strings are constructed as character arrays in GDB's
1579 storage, and this function copies them to the target. */
1582 value_coerce_to_target (struct value *val)
1587 if (!value_must_coerce_to_target (val))
1590 length = TYPE_LENGTH (check_typedef (value_type (val)));
1591 addr = allocate_space_in_inferior (length);
1592 write_memory (addr, value_contents (val), length);
1593 return value_at_lazy (value_type (val), addr);
1596 /* Given a value which is an array, return a value which is a pointer
1597 to its first element, regardless of whether or not the array has a
1598 nonzero lower bound.
1600 FIXME: A previous comment here indicated that this routine should
1601 be substracting the array's lower bound. It's not clear to me that
1602 this is correct. Given an array subscripting operation, it would
1603 certainly work to do the adjustment here, essentially computing:
1605 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1607 However I believe a more appropriate and logical place to account
1608 for the lower bound is to do so in value_subscript, essentially
1611 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1613 As further evidence consider what would happen with operations
1614 other than array subscripting, where the caller would get back a
1615 value that had an address somewhere before the actual first element
1616 of the array, and the information about the lower bound would be
1617 lost because of the coercion to pointer type. */
1620 value_coerce_array (struct value *arg1)
1622 struct type *type = check_typedef (value_type (arg1));
1624 /* If the user tries to do something requiring a pointer with an
1625 array that has not yet been pushed to the target, then this would
1626 be a good time to do so. */
1627 arg1 = value_coerce_to_target (arg1);
1629 if (VALUE_LVAL (arg1) != lval_memory)
1630 error (_("Attempt to take address of value not located in memory."));
1632 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1633 value_address (arg1));
1636 /* Given a value which is a function, return a value which is a pointer
1640 value_coerce_function (struct value *arg1)
1642 struct value *retval;
1644 if (VALUE_LVAL (arg1) != lval_memory)
1645 error (_("Attempt to take address of value not located in memory."));
1647 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1648 value_address (arg1));
1652 /* Return a pointer value for the object for which ARG1 is the
1656 value_addr (struct value *arg1)
1659 struct type *type = check_typedef (value_type (arg1));
1661 if (TYPE_CODE (type) == TYPE_CODE_REF)
1663 /* Copy the value, but change the type from (T&) to (T*). We
1664 keep the same location information, which is efficient, and
1665 allows &(&X) to get the location containing the reference. */
1666 arg2 = value_copy (arg1);
1667 deprecated_set_value_type (arg2,
1668 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1671 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1672 return value_coerce_function (arg1);
1674 /* If this is an array that has not yet been pushed to the target,
1675 then this would be a good time to force it to memory. */
1676 arg1 = value_coerce_to_target (arg1);
1678 if (VALUE_LVAL (arg1) != lval_memory)
1679 error (_("Attempt to take address of value not located in memory."));
1681 /* Get target memory address. */
1682 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1683 (value_address (arg1)
1684 + value_embedded_offset (arg1)));
1686 /* This may be a pointer to a base subobject; so remember the
1687 full derived object's type ... */
1688 set_value_enclosing_type (arg2,
1689 lookup_pointer_type (value_enclosing_type (arg1)));
1690 /* ... and also the relative position of the subobject in the full
1692 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1696 /* Return a reference value for the object for which ARG1 is the
1700 value_ref (struct value *arg1)
1703 struct type *type = check_typedef (value_type (arg1));
1705 if (TYPE_CODE (type) == TYPE_CODE_REF)
1708 arg2 = value_addr (arg1);
1709 deprecated_set_value_type (arg2, lookup_reference_type (type));
1713 /* Given a value of a pointer type, apply the C unary * operator to
1717 value_ind (struct value *arg1)
1719 struct type *base_type;
1722 arg1 = coerce_array (arg1);
1724 base_type = check_typedef (value_type (arg1));
1726 if (VALUE_LVAL (arg1) == lval_computed)
1728 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1730 if (funcs->indirect)
1732 struct value *result = funcs->indirect (arg1);
1739 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1741 struct type *enc_type;
1743 /* We may be pointing to something embedded in a larger object.
1744 Get the real type of the enclosing object. */
1745 enc_type = check_typedef (value_enclosing_type (arg1));
1746 enc_type = TYPE_TARGET_TYPE (enc_type);
1748 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1749 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1750 /* For functions, go through find_function_addr, which knows
1751 how to handle function descriptors. */
1752 arg2 = value_at_lazy (enc_type,
1753 find_function_addr (arg1, NULL));
1755 /* Retrieve the enclosing object pointed to. */
1756 arg2 = value_at_lazy (enc_type,
1757 (value_as_address (arg1)
1758 - value_pointed_to_offset (arg1)));
1760 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1763 error (_("Attempt to take contents of a non-pointer value."));
1764 return 0; /* For lint -- never reached. */
1767 /* Create a value for an array by allocating space in GDB, copying the
1768 data into that space, and then setting up an array value.
1770 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1771 is populated from the values passed in ELEMVEC.
1773 The element type of the array is inherited from the type of the
1774 first element, and all elements must have the same size (though we
1775 don't currently enforce any restriction on their types). */
1778 value_array (int lowbound, int highbound, struct value **elemvec)
1782 unsigned int typelength;
1784 struct type *arraytype;
1786 /* Validate that the bounds are reasonable and that each of the
1787 elements have the same size. */
1789 nelem = highbound - lowbound + 1;
1792 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1794 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1795 for (idx = 1; idx < nelem; idx++)
1797 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1799 error (_("array elements must all be the same size"));
1803 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1804 lowbound, highbound);
1806 if (!current_language->c_style_arrays)
1808 val = allocate_value (arraytype);
1809 for (idx = 0; idx < nelem; idx++)
1810 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1815 /* Allocate space to store the array, and then initialize it by
1816 copying in each element. */
1818 val = allocate_value (arraytype);
1819 for (idx = 0; idx < nelem; idx++)
1820 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1825 value_cstring (char *ptr, ssize_t len, struct type *char_type)
1828 int lowbound = current_language->string_lower_bound;
1829 ssize_t highbound = len / TYPE_LENGTH (char_type);
1830 struct type *stringtype
1831 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1833 val = allocate_value (stringtype);
1834 memcpy (value_contents_raw (val), ptr, len);
1838 /* Create a value for a string constant by allocating space in the
1839 inferior, copying the data into that space, and returning the
1840 address with type TYPE_CODE_STRING. PTR points to the string
1841 constant data; LEN is number of characters.
1843 Note that string types are like array of char types with a lower
1844 bound of zero and an upper bound of LEN - 1. Also note that the
1845 string may contain embedded null bytes. */
1848 value_string (char *ptr, ssize_t len, struct type *char_type)
1851 int lowbound = current_language->string_lower_bound;
1852 ssize_t highbound = len / TYPE_LENGTH (char_type);
1853 struct type *stringtype
1854 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1856 val = allocate_value (stringtype);
1857 memcpy (value_contents_raw (val), ptr, len);
1862 /* See if we can pass arguments in T2 to a function which takes
1863 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1864 a NULL-terminated vector. If some arguments need coercion of some
1865 sort, then the coerced values are written into T2. Return value is
1866 0 if the arguments could be matched, or the position at which they
1869 STATICP is nonzero if the T1 argument list came from a static
1870 member function. T2 will still include the ``this'' pointer, but
1873 For non-static member functions, we ignore the first argument,
1874 which is the type of the instance variable. This is because we
1875 want to handle calls with objects from derived classes. This is
1876 not entirely correct: we should actually check to make sure that a
1877 requested operation is type secure, shouldn't we? FIXME. */
1880 typecmp (int staticp, int varargs, int nargs,
1881 struct field t1[], struct value *t2[])
1886 internal_error (__FILE__, __LINE__,
1887 _("typecmp: no argument list"));
1889 /* Skip ``this'' argument if applicable. T2 will always include
1895 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1898 struct type *tt1, *tt2;
1903 tt1 = check_typedef (t1[i].type);
1904 tt2 = check_typedef (value_type (t2[i]));
1906 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1907 /* We should be doing hairy argument matching, as below. */
1908 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1909 == TYPE_CODE (tt2)))
1911 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1912 t2[i] = value_coerce_array (t2[i]);
1914 t2[i] = value_ref (t2[i]);
1918 /* djb - 20000715 - Until the new type structure is in the
1919 place, and we can attempt things like implicit conversions,
1920 we need to do this so you can take something like a map<const
1921 char *>, and properly access map["hello"], because the
1922 argument to [] will be a reference to a pointer to a char,
1923 and the argument will be a pointer to a char. */
1924 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1925 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1927 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1929 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1930 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1931 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1933 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1935 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1937 /* Array to pointer is a `trivial conversion' according to the
1940 /* We should be doing much hairier argument matching (see
1941 section 13.2 of the ARM), but as a quick kludge, just check
1942 for the same type code. */
1943 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1946 if (varargs || t2[i] == NULL)
1951 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1952 and *LAST_BOFFSET, and possibly throws an exception if the field
1953 search has yielded ambiguous results. */
1956 update_search_result (struct value **result_ptr, struct value *v,
1957 int *last_boffset, int boffset,
1958 const char *name, struct type *type)
1962 if (*result_ptr != NULL
1963 /* The result is not ambiguous if all the classes that are
1964 found occupy the same space. */
1965 && *last_boffset != boffset)
1966 error (_("base class '%s' is ambiguous in type '%s'"),
1967 name, TYPE_SAFE_NAME (type));
1969 *last_boffset = boffset;
1973 /* A helper for search_struct_field. This does all the work; most
1974 arguments are as passed to search_struct_field. The result is
1975 stored in *RESULT_PTR, which must be initialized to NULL.
1976 OUTERMOST_TYPE is the type of the initial type passed to
1977 search_struct_field; this is used for error reporting when the
1978 lookup is ambiguous. */
1981 do_search_struct_field (const char *name, struct value *arg1, int offset,
1982 struct type *type, int looking_for_baseclass,
1983 struct value **result_ptr,
1985 struct type *outermost_type)
1990 CHECK_TYPEDEF (type);
1991 nbases = TYPE_N_BASECLASSES (type);
1993 if (!looking_for_baseclass)
1994 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1996 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1998 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2002 if (field_is_static (&TYPE_FIELD (type, i)))
2004 v = value_static_field (type, i);
2006 error (_("field %s is nonexistent or "
2007 "has been optimized out"),
2011 v = value_primitive_field (arg1, offset, i, type);
2017 && (t_field_name[0] == '\0'
2018 || (TYPE_CODE (type) == TYPE_CODE_UNION
2019 && (strcmp_iw (t_field_name, "else") == 0))))
2021 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2023 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2024 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2026 /* Look for a match through the fields of an anonymous
2027 union, or anonymous struct. C++ provides anonymous
2030 In the GNU Chill (now deleted from GDB)
2031 implementation of variant record types, each
2032 <alternative field> has an (anonymous) union type,
2033 each member of the union represents a <variant
2034 alternative>. Each <variant alternative> is
2035 represented as a struct, with a member for each
2038 struct value *v = NULL;
2039 int new_offset = offset;
2041 /* This is pretty gross. In G++, the offset in an
2042 anonymous union is relative to the beginning of the
2043 enclosing struct. In the GNU Chill (now deleted
2044 from GDB) implementation of variant records, the
2045 bitpos is zero in an anonymous union field, so we
2046 have to add the offset of the union here. */
2047 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2048 || (TYPE_NFIELDS (field_type) > 0
2049 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2050 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2052 do_search_struct_field (name, arg1, new_offset,
2054 looking_for_baseclass, &v,
2066 for (i = 0; i < nbases; i++)
2068 struct value *v = NULL;
2069 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2070 /* If we are looking for baseclasses, this is what we get when
2071 we hit them. But it could happen that the base part's member
2072 name is not yet filled in. */
2073 int found_baseclass = (looking_for_baseclass
2074 && TYPE_BASECLASS_NAME (type, i) != NULL
2075 && (strcmp_iw (name,
2076 TYPE_BASECLASS_NAME (type,
2078 int boffset = value_embedded_offset (arg1) + offset;
2080 if (BASETYPE_VIA_VIRTUAL (type, i))
2084 boffset = baseclass_offset (type, i,
2085 value_contents_for_printing (arg1),
2086 value_embedded_offset (arg1) + offset,
2087 value_address (arg1),
2090 /* The virtual base class pointer might have been clobbered
2091 by the user program. Make sure that it still points to a
2092 valid memory location. */
2094 boffset += value_embedded_offset (arg1) + offset;
2096 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2098 CORE_ADDR base_addr;
2100 v2 = allocate_value (basetype);
2101 base_addr = value_address (arg1) + boffset;
2102 if (target_read_memory (base_addr,
2103 value_contents_raw (v2),
2104 TYPE_LENGTH (basetype)) != 0)
2105 error (_("virtual baseclass botch"));
2106 VALUE_LVAL (v2) = lval_memory;
2107 set_value_address (v2, base_addr);
2111 v2 = value_copy (arg1);
2112 deprecated_set_value_type (v2, basetype);
2113 set_value_embedded_offset (v2, boffset);
2116 if (found_baseclass)
2120 do_search_struct_field (name, v2, 0,
2121 TYPE_BASECLASS (type, i),
2122 looking_for_baseclass,
2123 result_ptr, last_boffset,
2127 else if (found_baseclass)
2128 v = value_primitive_field (arg1, offset, i, type);
2131 do_search_struct_field (name, arg1,
2132 offset + TYPE_BASECLASS_BITPOS (type,
2134 basetype, looking_for_baseclass,
2135 result_ptr, last_boffset,
2139 update_search_result (result_ptr, v, last_boffset,
2140 boffset, name, outermost_type);
2144 /* Helper function used by value_struct_elt to recurse through
2145 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2146 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2147 TYPE. If found, return value, else return NULL.
2149 If LOOKING_FOR_BASECLASS, then instead of looking for struct
2150 fields, look for a baseclass named NAME. */
2152 static struct value *
2153 search_struct_field (const char *name, struct value *arg1, int offset,
2154 struct type *type, int looking_for_baseclass)
2156 struct value *result = NULL;
2159 do_search_struct_field (name, arg1, offset, type, looking_for_baseclass,
2160 &result, &boffset, type);
2164 /* Helper function used by value_struct_elt to recurse through
2165 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2166 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2169 If found, return value, else if name matched and args not return
2170 (value) -1, else return NULL. */
2172 static struct value *
2173 search_struct_method (const char *name, struct value **arg1p,
2174 struct value **args, int offset,
2175 int *static_memfuncp, struct type *type)
2179 int name_matched = 0;
2180 char dem_opname[64];
2182 CHECK_TYPEDEF (type);
2183 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2185 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2187 /* FIXME! May need to check for ARM demangling here. */
2188 if (strncmp (t_field_name, "__", 2) == 0 ||
2189 strncmp (t_field_name, "op", 2) == 0 ||
2190 strncmp (t_field_name, "type", 4) == 0)
2192 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2193 t_field_name = dem_opname;
2194 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2195 t_field_name = dem_opname;
2197 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2199 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2200 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2203 check_stub_method_group (type, i);
2204 if (j > 0 && args == 0)
2205 error (_("cannot resolve overloaded method "
2206 "`%s': no arguments supplied"), name);
2207 else if (j == 0 && args == 0)
2209 v = value_fn_field (arg1p, f, j, type, offset);
2216 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2217 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2218 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2219 TYPE_FN_FIELD_ARGS (f, j), args))
2221 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2222 return value_virtual_fn_field (arg1p, f, j,
2224 if (TYPE_FN_FIELD_STATIC_P (f, j)
2226 *static_memfuncp = 1;
2227 v = value_fn_field (arg1p, f, j, type, offset);
2236 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2242 if (BASETYPE_VIA_VIRTUAL (type, i))
2244 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2245 struct value *base_val;
2246 const gdb_byte *base_valaddr;
2248 /* The virtual base class pointer might have been
2249 clobbered by the user program. Make sure that it
2250 still points to a valid memory location. */
2252 if (offset < 0 || offset >= TYPE_LENGTH (type))
2255 struct cleanup *back_to;
2258 tmp = xmalloc (TYPE_LENGTH (baseclass));
2259 back_to = make_cleanup (xfree, tmp);
2260 address = value_address (*arg1p);
2262 if (target_read_memory (address + offset,
2263 tmp, TYPE_LENGTH (baseclass)) != 0)
2264 error (_("virtual baseclass botch"));
2266 base_val = value_from_contents_and_address (baseclass,
2269 base_valaddr = value_contents_for_printing (base_val);
2271 do_cleanups (back_to);
2276 base_valaddr = value_contents_for_printing (*arg1p);
2277 this_offset = offset;
2280 base_offset = baseclass_offset (type, i, base_valaddr,
2281 this_offset, value_address (base_val),
2286 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2288 v = search_struct_method (name, arg1p, args, base_offset + offset,
2289 static_memfuncp, TYPE_BASECLASS (type, i));
2290 if (v == (struct value *) - 1)
2296 /* FIXME-bothner: Why is this commented out? Why is it here? */
2297 /* *arg1p = arg1_tmp; */
2302 return (struct value *) - 1;
2307 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2308 extract the component named NAME from the ultimate target
2309 structure/union and return it as a value with its appropriate type.
2310 ERR is used in the error message if *ARGP's type is wrong.
2312 C++: ARGS is a list of argument types to aid in the selection of
2313 an appropriate method. Also, handle derived types.
2315 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2316 where the truthvalue of whether the function that was resolved was
2317 a static member function or not is stored.
2319 ERR is an error message to be printed in case the field is not
2323 value_struct_elt (struct value **argp, struct value **args,
2324 const char *name, int *static_memfuncp, const char *err)
2329 *argp = coerce_array (*argp);
2331 t = check_typedef (value_type (*argp));
2333 /* Follow pointers until we get to a non-pointer. */
2335 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2337 *argp = value_ind (*argp);
2338 /* Don't coerce fn pointer to fn and then back again! */
2339 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2340 *argp = coerce_array (*argp);
2341 t = check_typedef (value_type (*argp));
2344 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2345 && TYPE_CODE (t) != TYPE_CODE_UNION)
2346 error (_("Attempt to extract a component of a value that is not a %s."),
2349 /* Assume it's not, unless we see that it is. */
2350 if (static_memfuncp)
2351 *static_memfuncp = 0;
2355 /* if there are no arguments ...do this... */
2357 /* Try as a field first, because if we succeed, there is less
2359 v = search_struct_field (name, *argp, 0, t, 0);
2363 /* C++: If it was not found as a data field, then try to
2364 return it as a pointer to a method. */
2365 v = search_struct_method (name, argp, args, 0,
2366 static_memfuncp, t);
2368 if (v == (struct value *) - 1)
2369 error (_("Cannot take address of method %s."), name);
2372 if (TYPE_NFN_FIELDS (t))
2373 error (_("There is no member or method named %s."), name);
2375 error (_("There is no member named %s."), name);
2380 v = search_struct_method (name, argp, args, 0,
2381 static_memfuncp, t);
2383 if (v == (struct value *) - 1)
2385 error (_("One of the arguments you tried to pass to %s could not "
2386 "be converted to what the function wants."), name);
2390 /* See if user tried to invoke data as function. If so, hand it
2391 back. If it's not callable (i.e., a pointer to function),
2392 gdb should give an error. */
2393 v = search_struct_field (name, *argp, 0, t, 0);
2394 /* If we found an ordinary field, then it is not a method call.
2395 So, treat it as if it were a static member function. */
2396 if (v && static_memfuncp)
2397 *static_memfuncp = 1;
2401 throw_error (NOT_FOUND_ERROR,
2402 _("Structure has no component named %s."), name);
2406 /* Search through the methods of an object (and its bases) to find a
2407 specified method. Return the pointer to the fn_field list of
2408 overloaded instances.
2410 Helper function for value_find_oload_list.
2411 ARGP is a pointer to a pointer to a value (the object).
2412 METHOD is a string containing the method name.
2413 OFFSET is the offset within the value.
2414 TYPE is the assumed type of the object.
2415 NUM_FNS is the number of overloaded instances.
2416 BASETYPE is set to the actual type of the subobject where the
2418 BOFFSET is the offset of the base subobject where the method is found. */
2420 static struct fn_field *
2421 find_method_list (struct value **argp, const char *method,
2422 int offset, struct type *type, int *num_fns,
2423 struct type **basetype, int *boffset)
2427 CHECK_TYPEDEF (type);
2431 /* First check in object itself. */
2432 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2434 /* pai: FIXME What about operators and type conversions? */
2435 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2437 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2439 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2440 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2446 /* Resolve any stub methods. */
2447 check_stub_method_group (type, i);
2453 /* Not found in object, check in base subobjects. */
2454 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2458 if (BASETYPE_VIA_VIRTUAL (type, i))
2460 base_offset = baseclass_offset (type, i,
2461 value_contents_for_printing (*argp),
2462 value_offset (*argp) + offset,
2463 value_address (*argp), *argp);
2465 else /* Non-virtual base, simply use bit position from debug
2468 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2470 f = find_method_list (argp, method, base_offset + offset,
2471 TYPE_BASECLASS (type, i), num_fns,
2479 /* Return the list of overloaded methods of a specified name.
2481 ARGP is a pointer to a pointer to a value (the object).
2482 METHOD is the method name.
2483 OFFSET is the offset within the value contents.
2484 NUM_FNS is the number of overloaded instances.
2485 BASETYPE is set to the type of the base subobject that defines the
2487 BOFFSET is the offset of the base subobject which defines the method. */
2489 static struct fn_field *
2490 value_find_oload_method_list (struct value **argp, const char *method,
2491 int offset, int *num_fns,
2492 struct type **basetype, int *boffset)
2496 t = check_typedef (value_type (*argp));
2498 /* Code snarfed from value_struct_elt. */
2499 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2501 *argp = value_ind (*argp);
2502 /* Don't coerce fn pointer to fn and then back again! */
2503 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2504 *argp = coerce_array (*argp);
2505 t = check_typedef (value_type (*argp));
2508 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2509 && TYPE_CODE (t) != TYPE_CODE_UNION)
2510 error (_("Attempt to extract a component of a "
2511 "value that is not a struct or union"));
2513 return find_method_list (argp, method, 0, t, num_fns,
2517 /* Given an array of arguments (ARGS) (which includes an
2518 entry for "this" in the case of C++ methods), the number of
2519 arguments NARGS, the NAME of a function, and whether it's a method or
2520 not (METHOD), find the best function that matches on the argument types
2521 according to the overload resolution rules.
2523 METHOD can be one of three values:
2524 NON_METHOD for non-member functions.
2525 METHOD: for member functions.
2526 BOTH: used for overload resolution of operators where the
2527 candidates are expected to be either member or non member
2528 functions. In this case the first argument ARGTYPES
2529 (representing 'this') is expected to be a reference to the
2530 target object, and will be dereferenced when attempting the
2533 In the case of class methods, the parameter OBJ is an object value
2534 in which to search for overloaded methods.
2536 In the case of non-method functions, the parameter FSYM is a symbol
2537 corresponding to one of the overloaded functions.
2539 Return value is an integer: 0 -> good match, 10 -> debugger applied
2540 non-standard coercions, 100 -> incompatible.
2542 If a method is being searched for, VALP will hold the value.
2543 If a non-method is being searched for, SYMP will hold the symbol
2546 If a method is being searched for, and it is a static method,
2547 then STATICP will point to a non-zero value.
2549 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2550 ADL overload candidates when performing overload resolution for a fully
2553 Note: This function does *not* check the value of
2554 overload_resolution. Caller must check it to see whether overload
2555 resolution is permitted. */
2558 find_overload_match (struct value **args, int nargs,
2559 const char *name, enum oload_search_type method,
2560 struct value **objp, struct symbol *fsym,
2561 struct value **valp, struct symbol **symp,
2562 int *staticp, const int no_adl)
2564 struct value *obj = (objp ? *objp : NULL);
2565 struct type *obj_type = obj ? value_type (obj) : NULL;
2566 /* Index of best overloaded function. */
2567 int func_oload_champ = -1;
2568 int method_oload_champ = -1;
2570 /* The measure for the current best match. */
2571 struct badness_vector *method_badness = NULL;
2572 struct badness_vector *func_badness = NULL;
2574 struct value *temp = obj;
2575 /* For methods, the list of overloaded methods. */
2576 struct fn_field *fns_ptr = NULL;
2577 /* For non-methods, the list of overloaded function symbols. */
2578 struct symbol **oload_syms = NULL;
2579 /* Number of overloaded instances being considered. */
2581 struct type *basetype = NULL;
2584 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2586 const char *obj_type_name = NULL;
2587 const char *func_name = NULL;
2588 enum oload_classification match_quality;
2589 enum oload_classification method_match_quality = INCOMPATIBLE;
2590 enum oload_classification func_match_quality = INCOMPATIBLE;
2592 /* Get the list of overloaded methods or functions. */
2593 if (method == METHOD || method == BOTH)
2597 /* OBJ may be a pointer value rather than the object itself. */
2598 obj = coerce_ref (obj);
2599 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2600 obj = coerce_ref (value_ind (obj));
2601 obj_type_name = TYPE_NAME (value_type (obj));
2603 /* First check whether this is a data member, e.g. a pointer to
2605 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2607 *valp = search_struct_field (name, obj, 0,
2608 check_typedef (value_type (obj)), 0);
2612 do_cleanups (all_cleanups);
2617 /* Retrieve the list of methods with the name NAME. */
2618 fns_ptr = value_find_oload_method_list (&temp, name,
2620 &basetype, &boffset);
2621 /* If this is a method only search, and no methods were found
2622 the search has faild. */
2623 if (method == METHOD && (!fns_ptr || !num_fns))
2624 error (_("Couldn't find method %s%s%s"),
2626 (obj_type_name && *obj_type_name) ? "::" : "",
2628 /* If we are dealing with stub method types, they should have
2629 been resolved by find_method_list via
2630 value_find_oload_method_list above. */
2633 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2634 method_oload_champ = find_oload_champ (args, nargs, method,
2636 oload_syms, &method_badness);
2638 method_match_quality =
2639 classify_oload_match (method_badness, nargs,
2640 oload_method_static (method, fns_ptr,
2641 method_oload_champ));
2643 make_cleanup (xfree, method_badness);
2648 if (method == NON_METHOD || method == BOTH)
2650 const char *qualified_name = NULL;
2652 /* If the overload match is being search for both as a method
2653 and non member function, the first argument must now be
2656 args[0] = value_ind (args[0]);
2660 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2662 /* If we have a function with a C++ name, try to extract just
2663 the function part. Do not try this for non-functions (e.g.
2664 function pointers). */
2666 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2671 temp = cp_func_name (qualified_name);
2673 /* If cp_func_name did not remove anything, the name of the
2674 symbol did not include scope or argument types - it was
2675 probably a C-style function. */
2678 make_cleanup (xfree, temp);
2679 if (strcmp (temp, qualified_name) == 0)
2689 qualified_name = name;
2692 /* If there was no C++ name, this must be a C-style function or
2693 not a function at all. Just return the same symbol. Do the
2694 same if cp_func_name fails for some reason. */
2695 if (func_name == NULL)
2698 do_cleanups (all_cleanups);
2702 func_oload_champ = find_oload_champ_namespace (args, nargs,
2709 if (func_oload_champ >= 0)
2710 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2712 make_cleanup (xfree, oload_syms);
2713 make_cleanup (xfree, func_badness);
2716 /* Did we find a match ? */
2717 if (method_oload_champ == -1 && func_oload_champ == -1)
2718 throw_error (NOT_FOUND_ERROR,
2719 _("No symbol \"%s\" in current context."),
2722 /* If we have found both a method match and a function
2723 match, find out which one is better, and calculate match
2725 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2727 switch (compare_badness (func_badness, method_badness))
2729 case 0: /* Top two contenders are equally good. */
2730 /* FIXME: GDB does not support the general ambiguous case.
2731 All candidates should be collected and presented the
2733 error (_("Ambiguous overload resolution"));
2735 case 1: /* Incomparable top contenders. */
2736 /* This is an error incompatible candidates
2737 should not have been proposed. */
2738 error (_("Internal error: incompatible "
2739 "overload candidates proposed"));
2741 case 2: /* Function champion. */
2742 method_oload_champ = -1;
2743 match_quality = func_match_quality;
2745 case 3: /* Method champion. */
2746 func_oload_champ = -1;
2747 match_quality = method_match_quality;
2750 error (_("Internal error: unexpected overload comparison result"));
2756 /* We have either a method match or a function match. */
2757 if (method_oload_champ >= 0)
2758 match_quality = method_match_quality;
2760 match_quality = func_match_quality;
2763 if (match_quality == INCOMPATIBLE)
2765 if (method == METHOD)
2766 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2768 (obj_type_name && *obj_type_name) ? "::" : "",
2771 error (_("Cannot resolve function %s to any overloaded instance"),
2774 else if (match_quality == NON_STANDARD)
2776 if (method == METHOD)
2777 warning (_("Using non-standard conversion to match "
2778 "method %s%s%s to supplied arguments"),
2780 (obj_type_name && *obj_type_name) ? "::" : "",
2783 warning (_("Using non-standard conversion to match "
2784 "function %s to supplied arguments"),
2788 if (staticp != NULL)
2789 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2791 if (method_oload_champ >= 0)
2793 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2794 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2797 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2801 *symp = oload_syms[func_oload_champ];
2805 struct type *temp_type = check_typedef (value_type (temp));
2806 struct type *objtype = check_typedef (obj_type);
2808 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2809 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2810 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2812 temp = value_addr (temp);
2817 do_cleanups (all_cleanups);
2819 switch (match_quality)
2825 default: /* STANDARD */
2830 /* Find the best overload match, searching for FUNC_NAME in namespaces
2831 contained in QUALIFIED_NAME until it either finds a good match or
2832 runs out of namespaces. It stores the overloaded functions in
2833 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2834 calling function is responsible for freeing *OLOAD_SYMS and
2835 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2839 find_oload_champ_namespace (struct value **args, int nargs,
2840 const char *func_name,
2841 const char *qualified_name,
2842 struct symbol ***oload_syms,
2843 struct badness_vector **oload_champ_bv,
2848 find_oload_champ_namespace_loop (args, nargs,
2851 oload_syms, oload_champ_bv,
2858 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2859 how deep we've looked for namespaces, and the champ is stored in
2860 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2861 if it isn't. Other arguments are the same as in
2862 find_oload_champ_namespace
2864 It is the caller's responsibility to free *OLOAD_SYMS and
2868 find_oload_champ_namespace_loop (struct value **args, int nargs,
2869 const char *func_name,
2870 const char *qualified_name,
2872 struct symbol ***oload_syms,
2873 struct badness_vector **oload_champ_bv,
2877 int next_namespace_len = namespace_len;
2878 int searched_deeper = 0;
2880 struct cleanup *old_cleanups;
2881 int new_oload_champ;
2882 struct symbol **new_oload_syms;
2883 struct badness_vector *new_oload_champ_bv;
2884 char *new_namespace;
2886 if (next_namespace_len != 0)
2888 gdb_assert (qualified_name[next_namespace_len] == ':');
2889 next_namespace_len += 2;
2891 next_namespace_len +=
2892 cp_find_first_component (qualified_name + next_namespace_len);
2894 /* Initialize these to values that can safely be xfree'd. */
2896 *oload_champ_bv = NULL;
2898 /* First, see if we have a deeper namespace we can search in.
2899 If we get a good match there, use it. */
2901 if (qualified_name[next_namespace_len] == ':')
2903 searched_deeper = 1;
2905 if (find_oload_champ_namespace_loop (args, nargs,
2906 func_name, qualified_name,
2908 oload_syms, oload_champ_bv,
2909 oload_champ, no_adl))
2915 /* If we reach here, either we're in the deepest namespace or we
2916 didn't find a good match in a deeper namespace. But, in the
2917 latter case, we still have a bad match in a deeper namespace;
2918 note that we might not find any match at all in the current
2919 namespace. (There's always a match in the deepest namespace,
2920 because this overload mechanism only gets called if there's a
2921 function symbol to start off with.) */
2923 old_cleanups = make_cleanup (xfree, *oload_syms);
2924 make_cleanup (xfree, *oload_champ_bv);
2925 new_namespace = alloca (namespace_len + 1);
2926 strncpy (new_namespace, qualified_name, namespace_len);
2927 new_namespace[namespace_len] = '\0';
2928 new_oload_syms = make_symbol_overload_list (func_name,
2931 /* If we have reached the deepest level perform argument
2932 determined lookup. */
2933 if (!searched_deeper && !no_adl)
2936 struct type **arg_types;
2938 /* Prepare list of argument types for overload resolution. */
2939 arg_types = (struct type **)
2940 alloca (nargs * (sizeof (struct type *)));
2941 for (ix = 0; ix < nargs; ix++)
2942 arg_types[ix] = value_type (args[ix]);
2943 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2946 while (new_oload_syms[num_fns])
2949 new_oload_champ = find_oload_champ (args, nargs, 0, num_fns,
2950 NULL, new_oload_syms,
2951 &new_oload_champ_bv);
2953 /* Case 1: We found a good match. Free earlier matches (if any),
2954 and return it. Case 2: We didn't find a good match, but we're
2955 not the deepest function. Then go with the bad match that the
2956 deeper function found. Case 3: We found a bad match, and we're
2957 the deepest function. Then return what we found, even though
2958 it's a bad match. */
2960 if (new_oload_champ != -1
2961 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2963 *oload_syms = new_oload_syms;
2964 *oload_champ = new_oload_champ;
2965 *oload_champ_bv = new_oload_champ_bv;
2966 do_cleanups (old_cleanups);
2969 else if (searched_deeper)
2971 xfree (new_oload_syms);
2972 xfree (new_oload_champ_bv);
2973 discard_cleanups (old_cleanups);
2978 *oload_syms = new_oload_syms;
2979 *oload_champ = new_oload_champ;
2980 *oload_champ_bv = new_oload_champ_bv;
2981 do_cleanups (old_cleanups);
2986 /* Look for a function to take NARGS args of ARGS. Find
2987 the best match from among the overloaded methods or functions
2988 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2989 The number of methods/functions in the list is given by NUM_FNS.
2990 Return the index of the best match; store an indication of the
2991 quality of the match in OLOAD_CHAMP_BV.
2993 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2996 find_oload_champ (struct value **args, int nargs, int method,
2997 int num_fns, struct fn_field *fns_ptr,
2998 struct symbol **oload_syms,
2999 struct badness_vector **oload_champ_bv)
3002 /* A measure of how good an overloaded instance is. */
3003 struct badness_vector *bv;
3004 /* Index of best overloaded function. */
3005 int oload_champ = -1;
3006 /* Current ambiguity state for overload resolution. */
3007 int oload_ambiguous = 0;
3008 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3010 *oload_champ_bv = NULL;
3012 /* Consider each candidate in turn. */
3013 for (ix = 0; ix < num_fns; ix++)
3016 int static_offset = oload_method_static (method, fns_ptr, ix);
3018 struct type **parm_types;
3022 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
3026 /* If it's not a method, this is the proper place. */
3027 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
3030 /* Prepare array of parameter types. */
3031 parm_types = (struct type **)
3032 xmalloc (nparms * (sizeof (struct type *)));
3033 for (jj = 0; jj < nparms; jj++)
3034 parm_types[jj] = (method
3035 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3036 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3039 /* Compare parameter types to supplied argument types. Skip
3040 THIS for static methods. */
3041 bv = rank_function (parm_types, nparms,
3042 args + static_offset,
3043 nargs - static_offset);
3045 if (!*oload_champ_bv)
3047 *oload_champ_bv = bv;
3050 else /* See whether current candidate is better or worse than
3052 switch (compare_badness (bv, *oload_champ_bv))
3054 case 0: /* Top two contenders are equally good. */
3055 oload_ambiguous = 1;
3057 case 1: /* Incomparable top contenders. */
3058 oload_ambiguous = 2;
3060 case 2: /* New champion, record details. */
3061 *oload_champ_bv = bv;
3062 oload_ambiguous = 0;
3073 fprintf_filtered (gdb_stderr,
3074 "Overloaded method instance %s, # of parms %d\n",
3075 fns_ptr[ix].physname, nparms);
3077 fprintf_filtered (gdb_stderr,
3078 "Overloaded function instance "
3079 "%s # of parms %d\n",
3080 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3082 for (jj = 0; jj < nargs - static_offset; jj++)
3083 fprintf_filtered (gdb_stderr,
3084 "...Badness @ %d : %d\n",
3085 jj, bv->rank[jj].rank);
3086 fprintf_filtered (gdb_stderr, "Overload resolution "
3087 "champion is %d, ambiguous? %d\n",
3088 oload_champ, oload_ambiguous);
3095 /* Return 1 if we're looking at a static method, 0 if we're looking at
3096 a non-static method or a function that isn't a method. */
3099 oload_method_static (int method, struct fn_field *fns_ptr, int index)
3101 if (method && fns_ptr && index >= 0
3102 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3108 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3110 static enum oload_classification
3111 classify_oload_match (struct badness_vector *oload_champ_bv,
3116 enum oload_classification worst = STANDARD;
3118 for (ix = 1; ix <= nargs - static_offset; ix++)
3120 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3121 or worse return INCOMPATIBLE. */
3122 if (compare_ranks (oload_champ_bv->rank[ix],
3123 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3124 return INCOMPATIBLE; /* Truly mismatched types. */
3125 /* Otherwise If this conversion is as bad as
3126 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3127 else if (compare_ranks (oload_champ_bv->rank[ix],
3128 NS_POINTER_CONVERSION_BADNESS) <= 0)
3129 worst = NON_STANDARD; /* Non-standard type conversions
3133 /* If no INCOMPATIBLE classification was found, return the worst one
3134 that was found (if any). */
3138 /* C++: return 1 is NAME is a legitimate name for the destructor of
3139 type TYPE. If TYPE does not have a destructor, or if NAME is
3140 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3141 have CHECK_TYPEDEF applied, this function will apply it itself. */
3144 destructor_name_p (const char *name, struct type *type)
3148 const char *dname = type_name_no_tag_or_error (type);
3149 const char *cp = strchr (dname, '<');
3152 /* Do not compare the template part for template classes. */
3154 len = strlen (dname);
3157 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3158 error (_("name of destructor must equal name of class"));
3165 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3166 return the appropriate member (or the address of the member, if
3167 WANT_ADDRESS). This function is used to resolve user expressions
3168 of the form "DOMAIN::NAME". For more details on what happens, see
3169 the comment before value_struct_elt_for_reference. */
3172 value_aggregate_elt (struct type *curtype, char *name,
3173 struct type *expect_type, int want_address,
3176 switch (TYPE_CODE (curtype))
3178 case TYPE_CODE_STRUCT:
3179 case TYPE_CODE_UNION:
3180 return value_struct_elt_for_reference (curtype, 0, curtype,
3182 want_address, noside);
3183 case TYPE_CODE_NAMESPACE:
3184 return value_namespace_elt (curtype, name,
3185 want_address, noside);
3187 internal_error (__FILE__, __LINE__,
3188 _("non-aggregate type in value_aggregate_elt"));
3192 /* Compares the two method/function types T1 and T2 for "equality"
3193 with respect to the methods' parameters. If the types of the
3194 two parameter lists are the same, returns 1; 0 otherwise. This
3195 comparison may ignore any artificial parameters in T1 if
3196 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3197 the first artificial parameter in T1, assumed to be a 'this' pointer.
3199 The type T2 is expected to have come from make_params (in eval.c). */
3202 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3206 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3209 /* If skipping artificial fields, find the first real field
3211 if (skip_artificial)
3213 while (start < TYPE_NFIELDS (t1)
3214 && TYPE_FIELD_ARTIFICIAL (t1, start))
3218 /* Now compare parameters. */
3220 /* Special case: a method taking void. T1 will contain no
3221 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3222 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3223 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3226 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3230 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3232 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3233 TYPE_FIELD_TYPE (t2, i), NULL),
3234 EXACT_MATCH_BADNESS) != 0)
3244 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3245 return the address of this member as a "pointer to member" type.
3246 If INTYPE is non-null, then it will be the type of the member we
3247 are looking for. This will help us resolve "pointers to member
3248 functions". This function is used to resolve user expressions of
3249 the form "DOMAIN::NAME". */
3251 static struct value *
3252 value_struct_elt_for_reference (struct type *domain, int offset,
3253 struct type *curtype, char *name,
3254 struct type *intype,
3258 struct type *t = curtype;
3260 struct value *v, *result;
3262 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3263 && TYPE_CODE (t) != TYPE_CODE_UNION)
3264 error (_("Internal error: non-aggregate type "
3265 "to value_struct_elt_for_reference"));
3267 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3269 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3271 if (t_field_name && strcmp (t_field_name, name) == 0)
3273 if (field_is_static (&TYPE_FIELD (t, i)))
3275 v = value_static_field (t, i);
3277 error (_("static field %s has been optimized out"),
3283 if (TYPE_FIELD_PACKED (t, i))
3284 error (_("pointers to bitfield members not allowed"));
3287 return value_from_longest
3288 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3289 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3290 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3291 return allocate_value (TYPE_FIELD_TYPE (t, i));
3293 error (_("Cannot reference non-static field \"%s\""), name);
3297 /* C++: If it was not found as a data field, then try to return it
3298 as a pointer to a method. */
3300 /* Perform all necessary dereferencing. */
3301 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3302 intype = TYPE_TARGET_TYPE (intype);
3304 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3306 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3307 char dem_opname[64];
3309 if (strncmp (t_field_name, "__", 2) == 0
3310 || strncmp (t_field_name, "op", 2) == 0
3311 || strncmp (t_field_name, "type", 4) == 0)
3313 if (cplus_demangle_opname (t_field_name,
3314 dem_opname, DMGL_ANSI))
3315 t_field_name = dem_opname;
3316 else if (cplus_demangle_opname (t_field_name,
3318 t_field_name = dem_opname;
3320 if (t_field_name && strcmp (t_field_name, name) == 0)
3323 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3324 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3326 check_stub_method_group (t, i);
3330 for (j = 0; j < len; ++j)
3332 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3333 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3339 error (_("no member function matches "
3340 "that type instantiation"));
3347 for (ii = 0; ii < len; ++ii)
3349 /* Skip artificial methods. This is necessary if,
3350 for example, the user wants to "print
3351 subclass::subclass" with only one user-defined
3352 constructor. There is no ambiguity in this case.
3353 We are careful here to allow artificial methods
3354 if they are the unique result. */
3355 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3362 /* Desired method is ambiguous if more than one
3363 method is defined. */
3364 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3365 error (_("non-unique member `%s' requires "
3366 "type instantiation"), name);
3372 error (_("no matching member function"));
3375 if (TYPE_FN_FIELD_STATIC_P (f, j))
3378 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3385 return value_addr (read_var_value (s, 0));
3387 return read_var_value (s, 0);
3390 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3394 result = allocate_value
3395 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3396 cplus_make_method_ptr (value_type (result),
3397 value_contents_writeable (result),
3398 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3400 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3401 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3403 error (_("Cannot reference virtual member function \"%s\""),
3409 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3415 v = read_var_value (s, 0);
3420 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3421 cplus_make_method_ptr (value_type (result),
3422 value_contents_writeable (result),
3423 value_address (v), 0);
3429 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3434 if (BASETYPE_VIA_VIRTUAL (t, i))
3437 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3438 v = value_struct_elt_for_reference (domain,
3439 offset + base_offset,
3440 TYPE_BASECLASS (t, i),
3442 want_address, noside);
3447 /* As a last chance, pretend that CURTYPE is a namespace, and look
3448 it up that way; this (frequently) works for types nested inside
3451 return value_maybe_namespace_elt (curtype, name,
3452 want_address, noside);
3455 /* C++: Return the member NAME of the namespace given by the type
3458 static struct value *
3459 value_namespace_elt (const struct type *curtype,
3460 char *name, int want_address,
3463 struct value *retval = value_maybe_namespace_elt (curtype, name,
3468 error (_("No symbol \"%s\" in namespace \"%s\"."),
3469 name, TYPE_TAG_NAME (curtype));
3474 /* A helper function used by value_namespace_elt and
3475 value_struct_elt_for_reference. It looks up NAME inside the
3476 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3477 is a class and NAME refers to a type in CURTYPE itself (as opposed
3478 to, say, some base class of CURTYPE). */
3480 static struct value *
3481 value_maybe_namespace_elt (const struct type *curtype,
3482 char *name, int want_address,
3485 const char *namespace_name = TYPE_TAG_NAME (curtype);
3487 struct value *result;
3489 sym = cp_lookup_symbol_namespace (namespace_name, name,
3490 get_selected_block (0), VAR_DOMAIN);
3494 char *concatenated_name = alloca (strlen (namespace_name) + 2
3495 + strlen (name) + 1);
3497 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3498 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3503 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3504 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3505 result = allocate_value (SYMBOL_TYPE (sym));
3507 result = value_of_variable (sym, get_selected_block (0));
3509 if (result && want_address)
3510 result = value_addr (result);
3515 /* Given a pointer or a reference value V, find its real (RTTI) type.
3517 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3518 and refer to the values computed for the object pointed to. */
3521 value_rtti_indirect_type (struct value *v, int *full,
3522 int *top, int *using_enc)
3524 struct value *target;
3525 struct type *type, *real_type, *target_type;
3527 type = value_type (v);
3528 type = check_typedef (type);
3529 if (TYPE_CODE (type) == TYPE_CODE_REF)
3530 target = coerce_ref (v);
3531 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3532 target = value_ind (v);
3536 real_type = value_rtti_type (target, full, top, using_enc);
3540 /* Copy qualifiers to the referenced object. */
3541 target_type = value_type (target);
3542 real_type = make_cv_type (TYPE_CONST (target_type),
3543 TYPE_VOLATILE (target_type), real_type, NULL);
3544 if (TYPE_CODE (type) == TYPE_CODE_REF)
3545 real_type = lookup_reference_type (real_type);
3546 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3547 real_type = lookup_pointer_type (real_type);
3549 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3551 /* Copy qualifiers to the pointer/reference. */
3552 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3559 /* Given a value pointed to by ARGP, check its real run-time type, and
3560 if that is different from the enclosing type, create a new value
3561 using the real run-time type as the enclosing type (and of the same
3562 type as ARGP) and return it, with the embedded offset adjusted to
3563 be the correct offset to the enclosed object. RTYPE is the type,
3564 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3565 by value_rtti_type(). If these are available, they can be supplied
3566 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3567 NULL if they're not available. */
3570 value_full_object (struct value *argp,
3572 int xfull, int xtop,
3575 struct type *real_type;
3579 struct value *new_val;
3586 using_enc = xusing_enc;
3589 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3591 /* If no RTTI data, or if object is already complete, do nothing. */
3592 if (!real_type || real_type == value_enclosing_type (argp))
3595 /* In a destructor we might see a real type that is a superclass of
3596 the object's type. In this case it is better to leave the object
3599 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3602 /* If we have the full object, but for some reason the enclosing
3603 type is wrong, set it. */
3604 /* pai: FIXME -- sounds iffy */
3607 argp = value_copy (argp);
3608 set_value_enclosing_type (argp, real_type);
3612 /* Check if object is in memory. */
3613 if (VALUE_LVAL (argp) != lval_memory)
3615 warning (_("Couldn't retrieve complete object of RTTI "
3616 "type %s; object may be in register(s)."),
3617 TYPE_NAME (real_type));
3622 /* All other cases -- retrieve the complete object. */
3623 /* Go back by the computed top_offset from the beginning of the
3624 object, adjusting for the embedded offset of argp if that's what
3625 value_rtti_type used for its computation. */
3626 new_val = value_at_lazy (real_type, value_address (argp) - top +
3627 (using_enc ? 0 : value_embedded_offset (argp)));
3628 deprecated_set_value_type (new_val, value_type (argp));
3629 set_value_embedded_offset (new_val, (using_enc
3630 ? top + value_embedded_offset (argp)
3636 /* Return the value of the local variable, if one exists. Throw error
3637 otherwise, such as if the request is made in an inappropriate context. */
3640 value_of_this (const struct language_defn *lang)
3644 struct frame_info *frame;
3646 if (!lang->la_name_of_this)
3647 error (_("no `this' in current language"));
3649 frame = get_selected_frame (_("no frame selected"));
3651 b = get_frame_block (frame, NULL);
3653 sym = lookup_language_this (lang, b);
3655 error (_("current stack frame does not contain a variable named `%s'"),
3656 lang->la_name_of_this);
3658 return read_var_value (sym, frame);
3661 /* Return the value of the local variable, if one exists. Return NULL
3662 otherwise. Never throw error. */
3665 value_of_this_silent (const struct language_defn *lang)
3667 struct value *ret = NULL;
3668 volatile struct gdb_exception except;
3670 TRY_CATCH (except, RETURN_MASK_ERROR)
3672 ret = value_of_this (lang);
3678 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3679 elements long, starting at LOWBOUND. The result has the same lower
3680 bound as the original ARRAY. */
3683 value_slice (struct value *array, int lowbound, int length)
3685 struct type *slice_range_type, *slice_type, *range_type;
3686 LONGEST lowerbound, upperbound;
3687 struct value *slice;
3688 struct type *array_type;
3690 array_type = check_typedef (value_type (array));
3691 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3692 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3693 error (_("cannot take slice of non-array"));
3695 range_type = TYPE_INDEX_TYPE (array_type);
3696 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3697 error (_("slice from bad array or bitstring"));
3699 if (lowbound < lowerbound || length < 0
3700 || lowbound + length - 1 > upperbound)
3701 error (_("slice out of range"));
3703 /* FIXME-type-allocation: need a way to free this type when we are
3705 slice_range_type = create_range_type ((struct type *) NULL,
3706 TYPE_TARGET_TYPE (range_type),
3708 lowbound + length - 1);
3711 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3713 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3715 slice_type = create_array_type ((struct type *) NULL,
3718 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3720 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3721 slice = allocate_value_lazy (slice_type);
3724 slice = allocate_value (slice_type);
3725 value_contents_copy (slice, 0, array, offset,
3726 TYPE_LENGTH (slice_type));
3729 set_value_component_location (slice, array);
3730 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3731 set_value_offset (slice, value_offset (array) + offset);
3736 /* Create a value for a FORTRAN complex number. Currently most of the
3737 time values are coerced to COMPLEX*16 (i.e. a complex number
3738 composed of 2 doubles. This really should be a smarter routine
3739 that figures out precision inteligently as opposed to assuming
3740 doubles. FIXME: fmb */
3743 value_literal_complex (struct value *arg1,
3748 struct type *real_type = TYPE_TARGET_TYPE (type);
3750 val = allocate_value (type);
3751 arg1 = value_cast (real_type, arg1);
3752 arg2 = value_cast (real_type, arg2);
3754 memcpy (value_contents_raw (val),
3755 value_contents (arg1), TYPE_LENGTH (real_type));
3756 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3757 value_contents (arg2), TYPE_LENGTH (real_type));
3761 /* Cast a value into the appropriate complex data type. */
3763 static struct value *
3764 cast_into_complex (struct type *type, struct value *val)
3766 struct type *real_type = TYPE_TARGET_TYPE (type);
3768 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3770 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3771 struct value *re_val = allocate_value (val_real_type);
3772 struct value *im_val = allocate_value (val_real_type);
3774 memcpy (value_contents_raw (re_val),
3775 value_contents (val), TYPE_LENGTH (val_real_type));
3776 memcpy (value_contents_raw (im_val),
3777 value_contents (val) + TYPE_LENGTH (val_real_type),
3778 TYPE_LENGTH (val_real_type));
3780 return value_literal_complex (re_val, im_val, type);
3782 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3783 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3784 return value_literal_complex (val,
3785 value_zero (real_type, not_lval),
3788 error (_("cannot cast non-number to complex"));
3792 _initialize_valops (void)
3794 add_setshow_boolean_cmd ("overload-resolution", class_support,
3795 &overload_resolution, _("\
3796 Set overload resolution in evaluating C++ functions."), _("\
3797 Show overload resolution in evaluating C++ functions."),
3799 show_overload_resolution,
3800 &setlist, &showlist);
3801 overload_resolution = 1;