1 /* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
3 Copyright (C) 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "frame-unwind.h"
28 #include "dwarf2-frame.h"
31 #include "gdb_string.h"
32 #include "gdb_assert.h"
34 #include "arch-utils.h"
44 E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM,
47 E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM,
50 E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM,
51 E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM,
52 E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM,
70 E_R29_REGNUM, E_FP_REGNUM = E_R29_REGNUM,
71 E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM,
72 E_R31_REGNUM, E_LP_REGNUM = E_R31_REGNUM,
73 E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM,
78 E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM,
93 E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM,
105 E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM,
115 /* Size of return datatype which fits into all return registers. */
118 E_MAX_RETTYPE_SIZE_IN_REGS = 2 * v850_reg_size
121 struct v850_frame_cache
128 /* Flag showing that a frame has been created in the prologue code. */
131 /* Saved registers. */
132 struct trad_frame_saved_reg *saved_regs;
135 /* Info gleaned from scanning a function's prologue. */
136 struct pifsr /* Info about one saved register. */
138 int offset; /* Offset from sp or fp. */
139 int cur_frameoffset; /* Current frameoffset. */
140 int reg; /* Saved register number. */
144 v850_register_name (int regnum)
146 static const char *v850_reg_names[] =
147 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
148 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
149 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
150 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
151 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
152 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
153 "sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
154 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
157 if (regnum < 0 || regnum >= E_NUM_REGS)
159 return v850_reg_names[regnum];
163 v850e_register_name (int regnum)
165 static const char *v850e_reg_names[] =
167 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
168 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
169 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
170 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
171 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
172 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
173 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
174 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
177 if (regnum < 0 || regnum >= E_NUM_REGS)
179 return v850e_reg_names[regnum];
182 /* Returns the default type for register N. */
185 v850_register_type (struct gdbarch *gdbarch, int regnum)
187 if (regnum == E_PC_REGNUM)
188 return builtin_type_void_func_ptr;
189 return builtin_type_int32;
193 v850_type_is_scalar (struct type *t)
195 return (TYPE_CODE (t) != TYPE_CODE_STRUCT
196 && TYPE_CODE (t) != TYPE_CODE_UNION
197 && TYPE_CODE (t) != TYPE_CODE_ARRAY);
200 /* Should call_function allocate stack space for a struct return? */
202 v850_use_struct_convention (struct type *type)
205 struct type *fld_type, *tgt_type;
207 /* 1. The value is greater than 8 bytes -> returned by copying. */
208 if (TYPE_LENGTH (type) > 8)
211 /* 2. The value is a single basic type -> returned in register. */
212 if (v850_type_is_scalar (type))
215 /* The value is a structure or union with a single element and that
216 element is either a single basic type or an array of a single basic
217 type whose size is greater than or equal to 4 -> returned in register. */
218 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
219 || TYPE_CODE (type) == TYPE_CODE_UNION)
220 && TYPE_NFIELDS (type) == 1)
222 fld_type = TYPE_FIELD_TYPE (type, 0);
223 if (v850_type_is_scalar (fld_type) && TYPE_LENGTH (fld_type) >= 4)
226 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
228 tgt_type = TYPE_TARGET_TYPE (fld_type);
229 if (v850_type_is_scalar (tgt_type) && TYPE_LENGTH (tgt_type) >= 4)
234 /* The value is a structure whose first element is an integer or a float,
235 and which contains no arrays of more than two elements -> returned in
237 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
238 && v850_type_is_scalar (TYPE_FIELD_TYPE (type, 0))
239 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
241 for (i = 1; i < TYPE_NFIELDS (type); ++i)
243 fld_type = TYPE_FIELD_TYPE (type, 0);
244 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
246 tgt_type = TYPE_TARGET_TYPE (fld_type);
247 if (TYPE_LENGTH (fld_type) >= 0 && TYPE_LENGTH (tgt_type) >= 0
248 && TYPE_LENGTH (fld_type) / TYPE_LENGTH (tgt_type) > 2)
255 /* The value is a union which contains at least one field which would be
256 returned in registers according to these rules -> returned in register. */
257 if (TYPE_CODE (type) == TYPE_CODE_UNION)
259 for (i = 0; i < TYPE_NFIELDS (type); ++i)
261 fld_type = TYPE_FIELD_TYPE (type, 0);
262 if (!v850_use_struct_convention (fld_type))
270 /* Structure for mapping bits in register lists to register numbers. */
277 /* Helper function for v850_scan_prologue to handle prepare instruction. */
280 v850_handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr,
281 struct v850_frame_cache *pi, struct pifsr **pifsr_ptr)
283 CORE_ADDR current_pc = *current_pc_ptr;
284 struct pifsr *pifsr = *pifsr_ptr;
285 long next = insn2 & 0xffff;
286 long list12 = ((insn & 1) << 16) + (next & 0xffe0);
287 long offset = (insn & 0x3e) << 1;
288 static struct reg_list reg_table[] =
290 {0x00800, 20}, /* r20 */
291 {0x00400, 21}, /* r21 */
292 {0x00200, 22}, /* r22 */
293 {0x00100, 23}, /* r23 */
294 {0x08000, 24}, /* r24 */
295 {0x04000, 25}, /* r25 */
296 {0x02000, 26}, /* r26 */
297 {0x01000, 27}, /* r27 */
298 {0x00080, 28}, /* r28 */
299 {0x00040, 29}, /* r29 */
300 {0x10000, 30}, /* ep */
301 {0x00020, 31}, /* lp */
302 {0, 0} /* end of table */
306 if ((next & 0x1f) == 0x0b) /* skip imm16 argument */
308 else if ((next & 0x1f) == 0x13) /* skip imm16 argument */
310 else if ((next & 0x1f) == 0x1b) /* skip imm32 argument */
313 /* Calculate the total size of the saved registers, and add it to the
314 immediate value used to adjust SP. */
315 for (i = 0; reg_table[i].mask != 0; i++)
316 if (list12 & reg_table[i].mask)
317 offset += v850_reg_size;
318 pi->sp_offset -= offset;
320 /* Calculate the offsets of the registers relative to the value the SP
321 will have after the registers have been pushed and the imm5 value has
322 been subtracted from it. */
325 for (i = 0; reg_table[i].mask != 0; i++)
327 if (list12 & reg_table[i].mask)
329 int reg = reg_table[i].regno;
330 offset -= v850_reg_size;
332 pifsr->offset = offset;
333 pifsr->cur_frameoffset = pi->sp_offset;
339 /* Set result parameters. */
340 *current_pc_ptr = current_pc;
345 /* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
346 The SR bit of the register list is not supported. gcc does not generate
350 v850_handle_pushm (int insn, int insn2, struct v850_frame_cache *pi,
351 struct pifsr **pifsr_ptr)
353 struct pifsr *pifsr = *pifsr_ptr;
354 long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0);
356 static struct reg_list pushml_reg_table[] =
358 {0x80000, E_PS_REGNUM}, /* PSW */
359 {0x40000, 1}, /* r1 */
360 {0x20000, 2}, /* r2 */
361 {0x10000, 3}, /* r3 */
362 {0x00800, 4}, /* r4 */
363 {0x00400, 5}, /* r5 */
364 {0x00200, 6}, /* r6 */
365 {0x00100, 7}, /* r7 */
366 {0x08000, 8}, /* r8 */
367 {0x04000, 9}, /* r9 */
368 {0x02000, 10}, /* r10 */
369 {0x01000, 11}, /* r11 */
370 {0x00080, 12}, /* r12 */
371 {0x00040, 13}, /* r13 */
372 {0x00020, 14}, /* r14 */
373 {0x00010, 15}, /* r15 */
374 {0, 0} /* end of table */
376 static struct reg_list pushmh_reg_table[] =
378 {0x80000, 16}, /* r16 */
379 {0x40000, 17}, /* r17 */
380 {0x20000, 18}, /* r18 */
381 {0x10000, 19}, /* r19 */
382 {0x00800, 20}, /* r20 */
383 {0x00400, 21}, /* r21 */
384 {0x00200, 22}, /* r22 */
385 {0x00100, 23}, /* r23 */
386 {0x08000, 24}, /* r24 */
387 {0x04000, 25}, /* r25 */
388 {0x02000, 26}, /* r26 */
389 {0x01000, 27}, /* r27 */
390 {0x00080, 28}, /* r28 */
391 {0x00040, 29}, /* r29 */
392 {0x00010, 30}, /* r30 */
393 {0x00020, 31}, /* r31 */
394 {0, 0} /* end of table */
396 struct reg_list *reg_table;
399 /* Is this a pushml or a pushmh? */
400 if ((insn2 & 7) == 1)
401 reg_table = pushml_reg_table;
403 reg_table = pushmh_reg_table;
405 /* Calculate the total size of the saved registers, and add it it to the
406 immediate value used to adjust SP. */
407 for (i = 0; reg_table[i].mask != 0; i++)
408 if (list12 & reg_table[i].mask)
409 offset += v850_reg_size;
410 pi->sp_offset -= offset;
412 /* Calculate the offsets of the registers relative to the value the SP
413 will have after the registers have been pushed and the imm5 value is
414 subtracted from it. */
417 for (i = 0; reg_table[i].mask != 0; i++)
419 if (list12 & reg_table[i].mask)
421 int reg = reg_table[i].regno;
422 offset -= v850_reg_size;
424 pifsr->offset = offset;
425 pifsr->cur_frameoffset = pi->sp_offset;
431 /* Set result parameters. */
435 /* Helper function to evaluate if register is one of the "save" registers.
436 This allows to simplify conditionals in v850_analyze_prologue a lot. */
439 v850_is_save_register (int reg)
441 /* The caller-save registers are R2, R20 - R29 and R31. All other
442 registers are either special purpose (PC, SP), argument registers,
443 or just considered free for use in the caller. */
444 return reg == E_R2_REGNUM
445 || (reg >= E_R20_REGNUM && reg <= E_R29_REGNUM)
446 || reg == E_R31_REGNUM;
449 /* Scan the prologue of the function that contains PC, and record what
450 we find in PI. Returns the pc after the prologue. Note that the
451 addresses saved in frame->saved_regs are just frame relative (negative
452 offsets from the frame pointer). This is because we don't know the
453 actual value of the frame pointer yet. In some circumstances, the
454 frame pointer can't be determined till after we have scanned the
458 v850_analyze_prologue (CORE_ADDR func_addr, CORE_ADDR pc,
459 struct v850_frame_cache *pi, ULONGEST ctbp)
461 CORE_ADDR prologue_end, current_pc;
462 struct pifsr pifsrs[E_NUM_REGS + 1];
463 struct pifsr *pifsr, *pifsr_tmp;
467 CORE_ADDR save_pc, save_end;
471 memset (&pifsrs, 0, sizeof pifsrs);
476 /* Now, search the prologue looking for instructions that setup fp, save
477 rp, adjust sp and such. We also record the frame offset of any saved
488 for (current_pc = func_addr; current_pc < prologue_end;)
491 int insn2 = -1; /* dummy value */
493 insn = read_memory_integer (current_pc, 2);
495 if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
497 insn2 = read_memory_integer (current_pc, 2);
501 if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
502 { /* jarl <func>,10 */
503 long low_disp = insn2 & ~(long) 1;
504 long disp = (((((insn & 0x3f) << 16) + low_disp)
505 & ~(long) 1) ^ 0x00200000) - 0x00200000;
507 save_pc = current_pc;
508 save_end = prologue_end;
510 current_pc += disp - 4;
511 prologue_end = (current_pc
512 + (2 * 3) /* moves to/from ep */
513 + 4 /* addi <const>,sp,sp */
515 + (2 * 12) /* sst.w to save r2, r20-r29, r31 */
516 + 20); /* slop area */
518 else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p)
520 long adr = ctbp + ((insn & 0x3f) << 1);
522 save_pc = current_pc;
523 save_end = prologue_end;
525 current_pc = ctbp + (read_memory_unsigned_integer (adr, 2) & 0xffff);
526 prologue_end = (current_pc
527 + (2 * 3) /* prepare list2,imm5,sp/imm */
529 + 20); /* slop area */
532 else if ((insn & 0xffc0) == 0x0780) /* prepare list2,imm5 */
534 v850_handle_prepare (insn, insn2, ¤t_pc, pi, &pifsr);
537 else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144)
538 { /* ctret after processing register save. */
539 current_pc = save_pc;
540 prologue_end = save_end;
544 else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1)
545 { /* pushml, pushmh */
546 v850_handle_pushm (insn, insn2, pi, &pifsr);
549 else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
550 { /* jmp after processing register save. */
551 current_pc = save_pc;
552 prologue_end = save_end;
556 else if ((insn & 0x07c0) == 0x0780 /* jarl or jr */
557 || (insn & 0xffe0) == 0x0060 /* jmp */
558 || (insn & 0x0780) == 0x0580) /* branch */
560 break; /* Ran into end of prologue */
563 else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240))
565 pi->sp_offset += ((insn & 0x1f) ^ 0x10) - 0x10;
566 else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM))
567 /* addi <imm>,sp,sp */
568 pi->sp_offset += insn2;
569 else if (insn == ((E_FP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
572 else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM))
573 /* movhi hi(const),r0,r12 */
574 r12_tmp = insn2 << 16;
575 else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM))
576 /* movea lo(const),r12,r12 */
578 else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp)
580 pi->sp_offset += r12_tmp;
581 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
584 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM))
587 else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM)
589 && (insn & 0x07ff) == (0x0760 | E_FP_REGNUM)))
591 && v850_is_save_register (reg = (insn >> 11) & 0x1f))
593 /* st.w <reg>,<offset>[sp] or st.w <reg>,<offset>[fp] */
595 pifsr->offset = insn2 & ~1;
596 pifsr->cur_frameoffset = pi->sp_offset;
600 && ((insn & 0x0781) == 0x0501)
602 && v850_is_save_register (reg = (insn >> 11) & 0x1f))
604 /* sst.w <reg>,<offset>[ep] */
606 pifsr->offset = (insn & 0x007e) << 1;
607 pifsr->cur_frameoffset = pi->sp_offset;
612 /* Fix up any offsets to the final offset. If a frame pointer was created,
613 use it instead of the stack pointer. */
614 for (pifsr_tmp = pifsrs; pifsr_tmp != pifsr; pifsr_tmp++)
616 pifsr_tmp->offset -= pi->sp_offset - pifsr_tmp->cur_frameoffset;
617 pi->saved_regs[pifsr_tmp->reg].addr = pifsr_tmp->offset;
623 /* Return the address of the first code past the prologue of the function. */
626 v850_skip_prologue (CORE_ADDR pc)
628 CORE_ADDR func_addr, func_end;
630 /* See what the symbol table says */
632 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
634 struct symtab_and_line sal;
636 sal = find_pc_line (func_addr, 0);
637 if (sal.line != 0 && sal.end < func_end)
640 /* Either there's no line info, or the line after the prologue is after
641 the end of the function. In this case, there probably isn't a
646 /* We can't find the start of this function, so there's nothing we can do. */
651 v850_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
656 /* Setup arguments and LP for a call to the target. First four args
657 go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs
658 are passed by reference. 64 bit quantities (doubles and long longs)
659 may be split between the regs and the stack. When calling a function
660 that returns a struct, a pointer to the struct is passed in as a secret
661 first argument (always in R6).
663 Stack space for the args has NOT been allocated: that job is up to us. */
666 v850_push_dummy_call (struct gdbarch *gdbarch,
667 struct value *function,
668 struct regcache *regcache,
674 CORE_ADDR struct_addr)
681 /* The offset onto the stack at which we will start copying parameters
682 (after the registers are used up) begins at 16 rather than at zero.
683 That's how the ABI is defined, though there's no indication that these
684 16 bytes are used for anything, not even for saving incoming
685 argument registers. */
688 /* Now make space on the stack for the args. */
689 for (argnum = 0; argnum < nargs; argnum++)
690 len += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
691 sp -= len + stack_offset;
693 argreg = E_ARG0_REGNUM;
694 /* The struct_return pointer occupies the first parameter register. */
696 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
698 /* Now load as many as possible of the first arguments into
699 registers, and push the rest onto the stack. There are 16 bytes
700 in four registers available. Loop thru args from first to last. */
701 for (argnum = 0; argnum < nargs; argnum++)
705 gdb_byte valbuf[v850_reg_size];
707 if (!v850_type_is_scalar (value_type (*args))
708 && TYPE_LENGTH (value_type (*args)) > E_MAX_RETTYPE_SIZE_IN_REGS)
710 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (*args));
716 len = TYPE_LENGTH (value_type (*args));
717 val = (gdb_byte *) value_contents (*args);
721 if (argreg <= E_ARGLAST_REGNUM)
725 regval = extract_unsigned_integer (val, v850_reg_size);
726 regcache_cooked_write_unsigned (regcache, argreg, regval);
728 len -= v850_reg_size;
729 val += v850_reg_size;
734 write_memory (sp + stack_offset, val, 4);
743 /* Store return address. */
744 regcache_cooked_write_unsigned (regcache, E_LP_REGNUM, bp_addr);
746 /* Update stack pointer. */
747 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
753 v850_extract_return_value (struct type *type, struct regcache *regcache,
756 int len = TYPE_LENGTH (type);
758 if (len <= v850_reg_size)
762 regcache_cooked_read_unsigned (regcache, E_V0_REGNUM, &val);
763 store_unsigned_integer (valbuf, len, val);
765 else if (len <= 2 * v850_reg_size)
767 int i, regnum = E_V0_REGNUM;
768 gdb_byte buf[v850_reg_size];
769 for (i = 0; len > 0; i += 4, len -= 4)
771 regcache_raw_read (regcache, regnum++, buf);
772 memcpy (valbuf + i, buf, len > 4 ? 4 : len);
778 v850_store_return_value (struct type *type, struct regcache *regcache,
779 const gdb_byte *valbuf)
781 int len = TYPE_LENGTH (type);
783 if (len <= v850_reg_size)
784 regcache_cooked_write_unsigned (regcache, E_V0_REGNUM,
785 extract_unsigned_integer (valbuf, len));
786 else if (len <= 2 * v850_reg_size)
788 int i, regnum = E_V0_REGNUM;
789 for (i = 0; i < len; i += 4)
790 regcache_raw_write (regcache, regnum++, valbuf + i);
794 static enum return_value_convention
795 v850_return_value (struct gdbarch *gdbarch, struct type *type,
796 struct regcache *regcache,
797 gdb_byte *readbuf, const gdb_byte *writebuf)
799 if (v850_use_struct_convention (type))
800 return RETURN_VALUE_STRUCT_CONVENTION;
802 v850_store_return_value (type, regcache, writebuf);
804 v850_extract_return_value (type, regcache, readbuf);
805 return RETURN_VALUE_REGISTER_CONVENTION;
808 const static unsigned char *
809 v850_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
811 static unsigned char breakpoint[] = { 0x85, 0x05 };
812 *lenptr = sizeof (breakpoint);
816 static struct v850_frame_cache *
817 v850_alloc_frame_cache (struct frame_info *next_frame)
819 struct v850_frame_cache *cache;
822 cache = FRAME_OBSTACK_ZALLOC (struct v850_frame_cache);
823 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
827 cache->sp_offset = 0;
830 /* Frameless until proven otherwise. */
836 static struct v850_frame_cache *
837 v850_frame_cache (struct frame_info *next_frame, void **this_cache)
839 struct v850_frame_cache *cache;
840 CORE_ADDR current_pc;
846 cache = v850_alloc_frame_cache (next_frame);
849 /* In principle, for normal frames, fp holds the frame pointer,
850 which holds the base address for the current stack frame.
851 However, for functions that don't need it, the frame pointer is
852 optional. For these "frameless" functions the frame pointer is
853 actually the frame pointer of the calling frame. */
854 cache->base = frame_unwind_register_unsigned (next_frame, E_FP_REGNUM);
855 if (cache->base == 0)
858 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
859 current_pc = frame_pc_unwind (next_frame);
863 ctbp = frame_unwind_register_unsigned (next_frame, E_CTBP_REGNUM);
864 v850_analyze_prologue (cache->pc, current_pc, cache, ctbp);
869 /* We didn't find a valid frame, which means that CACHE->base
870 currently holds the frame pointer for our calling frame. If
871 we're at the start of a function, or somewhere half-way its
872 prologue, the function's frame probably hasn't been fully
873 setup yet. Try to reconstruct the base address for the stack
874 frame by looking at the stack pointer. For truly "frameless"
875 functions this might work too. */
876 cache->base = frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
879 /* Now that we have the base address for the stack frame we can
880 calculate the value of sp in the calling frame. */
881 trad_frame_set_value (cache->saved_regs, E_SP_REGNUM,
882 cache->base - cache->sp_offset);
884 /* Adjust all the saved registers such that they contain addresses
885 instead of offsets. */
886 for (i = 0; i < E_NUM_REGS; i++)
887 if (trad_frame_addr_p (cache->saved_regs, i))
888 cache->saved_regs[i].addr += cache->base;
890 /* The call instruction moves the caller's PC in the callee's LP.
891 Since this is an unwind, do the reverse. Copy the location of LP
892 into PC (the address / regnum) so that a request for PC will be
893 converted into a request for the LP. */
895 cache->saved_regs[E_PC_REGNUM] = cache->saved_regs[E_LP_REGNUM];
902 v850_frame_prev_register (struct frame_info *next_frame, void **this_cache,
903 int regnum, int *optimizedp,
904 enum lval_type *lvalp, CORE_ADDR *addrp,
905 int *realnump, gdb_byte *valuep)
907 struct v850_frame_cache *cache = v850_frame_cache (next_frame, this_cache);
909 gdb_assert (regnum >= 0);
911 trad_frame_get_prev_register (next_frame, cache->saved_regs, regnum,
912 optimizedp, lvalp, addrp, realnump, valuep);
916 v850_frame_this_id (struct frame_info *next_frame, void **this_cache,
917 struct frame_id *this_id)
919 struct v850_frame_cache *cache = v850_frame_cache (next_frame, this_cache);
921 /* This marks the outermost frame. */
922 if (cache->base == 0)
925 *this_id = frame_id_build (cache->saved_regs[E_SP_REGNUM].addr, cache->pc);
928 static const struct frame_unwind v850_frame_unwind = {
931 v850_frame_prev_register
934 static const struct frame_unwind *
935 v850_frame_sniffer (struct frame_info *next_frame)
937 return &v850_frame_unwind;
941 v850_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
943 return frame_unwind_register_unsigned (next_frame, SP_REGNUM);
947 v850_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
949 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
952 static struct frame_id
953 v850_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
955 return frame_id_build (v850_unwind_sp (gdbarch, next_frame),
956 frame_pc_unwind (next_frame));
960 v850_frame_base_address (struct frame_info *next_frame, void **this_cache)
962 struct v850_frame_cache *cache = v850_frame_cache (next_frame, this_cache);
967 static const struct frame_base v850_frame_base = {
969 v850_frame_base_address,
970 v850_frame_base_address,
971 v850_frame_base_address
974 static struct gdbarch *
975 v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
977 struct gdbarch *gdbarch;
979 /* Change the register names based on the current machine type. */
980 if (info.bfd_arch_info->arch != bfd_arch_v850)
983 gdbarch = gdbarch_alloc (&info, NULL);
985 switch (info.bfd_arch_info->mach)
988 set_gdbarch_register_name (gdbarch, v850_register_name);
991 case bfd_mach_v850e1:
992 set_gdbarch_register_name (gdbarch, v850e_register_name);
996 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
997 set_gdbarch_num_pseudo_regs (gdbarch, 0);
998 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
999 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1000 set_gdbarch_fp0_regnum (gdbarch, -1);
1002 set_gdbarch_register_type (gdbarch, v850_register_type);
1004 set_gdbarch_char_signed (gdbarch, 0);
1005 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1006 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1007 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1008 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1010 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1011 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1012 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1014 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1015 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1017 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1018 set_gdbarch_breakpoint_from_pc (gdbarch, v850_breakpoint_from_pc);
1020 set_gdbarch_return_value (gdbarch, v850_return_value);
1021 set_gdbarch_push_dummy_call (gdbarch, v850_push_dummy_call);
1022 set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue);
1024 set_gdbarch_print_insn (gdbarch, print_insn_v850);
1026 set_gdbarch_frame_align (gdbarch, v850_frame_align);
1027 set_gdbarch_unwind_sp (gdbarch, v850_unwind_sp);
1028 set_gdbarch_unwind_pc (gdbarch, v850_unwind_pc);
1029 set_gdbarch_unwind_dummy_id (gdbarch, v850_unwind_dummy_id);
1030 frame_base_set_default (gdbarch, &v850_frame_base);
1032 /* Hook in ABI-specific overrides, if they have been registered. */
1033 gdbarch_init_osabi (info, gdbarch);
1035 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1036 frame_unwind_append_sniffer (gdbarch, v850_frame_sniffer);
1041 extern initialize_file_ftype _initialize_v850_tdep; /* -Wmissing-prototypes */
1044 _initialize_v850_tdep (void)
1046 register_gdbarch_init (bfd_arch_v850, v850_gdbarch_init);