1 /* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
3 Copyright (C) 1996-2013 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "frame-base.h"
23 #include "trad-frame.h"
24 #include "frame-unwind.h"
25 #include "dwarf2-frame.h"
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
31 #include "arch-utils.h"
40 /* General purpose registers. */
44 E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM,
47 E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM,
50 E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM,
51 E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM,
52 E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM,
70 E_R29_REGNUM, E_FP_REGNUM = E_R29_REGNUM,
71 E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM,
72 E_R31_REGNUM, E_LP_REGNUM = E_R31_REGNUM,
74 /* System registers - main banks. */
75 E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM,
80 E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM,
95 E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM,
109 E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM,
112 E_NUM_OF_V850E_REGS = E_NUM_OF_V850_REGS,
114 /* System registers - MPV (PROT00) bank. */
115 E_R66_REGNUM = E_NUM_OF_V850_REGS,
144 /* System registers - MPU (PROT01) bank. */
174 /* FPU system registers. */
181 E_R128_REGNUM, E_FPSR_REGNUM = E_R128_REGNUM,
182 E_R129_REGNUM, E_FPEPC_REGNUM = E_R129_REGNUM,
183 E_R130_REGNUM, E_FPST_REGNUM = E_R130_REGNUM,
184 E_R131_REGNUM, E_FPCC_REGNUM = E_R131_REGNUM,
185 E_R132_REGNUM, E_FPCFG_REGNUM = E_R132_REGNUM,
203 E_NUM_OF_V850E2_REGS,
205 /* v850e3v5 system registers, selID 1 thru 7. */
206 E_SELID_1_R0_REGNUM = E_NUM_OF_V850E2_REGS,
207 E_SELID_1_R31_REGNUM = E_SELID_1_R0_REGNUM + 31,
210 E_SELID_2_R31_REGNUM = E_SELID_2_R0_REGNUM + 31,
213 E_SELID_3_R31_REGNUM = E_SELID_3_R0_REGNUM + 31,
216 E_SELID_4_R31_REGNUM = E_SELID_4_R0_REGNUM + 31,
219 E_SELID_5_R31_REGNUM = E_SELID_5_R0_REGNUM + 31,
222 E_SELID_6_R31_REGNUM = E_SELID_6_R0_REGNUM + 31,
225 E_SELID_7_R31_REGNUM = E_SELID_7_R0_REGNUM + 31,
227 /* v850e3v5 vector registers. */
229 E_VR31_REGNUM = E_VR0_REGNUM + 31,
231 E_NUM_OF_V850E3V5_REGS,
233 /* Total number of possible registers. */
234 E_NUM_REGS = E_NUM_OF_V850E3V5_REGS
242 /* Size of return datatype which fits into all return registers. */
245 E_MAX_RETTYPE_SIZE_IN_REGS = 2 * v850_reg_size
248 /* When v850 support was added to GCC in the late nineties, the intention
249 was to follow the Green Hills ABI for v850. In fact, the authors of
250 that support at the time thought that they were doing so. As far as
251 I can tell, the calling conventions are correct, but the return value
252 conventions were not quite right. Over time, the return value code
253 in this file was modified to mostly reflect what GCC was actually
254 doing instead of to actually follow the Green Hills ABI as it did
255 when the code was first written.
257 Renesas defined the RH850 ABI which they use in their compiler. It
258 is similar to the original Green Hills ABI with some minor
267 /* Architecture specific data. */
271 /* Fields from the ELF header. */
275 /* Which ABI are we using? */
277 int eight_byte_align;
280 struct v850_frame_cache
287 /* Flag showing that a frame has been created in the prologue code. */
290 /* Saved registers. */
291 struct trad_frame_saved_reg *saved_regs;
294 /* Info gleaned from scanning a function's prologue. */
295 struct pifsr /* Info about one saved register. */
297 int offset; /* Offset from sp or fp. */
298 int cur_frameoffset; /* Current frameoffset. */
299 int reg; /* Saved register number. */
303 v850_register_name (struct gdbarch *gdbarch, int regnum)
305 static const char *v850_reg_names[] =
306 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
307 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
308 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
309 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
310 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
311 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
312 "sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
313 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
316 if (regnum < 0 || regnum > E_NUM_OF_V850_REGS)
318 return v850_reg_names[regnum];
322 v850e_register_name (struct gdbarch *gdbarch, int regnum)
324 static const char *v850e_reg_names[] =
326 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
327 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
328 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
329 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
330 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
331 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
332 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
333 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
336 if (regnum < 0 || regnum > E_NUM_OF_V850E_REGS)
338 return v850e_reg_names[regnum];
342 v850e2_register_name (struct gdbarch *gdbarch, int regnum)
344 static const char *v850e2_reg_names[] =
346 /* General purpose registers. */
347 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
348 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
349 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
350 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
352 /* System registers - main banks. */
353 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "pid", "cfg",
354 "", "", "", "sccfg", "scbp", "eiic", "feic", "dbic",
355 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "dir", "", "",
356 "", "", "", "", "eiwr", "fewr", "dbwr", "bsel",
362 /* System registers - MPV (PROT00) bank. */
363 "vsecr", "vstid", "vsadr", "", "vmecr", "vmtid", "vmadr", "",
364 "vpecr", "vptid", "vpadr", "", "", "", "", "",
365 "", "", "", "", "", "", "", "",
366 "mca", "mcs", "mcc", "mcr",
368 /* System registers - MPU (PROT01) bank. */
369 "mpm", "mpc", "tid", "", "", "", "ipa0l", "ipa0u",
370 "ipa1l", "ipa1u", "ipa2l", "ipa2u", "ipa3l", "ipa3u", "ipa4l", "ipa4u",
371 "dpa0l", "dpa0u", "dpa1l", "dpa1u", "dpa2l", "dpa2u", "dpa3l", "dpa3u",
372 "dpa4l", "dpa4u", "dpa5l", "dpa5u",
374 /* FPU system registers. */
375 "", "", "", "", "", "", "fpsr", "fpepc",
376 "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "",
377 "", "", "", "", "", "", "", "",
380 if (regnum < 0 || regnum >= E_NUM_OF_V850E2_REGS)
382 return v850e2_reg_names[regnum];
385 /* Implement the "register_name" gdbarch method for v850e3v5. */
388 v850e3v5_register_name (struct gdbarch *gdbarch, int regnum)
390 static const char *v850e3v5_reg_names[] =
392 /* General purpose registers. */
393 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
394 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
395 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
396 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
398 /* selID 0, not including FPU registers. The FPU registers are
400 "eipc", "eipsw", "fepc", "fepsw",
401 "", "psw", "" /* fpsr */, "" /* fpepc */,
402 "" /* fpst */, "" /* fpcc */, "" /* fpcfg */, "" /* fpec */,
403 "sesr", "eiic", "feic", "",
404 "ctpc", "ctpsw", "", "", "ctbp", "", "", "",
405 "", "", "", "", "eiwr", "fewr", "", "bsel",
411 /* v850e2 MPV bank. */
412 "", "", "", "", "", "", "", "",
413 "", "", "", "", "", "", "", "",
414 "", "", "", "", "", "", "", "",
417 /* Skip v850e2 MPU bank. It's tempting to reuse these, but we need
418 32 entries for this bank. */
419 "", "", "", "", "", "", "", "",
420 "", "", "", "", "", "", "", "",
421 "", "", "", "", "", "", "", "",
424 /* FPU system registers. These are actually in selID 0, but
425 are placed here to preserve register numbering compatibility
426 with previous architectures. */
427 "", "", "", "", "", "", "fpsr", "fpepc",
428 "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "",
429 "", "", "", "", "", "", "", "",
433 "mcfg0", "mcfg1", "rbase", "ebase", "intbp", "mctl", "pid", "fpipr",
434 "", "", "tcsel", "sccfg", "scbp", "hvccfg", "hvcbp", "vsel",
435 "vmprt0", "vmprt1", "vmprt2", "", "", "", "", "vmscctl",
436 "vmsctbl0", "vmsctbl1", "vmsctbl2", "vmsctbl3", "", "", "", "",
439 "htcfg0", "", "", "", "", "htctl", "mea", "asid",
440 "mei", "ispr", "pmr", "icsr", "intcfg", "", "", "",
441 "tlbsch", "", "", "", "", "", "", "htscctl",
442 "htsctbl0", "htsctbl1", "htsctbl2", "htsctbl3",
443 "htsctbl4", "htsctbl5", "htsctbl6", "htsctbl7",
446 "", "", "", "", "", "", "", "",
447 "", "", "", "", "", "", "", "",
448 "", "", "", "", "", "", "", "",
449 "", "", "", "", "", "", "", "",
452 "tlbidx", "", "", "", "telo0", "telo1", "tehi0", "tehi1",
453 "", "", "tlbcfg", "", "bwerrl", "bwerrh", "brerrl", "brerrh",
454 "ictagl", "ictagh", "icdatl", "icdath",
455 "dctagl", "dctagh", "dcdatl", "dcdath",
456 "icctrl", "dcctrl", "iccfg", "dccfg", "icerr", "dcerr", "", "",
459 "mpm", "mprc", "", "", "mpbrgn", "mptrgn", "", "",
460 "mca", "mcs", "mcc", "mcr", "", "", "", "",
461 "", "", "", "", "mpprt0", "mpprt1", "mpprt2", "",
462 "", "", "", "", "", "", "", "",
465 "mpla0", "mpua0", "mpat0", "", "mpla1", "mpua1", "mpat1", "",
466 "mpla2", "mpua2", "mpat2", "", "mpla3", "mpua3", "mpat3", "",
467 "mpla4", "mpua4", "mpat4", "", "mpla5", "mpua5", "mpat5", "",
468 "mpla6", "mpua6", "mpat6", "", "mpla7", "mpua7", "mpat7", "",
471 "mpla8", "mpua8", "mpat8", "", "mpla9", "mpua9", "mpat9", "",
472 "mpla10", "mpua10", "mpat10", "", "mpla11", "mpua11", "mpat11", "",
473 "mpla12", "mpua12", "mpat12", "", "mpla13", "mpua13", "mpat13", "",
474 "mpla14", "mpua14", "mpat14", "", "mpla15", "mpua15", "mpat15", "",
476 /* Vector Registers */
477 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
478 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
479 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
480 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31",
483 if (regnum < 0 || regnum >= E_NUM_OF_V850E3V5_REGS)
485 return v850e3v5_reg_names[regnum];
488 /* Returns the default type for register N. */
491 v850_register_type (struct gdbarch *gdbarch, int regnum)
493 if (regnum == E_PC_REGNUM)
494 return builtin_type (gdbarch)->builtin_func_ptr;
495 else if (E_VR0_REGNUM <= regnum && regnum <= E_VR31_REGNUM)
496 return builtin_type (gdbarch)->builtin_uint64;
497 return builtin_type (gdbarch)->builtin_int32;
501 v850_type_is_scalar (struct type *t)
503 return (TYPE_CODE (t) != TYPE_CODE_STRUCT
504 && TYPE_CODE (t) != TYPE_CODE_UNION
505 && TYPE_CODE (t) != TYPE_CODE_ARRAY);
508 /* Should call_function allocate stack space for a struct return? */
511 v850_use_struct_convention (struct gdbarch *gdbarch, struct type *type)
514 struct type *fld_type, *tgt_type;
516 if (gdbarch_tdep (gdbarch)->abi == V850_ABI_RH850)
518 if (v850_type_is_scalar (type) && TYPE_LENGTH(type) <= 8)
521 /* Structs are never returned in registers for this ABI. */
524 /* 1. The value is greater than 8 bytes -> returned by copying. */
525 if (TYPE_LENGTH (type) > 8)
528 /* 2. The value is a single basic type -> returned in register. */
529 if (v850_type_is_scalar (type))
532 /* The value is a structure or union with a single element and that
533 element is either a single basic type or an array of a single basic
534 type whose size is greater than or equal to 4 -> returned in register. */
535 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
536 || TYPE_CODE (type) == TYPE_CODE_UNION)
537 && TYPE_NFIELDS (type) == 1)
539 fld_type = TYPE_FIELD_TYPE (type, 0);
540 if (v850_type_is_scalar (fld_type) && TYPE_LENGTH (fld_type) >= 4)
543 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
545 tgt_type = TYPE_TARGET_TYPE (fld_type);
546 if (v850_type_is_scalar (tgt_type) && TYPE_LENGTH (tgt_type) >= 4)
551 /* The value is a structure whose first element is an integer or a float,
552 and which contains no arrays of more than two elements -> returned in
554 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
555 && v850_type_is_scalar (TYPE_FIELD_TYPE (type, 0))
556 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
558 for (i = 1; i < TYPE_NFIELDS (type); ++i)
560 fld_type = TYPE_FIELD_TYPE (type, 0);
561 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
563 tgt_type = TYPE_TARGET_TYPE (fld_type);
564 if (TYPE_LENGTH (fld_type) >= 0 && TYPE_LENGTH (tgt_type) >= 0
565 && TYPE_LENGTH (fld_type) / TYPE_LENGTH (tgt_type) > 2)
572 /* The value is a union which contains at least one field which
573 would be returned in registers according to these rules ->
574 returned in register. */
575 if (TYPE_CODE (type) == TYPE_CODE_UNION)
577 for (i = 0; i < TYPE_NFIELDS (type); ++i)
579 fld_type = TYPE_FIELD_TYPE (type, 0);
580 if (!v850_use_struct_convention (gdbarch, fld_type))
588 /* Structure for mapping bits in register lists to register numbers. */
596 /* Helper function for v850_scan_prologue to handle prepare instruction. */
599 v850_handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr,
600 struct v850_frame_cache *pi, struct pifsr **pifsr_ptr)
602 CORE_ADDR current_pc = *current_pc_ptr;
603 struct pifsr *pifsr = *pifsr_ptr;
604 long next = insn2 & 0xffff;
605 long list12 = ((insn & 1) << 16) + (next & 0xffe0);
606 long offset = (insn & 0x3e) << 1;
607 static struct reg_list reg_table[] =
609 {0x00800, 20}, /* r20 */
610 {0x00400, 21}, /* r21 */
611 {0x00200, 22}, /* r22 */
612 {0x00100, 23}, /* r23 */
613 {0x08000, 24}, /* r24 */
614 {0x04000, 25}, /* r25 */
615 {0x02000, 26}, /* r26 */
616 {0x01000, 27}, /* r27 */
617 {0x00080, 28}, /* r28 */
618 {0x00040, 29}, /* r29 */
619 {0x10000, 30}, /* ep */
620 {0x00020, 31}, /* lp */
621 {0, 0} /* end of table */
625 if ((next & 0x1f) == 0x0b) /* skip imm16 argument */
627 else if ((next & 0x1f) == 0x13) /* skip imm16 argument */
629 else if ((next & 0x1f) == 0x1b) /* skip imm32 argument */
632 /* Calculate the total size of the saved registers, and add it to the
633 immediate value used to adjust SP. */
634 for (i = 0; reg_table[i].mask != 0; i++)
635 if (list12 & reg_table[i].mask)
636 offset += v850_reg_size;
637 pi->sp_offset -= offset;
639 /* Calculate the offsets of the registers relative to the value the SP
640 will have after the registers have been pushed and the imm5 value has
641 been subtracted from it. */
644 for (i = 0; reg_table[i].mask != 0; i++)
646 if (list12 & reg_table[i].mask)
648 int reg = reg_table[i].regno;
649 offset -= v850_reg_size;
651 pifsr->offset = offset;
652 pifsr->cur_frameoffset = pi->sp_offset;
658 /* Set result parameters. */
659 *current_pc_ptr = current_pc;
664 /* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
665 The SR bit of the register list is not supported. gcc does not generate
669 v850_handle_pushm (int insn, int insn2, struct v850_frame_cache *pi,
670 struct pifsr **pifsr_ptr)
672 struct pifsr *pifsr = *pifsr_ptr;
673 long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0);
675 static struct reg_list pushml_reg_table[] =
677 {0x80000, E_PS_REGNUM}, /* PSW */
678 {0x40000, 1}, /* r1 */
679 {0x20000, 2}, /* r2 */
680 {0x10000, 3}, /* r3 */
681 {0x00800, 4}, /* r4 */
682 {0x00400, 5}, /* r5 */
683 {0x00200, 6}, /* r6 */
684 {0x00100, 7}, /* r7 */
685 {0x08000, 8}, /* r8 */
686 {0x04000, 9}, /* r9 */
687 {0x02000, 10}, /* r10 */
688 {0x01000, 11}, /* r11 */
689 {0x00080, 12}, /* r12 */
690 {0x00040, 13}, /* r13 */
691 {0x00020, 14}, /* r14 */
692 {0x00010, 15}, /* r15 */
693 {0, 0} /* end of table */
695 static struct reg_list pushmh_reg_table[] =
697 {0x80000, 16}, /* r16 */
698 {0x40000, 17}, /* r17 */
699 {0x20000, 18}, /* r18 */
700 {0x10000, 19}, /* r19 */
701 {0x00800, 20}, /* r20 */
702 {0x00400, 21}, /* r21 */
703 {0x00200, 22}, /* r22 */
704 {0x00100, 23}, /* r23 */
705 {0x08000, 24}, /* r24 */
706 {0x04000, 25}, /* r25 */
707 {0x02000, 26}, /* r26 */
708 {0x01000, 27}, /* r27 */
709 {0x00080, 28}, /* r28 */
710 {0x00040, 29}, /* r29 */
711 {0x00010, 30}, /* r30 */
712 {0x00020, 31}, /* r31 */
713 {0, 0} /* end of table */
715 struct reg_list *reg_table;
718 /* Is this a pushml or a pushmh? */
719 if ((insn2 & 7) == 1)
720 reg_table = pushml_reg_table;
722 reg_table = pushmh_reg_table;
724 /* Calculate the total size of the saved registers, and add it to the
725 immediate value used to adjust SP. */
726 for (i = 0; reg_table[i].mask != 0; i++)
727 if (list12 & reg_table[i].mask)
728 offset += v850_reg_size;
729 pi->sp_offset -= offset;
731 /* Calculate the offsets of the registers relative to the value the SP
732 will have after the registers have been pushed and the imm5 value is
733 subtracted from it. */
736 for (i = 0; reg_table[i].mask != 0; i++)
738 if (list12 & reg_table[i].mask)
740 int reg = reg_table[i].regno;
741 offset -= v850_reg_size;
743 pifsr->offset = offset;
744 pifsr->cur_frameoffset = pi->sp_offset;
750 /* Set result parameters. */
754 /* Helper function to evaluate if register is one of the "save" registers.
755 This allows to simplify conditionals in v850_analyze_prologue a lot. */
758 v850_is_save_register (int reg)
760 /* The caller-save registers are R2, R20 - R29 and R31. All other
761 registers are either special purpose (PC, SP), argument registers,
762 or just considered free for use in the caller. */
763 return reg == E_R2_REGNUM
764 || (reg >= E_R20_REGNUM && reg <= E_R29_REGNUM)
765 || reg == E_R31_REGNUM;
768 /* Scan the prologue of the function that contains PC, and record what
769 we find in PI. Returns the pc after the prologue. Note that the
770 addresses saved in frame->saved_regs are just frame relative (negative
771 offsets from the frame pointer). This is because we don't know the
772 actual value of the frame pointer yet. In some circumstances, the
773 frame pointer can't be determined till after we have scanned the
777 v850_analyze_prologue (struct gdbarch *gdbarch,
778 CORE_ADDR func_addr, CORE_ADDR pc,
779 struct v850_frame_cache *pi, ULONGEST ctbp)
781 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
782 CORE_ADDR prologue_end, current_pc;
783 struct pifsr pifsrs[E_NUM_REGS + 1];
784 struct pifsr *pifsr, *pifsr_tmp;
787 CORE_ADDR save_pc, save_end;
791 memset (&pifsrs, 0, sizeof pifsrs);
796 /* Now, search the prologue looking for instructions that setup fp, save
797 rp, adjust sp and such. We also record the frame offset of any saved
808 for (current_pc = func_addr; current_pc < prologue_end;)
811 int insn2 = -1; /* dummy value */
813 insn = read_memory_integer (current_pc, 2, byte_order);
815 if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
817 insn2 = read_memory_integer (current_pc, 2, byte_order);
821 if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
822 { /* jarl <func>,10 */
823 long low_disp = insn2 & ~(long) 1;
824 long disp = (((((insn & 0x3f) << 16) + low_disp)
825 & ~(long) 1) ^ 0x00200000) - 0x00200000;
827 save_pc = current_pc;
828 save_end = prologue_end;
830 current_pc += disp - 4;
831 prologue_end = (current_pc
832 + (2 * 3) /* moves to/from ep */
833 + 4 /* addi <const>,sp,sp */
835 + (2 * 12) /* sst.w to save r2, r20-r29, r31 */
836 + 20); /* slop area */
838 else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p)
840 long adr = ctbp + ((insn & 0x3f) << 1);
842 save_pc = current_pc;
843 save_end = prologue_end;
845 current_pc = ctbp + (read_memory_unsigned_integer (adr, 2, byte_order)
847 prologue_end = (current_pc
848 + (2 * 3) /* prepare list2,imm5,sp/imm */
850 + 20); /* slop area */
853 else if ((insn & 0xffc0) == 0x0780) /* prepare list2,imm5 */
855 v850_handle_prepare (insn, insn2, ¤t_pc, pi, &pifsr);
858 else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144)
859 { /* ctret after processing register save. */
860 current_pc = save_pc;
861 prologue_end = save_end;
865 else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1)
866 { /* pushml, pushmh */
867 v850_handle_pushm (insn, insn2, pi, &pifsr);
870 else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
871 { /* jmp after processing register save. */
872 current_pc = save_pc;
873 prologue_end = save_end;
877 else if ((insn & 0x07c0) == 0x0780 /* jarl or jr */
878 || (insn & 0xffe0) == 0x0060 /* jmp */
879 || (insn & 0x0780) == 0x0580) /* branch */
881 break; /* Ran into end of prologue. */
884 else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240))
886 pi->sp_offset += ((insn & 0x1f) ^ 0x10) - 0x10;
887 else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM))
888 /* addi <imm>,sp,sp */
889 pi->sp_offset += insn2;
890 else if (insn == ((E_FP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
893 else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM))
894 /* movhi hi(const),r0,r12 */
895 r12_tmp = insn2 << 16;
896 else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM))
897 /* movea lo(const),r12,r12 */
899 else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp)
901 pi->sp_offset += r12_tmp;
902 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
905 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM))
908 else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM)
910 && (insn & 0x07ff) == (0x0760 | E_FP_REGNUM)))
912 && v850_is_save_register (reg = (insn >> 11) & 0x1f))
914 /* st.w <reg>,<offset>[sp] or st.w <reg>,<offset>[fp] */
916 pifsr->offset = insn2 & ~1;
917 pifsr->cur_frameoffset = pi->sp_offset;
921 && ((insn & 0x0781) == 0x0501)
923 && v850_is_save_register (reg = (insn >> 11) & 0x1f))
925 /* sst.w <reg>,<offset>[ep] */
927 pifsr->offset = (insn & 0x007e) << 1;
928 pifsr->cur_frameoffset = pi->sp_offset;
933 /* Fix up any offsets to the final offset. If a frame pointer was created,
934 use it instead of the stack pointer. */
935 for (pifsr_tmp = pifsrs; pifsr_tmp != pifsr; pifsr_tmp++)
937 pifsr_tmp->offset -= pi->sp_offset - pifsr_tmp->cur_frameoffset;
938 pi->saved_regs[pifsr_tmp->reg].addr = pifsr_tmp->offset;
944 /* Return the address of the first code past the prologue of the function. */
947 v850_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
949 CORE_ADDR func_addr, func_end;
951 /* See what the symbol table says. */
953 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
955 struct symtab_and_line sal;
957 sal = find_pc_line (func_addr, 0);
958 if (sal.line != 0 && sal.end < func_end)
961 /* Either there's no line info, or the line after the prologue is after
962 the end of the function. In this case, there probably isn't a
967 /* We can't find the start of this function, so there's nothing we
972 /* Return 1 if the data structure has any 8-byte fields that'll require
973 the entire data structure to be aligned. Otherwise, return 0. */
976 v850_eight_byte_align_p (struct type *type)
978 type = check_typedef (type);
980 if (v850_type_is_scalar (type))
981 return (TYPE_LENGTH (type) == 8);
986 for (i = 0; i < TYPE_NFIELDS (type); i++)
988 if (v850_eight_byte_align_p (TYPE_FIELD_TYPE (type, i)))
996 v850_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
1001 /* Setup arguments and LP for a call to the target. First four args
1002 go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs
1003 are passed by reference. 64 bit quantities (doubles and long longs)
1004 may be split between the regs and the stack. When calling a function
1005 that returns a struct, a pointer to the struct is passed in as a secret
1006 first argument (always in R6).
1008 Stack space for the args has NOT been allocated: that job is up to us. */
1011 v850_push_dummy_call (struct gdbarch *gdbarch,
1012 struct value *function,
1013 struct regcache *regcache,
1016 struct value **args,
1019 CORE_ADDR struct_addr)
1021 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1027 if (gdbarch_tdep (gdbarch)->abi == V850_ABI_RH850)
1030 /* The offset onto the stack at which we will start copying parameters
1031 (after the registers are used up) begins at 16 rather than at zero.
1032 That's how the ABI is defined, though there's no indication that these
1033 16 bytes are used for anything, not even for saving incoming
1034 argument registers. */
1037 /* Now make space on the stack for the args. */
1038 for (argnum = 0; argnum < nargs; argnum++)
1039 len += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
1040 sp -= len + stack_offset;
1042 argreg = E_ARG0_REGNUM;
1043 /* The struct_return pointer occupies the first parameter register. */
1045 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1047 /* Now load as many as possible of the first arguments into
1048 registers, and push the rest onto the stack. There are 16 bytes
1049 in four registers available. Loop thru args from first to last. */
1050 for (argnum = 0; argnum < nargs; argnum++)
1054 gdb_byte valbuf[v850_reg_size];
1056 if (!v850_type_is_scalar (value_type (*args))
1057 && gdbarch_tdep (gdbarch)->abi == V850_ABI_GCC
1058 && TYPE_LENGTH (value_type (*args)) > E_MAX_RETTYPE_SIZE_IN_REGS)
1060 store_unsigned_integer (valbuf, 4, byte_order,
1061 value_address (*args));
1067 len = TYPE_LENGTH (value_type (*args));
1068 val = (gdb_byte *) value_contents (*args);
1071 if (gdbarch_tdep (gdbarch)->eight_byte_align
1072 && v850_eight_byte_align_p (value_type (*args)))
1074 if (argreg <= E_ARGLAST_REGNUM && (argreg & 1))
1076 else if (stack_offset & 0x4)
1081 if (argreg <= E_ARGLAST_REGNUM)
1085 regval = extract_unsigned_integer (val, v850_reg_size, byte_order);
1086 regcache_cooked_write_unsigned (regcache, argreg, regval);
1088 len -= v850_reg_size;
1089 val += v850_reg_size;
1094 write_memory (sp + stack_offset, val, 4);
1103 /* Store return address. */
1104 regcache_cooked_write_unsigned (regcache, E_LP_REGNUM, bp_addr);
1106 /* Update stack pointer. */
1107 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
1113 v850_extract_return_value (struct type *type, struct regcache *regcache,
1116 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1117 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1118 int len = TYPE_LENGTH (type);
1120 if (len <= v850_reg_size)
1124 regcache_cooked_read_unsigned (regcache, E_V0_REGNUM, &val);
1125 store_unsigned_integer (valbuf, len, byte_order, val);
1127 else if (len <= 2 * v850_reg_size)
1129 int i, regnum = E_V0_REGNUM;
1130 gdb_byte buf[v850_reg_size];
1131 for (i = 0; len > 0; i += 4, len -= 4)
1133 regcache_raw_read (regcache, regnum++, buf);
1134 memcpy (valbuf + i, buf, len > 4 ? 4 : len);
1140 v850_store_return_value (struct type *type, struct regcache *regcache,
1141 const gdb_byte *valbuf)
1143 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1144 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1145 int len = TYPE_LENGTH (type);
1147 if (len <= v850_reg_size)
1148 regcache_cooked_write_unsigned
1149 (regcache, E_V0_REGNUM,
1150 extract_unsigned_integer (valbuf, len, byte_order));
1151 else if (len <= 2 * v850_reg_size)
1153 int i, regnum = E_V0_REGNUM;
1154 for (i = 0; i < len; i += 4)
1155 regcache_raw_write (regcache, regnum++, valbuf + i);
1159 static enum return_value_convention
1160 v850_return_value (struct gdbarch *gdbarch, struct value *function,
1161 struct type *type, struct regcache *regcache,
1162 gdb_byte *readbuf, const gdb_byte *writebuf)
1164 if (v850_use_struct_convention (gdbarch, type))
1165 return RETURN_VALUE_STRUCT_CONVENTION;
1167 v850_store_return_value (type, regcache, writebuf);
1169 v850_extract_return_value (type, regcache, readbuf);
1170 return RETURN_VALUE_REGISTER_CONVENTION;
1173 static const unsigned char *
1174 v850_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1177 static unsigned char breakpoint[] = { 0x85, 0x05 };
1179 *lenptr = sizeof (breakpoint);
1183 /* Implement software breakpoints by using the dbtrap instruction.
1184 Older architectures had no such instruction. For those, an
1185 unconditional branch to self instruction is used. */
1187 static const unsigned char *
1188 v850_dbtrap_breakpoint_from_pc (struct gdbarch *gdbarch,
1189 CORE_ADDR *pcptr, int *lenptr)
1191 static unsigned char breakpoint[] = { 0x40, 0xf8 };
1193 *lenptr = sizeof (breakpoint);
1197 static struct v850_frame_cache *
1198 v850_alloc_frame_cache (struct frame_info *this_frame)
1200 struct v850_frame_cache *cache;
1202 cache = FRAME_OBSTACK_ZALLOC (struct v850_frame_cache);
1203 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1207 cache->sp_offset = 0;
1210 /* Frameless until proven otherwise. */
1216 static struct v850_frame_cache *
1217 v850_frame_cache (struct frame_info *this_frame, void **this_cache)
1219 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1220 struct v850_frame_cache *cache;
1221 CORE_ADDR current_pc;
1227 cache = v850_alloc_frame_cache (this_frame);
1228 *this_cache = cache;
1230 /* In principle, for normal frames, fp holds the frame pointer,
1231 which holds the base address for the current stack frame.
1232 However, for functions that don't need it, the frame pointer is
1233 optional. For these "frameless" functions the frame pointer is
1234 actually the frame pointer of the calling frame. */
1235 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
1236 if (cache->base == 0)
1239 cache->pc = get_frame_func (this_frame);
1240 current_pc = get_frame_pc (this_frame);
1244 ctbp = get_frame_register_unsigned (this_frame, E_CTBP_REGNUM);
1245 v850_analyze_prologue (gdbarch, cache->pc, current_pc, cache, ctbp);
1248 if (!cache->uses_fp)
1250 /* We didn't find a valid frame, which means that CACHE->base
1251 currently holds the frame pointer for our calling frame. If
1252 we're at the start of a function, or somewhere half-way its
1253 prologue, the function's frame probably hasn't been fully
1254 setup yet. Try to reconstruct the base address for the stack
1255 frame by looking at the stack pointer. For truly "frameless"
1256 functions this might work too. */
1257 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
1260 /* Now that we have the base address for the stack frame we can
1261 calculate the value of sp in the calling frame. */
1262 trad_frame_set_value (cache->saved_regs, E_SP_REGNUM,
1263 cache->base - cache->sp_offset);
1265 /* Adjust all the saved registers such that they contain addresses
1266 instead of offsets. */
1267 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1268 if (trad_frame_addr_p (cache->saved_regs, i))
1269 cache->saved_regs[i].addr += cache->base;
1271 /* The call instruction moves the caller's PC in the callee's LP.
1272 Since this is an unwind, do the reverse. Copy the location of LP
1273 into PC (the address / regnum) so that a request for PC will be
1274 converted into a request for the LP. */
1276 cache->saved_regs[E_PC_REGNUM] = cache->saved_regs[E_LP_REGNUM];
1282 static struct value *
1283 v850_frame_prev_register (struct frame_info *this_frame,
1284 void **this_cache, int regnum)
1286 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
1288 gdb_assert (regnum >= 0);
1290 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
1294 v850_frame_this_id (struct frame_info *this_frame, void **this_cache,
1295 struct frame_id *this_id)
1297 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
1299 /* This marks the outermost frame. */
1300 if (cache->base == 0)
1303 *this_id = frame_id_build (cache->saved_regs[E_SP_REGNUM].addr, cache->pc);
1306 static const struct frame_unwind v850_frame_unwind = {
1308 default_frame_unwind_stop_reason,
1310 v850_frame_prev_register,
1312 default_frame_sniffer
1316 v850_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1318 return frame_unwind_register_unsigned (next_frame,
1319 gdbarch_sp_regnum (gdbarch));
1323 v850_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1325 return frame_unwind_register_unsigned (next_frame,
1326 gdbarch_pc_regnum (gdbarch));
1329 static struct frame_id
1330 v850_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1332 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
1333 gdbarch_sp_regnum (gdbarch));
1334 return frame_id_build (sp, get_frame_pc (this_frame));
1338 v850_frame_base_address (struct frame_info *this_frame, void **this_cache)
1340 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
1345 static const struct frame_base v850_frame_base = {
1347 v850_frame_base_address,
1348 v850_frame_base_address,
1349 v850_frame_base_address
1352 static struct gdbarch *
1353 v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1355 struct gdbarch *gdbarch;
1356 struct gdbarch_tdep *tdep;
1357 int e_flags, e_machine;
1359 /* Extract the elf_flags if available. */
1360 if (info.abfd != NULL
1361 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1363 e_flags = elf_elfheader (info.abfd)->e_flags;
1364 e_machine = elf_elfheader (info.abfd)->e_machine;
1373 /* Try to find the architecture in the list of already defined
1375 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1377 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1379 if (gdbarch_tdep (arches->gdbarch)->e_flags != e_flags
1380 || gdbarch_tdep (arches->gdbarch)->e_machine != e_machine)
1383 return arches->gdbarch;
1385 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1386 tdep->e_flags = e_flags;
1387 tdep->e_machine = e_machine;
1389 switch (tdep->e_machine)
1392 tdep->abi = V850_ABI_RH850;
1395 tdep->abi = V850_ABI_GCC;
1399 tdep->eight_byte_align = (tdep->e_flags & EF_RH850_DATA_ALIGN8) ? 1 : 0;
1400 gdbarch = gdbarch_alloc (&info, tdep);
1402 switch (info.bfd_arch_info->mach)
1405 set_gdbarch_register_name (gdbarch, v850_register_name);
1406 set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850_REGS);
1408 case bfd_mach_v850e:
1409 case bfd_mach_v850e1:
1410 set_gdbarch_register_name (gdbarch, v850e_register_name);
1411 set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E_REGS);
1413 case bfd_mach_v850e2:
1414 case bfd_mach_v850e2v3:
1415 set_gdbarch_register_name (gdbarch, v850e2_register_name);
1416 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
1418 case bfd_mach_v850e3v5:
1419 set_gdbarch_register_name (gdbarch, v850e3v5_register_name);
1420 set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E3V5_REGS);
1424 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1425 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1426 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1427 set_gdbarch_fp0_regnum (gdbarch, -1);
1429 set_gdbarch_register_type (gdbarch, v850_register_type);
1431 set_gdbarch_char_signed (gdbarch, 1);
1432 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1433 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1434 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1435 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1437 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1438 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1439 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1441 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1442 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1444 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1445 switch (info.bfd_arch_info->mach)
1447 case bfd_mach_v850e2:
1448 case bfd_mach_v850e2v3:
1449 case bfd_mach_v850e3v5:
1450 set_gdbarch_breakpoint_from_pc (gdbarch, v850_dbtrap_breakpoint_from_pc);
1453 set_gdbarch_breakpoint_from_pc (gdbarch, v850_breakpoint_from_pc);
1457 set_gdbarch_return_value (gdbarch, v850_return_value);
1458 set_gdbarch_push_dummy_call (gdbarch, v850_push_dummy_call);
1459 set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue);
1461 set_gdbarch_print_insn (gdbarch, print_insn_v850);
1463 set_gdbarch_frame_align (gdbarch, v850_frame_align);
1464 set_gdbarch_unwind_sp (gdbarch, v850_unwind_sp);
1465 set_gdbarch_unwind_pc (gdbarch, v850_unwind_pc);
1466 set_gdbarch_dummy_id (gdbarch, v850_dummy_id);
1467 frame_base_set_default (gdbarch, &v850_frame_base);
1469 /* Hook in ABI-specific overrides, if they have been registered. */
1470 gdbarch_init_osabi (info, gdbarch);
1472 dwarf2_append_unwinders (gdbarch);
1473 frame_unwind_append_unwinder (gdbarch, &v850_frame_unwind);
1478 extern initialize_file_ftype _initialize_v850_tdep; /* -Wmissing-prototypes */
1481 _initialize_v850_tdep (void)
1483 register_gdbarch_init (bfd_arch_v850, v850_gdbarch_init);
1484 register_gdbarch_init (bfd_arch_v850_rh850, v850_gdbarch_init);