1 /* Target-dependent code for the Tilera TILE-Gx processor.
3 Copyright (C) 2012-2016 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "frame-base.h"
23 #include "frame-unwind.h"
24 #include "dwarf2-frame.h"
25 #include "trad-frame.h"
33 #include "arch-utils.h"
34 #include "floatformat.h"
39 #include "linux-tdep.h"
41 #include "solib-svr4.h"
42 #include "tilegx-tdep.h"
43 #include "opcode/tilegx.h"
45 struct tilegx_frame_cache
52 /* Table of saved registers. */
53 struct trad_frame_saved_reg *saved_regs;
56 /* Register state values used by analyze_prologue. */
59 REVERSE_STATE_REGISTER,
64 /* Register state used by analyze_prologue(). */
65 struct tilegx_reverse_regs
68 enum reverse_state state;
71 static const struct tilegx_reverse_regs
72 template_reverse_regs[TILEGX_NUM_PHYS_REGS] =
74 { TILEGX_R0_REGNUM, REVERSE_STATE_REGISTER },
75 { TILEGX_R1_REGNUM, REVERSE_STATE_REGISTER },
76 { TILEGX_R2_REGNUM, REVERSE_STATE_REGISTER },
77 { TILEGX_R3_REGNUM, REVERSE_STATE_REGISTER },
78 { TILEGX_R4_REGNUM, REVERSE_STATE_REGISTER },
79 { TILEGX_R5_REGNUM, REVERSE_STATE_REGISTER },
80 { TILEGX_R6_REGNUM, REVERSE_STATE_REGISTER },
81 { TILEGX_R7_REGNUM, REVERSE_STATE_REGISTER },
82 { TILEGX_R8_REGNUM, REVERSE_STATE_REGISTER },
83 { TILEGX_R9_REGNUM, REVERSE_STATE_REGISTER },
84 { TILEGX_R10_REGNUM, REVERSE_STATE_REGISTER },
85 { TILEGX_R11_REGNUM, REVERSE_STATE_REGISTER },
86 { TILEGX_R12_REGNUM, REVERSE_STATE_REGISTER },
87 { TILEGX_R13_REGNUM, REVERSE_STATE_REGISTER },
88 { TILEGX_R14_REGNUM, REVERSE_STATE_REGISTER },
89 { TILEGX_R15_REGNUM, REVERSE_STATE_REGISTER },
90 { TILEGX_R16_REGNUM, REVERSE_STATE_REGISTER },
91 { TILEGX_R17_REGNUM, REVERSE_STATE_REGISTER },
92 { TILEGX_R18_REGNUM, REVERSE_STATE_REGISTER },
93 { TILEGX_R19_REGNUM, REVERSE_STATE_REGISTER },
94 { TILEGX_R20_REGNUM, REVERSE_STATE_REGISTER },
95 { TILEGX_R21_REGNUM, REVERSE_STATE_REGISTER },
96 { TILEGX_R22_REGNUM, REVERSE_STATE_REGISTER },
97 { TILEGX_R23_REGNUM, REVERSE_STATE_REGISTER },
98 { TILEGX_R24_REGNUM, REVERSE_STATE_REGISTER },
99 { TILEGX_R25_REGNUM, REVERSE_STATE_REGISTER },
100 { TILEGX_R26_REGNUM, REVERSE_STATE_REGISTER },
101 { TILEGX_R27_REGNUM, REVERSE_STATE_REGISTER },
102 { TILEGX_R28_REGNUM, REVERSE_STATE_REGISTER },
103 { TILEGX_R29_REGNUM, REVERSE_STATE_REGISTER },
104 { TILEGX_R30_REGNUM, REVERSE_STATE_REGISTER },
105 { TILEGX_R31_REGNUM, REVERSE_STATE_REGISTER },
106 { TILEGX_R32_REGNUM, REVERSE_STATE_REGISTER },
107 { TILEGX_R33_REGNUM, REVERSE_STATE_REGISTER },
108 { TILEGX_R34_REGNUM, REVERSE_STATE_REGISTER },
109 { TILEGX_R35_REGNUM, REVERSE_STATE_REGISTER },
110 { TILEGX_R36_REGNUM, REVERSE_STATE_REGISTER },
111 { TILEGX_R37_REGNUM, REVERSE_STATE_REGISTER },
112 { TILEGX_R38_REGNUM, REVERSE_STATE_REGISTER },
113 { TILEGX_R39_REGNUM, REVERSE_STATE_REGISTER },
114 { TILEGX_R40_REGNUM, REVERSE_STATE_REGISTER },
115 { TILEGX_R41_REGNUM, REVERSE_STATE_REGISTER },
116 { TILEGX_R42_REGNUM, REVERSE_STATE_REGISTER },
117 { TILEGX_R43_REGNUM, REVERSE_STATE_REGISTER },
118 { TILEGX_R44_REGNUM, REVERSE_STATE_REGISTER },
119 { TILEGX_R45_REGNUM, REVERSE_STATE_REGISTER },
120 { TILEGX_R46_REGNUM, REVERSE_STATE_REGISTER },
121 { TILEGX_R47_REGNUM, REVERSE_STATE_REGISTER },
122 { TILEGX_R48_REGNUM, REVERSE_STATE_REGISTER },
123 { TILEGX_R49_REGNUM, REVERSE_STATE_REGISTER },
124 { TILEGX_R50_REGNUM, REVERSE_STATE_REGISTER },
125 { TILEGX_R51_REGNUM, REVERSE_STATE_REGISTER },
126 { TILEGX_R52_REGNUM, REVERSE_STATE_REGISTER },
127 { TILEGX_TP_REGNUM, REVERSE_STATE_REGISTER },
128 { TILEGX_SP_REGNUM, REVERSE_STATE_REGISTER },
129 { TILEGX_LR_REGNUM, REVERSE_STATE_REGISTER },
130 { 0, REVERSE_STATE_UNKNOWN },
131 { 0, REVERSE_STATE_UNKNOWN },
132 { 0, REVERSE_STATE_UNKNOWN },
133 { 0, REVERSE_STATE_UNKNOWN },
134 { 0, REVERSE_STATE_UNKNOWN },
135 { 0, REVERSE_STATE_UNKNOWN },
136 { 0, REVERSE_STATE_UNKNOWN },
137 { TILEGX_ZERO_REGNUM, REVERSE_STATE_VALUE }
140 /* Implement the "register_name" gdbarch method. */
143 tilegx_register_name (struct gdbarch *gdbarch, int regnum)
145 static const char *const register_names[TILEGX_NUM_REGS] =
147 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
148 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
149 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
150 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
151 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
152 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
153 "r48", "r49", "r50", "r51", "r52", "tp", "sp", "lr",
154 "sn", "idn0", "idn1", "udn0", "udn1", "udn2", "udn3", "zero",
158 if (regnum < 0 || regnum >= TILEGX_NUM_REGS)
159 internal_error (__FILE__, __LINE__,
160 "tilegx_register_name: invalid register number %d",
163 return register_names[regnum];
166 /* This is the implementation of gdbarch method register_type. */
169 tilegx_register_type (struct gdbarch *gdbarch, int regnum)
171 if (regnum == TILEGX_PC_REGNUM)
172 return builtin_type (gdbarch)->builtin_func_ptr;
174 return builtin_type (gdbarch)->builtin_uint64;
177 /* This is the implementation of gdbarch method dwarf2_reg_to_regnum. */
180 tilegx_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
185 /* Makes the decision of whether a given type is a scalar type.
186 Scalar types are returned in the registers r2-r11 as they fit. */
189 tilegx_type_is_scalar (struct type *t)
191 return (TYPE_CODE(t) != TYPE_CODE_STRUCT
192 && TYPE_CODE(t) != TYPE_CODE_UNION
193 && TYPE_CODE(t) != TYPE_CODE_ARRAY);
196 /* Returns non-zero if the given struct type will be returned using
197 a special convention, rather than the normal function return method.
198 Used in the context of the "return" command, and target function
199 calls from the debugger. */
202 tilegx_use_struct_convention (struct type *type)
204 /* Only scalars which fit in R0 - R9 can be returned in registers.
205 Otherwise, they are returned via a pointer passed in R0. */
206 return (!tilegx_type_is_scalar (type)
207 && (TYPE_LENGTH (type) > (1 + TILEGX_R9_REGNUM - TILEGX_R0_REGNUM)
211 /* Find a function's return value in the appropriate registers (in
212 REGCACHE), and copy it into VALBUF. */
215 tilegx_extract_return_value (struct type *type, struct regcache *regcache,
218 int len = TYPE_LENGTH (type);
219 int i, regnum = TILEGX_R0_REGNUM;
221 for (i = 0; i < len; i += tilegx_reg_size)
222 regcache_raw_read (regcache, regnum++, valbuf + i);
225 /* Copy the function return value from VALBUF into the proper
226 location for a function return.
227 Called only in the context of the "return" command. */
230 tilegx_store_return_value (struct type *type, struct regcache *regcache,
233 if (TYPE_LENGTH (type) < tilegx_reg_size)
235 /* Add leading zeros to the (little-endian) value. */
236 gdb_byte buf[tilegx_reg_size] = { 0 };
238 memcpy (buf, valbuf, TYPE_LENGTH (type));
239 regcache_raw_write (regcache, TILEGX_R0_REGNUM, buf);
243 int len = TYPE_LENGTH (type);
244 int i, regnum = TILEGX_R0_REGNUM;
246 for (i = 0; i < len; i += tilegx_reg_size)
247 regcache_raw_write (regcache, regnum++, (gdb_byte *) valbuf + i);
251 /* This is the implementation of gdbarch method return_value. */
253 static enum return_value_convention
254 tilegx_return_value (struct gdbarch *gdbarch, struct value *function,
255 struct type *type, struct regcache *regcache,
256 gdb_byte *readbuf, const gdb_byte *writebuf)
258 if (tilegx_use_struct_convention (type))
259 return RETURN_VALUE_STRUCT_CONVENTION;
261 tilegx_store_return_value (type, regcache, writebuf);
263 tilegx_extract_return_value (type, regcache, readbuf);
264 return RETURN_VALUE_REGISTER_CONVENTION;
267 /* This is the implementation of gdbarch method frame_align. */
270 tilegx_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
276 /* Implement the "push_dummy_call" gdbarch method. */
279 tilegx_push_dummy_call (struct gdbarch *gdbarch,
280 struct value *function,
281 struct regcache *regcache,
282 CORE_ADDR bp_addr, int nargs,
284 CORE_ADDR sp, int struct_return,
285 CORE_ADDR struct_addr)
287 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
288 CORE_ADDR stack_dest = sp;
289 int argreg = TILEGX_R0_REGNUM;
291 int typelen, slacklen;
292 static const gdb_byte four_zero_words[16] = { 0 };
294 /* If struct_return is 1, then the struct return address will
295 consume one argument-passing register. */
297 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
299 /* Arguments are passed in R0 - R9, and as soon as an argument
300 will not fit completely in the remaining registers, then it,
301 and all remaining arguments, are put on the stack. */
302 for (i = 0; i < nargs && argreg <= TILEGX_R9_REGNUM; i++)
305 typelen = TYPE_LENGTH (value_enclosing_type (args[i]));
307 if (typelen > (TILEGX_R9_REGNUM - argreg + 1) * tilegx_reg_size)
310 /* Put argument into registers wordwise. */
311 val = value_contents (args[i]);
312 for (j = 0; j < typelen; j += tilegx_reg_size)
314 /* ISSUE: Why special handling for "typelen = 4x + 1"?
315 I don't ever see "typelen" values except 4 and 8. */
316 int n = (typelen - j == 1) ? 1 : tilegx_reg_size;
317 ULONGEST w = extract_unsigned_integer (val + j, n, byte_order);
319 regcache_cooked_write_unsigned (regcache, argreg++, w);
324 stack_dest = tilegx_frame_align (gdbarch, stack_dest);
326 /* Loop backwards through remaining arguments and push them on
327 the stack, word aligned. */
328 for (j = nargs - 1; j >= i; j--)
331 struct cleanup *back_to;
332 const gdb_byte *contents = value_contents (args[j]);
334 typelen = TYPE_LENGTH (value_enclosing_type (args[j]));
335 slacklen = align_up (typelen, 8) - typelen;
336 val = (gdb_byte *) xmalloc (typelen + slacklen);
337 back_to = make_cleanup (xfree, val);
338 memcpy (val, contents, typelen);
339 memset (val + typelen, 0, slacklen);
341 /* Now write data to the stack. The stack grows downwards. */
342 stack_dest -= typelen + slacklen;
343 write_memory (stack_dest, val, typelen + slacklen);
344 do_cleanups (back_to);
347 /* Add 16 bytes for linkage space to the stack. */
348 stack_dest = stack_dest - 16;
349 write_memory (stack_dest, four_zero_words, 16);
351 /* Update stack pointer. */
352 regcache_cooked_write_unsigned (regcache, TILEGX_SP_REGNUM, stack_dest);
354 /* Set the return address register to point to the entry point of
355 the program, where a breakpoint lies in wait. */
356 regcache_cooked_write_unsigned (regcache, TILEGX_LR_REGNUM, bp_addr);
362 /* Decode the instructions within the given address range.
363 Decide when we must have reached the end of the function prologue.
364 If a frame_info pointer is provided, fill in its saved_regs etc.
365 Returns the address of the first instruction after the prologue.
366 NOTE: This is often called with start_addr being the start of some
367 function, and end_addr being the current PC. */
370 tilegx_analyze_prologue (struct gdbarch* gdbarch,
371 CORE_ADDR start_addr, CORE_ADDR end_addr,
372 struct tilegx_frame_cache *cache,
373 struct frame_info *next_frame)
375 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
377 CORE_ADDR prolog_end = end_addr;
378 gdb_byte instbuf[32 * TILEGX_BUNDLE_SIZE_IN_BYTES];
379 CORE_ADDR instbuf_start;
380 unsigned int instbuf_size;
383 struct tilegx_decoded_instruction
384 decoded[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
386 struct tilegx_reverse_regs reverse_frame[TILEGX_NUM_PHYS_REGS];
387 struct tilegx_reverse_regs
388 new_reverse_frame[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
389 int dest_regs[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
390 int reverse_frame_valid, prolog_done, branch_seen, lr_saved_on_stack_p;
391 LONGEST prev_sp_value;
394 if (start_addr >= end_addr
395 || (start_addr % TILEGX_BUNDLE_ALIGNMENT_IN_BYTES) != 0)
398 /* Initialize the reverse frame. This maps the CURRENT frame's
399 registers to the outer frame's registers (the frame on the
400 stack goes the other way). */
401 memcpy (&reverse_frame, &template_reverse_regs, sizeof (reverse_frame));
406 lr_saved_on_stack_p = 0;
408 /* To cut down on round-trip overhead, we fetch multiple bundles
409 at once. These variables describe the range of memory we have
414 for (next_addr = start_addr;
415 next_addr < end_addr;
416 next_addr += TILEGX_BUNDLE_SIZE_IN_BYTES)
418 /* Retrieve the next instruction. */
419 if (next_addr - instbuf_start >= instbuf_size)
421 /* Figure out how many bytes to fetch. Don't span a page
422 boundary since that might cause an unnecessary memory
424 unsigned int size_on_same_page = 4096 - (next_addr & 4095);
426 instbuf_size = sizeof instbuf;
428 if (instbuf_size > size_on_same_page)
429 instbuf_size = size_on_same_page;
431 instbuf_size = min (instbuf_size, (end_addr - next_addr));
432 instbuf_start = next_addr;
434 status = safe_frame_unwind_memory (next_frame, instbuf_start,
435 instbuf, instbuf_size);
437 memory_error (TARGET_XFER_E_IO, next_addr);
440 reverse_frame_valid = 0;
442 bundle = extract_unsigned_integer (&instbuf[next_addr - instbuf_start],
445 num_insns = parse_insn_tilegx (bundle, next_addr, decoded);
447 for (i = 0; i < num_insns; i++)
449 struct tilegx_decoded_instruction *this_insn = &decoded[i];
450 int64_t *operands = (int64_t *) this_insn->operand_values;
451 const struct tilegx_opcode *opcode = this_insn->opcode;
453 switch (opcode->mnemonic)
457 && reverse_frame[operands[0]].state == REVERSE_STATE_VALUE
458 && reverse_frame[operands[1]].state
459 == REVERSE_STATE_REGISTER)
461 LONGEST saved_address = reverse_frame[operands[0]].value;
462 unsigned saved_register
463 = (unsigned) reverse_frame[operands[1]].value;
465 /* realreg >= 0 and addr != -1 indicates that the
466 value of saved_register is in memory location
467 saved_address. The value of realreg is not
468 meaningful in this case but it must be >= 0.
470 cache->saved_regs[saved_register].realreg = saved_register;
471 cache->saved_regs[saved_register].addr = saved_address;
474 && (operands[0] == TILEGX_SP_REGNUM)
475 && (operands[1] == TILEGX_LR_REGNUM))
476 lr_saved_on_stack_p = 1;
478 case TILEGX_OPC_ADDI:
479 case TILEGX_OPC_ADDLI:
481 && operands[0] == TILEGX_SP_REGNUM
482 && operands[1] == TILEGX_SP_REGNUM
483 && reverse_frame[operands[1]].state == REVERSE_STATE_REGISTER)
485 /* Special case. We're fixing up the stack frame. */
486 uint64_t hopefully_sp
487 = (unsigned) reverse_frame[operands[1]].value;
488 short op2_as_short = (short) operands[2];
489 signed char op2_as_char = (signed char) operands[2];
491 /* Fix up the sign-extension. */
492 if (opcode->mnemonic == TILEGX_OPC_ADDI)
493 op2_as_short = op2_as_char;
494 prev_sp_value = (cache->saved_regs[hopefully_sp].addr
497 new_reverse_frame[i].state = REVERSE_STATE_VALUE;
498 new_reverse_frame[i].value
499 = cache->saved_regs[hopefully_sp].addr;
500 trad_frame_set_value (cache->saved_regs,
501 hopefully_sp, prev_sp_value);
505 short op2_as_short = (short) operands[2];
506 signed char op2_as_char = (signed char) operands[2];
508 /* Fix up the sign-extension. */
509 if (opcode->mnemonic == TILEGX_OPC_ADDI)
510 op2_as_short = op2_as_char;
512 new_reverse_frame[i] = reverse_frame[operands[1]];
513 if (new_reverse_frame[i].state == REVERSE_STATE_VALUE)
514 new_reverse_frame[i].value += op2_as_short;
516 new_reverse_frame[i].state = REVERSE_STATE_UNKNOWN;
518 reverse_frame_valid |= 1 << i;
519 dest_regs[i] = operands[0];
522 if (reverse_frame[operands[1]].state == REVERSE_STATE_VALUE
523 && reverse_frame[operands[2]].state == REVERSE_STATE_VALUE)
525 /* We have values -- we can do this. */
526 new_reverse_frame[i] = reverse_frame[operands[2]];
527 new_reverse_frame[i].value
528 += reverse_frame[operands[i]].value;
532 /* We don't know anything about the values. Punt. */
533 new_reverse_frame[i].state = REVERSE_STATE_UNKNOWN;
535 reverse_frame_valid |= 1 << i;
536 dest_regs[i] = operands[0];
538 case TILEGX_OPC_MOVE:
539 new_reverse_frame[i] = reverse_frame[operands[1]];
540 reverse_frame_valid |= 1 << i;
541 dest_regs[i] = operands[0];
543 case TILEGX_OPC_MOVEI:
544 case TILEGX_OPC_MOVELI:
545 new_reverse_frame[i].state = REVERSE_STATE_VALUE;
546 new_reverse_frame[i].value = operands[1];
547 reverse_frame_valid |= 1 << i;
548 dest_regs[i] = operands[0];
551 if (reverse_frame[operands[1]].state == REVERSE_STATE_VALUE)
553 /* We have a value in A -- we can do this. */
554 new_reverse_frame[i] = reverse_frame[operands[1]];
555 new_reverse_frame[i].value
556 = reverse_frame[operands[1]].value | operands[2];
558 else if (operands[2] == 0)
560 /* This is a move. */
561 new_reverse_frame[i] = reverse_frame[operands[1]];
565 /* We don't know anything about the values. Punt. */
566 new_reverse_frame[i].state = REVERSE_STATE_UNKNOWN;
568 reverse_frame_valid |= 1 << i;
569 dest_regs[i] = operands[0];
572 if (reverse_frame[operands[1]].state == REVERSE_STATE_VALUE
573 && reverse_frame[operands[1]].value == 0)
575 /* This is a move. */
576 new_reverse_frame[i] = reverse_frame[operands[2]];
578 else if (reverse_frame[operands[2]].state == REVERSE_STATE_VALUE
579 && reverse_frame[operands[2]].value == 0)
581 /* This is a move. */
582 new_reverse_frame[i] = reverse_frame[operands[1]];
586 /* We don't know anything about the values. Punt. */
587 new_reverse_frame[i].state = REVERSE_STATE_UNKNOWN;
589 reverse_frame_valid |= 1 << i;
590 dest_regs[i] = operands[0];
593 if (reverse_frame[operands[1]].state == REVERSE_STATE_VALUE
594 && reverse_frame[operands[2]].state == REVERSE_STATE_VALUE)
596 /* We have values -- we can do this. */
597 new_reverse_frame[i] = reverse_frame[operands[1]];
598 new_reverse_frame[i].value
599 -= reverse_frame[operands[2]].value;
603 /* We don't know anything about the values. Punt. */
604 new_reverse_frame[i].state = REVERSE_STATE_UNKNOWN;
606 reverse_frame_valid |= 1 << i;
607 dest_regs[i] = operands[0];
610 case TILEGX_OPC_FNOP:
611 case TILEGX_OPC_INFO:
612 case TILEGX_OPC_INFOL:
613 /* Nothing to see here, move on.
614 Note that real NOP is treated as a 'real' instruction
615 because someone must have intended that it be there.
616 It therefore terminates the prolog. */
622 case TILEGX_OPC_BEQZ:
623 case TILEGX_OPC_BEQZT:
624 case TILEGX_OPC_BGEZ:
625 case TILEGX_OPC_BGEZT:
626 case TILEGX_OPC_BGTZ:
627 case TILEGX_OPC_BGTZT:
628 case TILEGX_OPC_BLBC:
629 case TILEGX_OPC_BLBCT:
630 case TILEGX_OPC_BLBS:
631 case TILEGX_OPC_BLBST:
632 case TILEGX_OPC_BLEZ:
633 case TILEGX_OPC_BLEZT:
634 case TILEGX_OPC_BLTZ:
635 case TILEGX_OPC_BLTZT:
636 case TILEGX_OPC_BNEZ:
637 case TILEGX_OPC_BNEZT:
639 case TILEGX_OPC_IRET:
640 case TILEGX_OPC_JALR:
641 case TILEGX_OPC_JALRP:
644 case TILEGX_OPC_SWINT0:
645 case TILEGX_OPC_SWINT1:
646 case TILEGX_OPC_SWINT2:
647 case TILEGX_OPC_SWINT3:
648 /* We're really done -- this is a branch. */
653 /* We don't know or care what this instruction is.
654 All we know is that it isn't part of a prolog, and if
655 there's a destination register, we're trashing it. */
657 for (j = 0; j < opcode->num_operands; j++)
659 if (this_insn->operands[j]->is_dest_reg)
661 dest_regs[i] = operands[j];
662 new_reverse_frame[i].state = REVERSE_STATE_UNKNOWN;
663 reverse_frame_valid |= 1 << i;
671 /* Now update the reverse frames. */
672 for (i = 0; i < num_insns; i++)
674 /* ISSUE: Does this properly handle "network" registers? */
675 if ((reverse_frame_valid & (1 << i))
676 && dest_regs[i] != TILEGX_ZERO_REGNUM)
677 reverse_frame[dest_regs[i]] = new_reverse_frame[i];
680 if (prev_sp_value != 0)
682 /* GCC uses R52 as a frame pointer. Have we seen "move r52, sp"? */
683 if (reverse_frame[TILEGX_R52_REGNUM].state == REVERSE_STATE_REGISTER
684 && reverse_frame[TILEGX_R52_REGNUM].value == TILEGX_SP_REGNUM)
686 reverse_frame[TILEGX_R52_REGNUM].state = REVERSE_STATE_VALUE;
687 reverse_frame[TILEGX_R52_REGNUM].value = prev_sp_value;
693 if (prolog_done && prolog_end == end_addr)
695 /* We found non-prolog code. As such, _this_ instruction
696 is the one after the prolog. We keep processing, because
697 there may be more prolog code in there, but this is what
699 /* ISSUE: There may not have actually been a prologue, and
700 we may have simply skipped some random instructions. */
701 prolog_end = next_addr;
705 /* We saw a branch. The prolog absolutely must be over. */
710 if (prolog_end == end_addr && cache)
712 /* We may have terminated the prolog early, and we're certainly
713 at THIS point right now. It's possible that the values of
714 registers we need are currently actually in other registers
715 (and haven't been written to memory yet). Go find them. */
716 for (i = 0; i < TILEGX_NUM_PHYS_REGS; i++)
718 if (reverse_frame[i].state == REVERSE_STATE_REGISTER
719 && reverse_frame[i].value != i)
721 unsigned saved_register = (unsigned) reverse_frame[i].value;
723 cache->saved_regs[saved_register].realreg = i;
724 cache->saved_regs[saved_register].addr = (LONGEST) -1;
729 if (lr_saved_on_stack_p)
731 cache->saved_regs[TILEGX_LR_REGNUM].realreg = TILEGX_LR_REGNUM;
732 cache->saved_regs[TILEGX_LR_REGNUM].addr =
733 cache->saved_regs[TILEGX_SP_REGNUM].addr;
739 /* This is the implementation of gdbarch method skip_prologue. */
742 tilegx_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
744 CORE_ADDR func_start, end_pc;
745 struct obj_section *s;
747 /* This is the preferred method, find the end of the prologue by
748 using the debugging information. */
749 if (find_pc_partial_function (start_pc, NULL, &func_start, NULL))
751 CORE_ADDR post_prologue_pc
752 = skip_prologue_using_sal (gdbarch, func_start);
754 if (post_prologue_pc != 0)
755 return max (start_pc, post_prologue_pc);
758 /* Don't straddle a section boundary. */
759 s = find_pc_section (start_pc);
760 end_pc = start_pc + 8 * TILEGX_BUNDLE_SIZE_IN_BYTES;
762 end_pc = min (end_pc, obj_section_endaddr (s));
764 /* Otherwise, try to skip prologue the hard way. */
765 return tilegx_analyze_prologue (gdbarch,
771 /* This is the implementation of gdbarch method stack_frame_destroyed_p. */
774 tilegx_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
776 CORE_ADDR func_addr = 0, func_end = 0;
778 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
780 CORE_ADDR addr = func_end - TILEGX_BUNDLE_SIZE_IN_BYTES;
782 /* FIXME: Find the actual epilogue. */
783 /* HACK: Just assume the final bundle is the "ret" instruction". */
790 /* This is the implementation of gdbarch method get_longjmp_target. */
793 tilegx_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
795 struct gdbarch *gdbarch = get_frame_arch (frame);
796 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
800 jb_addr = get_frame_register_unsigned (frame, TILEGX_R0_REGNUM);
802 /* TileGX jmp_buf contains 32 elements of type __uint_reg_t which
803 has a size of 8 bytes. The return address is stored in the 25th
805 if (target_read_memory (jb_addr + 25 * 8, buf, 8))
808 *pc = extract_unsigned_integer (buf, 8, byte_order);
813 /* by assigning the 'faultnum' reg in kernel pt_regs with this value,
814 kernel do_signal will not check r0. see tilegx kernel/signal.c
816 #define INT_SWINT_1_SIGRETURN (~0)
818 /* Implement the "write_pc" gdbarch method. */
821 tilegx_write_pc (struct regcache *regcache, CORE_ADDR pc)
823 regcache_cooked_write_unsigned (regcache, TILEGX_PC_REGNUM, pc);
825 /* We must be careful with modifying the program counter. If we
826 just interrupted a system call, the kernel might try to restart
827 it when we resume the inferior. On restarting the system call,
828 the kernel will try backing up the program counter even though it
829 no longer points at the system call. This typically results in a
830 SIGSEGV or SIGILL. We can prevent this by writing INT_SWINT_1_SIGRETURN
831 in the "faultnum" pseudo-register.
833 Note that "faultnum" is saved when setting up a dummy call frame.
834 This means that it is properly restored when that frame is
835 popped, and that the interrupted system call will be restarted
836 when we resume the inferior on return from a function call from
837 within GDB. In all other cases the system call will not be
839 regcache_cooked_write_unsigned (regcache, TILEGX_FAULTNUM_REGNUM,
840 INT_SWINT_1_SIGRETURN);
843 /* This is the implementation of gdbarch method breakpoint_from_pc. */
845 static const unsigned char *
846 tilegx_breakpoint_from_pc (struct gdbarch *gdbarch,
847 CORE_ADDR *pcptr, int *lenptr)
849 /* 64-bit pattern for a { bpt ; nop } bundle. */
850 static const unsigned char breakpoint[] =
851 { 0x00, 0x50, 0x48, 0x51, 0xae, 0x44, 0x6a, 0x28 };
853 *lenptr = sizeof (breakpoint);
859 static struct tilegx_frame_cache *
860 tilegx_frame_cache (struct frame_info *this_frame, void **this_cache)
862 struct gdbarch *gdbarch = get_frame_arch (this_frame);
863 struct tilegx_frame_cache *cache;
864 CORE_ADDR current_pc;
867 return (struct tilegx_frame_cache *) *this_cache;
869 cache = FRAME_OBSTACK_ZALLOC (struct tilegx_frame_cache);
871 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
873 cache->start_pc = get_frame_func (this_frame);
874 current_pc = get_frame_pc (this_frame);
876 cache->base = get_frame_register_unsigned (this_frame, TILEGX_SP_REGNUM);
877 trad_frame_set_value (cache->saved_regs, TILEGX_SP_REGNUM, cache->base);
880 tilegx_analyze_prologue (gdbarch, cache->start_pc, current_pc,
883 cache->saved_regs[TILEGX_PC_REGNUM] = cache->saved_regs[TILEGX_LR_REGNUM];
888 /* Retrieve the value of REGNUM in FRAME. */
891 tilegx_frame_prev_register (struct frame_info *this_frame,
895 struct tilegx_frame_cache *info =
896 tilegx_frame_cache (this_frame, this_cache);
898 return trad_frame_get_prev_register (this_frame, info->saved_regs,
902 /* Build frame id. */
905 tilegx_frame_this_id (struct frame_info *this_frame, void **this_cache,
906 struct frame_id *this_id)
908 struct tilegx_frame_cache *info =
909 tilegx_frame_cache (this_frame, this_cache);
911 /* This marks the outermost frame. */
915 (*this_id) = frame_id_build (info->base, info->start_pc);
919 tilegx_frame_base_address (struct frame_info *this_frame, void **this_cache)
921 struct tilegx_frame_cache *cache =
922 tilegx_frame_cache (this_frame, this_cache);
927 static const struct frame_unwind tilegx_frame_unwind = {
929 default_frame_unwind_stop_reason,
930 tilegx_frame_this_id,
931 tilegx_frame_prev_register,
932 NULL, /* const struct frame_data *unwind_data */
933 default_frame_sniffer, /* frame_sniffer_ftype *sniffer */
934 NULL /* frame_prev_pc_ftype *prev_pc */
937 static const struct frame_base tilegx_frame_base = {
938 &tilegx_frame_unwind,
939 tilegx_frame_base_address,
940 tilegx_frame_base_address,
941 tilegx_frame_base_address
945 tilegx_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
947 return frame_unwind_register_unsigned (next_frame, TILEGX_SP_REGNUM);
951 tilegx_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
953 return frame_unwind_register_unsigned (next_frame, TILEGX_PC_REGNUM);
956 static struct frame_id
957 tilegx_unwind_dummy_id (struct gdbarch *gdbarch,
958 struct frame_info *this_frame)
962 sp = get_frame_register_unsigned (this_frame, TILEGX_SP_REGNUM);
963 return frame_id_build (sp, get_frame_pc (this_frame));
967 /* We cannot read/write the "special" registers. */
970 tilegx_cannot_reference_register (struct gdbarch *gdbarch, int regno)
972 if (regno >= 0 && regno < TILEGX_NUM_EASY_REGS)
974 else if (regno == TILEGX_PC_REGNUM
975 || regno == TILEGX_FAULTNUM_REGNUM)
981 static struct gdbarch *
982 tilegx_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
984 struct gdbarch *gdbarch;
987 /* Handle arch_size == 32 or 64. Default to 64. */
989 arch_size = bfd_get_arch_size (info.abfd);
991 /* Try to find a pre-existing architecture. */
992 for (arches = gdbarch_list_lookup_by_info (arches, &info);
994 arches = gdbarch_list_lookup_by_info (arches->next, &info))
996 /* We only have two flavors -- just make sure arch_size matches. */
997 if (gdbarch_ptr_bit (arches->gdbarch) == arch_size)
998 return (arches->gdbarch);
1001 gdbarch = gdbarch_alloc (&info, NULL);
1003 /* Basic register fields and methods, datatype sizes and stuff. */
1005 /* There are 64 physical registers which can be referenced by
1006 instructions (although only 56 of them can actually be
1007 debugged) and 1 magic register (the PC). The other three
1008 magic registers (ex1, syscall, orig_r0) which are known to
1009 "ptrace" are ignored by "gdb". Note that we simply pretend
1010 that there are 65 registers, and no "pseudo registers". */
1011 set_gdbarch_num_regs (gdbarch, TILEGX_NUM_REGS);
1012 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1014 set_gdbarch_sp_regnum (gdbarch, TILEGX_SP_REGNUM);
1015 set_gdbarch_pc_regnum (gdbarch, TILEGX_PC_REGNUM);
1017 set_gdbarch_register_name (gdbarch, tilegx_register_name);
1018 set_gdbarch_register_type (gdbarch, tilegx_register_type);
1020 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1021 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1022 set_gdbarch_long_bit (gdbarch, arch_size);
1023 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1025 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1026 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1027 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1029 set_gdbarch_ptr_bit (gdbarch, arch_size);
1030 set_gdbarch_addr_bit (gdbarch, arch_size);
1032 set_gdbarch_cannot_fetch_register (gdbarch,
1033 tilegx_cannot_reference_register);
1034 set_gdbarch_cannot_store_register (gdbarch,
1035 tilegx_cannot_reference_register);
1037 /* Stack grows down. */
1038 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1041 set_gdbarch_unwind_sp (gdbarch, tilegx_unwind_sp);
1042 set_gdbarch_unwind_pc (gdbarch, tilegx_unwind_pc);
1043 set_gdbarch_dummy_id (gdbarch, tilegx_unwind_dummy_id);
1044 set_gdbarch_frame_align (gdbarch, tilegx_frame_align);
1045 frame_base_set_default (gdbarch, &tilegx_frame_base);
1047 set_gdbarch_skip_prologue (gdbarch, tilegx_skip_prologue);
1049 set_gdbarch_stack_frame_destroyed_p (gdbarch, tilegx_stack_frame_destroyed_p);
1051 /* Map debug registers into internal register numbers. */
1052 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, tilegx_dwarf2_reg_to_regnum);
1054 /* These values and methods are used when gdb calls a target function. */
1055 set_gdbarch_push_dummy_call (gdbarch, tilegx_push_dummy_call);
1056 set_gdbarch_get_longjmp_target (gdbarch, tilegx_get_longjmp_target);
1057 set_gdbarch_write_pc (gdbarch, tilegx_write_pc);
1058 set_gdbarch_breakpoint_from_pc (gdbarch, tilegx_breakpoint_from_pc);
1059 set_gdbarch_return_value (gdbarch, tilegx_return_value);
1061 set_gdbarch_print_insn (gdbarch, print_insn_tilegx);
1063 gdbarch_init_osabi (info, gdbarch);
1065 dwarf2_append_unwinders (gdbarch);
1066 frame_unwind_append_unwinder (gdbarch, &tilegx_frame_unwind);
1071 /* Provide a prototype to silence -Wmissing-prototypes. */
1072 extern initialize_file_ftype _initialize_tilegx_tdep;
1075 _initialize_tilegx_tdep (void)
1077 register_gdbarch_init (bfd_arch_tilegx, tilegx_gdbarch_init);