convert to_insert_mask_watchpoint
[platform/upstream/binutils.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3    Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5    Contributed by Cygnus Support.  Written by John Gilmore.
6
7    This file is part of GDB.
8
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43    of the debugger, and the part which is target-specific, or
44    specific to the communications interface between us and the
45    target.
46
47    A TARGET is an interface between the debugger and a particular
48    kind of file or process.  Targets can be STACKED in STRATA,
49    so that more than one target can potentially respond to a request.
50    In particular, memory accesses will walk down the stack of targets
51    until they find a target that is interested in handling that particular
52    address.  STRATA are artificial boundaries on the stack, within
53    which particular kinds of targets live.  Strata exist so that
54    people don't get confused by pushing e.g. a process target and then
55    a file target, and wondering why they can't see the current values
56    of variables any more (the file target is handling them and they
57    never get to the process target).  So when you push a file target,
58    it goes into the file stratum, which is always below the process
59    stratum.  */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73   {
74     dummy_stratum,              /* The lowest of the low */
75     file_stratum,               /* Executable files, etc */
76     process_stratum,            /* Executing processes or core dump files */
77     thread_stratum,             /* Executing threads */
78     record_stratum,             /* Support record debugging */
79     arch_stratum                /* Architecture overrides */
80   };
81
82 enum thread_control_capabilities
83   {
84     tc_none = 0,                /* Default: can't control thread execution.  */
85     tc_schedlock = 1,           /* Can lock the thread scheduler.  */
86   };
87
88 /* The structure below stores information about a system call.
89    It is basically used in the "catch syscall" command, and in
90    every function that gives information about a system call.
91    
92    It's also good to mention that its fields represent everything
93    that we currently know about a syscall in GDB.  */
94 struct syscall
95   {
96     /* The syscall number.  */
97     int number;
98
99     /* The syscall name.  */
100     const char *name;
101   };
102
103 /* Return a pretty printed form of target_waitstatus.
104    Space for the result is malloc'd, caller must free.  */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108    Space for the result is malloc'd, caller must free.  */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112    deal with.  */
113 enum inferior_event_type
114   {
115     /* Process a normal inferior event which will result in target_wait
116        being called.  */
117     INF_REG_EVENT,
118     /* We are called because a timer went off.  */
119     INF_TIMER,
120     /* We are called to do stuff after the inferior stops.  */
121     INF_EXEC_COMPLETE,
122     /* We are called to do some stuff after the inferior stops, but we
123        are expected to reenter the proceed() and
124        handle_inferior_event() functions.  This is used only in case of
125        'step n' like commands.  */
126     INF_EXEC_CONTINUE
127   };
128 \f
129 /* Target objects which can be transfered using target_read,
130    target_write, et cetera.  */
131
132 enum target_object
133 {
134   /* AVR target specific transfer.  See "avr-tdep.c" and "remote.c".  */
135   TARGET_OBJECT_AVR,
136   /* SPU target specific transfer.  See "spu-tdep.c".  */
137   TARGET_OBJECT_SPU,
138   /* Transfer up-to LEN bytes of memory starting at OFFSET.  */
139   TARGET_OBJECT_MEMORY,
140   /* Memory, avoiding GDB's data cache and trusting the executable.
141      Target implementations of to_xfer_partial never need to handle
142      this object, and most callers should not use it.  */
143   TARGET_OBJECT_RAW_MEMORY,
144   /* Memory known to be part of the target's stack.  This is cached even
145      if it is not in a region marked as such, since it is known to be
146      "normal" RAM.  */
147   TARGET_OBJECT_STACK_MEMORY,
148   /* Memory known to be part of the target code.   This is cached even
149      if it is not in a region marked as such.  */
150   TARGET_OBJECT_CODE_MEMORY,
151   /* Kernel Unwind Table.  See "ia64-tdep.c".  */
152   TARGET_OBJECT_UNWIND_TABLE,
153   /* Transfer auxilliary vector.  */
154   TARGET_OBJECT_AUXV,
155   /* StackGhost cookie.  See "sparc-tdep.c".  */
156   TARGET_OBJECT_WCOOKIE,
157   /* Target memory map in XML format.  */
158   TARGET_OBJECT_MEMORY_MAP,
159   /* Flash memory.  This object can be used to write contents to
160      a previously erased flash memory.  Using it without erasing
161      flash can have unexpected results.  Addresses are physical
162      address on target, and not relative to flash start.  */
163   TARGET_OBJECT_FLASH,
164   /* Available target-specific features, e.g. registers and coprocessors.
165      See "target-descriptions.c".  ANNEX should never be empty.  */
166   TARGET_OBJECT_AVAILABLE_FEATURES,
167   /* Currently loaded libraries, in XML format.  */
168   TARGET_OBJECT_LIBRARIES,
169   /* Currently loaded libraries specific for SVR4 systems, in XML format.  */
170   TARGET_OBJECT_LIBRARIES_SVR4,
171   /* Currently loaded libraries specific to AIX systems, in XML format.  */
172   TARGET_OBJECT_LIBRARIES_AIX,
173   /* Get OS specific data.  The ANNEX specifies the type (running
174      processes, etc.).  The data being transfered is expected to follow
175      the DTD specified in features/osdata.dtd.  */
176   TARGET_OBJECT_OSDATA,
177   /* Extra signal info.  Usually the contents of `siginfo_t' on unix
178      platforms.  */
179   TARGET_OBJECT_SIGNAL_INFO,
180   /* The list of threads that are being debugged.  */
181   TARGET_OBJECT_THREADS,
182   /* Collected static trace data.  */
183   TARGET_OBJECT_STATIC_TRACE_DATA,
184   /* The HP-UX registers (those that can be obtained or modified by using
185      the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests).  */
186   TARGET_OBJECT_HPUX_UREGS,
187   /* The HP-UX shared library linkage pointer.  ANNEX should be a string
188      image of the code address whose linkage pointer we are looking for.
189
190      The size of the data transfered is always 8 bytes (the size of an
191      address on ia64).  */
192   TARGET_OBJECT_HPUX_SOLIB_GOT,
193   /* Traceframe info, in XML format.  */
194   TARGET_OBJECT_TRACEFRAME_INFO,
195   /* Load maps for FDPIC systems.  */
196   TARGET_OBJECT_FDPIC,
197   /* Darwin dynamic linker info data.  */
198   TARGET_OBJECT_DARWIN_DYLD_INFO,
199   /* OpenVMS Unwind Information Block.  */
200   TARGET_OBJECT_OPENVMS_UIB,
201   /* Branch trace data, in XML format.  */
202   TARGET_OBJECT_BTRACE
203   /* Possible future objects: TARGET_OBJECT_FILE, ...  */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc.  */
207
208 enum target_xfer_status
209 {
210   /* Some bytes are transferred.  */
211   TARGET_XFER_OK = 1,
212
213   /* No further transfer is possible.  */
214   TARGET_XFER_EOF = 0,
215
216   /* Generic I/O error.  Note that it's important that this is '-1',
217      as we still have target_xfer-related code returning hardcoded
218      '-1' on error.  */
219   TARGET_XFER_E_IO = -1,
220
221   /* Transfer failed because the piece of the object requested is
222      unavailable.  */
223   TARGET_XFER_E_UNAVAILABLE = -2,
224
225   /* Keep list in sync with target_xfer_error_to_string.  */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR.  */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235    be able to perform.  */
236
237 enum trace_find_type
238   {
239     tfind_number,
240     tfind_pc,
241     tfind_tp,
242     tfind_range,
243     tfind_outside,
244   };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250   target_xfer_partial_ftype (struct target_ops *ops,
251                              enum target_object object,
252                              const char *annex,
253                              gdb_byte *readbuf,
254                              const gdb_byte *writebuf,
255                              ULONGEST offset,
256                              ULONGEST len,
257                              ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260    OBJECT.  The OFFSET, for a seekable object, specifies the
261    starting point.  The ANNEX can be used to provide additional
262    data-specific information to the target.
263
264    Return the number of bytes actually transfered, or a negative error
265    code (an 'enum target_xfer_error' value) if the transfer is not
266    supported or otherwise fails.  Return of a positive value less than
267    LEN indicates that no further transfer is possible.  Unlike the raw
268    to_xfer_partial interface, callers of these functions do not need
269    to retry partial transfers.  */
270
271 extern LONGEST target_read (struct target_ops *ops,
272                             enum target_object object,
273                             const char *annex, gdb_byte *buf,
274                             ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277   {
278     /* First address that was read.  */
279     ULONGEST begin;
280     /* Past-the-end address.  */
281     ULONGEST end;
282     /* The data.  */
283     gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291                                                       ULONGEST offset,
292                                                       LONGEST len);
293   
294 extern LONGEST target_write (struct target_ops *ops,
295                              enum target_object object,
296                              const char *annex, const gdb_byte *buf,
297                              ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300    the number of bytes written and the opaque BATON after every
301    successful partial write (and before the first write).  This is
302    useful for progress reporting and user interaction while writing
303    data.  To abort the transfer, the progress callback can throw an
304    exception.  */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307                                     enum target_object object,
308                                     const char *annex, const gdb_byte *buf,
309                                     ULONGEST offset, LONGEST len,
310                                     void (*progress) (ULONGEST, void *),
311                                     void *baton);
312
313 /* Wrapper to perform a full read of unknown size.  OBJECT/ANNEX will
314    be read using OPS.  The return value will be -1 if the transfer
315    fails or is not supported; 0 if the object is empty; or the length
316    of the object otherwise.  If a positive value is returned, a
317    sufficiently large buffer will be allocated using xmalloc and
318    returned in *BUF_P containing the contents of the object.
319
320    This method should be used for objects sufficiently small to store
321    in a single xmalloc'd buffer, when no fixed bound on the object's
322    size is known in advance.  Don't try to read TARGET_OBJECT_MEMORY
323    through this function.  */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326                                   enum target_object object,
327                                   const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS.  The result is NUL-terminated and
330    returned as a string, allocated using xmalloc.  If an error occurs
331    or the transfer is unsupported, NULL is returned.  Empty objects
332    are returned as allocated but empty strings.  A warning is issued
333    if the result contains any embedded NUL bytes.  */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336                                    enum target_object object,
337                                    const char *annex);
338
339 /* See target_ops->to_xfer_partial.  */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers.  They
343    throw an error if the memory transfer fails.
344
345    NOTE: cagney/2003-10-23: The naming schema is lifted from
346    "frame.h".  The parameter order is lifted from get_frame_memory,
347    which in turn lifted it from read_memory.  */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350                                gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352                                             CORE_ADDR addr, int len,
353                                             enum bfd_endian byte_order);
354 \f
355 struct thread_info;             /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method.  */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360                                    void *context);
361
362 /* These defines are used to mark target_ops methods.  The script
363    make-target-delegates scans these and auto-generates the base
364    method implementations.  There are four macros that can be used:
365    
366    1. TARGET_DEFAULT_IGNORE.  There is no argument.  The base method
367    does nothing.  This is only valid if the method return type is
368    'void'.
369    
370    2. TARGET_DEFAULT_NORETURN.  The argument is a function call, like
371    'tcomplain ()'.  The base method simply makes this call, which is
372    assumed not to return.
373    
374    3. TARGET_DEFAULT_RETURN.  The argument is a C expression.  The
375    base method returns this expression's value.
376    
377    4. TARGET_DEFAULT_FUNC.  The argument is the name of a function.
378    make-target-delegates does not generate a base method in this case,
379    but instead uses the argument function as the base method.  */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387   {
388     struct target_ops *beneath; /* To the target under this one.  */
389     char *to_shortname;         /* Name this target type */
390     char *to_longname;          /* Name for printing */
391     char *to_doc;               /* Documentation.  Does not include trailing
392                                    newline, and starts with a one-line descrip-
393                                    tion (probably similar to to_longname).  */
394     /* Per-target scratch pad.  */
395     void *to_data;
396     /* The open routine takes the rest of the parameters from the
397        command, and (if successful) pushes a new target onto the
398        stack.  Targets should supply this routine, if only to provide
399        an error message.  */
400     void (*to_open) (char *, int);
401     /* Old targets with a static target vector provide "to_close".
402        New re-entrant targets provide "to_xclose" and that is expected
403        to xfree everything (including the "struct target_ops").  */
404     void (*to_xclose) (struct target_ops *targ);
405     void (*to_close) (struct target_ops *);
406     void (*to_attach) (struct target_ops *ops, char *, int)
407       TARGET_DEFAULT_FUNC (find_default_attach);
408     void (*to_post_attach) (struct target_ops *, int)
409       TARGET_DEFAULT_IGNORE ();
410     void (*to_detach) (struct target_ops *ops, const char *, int)
411       TARGET_DEFAULT_IGNORE ();
412     void (*to_disconnect) (struct target_ops *, char *, int);
413     void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414       TARGET_DEFAULT_NORETURN (noprocess ());
415     ptid_t (*to_wait) (struct target_ops *,
416                        ptid_t, struct target_waitstatus *, int)
417       TARGET_DEFAULT_NORETURN (noprocess ());
418     void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
419       TARGET_DEFAULT_IGNORE ();
420     void (*to_store_registers) (struct target_ops *, struct regcache *, int)
421       TARGET_DEFAULT_NORETURN (noprocess ());
422     void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
423       TARGET_DEFAULT_NORETURN (noprocess ());
424
425     /* Transfer LEN bytes of memory between GDB address MYADDR and
426        target address MEMADDR.  If WRITE, transfer them to the target, else
427        transfer them from the target.  TARGET is the target from which we
428        get this function.
429
430        Return value, N, is one of the following:
431
432        0 means that we can't handle this.  If errno has been set, it is the
433        error which prevented us from doing it (FIXME: What about bfd_error?).
434
435        positive (call it N) means that we have transferred N bytes
436        starting at MEMADDR.  We might be able to handle more bytes
437        beyond this length, but no promises.
438
439        negative (call its absolute value N) means that we cannot
440        transfer right at MEMADDR, but we could transfer at least
441        something at MEMADDR + N.
442
443        NOTE: cagney/2004-10-01: This has been entirely superseeded by
444        to_xfer_partial and inferior inheritance.  */
445
446     int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
447                                    int len, int write,
448                                    struct mem_attrib *attrib,
449                                    struct target_ops *target);
450
451     void (*to_files_info) (struct target_ops *)
452       TARGET_DEFAULT_IGNORE ();
453     int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
454                                  struct bp_target_info *)
455       TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
456     int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
457                                  struct bp_target_info *)
458       TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
459     int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
460       TARGET_DEFAULT_RETURN (0);
461     int (*to_ranged_break_num_registers) (struct target_ops *)
462       TARGET_DEFAULT_RETURN (-1);
463     int (*to_insert_hw_breakpoint) (struct target_ops *,
464                                     struct gdbarch *, struct bp_target_info *)
465       TARGET_DEFAULT_RETURN (-1);
466     int (*to_remove_hw_breakpoint) (struct target_ops *,
467                                     struct gdbarch *, struct bp_target_info *)
468       TARGET_DEFAULT_RETURN (-1);
469
470     /* Documentation of what the two routines below are expected to do is
471        provided with the corresponding target_* macros.  */
472     int (*to_remove_watchpoint) (struct target_ops *,
473                                  CORE_ADDR, int, int, struct expression *)
474       TARGET_DEFAULT_RETURN (-1);
475     int (*to_insert_watchpoint) (struct target_ops *,
476                                  CORE_ADDR, int, int, struct expression *)
477       TARGET_DEFAULT_RETURN (-1);
478
479     int (*to_insert_mask_watchpoint) (struct target_ops *,
480                                       CORE_ADDR, CORE_ADDR, int)
481       TARGET_DEFAULT_RETURN (1);
482     int (*to_remove_mask_watchpoint) (struct target_ops *,
483                                       CORE_ADDR, CORE_ADDR, int);
484     int (*to_stopped_by_watchpoint) (struct target_ops *)
485       TARGET_DEFAULT_RETURN (0);
486     int to_have_steppable_watchpoint;
487     int to_have_continuable_watchpoint;
488     int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
489       TARGET_DEFAULT_RETURN (0);
490     int (*to_watchpoint_addr_within_range) (struct target_ops *,
491                                             CORE_ADDR, CORE_ADDR, int)
492       TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
493
494     /* Documentation of this routine is provided with the corresponding
495        target_* macro.  */
496     int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
497                                            CORE_ADDR, int)
498       TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
499
500     int (*to_can_accel_watchpoint_condition) (struct target_ops *,
501                                               CORE_ADDR, int, int,
502                                               struct expression *)
503       TARGET_DEFAULT_RETURN (0);
504     int (*to_masked_watch_num_registers) (struct target_ops *,
505                                           CORE_ADDR, CORE_ADDR);
506     void (*to_terminal_init) (struct target_ops *)
507       TARGET_DEFAULT_IGNORE ();
508     void (*to_terminal_inferior) (struct target_ops *)
509       TARGET_DEFAULT_IGNORE ();
510     void (*to_terminal_ours_for_output) (struct target_ops *)
511       TARGET_DEFAULT_IGNORE ();
512     void (*to_terminal_ours) (struct target_ops *)
513       TARGET_DEFAULT_IGNORE ();
514     void (*to_terminal_save_ours) (struct target_ops *)
515       TARGET_DEFAULT_IGNORE ();
516     void (*to_terminal_info) (struct target_ops *, const char *, int)
517       TARGET_DEFAULT_FUNC (default_terminal_info);
518     void (*to_kill) (struct target_ops *);
519     void (*to_load) (struct target_ops *, char *, int)
520       TARGET_DEFAULT_NORETURN (tcomplain ());
521     void (*to_create_inferior) (struct target_ops *, 
522                                 char *, char *, char **, int);
523     void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
524       TARGET_DEFAULT_IGNORE ();
525     int (*to_insert_fork_catchpoint) (struct target_ops *, int)
526       TARGET_DEFAULT_RETURN (1);
527     int (*to_remove_fork_catchpoint) (struct target_ops *, int)
528       TARGET_DEFAULT_RETURN (1);
529     int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
530       TARGET_DEFAULT_RETURN (1);
531     int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
532       TARGET_DEFAULT_RETURN (1);
533     int (*to_follow_fork) (struct target_ops *, int, int);
534     int (*to_insert_exec_catchpoint) (struct target_ops *, int)
535       TARGET_DEFAULT_RETURN (1);
536     int (*to_remove_exec_catchpoint) (struct target_ops *, int)
537       TARGET_DEFAULT_RETURN (1);
538     int (*to_set_syscall_catchpoint) (struct target_ops *,
539                                       int, int, int, int, int *)
540       TARGET_DEFAULT_RETURN (1);
541     int (*to_has_exited) (struct target_ops *, int, int, int *)
542       TARGET_DEFAULT_RETURN (0);
543     void (*to_mourn_inferior) (struct target_ops *);
544     int (*to_can_run) (struct target_ops *);
545
546     /* Documentation of this routine is provided with the corresponding
547        target_* macro.  */
548     void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
549
550     /* Documentation of this routine is provided with the
551        corresponding target_* function.  */
552     void (*to_program_signals) (struct target_ops *, int, unsigned char *);
553
554     int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
555     void (*to_find_new_threads) (struct target_ops *);
556     char *(*to_pid_to_str) (struct target_ops *, ptid_t);
557     char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
558       TARGET_DEFAULT_RETURN (0);
559     char *(*to_thread_name) (struct target_ops *, struct thread_info *)
560       TARGET_DEFAULT_RETURN (0);
561     void (*to_stop) (struct target_ops *, ptid_t)
562       TARGET_DEFAULT_IGNORE ();
563     void (*to_rcmd) (struct target_ops *,
564                      char *command, struct ui_file *output)
565       TARGET_DEFAULT_FUNC (default_rcmd);
566     char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
567       TARGET_DEFAULT_RETURN (0);
568     void (*to_log_command) (struct target_ops *, const char *)
569       TARGET_DEFAULT_IGNORE ();
570     struct target_section_table *(*to_get_section_table) (struct target_ops *);
571     enum strata to_stratum;
572     int (*to_has_all_memory) (struct target_ops *);
573     int (*to_has_memory) (struct target_ops *);
574     int (*to_has_stack) (struct target_ops *);
575     int (*to_has_registers) (struct target_ops *);
576     int (*to_has_execution) (struct target_ops *, ptid_t);
577     int to_has_thread_control;  /* control thread execution */
578     int to_attach_no_wait;
579     /* ASYNC target controls */
580     int (*to_can_async_p) (struct target_ops *)
581       TARGET_DEFAULT_FUNC (find_default_can_async_p);
582     int (*to_is_async_p) (struct target_ops *)
583       TARGET_DEFAULT_FUNC (find_default_is_async_p);
584     void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
585       TARGET_DEFAULT_NORETURN (tcomplain ());
586     int (*to_supports_non_stop) (struct target_ops *);
587     /* find_memory_regions support method for gcore */
588     int (*to_find_memory_regions) (struct target_ops *,
589                                    find_memory_region_ftype func, void *data)
590       TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
591     /* make_corefile_notes support method for gcore */
592     char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
593       TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
594     /* get_bookmark support method for bookmarks */
595     gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int)
596       TARGET_DEFAULT_NORETURN (tcomplain ());
597     /* goto_bookmark support method for bookmarks */
598     void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int)
599       TARGET_DEFAULT_NORETURN (tcomplain ());
600     /* Return the thread-local address at OFFSET in the
601        thread-local storage for the thread PTID and the shared library
602        or executable file given by OBJFILE.  If that block of
603        thread-local storage hasn't been allocated yet, this function
604        may return an error.  */
605     CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
606                                               ptid_t ptid,
607                                               CORE_ADDR load_module_addr,
608                                               CORE_ADDR offset);
609
610     /* Request that OPS transfer up to LEN 8-bit bytes of the target's
611        OBJECT.  The OFFSET, for a seekable object, specifies the
612        starting point.  The ANNEX can be used to provide additional
613        data-specific information to the target.
614
615        Return the transferred status, error or OK (an
616        'enum target_xfer_status' value).  Save the number of bytes
617        actually transferred in *XFERED_LEN if transfer is successful
618        (TARGET_XFER_OK) or the number unavailable bytes if the requested
619        data is unavailable (TARGET_XFER_E_UNAVAILABLE).  *XFERED_LEN
620        smaller than LEN does not indicate the end of the object, only
621        the end of the transfer; higher level code should continue
622        transferring if desired.  This is handled in target.c.
623
624        The interface does not support a "retry" mechanism.  Instead it
625        assumes that at least one byte will be transfered on each
626        successful call.
627
628        NOTE: cagney/2003-10-17: The current interface can lead to
629        fragmented transfers.  Lower target levels should not implement
630        hacks, such as enlarging the transfer, in an attempt to
631        compensate for this.  Instead, the target stack should be
632        extended so that it implements supply/collect methods and a
633        look-aside object cache.  With that available, the lowest
634        target can safely and freely "push" data up the stack.
635
636        See target_read and target_write for more information.  One,
637        and only one, of readbuf or writebuf must be non-NULL.  */
638
639     enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
640                                                 enum target_object object,
641                                                 const char *annex,
642                                                 gdb_byte *readbuf,
643                                                 const gdb_byte *writebuf,
644                                                 ULONGEST offset, ULONGEST len,
645                                                 ULONGEST *xfered_len)
646       TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
647
648     /* Returns the memory map for the target.  A return value of NULL
649        means that no memory map is available.  If a memory address
650        does not fall within any returned regions, it's assumed to be
651        RAM.  The returned memory regions should not overlap.
652
653        The order of regions does not matter; target_memory_map will
654        sort regions by starting address.  For that reason, this
655        function should not be called directly except via
656        target_memory_map.
657
658        This method should not cache data; if the memory map could
659        change unexpectedly, it should be invalidated, and higher
660        layers will re-fetch it.  */
661     VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
662
663     /* Erases the region of flash memory starting at ADDRESS, of
664        length LENGTH.
665
666        Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
667        on flash block boundaries, as reported by 'to_memory_map'.  */
668     void (*to_flash_erase) (struct target_ops *,
669                            ULONGEST address, LONGEST length);
670
671     /* Finishes a flash memory write sequence.  After this operation
672        all flash memory should be available for writing and the result
673        of reading from areas written by 'to_flash_write' should be
674        equal to what was written.  */
675     void (*to_flash_done) (struct target_ops *);
676
677     /* Describe the architecture-specific features of this target.
678        Returns the description found, or NULL if no description
679        was available.  */
680     const struct target_desc *(*to_read_description) (struct target_ops *ops);
681
682     /* Build the PTID of the thread on which a given task is running,
683        based on LWP and THREAD.  These values are extracted from the
684        task Private_Data section of the Ada Task Control Block, and
685        their interpretation depends on the target.  */
686     ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
687                                     long lwp, long thread)
688       TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
689
690     /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
691        Return 0 if *READPTR is already at the end of the buffer.
692        Return -1 if there is insufficient buffer for a whole entry.
693        Return 1 if an entry was read into *TYPEP and *VALP.  */
694     int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
695                          gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
696
697     /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
698        sequence of bytes in PATTERN with length PATTERN_LEN.
699
700        The result is 1 if found, 0 if not found, and -1 if there was an error
701        requiring halting of the search (e.g. memory read error).
702        If the pattern is found the address is recorded in FOUND_ADDRP.  */
703     int (*to_search_memory) (struct target_ops *ops,
704                              CORE_ADDR start_addr, ULONGEST search_space_len,
705                              const gdb_byte *pattern, ULONGEST pattern_len,
706                              CORE_ADDR *found_addrp);
707
708     /* Can target execute in reverse?  */
709     int (*to_can_execute_reverse) (struct target_ops *)
710       TARGET_DEFAULT_RETURN (0);
711
712     /* The direction the target is currently executing.  Must be
713        implemented on targets that support reverse execution and async
714        mode.  The default simply returns forward execution.  */
715     enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
716       TARGET_DEFAULT_FUNC (default_execution_direction);
717
718     /* Does this target support debugging multiple processes
719        simultaneously?  */
720     int (*to_supports_multi_process) (struct target_ops *)
721       TARGET_DEFAULT_RETURN (0);
722
723     /* Does this target support enabling and disabling tracepoints while a trace
724        experiment is running?  */
725     int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
726       TARGET_DEFAULT_RETURN (0);
727
728     /* Does this target support disabling address space randomization?  */
729     int (*to_supports_disable_randomization) (struct target_ops *);
730
731     /* Does this target support the tracenz bytecode for string collection?  */
732     int (*to_supports_string_tracing) (struct target_ops *)
733       TARGET_DEFAULT_RETURN (0);
734
735     /* Does this target support evaluation of breakpoint conditions on its
736        end?  */
737     int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
738       TARGET_DEFAULT_RETURN (0);
739
740     /* Does this target support evaluation of breakpoint commands on its
741        end?  */
742     int (*to_can_run_breakpoint_commands) (struct target_ops *)
743       TARGET_DEFAULT_RETURN (0);
744
745     /* Determine current architecture of thread PTID.
746
747        The target is supposed to determine the architecture of the code where
748        the target is currently stopped at (on Cell, if a target is in spu_run,
749        to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
750        This is architecture used to perform decr_pc_after_break adjustment,
751        and also determines the frame architecture of the innermost frame.
752        ptrace operations need to operate according to target_gdbarch ().
753
754        The default implementation always returns target_gdbarch ().  */
755     struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
756       TARGET_DEFAULT_FUNC (default_thread_architecture);
757
758     /* Determine current address space of thread PTID.
759
760        The default implementation always returns the inferior's
761        address space.  */
762     struct address_space *(*to_thread_address_space) (struct target_ops *,
763                                                       ptid_t);
764
765     /* Target file operations.  */
766
767     /* Open FILENAME on the target, using FLAGS and MODE.  Return a
768        target file descriptor, or -1 if an error occurs (and set
769        *TARGET_ERRNO).  */
770     int (*to_fileio_open) (struct target_ops *,
771                            const char *filename, int flags, int mode,
772                            int *target_errno);
773
774     /* Write up to LEN bytes from WRITE_BUF to FD on the target.
775        Return the number of bytes written, or -1 if an error occurs
776        (and set *TARGET_ERRNO).  */
777     int (*to_fileio_pwrite) (struct target_ops *,
778                              int fd, const gdb_byte *write_buf, int len,
779                              ULONGEST offset, int *target_errno);
780
781     /* Read up to LEN bytes FD on the target into READ_BUF.
782        Return the number of bytes read, or -1 if an error occurs
783        (and set *TARGET_ERRNO).  */
784     int (*to_fileio_pread) (struct target_ops *,
785                             int fd, gdb_byte *read_buf, int len,
786                             ULONGEST offset, int *target_errno);
787
788     /* Close FD on the target.  Return 0, or -1 if an error occurs
789        (and set *TARGET_ERRNO).  */
790     int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
791
792     /* Unlink FILENAME on the target.  Return 0, or -1 if an error
793        occurs (and set *TARGET_ERRNO).  */
794     int (*to_fileio_unlink) (struct target_ops *,
795                              const char *filename, int *target_errno);
796
797     /* Read value of symbolic link FILENAME on the target.  Return a
798        null-terminated string allocated via xmalloc, or NULL if an error
799        occurs (and set *TARGET_ERRNO).  */
800     char *(*to_fileio_readlink) (struct target_ops *,
801                                  const char *filename, int *target_errno);
802
803
804     /* Implement the "info proc" command.  */
805     void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
806
807     /* Tracepoint-related operations.  */
808
809     /* Prepare the target for a tracing run.  */
810     void (*to_trace_init) (struct target_ops *)
811       TARGET_DEFAULT_NORETURN (tcomplain ());
812
813     /* Send full details of a tracepoint location to the target.  */
814     void (*to_download_tracepoint) (struct target_ops *,
815                                     struct bp_location *location)
816       TARGET_DEFAULT_NORETURN (tcomplain ());
817
818     /* Is the target able to download tracepoint locations in current
819        state?  */
820     int (*to_can_download_tracepoint) (struct target_ops *)
821       TARGET_DEFAULT_RETURN (0);
822
823     /* Send full details of a trace state variable to the target.  */
824     void (*to_download_trace_state_variable) (struct target_ops *,
825                                               struct trace_state_variable *tsv)
826       TARGET_DEFAULT_NORETURN (tcomplain ());
827
828     /* Enable a tracepoint on the target.  */
829     void (*to_enable_tracepoint) (struct target_ops *,
830                                   struct bp_location *location)
831       TARGET_DEFAULT_NORETURN (tcomplain ());
832
833     /* Disable a tracepoint on the target.  */
834     void (*to_disable_tracepoint) (struct target_ops *,
835                                    struct bp_location *location)
836       TARGET_DEFAULT_NORETURN (tcomplain ());
837
838     /* Inform the target info of memory regions that are readonly
839        (such as text sections), and so it should return data from
840        those rather than look in the trace buffer.  */
841     void (*to_trace_set_readonly_regions) (struct target_ops *)
842       TARGET_DEFAULT_NORETURN (tcomplain ());
843
844     /* Start a trace run.  */
845     void (*to_trace_start) (struct target_ops *)
846       TARGET_DEFAULT_NORETURN (tcomplain ());
847
848     /* Get the current status of a tracing run.  */
849     int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
850       TARGET_DEFAULT_RETURN (-1);
851
852     void (*to_get_tracepoint_status) (struct target_ops *,
853                                       struct breakpoint *tp,
854                                       struct uploaded_tp *utp)
855       TARGET_DEFAULT_NORETURN (tcomplain ());
856
857     /* Stop a trace run.  */
858     void (*to_trace_stop) (struct target_ops *)
859       TARGET_DEFAULT_NORETURN (tcomplain ());
860
861    /* Ask the target to find a trace frame of the given type TYPE,
862       using NUM, ADDR1, and ADDR2 as search parameters.  Returns the
863       number of the trace frame, and also the tracepoint number at
864       TPP.  If no trace frame matches, return -1.  May throw if the
865       operation fails.  */
866     int (*to_trace_find) (struct target_ops *,
867                           enum trace_find_type type, int num,
868                           CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
869       TARGET_DEFAULT_RETURN (-1);
870
871     /* Get the value of the trace state variable number TSV, returning
872        1 if the value is known and writing the value itself into the
873        location pointed to by VAL, else returning 0.  */
874     int (*to_get_trace_state_variable_value) (struct target_ops *,
875                                               int tsv, LONGEST *val)
876       TARGET_DEFAULT_RETURN (0);
877
878     int (*to_save_trace_data) (struct target_ops *, const char *filename)
879       TARGET_DEFAULT_NORETURN (tcomplain ());
880
881     int (*to_upload_tracepoints) (struct target_ops *,
882                                   struct uploaded_tp **utpp)
883       TARGET_DEFAULT_RETURN (0);
884
885     int (*to_upload_trace_state_variables) (struct target_ops *,
886                                             struct uploaded_tsv **utsvp)
887       TARGET_DEFAULT_RETURN (0);
888
889     LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
890                                       ULONGEST offset, LONGEST len)
891       TARGET_DEFAULT_NORETURN (tcomplain ());
892
893     /* Get the minimum length of instruction on which a fast tracepoint
894        may be set on the target.  If this operation is unsupported,
895        return -1.  If for some reason the minimum length cannot be
896        determined, return 0.  */
897     int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
898       TARGET_DEFAULT_RETURN (-1);
899
900     /* Set the target's tracing behavior in response to unexpected
901        disconnection - set VAL to 1 to keep tracing, 0 to stop.  */
902     void (*to_set_disconnected_tracing) (struct target_ops *, int val)
903       TARGET_DEFAULT_IGNORE ();
904     void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
905       TARGET_DEFAULT_IGNORE ();
906     /* Set the size of trace buffer in the target.  */
907     void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
908       TARGET_DEFAULT_IGNORE ();
909
910     /* Add/change textual notes about the trace run, returning 1 if
911        successful, 0 otherwise.  */
912     int (*to_set_trace_notes) (struct target_ops *,
913                                const char *user, const char *notes,
914                                const char *stopnotes)
915       TARGET_DEFAULT_RETURN (0);
916
917     /* Return the processor core that thread PTID was last seen on.
918        This information is updated only when:
919        - update_thread_list is called
920        - thread stops
921        If the core cannot be determined -- either for the specified
922        thread, or right now, or in this debug session, or for this
923        target -- return -1.  */
924     int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
925
926     /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
927        matches the contents of [DATA,DATA+SIZE).  Returns 1 if there's
928        a match, 0 if there's a mismatch, and -1 if an error is
929        encountered while reading memory.  */
930     int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
931                              CORE_ADDR memaddr, ULONGEST size);
932
933     /* Return the address of the start of the Thread Information Block
934        a Windows OS specific feature.  */
935     int (*to_get_tib_address) (struct target_ops *,
936                                ptid_t ptid, CORE_ADDR *addr)
937       TARGET_DEFAULT_NORETURN (tcomplain ());
938
939     /* Send the new settings of write permission variables.  */
940     void (*to_set_permissions) (struct target_ops *)
941       TARGET_DEFAULT_IGNORE ();
942
943     /* Look for a static tracepoint marker at ADDR, and fill in MARKER
944        with its details.  Return 1 on success, 0 on failure.  */
945     int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
946                                            struct static_tracepoint_marker *marker)
947       TARGET_DEFAULT_RETURN (0);
948
949     /* Return a vector of all tracepoints markers string id ID, or all
950        markers if ID is NULL.  */
951     VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
952       TARGET_DEFAULT_NORETURN (tcomplain ());
953
954     /* Return a traceframe info object describing the current
955        traceframe's contents.  If the target doesn't support
956        traceframe info, return NULL.  If the current traceframe is not
957        selected (the current traceframe number is -1), the target can
958        choose to return either NULL or an empty traceframe info.  If
959        NULL is returned, for example in remote target, GDB will read
960        from the live inferior.  If an empty traceframe info is
961        returned, for example in tfile target, which means the
962        traceframe info is available, but the requested memory is not
963        available in it.  GDB will try to see if the requested memory
964        is available in the read-only sections.  This method should not
965        cache data; higher layers take care of caching, invalidating,
966        and re-fetching when necessary.  */
967     struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
968       TARGET_DEFAULT_RETURN (0);
969
970     /* Ask the target to use or not to use agent according to USE.  Return 1
971        successful, 0 otherwise.  */
972     int (*to_use_agent) (struct target_ops *, int use)
973       TARGET_DEFAULT_NORETURN (tcomplain ());
974
975     /* Is the target able to use agent in current state?  */
976     int (*to_can_use_agent) (struct target_ops *)
977       TARGET_DEFAULT_RETURN (0);
978
979     /* Check whether the target supports branch tracing.  */
980     int (*to_supports_btrace) (struct target_ops *)
981       TARGET_DEFAULT_RETURN (0);
982
983     /* Enable branch tracing for PTID and allocate a branch trace target
984        information struct for reading and for disabling branch trace.  */
985     struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
986                                                     ptid_t ptid);
987
988     /* Disable branch tracing and deallocate TINFO.  */
989     void (*to_disable_btrace) (struct target_ops *,
990                                struct btrace_target_info *tinfo);
991
992     /* Disable branch tracing and deallocate TINFO.  This function is similar
993        to to_disable_btrace, except that it is called during teardown and is
994        only allowed to perform actions that are safe.  A counter-example would
995        be attempting to talk to a remote target.  */
996     void (*to_teardown_btrace) (struct target_ops *,
997                                 struct btrace_target_info *tinfo);
998
999     /* Read branch trace data for the thread indicated by BTINFO into DATA.
1000        DATA is cleared before new trace is added.
1001        The branch trace will start with the most recent block and continue
1002        towards older blocks.  */
1003     enum btrace_error (*to_read_btrace) (struct target_ops *self,
1004                                          VEC (btrace_block_s) **data,
1005                                          struct btrace_target_info *btinfo,
1006                                          enum btrace_read_type type);
1007
1008     /* Stop trace recording.  */
1009     void (*to_stop_recording) (struct target_ops *);
1010
1011     /* Print information about the recording.  */
1012     void (*to_info_record) (struct target_ops *);
1013
1014     /* Save the recorded execution trace into a file.  */
1015     void (*to_save_record) (struct target_ops *, const char *filename);
1016
1017     /* Delete the recorded execution trace from the current position onwards.  */
1018     void (*to_delete_record) (struct target_ops *);
1019
1020     /* Query if the record target is currently replaying.  */
1021     int (*to_record_is_replaying) (struct target_ops *);
1022
1023     /* Go to the begin of the execution trace.  */
1024     void (*to_goto_record_begin) (struct target_ops *);
1025
1026     /* Go to the end of the execution trace.  */
1027     void (*to_goto_record_end) (struct target_ops *);
1028
1029     /* Go to a specific location in the recorded execution trace.  */
1030     void (*to_goto_record) (struct target_ops *, ULONGEST insn);
1031
1032     /* Disassemble SIZE instructions in the recorded execution trace from
1033        the current position.
1034        If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1035        disassemble SIZE succeeding instructions.  */
1036     void (*to_insn_history) (struct target_ops *, int size, int flags);
1037
1038     /* Disassemble SIZE instructions in the recorded execution trace around
1039        FROM.
1040        If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1041        disassemble SIZE instructions after FROM.  */
1042     void (*to_insn_history_from) (struct target_ops *,
1043                                   ULONGEST from, int size, int flags);
1044
1045     /* Disassemble a section of the recorded execution trace from instruction
1046        BEGIN (inclusive) to instruction END (inclusive).  */
1047     void (*to_insn_history_range) (struct target_ops *,
1048                                    ULONGEST begin, ULONGEST end, int flags);
1049
1050     /* Print a function trace of the recorded execution trace.
1051        If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1052        succeeding functions.  */
1053     void (*to_call_history) (struct target_ops *, int size, int flags);
1054
1055     /* Print a function trace of the recorded execution trace starting
1056        at function FROM.
1057        If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1058        SIZE functions after FROM.  */
1059     void (*to_call_history_from) (struct target_ops *,
1060                                   ULONGEST begin, int size, int flags);
1061
1062     /* Print a function trace of an execution trace section from function BEGIN
1063        (inclusive) to function END (inclusive).  */
1064     void (*to_call_history_range) (struct target_ops *,
1065                                    ULONGEST begin, ULONGEST end, int flags);
1066
1067     /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1068        non-empty annex.  */
1069     int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1070       TARGET_DEFAULT_RETURN (0);
1071
1072     /* Those unwinders are tried before any other arch unwinders.  Use NULL if
1073        it is not used.  */
1074     const struct frame_unwind *to_get_unwinder;
1075     const struct frame_unwind *to_get_tailcall_unwinder;
1076
1077     /* Return the number of bytes by which the PC needs to be decremented
1078        after executing a breakpoint instruction.
1079        Defaults to gdbarch_decr_pc_after_break (GDBARCH).  */
1080     CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1081                                          struct gdbarch *gdbarch);
1082
1083     int to_magic;
1084     /* Need sub-structure for target machine related rather than comm related?
1085      */
1086   };
1087
1088 /* Magic number for checking ops size.  If a struct doesn't end with this
1089    number, somebody changed the declaration but didn't change all the
1090    places that initialize one.  */
1091
1092 #define OPS_MAGIC       3840
1093
1094 /* The ops structure for our "current" target process.  This should
1095    never be NULL.  If there is no target, it points to the dummy_target.  */
1096
1097 extern struct target_ops current_target;
1098
1099 /* Define easy words for doing these operations on our current target.  */
1100
1101 #define target_shortname        (current_target.to_shortname)
1102 #define target_longname         (current_target.to_longname)
1103
1104 /* Does whatever cleanup is required for a target that we are no
1105    longer going to be calling.  This routine is automatically always
1106    called after popping the target off the target stack - the target's
1107    own methods are no longer available through the target vector.
1108    Closing file descriptors and freeing all memory allocated memory are
1109    typical things it should do.  */
1110
1111 void target_close (struct target_ops *targ);
1112
1113 /* Attaches to a process on the target side.  Arguments are as passed
1114    to the `attach' command by the user.  This routine can be called
1115    when the target is not on the target-stack, if the target_can_run
1116    routine returns 1; in that case, it must push itself onto the stack.
1117    Upon exit, the target should be ready for normal operations, and
1118    should be ready to deliver the status of the process immediately
1119    (without waiting) to an upcoming target_wait call.  */
1120
1121 void target_attach (char *, int);
1122
1123 /* Some targets don't generate traps when attaching to the inferior,
1124    or their target_attach implementation takes care of the waiting.
1125    These targets must set to_attach_no_wait.  */
1126
1127 #define target_attach_no_wait \
1128      (current_target.to_attach_no_wait)
1129
1130 /* The target_attach operation places a process under debugger control,
1131    and stops the process.
1132
1133    This operation provides a target-specific hook that allows the
1134    necessary bookkeeping to be performed after an attach completes.  */
1135 #define target_post_attach(pid) \
1136      (*current_target.to_post_attach) (&current_target, pid)
1137
1138 /* Takes a program previously attached to and detaches it.
1139    The program may resume execution (some targets do, some don't) and will
1140    no longer stop on signals, etc.  We better not have left any breakpoints
1141    in the program or it'll die when it hits one.  ARGS is arguments
1142    typed by the user (e.g. a signal to send the process).  FROM_TTY
1143    says whether to be verbose or not.  */
1144
1145 extern void target_detach (const char *, int);
1146
1147 /* Disconnect from the current target without resuming it (leaving it
1148    waiting for a debugger).  */
1149
1150 extern void target_disconnect (char *, int);
1151
1152 /* Resume execution of the target process PTID (or a group of
1153    threads).  STEP says whether to single-step or to run free; SIGGNAL
1154    is the signal to be given to the target, or GDB_SIGNAL_0 for no
1155    signal.  The caller may not pass GDB_SIGNAL_DEFAULT.  A specific
1156    PTID means `step/resume only this process id'.  A wildcard PTID
1157    (all threads, or all threads of process) means `step/resume
1158    INFERIOR_PTID, and let other threads (for which the wildcard PTID
1159    matches) resume with their 'thread->suspend.stop_signal' signal
1160    (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1161    if in "no pass" state.  */
1162
1163 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1164
1165 /* Wait for process pid to do something.  PTID = -1 to wait for any
1166    pid to do something.  Return pid of child, or -1 in case of error;
1167    store status through argument pointer STATUS.  Note that it is
1168    _NOT_ OK to throw_exception() out of target_wait() without popping
1169    the debugging target from the stack; GDB isn't prepared to get back
1170    to the prompt with a debugging target but without the frame cache,
1171    stop_pc, etc., set up.  OPTIONS is a bitwise OR of TARGET_W*
1172    options.  */
1173
1174 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1175                            int options);
1176
1177 /* Fetch at least register REGNO, or all regs if regno == -1.  No result.  */
1178
1179 extern void target_fetch_registers (struct regcache *regcache, int regno);
1180
1181 /* Store at least register REGNO, or all regs if REGNO == -1.
1182    It can store as many registers as it wants to, so target_prepare_to_store
1183    must have been previously called.  Calls error() if there are problems.  */
1184
1185 extern void target_store_registers (struct regcache *regcache, int regs);
1186
1187 /* Get ready to modify the registers array.  On machines which store
1188    individual registers, this doesn't need to do anything.  On machines
1189    which store all the registers in one fell swoop, this makes sure
1190    that REGISTERS contains all the registers from the program being
1191    debugged.  */
1192
1193 #define target_prepare_to_store(regcache)       \
1194      (*current_target.to_prepare_to_store) (&current_target, regcache)
1195
1196 /* Determine current address space of thread PTID.  */
1197
1198 struct address_space *target_thread_address_space (ptid_t);
1199
1200 /* Implement the "info proc" command.  This returns one if the request
1201    was handled, and zero otherwise.  It can also throw an exception if
1202    an error was encountered while attempting to handle the
1203    request.  */
1204
1205 int target_info_proc (char *, enum info_proc_what);
1206
1207 /* Returns true if this target can debug multiple processes
1208    simultaneously.  */
1209
1210 #define target_supports_multi_process() \
1211      (*current_target.to_supports_multi_process) (&current_target)
1212
1213 /* Returns true if this target can disable address space randomization.  */
1214
1215 int target_supports_disable_randomization (void);
1216
1217 /* Returns true if this target can enable and disable tracepoints
1218    while a trace experiment is running.  */
1219
1220 #define target_supports_enable_disable_tracepoint() \
1221   (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1222
1223 #define target_supports_string_tracing() \
1224   (*current_target.to_supports_string_tracing) (&current_target)
1225
1226 /* Returns true if this target can handle breakpoint conditions
1227    on its end.  */
1228
1229 #define target_supports_evaluation_of_breakpoint_conditions() \
1230   (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1231
1232 /* Returns true if this target can handle breakpoint commands
1233    on its end.  */
1234
1235 #define target_can_run_breakpoint_commands() \
1236   (*current_target.to_can_run_breakpoint_commands) (&current_target)
1237
1238 extern int target_read_string (CORE_ADDR, char **, int, int *);
1239
1240 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1241                                ssize_t len);
1242
1243 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1244                                    ssize_t len);
1245
1246 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1247
1248 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1249
1250 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1251                                 ssize_t len);
1252
1253 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1254                                     ssize_t len);
1255
1256 /* Fetches the target's memory map.  If one is found it is sorted
1257    and returned, after some consistency checking.  Otherwise, NULL
1258    is returned.  */
1259 VEC(mem_region_s) *target_memory_map (void);
1260
1261 /* Erase the specified flash region.  */
1262 void target_flash_erase (ULONGEST address, LONGEST length);
1263
1264 /* Finish a sequence of flash operations.  */
1265 void target_flash_done (void);
1266
1267 /* Describes a request for a memory write operation.  */
1268 struct memory_write_request
1269   {
1270     /* Begining address that must be written.  */
1271     ULONGEST begin;
1272     /* Past-the-end address.  */
1273     ULONGEST end;
1274     /* The data to write.  */
1275     gdb_byte *data;
1276     /* A callback baton for progress reporting for this request.  */
1277     void *baton;
1278   };
1279 typedef struct memory_write_request memory_write_request_s;
1280 DEF_VEC_O(memory_write_request_s);
1281
1282 /* Enumeration specifying different flash preservation behaviour.  */
1283 enum flash_preserve_mode
1284   {
1285     flash_preserve,
1286     flash_discard
1287   };
1288
1289 /* Write several memory blocks at once.  This version can be more
1290    efficient than making several calls to target_write_memory, in
1291    particular because it can optimize accesses to flash memory.
1292
1293    Moreover, this is currently the only memory access function in gdb
1294    that supports writing to flash memory, and it should be used for
1295    all cases where access to flash memory is desirable.
1296
1297    REQUESTS is the vector (see vec.h) of memory_write_request.
1298    PRESERVE_FLASH_P indicates what to do with blocks which must be
1299      erased, but not completely rewritten.
1300    PROGRESS_CB is a function that will be periodically called to provide
1301      feedback to user.  It will be called with the baton corresponding
1302      to the request currently being written.  It may also be called
1303      with a NULL baton, when preserved flash sectors are being rewritten.
1304
1305    The function returns 0 on success, and error otherwise.  */
1306 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1307                                 enum flash_preserve_mode preserve_flash_p,
1308                                 void (*progress_cb) (ULONGEST, void *));
1309
1310 /* Print a line about the current target.  */
1311
1312 #define target_files_info()     \
1313      (*current_target.to_files_info) (&current_target)
1314
1315 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1316    the target machine.  Returns 0 for success, and returns non-zero or
1317    throws an error (with a detailed failure reason error code and
1318    message) otherwise.  */
1319
1320 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1321                                      struct bp_target_info *bp_tgt);
1322
1323 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1324    machine.  Result is 0 for success, non-zero for error.  */
1325
1326 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1327                                      struct bp_target_info *bp_tgt);
1328
1329 /* Initialize the terminal settings we record for the inferior,
1330    before we actually run the inferior.  */
1331
1332 #define target_terminal_init() \
1333      (*current_target.to_terminal_init) (&current_target)
1334
1335 /* Put the inferior's terminal settings into effect.
1336    This is preparation for starting or resuming the inferior.  */
1337
1338 extern void target_terminal_inferior (void);
1339
1340 /* Put some of our terminal settings into effect,
1341    enough to get proper results from our output,
1342    but do not change into or out of RAW mode
1343    so that no input is discarded.
1344
1345    After doing this, either terminal_ours or terminal_inferior
1346    should be called to get back to a normal state of affairs.  */
1347
1348 #define target_terminal_ours_for_output() \
1349      (*current_target.to_terminal_ours_for_output) (&current_target)
1350
1351 /* Put our terminal settings into effect.
1352    First record the inferior's terminal settings
1353    so they can be restored properly later.  */
1354
1355 #define target_terminal_ours() \
1356      (*current_target.to_terminal_ours) (&current_target)
1357
1358 /* Save our terminal settings.
1359    This is called from TUI after entering or leaving the curses
1360    mode.  Since curses modifies our terminal this call is here
1361    to take this change into account.  */
1362
1363 #define target_terminal_save_ours() \
1364      (*current_target.to_terminal_save_ours) (&current_target)
1365
1366 /* Print useful information about our terminal status, if such a thing
1367    exists.  */
1368
1369 #define target_terminal_info(arg, from_tty) \
1370      (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1371
1372 /* Kill the inferior process.   Make it go away.  */
1373
1374 extern void target_kill (void);
1375
1376 /* Load an executable file into the target process.  This is expected
1377    to not only bring new code into the target process, but also to
1378    update GDB's symbol tables to match.
1379
1380    ARG contains command-line arguments, to be broken down with
1381    buildargv ().  The first non-switch argument is the filename to
1382    load, FILE; the second is a number (as parsed by strtoul (..., ...,
1383    0)), which is an offset to apply to the load addresses of FILE's
1384    sections.  The target may define switches, or other non-switch
1385    arguments, as it pleases.  */
1386
1387 extern void target_load (char *arg, int from_tty);
1388
1389 /* Start an inferior process and set inferior_ptid to its pid.
1390    EXEC_FILE is the file to run.
1391    ALLARGS is a string containing the arguments to the program.
1392    ENV is the environment vector to pass.  Errors reported with error().
1393    On VxWorks and various standalone systems, we ignore exec_file.  */
1394
1395 void target_create_inferior (char *exec_file, char *args,
1396                              char **env, int from_tty);
1397
1398 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1399    notification of inferior events such as fork and vork immediately
1400    after the inferior is created.  (This because of how gdb gets an
1401    inferior created via invoking a shell to do it.  In such a scenario,
1402    if the shell init file has commands in it, the shell will fork and
1403    exec for each of those commands, and we will see each such fork
1404    event.  Very bad.)
1405
1406    Such targets will supply an appropriate definition for this function.  */
1407
1408 #define target_post_startup_inferior(ptid) \
1409      (*current_target.to_post_startup_inferior) (&current_target, ptid)
1410
1411 /* On some targets, we can catch an inferior fork or vfork event when
1412    it occurs.  These functions insert/remove an already-created
1413    catchpoint for such events.  They return  0 for success, 1 if the
1414    catchpoint type is not supported and -1 for failure.  */
1415
1416 #define target_insert_fork_catchpoint(pid) \
1417      (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1418
1419 #define target_remove_fork_catchpoint(pid) \
1420      (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1421
1422 #define target_insert_vfork_catchpoint(pid) \
1423      (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1424
1425 #define target_remove_vfork_catchpoint(pid) \
1426      (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1427
1428 /* If the inferior forks or vforks, this function will be called at
1429    the next resume in order to perform any bookkeeping and fiddling
1430    necessary to continue debugging either the parent or child, as
1431    requested, and releasing the other.  Information about the fork
1432    or vfork event is available via get_last_target_status ().
1433    This function returns 1 if the inferior should not be resumed
1434    (i.e. there is another event pending).  */
1435
1436 int target_follow_fork (int follow_child, int detach_fork);
1437
1438 /* On some targets, we can catch an inferior exec event when it
1439    occurs.  These functions insert/remove an already-created
1440    catchpoint for such events.  They return  0 for success, 1 if the
1441    catchpoint type is not supported and -1 for failure.  */
1442
1443 #define target_insert_exec_catchpoint(pid) \
1444      (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1445
1446 #define target_remove_exec_catchpoint(pid) \
1447      (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1448
1449 /* Syscall catch.
1450
1451    NEEDED is nonzero if any syscall catch (of any kind) is requested.
1452    If NEEDED is zero, it means the target can disable the mechanism to
1453    catch system calls because there are no more catchpoints of this type.
1454
1455    ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1456    being requested.  In this case, both TABLE_SIZE and TABLE should
1457    be ignored.
1458
1459    TABLE_SIZE is the number of elements in TABLE.  It only matters if
1460    ANY_COUNT is zero.
1461
1462    TABLE is an array of ints, indexed by syscall number.  An element in
1463    this array is nonzero if that syscall should be caught.  This argument
1464    only matters if ANY_COUNT is zero.
1465
1466    Return 0 for success, 1 if syscall catchpoints are not supported or -1
1467    for failure.  */
1468
1469 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1470      (*current_target.to_set_syscall_catchpoint) (&current_target,      \
1471                                                   pid, needed, any_count, \
1472                                                   table_size, table)
1473
1474 /* Returns TRUE if PID has exited.  And, also sets EXIT_STATUS to the
1475    exit code of PID, if any.  */
1476
1477 #define target_has_exited(pid,wait_status,exit_status) \
1478      (*current_target.to_has_exited) (&current_target, \
1479                                       pid,wait_status,exit_status)
1480
1481 /* The debugger has completed a blocking wait() call.  There is now
1482    some process event that must be processed.  This function should
1483    be defined by those targets that require the debugger to perform
1484    cleanup or internal state changes in response to the process event.  */
1485
1486 /* The inferior process has died.  Do what is right.  */
1487
1488 void target_mourn_inferior (void);
1489
1490 /* Does target have enough data to do a run or attach command? */
1491
1492 #define target_can_run(t) \
1493      ((t)->to_can_run) (t)
1494
1495 /* Set list of signals to be handled in the target.
1496
1497    PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1498    (enum gdb_signal).  For every signal whose entry in this array is
1499    non-zero, the target is allowed -but not required- to skip reporting
1500    arrival of the signal to the GDB core by returning from target_wait,
1501    and to pass the signal directly to the inferior instead.
1502
1503    However, if the target is hardware single-stepping a thread that is
1504    about to receive a signal, it needs to be reported in any case, even
1505    if mentioned in a previous target_pass_signals call.   */
1506
1507 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1508
1509 /* Set list of signals the target may pass to the inferior.  This
1510    directly maps to the "handle SIGNAL pass/nopass" setting.
1511
1512    PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1513    number (enum gdb_signal).  For every signal whose entry in this
1514    array is non-zero, the target is allowed to pass the signal to the
1515    inferior.  Signals not present in the array shall be silently
1516    discarded.  This does not influence whether to pass signals to the
1517    inferior as a result of a target_resume call.  This is useful in
1518    scenarios where the target needs to decide whether to pass or not a
1519    signal to the inferior without GDB core involvement, such as for
1520    example, when detaching (as threads may have been suspended with
1521    pending signals not reported to GDB).  */
1522
1523 extern void target_program_signals (int nsig, unsigned char *program_signals);
1524
1525 /* Check to see if a thread is still alive.  */
1526
1527 extern int target_thread_alive (ptid_t ptid);
1528
1529 /* Query for new threads and add them to the thread list.  */
1530
1531 extern void target_find_new_threads (void);
1532
1533 /* Make target stop in a continuable fashion.  (For instance, under
1534    Unix, this should act like SIGSTOP).  This function is normally
1535    used by GUIs to implement a stop button.  */
1536
1537 extern void target_stop (ptid_t ptid);
1538
1539 /* Send the specified COMMAND to the target's monitor
1540    (shell,interpreter) for execution.  The result of the query is
1541    placed in OUTBUF.  */
1542
1543 #define target_rcmd(command, outbuf) \
1544      (*current_target.to_rcmd) (&current_target, command, outbuf)
1545
1546
1547 /* Does the target include all of memory, or only part of it?  This
1548    determines whether we look up the target chain for other parts of
1549    memory if this target can't satisfy a request.  */
1550
1551 extern int target_has_all_memory_1 (void);
1552 #define target_has_all_memory target_has_all_memory_1 ()
1553
1554 /* Does the target include memory?  (Dummy targets don't.)  */
1555
1556 extern int target_has_memory_1 (void);
1557 #define target_has_memory target_has_memory_1 ()
1558
1559 /* Does the target have a stack?  (Exec files don't, VxWorks doesn't, until
1560    we start a process.)  */
1561
1562 extern int target_has_stack_1 (void);
1563 #define target_has_stack target_has_stack_1 ()
1564
1565 /* Does the target have registers?  (Exec files don't.)  */
1566
1567 extern int target_has_registers_1 (void);
1568 #define target_has_registers target_has_registers_1 ()
1569
1570 /* Does the target have execution?  Can we make it jump (through
1571    hoops), or pop its stack a few times?  This means that the current
1572    target is currently executing; for some targets, that's the same as
1573    whether or not the target is capable of execution, but there are
1574    also targets which can be current while not executing.  In that
1575    case this will become true after target_create_inferior or
1576    target_attach.  */
1577
1578 extern int target_has_execution_1 (ptid_t);
1579
1580 /* Like target_has_execution_1, but always passes inferior_ptid.  */
1581
1582 extern int target_has_execution_current (void);
1583
1584 #define target_has_execution target_has_execution_current ()
1585
1586 /* Default implementations for process_stratum targets.  Return true
1587    if there's a selected inferior, false otherwise.  */
1588
1589 extern int default_child_has_all_memory (struct target_ops *ops);
1590 extern int default_child_has_memory (struct target_ops *ops);
1591 extern int default_child_has_stack (struct target_ops *ops);
1592 extern int default_child_has_registers (struct target_ops *ops);
1593 extern int default_child_has_execution (struct target_ops *ops,
1594                                         ptid_t the_ptid);
1595
1596 /* Can the target support the debugger control of thread execution?
1597    Can it lock the thread scheduler?  */
1598
1599 #define target_can_lock_scheduler \
1600      (current_target.to_has_thread_control & tc_schedlock)
1601
1602 /* Should the target enable async mode if it is supported?  Temporary
1603    cludge until async mode is a strict superset of sync mode.  */
1604 extern int target_async_permitted;
1605
1606 /* Can the target support asynchronous execution?  */
1607 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1608
1609 /* Is the target in asynchronous execution mode?  */
1610 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1611
1612 int target_supports_non_stop (void);
1613
1614 /* Put the target in async mode with the specified callback function.  */
1615 #define target_async(CALLBACK,CONTEXT) \
1616      (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1617
1618 #define target_execution_direction() \
1619   (current_target.to_execution_direction (&current_target))
1620
1621 /* Converts a process id to a string.  Usually, the string just contains
1622    `process xyz', but on some systems it may contain
1623    `process xyz thread abc'.  */
1624
1625 extern char *target_pid_to_str (ptid_t ptid);
1626
1627 extern char *normal_pid_to_str (ptid_t ptid);
1628
1629 /* Return a short string describing extra information about PID,
1630    e.g. "sleeping", "runnable", "running on LWP 3".  Null return value
1631    is okay.  */
1632
1633 #define target_extra_thread_info(TP) \
1634      (current_target.to_extra_thread_info (&current_target, TP))
1635
1636 /* Return the thread's name.  A NULL result means that the target
1637    could not determine this thread's name.  */
1638
1639 extern char *target_thread_name (struct thread_info *);
1640
1641 /* Attempts to find the pathname of the executable file
1642    that was run to create a specified process.
1643
1644    The process PID must be stopped when this operation is used.
1645
1646    If the executable file cannot be determined, NULL is returned.
1647
1648    Else, a pointer to a character string containing the pathname
1649    is returned.  This string should be copied into a buffer by
1650    the client if the string will not be immediately used, or if
1651    it must persist.  */
1652
1653 #define target_pid_to_exec_file(pid) \
1654      (current_target.to_pid_to_exec_file) (&current_target, pid)
1655
1656 /* See the to_thread_architecture description in struct target_ops.  */
1657
1658 #define target_thread_architecture(ptid) \
1659      (current_target.to_thread_architecture (&current_target, ptid))
1660
1661 /*
1662  * Iterator function for target memory regions.
1663  * Calls a callback function once for each memory region 'mapped'
1664  * in the child process.  Defined as a simple macro rather than
1665  * as a function macro so that it can be tested for nullity.
1666  */
1667
1668 #define target_find_memory_regions(FUNC, DATA) \
1669      (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1670
1671 /*
1672  * Compose corefile .note section.
1673  */
1674
1675 #define target_make_corefile_notes(BFD, SIZE_P) \
1676      (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1677
1678 /* Bookmark interfaces.  */
1679 #define target_get_bookmark(ARGS, FROM_TTY) \
1680      (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1681
1682 #define target_goto_bookmark(ARG, FROM_TTY) \
1683      (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1684
1685 /* Hardware watchpoint interfaces.  */
1686
1687 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1688    write).  Only the INFERIOR_PTID task is being queried.  */
1689
1690 #define target_stopped_by_watchpoint()          \
1691   ((*current_target.to_stopped_by_watchpoint) (&current_target))
1692
1693 /* Non-zero if we have steppable watchpoints  */
1694
1695 #define target_have_steppable_watchpoint \
1696    (current_target.to_have_steppable_watchpoint)
1697
1698 /* Non-zero if we have continuable watchpoints  */
1699
1700 #define target_have_continuable_watchpoint \
1701    (current_target.to_have_continuable_watchpoint)
1702
1703 /* Provide defaults for hardware watchpoint functions.  */
1704
1705 /* If the *_hw_beakpoint functions have not been defined
1706    elsewhere use the definitions in the target vector.  */
1707
1708 /* Returns non-zero if we can set a hardware watchpoint of type TYPE.  TYPE is
1709    one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1710    bp_hardware_breakpoint.  CNT is the number of such watchpoints used so far
1711    (including this one?).  OTHERTYPE is who knows what...  */
1712
1713 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1714  (*current_target.to_can_use_hw_breakpoint) (&current_target,  \
1715                                              TYPE, CNT, OTHERTYPE);
1716
1717 /* Returns the number of debug registers needed to watch the given
1718    memory region, or zero if not supported.  */
1719
1720 #define target_region_ok_for_hw_watchpoint(addr, len) \
1721     (*current_target.to_region_ok_for_hw_watchpoint) (&current_target,  \
1722                                                       addr, len)
1723
1724
1725 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1726    TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1727    COND is the expression for its condition, or NULL if there's none.
1728    Returns 0 for success, 1 if the watchpoint type is not supported,
1729    -1 for failure.  */
1730
1731 #define target_insert_watchpoint(addr, len, type, cond) \
1732      (*current_target.to_insert_watchpoint) (&current_target,   \
1733                                              addr, len, type, cond)
1734
1735 #define target_remove_watchpoint(addr, len, type, cond) \
1736      (*current_target.to_remove_watchpoint) (&current_target,   \
1737                                              addr, len, type, cond)
1738
1739 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1740    RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1741    or hw_access for an access watchpoint.  Returns 0 for success, 1 if
1742    masked watchpoints are not supported, -1 for failure.  */
1743
1744 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1745
1746 /* Remove a masked watchpoint at ADDR with the mask MASK.
1747    RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1748    or hw_access for an access watchpoint.  Returns 0 for success, non-zero
1749    for failure.  */
1750
1751 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1752
1753 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1754    the target machine.  Returns 0 for success, and returns non-zero or
1755    throws an error (with a detailed failure reason error code and
1756    message) otherwise.  */
1757
1758 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1759      (*current_target.to_insert_hw_breakpoint) (&current_target,        \
1760                                                 gdbarch, bp_tgt)
1761
1762 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1763      (*current_target.to_remove_hw_breakpoint) (&current_target,        \
1764                                                 gdbarch, bp_tgt)
1765
1766 /* Return number of debug registers needed for a ranged breakpoint,
1767    or -1 if ranged breakpoints are not supported.  */
1768
1769 extern int target_ranged_break_num_registers (void);
1770
1771 /* Return non-zero if target knows the data address which triggered this
1772    target_stopped_by_watchpoint, in such case place it to *ADDR_P.  Only the
1773    INFERIOR_PTID task is being queried.  */
1774 #define target_stopped_data_address(target, addr_p) \
1775     (*target.to_stopped_data_address) (target, addr_p)
1776
1777 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1778    LENGTH bytes beginning at START.  */
1779 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1780   (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1781
1782 /* Return non-zero if the target is capable of using hardware to evaluate
1783    the condition expression.  In this case, if the condition is false when
1784    the watched memory location changes, execution may continue without the
1785    debugger being notified.
1786
1787    Due to limitations in the hardware implementation, it may be capable of
1788    avoiding triggering the watchpoint in some cases where the condition
1789    expression is false, but may report some false positives as well.
1790    For this reason, GDB will still evaluate the condition expression when
1791    the watchpoint triggers.  */
1792 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1793   (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1794                                                        addr, len, type, cond)
1795
1796 /* Return number of debug registers needed for a masked watchpoint,
1797    -1 if masked watchpoints are not supported or -2 if the given address
1798    and mask combination cannot be used.  */
1799
1800 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1801
1802 /* Target can execute in reverse?  */
1803 #define target_can_execute_reverse \
1804       current_target.to_can_execute_reverse (&current_target)
1805
1806 extern const struct target_desc *target_read_description (struct target_ops *);
1807
1808 #define target_get_ada_task_ptid(lwp, tid) \
1809      (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1810
1811 /* Utility implementation of searching memory.  */
1812 extern int simple_search_memory (struct target_ops* ops,
1813                                  CORE_ADDR start_addr,
1814                                  ULONGEST search_space_len,
1815                                  const gdb_byte *pattern,
1816                                  ULONGEST pattern_len,
1817                                  CORE_ADDR *found_addrp);
1818
1819 /* Main entry point for searching memory.  */
1820 extern int target_search_memory (CORE_ADDR start_addr,
1821                                  ULONGEST search_space_len,
1822                                  const gdb_byte *pattern,
1823                                  ULONGEST pattern_len,
1824                                  CORE_ADDR *found_addrp);
1825
1826 /* Target file operations.  */
1827
1828 /* Open FILENAME on the target, using FLAGS and MODE.  Return a
1829    target file descriptor, or -1 if an error occurs (and set
1830    *TARGET_ERRNO).  */
1831 extern int target_fileio_open (const char *filename, int flags, int mode,
1832                                int *target_errno);
1833
1834 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1835    Return the number of bytes written, or -1 if an error occurs
1836    (and set *TARGET_ERRNO).  */
1837 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1838                                  ULONGEST offset, int *target_errno);
1839
1840 /* Read up to LEN bytes FD on the target into READ_BUF.
1841    Return the number of bytes read, or -1 if an error occurs
1842    (and set *TARGET_ERRNO).  */
1843 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1844                                 ULONGEST offset, int *target_errno);
1845
1846 /* Close FD on the target.  Return 0, or -1 if an error occurs
1847    (and set *TARGET_ERRNO).  */
1848 extern int target_fileio_close (int fd, int *target_errno);
1849
1850 /* Unlink FILENAME on the target.  Return 0, or -1 if an error
1851    occurs (and set *TARGET_ERRNO).  */
1852 extern int target_fileio_unlink (const char *filename, int *target_errno);
1853
1854 /* Read value of symbolic link FILENAME on the target.  Return a
1855    null-terminated string allocated via xmalloc, or NULL if an error
1856    occurs (and set *TARGET_ERRNO).  */
1857 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1858
1859 /* Read target file FILENAME.  The return value will be -1 if the transfer
1860    fails or is not supported; 0 if the object is empty; or the length
1861    of the object otherwise.  If a positive value is returned, a
1862    sufficiently large buffer will be allocated using xmalloc and
1863    returned in *BUF_P containing the contents of the object.
1864
1865    This method should be used for objects sufficiently small to store
1866    in a single xmalloc'd buffer, when no fixed bound on the object's
1867    size is known in advance.  */
1868 extern LONGEST target_fileio_read_alloc (const char *filename,
1869                                          gdb_byte **buf_p);
1870
1871 /* Read target file FILENAME.  The result is NUL-terminated and
1872    returned as a string, allocated using xmalloc.  If an error occurs
1873    or the transfer is unsupported, NULL is returned.  Empty objects
1874    are returned as allocated but empty strings.  A warning is issued
1875    if the result contains any embedded NUL bytes.  */
1876 extern char *target_fileio_read_stralloc (const char *filename);
1877
1878
1879 /* Tracepoint-related operations.  */
1880
1881 #define target_trace_init() \
1882   (*current_target.to_trace_init) (&current_target)
1883
1884 #define target_download_tracepoint(t) \
1885   (*current_target.to_download_tracepoint) (&current_target, t)
1886
1887 #define target_can_download_tracepoint() \
1888   (*current_target.to_can_download_tracepoint) (&current_target)
1889
1890 #define target_download_trace_state_variable(tsv) \
1891   (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1892
1893 #define target_enable_tracepoint(loc) \
1894   (*current_target.to_enable_tracepoint) (&current_target, loc)
1895
1896 #define target_disable_tracepoint(loc) \
1897   (*current_target.to_disable_tracepoint) (&current_target, loc)
1898
1899 #define target_trace_start() \
1900   (*current_target.to_trace_start) (&current_target)
1901
1902 #define target_trace_set_readonly_regions() \
1903   (*current_target.to_trace_set_readonly_regions) (&current_target)
1904
1905 #define target_get_trace_status(ts) \
1906   (*current_target.to_get_trace_status) (&current_target, ts)
1907
1908 #define target_get_tracepoint_status(tp,utp)            \
1909   (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1910
1911 #define target_trace_stop() \
1912   (*current_target.to_trace_stop) (&current_target)
1913
1914 #define target_trace_find(type,num,addr1,addr2,tpp) \
1915   (*current_target.to_trace_find) (&current_target, \
1916                                    (type), (num), (addr1), (addr2), (tpp))
1917
1918 #define target_get_trace_state_variable_value(tsv,val) \
1919   (*current_target.to_get_trace_state_variable_value) (&current_target, \
1920                                                        (tsv), (val))
1921
1922 #define target_save_trace_data(filename) \
1923   (*current_target.to_save_trace_data) (&current_target, filename)
1924
1925 #define target_upload_tracepoints(utpp) \
1926   (*current_target.to_upload_tracepoints) (&current_target, utpp)
1927
1928 #define target_upload_trace_state_variables(utsvp) \
1929   (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1930
1931 #define target_get_raw_trace_data(buf,offset,len) \
1932   (*current_target.to_get_raw_trace_data) (&current_target,     \
1933                                            (buf), (offset), (len))
1934
1935 #define target_get_min_fast_tracepoint_insn_len() \
1936   (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1937
1938 #define target_set_disconnected_tracing(val) \
1939   (*current_target.to_set_disconnected_tracing) (&current_target, val)
1940
1941 #define target_set_circular_trace_buffer(val)   \
1942   (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1943
1944 #define target_set_trace_buffer_size(val)       \
1945   (*current_target.to_set_trace_buffer_size) (&current_target, val)
1946
1947 #define target_set_trace_notes(user,notes,stopnotes)            \
1948   (*current_target.to_set_trace_notes) (&current_target,        \
1949                                         (user), (notes), (stopnotes))
1950
1951 #define target_get_tib_address(ptid, addr) \
1952   (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1953
1954 #define target_set_permissions() \
1955   (*current_target.to_set_permissions) (&current_target)
1956
1957 #define target_static_tracepoint_marker_at(addr, marker) \
1958   (*current_target.to_static_tracepoint_marker_at) (&current_target,    \
1959                                                     addr, marker)
1960
1961 #define target_static_tracepoint_markers_by_strid(marker_id) \
1962   (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1963                                                            marker_id)
1964
1965 #define target_traceframe_info() \
1966   (*current_target.to_traceframe_info) (&current_target)
1967
1968 #define target_use_agent(use) \
1969   (*current_target.to_use_agent) (&current_target, use)
1970
1971 #define target_can_use_agent() \
1972   (*current_target.to_can_use_agent) (&current_target)
1973
1974 #define target_augmented_libraries_svr4_read() \
1975   (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1976
1977 /* Command logging facility.  */
1978
1979 #define target_log_command(p)                                   \
1980   (*current_target.to_log_command) (&current_target, p)
1981
1982
1983 extern int target_core_of_thread (ptid_t ptid);
1984
1985 /* See to_get_unwinder in struct target_ops.  */
1986 extern const struct frame_unwind *target_get_unwinder (void);
1987
1988 /* See to_get_tailcall_unwinder in struct target_ops.  */
1989 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1990
1991 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1992    the contents of [DATA,DATA+SIZE).  Returns 1 if there's a match, 0
1993    if there's a mismatch, and -1 if an error is encountered while
1994    reading memory.  Throws an error if the functionality is found not
1995    to be supported by the current target.  */
1996 int target_verify_memory (const gdb_byte *data,
1997                           CORE_ADDR memaddr, ULONGEST size);
1998
1999 /* Routines for maintenance of the target structures...
2000
2001    complete_target_initialization: Finalize a target_ops by filling in
2002    any fields needed by the target implementation.
2003
2004    add_target:   Add a target to the list of all possible targets.
2005
2006    push_target:  Make this target the top of the stack of currently used
2007    targets, within its particular stratum of the stack.  Result
2008    is 0 if now atop the stack, nonzero if not on top (maybe
2009    should warn user).
2010
2011    unpush_target: Remove this from the stack of currently used targets,
2012    no matter where it is on the list.  Returns 0 if no
2013    change, 1 if removed from stack.  */
2014
2015 extern void add_target (struct target_ops *);
2016
2017 extern void add_target_with_completer (struct target_ops *t,
2018                                        completer_ftype *completer);
2019
2020 extern void complete_target_initialization (struct target_ops *t);
2021
2022 /* Adds a command ALIAS for target T and marks it deprecated.  This is useful
2023    for maintaining backwards compatibility when renaming targets.  */
2024
2025 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2026
2027 extern void push_target (struct target_ops *);
2028
2029 extern int unpush_target (struct target_ops *);
2030
2031 extern void target_pre_inferior (int);
2032
2033 extern void target_preopen (int);
2034
2035 /* Does whatever cleanup is required to get rid of all pushed targets.  */
2036 extern void pop_all_targets (void);
2037
2038 /* Like pop_all_targets, but pops only targets whose stratum is
2039    strictly above ABOVE_STRATUM.  */
2040 extern void pop_all_targets_above (enum strata above_stratum);
2041
2042 extern int target_is_pushed (struct target_ops *t);
2043
2044 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2045                                                CORE_ADDR offset);
2046
2047 /* Struct target_section maps address ranges to file sections.  It is
2048    mostly used with BFD files, but can be used without (e.g. for handling
2049    raw disks, or files not in formats handled by BFD).  */
2050
2051 struct target_section
2052   {
2053     CORE_ADDR addr;             /* Lowest address in section */
2054     CORE_ADDR endaddr;          /* 1+highest address in section */
2055
2056     struct bfd_section *the_bfd_section;
2057
2058     /* The "owner" of the section.
2059        It can be any unique value.  It is set by add_target_sections
2060        and used by remove_target_sections.
2061        For example, for executables it is a pointer to exec_bfd and
2062        for shlibs it is the so_list pointer.  */
2063     void *owner;
2064   };
2065
2066 /* Holds an array of target sections.  Defined by [SECTIONS..SECTIONS_END[.  */
2067
2068 struct target_section_table
2069 {
2070   struct target_section *sections;
2071   struct target_section *sections_end;
2072 };
2073
2074 /* Return the "section" containing the specified address.  */
2075 struct target_section *target_section_by_addr (struct target_ops *target,
2076                                                CORE_ADDR addr);
2077
2078 /* Return the target section table this target (or the targets
2079    beneath) currently manipulate.  */
2080
2081 extern struct target_section_table *target_get_section_table
2082   (struct target_ops *target);
2083
2084 /* From mem-break.c */
2085
2086 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2087                                      struct bp_target_info *);
2088
2089 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2090                                      struct bp_target_info *);
2091
2092 extern int default_memory_remove_breakpoint (struct gdbarch *,
2093                                              struct bp_target_info *);
2094
2095 extern int default_memory_insert_breakpoint (struct gdbarch *,
2096                                              struct bp_target_info *);
2097
2098
2099 /* From target.c */
2100
2101 extern void initialize_targets (void);
2102
2103 extern void noprocess (void) ATTRIBUTE_NORETURN;
2104
2105 extern void target_require_runnable (void);
2106
2107 extern void find_default_attach (struct target_ops *, char *, int);
2108
2109 extern void find_default_create_inferior (struct target_ops *,
2110                                           char *, char *, char **, int);
2111
2112 extern struct target_ops *find_target_beneath (struct target_ops *);
2113
2114 /* Find the target at STRATUM.  If no target is at that stratum,
2115    return NULL.  */
2116
2117 struct target_ops *find_target_at (enum strata stratum);
2118
2119 /* Read OS data object of type TYPE from the target, and return it in
2120    XML format.  The result is NUL-terminated and returned as a string,
2121    allocated using xmalloc.  If an error occurs or the transfer is
2122    unsupported, NULL is returned.  Empty objects are returned as
2123    allocated but empty strings.  */
2124
2125 extern char *target_get_osdata (const char *type);
2126
2127 \f
2128 /* Stuff that should be shared among the various remote targets.  */
2129
2130 /* Debugging level.  0 is off, and non-zero values mean to print some debug
2131    information (higher values, more information).  */
2132 extern int remote_debug;
2133
2134 /* Speed in bits per second, or -1 which means don't mess with the speed.  */
2135 extern int baud_rate;
2136 /* Timeout limit for response from target.  */
2137 extern int remote_timeout;
2138
2139 \f
2140
2141 /* Set the show memory breakpoints mode to show, and installs a cleanup
2142    to restore it back to the current value.  */
2143 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2144
2145 extern int may_write_registers;
2146 extern int may_write_memory;
2147 extern int may_insert_breakpoints;
2148 extern int may_insert_tracepoints;
2149 extern int may_insert_fast_tracepoints;
2150 extern int may_stop;
2151
2152 extern void update_target_permissions (void);
2153
2154 \f
2155 /* Imported from machine dependent code.  */
2156
2157 /* Blank target vector entries are initialized to target_ignore.  */
2158 void target_ignore (void);
2159
2160 /* See to_supports_btrace in struct target_ops.  */
2161 #define target_supports_btrace() \
2162   (current_target.to_supports_btrace (&current_target))
2163
2164 /* See to_enable_btrace in struct target_ops.  */
2165 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2166
2167 /* See to_disable_btrace in struct target_ops.  */
2168 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2169
2170 /* See to_teardown_btrace in struct target_ops.  */
2171 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2172
2173 /* See to_read_btrace in struct target_ops.  */
2174 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2175                                              struct btrace_target_info *,
2176                                              enum btrace_read_type);
2177
2178 /* See to_stop_recording in struct target_ops.  */
2179 extern void target_stop_recording (void);
2180
2181 /* See to_info_record in struct target_ops.  */
2182 extern void target_info_record (void);
2183
2184 /* See to_save_record in struct target_ops.  */
2185 extern void target_save_record (const char *filename);
2186
2187 /* Query if the target supports deleting the execution log.  */
2188 extern int target_supports_delete_record (void);
2189
2190 /* See to_delete_record in struct target_ops.  */
2191 extern void target_delete_record (void);
2192
2193 /* See to_record_is_replaying in struct target_ops.  */
2194 extern int target_record_is_replaying (void);
2195
2196 /* See to_goto_record_begin in struct target_ops.  */
2197 extern void target_goto_record_begin (void);
2198
2199 /* See to_goto_record_end in struct target_ops.  */
2200 extern void target_goto_record_end (void);
2201
2202 /* See to_goto_record in struct target_ops.  */
2203 extern void target_goto_record (ULONGEST insn);
2204
2205 /* See to_insn_history.  */
2206 extern void target_insn_history (int size, int flags);
2207
2208 /* See to_insn_history_from.  */
2209 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2210
2211 /* See to_insn_history_range.  */
2212 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2213
2214 /* See to_call_history.  */
2215 extern void target_call_history (int size, int flags);
2216
2217 /* See to_call_history_from.  */
2218 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2219
2220 /* See to_call_history_range.  */
2221 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2222
2223 /* See to_decr_pc_after_break.  Start searching for the target at OPS.  */
2224 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2225                                                      struct gdbarch *gdbarch);
2226
2227 /* See to_decr_pc_after_break.  */
2228 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2229
2230 #endif /* !defined (TARGET_H) */