PR record/18691: Fix fails in solib-precsave.exp
[external/binutils.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3    Copyright (C) 1990-2015 Free Software Foundation, Inc.
4
5    Contributed by Cygnus Support.  Written by John Gilmore.
6
7    This file is part of GDB.
8
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind.  */
44
45 /* This include file defines the interface between the main part
46    of the debugger, and the part which is target-specific, or
47    specific to the communications interface between us and the
48    target.
49
50    A TARGET is an interface between the debugger and a particular
51    kind of file or process.  Targets can be STACKED in STRATA,
52    so that more than one target can potentially respond to a request.
53    In particular, memory accesses will walk down the stack of targets
54    until they find a target that is interested in handling that particular
55    address.  STRATA are artificial boundaries on the stack, within
56    which particular kinds of targets live.  Strata exist so that
57    people don't get confused by pushing e.g. a process target and then
58    a file target, and wondering why they can't see the current values
59    of variables any more (the file target is handling them and they
60    never get to the process target).  So when you push a file target,
61    it goes into the file stratum, which is always below the process
62    stratum.  */
63
64 #include "target/target.h"
65 #include "target/resume.h"
66 #include "target/wait.h"
67 #include "target/waitstatus.h"
68 #include "bfd.h"
69 #include "symtab.h"
70 #include "memattr.h"
71 #include "vec.h"
72 #include "gdb_signals.h"
73 #include "btrace.h"
74 #include "command.h"
75
76 enum strata
77   {
78     dummy_stratum,              /* The lowest of the low */
79     file_stratum,               /* Executable files, etc */
80     process_stratum,            /* Executing processes or core dump files */
81     thread_stratum,             /* Executing threads */
82     record_stratum,             /* Support record debugging */
83     arch_stratum                /* Architecture overrides */
84   };
85
86 enum thread_control_capabilities
87   {
88     tc_none = 0,                /* Default: can't control thread execution.  */
89     tc_schedlock = 1,           /* Can lock the thread scheduler.  */
90   };
91
92 /* The structure below stores information about a system call.
93    It is basically used in the "catch syscall" command, and in
94    every function that gives information about a system call.
95    
96    It's also good to mention that its fields represent everything
97    that we currently know about a syscall in GDB.  */
98 struct syscall
99   {
100     /* The syscall number.  */
101     int number;
102
103     /* The syscall name.  */
104     const char *name;
105   };
106
107 /* Return a pretty printed form of target_waitstatus.
108    Space for the result is malloc'd, caller must free.  */
109 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
110
111 /* Return a pretty printed form of TARGET_OPTIONS.
112    Space for the result is malloc'd, caller must free.  */
113 extern char *target_options_to_string (int target_options);
114
115 /* Possible types of events that the inferior handler will have to
116    deal with.  */
117 enum inferior_event_type
118   {
119     /* Process a normal inferior event which will result in target_wait
120        being called.  */
121     INF_REG_EVENT,
122     /* We are called because a timer went off.  */
123     INF_TIMER,
124     /* We are called to do stuff after the inferior stops.  */
125     INF_EXEC_COMPLETE,
126     /* We are called to do some stuff after the inferior stops, but we
127        are expected to reenter the proceed() and
128        handle_inferior_event() functions.  This is used only in case of
129        'step n' like commands.  */
130     INF_EXEC_CONTINUE
131   };
132 \f
133 /* Target objects which can be transfered using target_read,
134    target_write, et cetera.  */
135
136 enum target_object
137 {
138   /* AVR target specific transfer.  See "avr-tdep.c" and "remote.c".  */
139   TARGET_OBJECT_AVR,
140   /* SPU target specific transfer.  See "spu-tdep.c".  */
141   TARGET_OBJECT_SPU,
142   /* Transfer up-to LEN bytes of memory starting at OFFSET.  */
143   TARGET_OBJECT_MEMORY,
144   /* Memory, avoiding GDB's data cache and trusting the executable.
145      Target implementations of to_xfer_partial never need to handle
146      this object, and most callers should not use it.  */
147   TARGET_OBJECT_RAW_MEMORY,
148   /* Memory known to be part of the target's stack.  This is cached even
149      if it is not in a region marked as such, since it is known to be
150      "normal" RAM.  */
151   TARGET_OBJECT_STACK_MEMORY,
152   /* Memory known to be part of the target code.   This is cached even
153      if it is not in a region marked as such.  */
154   TARGET_OBJECT_CODE_MEMORY,
155   /* Kernel Unwind Table.  See "ia64-tdep.c".  */
156   TARGET_OBJECT_UNWIND_TABLE,
157   /* Transfer auxilliary vector.  */
158   TARGET_OBJECT_AUXV,
159   /* StackGhost cookie.  See "sparc-tdep.c".  */
160   TARGET_OBJECT_WCOOKIE,
161   /* Target memory map in XML format.  */
162   TARGET_OBJECT_MEMORY_MAP,
163   /* Flash memory.  This object can be used to write contents to
164      a previously erased flash memory.  Using it without erasing
165      flash can have unexpected results.  Addresses are physical
166      address on target, and not relative to flash start.  */
167   TARGET_OBJECT_FLASH,
168   /* Available target-specific features, e.g. registers and coprocessors.
169      See "target-descriptions.c".  ANNEX should never be empty.  */
170   TARGET_OBJECT_AVAILABLE_FEATURES,
171   /* Currently loaded libraries, in XML format.  */
172   TARGET_OBJECT_LIBRARIES,
173   /* Currently loaded libraries specific for SVR4 systems, in XML format.  */
174   TARGET_OBJECT_LIBRARIES_SVR4,
175   /* Currently loaded libraries specific to AIX systems, in XML format.  */
176   TARGET_OBJECT_LIBRARIES_AIX,
177   /* Get OS specific data.  The ANNEX specifies the type (running
178      processes, etc.).  The data being transfered is expected to follow
179      the DTD specified in features/osdata.dtd.  */
180   TARGET_OBJECT_OSDATA,
181   /* Extra signal info.  Usually the contents of `siginfo_t' on unix
182      platforms.  */
183   TARGET_OBJECT_SIGNAL_INFO,
184   /* The list of threads that are being debugged.  */
185   TARGET_OBJECT_THREADS,
186   /* Collected static trace data.  */
187   TARGET_OBJECT_STATIC_TRACE_DATA,
188   /* The HP-UX registers (those that can be obtained or modified by using
189      the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests).  */
190   TARGET_OBJECT_HPUX_UREGS,
191   /* The HP-UX shared library linkage pointer.  ANNEX should be a string
192      image of the code address whose linkage pointer we are looking for.
193
194      The size of the data transfered is always 8 bytes (the size of an
195      address on ia64).  */
196   TARGET_OBJECT_HPUX_SOLIB_GOT,
197   /* Traceframe info, in XML format.  */
198   TARGET_OBJECT_TRACEFRAME_INFO,
199   /* Load maps for FDPIC systems.  */
200   TARGET_OBJECT_FDPIC,
201   /* Darwin dynamic linker info data.  */
202   TARGET_OBJECT_DARWIN_DYLD_INFO,
203   /* OpenVMS Unwind Information Block.  */
204   TARGET_OBJECT_OPENVMS_UIB,
205   /* Branch trace data, in XML format.  */
206   TARGET_OBJECT_BTRACE,
207   /* Branch trace configuration, in XML format.  */
208   TARGET_OBJECT_BTRACE_CONF,
209   /* The pathname of the executable file that was run to create
210      a specified process.  ANNEX should be a string representation
211      of the process ID of the process in question, in hexadecimal
212      format.  */
213   TARGET_OBJECT_EXEC_FILE,
214   /* Possible future objects: TARGET_OBJECT_FILE, ...  */
215 };
216
217 /* Possible values returned by target_xfer_partial, etc.  */
218
219 enum target_xfer_status
220 {
221   /* Some bytes are transferred.  */
222   TARGET_XFER_OK = 1,
223
224   /* No further transfer is possible.  */
225   TARGET_XFER_EOF = 0,
226
227   /* The piece of the object requested is unavailable.  */
228   TARGET_XFER_UNAVAILABLE = 2,
229
230   /* Generic I/O error.  Note that it's important that this is '-1',
231      as we still have target_xfer-related code returning hardcoded
232      '-1' on error.  */
233   TARGET_XFER_E_IO = -1,
234
235   /* Keep list in sync with target_xfer_status_to_string.  */
236 };
237
238 /* Return the string form of STATUS.  */
239
240 extern const char *
241   target_xfer_status_to_string (enum target_xfer_status status);
242
243 /* Enumeration of the kinds of traceframe searches that a target may
244    be able to perform.  */
245
246 enum trace_find_type
247   {
248     tfind_number,
249     tfind_pc,
250     tfind_tp,
251     tfind_range,
252     tfind_outside,
253   };
254
255 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
256 DEF_VEC_P(static_tracepoint_marker_p);
257
258 typedef enum target_xfer_status
259   target_xfer_partial_ftype (struct target_ops *ops,
260                              enum target_object object,
261                              const char *annex,
262                              gdb_byte *readbuf,
263                              const gdb_byte *writebuf,
264                              ULONGEST offset,
265                              ULONGEST len,
266                              ULONGEST *xfered_len);
267
268 enum target_xfer_status
269   raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
270                            const gdb_byte *writebuf, ULONGEST memaddr,
271                            LONGEST len, ULONGEST *xfered_len);
272
273 /* Request that OPS transfer up to LEN addressable units of the target's
274    OBJECT.  When reading from a memory object, the size of an addressable unit
275    is architecture dependent and can be found using
276    gdbarch_addressable_memory_unit_size.  Otherwise, an addressable unit is 1
277    byte long.  BUF should point to a buffer large enough to hold the read data,
278    taking into account the addressable unit size.  The OFFSET, for a seekable
279    object, specifies the starting point.  The ANNEX can be used to provide
280    additional data-specific information to the target.
281
282    Return the number of addressable units actually transferred, or a negative
283    error code (an 'enum target_xfer_error' value) if the transfer is not
284    supported or otherwise fails.  Return of a positive value less than
285    LEN indicates that no further transfer is possible.  Unlike the raw
286    to_xfer_partial interface, callers of these functions do not need
287    to retry partial transfers.  */
288
289 extern LONGEST target_read (struct target_ops *ops,
290                             enum target_object object,
291                             const char *annex, gdb_byte *buf,
292                             ULONGEST offset, LONGEST len);
293
294 struct memory_read_result
295   {
296     /* First address that was read.  */
297     ULONGEST begin;
298     /* Past-the-end address.  */
299     ULONGEST end;
300     /* The data.  */
301     gdb_byte *data;
302 };
303 typedef struct memory_read_result memory_read_result_s;
304 DEF_VEC_O(memory_read_result_s);
305
306 extern void free_memory_read_result_vector (void *);
307
308 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
309                                                       const ULONGEST offset,
310                                                       const LONGEST len);
311
312 /* Request that OPS transfer up to LEN addressable units from BUF to the
313    target's OBJECT.  When writing to a memory object, the addressable unit
314    size is architecture dependent and can be found using
315    gdbarch_addressable_memory_unit_size.  Otherwise, an addressable unit is 1
316    byte long.  The OFFSET, for a seekable object, specifies the starting point.
317    The ANNEX can be used to provide additional data-specific information to
318    the target.
319
320    Return the number of addressable units actually transferred, or a negative
321    error code (an 'enum target_xfer_status' value) if the transfer is not
322    supported or otherwise fails.  Return of a positive value less than
323    LEN indicates that no further transfer is possible.  Unlike the raw
324    to_xfer_partial interface, callers of these functions do not need to
325    retry partial transfers.  */
326
327 extern LONGEST target_write (struct target_ops *ops,
328                              enum target_object object,
329                              const char *annex, const gdb_byte *buf,
330                              ULONGEST offset, LONGEST len);
331
332 /* Similar to target_write, except that it also calls PROGRESS with
333    the number of bytes written and the opaque BATON after every
334    successful partial write (and before the first write).  This is
335    useful for progress reporting and user interaction while writing
336    data.  To abort the transfer, the progress callback can throw an
337    exception.  */
338
339 LONGEST target_write_with_progress (struct target_ops *ops,
340                                     enum target_object object,
341                                     const char *annex, const gdb_byte *buf,
342                                     ULONGEST offset, LONGEST len,
343                                     void (*progress) (ULONGEST, void *),
344                                     void *baton);
345
346 /* Wrapper to perform a full read of unknown size.  OBJECT/ANNEX will
347    be read using OPS.  The return value will be -1 if the transfer
348    fails or is not supported; 0 if the object is empty; or the length
349    of the object otherwise.  If a positive value is returned, a
350    sufficiently large buffer will be allocated using xmalloc and
351    returned in *BUF_P containing the contents of the object.
352
353    This method should be used for objects sufficiently small to store
354    in a single xmalloc'd buffer, when no fixed bound on the object's
355    size is known in advance.  Don't try to read TARGET_OBJECT_MEMORY
356    through this function.  */
357
358 extern LONGEST target_read_alloc (struct target_ops *ops,
359                                   enum target_object object,
360                                   const char *annex, gdb_byte **buf_p);
361
362 /* Read OBJECT/ANNEX using OPS.  The result is NUL-terminated and
363    returned as a string, allocated using xmalloc.  If an error occurs
364    or the transfer is unsupported, NULL is returned.  Empty objects
365    are returned as allocated but empty strings.  A warning is issued
366    if the result contains any embedded NUL bytes.  */
367
368 extern char *target_read_stralloc (struct target_ops *ops,
369                                    enum target_object object,
370                                    const char *annex);
371
372 /* See target_ops->to_xfer_partial.  */
373 extern target_xfer_partial_ftype target_xfer_partial;
374
375 /* Wrappers to target read/write that perform memory transfers.  They
376    throw an error if the memory transfer fails.
377
378    NOTE: cagney/2003-10-23: The naming schema is lifted from
379    "frame.h".  The parameter order is lifted from get_frame_memory,
380    which in turn lifted it from read_memory.  */
381
382 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
383                                gdb_byte *buf, LONGEST len);
384 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
385                                             CORE_ADDR addr, int len,
386                                             enum bfd_endian byte_order);
387 \f
388 struct thread_info;             /* fwd decl for parameter list below: */
389
390 /* The type of the callback to the to_async method.  */
391
392 typedef void async_callback_ftype (enum inferior_event_type event_type,
393                                    void *context);
394
395 /* Normally target debug printing is purely type-based.  However,
396    sometimes it is necessary to override the debug printing on a
397    per-argument basis.  This macro can be used, attribute-style, to
398    name the target debug printing function for a particular method
399    argument.  FUNC is the name of the function.  The macro's
400    definition is empty because it is only used by the
401    make-target-delegates script.  */
402
403 #define TARGET_DEBUG_PRINTER(FUNC)
404
405 /* These defines are used to mark target_ops methods.  The script
406    make-target-delegates scans these and auto-generates the base
407    method implementations.  There are four macros that can be used:
408    
409    1. TARGET_DEFAULT_IGNORE.  There is no argument.  The base method
410    does nothing.  This is only valid if the method return type is
411    'void'.
412    
413    2. TARGET_DEFAULT_NORETURN.  The argument is a function call, like
414    'tcomplain ()'.  The base method simply makes this call, which is
415    assumed not to return.
416    
417    3. TARGET_DEFAULT_RETURN.  The argument is a C expression.  The
418    base method returns this expression's value.
419    
420    4. TARGET_DEFAULT_FUNC.  The argument is the name of a function.
421    make-target-delegates does not generate a base method in this case,
422    but instead uses the argument function as the base method.  */
423
424 #define TARGET_DEFAULT_IGNORE()
425 #define TARGET_DEFAULT_NORETURN(ARG)
426 #define TARGET_DEFAULT_RETURN(ARG)
427 #define TARGET_DEFAULT_FUNC(ARG)
428
429 struct target_ops
430   {
431     struct target_ops *beneath; /* To the target under this one.  */
432     const char *to_shortname;   /* Name this target type */
433     const char *to_longname;    /* Name for printing */
434     const char *to_doc;         /* Documentation.  Does not include trailing
435                                    newline, and starts with a one-line descrip-
436                                    tion (probably similar to to_longname).  */
437     /* Per-target scratch pad.  */
438     void *to_data;
439     /* The open routine takes the rest of the parameters from the
440        command, and (if successful) pushes a new target onto the
441        stack.  Targets should supply this routine, if only to provide
442        an error message.  */
443     void (*to_open) (const char *, int);
444     /* Old targets with a static target vector provide "to_close".
445        New re-entrant targets provide "to_xclose" and that is expected
446        to xfree everything (including the "struct target_ops").  */
447     void (*to_xclose) (struct target_ops *targ);
448     void (*to_close) (struct target_ops *);
449     /* Attaches to a process on the target side.  Arguments are as
450        passed to the `attach' command by the user.  This routine can
451        be called when the target is not on the target-stack, if the
452        target_can_run routine returns 1; in that case, it must push
453        itself onto the stack.  Upon exit, the target should be ready
454        for normal operations, and should be ready to deliver the
455        status of the process immediately (without waiting) to an
456        upcoming target_wait call.  */
457     void (*to_attach) (struct target_ops *ops, const char *, int);
458     void (*to_post_attach) (struct target_ops *, int)
459       TARGET_DEFAULT_IGNORE ();
460     void (*to_detach) (struct target_ops *ops, const char *, int)
461       TARGET_DEFAULT_IGNORE ();
462     void (*to_disconnect) (struct target_ops *, const char *, int)
463       TARGET_DEFAULT_NORETURN (tcomplain ());
464     void (*to_resume) (struct target_ops *, ptid_t,
465                        int TARGET_DEBUG_PRINTER (target_debug_print_step),
466                        enum gdb_signal)
467       TARGET_DEFAULT_NORETURN (noprocess ());
468     ptid_t (*to_wait) (struct target_ops *,
469                        ptid_t, struct target_waitstatus *,
470                        int TARGET_DEBUG_PRINTER (target_debug_print_options))
471       TARGET_DEFAULT_NORETURN (noprocess ());
472     void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
473       TARGET_DEFAULT_IGNORE ();
474     void (*to_store_registers) (struct target_ops *, struct regcache *, int)
475       TARGET_DEFAULT_NORETURN (noprocess ());
476     void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
477       TARGET_DEFAULT_NORETURN (noprocess ());
478
479     void (*to_files_info) (struct target_ops *)
480       TARGET_DEFAULT_IGNORE ();
481     int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
482                                  struct bp_target_info *)
483       TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
484     int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
485                                  struct bp_target_info *)
486       TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
487
488     /* Returns true if the target stopped because it executed a
489        software breakpoint.  This is necessary for correct background
490        execution / non-stop mode operation, and for correct PC
491        adjustment on targets where the PC needs to be adjusted when a
492        software breakpoint triggers.  In these modes, by the time GDB
493        processes a breakpoint event, the breakpoint may already be
494        done from the target, so GDB needs to be able to tell whether
495        it should ignore the event and whether it should adjust the PC.
496        See adjust_pc_after_break.  */
497     int (*to_stopped_by_sw_breakpoint) (struct target_ops *)
498       TARGET_DEFAULT_RETURN (0);
499     /* Returns true if the above method is supported.  */
500     int (*to_supports_stopped_by_sw_breakpoint) (struct target_ops *)
501       TARGET_DEFAULT_RETURN (0);
502
503     /* Returns true if the target stopped for a hardware breakpoint.
504        Likewise, if the target supports hardware breakpoints, this
505        method is necessary for correct background execution / non-stop
506        mode operation.  Even though hardware breakpoints do not
507        require PC adjustment, GDB needs to be able to tell whether the
508        hardware breakpoint event is a delayed event for a breakpoint
509        that is already gone and should thus be ignored.  */
510     int (*to_stopped_by_hw_breakpoint) (struct target_ops *)
511       TARGET_DEFAULT_RETURN (0);
512     /* Returns true if the above method is supported.  */
513     int (*to_supports_stopped_by_hw_breakpoint) (struct target_ops *)
514       TARGET_DEFAULT_RETURN (0);
515
516     int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
517       TARGET_DEFAULT_RETURN (0);
518     int (*to_ranged_break_num_registers) (struct target_ops *)
519       TARGET_DEFAULT_RETURN (-1);
520     int (*to_insert_hw_breakpoint) (struct target_ops *,
521                                     struct gdbarch *, struct bp_target_info *)
522       TARGET_DEFAULT_RETURN (-1);
523     int (*to_remove_hw_breakpoint) (struct target_ops *,
524                                     struct gdbarch *, struct bp_target_info *)
525       TARGET_DEFAULT_RETURN (-1);
526
527     /* Documentation of what the two routines below are expected to do is
528        provided with the corresponding target_* macros.  */
529     int (*to_remove_watchpoint) (struct target_ops *,
530                                  CORE_ADDR, int, int, struct expression *)
531       TARGET_DEFAULT_RETURN (-1);
532     int (*to_insert_watchpoint) (struct target_ops *,
533                                  CORE_ADDR, int, int, struct expression *)
534       TARGET_DEFAULT_RETURN (-1);
535
536     int (*to_insert_mask_watchpoint) (struct target_ops *,
537                                       CORE_ADDR, CORE_ADDR, int)
538       TARGET_DEFAULT_RETURN (1);
539     int (*to_remove_mask_watchpoint) (struct target_ops *,
540                                       CORE_ADDR, CORE_ADDR, int)
541       TARGET_DEFAULT_RETURN (1);
542     int (*to_stopped_by_watchpoint) (struct target_ops *)
543       TARGET_DEFAULT_RETURN (0);
544     int to_have_steppable_watchpoint;
545     int to_have_continuable_watchpoint;
546     int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
547       TARGET_DEFAULT_RETURN (0);
548     int (*to_watchpoint_addr_within_range) (struct target_ops *,
549                                             CORE_ADDR, CORE_ADDR, int)
550       TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
551
552     /* Documentation of this routine is provided with the corresponding
553        target_* macro.  */
554     int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
555                                            CORE_ADDR, int)
556       TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
557
558     int (*to_can_accel_watchpoint_condition) (struct target_ops *,
559                                               CORE_ADDR, int, int,
560                                               struct expression *)
561       TARGET_DEFAULT_RETURN (0);
562     int (*to_masked_watch_num_registers) (struct target_ops *,
563                                           CORE_ADDR, CORE_ADDR)
564       TARGET_DEFAULT_RETURN (-1);
565     void (*to_terminal_init) (struct target_ops *)
566       TARGET_DEFAULT_IGNORE ();
567     void (*to_terminal_inferior) (struct target_ops *)
568       TARGET_DEFAULT_IGNORE ();
569     void (*to_terminal_ours_for_output) (struct target_ops *)
570       TARGET_DEFAULT_IGNORE ();
571     void (*to_terminal_ours) (struct target_ops *)
572       TARGET_DEFAULT_IGNORE ();
573     void (*to_terminal_info) (struct target_ops *, const char *, int)
574       TARGET_DEFAULT_FUNC (default_terminal_info);
575     void (*to_kill) (struct target_ops *)
576       TARGET_DEFAULT_NORETURN (noprocess ());
577     void (*to_load) (struct target_ops *, const char *, int)
578       TARGET_DEFAULT_NORETURN (tcomplain ());
579     /* Start an inferior process and set inferior_ptid to its pid.
580        EXEC_FILE is the file to run.
581        ALLARGS is a string containing the arguments to the program.
582        ENV is the environment vector to pass.  Errors reported with error().
583        On VxWorks and various standalone systems, we ignore exec_file.  */
584     void (*to_create_inferior) (struct target_ops *, 
585                                 char *, char *, char **, int);
586     void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
587       TARGET_DEFAULT_IGNORE ();
588     int (*to_insert_fork_catchpoint) (struct target_ops *, int)
589       TARGET_DEFAULT_RETURN (1);
590     int (*to_remove_fork_catchpoint) (struct target_ops *, int)
591       TARGET_DEFAULT_RETURN (1);
592     int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
593       TARGET_DEFAULT_RETURN (1);
594     int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
595       TARGET_DEFAULT_RETURN (1);
596     int (*to_follow_fork) (struct target_ops *, int, int)
597       TARGET_DEFAULT_FUNC (default_follow_fork);
598     int (*to_insert_exec_catchpoint) (struct target_ops *, int)
599       TARGET_DEFAULT_RETURN (1);
600     int (*to_remove_exec_catchpoint) (struct target_ops *, int)
601       TARGET_DEFAULT_RETURN (1);
602     int (*to_set_syscall_catchpoint) (struct target_ops *,
603                                       int, int, int, int, int *)
604       TARGET_DEFAULT_RETURN (1);
605     int (*to_has_exited) (struct target_ops *, int, int, int *)
606       TARGET_DEFAULT_RETURN (0);
607     void (*to_mourn_inferior) (struct target_ops *)
608       TARGET_DEFAULT_FUNC (default_mourn_inferior);
609     /* Note that to_can_run is special and can be invoked on an
610        unpushed target.  Targets defining this method must also define
611        to_can_async_p and to_supports_non_stop.  */
612     int (*to_can_run) (struct target_ops *)
613       TARGET_DEFAULT_RETURN (0);
614
615     /* Documentation of this routine is provided with the corresponding
616        target_* macro.  */
617     void (*to_pass_signals) (struct target_ops *, int,
618                              unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
619       TARGET_DEFAULT_IGNORE ();
620
621     /* Documentation of this routine is provided with the
622        corresponding target_* function.  */
623     void (*to_program_signals) (struct target_ops *, int,
624                                 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
625       TARGET_DEFAULT_IGNORE ();
626
627     int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
628       TARGET_DEFAULT_RETURN (0);
629     void (*to_update_thread_list) (struct target_ops *)
630       TARGET_DEFAULT_IGNORE ();
631     char *(*to_pid_to_str) (struct target_ops *, ptid_t)
632       TARGET_DEFAULT_FUNC (default_pid_to_str);
633     char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
634       TARGET_DEFAULT_RETURN (NULL);
635     char *(*to_thread_name) (struct target_ops *, struct thread_info *)
636       TARGET_DEFAULT_RETURN (NULL);
637     void (*to_stop) (struct target_ops *, ptid_t)
638       TARGET_DEFAULT_IGNORE ();
639     void (*to_rcmd) (struct target_ops *,
640                      const char *command, struct ui_file *output)
641       TARGET_DEFAULT_FUNC (default_rcmd);
642     char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
643       TARGET_DEFAULT_RETURN (NULL);
644     void (*to_log_command) (struct target_ops *, const char *)
645       TARGET_DEFAULT_IGNORE ();
646     struct target_section_table *(*to_get_section_table) (struct target_ops *)
647       TARGET_DEFAULT_RETURN (NULL);
648     enum strata to_stratum;
649     int (*to_has_all_memory) (struct target_ops *);
650     int (*to_has_memory) (struct target_ops *);
651     int (*to_has_stack) (struct target_ops *);
652     int (*to_has_registers) (struct target_ops *);
653     int (*to_has_execution) (struct target_ops *, ptid_t);
654     int to_has_thread_control;  /* control thread execution */
655     int to_attach_no_wait;
656     /* This method must be implemented in some situations.  See the
657        comment on 'to_can_run'.  */
658     int (*to_can_async_p) (struct target_ops *)
659       TARGET_DEFAULT_RETURN (0);
660     int (*to_is_async_p) (struct target_ops *)
661       TARGET_DEFAULT_RETURN (0);
662     void (*to_async) (struct target_ops *, int)
663       TARGET_DEFAULT_NORETURN (tcomplain ());
664     /* This method must be implemented in some situations.  See the
665        comment on 'to_can_run'.  */
666     int (*to_supports_non_stop) (struct target_ops *)
667       TARGET_DEFAULT_RETURN (0);
668     /* find_memory_regions support method for gcore */
669     int (*to_find_memory_regions) (struct target_ops *,
670                                    find_memory_region_ftype func, void *data)
671       TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
672     /* make_corefile_notes support method for gcore */
673     char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
674       TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
675     /* get_bookmark support method for bookmarks */
676     gdb_byte * (*to_get_bookmark) (struct target_ops *, const char *, int)
677       TARGET_DEFAULT_NORETURN (tcomplain ());
678     /* goto_bookmark support method for bookmarks */
679     void (*to_goto_bookmark) (struct target_ops *, const gdb_byte *, int)
680       TARGET_DEFAULT_NORETURN (tcomplain ());
681     /* Return the thread-local address at OFFSET in the
682        thread-local storage for the thread PTID and the shared library
683        or executable file given by OBJFILE.  If that block of
684        thread-local storage hasn't been allocated yet, this function
685        may return an error.  LOAD_MODULE_ADDR may be zero for statically
686        linked multithreaded inferiors.  */
687     CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
688                                               ptid_t ptid,
689                                               CORE_ADDR load_module_addr,
690                                               CORE_ADDR offset)
691       TARGET_DEFAULT_NORETURN (generic_tls_error ());
692
693     /* Request that OPS transfer up to LEN 8-bit bytes of the target's
694        OBJECT.  The OFFSET, for a seekable object, specifies the
695        starting point.  The ANNEX can be used to provide additional
696        data-specific information to the target.
697
698        Return the transferred status, error or OK (an
699        'enum target_xfer_status' value).  Save the number of bytes
700        actually transferred in *XFERED_LEN if transfer is successful
701        (TARGET_XFER_OK) or the number unavailable bytes if the requested
702        data is unavailable (TARGET_XFER_UNAVAILABLE).  *XFERED_LEN
703        smaller than LEN does not indicate the end of the object, only
704        the end of the transfer; higher level code should continue
705        transferring if desired.  This is handled in target.c.
706
707        The interface does not support a "retry" mechanism.  Instead it
708        assumes that at least one byte will be transfered on each
709        successful call.
710
711        NOTE: cagney/2003-10-17: The current interface can lead to
712        fragmented transfers.  Lower target levels should not implement
713        hacks, such as enlarging the transfer, in an attempt to
714        compensate for this.  Instead, the target stack should be
715        extended so that it implements supply/collect methods and a
716        look-aside object cache.  With that available, the lowest
717        target can safely and freely "push" data up the stack.
718
719        See target_read and target_write for more information.  One,
720        and only one, of readbuf or writebuf must be non-NULL.  */
721
722     enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
723                                                 enum target_object object,
724                                                 const char *annex,
725                                                 gdb_byte *readbuf,
726                                                 const gdb_byte *writebuf,
727                                                 ULONGEST offset, ULONGEST len,
728                                                 ULONGEST *xfered_len)
729       TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
730
731     /* Returns the memory map for the target.  A return value of NULL
732        means that no memory map is available.  If a memory address
733        does not fall within any returned regions, it's assumed to be
734        RAM.  The returned memory regions should not overlap.
735
736        The order of regions does not matter; target_memory_map will
737        sort regions by starting address.  For that reason, this
738        function should not be called directly except via
739        target_memory_map.
740
741        This method should not cache data; if the memory map could
742        change unexpectedly, it should be invalidated, and higher
743        layers will re-fetch it.  */
744     VEC(mem_region_s) *(*to_memory_map) (struct target_ops *)
745       TARGET_DEFAULT_RETURN (NULL);
746
747     /* Erases the region of flash memory starting at ADDRESS, of
748        length LENGTH.
749
750        Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
751        on flash block boundaries, as reported by 'to_memory_map'.  */
752     void (*to_flash_erase) (struct target_ops *,
753                            ULONGEST address, LONGEST length)
754       TARGET_DEFAULT_NORETURN (tcomplain ());
755
756     /* Finishes a flash memory write sequence.  After this operation
757        all flash memory should be available for writing and the result
758        of reading from areas written by 'to_flash_write' should be
759        equal to what was written.  */
760     void (*to_flash_done) (struct target_ops *)
761       TARGET_DEFAULT_NORETURN (tcomplain ());
762
763     /* Describe the architecture-specific features of this target.  If
764        OPS doesn't have a description, this should delegate to the
765        "beneath" target.  Returns the description found, or NULL if no
766        description was available.  */
767     const struct target_desc *(*to_read_description) (struct target_ops *ops)
768          TARGET_DEFAULT_RETURN (NULL);
769
770     /* Build the PTID of the thread on which a given task is running,
771        based on LWP and THREAD.  These values are extracted from the
772        task Private_Data section of the Ada Task Control Block, and
773        their interpretation depends on the target.  */
774     ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
775                                     long lwp, long thread)
776       TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
777
778     /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
779        Return 0 if *READPTR is already at the end of the buffer.
780        Return -1 if there is insufficient buffer for a whole entry.
781        Return 1 if an entry was read into *TYPEP and *VALP.  */
782     int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
783                          gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
784       TARGET_DEFAULT_FUNC (default_auxv_parse);
785
786     /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
787        sequence of bytes in PATTERN with length PATTERN_LEN.
788
789        The result is 1 if found, 0 if not found, and -1 if there was an error
790        requiring halting of the search (e.g. memory read error).
791        If the pattern is found the address is recorded in FOUND_ADDRP.  */
792     int (*to_search_memory) (struct target_ops *ops,
793                              CORE_ADDR start_addr, ULONGEST search_space_len,
794                              const gdb_byte *pattern, ULONGEST pattern_len,
795                              CORE_ADDR *found_addrp)
796       TARGET_DEFAULT_FUNC (default_search_memory);
797
798     /* Can target execute in reverse?  */
799     int (*to_can_execute_reverse) (struct target_ops *)
800       TARGET_DEFAULT_RETURN (0);
801
802     /* The direction the target is currently executing.  Must be
803        implemented on targets that support reverse execution and async
804        mode.  The default simply returns forward execution.  */
805     enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
806       TARGET_DEFAULT_FUNC (default_execution_direction);
807
808     /* Does this target support debugging multiple processes
809        simultaneously?  */
810     int (*to_supports_multi_process) (struct target_ops *)
811       TARGET_DEFAULT_RETURN (0);
812
813     /* Does this target support enabling and disabling tracepoints while a trace
814        experiment is running?  */
815     int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
816       TARGET_DEFAULT_RETURN (0);
817
818     /* Does this target support disabling address space randomization?  */
819     int (*to_supports_disable_randomization) (struct target_ops *);
820
821     /* Does this target support the tracenz bytecode for string collection?  */
822     int (*to_supports_string_tracing) (struct target_ops *)
823       TARGET_DEFAULT_RETURN (0);
824
825     /* Does this target support evaluation of breakpoint conditions on its
826        end?  */
827     int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
828       TARGET_DEFAULT_RETURN (0);
829
830     /* Does this target support evaluation of breakpoint commands on its
831        end?  */
832     int (*to_can_run_breakpoint_commands) (struct target_ops *)
833       TARGET_DEFAULT_RETURN (0);
834
835     /* Determine current architecture of thread PTID.
836
837        The target is supposed to determine the architecture of the code where
838        the target is currently stopped at (on Cell, if a target is in spu_run,
839        to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
840        This is architecture used to perform decr_pc_after_break adjustment,
841        and also determines the frame architecture of the innermost frame.
842        ptrace operations need to operate according to target_gdbarch ().
843
844        The default implementation always returns target_gdbarch ().  */
845     struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
846       TARGET_DEFAULT_FUNC (default_thread_architecture);
847
848     /* Determine current address space of thread PTID.
849
850        The default implementation always returns the inferior's
851        address space.  */
852     struct address_space *(*to_thread_address_space) (struct target_ops *,
853                                                       ptid_t)
854       TARGET_DEFAULT_FUNC (default_thread_address_space);
855
856     /* Target file operations.  */
857
858     /* Return nonzero if the filesystem seen by the current inferior
859        is the local filesystem, zero otherwise.  */
860     int (*to_filesystem_is_local) (struct target_ops *)
861       TARGET_DEFAULT_RETURN (1);
862
863     /* Open FILENAME on the target, in the filesystem as seen by INF,
864        using FLAGS and MODE.  If INF is NULL, use the filesystem seen
865        by the debugger (GDB or, for remote targets, the remote stub).
866        Return a target file descriptor, or -1 if an error occurs (and
867        set *TARGET_ERRNO).  */
868     int (*to_fileio_open) (struct target_ops *,
869                            struct inferior *inf, const char *filename,
870                            int flags, int mode, int *target_errno);
871
872     /* Write up to LEN bytes from WRITE_BUF to FD on the target.
873        Return the number of bytes written, or -1 if an error occurs
874        (and set *TARGET_ERRNO).  */
875     int (*to_fileio_pwrite) (struct target_ops *,
876                              int fd, const gdb_byte *write_buf, int len,
877                              ULONGEST offset, int *target_errno);
878
879     /* Read up to LEN bytes FD on the target into READ_BUF.
880        Return the number of bytes read, or -1 if an error occurs
881        (and set *TARGET_ERRNO).  */
882     int (*to_fileio_pread) (struct target_ops *,
883                             int fd, gdb_byte *read_buf, int len,
884                             ULONGEST offset, int *target_errno);
885
886     /* Get information about the file opened as FD and put it in
887        SB.  Return 0 on success, or -1 if an error occurs (and set
888        *TARGET_ERRNO).  */
889     int (*to_fileio_fstat) (struct target_ops *,
890                             int fd, struct stat *sb, int *target_errno);
891
892     /* Close FD on the target.  Return 0, or -1 if an error occurs
893        (and set *TARGET_ERRNO).  */
894     int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
895
896     /* Unlink FILENAME on the target, in the filesystem as seen by
897        INF.  If INF is NULL, use the filesystem seen by the debugger
898        (GDB or, for remote targets, the remote stub).  Return 0, or
899        -1 if an error occurs (and set *TARGET_ERRNO).  */
900     int (*to_fileio_unlink) (struct target_ops *,
901                              struct inferior *inf,
902                              const char *filename,
903                              int *target_errno);
904
905     /* Read value of symbolic link FILENAME on the target, in the
906        filesystem as seen by INF.  If INF is NULL, use the filesystem
907        seen by the debugger (GDB or, for remote targets, the remote
908        stub).  Return a null-terminated string allocated via xmalloc,
909        or NULL if an error occurs (and set *TARGET_ERRNO).  */
910     char *(*to_fileio_readlink) (struct target_ops *,
911                                  struct inferior *inf,
912                                  const char *filename,
913                                  int *target_errno);
914
915
916     /* Implement the "info proc" command.  */
917     void (*to_info_proc) (struct target_ops *, const char *,
918                           enum info_proc_what);
919
920     /* Tracepoint-related operations.  */
921
922     /* Prepare the target for a tracing run.  */
923     void (*to_trace_init) (struct target_ops *)
924       TARGET_DEFAULT_NORETURN (tcomplain ());
925
926     /* Send full details of a tracepoint location to the target.  */
927     void (*to_download_tracepoint) (struct target_ops *,
928                                     struct bp_location *location)
929       TARGET_DEFAULT_NORETURN (tcomplain ());
930
931     /* Is the target able to download tracepoint locations in current
932        state?  */
933     int (*to_can_download_tracepoint) (struct target_ops *)
934       TARGET_DEFAULT_RETURN (0);
935
936     /* Send full details of a trace state variable to the target.  */
937     void (*to_download_trace_state_variable) (struct target_ops *,
938                                               struct trace_state_variable *tsv)
939       TARGET_DEFAULT_NORETURN (tcomplain ());
940
941     /* Enable a tracepoint on the target.  */
942     void (*to_enable_tracepoint) (struct target_ops *,
943                                   struct bp_location *location)
944       TARGET_DEFAULT_NORETURN (tcomplain ());
945
946     /* Disable a tracepoint on the target.  */
947     void (*to_disable_tracepoint) (struct target_ops *,
948                                    struct bp_location *location)
949       TARGET_DEFAULT_NORETURN (tcomplain ());
950
951     /* Inform the target info of memory regions that are readonly
952        (such as text sections), and so it should return data from
953        those rather than look in the trace buffer.  */
954     void (*to_trace_set_readonly_regions) (struct target_ops *)
955       TARGET_DEFAULT_NORETURN (tcomplain ());
956
957     /* Start a trace run.  */
958     void (*to_trace_start) (struct target_ops *)
959       TARGET_DEFAULT_NORETURN (tcomplain ());
960
961     /* Get the current status of a tracing run.  */
962     int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
963       TARGET_DEFAULT_RETURN (-1);
964
965     void (*to_get_tracepoint_status) (struct target_ops *,
966                                       struct breakpoint *tp,
967                                       struct uploaded_tp *utp)
968       TARGET_DEFAULT_NORETURN (tcomplain ());
969
970     /* Stop a trace run.  */
971     void (*to_trace_stop) (struct target_ops *)
972       TARGET_DEFAULT_NORETURN (tcomplain ());
973
974    /* Ask the target to find a trace frame of the given type TYPE,
975       using NUM, ADDR1, and ADDR2 as search parameters.  Returns the
976       number of the trace frame, and also the tracepoint number at
977       TPP.  If no trace frame matches, return -1.  May throw if the
978       operation fails.  */
979     int (*to_trace_find) (struct target_ops *,
980                           enum trace_find_type type, int num,
981                           CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
982       TARGET_DEFAULT_RETURN (-1);
983
984     /* Get the value of the trace state variable number TSV, returning
985        1 if the value is known and writing the value itself into the
986        location pointed to by VAL, else returning 0.  */
987     int (*to_get_trace_state_variable_value) (struct target_ops *,
988                                               int tsv, LONGEST *val)
989       TARGET_DEFAULT_RETURN (0);
990
991     int (*to_save_trace_data) (struct target_ops *, const char *filename)
992       TARGET_DEFAULT_NORETURN (tcomplain ());
993
994     int (*to_upload_tracepoints) (struct target_ops *,
995                                   struct uploaded_tp **utpp)
996       TARGET_DEFAULT_RETURN (0);
997
998     int (*to_upload_trace_state_variables) (struct target_ops *,
999                                             struct uploaded_tsv **utsvp)
1000       TARGET_DEFAULT_RETURN (0);
1001
1002     LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
1003                                       ULONGEST offset, LONGEST len)
1004       TARGET_DEFAULT_NORETURN (tcomplain ());
1005
1006     /* Get the minimum length of instruction on which a fast tracepoint
1007        may be set on the target.  If this operation is unsupported,
1008        return -1.  If for some reason the minimum length cannot be
1009        determined, return 0.  */
1010     int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
1011       TARGET_DEFAULT_RETURN (-1);
1012
1013     /* Set the target's tracing behavior in response to unexpected
1014        disconnection - set VAL to 1 to keep tracing, 0 to stop.  */
1015     void (*to_set_disconnected_tracing) (struct target_ops *, int val)
1016       TARGET_DEFAULT_IGNORE ();
1017     void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
1018       TARGET_DEFAULT_IGNORE ();
1019     /* Set the size of trace buffer in the target.  */
1020     void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
1021       TARGET_DEFAULT_IGNORE ();
1022
1023     /* Add/change textual notes about the trace run, returning 1 if
1024        successful, 0 otherwise.  */
1025     int (*to_set_trace_notes) (struct target_ops *,
1026                                const char *user, const char *notes,
1027                                const char *stopnotes)
1028       TARGET_DEFAULT_RETURN (0);
1029
1030     /* Return the processor core that thread PTID was last seen on.
1031        This information is updated only when:
1032        - update_thread_list is called
1033        - thread stops
1034        If the core cannot be determined -- either for the specified
1035        thread, or right now, or in this debug session, or for this
1036        target -- return -1.  */
1037     int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
1038       TARGET_DEFAULT_RETURN (-1);
1039
1040     /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1041        matches the contents of [DATA,DATA+SIZE).  Returns 1 if there's
1042        a match, 0 if there's a mismatch, and -1 if an error is
1043        encountered while reading memory.  */
1044     int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
1045                              CORE_ADDR memaddr, ULONGEST size)
1046       TARGET_DEFAULT_FUNC (default_verify_memory);
1047
1048     /* Return the address of the start of the Thread Information Block
1049        a Windows OS specific feature.  */
1050     int (*to_get_tib_address) (struct target_ops *,
1051                                ptid_t ptid, CORE_ADDR *addr)
1052       TARGET_DEFAULT_NORETURN (tcomplain ());
1053
1054     /* Send the new settings of write permission variables.  */
1055     void (*to_set_permissions) (struct target_ops *)
1056       TARGET_DEFAULT_IGNORE ();
1057
1058     /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1059        with its details.  Return 1 on success, 0 on failure.  */
1060     int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
1061                                            struct static_tracepoint_marker *marker)
1062       TARGET_DEFAULT_RETURN (0);
1063
1064     /* Return a vector of all tracepoints markers string id ID, or all
1065        markers if ID is NULL.  */
1066     VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
1067       TARGET_DEFAULT_NORETURN (tcomplain ());
1068
1069     /* Return a traceframe info object describing the current
1070        traceframe's contents.  This method should not cache data;
1071        higher layers take care of caching, invalidating, and
1072        re-fetching when necessary.  */
1073     struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
1074         TARGET_DEFAULT_NORETURN (tcomplain ());
1075
1076     /* Ask the target to use or not to use agent according to USE.  Return 1
1077        successful, 0 otherwise.  */
1078     int (*to_use_agent) (struct target_ops *, int use)
1079       TARGET_DEFAULT_NORETURN (tcomplain ());
1080
1081     /* Is the target able to use agent in current state?  */
1082     int (*to_can_use_agent) (struct target_ops *)
1083       TARGET_DEFAULT_RETURN (0);
1084
1085     /* Check whether the target supports branch tracing.  */
1086     int (*to_supports_btrace) (struct target_ops *, enum btrace_format)
1087       TARGET_DEFAULT_RETURN (0);
1088
1089     /* Enable branch tracing for PTID using CONF configuration.
1090        Return a branch trace target information struct for reading and for
1091        disabling branch trace.  */
1092     struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
1093                                                     ptid_t ptid,
1094                                                     const struct btrace_config *conf)
1095       TARGET_DEFAULT_NORETURN (tcomplain ());
1096
1097     /* Disable branch tracing and deallocate TINFO.  */
1098     void (*to_disable_btrace) (struct target_ops *,
1099                                struct btrace_target_info *tinfo)
1100       TARGET_DEFAULT_NORETURN (tcomplain ());
1101
1102     /* Disable branch tracing and deallocate TINFO.  This function is similar
1103        to to_disable_btrace, except that it is called during teardown and is
1104        only allowed to perform actions that are safe.  A counter-example would
1105        be attempting to talk to a remote target.  */
1106     void (*to_teardown_btrace) (struct target_ops *,
1107                                 struct btrace_target_info *tinfo)
1108       TARGET_DEFAULT_NORETURN (tcomplain ());
1109
1110     /* Read branch trace data for the thread indicated by BTINFO into DATA.
1111        DATA is cleared before new trace is added.  */
1112     enum btrace_error (*to_read_btrace) (struct target_ops *self,
1113                                          struct btrace_data *data,
1114                                          struct btrace_target_info *btinfo,
1115                                          enum btrace_read_type type)
1116       TARGET_DEFAULT_NORETURN (tcomplain ());
1117
1118     /* Get the branch trace configuration.  */
1119     const struct btrace_config *(*to_btrace_conf) (struct target_ops *self,
1120                                                    const struct btrace_target_info *)
1121       TARGET_DEFAULT_RETURN (NULL);
1122
1123     /* Stop trace recording.  */
1124     void (*to_stop_recording) (struct target_ops *)
1125       TARGET_DEFAULT_IGNORE ();
1126
1127     /* Print information about the recording.  */
1128     void (*to_info_record) (struct target_ops *)
1129       TARGET_DEFAULT_IGNORE ();
1130
1131     /* Save the recorded execution trace into a file.  */
1132     void (*to_save_record) (struct target_ops *, const char *filename)
1133       TARGET_DEFAULT_NORETURN (tcomplain ());
1134
1135     /* Delete the recorded execution trace from the current position
1136        onwards.  */
1137     void (*to_delete_record) (struct target_ops *)
1138       TARGET_DEFAULT_NORETURN (tcomplain ());
1139
1140     /* Query if the record target is currently replaying.  */
1141     int (*to_record_is_replaying) (struct target_ops *)
1142       TARGET_DEFAULT_RETURN (0);
1143
1144     /* Go to the begin of the execution trace.  */
1145     void (*to_goto_record_begin) (struct target_ops *)
1146       TARGET_DEFAULT_NORETURN (tcomplain ());
1147
1148     /* Go to the end of the execution trace.  */
1149     void (*to_goto_record_end) (struct target_ops *)
1150       TARGET_DEFAULT_NORETURN (tcomplain ());
1151
1152     /* Go to a specific location in the recorded execution trace.  */
1153     void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1154       TARGET_DEFAULT_NORETURN (tcomplain ());
1155
1156     /* Disassemble SIZE instructions in the recorded execution trace from
1157        the current position.
1158        If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1159        disassemble SIZE succeeding instructions.  */
1160     void (*to_insn_history) (struct target_ops *, int size, int flags)
1161       TARGET_DEFAULT_NORETURN (tcomplain ());
1162
1163     /* Disassemble SIZE instructions in the recorded execution trace around
1164        FROM.
1165        If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1166        disassemble SIZE instructions after FROM.  */
1167     void (*to_insn_history_from) (struct target_ops *,
1168                                   ULONGEST from, int size, int flags)
1169       TARGET_DEFAULT_NORETURN (tcomplain ());
1170
1171     /* Disassemble a section of the recorded execution trace from instruction
1172        BEGIN (inclusive) to instruction END (inclusive).  */
1173     void (*to_insn_history_range) (struct target_ops *,
1174                                    ULONGEST begin, ULONGEST end, int flags)
1175       TARGET_DEFAULT_NORETURN (tcomplain ());
1176
1177     /* Print a function trace of the recorded execution trace.
1178        If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1179        succeeding functions.  */
1180     void (*to_call_history) (struct target_ops *, int size, int flags)
1181       TARGET_DEFAULT_NORETURN (tcomplain ());
1182
1183     /* Print a function trace of the recorded execution trace starting
1184        at function FROM.
1185        If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1186        SIZE functions after FROM.  */
1187     void (*to_call_history_from) (struct target_ops *,
1188                                   ULONGEST begin, int size, int flags)
1189       TARGET_DEFAULT_NORETURN (tcomplain ());
1190
1191     /* Print a function trace of an execution trace section from function BEGIN
1192        (inclusive) to function END (inclusive).  */
1193     void (*to_call_history_range) (struct target_ops *,
1194                                    ULONGEST begin, ULONGEST end, int flags)
1195       TARGET_DEFAULT_NORETURN (tcomplain ());
1196
1197     /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1198        non-empty annex.  */
1199     int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1200       TARGET_DEFAULT_RETURN (0);
1201
1202     /* Those unwinders are tried before any other arch unwinders.  If
1203        SELF doesn't have unwinders, it should delegate to the
1204        "beneath" target.  */
1205     const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self)
1206       TARGET_DEFAULT_RETURN (NULL);
1207
1208     const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self)
1209       TARGET_DEFAULT_RETURN (NULL);
1210
1211     /* Prepare to generate a core file.  */
1212     void (*to_prepare_to_generate_core) (struct target_ops *)
1213       TARGET_DEFAULT_IGNORE ();
1214
1215     /* Cleanup after generating a core file.  */
1216     void (*to_done_generating_core) (struct target_ops *)
1217       TARGET_DEFAULT_IGNORE ();
1218
1219     int to_magic;
1220     /* Need sub-structure for target machine related rather than comm related?
1221      */
1222   };
1223
1224 /* Magic number for checking ops size.  If a struct doesn't end with this
1225    number, somebody changed the declaration but didn't change all the
1226    places that initialize one.  */
1227
1228 #define OPS_MAGIC       3840
1229
1230 /* The ops structure for our "current" target process.  This should
1231    never be NULL.  If there is no target, it points to the dummy_target.  */
1232
1233 extern struct target_ops current_target;
1234
1235 /* Define easy words for doing these operations on our current target.  */
1236
1237 #define target_shortname        (current_target.to_shortname)
1238 #define target_longname         (current_target.to_longname)
1239
1240 /* Does whatever cleanup is required for a target that we are no
1241    longer going to be calling.  This routine is automatically always
1242    called after popping the target off the target stack - the target's
1243    own methods are no longer available through the target vector.
1244    Closing file descriptors and freeing all memory allocated memory are
1245    typical things it should do.  */
1246
1247 void target_close (struct target_ops *targ);
1248
1249 /* Find the correct target to use for "attach".  If a target on the
1250    current stack supports attaching, then it is returned.  Otherwise,
1251    the default run target is returned.  */
1252
1253 extern struct target_ops *find_attach_target (void);
1254
1255 /* Find the correct target to use for "run".  If a target on the
1256    current stack supports creating a new inferior, then it is
1257    returned.  Otherwise, the default run target is returned.  */
1258
1259 extern struct target_ops *find_run_target (void);
1260
1261 /* Some targets don't generate traps when attaching to the inferior,
1262    or their target_attach implementation takes care of the waiting.
1263    These targets must set to_attach_no_wait.  */
1264
1265 #define target_attach_no_wait \
1266      (current_target.to_attach_no_wait)
1267
1268 /* The target_attach operation places a process under debugger control,
1269    and stops the process.
1270
1271    This operation provides a target-specific hook that allows the
1272    necessary bookkeeping to be performed after an attach completes.  */
1273 #define target_post_attach(pid) \
1274      (*current_target.to_post_attach) (&current_target, pid)
1275
1276 /* Takes a program previously attached to and detaches it.
1277    The program may resume execution (some targets do, some don't) and will
1278    no longer stop on signals, etc.  We better not have left any breakpoints
1279    in the program or it'll die when it hits one.  ARGS is arguments
1280    typed by the user (e.g. a signal to send the process).  FROM_TTY
1281    says whether to be verbose or not.  */
1282
1283 extern void target_detach (const char *, int);
1284
1285 /* Disconnect from the current target without resuming it (leaving it
1286    waiting for a debugger).  */
1287
1288 extern void target_disconnect (const char *, int);
1289
1290 /* Resume execution of the target process PTID (or a group of
1291    threads).  STEP says whether to single-step or to run free; SIGGNAL
1292    is the signal to be given to the target, or GDB_SIGNAL_0 for no
1293    signal.  The caller may not pass GDB_SIGNAL_DEFAULT.  A specific
1294    PTID means `step/resume only this process id'.  A wildcard PTID
1295    (all threads, or all threads of process) means `step/resume
1296    INFERIOR_PTID, and let other threads (for which the wildcard PTID
1297    matches) resume with their 'thread->suspend.stop_signal' signal
1298    (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1299    if in "no pass" state.  */
1300
1301 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1302
1303 /* Wait for process pid to do something.  PTID = -1 to wait for any
1304    pid to do something.  Return pid of child, or -1 in case of error;
1305    store status through argument pointer STATUS.  Note that it is
1306    _NOT_ OK to throw_exception() out of target_wait() without popping
1307    the debugging target from the stack; GDB isn't prepared to get back
1308    to the prompt with a debugging target but without the frame cache,
1309    stop_pc, etc., set up.  OPTIONS is a bitwise OR of TARGET_W*
1310    options.  */
1311
1312 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1313                            int options);
1314
1315 /* Fetch at least register REGNO, or all regs if regno == -1.  No result.  */
1316
1317 extern void target_fetch_registers (struct regcache *regcache, int regno);
1318
1319 /* Store at least register REGNO, or all regs if REGNO == -1.
1320    It can store as many registers as it wants to, so target_prepare_to_store
1321    must have been previously called.  Calls error() if there are problems.  */
1322
1323 extern void target_store_registers (struct regcache *regcache, int regs);
1324
1325 /* Get ready to modify the registers array.  On machines which store
1326    individual registers, this doesn't need to do anything.  On machines
1327    which store all the registers in one fell swoop, this makes sure
1328    that REGISTERS contains all the registers from the program being
1329    debugged.  */
1330
1331 #define target_prepare_to_store(regcache)       \
1332      (*current_target.to_prepare_to_store) (&current_target, regcache)
1333
1334 /* Determine current address space of thread PTID.  */
1335
1336 struct address_space *target_thread_address_space (ptid_t);
1337
1338 /* Implement the "info proc" command.  This returns one if the request
1339    was handled, and zero otherwise.  It can also throw an exception if
1340    an error was encountered while attempting to handle the
1341    request.  */
1342
1343 int target_info_proc (const char *, enum info_proc_what);
1344
1345 /* Returns true if this target can debug multiple processes
1346    simultaneously.  */
1347
1348 #define target_supports_multi_process() \
1349      (*current_target.to_supports_multi_process) (&current_target)
1350
1351 /* Returns true if this target can disable address space randomization.  */
1352
1353 int target_supports_disable_randomization (void);
1354
1355 /* Returns true if this target can enable and disable tracepoints
1356    while a trace experiment is running.  */
1357
1358 #define target_supports_enable_disable_tracepoint() \
1359   (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1360
1361 #define target_supports_string_tracing() \
1362   (*current_target.to_supports_string_tracing) (&current_target)
1363
1364 /* Returns true if this target can handle breakpoint conditions
1365    on its end.  */
1366
1367 #define target_supports_evaluation_of_breakpoint_conditions() \
1368   (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1369
1370 /* Returns true if this target can handle breakpoint commands
1371    on its end.  */
1372
1373 #define target_can_run_breakpoint_commands() \
1374   (*current_target.to_can_run_breakpoint_commands) (&current_target)
1375
1376 extern int target_read_string (CORE_ADDR, char **, int, int *);
1377
1378 /* For target_read_memory see target/target.h.  */
1379
1380 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1381                                    ssize_t len);
1382
1383 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1384
1385 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1386
1387 /* For target_write_memory see target/target.h.  */
1388
1389 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1390                                     ssize_t len);
1391
1392 /* Fetches the target's memory map.  If one is found it is sorted
1393    and returned, after some consistency checking.  Otherwise, NULL
1394    is returned.  */
1395 VEC(mem_region_s) *target_memory_map (void);
1396
1397 /* Erase the specified flash region.  */
1398 void target_flash_erase (ULONGEST address, LONGEST length);
1399
1400 /* Finish a sequence of flash operations.  */
1401 void target_flash_done (void);
1402
1403 /* Describes a request for a memory write operation.  */
1404 struct memory_write_request
1405   {
1406     /* Begining address that must be written.  */
1407     ULONGEST begin;
1408     /* Past-the-end address.  */
1409     ULONGEST end;
1410     /* The data to write.  */
1411     gdb_byte *data;
1412     /* A callback baton for progress reporting for this request.  */
1413     void *baton;
1414   };
1415 typedef struct memory_write_request memory_write_request_s;
1416 DEF_VEC_O(memory_write_request_s);
1417
1418 /* Enumeration specifying different flash preservation behaviour.  */
1419 enum flash_preserve_mode
1420   {
1421     flash_preserve,
1422     flash_discard
1423   };
1424
1425 /* Write several memory blocks at once.  This version can be more
1426    efficient than making several calls to target_write_memory, in
1427    particular because it can optimize accesses to flash memory.
1428
1429    Moreover, this is currently the only memory access function in gdb
1430    that supports writing to flash memory, and it should be used for
1431    all cases where access to flash memory is desirable.
1432
1433    REQUESTS is the vector (see vec.h) of memory_write_request.
1434    PRESERVE_FLASH_P indicates what to do with blocks which must be
1435      erased, but not completely rewritten.
1436    PROGRESS_CB is a function that will be periodically called to provide
1437      feedback to user.  It will be called with the baton corresponding
1438      to the request currently being written.  It may also be called
1439      with a NULL baton, when preserved flash sectors are being rewritten.
1440
1441    The function returns 0 on success, and error otherwise.  */
1442 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1443                                 enum flash_preserve_mode preserve_flash_p,
1444                                 void (*progress_cb) (ULONGEST, void *));
1445
1446 /* Print a line about the current target.  */
1447
1448 #define target_files_info()     \
1449      (*current_target.to_files_info) (&current_target)
1450
1451 /* Insert a breakpoint at address BP_TGT->placed_address in
1452    the target machine.  Returns 0 for success, and returns non-zero or
1453    throws an error (with a detailed failure reason error code and
1454    message) otherwise.  */
1455
1456 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1457                                      struct bp_target_info *bp_tgt);
1458
1459 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1460    machine.  Result is 0 for success, non-zero for error.  */
1461
1462 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1463                                      struct bp_target_info *bp_tgt);
1464
1465 /* Returns true if the terminal settings of the inferior are in
1466    effect.  */
1467
1468 extern int target_terminal_is_inferior (void);
1469
1470 /* Initialize the terminal settings we record for the inferior,
1471    before we actually run the inferior.  */
1472
1473 extern void target_terminal_init (void);
1474
1475 /* Put the inferior's terminal settings into effect.
1476    This is preparation for starting or resuming the inferior.  */
1477
1478 extern void target_terminal_inferior (void);
1479
1480 /* Put some of our terminal settings into effect, enough to get proper
1481    results from our output, but do not change into or out of RAW mode
1482    so that no input is discarded.  This is a no-op if terminal_ours
1483    was most recently called.  */
1484
1485 extern void target_terminal_ours_for_output (void);
1486
1487 /* Put our terminal settings into effect.
1488    First record the inferior's terminal settings
1489    so they can be restored properly later.  */
1490
1491 extern void target_terminal_ours (void);
1492
1493 /* Return true if the target stack has a non-default
1494   "to_terminal_ours" method.  */
1495
1496 extern int target_supports_terminal_ours (void);
1497
1498 /* Make a cleanup that restores the state of the terminal to the current
1499    state.  */
1500 extern struct cleanup *make_cleanup_restore_target_terminal (void);
1501
1502 /* Print useful information about our terminal status, if such a thing
1503    exists.  */
1504
1505 #define target_terminal_info(arg, from_tty) \
1506      (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1507
1508 /* Kill the inferior process.   Make it go away.  */
1509
1510 extern void target_kill (void);
1511
1512 /* Load an executable file into the target process.  This is expected
1513    to not only bring new code into the target process, but also to
1514    update GDB's symbol tables to match.
1515
1516    ARG contains command-line arguments, to be broken down with
1517    buildargv ().  The first non-switch argument is the filename to
1518    load, FILE; the second is a number (as parsed by strtoul (..., ...,
1519    0)), which is an offset to apply to the load addresses of FILE's
1520    sections.  The target may define switches, or other non-switch
1521    arguments, as it pleases.  */
1522
1523 extern void target_load (const char *arg, int from_tty);
1524
1525 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1526    notification of inferior events such as fork and vork immediately
1527    after the inferior is created.  (This because of how gdb gets an
1528    inferior created via invoking a shell to do it.  In such a scenario,
1529    if the shell init file has commands in it, the shell will fork and
1530    exec for each of those commands, and we will see each such fork
1531    event.  Very bad.)
1532
1533    Such targets will supply an appropriate definition for this function.  */
1534
1535 #define target_post_startup_inferior(ptid) \
1536      (*current_target.to_post_startup_inferior) (&current_target, ptid)
1537
1538 /* On some targets, we can catch an inferior fork or vfork event when
1539    it occurs.  These functions insert/remove an already-created
1540    catchpoint for such events.  They return  0 for success, 1 if the
1541    catchpoint type is not supported and -1 for failure.  */
1542
1543 #define target_insert_fork_catchpoint(pid) \
1544      (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1545
1546 #define target_remove_fork_catchpoint(pid) \
1547      (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1548
1549 #define target_insert_vfork_catchpoint(pid) \
1550      (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1551
1552 #define target_remove_vfork_catchpoint(pid) \
1553      (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1554
1555 /* If the inferior forks or vforks, this function will be called at
1556    the next resume in order to perform any bookkeeping and fiddling
1557    necessary to continue debugging either the parent or child, as
1558    requested, and releasing the other.  Information about the fork
1559    or vfork event is available via get_last_target_status ().
1560    This function returns 1 if the inferior should not be resumed
1561    (i.e. there is another event pending).  */
1562
1563 int target_follow_fork (int follow_child, int detach_fork);
1564
1565 /* On some targets, we can catch an inferior exec event when it
1566    occurs.  These functions insert/remove an already-created
1567    catchpoint for such events.  They return  0 for success, 1 if the
1568    catchpoint type is not supported and -1 for failure.  */
1569
1570 #define target_insert_exec_catchpoint(pid) \
1571      (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1572
1573 #define target_remove_exec_catchpoint(pid) \
1574      (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1575
1576 /* Syscall catch.
1577
1578    NEEDED is nonzero if any syscall catch (of any kind) is requested.
1579    If NEEDED is zero, it means the target can disable the mechanism to
1580    catch system calls because there are no more catchpoints of this type.
1581
1582    ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1583    being requested.  In this case, both TABLE_SIZE and TABLE should
1584    be ignored.
1585
1586    TABLE_SIZE is the number of elements in TABLE.  It only matters if
1587    ANY_COUNT is zero.
1588
1589    TABLE is an array of ints, indexed by syscall number.  An element in
1590    this array is nonzero if that syscall should be caught.  This argument
1591    only matters if ANY_COUNT is zero.
1592
1593    Return 0 for success, 1 if syscall catchpoints are not supported or -1
1594    for failure.  */
1595
1596 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1597      (*current_target.to_set_syscall_catchpoint) (&current_target,      \
1598                                                   pid, needed, any_count, \
1599                                                   table_size, table)
1600
1601 /* Returns TRUE if PID has exited.  And, also sets EXIT_STATUS to the
1602    exit code of PID, if any.  */
1603
1604 #define target_has_exited(pid,wait_status,exit_status) \
1605      (*current_target.to_has_exited) (&current_target, \
1606                                       pid,wait_status,exit_status)
1607
1608 /* The debugger has completed a blocking wait() call.  There is now
1609    some process event that must be processed.  This function should
1610    be defined by those targets that require the debugger to perform
1611    cleanup or internal state changes in response to the process event.  */
1612
1613 /* The inferior process has died.  Do what is right.  */
1614
1615 void target_mourn_inferior (void);
1616
1617 /* Does target have enough data to do a run or attach command? */
1618
1619 #define target_can_run(t) \
1620      ((t)->to_can_run) (t)
1621
1622 /* Set list of signals to be handled in the target.
1623
1624    PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1625    (enum gdb_signal).  For every signal whose entry in this array is
1626    non-zero, the target is allowed -but not required- to skip reporting
1627    arrival of the signal to the GDB core by returning from target_wait,
1628    and to pass the signal directly to the inferior instead.
1629
1630    However, if the target is hardware single-stepping a thread that is
1631    about to receive a signal, it needs to be reported in any case, even
1632    if mentioned in a previous target_pass_signals call.   */
1633
1634 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1635
1636 /* Set list of signals the target may pass to the inferior.  This
1637    directly maps to the "handle SIGNAL pass/nopass" setting.
1638
1639    PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1640    number (enum gdb_signal).  For every signal whose entry in this
1641    array is non-zero, the target is allowed to pass the signal to the
1642    inferior.  Signals not present in the array shall be silently
1643    discarded.  This does not influence whether to pass signals to the
1644    inferior as a result of a target_resume call.  This is useful in
1645    scenarios where the target needs to decide whether to pass or not a
1646    signal to the inferior without GDB core involvement, such as for
1647    example, when detaching (as threads may have been suspended with
1648    pending signals not reported to GDB).  */
1649
1650 extern void target_program_signals (int nsig, unsigned char *program_signals);
1651
1652 /* Check to see if a thread is still alive.  */
1653
1654 extern int target_thread_alive (ptid_t ptid);
1655
1656 /* Sync the target's threads with GDB's thread list.  */
1657
1658 extern void target_update_thread_list (void);
1659
1660 /* Make target stop in a continuable fashion.  (For instance, under
1661    Unix, this should act like SIGSTOP).  Note that this function is
1662    asynchronous: it does not wait for the target to become stopped
1663    before returning.  If this is the behavior you want please use
1664    target_stop_and_wait.  */
1665
1666 extern void target_stop (ptid_t ptid);
1667
1668 /* Send the specified COMMAND to the target's monitor
1669    (shell,interpreter) for execution.  The result of the query is
1670    placed in OUTBUF.  */
1671
1672 #define target_rcmd(command, outbuf) \
1673      (*current_target.to_rcmd) (&current_target, command, outbuf)
1674
1675
1676 /* Does the target include all of memory, or only part of it?  This
1677    determines whether we look up the target chain for other parts of
1678    memory if this target can't satisfy a request.  */
1679
1680 extern int target_has_all_memory_1 (void);
1681 #define target_has_all_memory target_has_all_memory_1 ()
1682
1683 /* Does the target include memory?  (Dummy targets don't.)  */
1684
1685 extern int target_has_memory_1 (void);
1686 #define target_has_memory target_has_memory_1 ()
1687
1688 /* Does the target have a stack?  (Exec files don't, VxWorks doesn't, until
1689    we start a process.)  */
1690
1691 extern int target_has_stack_1 (void);
1692 #define target_has_stack target_has_stack_1 ()
1693
1694 /* Does the target have registers?  (Exec files don't.)  */
1695
1696 extern int target_has_registers_1 (void);
1697 #define target_has_registers target_has_registers_1 ()
1698
1699 /* Does the target have execution?  Can we make it jump (through
1700    hoops), or pop its stack a few times?  This means that the current
1701    target is currently executing; for some targets, that's the same as
1702    whether or not the target is capable of execution, but there are
1703    also targets which can be current while not executing.  In that
1704    case this will become true after to_create_inferior or
1705    to_attach.  */
1706
1707 extern int target_has_execution_1 (ptid_t);
1708
1709 /* Like target_has_execution_1, but always passes inferior_ptid.  */
1710
1711 extern int target_has_execution_current (void);
1712
1713 #define target_has_execution target_has_execution_current ()
1714
1715 /* Default implementations for process_stratum targets.  Return true
1716    if there's a selected inferior, false otherwise.  */
1717
1718 extern int default_child_has_all_memory (struct target_ops *ops);
1719 extern int default_child_has_memory (struct target_ops *ops);
1720 extern int default_child_has_stack (struct target_ops *ops);
1721 extern int default_child_has_registers (struct target_ops *ops);
1722 extern int default_child_has_execution (struct target_ops *ops,
1723                                         ptid_t the_ptid);
1724
1725 /* Can the target support the debugger control of thread execution?
1726    Can it lock the thread scheduler?  */
1727
1728 #define target_can_lock_scheduler \
1729      (current_target.to_has_thread_control & tc_schedlock)
1730
1731 /* Controls whether async mode is permitted.  */
1732 extern int target_async_permitted;
1733
1734 /* Can the target support asynchronous execution?  */
1735 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1736
1737 /* Is the target in asynchronous execution mode?  */
1738 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1739
1740 /* Enables/disabled async target events.  */
1741 #define target_async(ENABLE) \
1742      (current_target.to_async (&current_target, (ENABLE)))
1743
1744 #define target_execution_direction() \
1745   (current_target.to_execution_direction (&current_target))
1746
1747 /* Converts a process id to a string.  Usually, the string just contains
1748    `process xyz', but on some systems it may contain
1749    `process xyz thread abc'.  */
1750
1751 extern char *target_pid_to_str (ptid_t ptid);
1752
1753 extern char *normal_pid_to_str (ptid_t ptid);
1754
1755 /* Return a short string describing extra information about PID,
1756    e.g. "sleeping", "runnable", "running on LWP 3".  Null return value
1757    is okay.  */
1758
1759 #define target_extra_thread_info(TP) \
1760      (current_target.to_extra_thread_info (&current_target, TP))
1761
1762 /* Return the thread's name.  A NULL result means that the target
1763    could not determine this thread's name.  */
1764
1765 extern char *target_thread_name (struct thread_info *);
1766
1767 /* Attempts to find the pathname of the executable file
1768    that was run to create a specified process.
1769
1770    The process PID must be stopped when this operation is used.
1771
1772    If the executable file cannot be determined, NULL is returned.
1773
1774    Else, a pointer to a character string containing the pathname
1775    is returned.  This string should be copied into a buffer by
1776    the client if the string will not be immediately used, or if
1777    it must persist.  */
1778
1779 #define target_pid_to_exec_file(pid) \
1780      (current_target.to_pid_to_exec_file) (&current_target, pid)
1781
1782 /* See the to_thread_architecture description in struct target_ops.  */
1783
1784 #define target_thread_architecture(ptid) \
1785      (current_target.to_thread_architecture (&current_target, ptid))
1786
1787 /*
1788  * Iterator function for target memory regions.
1789  * Calls a callback function once for each memory region 'mapped'
1790  * in the child process.  Defined as a simple macro rather than
1791  * as a function macro so that it can be tested for nullity.
1792  */
1793
1794 #define target_find_memory_regions(FUNC, DATA) \
1795      (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1796
1797 /*
1798  * Compose corefile .note section.
1799  */
1800
1801 #define target_make_corefile_notes(BFD, SIZE_P) \
1802      (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1803
1804 /* Bookmark interfaces.  */
1805 #define target_get_bookmark(ARGS, FROM_TTY) \
1806      (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1807
1808 #define target_goto_bookmark(ARG, FROM_TTY) \
1809      (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1810
1811 /* Hardware watchpoint interfaces.  */
1812
1813 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1814    write).  Only the INFERIOR_PTID task is being queried.  */
1815
1816 #define target_stopped_by_watchpoint()          \
1817   ((*current_target.to_stopped_by_watchpoint) (&current_target))
1818
1819 /* Returns non-zero if the target stopped because it executed a
1820    software breakpoint instruction.  */
1821
1822 #define target_stopped_by_sw_breakpoint()               \
1823   ((*current_target.to_stopped_by_sw_breakpoint) (&current_target))
1824
1825 #define target_supports_stopped_by_sw_breakpoint() \
1826   ((*current_target.to_supports_stopped_by_sw_breakpoint) (&current_target))
1827
1828 #define target_stopped_by_hw_breakpoint()                               \
1829   ((*current_target.to_stopped_by_hw_breakpoint) (&current_target))
1830
1831 #define target_supports_stopped_by_hw_breakpoint() \
1832   ((*current_target.to_supports_stopped_by_hw_breakpoint) (&current_target))
1833
1834 /* Non-zero if we have steppable watchpoints  */
1835
1836 #define target_have_steppable_watchpoint \
1837    (current_target.to_have_steppable_watchpoint)
1838
1839 /* Non-zero if we have continuable watchpoints  */
1840
1841 #define target_have_continuable_watchpoint \
1842    (current_target.to_have_continuable_watchpoint)
1843
1844 /* Provide defaults for hardware watchpoint functions.  */
1845
1846 /* If the *_hw_beakpoint functions have not been defined
1847    elsewhere use the definitions in the target vector.  */
1848
1849 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1850    Returns negative if the target doesn't have enough hardware debug
1851    registers available.  Return zero if hardware watchpoint of type
1852    TYPE isn't supported.  TYPE is one of bp_hardware_watchpoint,
1853    bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1854    CNT is the number of such watchpoints used so far, including this
1855    one.  OTHERTYPE is who knows what...  */
1856
1857 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1858  (*current_target.to_can_use_hw_breakpoint) (&current_target,  \
1859                                              TYPE, CNT, OTHERTYPE)
1860
1861 /* Returns the number of debug registers needed to watch the given
1862    memory region, or zero if not supported.  */
1863
1864 #define target_region_ok_for_hw_watchpoint(addr, len) \
1865     (*current_target.to_region_ok_for_hw_watchpoint) (&current_target,  \
1866                                                       addr, len)
1867
1868
1869 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1870    TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1871    COND is the expression for its condition, or NULL if there's none.
1872    Returns 0 for success, 1 if the watchpoint type is not supported,
1873    -1 for failure.  */
1874
1875 #define target_insert_watchpoint(addr, len, type, cond) \
1876      (*current_target.to_insert_watchpoint) (&current_target,   \
1877                                              addr, len, type, cond)
1878
1879 #define target_remove_watchpoint(addr, len, type, cond) \
1880      (*current_target.to_remove_watchpoint) (&current_target,   \
1881                                              addr, len, type, cond)
1882
1883 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1884    RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1885    or hw_access for an access watchpoint.  Returns 0 for success, 1 if
1886    masked watchpoints are not supported, -1 for failure.  */
1887
1888 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1889
1890 /* Remove a masked watchpoint at ADDR with the mask MASK.
1891    RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1892    or hw_access for an access watchpoint.  Returns 0 for success, non-zero
1893    for failure.  */
1894
1895 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1896
1897 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1898    the target machine.  Returns 0 for success, and returns non-zero or
1899    throws an error (with a detailed failure reason error code and
1900    message) otherwise.  */
1901
1902 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1903      (*current_target.to_insert_hw_breakpoint) (&current_target,        \
1904                                                 gdbarch, bp_tgt)
1905
1906 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1907      (*current_target.to_remove_hw_breakpoint) (&current_target,        \
1908                                                 gdbarch, bp_tgt)
1909
1910 /* Return number of debug registers needed for a ranged breakpoint,
1911    or -1 if ranged breakpoints are not supported.  */
1912
1913 extern int target_ranged_break_num_registers (void);
1914
1915 /* Return non-zero if target knows the data address which triggered this
1916    target_stopped_by_watchpoint, in such case place it to *ADDR_P.  Only the
1917    INFERIOR_PTID task is being queried.  */
1918 #define target_stopped_data_address(target, addr_p) \
1919     (*(target)->to_stopped_data_address) (target, addr_p)
1920
1921 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1922    LENGTH bytes beginning at START.  */
1923 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1924   (*(target)->to_watchpoint_addr_within_range) (target, addr, start, length)
1925
1926 /* Return non-zero if the target is capable of using hardware to evaluate
1927    the condition expression.  In this case, if the condition is false when
1928    the watched memory location changes, execution may continue without the
1929    debugger being notified.
1930
1931    Due to limitations in the hardware implementation, it may be capable of
1932    avoiding triggering the watchpoint in some cases where the condition
1933    expression is false, but may report some false positives as well.
1934    For this reason, GDB will still evaluate the condition expression when
1935    the watchpoint triggers.  */
1936 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1937   (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1938                                                        addr, len, type, cond)
1939
1940 /* Return number of debug registers needed for a masked watchpoint,
1941    -1 if masked watchpoints are not supported or -2 if the given address
1942    and mask combination cannot be used.  */
1943
1944 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1945
1946 /* Target can execute in reverse?  */
1947 #define target_can_execute_reverse \
1948       current_target.to_can_execute_reverse (&current_target)
1949
1950 extern const struct target_desc *target_read_description (struct target_ops *);
1951
1952 #define target_get_ada_task_ptid(lwp, tid) \
1953      (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1954
1955 /* Utility implementation of searching memory.  */
1956 extern int simple_search_memory (struct target_ops* ops,
1957                                  CORE_ADDR start_addr,
1958                                  ULONGEST search_space_len,
1959                                  const gdb_byte *pattern,
1960                                  ULONGEST pattern_len,
1961                                  CORE_ADDR *found_addrp);
1962
1963 /* Main entry point for searching memory.  */
1964 extern int target_search_memory (CORE_ADDR start_addr,
1965                                  ULONGEST search_space_len,
1966                                  const gdb_byte *pattern,
1967                                  ULONGEST pattern_len,
1968                                  CORE_ADDR *found_addrp);
1969
1970 /* Target file operations.  */
1971
1972 /* Return nonzero if the filesystem seen by the current inferior
1973    is the local filesystem, zero otherwise.  */
1974 #define target_filesystem_is_local() \
1975   current_target.to_filesystem_is_local (&current_target)
1976
1977 /* Open FILENAME on the target, in the filesystem as seen by INF,
1978    using FLAGS and MODE.  If INF is NULL, use the filesystem seen
1979    by the debugger (GDB or, for remote targets, the remote stub).
1980    Return a target file descriptor, or -1 if an error occurs (and
1981    set *TARGET_ERRNO).  */
1982 extern int target_fileio_open (struct inferior *inf,
1983                                const char *filename, int flags,
1984                                int mode, int *target_errno);
1985
1986 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1987    Return the number of bytes written, or -1 if an error occurs
1988    (and set *TARGET_ERRNO).  */
1989 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1990                                  ULONGEST offset, int *target_errno);
1991
1992 /* Read up to LEN bytes FD on the target into READ_BUF.
1993    Return the number of bytes read, or -1 if an error occurs
1994    (and set *TARGET_ERRNO).  */
1995 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1996                                 ULONGEST offset, int *target_errno);
1997
1998 /* Get information about the file opened as FD on the target
1999    and put it in SB.  Return 0 on success, or -1 if an error
2000    occurs (and set *TARGET_ERRNO).  */
2001 extern int target_fileio_fstat (int fd, struct stat *sb,
2002                                 int *target_errno);
2003
2004 /* Close FD on the target.  Return 0, or -1 if an error occurs
2005    (and set *TARGET_ERRNO).  */
2006 extern int target_fileio_close (int fd, int *target_errno);
2007
2008 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2009    If INF is NULL, use the filesystem seen by the debugger (GDB or,
2010    for remote targets, the remote stub).  Return 0, or -1 if an error
2011    occurs (and set *TARGET_ERRNO).  */
2012 extern int target_fileio_unlink (struct inferior *inf,
2013                                  const char *filename,
2014                                  int *target_errno);
2015
2016 /* Read value of symbolic link FILENAME on the target, in the
2017    filesystem as seen by INF.  If INF is NULL, use the filesystem seen
2018    by the debugger (GDB or, for remote targets, the remote stub).
2019    Return a null-terminated string allocated via xmalloc, or NULL if
2020    an error occurs (and set *TARGET_ERRNO).  */
2021 extern char *target_fileio_readlink (struct inferior *inf,
2022                                      const char *filename,
2023                                      int *target_errno);
2024
2025 /* Read target file FILENAME, in the filesystem as seen by INF.  If
2026    INF is NULL, use the filesystem seen by the debugger (GDB or, for
2027    remote targets, the remote stub).  The return value will be -1 if
2028    the transfer fails or is not supported; 0 if the object is empty;
2029    or the length of the object otherwise.  If a positive value is
2030    returned, a sufficiently large buffer will be allocated using
2031    xmalloc and returned in *BUF_P containing the contents of the
2032    object.
2033
2034    This method should be used for objects sufficiently small to store
2035    in a single xmalloc'd buffer, when no fixed bound on the object's
2036    size is known in advance.  */
2037 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2038                                          const char *filename,
2039                                          gdb_byte **buf_p);
2040
2041 /* Read target file FILENAME, in the filesystem as seen by INF.  If
2042    INF is NULL, use the filesystem seen by the debugger (GDB or, for
2043    remote targets, the remote stub).  The result is NUL-terminated and
2044    returned as a string, allocated using xmalloc.  If an error occurs
2045    or the transfer is unsupported, NULL is returned.  Empty objects
2046    are returned as allocated but empty strings.  A warning is issued
2047    if the result contains any embedded NUL bytes.  */
2048 extern char *target_fileio_read_stralloc (struct inferior *inf,
2049                                           const char *filename);
2050
2051
2052 /* Tracepoint-related operations.  */
2053
2054 #define target_trace_init() \
2055   (*current_target.to_trace_init) (&current_target)
2056
2057 #define target_download_tracepoint(t) \
2058   (*current_target.to_download_tracepoint) (&current_target, t)
2059
2060 #define target_can_download_tracepoint() \
2061   (*current_target.to_can_download_tracepoint) (&current_target)
2062
2063 #define target_download_trace_state_variable(tsv) \
2064   (*current_target.to_download_trace_state_variable) (&current_target, tsv)
2065
2066 #define target_enable_tracepoint(loc) \
2067   (*current_target.to_enable_tracepoint) (&current_target, loc)
2068
2069 #define target_disable_tracepoint(loc) \
2070   (*current_target.to_disable_tracepoint) (&current_target, loc)
2071
2072 #define target_trace_start() \
2073   (*current_target.to_trace_start) (&current_target)
2074
2075 #define target_trace_set_readonly_regions() \
2076   (*current_target.to_trace_set_readonly_regions) (&current_target)
2077
2078 #define target_get_trace_status(ts) \
2079   (*current_target.to_get_trace_status) (&current_target, ts)
2080
2081 #define target_get_tracepoint_status(tp,utp)            \
2082   (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
2083
2084 #define target_trace_stop() \
2085   (*current_target.to_trace_stop) (&current_target)
2086
2087 #define target_trace_find(type,num,addr1,addr2,tpp) \
2088   (*current_target.to_trace_find) (&current_target, \
2089                                    (type), (num), (addr1), (addr2), (tpp))
2090
2091 #define target_get_trace_state_variable_value(tsv,val) \
2092   (*current_target.to_get_trace_state_variable_value) (&current_target, \
2093                                                        (tsv), (val))
2094
2095 #define target_save_trace_data(filename) \
2096   (*current_target.to_save_trace_data) (&current_target, filename)
2097
2098 #define target_upload_tracepoints(utpp) \
2099   (*current_target.to_upload_tracepoints) (&current_target, utpp)
2100
2101 #define target_upload_trace_state_variables(utsvp) \
2102   (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
2103
2104 #define target_get_raw_trace_data(buf,offset,len) \
2105   (*current_target.to_get_raw_trace_data) (&current_target,     \
2106                                            (buf), (offset), (len))
2107
2108 #define target_get_min_fast_tracepoint_insn_len() \
2109   (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
2110
2111 #define target_set_disconnected_tracing(val) \
2112   (*current_target.to_set_disconnected_tracing) (&current_target, val)
2113
2114 #define target_set_circular_trace_buffer(val)   \
2115   (*current_target.to_set_circular_trace_buffer) (&current_target, val)
2116
2117 #define target_set_trace_buffer_size(val)       \
2118   (*current_target.to_set_trace_buffer_size) (&current_target, val)
2119
2120 #define target_set_trace_notes(user,notes,stopnotes)            \
2121   (*current_target.to_set_trace_notes) (&current_target,        \
2122                                         (user), (notes), (stopnotes))
2123
2124 #define target_get_tib_address(ptid, addr) \
2125   (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
2126
2127 #define target_set_permissions() \
2128   (*current_target.to_set_permissions) (&current_target)
2129
2130 #define target_static_tracepoint_marker_at(addr, marker) \
2131   (*current_target.to_static_tracepoint_marker_at) (&current_target,    \
2132                                                     addr, marker)
2133
2134 #define target_static_tracepoint_markers_by_strid(marker_id) \
2135   (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
2136                                                            marker_id)
2137
2138 #define target_traceframe_info() \
2139   (*current_target.to_traceframe_info) (&current_target)
2140
2141 #define target_use_agent(use) \
2142   (*current_target.to_use_agent) (&current_target, use)
2143
2144 #define target_can_use_agent() \
2145   (*current_target.to_can_use_agent) (&current_target)
2146
2147 #define target_augmented_libraries_svr4_read() \
2148   (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2149
2150 /* Command logging facility.  */
2151
2152 #define target_log_command(p)                                   \
2153   (*current_target.to_log_command) (&current_target, p)
2154
2155
2156 extern int target_core_of_thread (ptid_t ptid);
2157
2158 /* See to_get_unwinder in struct target_ops.  */
2159 extern const struct frame_unwind *target_get_unwinder (void);
2160
2161 /* See to_get_tailcall_unwinder in struct target_ops.  */
2162 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2163
2164 /* This implements basic memory verification, reading target memory
2165    and performing the comparison here (as opposed to accelerated
2166    verification making use of the qCRC packet, for example).  */
2167
2168 extern int simple_verify_memory (struct target_ops* ops,
2169                                  const gdb_byte *data,
2170                                  CORE_ADDR memaddr, ULONGEST size);
2171
2172 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2173    the contents of [DATA,DATA+SIZE).  Returns 1 if there's a match, 0
2174    if there's a mismatch, and -1 if an error is encountered while
2175    reading memory.  Throws an error if the functionality is found not
2176    to be supported by the current target.  */
2177 int target_verify_memory (const gdb_byte *data,
2178                           CORE_ADDR memaddr, ULONGEST size);
2179
2180 /* Routines for maintenance of the target structures...
2181
2182    complete_target_initialization: Finalize a target_ops by filling in
2183    any fields needed by the target implementation.  Unnecessary for
2184    targets which are registered via add_target, as this part gets
2185    taken care of then.
2186
2187    add_target:   Add a target to the list of all possible targets.
2188    This only makes sense for targets that should be activated using
2189    the "target TARGET_NAME ..." command.
2190
2191    push_target:  Make this target the top of the stack of currently used
2192    targets, within its particular stratum of the stack.  Result
2193    is 0 if now atop the stack, nonzero if not on top (maybe
2194    should warn user).
2195
2196    unpush_target: Remove this from the stack of currently used targets,
2197    no matter where it is on the list.  Returns 0 if no
2198    change, 1 if removed from stack.  */
2199
2200 extern void add_target (struct target_ops *);
2201
2202 extern void add_target_with_completer (struct target_ops *t,
2203                                        completer_ftype *completer);
2204
2205 extern void complete_target_initialization (struct target_ops *t);
2206
2207 /* Adds a command ALIAS for target T and marks it deprecated.  This is useful
2208    for maintaining backwards compatibility when renaming targets.  */
2209
2210 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2211
2212 extern void push_target (struct target_ops *);
2213
2214 extern int unpush_target (struct target_ops *);
2215
2216 extern void target_pre_inferior (int);
2217
2218 extern void target_preopen (int);
2219
2220 /* Does whatever cleanup is required to get rid of all pushed targets.  */
2221 extern void pop_all_targets (void);
2222
2223 /* Like pop_all_targets, but pops only targets whose stratum is
2224    strictly above ABOVE_STRATUM.  */
2225 extern void pop_all_targets_above (enum strata above_stratum);
2226
2227 extern int target_is_pushed (struct target_ops *t);
2228
2229 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2230                                                CORE_ADDR offset);
2231
2232 /* Struct target_section maps address ranges to file sections.  It is
2233    mostly used with BFD files, but can be used without (e.g. for handling
2234    raw disks, or files not in formats handled by BFD).  */
2235
2236 struct target_section
2237   {
2238     CORE_ADDR addr;             /* Lowest address in section */
2239     CORE_ADDR endaddr;          /* 1+highest address in section */
2240
2241     struct bfd_section *the_bfd_section;
2242
2243     /* The "owner" of the section.
2244        It can be any unique value.  It is set by add_target_sections
2245        and used by remove_target_sections.
2246        For example, for executables it is a pointer to exec_bfd and
2247        for shlibs it is the so_list pointer.  */
2248     void *owner;
2249   };
2250
2251 /* Holds an array of target sections.  Defined by [SECTIONS..SECTIONS_END[.  */
2252
2253 struct target_section_table
2254 {
2255   struct target_section *sections;
2256   struct target_section *sections_end;
2257 };
2258
2259 /* Return the "section" containing the specified address.  */
2260 struct target_section *target_section_by_addr (struct target_ops *target,
2261                                                CORE_ADDR addr);
2262
2263 /* Return the target section table this target (or the targets
2264    beneath) currently manipulate.  */
2265
2266 extern struct target_section_table *target_get_section_table
2267   (struct target_ops *target);
2268
2269 /* From mem-break.c */
2270
2271 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2272                                      struct bp_target_info *);
2273
2274 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2275                                      struct bp_target_info *);
2276
2277 /* Check whether the memory at the breakpoint's placed address still
2278    contains the expected breakpoint instruction.  */
2279
2280 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2281                                        struct bp_target_info *bp_tgt);
2282
2283 extern int default_memory_remove_breakpoint (struct gdbarch *,
2284                                              struct bp_target_info *);
2285
2286 extern int default_memory_insert_breakpoint (struct gdbarch *,
2287                                              struct bp_target_info *);
2288
2289
2290 /* From target.c */
2291
2292 extern void initialize_targets (void);
2293
2294 extern void noprocess (void) ATTRIBUTE_NORETURN;
2295
2296 extern void target_require_runnable (void);
2297
2298 extern struct target_ops *find_target_beneath (struct target_ops *);
2299
2300 /* Find the target at STRATUM.  If no target is at that stratum,
2301    return NULL.  */
2302
2303 struct target_ops *find_target_at (enum strata stratum);
2304
2305 /* Read OS data object of type TYPE from the target, and return it in
2306    XML format.  The result is NUL-terminated and returned as a string,
2307    allocated using xmalloc.  If an error occurs or the transfer is
2308    unsupported, NULL is returned.  Empty objects are returned as
2309    allocated but empty strings.  */
2310
2311 extern char *target_get_osdata (const char *type);
2312
2313 \f
2314 /* Stuff that should be shared among the various remote targets.  */
2315
2316 /* Debugging level.  0 is off, and non-zero values mean to print some debug
2317    information (higher values, more information).  */
2318 extern int remote_debug;
2319
2320 /* Speed in bits per second, or -1 which means don't mess with the speed.  */
2321 extern int baud_rate;
2322
2323 /* Parity for serial port  */
2324 extern int serial_parity;
2325
2326 /* Timeout limit for response from target.  */
2327 extern int remote_timeout;
2328
2329 \f
2330
2331 /* Set the show memory breakpoints mode to show, and installs a cleanup
2332    to restore it back to the current value.  */
2333 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2334
2335 extern int may_write_registers;
2336 extern int may_write_memory;
2337 extern int may_insert_breakpoints;
2338 extern int may_insert_tracepoints;
2339 extern int may_insert_fast_tracepoints;
2340 extern int may_stop;
2341
2342 extern void update_target_permissions (void);
2343
2344 \f
2345 /* Imported from machine dependent code.  */
2346
2347 /* See to_supports_btrace in struct target_ops.  */
2348 extern int target_supports_btrace (enum btrace_format);
2349
2350 /* See to_enable_btrace in struct target_ops.  */
2351 extern struct btrace_target_info *
2352   target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2353
2354 /* See to_disable_btrace in struct target_ops.  */
2355 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2356
2357 /* See to_teardown_btrace in struct target_ops.  */
2358 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2359
2360 /* See to_read_btrace in struct target_ops.  */
2361 extern enum btrace_error target_read_btrace (struct btrace_data *,
2362                                              struct btrace_target_info *,
2363                                              enum btrace_read_type);
2364
2365 /* See to_btrace_conf in struct target_ops.  */
2366 extern const struct btrace_config *
2367   target_btrace_conf (const struct btrace_target_info *);
2368
2369 /* See to_stop_recording in struct target_ops.  */
2370 extern void target_stop_recording (void);
2371
2372 /* See to_save_record in struct target_ops.  */
2373 extern void target_save_record (const char *filename);
2374
2375 /* Query if the target supports deleting the execution log.  */
2376 extern int target_supports_delete_record (void);
2377
2378 /* See to_delete_record in struct target_ops.  */
2379 extern void target_delete_record (void);
2380
2381 /* See to_record_is_replaying in struct target_ops.  */
2382 extern int target_record_is_replaying (void);
2383
2384 /* See to_goto_record_begin in struct target_ops.  */
2385 extern void target_goto_record_begin (void);
2386
2387 /* See to_goto_record_end in struct target_ops.  */
2388 extern void target_goto_record_end (void);
2389
2390 /* See to_goto_record in struct target_ops.  */
2391 extern void target_goto_record (ULONGEST insn);
2392
2393 /* See to_insn_history.  */
2394 extern void target_insn_history (int size, int flags);
2395
2396 /* See to_insn_history_from.  */
2397 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2398
2399 /* See to_insn_history_range.  */
2400 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2401
2402 /* See to_call_history.  */
2403 extern void target_call_history (int size, int flags);
2404
2405 /* See to_call_history_from.  */
2406 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2407
2408 /* See to_call_history_range.  */
2409 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2410
2411 /* See to_prepare_to_generate_core.  */
2412 extern void target_prepare_to_generate_core (void);
2413
2414 /* See to_done_generating_core.  */
2415 extern void target_done_generating_core (void);
2416
2417 #endif /* !defined (TARGET_H) */