Return unique_xmalloc_ptr from target_fileio_read_stralloc
[external/binutils.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3    Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5    Contributed by Cygnus Support.  Written by John Gilmore.
6
7    This file is part of GDB.
8
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind.  */
44 #include "breakpoint.h" /* For enum bptype.  */
45 #include "common/scoped_restore.h"
46
47 /* This include file defines the interface between the main part
48    of the debugger, and the part which is target-specific, or
49    specific to the communications interface between us and the
50    target.
51
52    A TARGET is an interface between the debugger and a particular
53    kind of file or process.  Targets can be STACKED in STRATA,
54    so that more than one target can potentially respond to a request.
55    In particular, memory accesses will walk down the stack of targets
56    until they find a target that is interested in handling that particular
57    address.  STRATA are artificial boundaries on the stack, within
58    which particular kinds of targets live.  Strata exist so that
59    people don't get confused by pushing e.g. a process target and then
60    a file target, and wondering why they can't see the current values
61    of variables any more (the file target is handling them and they
62    never get to the process target).  So when you push a file target,
63    it goes into the file stratum, which is always below the process
64    stratum.  */
65
66 #include "target/target.h"
67 #include "target/resume.h"
68 #include "target/wait.h"
69 #include "target/waitstatus.h"
70 #include "bfd.h"
71 #include "symtab.h"
72 #include "memattr.h"
73 #include "vec.h"
74 #include "gdb_signals.h"
75 #include "btrace.h"
76 #include "record.h"
77 #include "command.h"
78 #include "disasm.h"
79 #include "tracepoint.h"
80
81 #include "break-common.h" /* For enum target_hw_bp_type.  */
82
83 enum strata
84   {
85     dummy_stratum,              /* The lowest of the low */
86     file_stratum,               /* Executable files, etc */
87     process_stratum,            /* Executing processes or core dump files */
88     thread_stratum,             /* Executing threads */
89     record_stratum,             /* Support record debugging */
90     arch_stratum                /* Architecture overrides */
91   };
92
93 enum thread_control_capabilities
94   {
95     tc_none = 0,                /* Default: can't control thread execution.  */
96     tc_schedlock = 1,           /* Can lock the thread scheduler.  */
97   };
98
99 /* The structure below stores information about a system call.
100    It is basically used in the "catch syscall" command, and in
101    every function that gives information about a system call.
102    
103    It's also good to mention that its fields represent everything
104    that we currently know about a syscall in GDB.  */
105 struct syscall
106   {
107     /* The syscall number.  */
108     int number;
109
110     /* The syscall name.  */
111     const char *name;
112   };
113
114 /* Return a pretty printed form of TARGET_OPTIONS.
115    Space for the result is malloc'd, caller must free.  */
116 extern char *target_options_to_string (int target_options);
117
118 /* Possible types of events that the inferior handler will have to
119    deal with.  */
120 enum inferior_event_type
121   {
122     /* Process a normal inferior event which will result in target_wait
123        being called.  */
124     INF_REG_EVENT,
125     /* We are called to do stuff after the inferior stops.  */
126     INF_EXEC_COMPLETE,
127   };
128 \f
129 /* Target objects which can be transfered using target_read,
130    target_write, et cetera.  */
131
132 enum target_object
133 {
134   /* AVR target specific transfer.  See "avr-tdep.c" and "remote.c".  */
135   TARGET_OBJECT_AVR,
136   /* SPU target specific transfer.  See "spu-tdep.c".  */
137   TARGET_OBJECT_SPU,
138   /* Transfer up-to LEN bytes of memory starting at OFFSET.  */
139   TARGET_OBJECT_MEMORY,
140   /* Memory, avoiding GDB's data cache and trusting the executable.
141      Target implementations of to_xfer_partial never need to handle
142      this object, and most callers should not use it.  */
143   TARGET_OBJECT_RAW_MEMORY,
144   /* Memory known to be part of the target's stack.  This is cached even
145      if it is not in a region marked as such, since it is known to be
146      "normal" RAM.  */
147   TARGET_OBJECT_STACK_MEMORY,
148   /* Memory known to be part of the target code.   This is cached even
149      if it is not in a region marked as such.  */
150   TARGET_OBJECT_CODE_MEMORY,
151   /* Kernel Unwind Table.  See "ia64-tdep.c".  */
152   TARGET_OBJECT_UNWIND_TABLE,
153   /* Transfer auxilliary vector.  */
154   TARGET_OBJECT_AUXV,
155   /* StackGhost cookie.  See "sparc-tdep.c".  */
156   TARGET_OBJECT_WCOOKIE,
157   /* Target memory map in XML format.  */
158   TARGET_OBJECT_MEMORY_MAP,
159   /* Flash memory.  This object can be used to write contents to
160      a previously erased flash memory.  Using it without erasing
161      flash can have unexpected results.  Addresses are physical
162      address on target, and not relative to flash start.  */
163   TARGET_OBJECT_FLASH,
164   /* Available target-specific features, e.g. registers and coprocessors.
165      See "target-descriptions.c".  ANNEX should never be empty.  */
166   TARGET_OBJECT_AVAILABLE_FEATURES,
167   /* Currently loaded libraries, in XML format.  */
168   TARGET_OBJECT_LIBRARIES,
169   /* Currently loaded libraries specific for SVR4 systems, in XML format.  */
170   TARGET_OBJECT_LIBRARIES_SVR4,
171   /* Currently loaded libraries specific to AIX systems, in XML format.  */
172   TARGET_OBJECT_LIBRARIES_AIX,
173   /* Get OS specific data.  The ANNEX specifies the type (running
174      processes, etc.).  The data being transfered is expected to follow
175      the DTD specified in features/osdata.dtd.  */
176   TARGET_OBJECT_OSDATA,
177   /* Extra signal info.  Usually the contents of `siginfo_t' on unix
178      platforms.  */
179   TARGET_OBJECT_SIGNAL_INFO,
180   /* The list of threads that are being debugged.  */
181   TARGET_OBJECT_THREADS,
182   /* Collected static trace data.  */
183   TARGET_OBJECT_STATIC_TRACE_DATA,
184   /* The HP-UX registers (those that can be obtained or modified by using
185      the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests).  */
186   TARGET_OBJECT_HPUX_UREGS,
187   /* The HP-UX shared library linkage pointer.  ANNEX should be a string
188      image of the code address whose linkage pointer we are looking for.
189
190      The size of the data transfered is always 8 bytes (the size of an
191      address on ia64).  */
192   TARGET_OBJECT_HPUX_SOLIB_GOT,
193   /* Traceframe info, in XML format.  */
194   TARGET_OBJECT_TRACEFRAME_INFO,
195   /* Load maps for FDPIC systems.  */
196   TARGET_OBJECT_FDPIC,
197   /* Darwin dynamic linker info data.  */
198   TARGET_OBJECT_DARWIN_DYLD_INFO,
199   /* OpenVMS Unwind Information Block.  */
200   TARGET_OBJECT_OPENVMS_UIB,
201   /* Branch trace data, in XML format.  */
202   TARGET_OBJECT_BTRACE,
203   /* Branch trace configuration, in XML format.  */
204   TARGET_OBJECT_BTRACE_CONF,
205   /* The pathname of the executable file that was run to create
206      a specified process.  ANNEX should be a string representation
207      of the process ID of the process in question, in hexadecimal
208      format.  */
209   TARGET_OBJECT_EXEC_FILE,
210   /* Possible future objects: TARGET_OBJECT_FILE, ...  */
211 };
212
213 /* Possible values returned by target_xfer_partial, etc.  */
214
215 enum target_xfer_status
216 {
217   /* Some bytes are transferred.  */
218   TARGET_XFER_OK = 1,
219
220   /* No further transfer is possible.  */
221   TARGET_XFER_EOF = 0,
222
223   /* The piece of the object requested is unavailable.  */
224   TARGET_XFER_UNAVAILABLE = 2,
225
226   /* Generic I/O error.  Note that it's important that this is '-1',
227      as we still have target_xfer-related code returning hardcoded
228      '-1' on error.  */
229   TARGET_XFER_E_IO = -1,
230
231   /* Keep list in sync with target_xfer_status_to_string.  */
232 };
233
234 /* Return the string form of STATUS.  */
235
236 extern const char *
237   target_xfer_status_to_string (enum target_xfer_status status);
238
239 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
240 DEF_VEC_P(static_tracepoint_marker_p);
241
242 typedef enum target_xfer_status
243   target_xfer_partial_ftype (struct target_ops *ops,
244                              enum target_object object,
245                              const char *annex,
246                              gdb_byte *readbuf,
247                              const gdb_byte *writebuf,
248                              ULONGEST offset,
249                              ULONGEST len,
250                              ULONGEST *xfered_len);
251
252 enum target_xfer_status
253   raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
254                            const gdb_byte *writebuf, ULONGEST memaddr,
255                            LONGEST len, ULONGEST *xfered_len);
256
257 /* Request that OPS transfer up to LEN addressable units of the target's
258    OBJECT.  When reading from a memory object, the size of an addressable unit
259    is architecture dependent and can be found using
260    gdbarch_addressable_memory_unit_size.  Otherwise, an addressable unit is 1
261    byte long.  BUF should point to a buffer large enough to hold the read data,
262    taking into account the addressable unit size.  The OFFSET, for a seekable
263    object, specifies the starting point.  The ANNEX can be used to provide
264    additional data-specific information to the target.
265
266    Return the number of addressable units actually transferred, or a negative
267    error code (an 'enum target_xfer_error' value) if the transfer is not
268    supported or otherwise fails.  Return of a positive value less than
269    LEN indicates that no further transfer is possible.  Unlike the raw
270    to_xfer_partial interface, callers of these functions do not need
271    to retry partial transfers.  */
272
273 extern LONGEST target_read (struct target_ops *ops,
274                             enum target_object object,
275                             const char *annex, gdb_byte *buf,
276                             ULONGEST offset, LONGEST len);
277
278 struct memory_read_result
279 {
280   memory_read_result (ULONGEST begin_, ULONGEST end_,
281                       gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
282     : begin (begin_),
283       end (end_),
284       data (std::move (data_))
285   {
286   }
287
288   ~memory_read_result () = default;
289
290   memory_read_result (memory_read_result &&other) = default;
291
292   DISABLE_COPY_AND_ASSIGN (memory_read_result);
293
294   /* First address that was read.  */
295   ULONGEST begin;
296   /* Past-the-end address.  */
297   ULONGEST end;
298   /* The data.  */
299   gdb::unique_xmalloc_ptr<gdb_byte> data;
300 };
301
302 extern std::vector<memory_read_result> read_memory_robust
303     (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
304
305 /* Request that OPS transfer up to LEN addressable units from BUF to the
306    target's OBJECT.  When writing to a memory object, the addressable unit
307    size is architecture dependent and can be found using
308    gdbarch_addressable_memory_unit_size.  Otherwise, an addressable unit is 1
309    byte long.  The OFFSET, for a seekable object, specifies the starting point.
310    The ANNEX can be used to provide additional data-specific information to
311    the target.
312
313    Return the number of addressable units actually transferred, or a negative
314    error code (an 'enum target_xfer_status' value) if the transfer is not
315    supported or otherwise fails.  Return of a positive value less than
316    LEN indicates that no further transfer is possible.  Unlike the raw
317    to_xfer_partial interface, callers of these functions do not need to
318    retry partial transfers.  */
319
320 extern LONGEST target_write (struct target_ops *ops,
321                              enum target_object object,
322                              const char *annex, const gdb_byte *buf,
323                              ULONGEST offset, LONGEST len);
324
325 /* Similar to target_write, except that it also calls PROGRESS with
326    the number of bytes written and the opaque BATON after every
327    successful partial write (and before the first write).  This is
328    useful for progress reporting and user interaction while writing
329    data.  To abort the transfer, the progress callback can throw an
330    exception.  */
331
332 LONGEST target_write_with_progress (struct target_ops *ops,
333                                     enum target_object object,
334                                     const char *annex, const gdb_byte *buf,
335                                     ULONGEST offset, LONGEST len,
336                                     void (*progress) (ULONGEST, void *),
337                                     void *baton);
338
339 /* Wrapper to perform a full read of unknown size.  OBJECT/ANNEX will
340    be read using OPS.  The return value will be -1 if the transfer
341    fails or is not supported; 0 if the object is empty; or the length
342    of the object otherwise.  If a positive value is returned, a
343    sufficiently large buffer will be allocated using xmalloc and
344    returned in *BUF_P containing the contents of the object.
345
346    This method should be used for objects sufficiently small to store
347    in a single xmalloc'd buffer, when no fixed bound on the object's
348    size is known in advance.  Don't try to read TARGET_OBJECT_MEMORY
349    through this function.  */
350
351 extern LONGEST target_read_alloc (struct target_ops *ops,
352                                   enum target_object object,
353                                   const char *annex, gdb_byte **buf_p);
354
355 /* Read OBJECT/ANNEX using OPS.  The result is NUL-terminated and
356    returned as a string.  If an error occurs or the transfer is
357    unsupported, NULL is returned.  Empty objects are returned as
358    allocated but empty strings.  A warning is issued if the result
359    contains any embedded NUL bytes.  */
360
361 extern gdb::unique_xmalloc_ptr<char> target_read_stralloc
362     (struct target_ops *ops, enum target_object object, const char *annex);
363
364 /* See target_ops->to_xfer_partial.  */
365 extern target_xfer_partial_ftype target_xfer_partial;
366
367 /* Wrappers to target read/write that perform memory transfers.  They
368    throw an error if the memory transfer fails.
369
370    NOTE: cagney/2003-10-23: The naming schema is lifted from
371    "frame.h".  The parameter order is lifted from get_frame_memory,
372    which in turn lifted it from read_memory.  */
373
374 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
375                                gdb_byte *buf, LONGEST len);
376 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
377                                             CORE_ADDR addr, int len,
378                                             enum bfd_endian byte_order);
379 \f
380 struct thread_info;             /* fwd decl for parameter list below: */
381
382 /* The type of the callback to the to_async method.  */
383
384 typedef void async_callback_ftype (enum inferior_event_type event_type,
385                                    void *context);
386
387 /* Normally target debug printing is purely type-based.  However,
388    sometimes it is necessary to override the debug printing on a
389    per-argument basis.  This macro can be used, attribute-style, to
390    name the target debug printing function for a particular method
391    argument.  FUNC is the name of the function.  The macro's
392    definition is empty because it is only used by the
393    make-target-delegates script.  */
394
395 #define TARGET_DEBUG_PRINTER(FUNC)
396
397 /* These defines are used to mark target_ops methods.  The script
398    make-target-delegates scans these and auto-generates the base
399    method implementations.  There are four macros that can be used:
400    
401    1. TARGET_DEFAULT_IGNORE.  There is no argument.  The base method
402    does nothing.  This is only valid if the method return type is
403    'void'.
404    
405    2. TARGET_DEFAULT_NORETURN.  The argument is a function call, like
406    'tcomplain ()'.  The base method simply makes this call, which is
407    assumed not to return.
408    
409    3. TARGET_DEFAULT_RETURN.  The argument is a C expression.  The
410    base method returns this expression's value.
411    
412    4. TARGET_DEFAULT_FUNC.  The argument is the name of a function.
413    make-target-delegates does not generate a base method in this case,
414    but instead uses the argument function as the base method.  */
415
416 #define TARGET_DEFAULT_IGNORE()
417 #define TARGET_DEFAULT_NORETURN(ARG)
418 #define TARGET_DEFAULT_RETURN(ARG)
419 #define TARGET_DEFAULT_FUNC(ARG)
420
421 struct target_ops
422   {
423     struct target_ops *beneath; /* To the target under this one.  */
424     const char *to_shortname;   /* Name this target type */
425     const char *to_longname;    /* Name for printing */
426     const char *to_doc;         /* Documentation.  Does not include trailing
427                                    newline, and starts with a one-line descrip-
428                                    tion (probably similar to to_longname).  */
429     /* Per-target scratch pad.  */
430     void *to_data;
431     /* The open routine takes the rest of the parameters from the
432        command, and (if successful) pushes a new target onto the
433        stack.  Targets should supply this routine, if only to provide
434        an error message.  */
435     void (*to_open) (const char *, int);
436     /* Old targets with a static target vector provide "to_close".
437        New re-entrant targets provide "to_xclose" and that is expected
438        to xfree everything (including the "struct target_ops").  */
439     void (*to_xclose) (struct target_ops *targ);
440     void (*to_close) (struct target_ops *);
441     /* Attaches to a process on the target side.  Arguments are as
442        passed to the `attach' command by the user.  This routine can
443        be called when the target is not on the target-stack, if the
444        target_can_run routine returns 1; in that case, it must push
445        itself onto the stack.  Upon exit, the target should be ready
446        for normal operations, and should be ready to deliver the
447        status of the process immediately (without waiting) to an
448        upcoming target_wait call.  */
449     void (*to_attach) (struct target_ops *ops, const char *, int);
450     void (*to_post_attach) (struct target_ops *, int)
451       TARGET_DEFAULT_IGNORE ();
452     void (*to_detach) (struct target_ops *ops, const char *, int)
453       TARGET_DEFAULT_IGNORE ();
454     void (*to_disconnect) (struct target_ops *, const char *, int)
455       TARGET_DEFAULT_NORETURN (tcomplain ());
456     void (*to_resume) (struct target_ops *, ptid_t,
457                        int TARGET_DEBUG_PRINTER (target_debug_print_step),
458                        enum gdb_signal)
459       TARGET_DEFAULT_NORETURN (noprocess ());
460     void (*to_commit_resume) (struct target_ops *)
461       TARGET_DEFAULT_IGNORE ();
462     ptid_t (*to_wait) (struct target_ops *,
463                        ptid_t, struct target_waitstatus *,
464                        int TARGET_DEBUG_PRINTER (target_debug_print_options))
465       TARGET_DEFAULT_FUNC (default_target_wait);
466     void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
467       TARGET_DEFAULT_IGNORE ();
468     void (*to_store_registers) (struct target_ops *, struct regcache *, int)
469       TARGET_DEFAULT_NORETURN (noprocess ());
470     void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
471       TARGET_DEFAULT_NORETURN (noprocess ());
472
473     void (*to_files_info) (struct target_ops *)
474       TARGET_DEFAULT_IGNORE ();
475     int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
476                                  struct bp_target_info *)
477       TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
478     int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
479                                  struct bp_target_info *,
480                                  enum remove_bp_reason)
481       TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
482
483     /* Returns true if the target stopped because it executed a
484        software breakpoint.  This is necessary for correct background
485        execution / non-stop mode operation, and for correct PC
486        adjustment on targets where the PC needs to be adjusted when a
487        software breakpoint triggers.  In these modes, by the time GDB
488        processes a breakpoint event, the breakpoint may already be
489        done from the target, so GDB needs to be able to tell whether
490        it should ignore the event and whether it should adjust the PC.
491        See adjust_pc_after_break.  */
492     int (*to_stopped_by_sw_breakpoint) (struct target_ops *)
493       TARGET_DEFAULT_RETURN (0);
494     /* Returns true if the above method is supported.  */
495     int (*to_supports_stopped_by_sw_breakpoint) (struct target_ops *)
496       TARGET_DEFAULT_RETURN (0);
497
498     /* Returns true if the target stopped for a hardware breakpoint.
499        Likewise, if the target supports hardware breakpoints, this
500        method is necessary for correct background execution / non-stop
501        mode operation.  Even though hardware breakpoints do not
502        require PC adjustment, GDB needs to be able to tell whether the
503        hardware breakpoint event is a delayed event for a breakpoint
504        that is already gone and should thus be ignored.  */
505     int (*to_stopped_by_hw_breakpoint) (struct target_ops *)
506       TARGET_DEFAULT_RETURN (0);
507     /* Returns true if the above method is supported.  */
508     int (*to_supports_stopped_by_hw_breakpoint) (struct target_ops *)
509       TARGET_DEFAULT_RETURN (0);
510
511     int (*to_can_use_hw_breakpoint) (struct target_ops *,
512                                      enum bptype, int, int)
513       TARGET_DEFAULT_RETURN (0);
514     int (*to_ranged_break_num_registers) (struct target_ops *)
515       TARGET_DEFAULT_RETURN (-1);
516     int (*to_insert_hw_breakpoint) (struct target_ops *,
517                                     struct gdbarch *, struct bp_target_info *)
518       TARGET_DEFAULT_RETURN (-1);
519     int (*to_remove_hw_breakpoint) (struct target_ops *,
520                                     struct gdbarch *, struct bp_target_info *)
521       TARGET_DEFAULT_RETURN (-1);
522
523     /* Documentation of what the two routines below are expected to do is
524        provided with the corresponding target_* macros.  */
525     int (*to_remove_watchpoint) (struct target_ops *, CORE_ADDR, int,
526                                  enum target_hw_bp_type, struct expression *)
527       TARGET_DEFAULT_RETURN (-1);
528     int (*to_insert_watchpoint) (struct target_ops *, CORE_ADDR, int,
529                                  enum target_hw_bp_type, struct expression *)
530       TARGET_DEFAULT_RETURN (-1);
531
532     int (*to_insert_mask_watchpoint) (struct target_ops *,
533                                       CORE_ADDR, CORE_ADDR,
534                                       enum target_hw_bp_type)
535       TARGET_DEFAULT_RETURN (1);
536     int (*to_remove_mask_watchpoint) (struct target_ops *,
537                                       CORE_ADDR, CORE_ADDR,
538                                       enum target_hw_bp_type)
539       TARGET_DEFAULT_RETURN (1);
540     int (*to_stopped_by_watchpoint) (struct target_ops *)
541       TARGET_DEFAULT_RETURN (0);
542     int to_have_steppable_watchpoint;
543     int to_have_continuable_watchpoint;
544     int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
545       TARGET_DEFAULT_RETURN (0);
546     int (*to_watchpoint_addr_within_range) (struct target_ops *,
547                                             CORE_ADDR, CORE_ADDR, int)
548       TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
549
550     /* Documentation of this routine is provided with the corresponding
551        target_* macro.  */
552     int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
553                                            CORE_ADDR, int)
554       TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
555
556     int (*to_can_accel_watchpoint_condition) (struct target_ops *,
557                                               CORE_ADDR, int, int,
558                                               struct expression *)
559       TARGET_DEFAULT_RETURN (0);
560     int (*to_masked_watch_num_registers) (struct target_ops *,
561                                           CORE_ADDR, CORE_ADDR)
562       TARGET_DEFAULT_RETURN (-1);
563
564     /* Return 1 for sure target can do single step.  Return -1 for
565        unknown.  Return 0 for target can't do.  */
566     int (*to_can_do_single_step) (struct target_ops *)
567       TARGET_DEFAULT_RETURN (-1);
568
569     void (*to_terminal_init) (struct target_ops *)
570       TARGET_DEFAULT_IGNORE ();
571     void (*to_terminal_inferior) (struct target_ops *)
572       TARGET_DEFAULT_IGNORE ();
573     void (*to_terminal_ours_for_output) (struct target_ops *)
574       TARGET_DEFAULT_IGNORE ();
575     void (*to_terminal_ours) (struct target_ops *)
576       TARGET_DEFAULT_IGNORE ();
577     void (*to_terminal_info) (struct target_ops *, const char *, int)
578       TARGET_DEFAULT_FUNC (default_terminal_info);
579     void (*to_kill) (struct target_ops *)
580       TARGET_DEFAULT_NORETURN (noprocess ());
581     void (*to_load) (struct target_ops *, const char *, int)
582       TARGET_DEFAULT_NORETURN (tcomplain ());
583     /* Start an inferior process and set inferior_ptid to its pid.
584        EXEC_FILE is the file to run.
585        ALLARGS is a string containing the arguments to the program.
586        ENV is the environment vector to pass.  Errors reported with error().
587        On VxWorks and various standalone systems, we ignore exec_file.  */
588     void (*to_create_inferior) (struct target_ops *, 
589                                 const char *, const std::string &,
590                                 char **, int);
591     void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
592       TARGET_DEFAULT_IGNORE ();
593     int (*to_insert_fork_catchpoint) (struct target_ops *, int)
594       TARGET_DEFAULT_RETURN (1);
595     int (*to_remove_fork_catchpoint) (struct target_ops *, int)
596       TARGET_DEFAULT_RETURN (1);
597     int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
598       TARGET_DEFAULT_RETURN (1);
599     int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
600       TARGET_DEFAULT_RETURN (1);
601     int (*to_follow_fork) (struct target_ops *, int, int)
602       TARGET_DEFAULT_FUNC (default_follow_fork);
603     int (*to_insert_exec_catchpoint) (struct target_ops *, int)
604       TARGET_DEFAULT_RETURN (1);
605     int (*to_remove_exec_catchpoint) (struct target_ops *, int)
606       TARGET_DEFAULT_RETURN (1);
607     void (*to_follow_exec) (struct target_ops *, struct inferior *, char *)
608       TARGET_DEFAULT_IGNORE ();
609     int (*to_set_syscall_catchpoint) (struct target_ops *,
610                                       int, int, int, int, int *)
611       TARGET_DEFAULT_RETURN (1);
612     int (*to_has_exited) (struct target_ops *, int, int, int *)
613       TARGET_DEFAULT_RETURN (0);
614     void (*to_mourn_inferior) (struct target_ops *)
615       TARGET_DEFAULT_FUNC (default_mourn_inferior);
616     /* Note that to_can_run is special and can be invoked on an
617        unpushed target.  Targets defining this method must also define
618        to_can_async_p and to_supports_non_stop.  */
619     int (*to_can_run) (struct target_ops *)
620       TARGET_DEFAULT_RETURN (0);
621
622     /* Documentation of this routine is provided with the corresponding
623        target_* macro.  */
624     void (*to_pass_signals) (struct target_ops *, int,
625                              unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
626       TARGET_DEFAULT_IGNORE ();
627
628     /* Documentation of this routine is provided with the
629        corresponding target_* function.  */
630     void (*to_program_signals) (struct target_ops *, int,
631                                 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
632       TARGET_DEFAULT_IGNORE ();
633
634     int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
635       TARGET_DEFAULT_RETURN (0);
636     void (*to_update_thread_list) (struct target_ops *)
637       TARGET_DEFAULT_IGNORE ();
638     const char *(*to_pid_to_str) (struct target_ops *, ptid_t)
639       TARGET_DEFAULT_FUNC (default_pid_to_str);
640     const char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
641       TARGET_DEFAULT_RETURN (NULL);
642     const char *(*to_thread_name) (struct target_ops *, struct thread_info *)
643       TARGET_DEFAULT_RETURN (NULL);
644     struct thread_info *(*to_thread_handle_to_thread_info) (struct target_ops *,
645                                                             const gdb_byte *,
646                                                             int,
647                                                             struct inferior *inf)
648       TARGET_DEFAULT_RETURN (NULL);
649     void (*to_stop) (struct target_ops *, ptid_t)
650       TARGET_DEFAULT_IGNORE ();
651     void (*to_interrupt) (struct target_ops *, ptid_t)
652       TARGET_DEFAULT_IGNORE ();
653     void (*to_pass_ctrlc) (struct target_ops *)
654       TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
655     void (*to_rcmd) (struct target_ops *,
656                      const char *command, struct ui_file *output)
657       TARGET_DEFAULT_FUNC (default_rcmd);
658     char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
659       TARGET_DEFAULT_RETURN (NULL);
660     void (*to_log_command) (struct target_ops *, const char *)
661       TARGET_DEFAULT_IGNORE ();
662     struct target_section_table *(*to_get_section_table) (struct target_ops *)
663       TARGET_DEFAULT_RETURN (NULL);
664     enum strata to_stratum;
665     int (*to_has_all_memory) (struct target_ops *);
666     int (*to_has_memory) (struct target_ops *);
667     int (*to_has_stack) (struct target_ops *);
668     int (*to_has_registers) (struct target_ops *);
669     int (*to_has_execution) (struct target_ops *, ptid_t);
670     int to_has_thread_control;  /* control thread execution */
671     int to_attach_no_wait;
672     /* This method must be implemented in some situations.  See the
673        comment on 'to_can_run'.  */
674     int (*to_can_async_p) (struct target_ops *)
675       TARGET_DEFAULT_RETURN (0);
676     int (*to_is_async_p) (struct target_ops *)
677       TARGET_DEFAULT_RETURN (0);
678     void (*to_async) (struct target_ops *, int)
679       TARGET_DEFAULT_NORETURN (tcomplain ());
680     void (*to_thread_events) (struct target_ops *, int)
681       TARGET_DEFAULT_IGNORE ();
682     /* This method must be implemented in some situations.  See the
683        comment on 'to_can_run'.  */
684     int (*to_supports_non_stop) (struct target_ops *)
685       TARGET_DEFAULT_RETURN (0);
686     /* Return true if the target operates in non-stop mode even with
687        "set non-stop off".  */
688     int (*to_always_non_stop_p) (struct target_ops *)
689       TARGET_DEFAULT_RETURN (0);
690     /* find_memory_regions support method for gcore */
691     int (*to_find_memory_regions) (struct target_ops *,
692                                    find_memory_region_ftype func, void *data)
693       TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
694     /* make_corefile_notes support method for gcore */
695     char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
696       TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
697     /* get_bookmark support method for bookmarks */
698     gdb_byte * (*to_get_bookmark) (struct target_ops *, const char *, int)
699       TARGET_DEFAULT_NORETURN (tcomplain ());
700     /* goto_bookmark support method for bookmarks */
701     void (*to_goto_bookmark) (struct target_ops *, const gdb_byte *, int)
702       TARGET_DEFAULT_NORETURN (tcomplain ());
703     /* Return the thread-local address at OFFSET in the
704        thread-local storage for the thread PTID and the shared library
705        or executable file given by OBJFILE.  If that block of
706        thread-local storage hasn't been allocated yet, this function
707        may return an error.  LOAD_MODULE_ADDR may be zero for statically
708        linked multithreaded inferiors.  */
709     CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
710                                               ptid_t ptid,
711                                               CORE_ADDR load_module_addr,
712                                               CORE_ADDR offset)
713       TARGET_DEFAULT_NORETURN (generic_tls_error ());
714
715     /* Request that OPS transfer up to LEN addressable units of the target's
716        OBJECT.  When reading from a memory object, the size of an addressable
717        unit is architecture dependent and can be found using
718        gdbarch_addressable_memory_unit_size.  Otherwise, an addressable unit is
719        1 byte long.  The OFFSET, for a seekable object, specifies the
720        starting point.  The ANNEX can be used to provide additional
721        data-specific information to the target.
722
723        Return the transferred status, error or OK (an
724        'enum target_xfer_status' value).  Save the number of addressable units
725        actually transferred in *XFERED_LEN if transfer is successful
726        (TARGET_XFER_OK) or the number unavailable units if the requested
727        data is unavailable (TARGET_XFER_UNAVAILABLE).  *XFERED_LEN
728        smaller than LEN does not indicate the end of the object, only
729        the end of the transfer; higher level code should continue
730        transferring if desired.  This is handled in target.c.
731
732        The interface does not support a "retry" mechanism.  Instead it
733        assumes that at least one addressable unit will be transfered on each
734        successful call.
735
736        NOTE: cagney/2003-10-17: The current interface can lead to
737        fragmented transfers.  Lower target levels should not implement
738        hacks, such as enlarging the transfer, in an attempt to
739        compensate for this.  Instead, the target stack should be
740        extended so that it implements supply/collect methods and a
741        look-aside object cache.  With that available, the lowest
742        target can safely and freely "push" data up the stack.
743
744        See target_read and target_write for more information.  One,
745        and only one, of readbuf or writebuf must be non-NULL.  */
746
747     enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
748                                                 enum target_object object,
749                                                 const char *annex,
750                                                 gdb_byte *readbuf,
751                                                 const gdb_byte *writebuf,
752                                                 ULONGEST offset, ULONGEST len,
753                                                 ULONGEST *xfered_len)
754       TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
755
756     /* Return the limit on the size of any single memory transfer
757        for the target.  */
758
759     ULONGEST (*to_get_memory_xfer_limit) (struct target_ops *)
760       TARGET_DEFAULT_RETURN (ULONGEST_MAX);
761
762     /* Returns the memory map for the target.  A return value of NULL
763        means that no memory map is available.  If a memory address
764        does not fall within any returned regions, it's assumed to be
765        RAM.  The returned memory regions should not overlap.
766
767        The order of regions does not matter; target_memory_map will
768        sort regions by starting address.  For that reason, this
769        function should not be called directly except via
770        target_memory_map.
771
772        This method should not cache data; if the memory map could
773        change unexpectedly, it should be invalidated, and higher
774        layers will re-fetch it.  */
775     VEC(mem_region_s) *(*to_memory_map) (struct target_ops *)
776       TARGET_DEFAULT_RETURN (NULL);
777
778     /* Erases the region of flash memory starting at ADDRESS, of
779        length LENGTH.
780
781        Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
782        on flash block boundaries, as reported by 'to_memory_map'.  */
783     void (*to_flash_erase) (struct target_ops *,
784                            ULONGEST address, LONGEST length)
785       TARGET_DEFAULT_NORETURN (tcomplain ());
786
787     /* Finishes a flash memory write sequence.  After this operation
788        all flash memory should be available for writing and the result
789        of reading from areas written by 'to_flash_write' should be
790        equal to what was written.  */
791     void (*to_flash_done) (struct target_ops *)
792       TARGET_DEFAULT_NORETURN (tcomplain ());
793
794     /* Describe the architecture-specific features of this target.  If
795        OPS doesn't have a description, this should delegate to the
796        "beneath" target.  Returns the description found, or NULL if no
797        description was available.  */
798     const struct target_desc *(*to_read_description) (struct target_ops *ops)
799          TARGET_DEFAULT_RETURN (NULL);
800
801     /* Build the PTID of the thread on which a given task is running,
802        based on LWP and THREAD.  These values are extracted from the
803        task Private_Data section of the Ada Task Control Block, and
804        their interpretation depends on the target.  */
805     ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
806                                     long lwp, long thread)
807       TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
808
809     /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
810        Return 0 if *READPTR is already at the end of the buffer.
811        Return -1 if there is insufficient buffer for a whole entry.
812        Return 1 if an entry was read into *TYPEP and *VALP.  */
813     int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
814                          gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
815       TARGET_DEFAULT_FUNC (default_auxv_parse);
816
817     /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
818        sequence of bytes in PATTERN with length PATTERN_LEN.
819
820        The result is 1 if found, 0 if not found, and -1 if there was an error
821        requiring halting of the search (e.g. memory read error).
822        If the pattern is found the address is recorded in FOUND_ADDRP.  */
823     int (*to_search_memory) (struct target_ops *ops,
824                              CORE_ADDR start_addr, ULONGEST search_space_len,
825                              const gdb_byte *pattern, ULONGEST pattern_len,
826                              CORE_ADDR *found_addrp)
827       TARGET_DEFAULT_FUNC (default_search_memory);
828
829     /* Can target execute in reverse?  */
830     int (*to_can_execute_reverse) (struct target_ops *)
831       TARGET_DEFAULT_RETURN (0);
832
833     /* The direction the target is currently executing.  Must be
834        implemented on targets that support reverse execution and async
835        mode.  The default simply returns forward execution.  */
836     enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
837       TARGET_DEFAULT_FUNC (default_execution_direction);
838
839     /* Does this target support debugging multiple processes
840        simultaneously?  */
841     int (*to_supports_multi_process) (struct target_ops *)
842       TARGET_DEFAULT_RETURN (0);
843
844     /* Does this target support enabling and disabling tracepoints while a trace
845        experiment is running?  */
846     int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
847       TARGET_DEFAULT_RETURN (0);
848
849     /* Does this target support disabling address space randomization?  */
850     int (*to_supports_disable_randomization) (struct target_ops *);
851
852     /* Does this target support the tracenz bytecode for string collection?  */
853     int (*to_supports_string_tracing) (struct target_ops *)
854       TARGET_DEFAULT_RETURN (0);
855
856     /* Does this target support evaluation of breakpoint conditions on its
857        end?  */
858     int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
859       TARGET_DEFAULT_RETURN (0);
860
861     /* Does this target support evaluation of breakpoint commands on its
862        end?  */
863     int (*to_can_run_breakpoint_commands) (struct target_ops *)
864       TARGET_DEFAULT_RETURN (0);
865
866     /* Determine current architecture of thread PTID.
867
868        The target is supposed to determine the architecture of the code where
869        the target is currently stopped at (on Cell, if a target is in spu_run,
870        to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
871        This is architecture used to perform decr_pc_after_break adjustment,
872        and also determines the frame architecture of the innermost frame.
873        ptrace operations need to operate according to target_gdbarch ().
874
875        The default implementation always returns target_gdbarch ().  */
876     struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
877       TARGET_DEFAULT_FUNC (default_thread_architecture);
878
879     /* Determine current address space of thread PTID.
880
881        The default implementation always returns the inferior's
882        address space.  */
883     struct address_space *(*to_thread_address_space) (struct target_ops *,
884                                                       ptid_t)
885       TARGET_DEFAULT_FUNC (default_thread_address_space);
886
887     /* Target file operations.  */
888
889     /* Return nonzero if the filesystem seen by the current inferior
890        is the local filesystem, zero otherwise.  */
891     int (*to_filesystem_is_local) (struct target_ops *)
892       TARGET_DEFAULT_RETURN (1);
893
894     /* Open FILENAME on the target, in the filesystem as seen by INF,
895        using FLAGS and MODE.  If INF is NULL, use the filesystem seen
896        by the debugger (GDB or, for remote targets, the remote stub).
897        If WARN_IF_SLOW is nonzero, print a warning message if the file
898        is being accessed over a link that may be slow.  Return a
899        target file descriptor, or -1 if an error occurs (and set
900        *TARGET_ERRNO).  */
901     int (*to_fileio_open) (struct target_ops *,
902                            struct inferior *inf, const char *filename,
903                            int flags, int mode, int warn_if_slow,
904                            int *target_errno);
905
906     /* Write up to LEN bytes from WRITE_BUF to FD on the target.
907        Return the number of bytes written, or -1 if an error occurs
908        (and set *TARGET_ERRNO).  */
909     int (*to_fileio_pwrite) (struct target_ops *,
910                              int fd, const gdb_byte *write_buf, int len,
911                              ULONGEST offset, int *target_errno);
912
913     /* Read up to LEN bytes FD on the target into READ_BUF.
914        Return the number of bytes read, or -1 if an error occurs
915        (and set *TARGET_ERRNO).  */
916     int (*to_fileio_pread) (struct target_ops *,
917                             int fd, gdb_byte *read_buf, int len,
918                             ULONGEST offset, int *target_errno);
919
920     /* Get information about the file opened as FD and put it in
921        SB.  Return 0 on success, or -1 if an error occurs (and set
922        *TARGET_ERRNO).  */
923     int (*to_fileio_fstat) (struct target_ops *,
924                             int fd, struct stat *sb, int *target_errno);
925
926     /* Close FD on the target.  Return 0, or -1 if an error occurs
927        (and set *TARGET_ERRNO).  */
928     int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
929
930     /* Unlink FILENAME on the target, in the filesystem as seen by
931        INF.  If INF is NULL, use the filesystem seen by the debugger
932        (GDB or, for remote targets, the remote stub).  Return 0, or
933        -1 if an error occurs (and set *TARGET_ERRNO).  */
934     int (*to_fileio_unlink) (struct target_ops *,
935                              struct inferior *inf,
936                              const char *filename,
937                              int *target_errno);
938
939     /* Read value of symbolic link FILENAME on the target, in the
940        filesystem as seen by INF.  If INF is NULL, use the filesystem
941        seen by the debugger (GDB or, for remote targets, the remote
942        stub).  Return a null-terminated string allocated via xmalloc,
943        or NULL if an error occurs (and set *TARGET_ERRNO).  */
944     char *(*to_fileio_readlink) (struct target_ops *,
945                                  struct inferior *inf,
946                                  const char *filename,
947                                  int *target_errno);
948
949
950     /* Implement the "info proc" command.  */
951     void (*to_info_proc) (struct target_ops *, const char *,
952                           enum info_proc_what);
953
954     /* Tracepoint-related operations.  */
955
956     /* Prepare the target for a tracing run.  */
957     void (*to_trace_init) (struct target_ops *)
958       TARGET_DEFAULT_NORETURN (tcomplain ());
959
960     /* Send full details of a tracepoint location to the target.  */
961     void (*to_download_tracepoint) (struct target_ops *,
962                                     struct bp_location *location)
963       TARGET_DEFAULT_NORETURN (tcomplain ());
964
965     /* Is the target able to download tracepoint locations in current
966        state?  */
967     int (*to_can_download_tracepoint) (struct target_ops *)
968       TARGET_DEFAULT_RETURN (0);
969
970     /* Send full details of a trace state variable to the target.  */
971     void (*to_download_trace_state_variable) (struct target_ops *,
972                                               struct trace_state_variable *tsv)
973       TARGET_DEFAULT_NORETURN (tcomplain ());
974
975     /* Enable a tracepoint on the target.  */
976     void (*to_enable_tracepoint) (struct target_ops *,
977                                   struct bp_location *location)
978       TARGET_DEFAULT_NORETURN (tcomplain ());
979
980     /* Disable a tracepoint on the target.  */
981     void (*to_disable_tracepoint) (struct target_ops *,
982                                    struct bp_location *location)
983       TARGET_DEFAULT_NORETURN (tcomplain ());
984
985     /* Inform the target info of memory regions that are readonly
986        (such as text sections), and so it should return data from
987        those rather than look in the trace buffer.  */
988     void (*to_trace_set_readonly_regions) (struct target_ops *)
989       TARGET_DEFAULT_NORETURN (tcomplain ());
990
991     /* Start a trace run.  */
992     void (*to_trace_start) (struct target_ops *)
993       TARGET_DEFAULT_NORETURN (tcomplain ());
994
995     /* Get the current status of a tracing run.  */
996     int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
997       TARGET_DEFAULT_RETURN (-1);
998
999     void (*to_get_tracepoint_status) (struct target_ops *,
1000                                       struct breakpoint *tp,
1001                                       struct uploaded_tp *utp)
1002       TARGET_DEFAULT_NORETURN (tcomplain ());
1003
1004     /* Stop a trace run.  */
1005     void (*to_trace_stop) (struct target_ops *)
1006       TARGET_DEFAULT_NORETURN (tcomplain ());
1007
1008    /* Ask the target to find a trace frame of the given type TYPE,
1009       using NUM, ADDR1, and ADDR2 as search parameters.  Returns the
1010       number of the trace frame, and also the tracepoint number at
1011       TPP.  If no trace frame matches, return -1.  May throw if the
1012       operation fails.  */
1013     int (*to_trace_find) (struct target_ops *,
1014                           enum trace_find_type type, int num,
1015                           CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1016       TARGET_DEFAULT_RETURN (-1);
1017
1018     /* Get the value of the trace state variable number TSV, returning
1019        1 if the value is known and writing the value itself into the
1020        location pointed to by VAL, else returning 0.  */
1021     int (*to_get_trace_state_variable_value) (struct target_ops *,
1022                                               int tsv, LONGEST *val)
1023       TARGET_DEFAULT_RETURN (0);
1024
1025     int (*to_save_trace_data) (struct target_ops *, const char *filename)
1026       TARGET_DEFAULT_NORETURN (tcomplain ());
1027
1028     int (*to_upload_tracepoints) (struct target_ops *,
1029                                   struct uploaded_tp **utpp)
1030       TARGET_DEFAULT_RETURN (0);
1031
1032     int (*to_upload_trace_state_variables) (struct target_ops *,
1033                                             struct uploaded_tsv **utsvp)
1034       TARGET_DEFAULT_RETURN (0);
1035
1036     LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
1037                                       ULONGEST offset, LONGEST len)
1038       TARGET_DEFAULT_NORETURN (tcomplain ());
1039
1040     /* Get the minimum length of instruction on which a fast tracepoint
1041        may be set on the target.  If this operation is unsupported,
1042        return -1.  If for some reason the minimum length cannot be
1043        determined, return 0.  */
1044     int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
1045       TARGET_DEFAULT_RETURN (-1);
1046
1047     /* Set the target's tracing behavior in response to unexpected
1048        disconnection - set VAL to 1 to keep tracing, 0 to stop.  */
1049     void (*to_set_disconnected_tracing) (struct target_ops *, int val)
1050       TARGET_DEFAULT_IGNORE ();
1051     void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
1052       TARGET_DEFAULT_IGNORE ();
1053     /* Set the size of trace buffer in the target.  */
1054     void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
1055       TARGET_DEFAULT_IGNORE ();
1056
1057     /* Add/change textual notes about the trace run, returning 1 if
1058        successful, 0 otherwise.  */
1059     int (*to_set_trace_notes) (struct target_ops *,
1060                                const char *user, const char *notes,
1061                                const char *stopnotes)
1062       TARGET_DEFAULT_RETURN (0);
1063
1064     /* Return the processor core that thread PTID was last seen on.
1065        This information is updated only when:
1066        - update_thread_list is called
1067        - thread stops
1068        If the core cannot be determined -- either for the specified
1069        thread, or right now, or in this debug session, or for this
1070        target -- return -1.  */
1071     int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
1072       TARGET_DEFAULT_RETURN (-1);
1073
1074     /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1075        matches the contents of [DATA,DATA+SIZE).  Returns 1 if there's
1076        a match, 0 if there's a mismatch, and -1 if an error is
1077        encountered while reading memory.  */
1078     int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
1079                              CORE_ADDR memaddr, ULONGEST size)
1080       TARGET_DEFAULT_FUNC (default_verify_memory);
1081
1082     /* Return the address of the start of the Thread Information Block
1083        a Windows OS specific feature.  */
1084     int (*to_get_tib_address) (struct target_ops *,
1085                                ptid_t ptid, CORE_ADDR *addr)
1086       TARGET_DEFAULT_NORETURN (tcomplain ());
1087
1088     /* Send the new settings of write permission variables.  */
1089     void (*to_set_permissions) (struct target_ops *)
1090       TARGET_DEFAULT_IGNORE ();
1091
1092     /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1093        with its details.  Return 1 on success, 0 on failure.  */
1094     int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
1095                                            struct static_tracepoint_marker *marker)
1096       TARGET_DEFAULT_RETURN (0);
1097
1098     /* Return a vector of all tracepoints markers string id ID, or all
1099        markers if ID is NULL.  */
1100     VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
1101       TARGET_DEFAULT_NORETURN (tcomplain ());
1102
1103     /* Return a traceframe info object describing the current
1104        traceframe's contents.  This method should not cache data;
1105        higher layers take care of caching, invalidating, and
1106        re-fetching when necessary.  */
1107     traceframe_info_up (*to_traceframe_info) (struct target_ops *)
1108       TARGET_DEFAULT_NORETURN (tcomplain ());
1109
1110     /* Ask the target to use or not to use agent according to USE.  Return 1
1111        successful, 0 otherwise.  */
1112     int (*to_use_agent) (struct target_ops *, int use)
1113       TARGET_DEFAULT_NORETURN (tcomplain ());
1114
1115     /* Is the target able to use agent in current state?  */
1116     int (*to_can_use_agent) (struct target_ops *)
1117       TARGET_DEFAULT_RETURN (0);
1118
1119     /* Check whether the target supports branch tracing.  */
1120     int (*to_supports_btrace) (struct target_ops *, enum btrace_format)
1121       TARGET_DEFAULT_RETURN (0);
1122
1123     /* Enable branch tracing for PTID using CONF configuration.
1124        Return a branch trace target information struct for reading and for
1125        disabling branch trace.  */
1126     struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
1127                                                     ptid_t ptid,
1128                                                     const struct btrace_config *conf)
1129       TARGET_DEFAULT_NORETURN (tcomplain ());
1130
1131     /* Disable branch tracing and deallocate TINFO.  */
1132     void (*to_disable_btrace) (struct target_ops *,
1133                                struct btrace_target_info *tinfo)
1134       TARGET_DEFAULT_NORETURN (tcomplain ());
1135
1136     /* Disable branch tracing and deallocate TINFO.  This function is similar
1137        to to_disable_btrace, except that it is called during teardown and is
1138        only allowed to perform actions that are safe.  A counter-example would
1139        be attempting to talk to a remote target.  */
1140     void (*to_teardown_btrace) (struct target_ops *,
1141                                 struct btrace_target_info *tinfo)
1142       TARGET_DEFAULT_NORETURN (tcomplain ());
1143
1144     /* Read branch trace data for the thread indicated by BTINFO into DATA.
1145        DATA is cleared before new trace is added.  */
1146     enum btrace_error (*to_read_btrace) (struct target_ops *self,
1147                                          struct btrace_data *data,
1148                                          struct btrace_target_info *btinfo,
1149                                          enum btrace_read_type type)
1150       TARGET_DEFAULT_NORETURN (tcomplain ());
1151
1152     /* Get the branch trace configuration.  */
1153     const struct btrace_config *(*to_btrace_conf) (struct target_ops *self,
1154                                                    const struct btrace_target_info *)
1155       TARGET_DEFAULT_RETURN (NULL);
1156
1157     /* Current recording method.  */
1158     enum record_method (*to_record_method) (struct target_ops *, ptid_t ptid)
1159       TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1160
1161     /* Stop trace recording.  */
1162     void (*to_stop_recording) (struct target_ops *)
1163       TARGET_DEFAULT_IGNORE ();
1164
1165     /* Print information about the recording.  */
1166     void (*to_info_record) (struct target_ops *)
1167       TARGET_DEFAULT_IGNORE ();
1168
1169     /* Save the recorded execution trace into a file.  */
1170     void (*to_save_record) (struct target_ops *, const char *filename)
1171       TARGET_DEFAULT_NORETURN (tcomplain ());
1172
1173     /* Delete the recorded execution trace from the current position
1174        onwards.  */
1175     void (*to_delete_record) (struct target_ops *)
1176       TARGET_DEFAULT_NORETURN (tcomplain ());
1177
1178     /* Query if the record target is currently replaying PTID.  */
1179     int (*to_record_is_replaying) (struct target_ops *, ptid_t ptid)
1180       TARGET_DEFAULT_RETURN (0);
1181
1182     /* Query if the record target will replay PTID if it were resumed in
1183        execution direction DIR.  */
1184     int (*to_record_will_replay) (struct target_ops *, ptid_t ptid, int dir)
1185       TARGET_DEFAULT_RETURN (0);
1186
1187     /* Stop replaying.  */
1188     void (*to_record_stop_replaying) (struct target_ops *)
1189       TARGET_DEFAULT_IGNORE ();
1190
1191     /* Go to the begin of the execution trace.  */
1192     void (*to_goto_record_begin) (struct target_ops *)
1193       TARGET_DEFAULT_NORETURN (tcomplain ());
1194
1195     /* Go to the end of the execution trace.  */
1196     void (*to_goto_record_end) (struct target_ops *)
1197       TARGET_DEFAULT_NORETURN (tcomplain ());
1198
1199     /* Go to a specific location in the recorded execution trace.  */
1200     void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1201       TARGET_DEFAULT_NORETURN (tcomplain ());
1202
1203     /* Disassemble SIZE instructions in the recorded execution trace from
1204        the current position.
1205        If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1206        disassemble SIZE succeeding instructions.  */
1207     void (*to_insn_history) (struct target_ops *, int size,
1208                              gdb_disassembly_flags flags)
1209       TARGET_DEFAULT_NORETURN (tcomplain ());
1210
1211     /* Disassemble SIZE instructions in the recorded execution trace around
1212        FROM.
1213        If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1214        disassemble SIZE instructions after FROM.  */
1215     void (*to_insn_history_from) (struct target_ops *,
1216                                   ULONGEST from, int size,
1217                                   gdb_disassembly_flags flags)
1218       TARGET_DEFAULT_NORETURN (tcomplain ());
1219
1220     /* Disassemble a section of the recorded execution trace from instruction
1221        BEGIN (inclusive) to instruction END (inclusive).  */
1222     void (*to_insn_history_range) (struct target_ops *,
1223                                    ULONGEST begin, ULONGEST end,
1224                                    gdb_disassembly_flags flags)
1225       TARGET_DEFAULT_NORETURN (tcomplain ());
1226
1227     /* Print a function trace of the recorded execution trace.
1228        If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1229        succeeding functions.  */
1230     void (*to_call_history) (struct target_ops *, int size, int flags)
1231       TARGET_DEFAULT_NORETURN (tcomplain ());
1232
1233     /* Print a function trace of the recorded execution trace starting
1234        at function FROM.
1235        If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1236        SIZE functions after FROM.  */
1237     void (*to_call_history_from) (struct target_ops *,
1238                                   ULONGEST begin, int size, int flags)
1239       TARGET_DEFAULT_NORETURN (tcomplain ());
1240
1241     /* Print a function trace of an execution trace section from function BEGIN
1242        (inclusive) to function END (inclusive).  */
1243     void (*to_call_history_range) (struct target_ops *,
1244                                    ULONGEST begin, ULONGEST end, int flags)
1245       TARGET_DEFAULT_NORETURN (tcomplain ());
1246
1247     /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1248        non-empty annex.  */
1249     int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1250       TARGET_DEFAULT_RETURN (0);
1251
1252     /* Those unwinders are tried before any other arch unwinders.  If
1253        SELF doesn't have unwinders, it should delegate to the
1254        "beneath" target.  */
1255     const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self)
1256       TARGET_DEFAULT_RETURN (NULL);
1257
1258     const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self)
1259       TARGET_DEFAULT_RETURN (NULL);
1260
1261     /* Prepare to generate a core file.  */
1262     void (*to_prepare_to_generate_core) (struct target_ops *)
1263       TARGET_DEFAULT_IGNORE ();
1264
1265     /* Cleanup after generating a core file.  */
1266     void (*to_done_generating_core) (struct target_ops *)
1267       TARGET_DEFAULT_IGNORE ();
1268
1269     int to_magic;
1270     /* Need sub-structure for target machine related rather than comm related?
1271      */
1272   };
1273
1274 /* Magic number for checking ops size.  If a struct doesn't end with this
1275    number, somebody changed the declaration but didn't change all the
1276    places that initialize one.  */
1277
1278 #define OPS_MAGIC       3840
1279
1280 /* The ops structure for our "current" target process.  This should
1281    never be NULL.  If there is no target, it points to the dummy_target.  */
1282
1283 extern struct target_ops current_target;
1284
1285 /* Define easy words for doing these operations on our current target.  */
1286
1287 #define target_shortname        (current_target.to_shortname)
1288 #define target_longname         (current_target.to_longname)
1289
1290 /* Does whatever cleanup is required for a target that we are no
1291    longer going to be calling.  This routine is automatically always
1292    called after popping the target off the target stack - the target's
1293    own methods are no longer available through the target vector.
1294    Closing file descriptors and freeing all memory allocated memory are
1295    typical things it should do.  */
1296
1297 void target_close (struct target_ops *targ);
1298
1299 /* Find the correct target to use for "attach".  If a target on the
1300    current stack supports attaching, then it is returned.  Otherwise,
1301    the default run target is returned.  */
1302
1303 extern struct target_ops *find_attach_target (void);
1304
1305 /* Find the correct target to use for "run".  If a target on the
1306    current stack supports creating a new inferior, then it is
1307    returned.  Otherwise, the default run target is returned.  */
1308
1309 extern struct target_ops *find_run_target (void);
1310
1311 /* Some targets don't generate traps when attaching to the inferior,
1312    or their target_attach implementation takes care of the waiting.
1313    These targets must set to_attach_no_wait.  */
1314
1315 #define target_attach_no_wait \
1316      (current_target.to_attach_no_wait)
1317
1318 /* The target_attach operation places a process under debugger control,
1319    and stops the process.
1320
1321    This operation provides a target-specific hook that allows the
1322    necessary bookkeeping to be performed after an attach completes.  */
1323 #define target_post_attach(pid) \
1324      (*current_target.to_post_attach) (&current_target, pid)
1325
1326 /* Display a message indicating we're about to detach from the current
1327    inferior process.  */
1328
1329 extern void target_announce_detach (int from_tty);
1330
1331 /* Takes a program previously attached to and detaches it.
1332    The program may resume execution (some targets do, some don't) and will
1333    no longer stop on signals, etc.  We better not have left any breakpoints
1334    in the program or it'll die when it hits one.  ARGS is arguments
1335    typed by the user (e.g. a signal to send the process).  FROM_TTY
1336    says whether to be verbose or not.  */
1337
1338 extern void target_detach (const char *, int);
1339
1340 /* Disconnect from the current target without resuming it (leaving it
1341    waiting for a debugger).  */
1342
1343 extern void target_disconnect (const char *, int);
1344
1345 /* Resume execution (or prepare for execution) of a target thread,
1346    process or all processes.  STEP says whether to hardware
1347    single-step or to run free; SIGGNAL is the signal to be given to
1348    the target, or GDB_SIGNAL_0 for no signal.  The caller may not pass
1349    GDB_SIGNAL_DEFAULT.  A specific PTID means `step/resume only this
1350    process id'.  A wildcard PTID (all threads, or all threads of
1351    process) means `step/resume INFERIOR_PTID, and let other threads
1352    (for which the wildcard PTID matches) resume with their
1353    'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1354    is in "pass" state, or with no signal if in "no pass" state.
1355
1356    In order to efficiently handle batches of resumption requests,
1357    targets may implement this method such that it records the
1358    resumption request, but defers the actual resumption to the
1359    target_commit_resume method implementation.  See
1360    target_commit_resume below.  */
1361 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1362
1363 /* Commit a series of resumption requests previously prepared with
1364    target_resume calls.
1365
1366    GDB always calls target_commit_resume after calling target_resume
1367    one or more times.  A target may thus use this method in
1368    coordination with the target_resume method to batch target-side
1369    resumption requests.  In that case, the target doesn't actually
1370    resume in its target_resume implementation.  Instead, it prepares
1371    the resumption in target_resume, and defers the actual resumption
1372    to target_commit_resume.  E.g., the remote target uses this to
1373    coalesce multiple resumption requests in a single vCont packet.  */
1374 extern void target_commit_resume ();
1375
1376 /* Setup to defer target_commit_resume calls, and reactivate
1377    target_commit_resume on destruction, if it was previously
1378    active.  */
1379 extern scoped_restore_tmpl<int> make_scoped_defer_target_commit_resume ();
1380
1381 /* For target_read_memory see target/target.h.  */
1382
1383 /* The default target_ops::to_wait implementation.  */
1384
1385 extern ptid_t default_target_wait (struct target_ops *ops,
1386                                    ptid_t ptid,
1387                                    struct target_waitstatus *status,
1388                                    int options);
1389
1390 /* Fetch at least register REGNO, or all regs if regno == -1.  No result.  */
1391
1392 extern void target_fetch_registers (struct regcache *regcache, int regno);
1393
1394 /* Store at least register REGNO, or all regs if REGNO == -1.
1395    It can store as many registers as it wants to, so target_prepare_to_store
1396    must have been previously called.  Calls error() if there are problems.  */
1397
1398 extern void target_store_registers (struct regcache *regcache, int regs);
1399
1400 /* Get ready to modify the registers array.  On machines which store
1401    individual registers, this doesn't need to do anything.  On machines
1402    which store all the registers in one fell swoop, this makes sure
1403    that REGISTERS contains all the registers from the program being
1404    debugged.  */
1405
1406 #define target_prepare_to_store(regcache)       \
1407      (*current_target.to_prepare_to_store) (&current_target, regcache)
1408
1409 /* Determine current address space of thread PTID.  */
1410
1411 struct address_space *target_thread_address_space (ptid_t);
1412
1413 /* Implement the "info proc" command.  This returns one if the request
1414    was handled, and zero otherwise.  It can also throw an exception if
1415    an error was encountered while attempting to handle the
1416    request.  */
1417
1418 int target_info_proc (const char *, enum info_proc_what);
1419
1420 /* Returns true if this target can disable address space randomization.  */
1421
1422 int target_supports_disable_randomization (void);
1423
1424 /* Returns true if this target can enable and disable tracepoints
1425    while a trace experiment is running.  */
1426
1427 #define target_supports_enable_disable_tracepoint() \
1428   (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1429
1430 #define target_supports_string_tracing() \
1431   (*current_target.to_supports_string_tracing) (&current_target)
1432
1433 /* Returns true if this target can handle breakpoint conditions
1434    on its end.  */
1435
1436 #define target_supports_evaluation_of_breakpoint_conditions() \
1437   (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1438
1439 /* Returns true if this target can handle breakpoint commands
1440    on its end.  */
1441
1442 #define target_can_run_breakpoint_commands() \
1443   (*current_target.to_can_run_breakpoint_commands) (&current_target)
1444
1445 extern int target_read_string (CORE_ADDR, char **, int, int *);
1446
1447 /* For target_read_memory see target/target.h.  */
1448
1449 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1450                                    ssize_t len);
1451
1452 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1453
1454 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1455
1456 /* For target_write_memory see target/target.h.  */
1457
1458 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1459                                     ssize_t len);
1460
1461 /* Fetches the target's memory map.  If one is found it is sorted
1462    and returned, after some consistency checking.  Otherwise, NULL
1463    is returned.  */
1464 VEC(mem_region_s) *target_memory_map (void);
1465
1466 /* Erases all flash memory regions on the target.  */
1467 void flash_erase_command (char *cmd, int from_tty);
1468
1469 /* Erase the specified flash region.  */
1470 void target_flash_erase (ULONGEST address, LONGEST length);
1471
1472 /* Finish a sequence of flash operations.  */
1473 void target_flash_done (void);
1474
1475 /* Describes a request for a memory write operation.  */
1476 struct memory_write_request
1477   {
1478     /* Begining address that must be written.  */
1479     ULONGEST begin;
1480     /* Past-the-end address.  */
1481     ULONGEST end;
1482     /* The data to write.  */
1483     gdb_byte *data;
1484     /* A callback baton for progress reporting for this request.  */
1485     void *baton;
1486   };
1487 typedef struct memory_write_request memory_write_request_s;
1488 DEF_VEC_O(memory_write_request_s);
1489
1490 /* Enumeration specifying different flash preservation behaviour.  */
1491 enum flash_preserve_mode
1492   {
1493     flash_preserve,
1494     flash_discard
1495   };
1496
1497 /* Write several memory blocks at once.  This version can be more
1498    efficient than making several calls to target_write_memory, in
1499    particular because it can optimize accesses to flash memory.
1500
1501    Moreover, this is currently the only memory access function in gdb
1502    that supports writing to flash memory, and it should be used for
1503    all cases where access to flash memory is desirable.
1504
1505    REQUESTS is the vector (see vec.h) of memory_write_request.
1506    PRESERVE_FLASH_P indicates what to do with blocks which must be
1507      erased, but not completely rewritten.
1508    PROGRESS_CB is a function that will be periodically called to provide
1509      feedback to user.  It will be called with the baton corresponding
1510      to the request currently being written.  It may also be called
1511      with a NULL baton, when preserved flash sectors are being rewritten.
1512
1513    The function returns 0 on success, and error otherwise.  */
1514 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1515                                 enum flash_preserve_mode preserve_flash_p,
1516                                 void (*progress_cb) (ULONGEST, void *));
1517
1518 /* Print a line about the current target.  */
1519
1520 #define target_files_info()     \
1521      (*current_target.to_files_info) (&current_target)
1522
1523 /* Insert a breakpoint at address BP_TGT->placed_address in
1524    the target machine.  Returns 0 for success, and returns non-zero or
1525    throws an error (with a detailed failure reason error code and
1526    message) otherwise.  */
1527
1528 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1529                                      struct bp_target_info *bp_tgt);
1530
1531 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1532    machine.  Result is 0 for success, non-zero for error.  */
1533
1534 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1535                                      struct bp_target_info *bp_tgt,
1536                                      enum remove_bp_reason reason);
1537
1538 /* Return true if the target stack has a non-default
1539   "to_terminal_ours" method.  */
1540
1541 extern int target_supports_terminal_ours (void);
1542
1543 /* Kill the inferior process.   Make it go away.  */
1544
1545 extern void target_kill (void);
1546
1547 /* Load an executable file into the target process.  This is expected
1548    to not only bring new code into the target process, but also to
1549    update GDB's symbol tables to match.
1550
1551    ARG contains command-line arguments, to be broken down with
1552    buildargv ().  The first non-switch argument is the filename to
1553    load, FILE; the second is a number (as parsed by strtoul (..., ...,
1554    0)), which is an offset to apply to the load addresses of FILE's
1555    sections.  The target may define switches, or other non-switch
1556    arguments, as it pleases.  */
1557
1558 extern void target_load (const char *arg, int from_tty);
1559
1560 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1561    notification of inferior events such as fork and vork immediately
1562    after the inferior is created.  (This because of how gdb gets an
1563    inferior created via invoking a shell to do it.  In such a scenario,
1564    if the shell init file has commands in it, the shell will fork and
1565    exec for each of those commands, and we will see each such fork
1566    event.  Very bad.)
1567
1568    Such targets will supply an appropriate definition for this function.  */
1569
1570 #define target_post_startup_inferior(ptid) \
1571      (*current_target.to_post_startup_inferior) (&current_target, ptid)
1572
1573 /* On some targets, we can catch an inferior fork or vfork event when
1574    it occurs.  These functions insert/remove an already-created
1575    catchpoint for such events.  They return  0 for success, 1 if the
1576    catchpoint type is not supported and -1 for failure.  */
1577
1578 #define target_insert_fork_catchpoint(pid) \
1579      (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1580
1581 #define target_remove_fork_catchpoint(pid) \
1582      (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1583
1584 #define target_insert_vfork_catchpoint(pid) \
1585      (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1586
1587 #define target_remove_vfork_catchpoint(pid) \
1588      (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1589
1590 /* If the inferior forks or vforks, this function will be called at
1591    the next resume in order to perform any bookkeeping and fiddling
1592    necessary to continue debugging either the parent or child, as
1593    requested, and releasing the other.  Information about the fork
1594    or vfork event is available via get_last_target_status ().
1595    This function returns 1 if the inferior should not be resumed
1596    (i.e. there is another event pending).  */
1597
1598 int target_follow_fork (int follow_child, int detach_fork);
1599
1600 /* Handle the target-specific bookkeeping required when the inferior
1601    makes an exec call.  INF is the exec'd inferior.  */
1602
1603 void target_follow_exec (struct inferior *inf, char *execd_pathname);
1604
1605 /* On some targets, we can catch an inferior exec event when it
1606    occurs.  These functions insert/remove an already-created
1607    catchpoint for such events.  They return  0 for success, 1 if the
1608    catchpoint type is not supported and -1 for failure.  */
1609
1610 #define target_insert_exec_catchpoint(pid) \
1611      (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1612
1613 #define target_remove_exec_catchpoint(pid) \
1614      (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1615
1616 /* Syscall catch.
1617
1618    NEEDED is nonzero if any syscall catch (of any kind) is requested.
1619    If NEEDED is zero, it means the target can disable the mechanism to
1620    catch system calls because there are no more catchpoints of this type.
1621
1622    ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1623    being requested.  In this case, both TABLE_SIZE and TABLE should
1624    be ignored.
1625
1626    TABLE_SIZE is the number of elements in TABLE.  It only matters if
1627    ANY_COUNT is zero.
1628
1629    TABLE is an array of ints, indexed by syscall number.  An element in
1630    this array is nonzero if that syscall should be caught.  This argument
1631    only matters if ANY_COUNT is zero.
1632
1633    Return 0 for success, 1 if syscall catchpoints are not supported or -1
1634    for failure.  */
1635
1636 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1637      (*current_target.to_set_syscall_catchpoint) (&current_target,      \
1638                                                   pid, needed, any_count, \
1639                                                   table_size, table)
1640
1641 /* Returns TRUE if PID has exited.  And, also sets EXIT_STATUS to the
1642    exit code of PID, if any.  */
1643
1644 #define target_has_exited(pid,wait_status,exit_status) \
1645      (*current_target.to_has_exited) (&current_target, \
1646                                       pid,wait_status,exit_status)
1647
1648 /* The debugger has completed a blocking wait() call.  There is now
1649    some process event that must be processed.  This function should
1650    be defined by those targets that require the debugger to perform
1651    cleanup or internal state changes in response to the process event.  */
1652
1653 /* For target_mourn_inferior see target/target.h.  */
1654
1655 /* Does target have enough data to do a run or attach command? */
1656
1657 #define target_can_run(t) \
1658      ((t)->to_can_run) (t)
1659
1660 /* Set list of signals to be handled in the target.
1661
1662    PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1663    (enum gdb_signal).  For every signal whose entry in this array is
1664    non-zero, the target is allowed -but not required- to skip reporting
1665    arrival of the signal to the GDB core by returning from target_wait,
1666    and to pass the signal directly to the inferior instead.
1667
1668    However, if the target is hardware single-stepping a thread that is
1669    about to receive a signal, it needs to be reported in any case, even
1670    if mentioned in a previous target_pass_signals call.   */
1671
1672 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1673
1674 /* Set list of signals the target may pass to the inferior.  This
1675    directly maps to the "handle SIGNAL pass/nopass" setting.
1676
1677    PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1678    number (enum gdb_signal).  For every signal whose entry in this
1679    array is non-zero, the target is allowed to pass the signal to the
1680    inferior.  Signals not present in the array shall be silently
1681    discarded.  This does not influence whether to pass signals to the
1682    inferior as a result of a target_resume call.  This is useful in
1683    scenarios where the target needs to decide whether to pass or not a
1684    signal to the inferior without GDB core involvement, such as for
1685    example, when detaching (as threads may have been suspended with
1686    pending signals not reported to GDB).  */
1687
1688 extern void target_program_signals (int nsig, unsigned char *program_signals);
1689
1690 /* Check to see if a thread is still alive.  */
1691
1692 extern int target_thread_alive (ptid_t ptid);
1693
1694 /* Sync the target's threads with GDB's thread list.  */
1695
1696 extern void target_update_thread_list (void);
1697
1698 /* Make target stop in a continuable fashion.  (For instance, under
1699    Unix, this should act like SIGSTOP).  Note that this function is
1700    asynchronous: it does not wait for the target to become stopped
1701    before returning.  If this is the behavior you want please use
1702    target_stop_and_wait.  */
1703
1704 extern void target_stop (ptid_t ptid);
1705
1706 /* Interrupt the target just like the user typed a ^C on the
1707    inferior's controlling terminal.  (For instance, under Unix, this
1708    should act like SIGINT).  This function is asynchronous.  */
1709
1710 extern void target_interrupt (ptid_t ptid);
1711
1712 /* Pass a ^C, as determined to have been pressed by checking the quit
1713    flag, to the target.  Normally calls target_interrupt, but remote
1714    targets may take the opportunity to detect the remote side is not
1715    responding and offer to disconnect.  */
1716
1717 extern void target_pass_ctrlc (void);
1718
1719 /* The default target_ops::to_pass_ctrlc implementation.  Simply calls
1720    target_interrupt.  */
1721 extern void default_target_pass_ctrlc (struct target_ops *ops);
1722
1723 /* Send the specified COMMAND to the target's monitor
1724    (shell,interpreter) for execution.  The result of the query is
1725    placed in OUTBUF.  */
1726
1727 #define target_rcmd(command, outbuf) \
1728      (*current_target.to_rcmd) (&current_target, command, outbuf)
1729
1730
1731 /* Does the target include all of memory, or only part of it?  This
1732    determines whether we look up the target chain for other parts of
1733    memory if this target can't satisfy a request.  */
1734
1735 extern int target_has_all_memory_1 (void);
1736 #define target_has_all_memory target_has_all_memory_1 ()
1737
1738 /* Does the target include memory?  (Dummy targets don't.)  */
1739
1740 extern int target_has_memory_1 (void);
1741 #define target_has_memory target_has_memory_1 ()
1742
1743 /* Does the target have a stack?  (Exec files don't, VxWorks doesn't, until
1744    we start a process.)  */
1745
1746 extern int target_has_stack_1 (void);
1747 #define target_has_stack target_has_stack_1 ()
1748
1749 /* Does the target have registers?  (Exec files don't.)  */
1750
1751 extern int target_has_registers_1 (void);
1752 #define target_has_registers target_has_registers_1 ()
1753
1754 /* Does the target have execution?  Can we make it jump (through
1755    hoops), or pop its stack a few times?  This means that the current
1756    target is currently executing; for some targets, that's the same as
1757    whether or not the target is capable of execution, but there are
1758    also targets which can be current while not executing.  In that
1759    case this will become true after to_create_inferior or
1760    to_attach.  */
1761
1762 extern int target_has_execution_1 (ptid_t);
1763
1764 /* Like target_has_execution_1, but always passes inferior_ptid.  */
1765
1766 extern int target_has_execution_current (void);
1767
1768 #define target_has_execution target_has_execution_current ()
1769
1770 /* Default implementations for process_stratum targets.  Return true
1771    if there's a selected inferior, false otherwise.  */
1772
1773 extern int default_child_has_all_memory (struct target_ops *ops);
1774 extern int default_child_has_memory (struct target_ops *ops);
1775 extern int default_child_has_stack (struct target_ops *ops);
1776 extern int default_child_has_registers (struct target_ops *ops);
1777 extern int default_child_has_execution (struct target_ops *ops,
1778                                         ptid_t the_ptid);
1779
1780 /* Can the target support the debugger control of thread execution?
1781    Can it lock the thread scheduler?  */
1782
1783 #define target_can_lock_scheduler \
1784      (current_target.to_has_thread_control & tc_schedlock)
1785
1786 /* Controls whether async mode is permitted.  */
1787 extern int target_async_permitted;
1788
1789 /* Can the target support asynchronous execution?  */
1790 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1791
1792 /* Is the target in asynchronous execution mode?  */
1793 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1794
1795 /* Enables/disabled async target events.  */
1796 extern void target_async (int enable);
1797
1798 /* Enables/disables thread create and exit events.  */
1799 extern void target_thread_events (int enable);
1800
1801 /* Whether support for controlling the target backends always in
1802    non-stop mode is enabled.  */
1803 extern enum auto_boolean target_non_stop_enabled;
1804
1805 /* Is the target in non-stop mode?  Some targets control the inferior
1806    in non-stop mode even with "set non-stop off".  Always true if "set
1807    non-stop" is on.  */
1808 extern int target_is_non_stop_p (void);
1809
1810 #define target_execution_direction() \
1811   (current_target.to_execution_direction (&current_target))
1812
1813 /* Converts a process id to a string.  Usually, the string just contains
1814    `process xyz', but on some systems it may contain
1815    `process xyz thread abc'.  */
1816
1817 extern const char *target_pid_to_str (ptid_t ptid);
1818
1819 extern const char *normal_pid_to_str (ptid_t ptid);
1820
1821 /* Return a short string describing extra information about PID,
1822    e.g. "sleeping", "runnable", "running on LWP 3".  Null return value
1823    is okay.  */
1824
1825 #define target_extra_thread_info(TP) \
1826      (current_target.to_extra_thread_info (&current_target, TP))
1827
1828 /* Return the thread's name, or NULL if the target is unable to determine it.
1829    The returned value must not be freed by the caller.  */
1830
1831 extern const char *target_thread_name (struct thread_info *);
1832
1833 /* Given a pointer to a thread library specific thread handle and
1834    its length, return a pointer to the corresponding thread_info struct.  */
1835
1836 extern struct thread_info *target_thread_handle_to_thread_info
1837   (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1838
1839 /* Attempts to find the pathname of the executable file
1840    that was run to create a specified process.
1841
1842    The process PID must be stopped when this operation is used.
1843
1844    If the executable file cannot be determined, NULL is returned.
1845
1846    Else, a pointer to a character string containing the pathname
1847    is returned.  This string should be copied into a buffer by
1848    the client if the string will not be immediately used, or if
1849    it must persist.  */
1850
1851 #define target_pid_to_exec_file(pid) \
1852      (current_target.to_pid_to_exec_file) (&current_target, pid)
1853
1854 /* See the to_thread_architecture description in struct target_ops.  */
1855
1856 #define target_thread_architecture(ptid) \
1857      (current_target.to_thread_architecture (&current_target, ptid))
1858
1859 /*
1860  * Iterator function for target memory regions.
1861  * Calls a callback function once for each memory region 'mapped'
1862  * in the child process.  Defined as a simple macro rather than
1863  * as a function macro so that it can be tested for nullity.
1864  */
1865
1866 #define target_find_memory_regions(FUNC, DATA) \
1867      (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1868
1869 /*
1870  * Compose corefile .note section.
1871  */
1872
1873 #define target_make_corefile_notes(BFD, SIZE_P) \
1874      (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1875
1876 /* Bookmark interfaces.  */
1877 #define target_get_bookmark(ARGS, FROM_TTY) \
1878      (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1879
1880 #define target_goto_bookmark(ARG, FROM_TTY) \
1881      (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1882
1883 /* Hardware watchpoint interfaces.  */
1884
1885 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1886    write).  Only the INFERIOR_PTID task is being queried.  */
1887
1888 #define target_stopped_by_watchpoint()          \
1889   ((*current_target.to_stopped_by_watchpoint) (&current_target))
1890
1891 /* Returns non-zero if the target stopped because it executed a
1892    software breakpoint instruction.  */
1893
1894 #define target_stopped_by_sw_breakpoint()               \
1895   ((*current_target.to_stopped_by_sw_breakpoint) (&current_target))
1896
1897 #define target_supports_stopped_by_sw_breakpoint() \
1898   ((*current_target.to_supports_stopped_by_sw_breakpoint) (&current_target))
1899
1900 #define target_stopped_by_hw_breakpoint()                               \
1901   ((*current_target.to_stopped_by_hw_breakpoint) (&current_target))
1902
1903 #define target_supports_stopped_by_hw_breakpoint() \
1904   ((*current_target.to_supports_stopped_by_hw_breakpoint) (&current_target))
1905
1906 /* Non-zero if we have steppable watchpoints  */
1907
1908 #define target_have_steppable_watchpoint \
1909    (current_target.to_have_steppable_watchpoint)
1910
1911 /* Non-zero if we have continuable watchpoints  */
1912
1913 #define target_have_continuable_watchpoint \
1914    (current_target.to_have_continuable_watchpoint)
1915
1916 /* Provide defaults for hardware watchpoint functions.  */
1917
1918 /* If the *_hw_beakpoint functions have not been defined
1919    elsewhere use the definitions in the target vector.  */
1920
1921 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1922    Returns negative if the target doesn't have enough hardware debug
1923    registers available.  Return zero if hardware watchpoint of type
1924    TYPE isn't supported.  TYPE is one of bp_hardware_watchpoint,
1925    bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1926    CNT is the number of such watchpoints used so far, including this
1927    one.  OTHERTYPE is the number of watchpoints of other types than
1928    this one used so far.  */
1929
1930 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1931  (*current_target.to_can_use_hw_breakpoint) (&current_target,  \
1932                                              TYPE, CNT, OTHERTYPE)
1933
1934 /* Returns the number of debug registers needed to watch the given
1935    memory region, or zero if not supported.  */
1936
1937 #define target_region_ok_for_hw_watchpoint(addr, len) \
1938     (*current_target.to_region_ok_for_hw_watchpoint) (&current_target,  \
1939                                                       addr, len)
1940
1941
1942 #define target_can_do_single_step() \
1943   (*current_target.to_can_do_single_step) (&current_target)
1944
1945 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1946    TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1947    COND is the expression for its condition, or NULL if there's none.
1948    Returns 0 for success, 1 if the watchpoint type is not supported,
1949    -1 for failure.  */
1950
1951 #define target_insert_watchpoint(addr, len, type, cond) \
1952      (*current_target.to_insert_watchpoint) (&current_target,   \
1953                                              addr, len, type, cond)
1954
1955 #define target_remove_watchpoint(addr, len, type, cond) \
1956      (*current_target.to_remove_watchpoint) (&current_target,   \
1957                                              addr, len, type, cond)
1958
1959 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1960    RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1961    or hw_access for an access watchpoint.  Returns 0 for success, 1 if
1962    masked watchpoints are not supported, -1 for failure.  */
1963
1964 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1965                                           enum target_hw_bp_type);
1966
1967 /* Remove a masked watchpoint at ADDR with the mask MASK.
1968    RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1969    or hw_access for an access watchpoint.  Returns 0 for success, non-zero
1970    for failure.  */
1971
1972 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1973                                           enum target_hw_bp_type);
1974
1975 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1976    the target machine.  Returns 0 for success, and returns non-zero or
1977    throws an error (with a detailed failure reason error code and
1978    message) otherwise.  */
1979
1980 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1981      (*current_target.to_insert_hw_breakpoint) (&current_target,        \
1982                                                 gdbarch, bp_tgt)
1983
1984 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1985      (*current_target.to_remove_hw_breakpoint) (&current_target,        \
1986                                                 gdbarch, bp_tgt)
1987
1988 /* Return number of debug registers needed for a ranged breakpoint,
1989    or -1 if ranged breakpoints are not supported.  */
1990
1991 extern int target_ranged_break_num_registers (void);
1992
1993 /* Return non-zero if target knows the data address which triggered this
1994    target_stopped_by_watchpoint, in such case place it to *ADDR_P.  Only the
1995    INFERIOR_PTID task is being queried.  */
1996 #define target_stopped_data_address(target, addr_p) \
1997     (*(target)->to_stopped_data_address) (target, addr_p)
1998
1999 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2000    LENGTH bytes beginning at START.  */
2001 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2002   (*(target)->to_watchpoint_addr_within_range) (target, addr, start, length)
2003
2004 /* Return non-zero if the target is capable of using hardware to evaluate
2005    the condition expression.  In this case, if the condition is false when
2006    the watched memory location changes, execution may continue without the
2007    debugger being notified.
2008
2009    Due to limitations in the hardware implementation, it may be capable of
2010    avoiding triggering the watchpoint in some cases where the condition
2011    expression is false, but may report some false positives as well.
2012    For this reason, GDB will still evaluate the condition expression when
2013    the watchpoint triggers.  */
2014 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2015   (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
2016                                                        addr, len, type, cond)
2017
2018 /* Return number of debug registers needed for a masked watchpoint,
2019    -1 if masked watchpoints are not supported or -2 if the given address
2020    and mask combination cannot be used.  */
2021
2022 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2023
2024 /* Target can execute in reverse?  */
2025 #define target_can_execute_reverse \
2026       current_target.to_can_execute_reverse (&current_target)
2027
2028 extern const struct target_desc *target_read_description (struct target_ops *);
2029
2030 #define target_get_ada_task_ptid(lwp, tid) \
2031      (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
2032
2033 /* Utility implementation of searching memory.  */
2034 extern int simple_search_memory (struct target_ops* ops,
2035                                  CORE_ADDR start_addr,
2036                                  ULONGEST search_space_len,
2037                                  const gdb_byte *pattern,
2038                                  ULONGEST pattern_len,
2039                                  CORE_ADDR *found_addrp);
2040
2041 /* Main entry point for searching memory.  */
2042 extern int target_search_memory (CORE_ADDR start_addr,
2043                                  ULONGEST search_space_len,
2044                                  const gdb_byte *pattern,
2045                                  ULONGEST pattern_len,
2046                                  CORE_ADDR *found_addrp);
2047
2048 /* Target file operations.  */
2049
2050 /* Return nonzero if the filesystem seen by the current inferior
2051    is the local filesystem, zero otherwise.  */
2052 #define target_filesystem_is_local() \
2053   current_target.to_filesystem_is_local (&current_target)
2054
2055 /* Open FILENAME on the target, in the filesystem as seen by INF,
2056    using FLAGS and MODE.  If INF is NULL, use the filesystem seen
2057    by the debugger (GDB or, for remote targets, the remote stub).
2058    Return a target file descriptor, or -1 if an error occurs (and
2059    set *TARGET_ERRNO).  */
2060 extern int target_fileio_open (struct inferior *inf,
2061                                const char *filename, int flags,
2062                                int mode, int *target_errno);
2063
2064 /* Like target_fileio_open, but print a warning message if the
2065    file is being accessed over a link that may be slow.  */
2066 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2067                                             const char *filename,
2068                                             int flags,
2069                                             int mode,
2070                                             int *target_errno);
2071
2072 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2073    Return the number of bytes written, or -1 if an error occurs
2074    (and set *TARGET_ERRNO).  */
2075 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2076                                  ULONGEST offset, int *target_errno);
2077
2078 /* Read up to LEN bytes FD on the target into READ_BUF.
2079    Return the number of bytes read, or -1 if an error occurs
2080    (and set *TARGET_ERRNO).  */
2081 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2082                                 ULONGEST offset, int *target_errno);
2083
2084 /* Get information about the file opened as FD on the target
2085    and put it in SB.  Return 0 on success, or -1 if an error
2086    occurs (and set *TARGET_ERRNO).  */
2087 extern int target_fileio_fstat (int fd, struct stat *sb,
2088                                 int *target_errno);
2089
2090 /* Close FD on the target.  Return 0, or -1 if an error occurs
2091    (and set *TARGET_ERRNO).  */
2092 extern int target_fileio_close (int fd, int *target_errno);
2093
2094 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2095    If INF is NULL, use the filesystem seen by the debugger (GDB or,
2096    for remote targets, the remote stub).  Return 0, or -1 if an error
2097    occurs (and set *TARGET_ERRNO).  */
2098 extern int target_fileio_unlink (struct inferior *inf,
2099                                  const char *filename,
2100                                  int *target_errno);
2101
2102 /* Read value of symbolic link FILENAME on the target, in the
2103    filesystem as seen by INF.  If INF is NULL, use the filesystem seen
2104    by the debugger (GDB or, for remote targets, the remote stub).
2105    Return a null-terminated string allocated via xmalloc, or NULL if
2106    an error occurs (and set *TARGET_ERRNO).  */
2107 extern char *target_fileio_readlink (struct inferior *inf,
2108                                      const char *filename,
2109                                      int *target_errno);
2110
2111 /* Read target file FILENAME, in the filesystem as seen by INF.  If
2112    INF is NULL, use the filesystem seen by the debugger (GDB or, for
2113    remote targets, the remote stub).  The return value will be -1 if
2114    the transfer fails or is not supported; 0 if the object is empty;
2115    or the length of the object otherwise.  If a positive value is
2116    returned, a sufficiently large buffer will be allocated using
2117    xmalloc and returned in *BUF_P containing the contents of the
2118    object.
2119
2120    This method should be used for objects sufficiently small to store
2121    in a single xmalloc'd buffer, when no fixed bound on the object's
2122    size is known in advance.  */
2123 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2124                                          const char *filename,
2125                                          gdb_byte **buf_p);
2126
2127 /* Read target file FILENAME, in the filesystem as seen by INF.  If
2128    INF is NULL, use the filesystem seen by the debugger (GDB or, for
2129    remote targets, the remote stub).  The result is NUL-terminated and
2130    returned as a string, allocated using xmalloc.  If an error occurs
2131    or the transfer is unsupported, NULL is returned.  Empty objects
2132    are returned as allocated but empty strings.  A warning is issued
2133    if the result contains any embedded NUL bytes.  */
2134 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2135     (struct inferior *inf, const char *filename);
2136
2137
2138 /* Tracepoint-related operations.  */
2139
2140 #define target_trace_init() \
2141   (*current_target.to_trace_init) (&current_target)
2142
2143 #define target_download_tracepoint(t) \
2144   (*current_target.to_download_tracepoint) (&current_target, t)
2145
2146 #define target_can_download_tracepoint() \
2147   (*current_target.to_can_download_tracepoint) (&current_target)
2148
2149 #define target_download_trace_state_variable(tsv) \
2150   (*current_target.to_download_trace_state_variable) (&current_target, tsv)
2151
2152 #define target_enable_tracepoint(loc) \
2153   (*current_target.to_enable_tracepoint) (&current_target, loc)
2154
2155 #define target_disable_tracepoint(loc) \
2156   (*current_target.to_disable_tracepoint) (&current_target, loc)
2157
2158 #define target_trace_start() \
2159   (*current_target.to_trace_start) (&current_target)
2160
2161 #define target_trace_set_readonly_regions() \
2162   (*current_target.to_trace_set_readonly_regions) (&current_target)
2163
2164 #define target_get_trace_status(ts) \
2165   (*current_target.to_get_trace_status) (&current_target, ts)
2166
2167 #define target_get_tracepoint_status(tp,utp)            \
2168   (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
2169
2170 #define target_trace_stop() \
2171   (*current_target.to_trace_stop) (&current_target)
2172
2173 #define target_trace_find(type,num,addr1,addr2,tpp) \
2174   (*current_target.to_trace_find) (&current_target, \
2175                                    (type), (num), (addr1), (addr2), (tpp))
2176
2177 #define target_get_trace_state_variable_value(tsv,val) \
2178   (*current_target.to_get_trace_state_variable_value) (&current_target, \
2179                                                        (tsv), (val))
2180
2181 #define target_save_trace_data(filename) \
2182   (*current_target.to_save_trace_data) (&current_target, filename)
2183
2184 #define target_upload_tracepoints(utpp) \
2185   (*current_target.to_upload_tracepoints) (&current_target, utpp)
2186
2187 #define target_upload_trace_state_variables(utsvp) \
2188   (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
2189
2190 #define target_get_raw_trace_data(buf,offset,len) \
2191   (*current_target.to_get_raw_trace_data) (&current_target,     \
2192                                            (buf), (offset), (len))
2193
2194 #define target_get_min_fast_tracepoint_insn_len() \
2195   (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
2196
2197 #define target_set_disconnected_tracing(val) \
2198   (*current_target.to_set_disconnected_tracing) (&current_target, val)
2199
2200 #define target_set_circular_trace_buffer(val)   \
2201   (*current_target.to_set_circular_trace_buffer) (&current_target, val)
2202
2203 #define target_set_trace_buffer_size(val)       \
2204   (*current_target.to_set_trace_buffer_size) (&current_target, val)
2205
2206 #define target_set_trace_notes(user,notes,stopnotes)            \
2207   (*current_target.to_set_trace_notes) (&current_target,        \
2208                                         (user), (notes), (stopnotes))
2209
2210 #define target_get_tib_address(ptid, addr) \
2211   (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
2212
2213 #define target_set_permissions() \
2214   (*current_target.to_set_permissions) (&current_target)
2215
2216 #define target_static_tracepoint_marker_at(addr, marker) \
2217   (*current_target.to_static_tracepoint_marker_at) (&current_target,    \
2218                                                     addr, marker)
2219
2220 #define target_static_tracepoint_markers_by_strid(marker_id) \
2221   (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
2222                                                            marker_id)
2223
2224 #define target_traceframe_info() \
2225   (*current_target.to_traceframe_info) (&current_target)
2226
2227 #define target_use_agent(use) \
2228   (*current_target.to_use_agent) (&current_target, use)
2229
2230 #define target_can_use_agent() \
2231   (*current_target.to_can_use_agent) (&current_target)
2232
2233 #define target_augmented_libraries_svr4_read() \
2234   (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2235
2236 /* Command logging facility.  */
2237
2238 #define target_log_command(p)                                   \
2239   (*current_target.to_log_command) (&current_target, p)
2240
2241
2242 extern int target_core_of_thread (ptid_t ptid);
2243
2244 /* See to_get_unwinder in struct target_ops.  */
2245 extern const struct frame_unwind *target_get_unwinder (void);
2246
2247 /* See to_get_tailcall_unwinder in struct target_ops.  */
2248 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2249
2250 /* This implements basic memory verification, reading target memory
2251    and performing the comparison here (as opposed to accelerated
2252    verification making use of the qCRC packet, for example).  */
2253
2254 extern int simple_verify_memory (struct target_ops* ops,
2255                                  const gdb_byte *data,
2256                                  CORE_ADDR memaddr, ULONGEST size);
2257
2258 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2259    the contents of [DATA,DATA+SIZE).  Returns 1 if there's a match, 0
2260    if there's a mismatch, and -1 if an error is encountered while
2261    reading memory.  Throws an error if the functionality is found not
2262    to be supported by the current target.  */
2263 int target_verify_memory (const gdb_byte *data,
2264                           CORE_ADDR memaddr, ULONGEST size);
2265
2266 /* Routines for maintenance of the target structures...
2267
2268    complete_target_initialization: Finalize a target_ops by filling in
2269    any fields needed by the target implementation.  Unnecessary for
2270    targets which are registered via add_target, as this part gets
2271    taken care of then.
2272
2273    add_target:   Add a target to the list of all possible targets.
2274    This only makes sense for targets that should be activated using
2275    the "target TARGET_NAME ..." command.
2276
2277    push_target:  Make this target the top of the stack of currently used
2278    targets, within its particular stratum of the stack.  Result
2279    is 0 if now atop the stack, nonzero if not on top (maybe
2280    should warn user).
2281
2282    unpush_target: Remove this from the stack of currently used targets,
2283    no matter where it is on the list.  Returns 0 if no
2284    change, 1 if removed from stack.  */
2285
2286 extern void add_target (struct target_ops *);
2287
2288 extern void add_target_with_completer (struct target_ops *t,
2289                                        completer_ftype *completer);
2290
2291 extern void complete_target_initialization (struct target_ops *t);
2292
2293 /* Adds a command ALIAS for target T and marks it deprecated.  This is useful
2294    for maintaining backwards compatibility when renaming targets.  */
2295
2296 extern void add_deprecated_target_alias (struct target_ops *t,
2297                                          const char *alias);
2298
2299 extern void push_target (struct target_ops *);
2300
2301 extern int unpush_target (struct target_ops *);
2302
2303 extern void target_pre_inferior (int);
2304
2305 extern void target_preopen (int);
2306
2307 /* Does whatever cleanup is required to get rid of all pushed targets.  */
2308 extern void pop_all_targets (void);
2309
2310 /* Like pop_all_targets, but pops only targets whose stratum is at or
2311    above STRATUM.  */
2312 extern void pop_all_targets_at_and_above (enum strata stratum);
2313
2314 /* Like pop_all_targets, but pops only targets whose stratum is
2315    strictly above ABOVE_STRATUM.  */
2316 extern void pop_all_targets_above (enum strata above_stratum);
2317
2318 extern int target_is_pushed (struct target_ops *t);
2319
2320 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2321                                                CORE_ADDR offset);
2322
2323 /* Struct target_section maps address ranges to file sections.  It is
2324    mostly used with BFD files, but can be used without (e.g. for handling
2325    raw disks, or files not in formats handled by BFD).  */
2326
2327 struct target_section
2328   {
2329     CORE_ADDR addr;             /* Lowest address in section */
2330     CORE_ADDR endaddr;          /* 1+highest address in section */
2331
2332     struct bfd_section *the_bfd_section;
2333
2334     /* The "owner" of the section.
2335        It can be any unique value.  It is set by add_target_sections
2336        and used by remove_target_sections.
2337        For example, for executables it is a pointer to exec_bfd and
2338        for shlibs it is the so_list pointer.  */
2339     void *owner;
2340   };
2341
2342 /* Holds an array of target sections.  Defined by [SECTIONS..SECTIONS_END[.  */
2343
2344 struct target_section_table
2345 {
2346   struct target_section *sections;
2347   struct target_section *sections_end;
2348 };
2349
2350 /* Return the "section" containing the specified address.  */
2351 struct target_section *target_section_by_addr (struct target_ops *target,
2352                                                CORE_ADDR addr);
2353
2354 /* Return the target section table this target (or the targets
2355    beneath) currently manipulate.  */
2356
2357 extern struct target_section_table *target_get_section_table
2358   (struct target_ops *target);
2359
2360 /* From mem-break.c */
2361
2362 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2363                                      struct bp_target_info *,
2364                                      enum remove_bp_reason);
2365
2366 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2367                                      struct bp_target_info *);
2368
2369 /* Check whether the memory at the breakpoint's placed address still
2370    contains the expected breakpoint instruction.  */
2371
2372 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2373                                        struct bp_target_info *bp_tgt);
2374
2375 extern int default_memory_remove_breakpoint (struct gdbarch *,
2376                                              struct bp_target_info *);
2377
2378 extern int default_memory_insert_breakpoint (struct gdbarch *,
2379                                              struct bp_target_info *);
2380
2381
2382 /* From target.c */
2383
2384 extern void initialize_targets (void);
2385
2386 extern void noprocess (void) ATTRIBUTE_NORETURN;
2387
2388 extern void target_require_runnable (void);
2389
2390 extern struct target_ops *find_target_beneath (struct target_ops *);
2391
2392 /* Find the target at STRATUM.  If no target is at that stratum,
2393    return NULL.  */
2394
2395 struct target_ops *find_target_at (enum strata stratum);
2396
2397 /* Read OS data object of type TYPE from the target, and return it in
2398    XML format.  The result is NUL-terminated and returned as a string.
2399    If an error occurs or the transfer is unsupported, NULL is
2400    returned.  Empty objects are returned as allocated but empty
2401    strings.  */
2402
2403 extern gdb::unique_xmalloc_ptr<char> target_get_osdata (const char *type);
2404
2405 \f
2406 /* Stuff that should be shared among the various remote targets.  */
2407
2408 /* Debugging level.  0 is off, and non-zero values mean to print some debug
2409    information (higher values, more information).  */
2410 extern int remote_debug;
2411
2412 /* Speed in bits per second, or -1 which means don't mess with the speed.  */
2413 extern int baud_rate;
2414
2415 /* Parity for serial port  */
2416 extern int serial_parity;
2417
2418 /* Timeout limit for response from target.  */
2419 extern int remote_timeout;
2420
2421 \f
2422
2423 /* Set the show memory breakpoints mode to show, and return a
2424    scoped_restore to restore it back to the current value.  */
2425 extern scoped_restore_tmpl<int>
2426     make_scoped_restore_show_memory_breakpoints (int show);
2427
2428 extern int may_write_registers;
2429 extern int may_write_memory;
2430 extern int may_insert_breakpoints;
2431 extern int may_insert_tracepoints;
2432 extern int may_insert_fast_tracepoints;
2433 extern int may_stop;
2434
2435 extern void update_target_permissions (void);
2436
2437 \f
2438 /* Imported from machine dependent code.  */
2439
2440 /* See to_supports_btrace in struct target_ops.  */
2441 extern int target_supports_btrace (enum btrace_format);
2442
2443 /* See to_enable_btrace in struct target_ops.  */
2444 extern struct btrace_target_info *
2445   target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2446
2447 /* See to_disable_btrace in struct target_ops.  */
2448 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2449
2450 /* See to_teardown_btrace in struct target_ops.  */
2451 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2452
2453 /* See to_read_btrace in struct target_ops.  */
2454 extern enum btrace_error target_read_btrace (struct btrace_data *,
2455                                              struct btrace_target_info *,
2456                                              enum btrace_read_type);
2457
2458 /* See to_btrace_conf in struct target_ops.  */
2459 extern const struct btrace_config *
2460   target_btrace_conf (const struct btrace_target_info *);
2461
2462 /* See to_stop_recording in struct target_ops.  */
2463 extern void target_stop_recording (void);
2464
2465 /* See to_save_record in struct target_ops.  */
2466 extern void target_save_record (const char *filename);
2467
2468 /* Query if the target supports deleting the execution log.  */
2469 extern int target_supports_delete_record (void);
2470
2471 /* See to_delete_record in struct target_ops.  */
2472 extern void target_delete_record (void);
2473
2474 /* See to_record_method.  */
2475 extern enum record_method target_record_method (ptid_t ptid);
2476
2477 /* See to_record_is_replaying in struct target_ops.  */
2478 extern int target_record_is_replaying (ptid_t ptid);
2479
2480 /* See to_record_will_replay in struct target_ops.  */
2481 extern int target_record_will_replay (ptid_t ptid, int dir);
2482
2483 /* See to_record_stop_replaying in struct target_ops.  */
2484 extern void target_record_stop_replaying (void);
2485
2486 /* See to_goto_record_begin in struct target_ops.  */
2487 extern void target_goto_record_begin (void);
2488
2489 /* See to_goto_record_end in struct target_ops.  */
2490 extern void target_goto_record_end (void);
2491
2492 /* See to_goto_record in struct target_ops.  */
2493 extern void target_goto_record (ULONGEST insn);
2494
2495 /* See to_insn_history.  */
2496 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2497
2498 /* See to_insn_history_from.  */
2499 extern void target_insn_history_from (ULONGEST from, int size,
2500                                       gdb_disassembly_flags flags);
2501
2502 /* See to_insn_history_range.  */
2503 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2504                                        gdb_disassembly_flags flags);
2505
2506 /* See to_call_history.  */
2507 extern void target_call_history (int size, int flags);
2508
2509 /* See to_call_history_from.  */
2510 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2511
2512 /* See to_call_history_range.  */
2513 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2514
2515 /* See to_prepare_to_generate_core.  */
2516 extern void target_prepare_to_generate_core (void);
2517
2518 /* See to_done_generating_core.  */
2519 extern void target_done_generating_core (void);
2520
2521 #endif /* !defined (TARGET_H) */