target_ops: Use bool throughout
[external/binutils.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3    Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5    Contributed by Cygnus Support.  Written by John Gilmore.
6
7    This file is part of GDB.
8
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind.  */
44 #include "breakpoint.h" /* For enum bptype.  */
45 #include "common/scoped_restore.h"
46
47 /* This include file defines the interface between the main part
48    of the debugger, and the part which is target-specific, or
49    specific to the communications interface between us and the
50    target.
51
52    A TARGET is an interface between the debugger and a particular
53    kind of file or process.  Targets can be STACKED in STRATA,
54    so that more than one target can potentially respond to a request.
55    In particular, memory accesses will walk down the stack of targets
56    until they find a target that is interested in handling that particular
57    address.  STRATA are artificial boundaries on the stack, within
58    which particular kinds of targets live.  Strata exist so that
59    people don't get confused by pushing e.g. a process target and then
60    a file target, and wondering why they can't see the current values
61    of variables any more (the file target is handling them and they
62    never get to the process target).  So when you push a file target,
63    it goes into the file stratum, which is always below the process
64    stratum.  */
65
66 #include "target/target.h"
67 #include "target/resume.h"
68 #include "target/wait.h"
69 #include "target/waitstatus.h"
70 #include "bfd.h"
71 #include "symtab.h"
72 #include "memattr.h"
73 #include "vec.h"
74 #include "gdb_signals.h"
75 #include "btrace.h"
76 #include "record.h"
77 #include "command.h"
78 #include "disasm.h"
79 #include "tracepoint.h"
80
81 #include "break-common.h" /* For enum target_hw_bp_type.  */
82
83 enum strata
84   {
85     dummy_stratum,              /* The lowest of the low */
86     file_stratum,               /* Executable files, etc */
87     process_stratum,            /* Executing processes or core dump files */
88     thread_stratum,             /* Executing threads */
89     record_stratum,             /* Support record debugging */
90     arch_stratum,               /* Architecture overrides */
91     debug_stratum               /* Target debug.  Must be last.  */
92   };
93
94 enum thread_control_capabilities
95   {
96     tc_none = 0,                /* Default: can't control thread execution.  */
97     tc_schedlock = 1,           /* Can lock the thread scheduler.  */
98   };
99
100 /* The structure below stores information about a system call.
101    It is basically used in the "catch syscall" command, and in
102    every function that gives information about a system call.
103    
104    It's also good to mention that its fields represent everything
105    that we currently know about a syscall in GDB.  */
106 struct syscall
107   {
108     /* The syscall number.  */
109     int number;
110
111     /* The syscall name.  */
112     const char *name;
113   };
114
115 /* Return a pretty printed form of TARGET_OPTIONS.
116    Space for the result is malloc'd, caller must free.  */
117 extern char *target_options_to_string (int target_options);
118
119 /* Possible types of events that the inferior handler will have to
120    deal with.  */
121 enum inferior_event_type
122   {
123     /* Process a normal inferior event which will result in target_wait
124        being called.  */
125     INF_REG_EVENT,
126     /* We are called to do stuff after the inferior stops.  */
127     INF_EXEC_COMPLETE,
128   };
129 \f
130 /* Target objects which can be transfered using target_read,
131    target_write, et cetera.  */
132
133 enum target_object
134 {
135   /* AVR target specific transfer.  See "avr-tdep.c" and "remote.c".  */
136   TARGET_OBJECT_AVR,
137   /* SPU target specific transfer.  See "spu-tdep.c".  */
138   TARGET_OBJECT_SPU,
139   /* Transfer up-to LEN bytes of memory starting at OFFSET.  */
140   TARGET_OBJECT_MEMORY,
141   /* Memory, avoiding GDB's data cache and trusting the executable.
142      Target implementations of to_xfer_partial never need to handle
143      this object, and most callers should not use it.  */
144   TARGET_OBJECT_RAW_MEMORY,
145   /* Memory known to be part of the target's stack.  This is cached even
146      if it is not in a region marked as such, since it is known to be
147      "normal" RAM.  */
148   TARGET_OBJECT_STACK_MEMORY,
149   /* Memory known to be part of the target code.   This is cached even
150      if it is not in a region marked as such.  */
151   TARGET_OBJECT_CODE_MEMORY,
152   /* Kernel Unwind Table.  See "ia64-tdep.c".  */
153   TARGET_OBJECT_UNWIND_TABLE,
154   /* Transfer auxilliary vector.  */
155   TARGET_OBJECT_AUXV,
156   /* StackGhost cookie.  See "sparc-tdep.c".  */
157   TARGET_OBJECT_WCOOKIE,
158   /* Target memory map in XML format.  */
159   TARGET_OBJECT_MEMORY_MAP,
160   /* Flash memory.  This object can be used to write contents to
161      a previously erased flash memory.  Using it without erasing
162      flash can have unexpected results.  Addresses are physical
163      address on target, and not relative to flash start.  */
164   TARGET_OBJECT_FLASH,
165   /* Available target-specific features, e.g. registers and coprocessors.
166      See "target-descriptions.c".  ANNEX should never be empty.  */
167   TARGET_OBJECT_AVAILABLE_FEATURES,
168   /* Currently loaded libraries, in XML format.  */
169   TARGET_OBJECT_LIBRARIES,
170   /* Currently loaded libraries specific for SVR4 systems, in XML format.  */
171   TARGET_OBJECT_LIBRARIES_SVR4,
172   /* Currently loaded libraries specific to AIX systems, in XML format.  */
173   TARGET_OBJECT_LIBRARIES_AIX,
174   /* Get OS specific data.  The ANNEX specifies the type (running
175      processes, etc.).  The data being transfered is expected to follow
176      the DTD specified in features/osdata.dtd.  */
177   TARGET_OBJECT_OSDATA,
178   /* Extra signal info.  Usually the contents of `siginfo_t' on unix
179      platforms.  */
180   TARGET_OBJECT_SIGNAL_INFO,
181   /* The list of threads that are being debugged.  */
182   TARGET_OBJECT_THREADS,
183   /* Collected static trace data.  */
184   TARGET_OBJECT_STATIC_TRACE_DATA,
185   /* Traceframe info, in XML format.  */
186   TARGET_OBJECT_TRACEFRAME_INFO,
187   /* Load maps for FDPIC systems.  */
188   TARGET_OBJECT_FDPIC,
189   /* Darwin dynamic linker info data.  */
190   TARGET_OBJECT_DARWIN_DYLD_INFO,
191   /* OpenVMS Unwind Information Block.  */
192   TARGET_OBJECT_OPENVMS_UIB,
193   /* Branch trace data, in XML format.  */
194   TARGET_OBJECT_BTRACE,
195   /* Branch trace configuration, in XML format.  */
196   TARGET_OBJECT_BTRACE_CONF,
197   /* The pathname of the executable file that was run to create
198      a specified process.  ANNEX should be a string representation
199      of the process ID of the process in question, in hexadecimal
200      format.  */
201   TARGET_OBJECT_EXEC_FILE,
202   /* Possible future objects: TARGET_OBJECT_FILE, ...  */
203 };
204
205 /* Possible values returned by target_xfer_partial, etc.  */
206
207 enum target_xfer_status
208 {
209   /* Some bytes are transferred.  */
210   TARGET_XFER_OK = 1,
211
212   /* No further transfer is possible.  */
213   TARGET_XFER_EOF = 0,
214
215   /* The piece of the object requested is unavailable.  */
216   TARGET_XFER_UNAVAILABLE = 2,
217
218   /* Generic I/O error.  Note that it's important that this is '-1',
219      as we still have target_xfer-related code returning hardcoded
220      '-1' on error.  */
221   TARGET_XFER_E_IO = -1,
222
223   /* Keep list in sync with target_xfer_status_to_string.  */
224 };
225
226 /* Return the string form of STATUS.  */
227
228 extern const char *
229   target_xfer_status_to_string (enum target_xfer_status status);
230
231 typedef enum target_xfer_status
232   target_xfer_partial_ftype (struct target_ops *ops,
233                              enum target_object object,
234                              const char *annex,
235                              gdb_byte *readbuf,
236                              const gdb_byte *writebuf,
237                              ULONGEST offset,
238                              ULONGEST len,
239                              ULONGEST *xfered_len);
240
241 enum target_xfer_status
242   raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
243                            const gdb_byte *writebuf, ULONGEST memaddr,
244                            LONGEST len, ULONGEST *xfered_len);
245
246 /* Request that OPS transfer up to LEN addressable units of the target's
247    OBJECT.  When reading from a memory object, the size of an addressable unit
248    is architecture dependent and can be found using
249    gdbarch_addressable_memory_unit_size.  Otherwise, an addressable unit is 1
250    byte long.  BUF should point to a buffer large enough to hold the read data,
251    taking into account the addressable unit size.  The OFFSET, for a seekable
252    object, specifies the starting point.  The ANNEX can be used to provide
253    additional data-specific information to the target.
254
255    Return the number of addressable units actually transferred, or a negative
256    error code (an 'enum target_xfer_error' value) if the transfer is not
257    supported or otherwise fails.  Return of a positive value less than
258    LEN indicates that no further transfer is possible.  Unlike the raw
259    to_xfer_partial interface, callers of these functions do not need
260    to retry partial transfers.  */
261
262 extern LONGEST target_read (struct target_ops *ops,
263                             enum target_object object,
264                             const char *annex, gdb_byte *buf,
265                             ULONGEST offset, LONGEST len);
266
267 struct memory_read_result
268 {
269   memory_read_result (ULONGEST begin_, ULONGEST end_,
270                       gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
271     : begin (begin_),
272       end (end_),
273       data (std::move (data_))
274   {
275   }
276
277   ~memory_read_result () = default;
278
279   memory_read_result (memory_read_result &&other) = default;
280
281   DISABLE_COPY_AND_ASSIGN (memory_read_result);
282
283   /* First address that was read.  */
284   ULONGEST begin;
285   /* Past-the-end address.  */
286   ULONGEST end;
287   /* The data.  */
288   gdb::unique_xmalloc_ptr<gdb_byte> data;
289 };
290
291 extern std::vector<memory_read_result> read_memory_robust
292     (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
293
294 /* Request that OPS transfer up to LEN addressable units from BUF to the
295    target's OBJECT.  When writing to a memory object, the addressable unit
296    size is architecture dependent and can be found using
297    gdbarch_addressable_memory_unit_size.  Otherwise, an addressable unit is 1
298    byte long.  The OFFSET, for a seekable object, specifies the starting point.
299    The ANNEX can be used to provide additional data-specific information to
300    the target.
301
302    Return the number of addressable units actually transferred, or a negative
303    error code (an 'enum target_xfer_status' value) if the transfer is not
304    supported or otherwise fails.  Return of a positive value less than
305    LEN indicates that no further transfer is possible.  Unlike the raw
306    to_xfer_partial interface, callers of these functions do not need to
307    retry partial transfers.  */
308
309 extern LONGEST target_write (struct target_ops *ops,
310                              enum target_object object,
311                              const char *annex, const gdb_byte *buf,
312                              ULONGEST offset, LONGEST len);
313
314 /* Similar to target_write, except that it also calls PROGRESS with
315    the number of bytes written and the opaque BATON after every
316    successful partial write (and before the first write).  This is
317    useful for progress reporting and user interaction while writing
318    data.  To abort the transfer, the progress callback can throw an
319    exception.  */
320
321 LONGEST target_write_with_progress (struct target_ops *ops,
322                                     enum target_object object,
323                                     const char *annex, const gdb_byte *buf,
324                                     ULONGEST offset, LONGEST len,
325                                     void (*progress) (ULONGEST, void *),
326                                     void *baton);
327
328 /* Wrapper to perform a full read of unknown size.  OBJECT/ANNEX will be read
329    using OPS.  The return value will be uninstantiated if the transfer fails or
330    is not supported.
331
332    This method should be used for objects sufficiently small to store
333    in a single xmalloc'd buffer, when no fixed bound on the object's
334    size is known in advance.  Don't try to read TARGET_OBJECT_MEMORY
335    through this function.  */
336
337 extern gdb::optional<gdb::byte_vector> target_read_alloc
338     (struct target_ops *ops, enum target_object object, const char *annex);
339
340 /* Read OBJECT/ANNEX using OPS.  The result is a NUL-terminated character vector
341    (therefore usable as a NUL-terminated string).  If an error occurs or the
342    transfer is unsupported, the return value will be uninstantiated.  Empty
343    objects are returned as allocated but empty strings.  Therefore, on success,
344    the returned vector is guaranteed to have at least one element.  A warning is
345    issued if the result contains any embedded NUL bytes.  */
346
347 extern gdb::optional<gdb::char_vector> target_read_stralloc
348     (struct target_ops *ops, enum target_object object, const char *annex);
349
350 /* See target_ops->to_xfer_partial.  */
351 extern target_xfer_partial_ftype target_xfer_partial;
352
353 /* Wrappers to target read/write that perform memory transfers.  They
354    throw an error if the memory transfer fails.
355
356    NOTE: cagney/2003-10-23: The naming schema is lifted from
357    "frame.h".  The parameter order is lifted from get_frame_memory,
358    which in turn lifted it from read_memory.  */
359
360 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
361                                gdb_byte *buf, LONGEST len);
362 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
363                                             CORE_ADDR addr, int len,
364                                             enum bfd_endian byte_order);
365 \f
366 struct thread_info;             /* fwd decl for parameter list below: */
367
368 /* The type of the callback to the to_async method.  */
369
370 typedef void async_callback_ftype (enum inferior_event_type event_type,
371                                    void *context);
372
373 /* Normally target debug printing is purely type-based.  However,
374    sometimes it is necessary to override the debug printing on a
375    per-argument basis.  This macro can be used, attribute-style, to
376    name the target debug printing function for a particular method
377    argument.  FUNC is the name of the function.  The macro's
378    definition is empty because it is only used by the
379    make-target-delegates script.  */
380
381 #define TARGET_DEBUG_PRINTER(FUNC)
382
383 /* These defines are used to mark target_ops methods.  The script
384    make-target-delegates scans these and auto-generates the base
385    method implementations.  There are four macros that can be used:
386    
387    1. TARGET_DEFAULT_IGNORE.  There is no argument.  The base method
388    does nothing.  This is only valid if the method return type is
389    'void'.
390    
391    2. TARGET_DEFAULT_NORETURN.  The argument is a function call, like
392    'tcomplain ()'.  The base method simply makes this call, which is
393    assumed not to return.
394    
395    3. TARGET_DEFAULT_RETURN.  The argument is a C expression.  The
396    base method returns this expression's value.
397    
398    4. TARGET_DEFAULT_FUNC.  The argument is the name of a function.
399    make-target-delegates does not generate a base method in this case,
400    but instead uses the argument function as the base method.  */
401
402 #define TARGET_DEFAULT_IGNORE()
403 #define TARGET_DEFAULT_NORETURN(ARG)
404 #define TARGET_DEFAULT_RETURN(ARG)
405 #define TARGET_DEFAULT_FUNC(ARG)
406
407 struct target_ops
408   {
409     struct target_ops *beneath; /* To the target under this one.  */
410
411     virtual ~target_ops () {}
412
413     /* Name this target type.  */
414     virtual const char *shortname () = 0;
415
416     /* Name for printing.  */
417     virtual const char *longname () = 0;
418
419     /* Documentation.  Does not include trailing newline, and starts
420        ith a one-line description (probably similar to longname).  */
421     virtual const char *doc () = 0;
422
423     /* The open routine takes the rest of the parameters from the
424        command, and (if successful) pushes a new target onto the
425        stack.  Targets should supply this routine, if only to provide
426        an error message.  */
427     virtual void open (const char *, int);
428
429     /* Close the target.  This is where the target can handle
430        teardown.  Heap-allocated targets should delete themselves
431        before returning.  */
432     virtual void close ();
433
434     /* Attaches to a process on the target side.  Arguments are as
435        passed to the `attach' command by the user.  This routine can
436        be called when the target is not on the target-stack, if the
437        target_ops::can_run method returns 1; in that case, it must push
438        itself onto the stack.  Upon exit, the target should be ready
439        for normal operations, and should be ready to deliver the
440        status of the process immediately (without waiting) to an
441        upcoming target_wait call.  */
442     virtual bool can_attach ();
443     virtual void attach (const char *, int);
444     virtual void post_attach (int)
445       TARGET_DEFAULT_IGNORE ();
446     virtual void detach (inferior *, int)
447       TARGET_DEFAULT_IGNORE ();
448     virtual void disconnect (const char *, int)
449       TARGET_DEFAULT_NORETURN (tcomplain ());
450     virtual void resume (ptid_t,
451                          int TARGET_DEBUG_PRINTER (target_debug_print_step),
452                          enum gdb_signal)
453       TARGET_DEFAULT_NORETURN (noprocess ());
454     virtual void commit_resume ()
455       TARGET_DEFAULT_IGNORE ();
456     virtual ptid_t wait (ptid_t, struct target_waitstatus *,
457                          int TARGET_DEBUG_PRINTER (target_debug_print_options))
458       TARGET_DEFAULT_FUNC (default_target_wait);
459     virtual void fetch_registers (struct regcache *, int)
460       TARGET_DEFAULT_IGNORE ();
461     virtual void store_registers (struct regcache *, int)
462       TARGET_DEFAULT_NORETURN (noprocess ());
463     virtual void prepare_to_store (struct regcache *)
464       TARGET_DEFAULT_NORETURN (noprocess ());
465
466     virtual void files_info ()
467       TARGET_DEFAULT_IGNORE ();
468     virtual int insert_breakpoint (struct gdbarch *,
469                                  struct bp_target_info *)
470       TARGET_DEFAULT_NORETURN (noprocess ());
471     virtual int remove_breakpoint (struct gdbarch *,
472                                  struct bp_target_info *,
473                                  enum remove_bp_reason)
474       TARGET_DEFAULT_NORETURN (noprocess ());
475
476     /* Returns true if the target stopped because it executed a
477        software breakpoint.  This is necessary for correct background
478        execution / non-stop mode operation, and for correct PC
479        adjustment on targets where the PC needs to be adjusted when a
480        software breakpoint triggers.  In these modes, by the time GDB
481        processes a breakpoint event, the breakpoint may already be
482        done from the target, so GDB needs to be able to tell whether
483        it should ignore the event and whether it should adjust the PC.
484        See adjust_pc_after_break.  */
485     virtual bool stopped_by_sw_breakpoint ()
486       TARGET_DEFAULT_RETURN (false);
487     /* Returns true if the above method is supported.  */
488     virtual bool supports_stopped_by_sw_breakpoint ()
489       TARGET_DEFAULT_RETURN (false);
490
491     /* Returns true if the target stopped for a hardware breakpoint.
492        Likewise, if the target supports hardware breakpoints, this
493        method is necessary for correct background execution / non-stop
494        mode operation.  Even though hardware breakpoints do not
495        require PC adjustment, GDB needs to be able to tell whether the
496        hardware breakpoint event is a delayed event for a breakpoint
497        that is already gone and should thus be ignored.  */
498     virtual bool stopped_by_hw_breakpoint ()
499       TARGET_DEFAULT_RETURN (false);
500     /* Returns true if the above method is supported.  */
501     virtual bool supports_stopped_by_hw_breakpoint ()
502       TARGET_DEFAULT_RETURN (false);
503
504     virtual int can_use_hw_breakpoint (enum bptype, int, int)
505       TARGET_DEFAULT_RETURN (0);
506     virtual int ranged_break_num_registers ()
507       TARGET_DEFAULT_RETURN (-1);
508     virtual int insert_hw_breakpoint (struct gdbarch *,
509                                       struct bp_target_info *)
510       TARGET_DEFAULT_RETURN (-1);
511     virtual int remove_hw_breakpoint (struct gdbarch *,
512                                       struct bp_target_info *)
513       TARGET_DEFAULT_RETURN (-1);
514
515     /* Documentation of what the two routines below are expected to do is
516        provided with the corresponding target_* macros.  */
517     virtual int remove_watchpoint (CORE_ADDR, int,
518                                  enum target_hw_bp_type, struct expression *)
519       TARGET_DEFAULT_RETURN (-1);
520     virtual int insert_watchpoint (CORE_ADDR, int,
521                                  enum target_hw_bp_type, struct expression *)
522       TARGET_DEFAULT_RETURN (-1);
523
524     virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
525                                         enum target_hw_bp_type)
526       TARGET_DEFAULT_RETURN (1);
527     virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
528                                         enum target_hw_bp_type)
529       TARGET_DEFAULT_RETURN (1);
530     virtual bool stopped_by_watchpoint ()
531       TARGET_DEFAULT_RETURN (false);
532     virtual int have_steppable_watchpoint ()
533       TARGET_DEFAULT_RETURN (false);
534     virtual bool have_continuable_watchpoint ()
535       TARGET_DEFAULT_RETURN (false);
536     virtual bool stopped_data_address (CORE_ADDR *)
537       TARGET_DEFAULT_RETURN (false);
538     virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
539       TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
540
541     /* Documentation of this routine is provided with the corresponding
542        target_* macro.  */
543     virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
544       TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
545
546     virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
547                                                  struct expression *)
548       TARGET_DEFAULT_RETURN (false);
549     virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
550       TARGET_DEFAULT_RETURN (-1);
551
552     /* Return 1 for sure target can do single step.  Return -1 for
553        unknown.  Return 0 for target can't do.  */
554     virtual int can_do_single_step ()
555       TARGET_DEFAULT_RETURN (-1);
556
557     virtual bool supports_terminal_ours ()
558       TARGET_DEFAULT_RETURN (false);
559     virtual void terminal_init ()
560       TARGET_DEFAULT_IGNORE ();
561     virtual void terminal_inferior ()
562       TARGET_DEFAULT_IGNORE ();
563     virtual void terminal_save_inferior ()
564       TARGET_DEFAULT_IGNORE ();
565     virtual void terminal_ours_for_output ()
566       TARGET_DEFAULT_IGNORE ();
567     virtual void terminal_ours ()
568       TARGET_DEFAULT_IGNORE ();
569     virtual void terminal_info (const char *, int)
570       TARGET_DEFAULT_FUNC (default_terminal_info);
571     virtual void kill ()
572       TARGET_DEFAULT_NORETURN (noprocess ());
573     virtual void load (const char *, int)
574       TARGET_DEFAULT_NORETURN (tcomplain ());
575     /* Start an inferior process and set inferior_ptid to its pid.
576        EXEC_FILE is the file to run.
577        ALLARGS is a string containing the arguments to the program.
578        ENV is the environment vector to pass.  Errors reported with error().
579        On VxWorks and various standalone systems, we ignore exec_file.  */
580     virtual bool can_create_inferior ();
581     virtual void create_inferior (const char *, const std::string &,
582                                   char **, int);
583     virtual void post_startup_inferior (ptid_t)
584       TARGET_DEFAULT_IGNORE ();
585     virtual int insert_fork_catchpoint (int)
586       TARGET_DEFAULT_RETURN (1);
587     virtual int remove_fork_catchpoint (int)
588       TARGET_DEFAULT_RETURN (1);
589     virtual int insert_vfork_catchpoint (int)
590       TARGET_DEFAULT_RETURN (1);
591     virtual int remove_vfork_catchpoint (int)
592       TARGET_DEFAULT_RETURN (1);
593     virtual int follow_fork (int, int)
594       TARGET_DEFAULT_FUNC (default_follow_fork);
595     virtual int insert_exec_catchpoint (int)
596       TARGET_DEFAULT_RETURN (1);
597     virtual int remove_exec_catchpoint (int)
598       TARGET_DEFAULT_RETURN (1);
599     virtual void follow_exec (struct inferior *, char *)
600       TARGET_DEFAULT_IGNORE ();
601     virtual int set_syscall_catchpoint (int, bool, int,
602                                         gdb::array_view<const int>)
603       TARGET_DEFAULT_RETURN (1);
604     virtual void mourn_inferior ()
605       TARGET_DEFAULT_FUNC (default_mourn_inferior);
606
607     /* Note that can_run is special and can be invoked on an unpushed
608        target.  Targets defining this method must also define
609        to_can_async_p and to_supports_non_stop.  */
610     virtual bool can_run ();
611
612     /* Documentation of this routine is provided with the corresponding
613        target_* macro.  */
614     virtual void pass_signals (int,
615                                unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
616       TARGET_DEFAULT_IGNORE ();
617
618     /* Documentation of this routine is provided with the
619        corresponding target_* function.  */
620     virtual void program_signals (int,
621                                   unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
622       TARGET_DEFAULT_IGNORE ();
623
624     virtual bool thread_alive (ptid_t ptid)
625       TARGET_DEFAULT_RETURN (false);
626     virtual void update_thread_list ()
627       TARGET_DEFAULT_IGNORE ();
628     virtual const char *pid_to_str (ptid_t)
629       TARGET_DEFAULT_FUNC (default_pid_to_str);
630     virtual const char *extra_thread_info (thread_info *)
631       TARGET_DEFAULT_RETURN (NULL);
632     virtual const char *thread_name (thread_info *)
633       TARGET_DEFAULT_RETURN (NULL);
634     virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
635                                                        int,
636                                                        inferior *inf)
637       TARGET_DEFAULT_RETURN (NULL);
638     virtual void stop (ptid_t)
639       TARGET_DEFAULT_IGNORE ();
640     virtual void interrupt ()
641       TARGET_DEFAULT_IGNORE ();
642     virtual void pass_ctrlc ()
643       TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
644     virtual void rcmd (const char *command, struct ui_file *output)
645       TARGET_DEFAULT_FUNC (default_rcmd);
646     virtual char *pid_to_exec_file (int pid)
647       TARGET_DEFAULT_RETURN (NULL);
648     virtual void log_command (const char *)
649       TARGET_DEFAULT_IGNORE ();
650     virtual struct target_section_table *get_section_table ()
651       TARGET_DEFAULT_RETURN (NULL);
652     enum strata to_stratum;
653
654     /* Provide default values for all "must have" methods.  */
655     virtual bool has_all_memory () { return false; }
656     virtual bool has_memory () { return false; }
657     virtual bool has_stack () { return false; }
658     virtual bool has_registers () { return false; }
659     virtual bool has_execution (ptid_t) { return false; }
660
661     /* Control thread execution.  */
662     virtual thread_control_capabilities get_thread_control_capabilities ()
663       TARGET_DEFAULT_RETURN (tc_none);
664     virtual bool attach_no_wait ()
665       TARGET_DEFAULT_RETURN (0);
666     /* This method must be implemented in some situations.  See the
667        comment on 'can_run'.  */
668     virtual bool can_async_p ()
669       TARGET_DEFAULT_RETURN (false);
670     virtual bool is_async_p ()
671       TARGET_DEFAULT_RETURN (false);
672     virtual void async (int)
673       TARGET_DEFAULT_NORETURN (tcomplain ());
674     virtual void thread_events (int)
675       TARGET_DEFAULT_IGNORE ();
676     /* This method must be implemented in some situations.  See the
677        comment on 'can_run'.  */
678     virtual bool supports_non_stop ()
679       TARGET_DEFAULT_RETURN (false);
680     /* Return true if the target operates in non-stop mode even with
681        "set non-stop off".  */
682     virtual bool always_non_stop_p ()
683       TARGET_DEFAULT_RETURN (false);
684     /* find_memory_regions support method for gcore */
685     virtual int find_memory_regions (find_memory_region_ftype func, void *data)
686       TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
687     /* make_corefile_notes support method for gcore */
688     virtual char *make_corefile_notes (bfd *, int *)
689       TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
690     /* get_bookmark support method for bookmarks */
691     virtual gdb_byte *get_bookmark (const char *, int)
692       TARGET_DEFAULT_NORETURN (tcomplain ());
693     /* goto_bookmark support method for bookmarks */
694     virtual void goto_bookmark (const gdb_byte *, int)
695       TARGET_DEFAULT_NORETURN (tcomplain ());
696     /* Return the thread-local address at OFFSET in the
697        thread-local storage for the thread PTID and the shared library
698        or executable file given by OBJFILE.  If that block of
699        thread-local storage hasn't been allocated yet, this function
700        may return an error.  LOAD_MODULE_ADDR may be zero for statically
701        linked multithreaded inferiors.  */
702     virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
703                                                 CORE_ADDR load_module_addr,
704                                                 CORE_ADDR offset)
705       TARGET_DEFAULT_NORETURN (generic_tls_error ());
706
707     /* Request that OPS transfer up to LEN addressable units of the target's
708        OBJECT.  When reading from a memory object, the size of an addressable
709        unit is architecture dependent and can be found using
710        gdbarch_addressable_memory_unit_size.  Otherwise, an addressable unit is
711        1 byte long.  The OFFSET, for a seekable object, specifies the
712        starting point.  The ANNEX can be used to provide additional
713        data-specific information to the target.
714
715        Return the transferred status, error or OK (an
716        'enum target_xfer_status' value).  Save the number of addressable units
717        actually transferred in *XFERED_LEN if transfer is successful
718        (TARGET_XFER_OK) or the number unavailable units if the requested
719        data is unavailable (TARGET_XFER_UNAVAILABLE).  *XFERED_LEN
720        smaller than LEN does not indicate the end of the object, only
721        the end of the transfer; higher level code should continue
722        transferring if desired.  This is handled in target.c.
723
724        The interface does not support a "retry" mechanism.  Instead it
725        assumes that at least one addressable unit will be transfered on each
726        successful call.
727
728        NOTE: cagney/2003-10-17: The current interface can lead to
729        fragmented transfers.  Lower target levels should not implement
730        hacks, such as enlarging the transfer, in an attempt to
731        compensate for this.  Instead, the target stack should be
732        extended so that it implements supply/collect methods and a
733        look-aside object cache.  With that available, the lowest
734        target can safely and freely "push" data up the stack.
735
736        See target_read and target_write for more information.  One,
737        and only one, of readbuf or writebuf must be non-NULL.  */
738
739     virtual enum target_xfer_status xfer_partial (enum target_object object,
740                                                   const char *annex,
741                                                   gdb_byte *readbuf,
742                                                   const gdb_byte *writebuf,
743                                                   ULONGEST offset, ULONGEST len,
744                                                   ULONGEST *xfered_len)
745       TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
746
747     /* Return the limit on the size of any single memory transfer
748        for the target.  */
749
750     virtual ULONGEST get_memory_xfer_limit ()
751       TARGET_DEFAULT_RETURN (ULONGEST_MAX);
752
753     /* Returns the memory map for the target.  A return value of NULL
754        means that no memory map is available.  If a memory address
755        does not fall within any returned regions, it's assumed to be
756        RAM.  The returned memory regions should not overlap.
757
758        The order of regions does not matter; target_memory_map will
759        sort regions by starting address.  For that reason, this
760        function should not be called directly except via
761        target_memory_map.
762
763        This method should not cache data; if the memory map could
764        change unexpectedly, it should be invalidated, and higher
765        layers will re-fetch it.  */
766     virtual std::vector<mem_region> memory_map ()
767       TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
768
769     /* Erases the region of flash memory starting at ADDRESS, of
770        length LENGTH.
771
772        Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
773        on flash block boundaries, as reported by 'to_memory_map'.  */
774     virtual void flash_erase (ULONGEST address, LONGEST length)
775       TARGET_DEFAULT_NORETURN (tcomplain ());
776
777     /* Finishes a flash memory write sequence.  After this operation
778        all flash memory should be available for writing and the result
779        of reading from areas written by 'to_flash_write' should be
780        equal to what was written.  */
781     virtual void flash_done ()
782       TARGET_DEFAULT_NORETURN (tcomplain ());
783
784     /* Describe the architecture-specific features of this target.  If
785        OPS doesn't have a description, this should delegate to the
786        "beneath" target.  Returns the description found, or NULL if no
787        description was available.  */
788     virtual const struct target_desc *read_description ()
789          TARGET_DEFAULT_RETURN (NULL);
790
791     /* Build the PTID of the thread on which a given task is running,
792        based on LWP and THREAD.  These values are extracted from the
793        task Private_Data section of the Ada Task Control Block, and
794        their interpretation depends on the target.  */
795     virtual ptid_t get_ada_task_ptid (long lwp, long thread)
796       TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
797
798     /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
799        Return 0 if *READPTR is already at the end of the buffer.
800        Return -1 if there is insufficient buffer for a whole entry.
801        Return 1 if an entry was read into *TYPEP and *VALP.  */
802     virtual int auxv_parse (gdb_byte **readptr,
803                             gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
804       TARGET_DEFAULT_FUNC (default_auxv_parse);
805
806     /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
807        sequence of bytes in PATTERN with length PATTERN_LEN.
808
809        The result is 1 if found, 0 if not found, and -1 if there was an error
810        requiring halting of the search (e.g. memory read error).
811        If the pattern is found the address is recorded in FOUND_ADDRP.  */
812     virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
813                                const gdb_byte *pattern, ULONGEST pattern_len,
814                                CORE_ADDR *found_addrp)
815       TARGET_DEFAULT_FUNC (default_search_memory);
816
817     /* Can target execute in reverse?  */
818     virtual bool can_execute_reverse ()
819       TARGET_DEFAULT_RETURN (false);
820
821     /* The direction the target is currently executing.  Must be
822        implemented on targets that support reverse execution and async
823        mode.  The default simply returns forward execution.  */
824     virtual enum exec_direction_kind execution_direction ()
825       TARGET_DEFAULT_FUNC (default_execution_direction);
826
827     /* Does this target support debugging multiple processes
828        simultaneously?  */
829     virtual bool supports_multi_process ()
830       TARGET_DEFAULT_RETURN (false);
831
832     /* Does this target support enabling and disabling tracepoints while a trace
833        experiment is running?  */
834     virtual bool supports_enable_disable_tracepoint ()
835       TARGET_DEFAULT_RETURN (false);
836
837     /* Does this target support disabling address space randomization?  */
838     virtual bool supports_disable_randomization ()
839       TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
840
841     /* Does this target support the tracenz bytecode for string collection?  */
842     virtual bool supports_string_tracing ()
843       TARGET_DEFAULT_RETURN (false);
844
845     /* Does this target support evaluation of breakpoint conditions on its
846        end?  */
847     virtual bool supports_evaluation_of_breakpoint_conditions ()
848       TARGET_DEFAULT_RETURN (false);
849
850     /* Does this target support evaluation of breakpoint commands on its
851        end?  */
852     virtual bool can_run_breakpoint_commands ()
853       TARGET_DEFAULT_RETURN (false);
854
855     /* Determine current architecture of thread PTID.
856
857        The target is supposed to determine the architecture of the code where
858        the target is currently stopped at (on Cell, if a target is in spu_run,
859        to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
860        This is architecture used to perform decr_pc_after_break adjustment,
861        and also determines the frame architecture of the innermost frame.
862        ptrace operations need to operate according to target_gdbarch ().
863
864        The default implementation always returns target_gdbarch ().  */
865     virtual struct gdbarch *thread_architecture (ptid_t)
866       TARGET_DEFAULT_FUNC (default_thread_architecture);
867
868     /* Determine current address space of thread PTID.
869
870        The default implementation always returns the inferior's
871        address space.  */
872     virtual struct address_space *thread_address_space (ptid_t)
873       TARGET_DEFAULT_FUNC (default_thread_address_space);
874
875     /* Target file operations.  */
876
877     /* Return nonzero if the filesystem seen by the current inferior
878        is the local filesystem, zero otherwise.  */
879     virtual bool filesystem_is_local ()
880       TARGET_DEFAULT_RETURN (true);
881
882     /* Open FILENAME on the target, in the filesystem as seen by INF,
883        using FLAGS and MODE.  If INF is NULL, use the filesystem seen
884        by the debugger (GDB or, for remote targets, the remote stub).
885        If WARN_IF_SLOW is nonzero, print a warning message if the file
886        is being accessed over a link that may be slow.  Return a
887        target file descriptor, or -1 if an error occurs (and set
888        *TARGET_ERRNO).  */
889     virtual int fileio_open (struct inferior *inf, const char *filename,
890                              int flags, int mode, int warn_if_slow,
891                              int *target_errno);
892
893     /* Write up to LEN bytes from WRITE_BUF to FD on the target.
894        Return the number of bytes written, or -1 if an error occurs
895        (and set *TARGET_ERRNO).  */
896     virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
897                                ULONGEST offset, int *target_errno);
898
899     /* Read up to LEN bytes FD on the target into READ_BUF.
900        Return the number of bytes read, or -1 if an error occurs
901        (and set *TARGET_ERRNO).  */
902     virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
903                               ULONGEST offset, int *target_errno);
904
905     /* Get information about the file opened as FD and put it in
906        SB.  Return 0 on success, or -1 if an error occurs (and set
907        *TARGET_ERRNO).  */
908     virtual int fileio_fstat (int fd, struct stat *sb, int *target_errno);
909
910     /* Close FD on the target.  Return 0, or -1 if an error occurs
911        (and set *TARGET_ERRNO).  */
912     virtual int fileio_close (int fd, int *target_errno);
913
914     /* Unlink FILENAME on the target, in the filesystem as seen by
915        INF.  If INF is NULL, use the filesystem seen by the debugger
916        (GDB or, for remote targets, the remote stub).  Return 0, or
917        -1 if an error occurs (and set *TARGET_ERRNO).  */
918     virtual int fileio_unlink (struct inferior *inf,
919                                const char *filename,
920                                int *target_errno);
921
922     /* Read value of symbolic link FILENAME on the target, in the
923        filesystem as seen by INF.  If INF is NULL, use the filesystem
924        seen by the debugger (GDB or, for remote targets, the remote
925        stub).  Return a string, or an empty optional if an error
926        occurs (and set *TARGET_ERRNO).  */
927     virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
928                                                         const char *filename,
929                                                         int *target_errno);
930
931     /* Implement the "info proc" command.  Returns true if the target
932        actually implemented the command, false otherwise.  */
933     virtual bool info_proc (const char *, enum info_proc_what);
934
935     /* Tracepoint-related operations.  */
936
937     /* Prepare the target for a tracing run.  */
938     virtual void trace_init ()
939       TARGET_DEFAULT_NORETURN (tcomplain ());
940
941     /* Send full details of a tracepoint location to the target.  */
942     virtual void download_tracepoint (struct bp_location *location)
943       TARGET_DEFAULT_NORETURN (tcomplain ());
944
945     /* Is the target able to download tracepoint locations in current
946        state?  */
947     virtual bool can_download_tracepoint ()
948       TARGET_DEFAULT_RETURN (false);
949
950     /* Send full details of a trace state variable to the target.  */
951     virtual void download_trace_state_variable (const trace_state_variable &tsv)
952       TARGET_DEFAULT_NORETURN (tcomplain ());
953
954     /* Enable a tracepoint on the target.  */
955     virtual void enable_tracepoint (struct bp_location *location)
956       TARGET_DEFAULT_NORETURN (tcomplain ());
957
958     /* Disable a tracepoint on the target.  */
959     virtual void disable_tracepoint (struct bp_location *location)
960       TARGET_DEFAULT_NORETURN (tcomplain ());
961
962     /* Inform the target info of memory regions that are readonly
963        (such as text sections), and so it should return data from
964        those rather than look in the trace buffer.  */
965     virtual void trace_set_readonly_regions ()
966       TARGET_DEFAULT_NORETURN (tcomplain ());
967
968     /* Start a trace run.  */
969     virtual void trace_start ()
970       TARGET_DEFAULT_NORETURN (tcomplain ());
971
972     /* Get the current status of a tracing run.  */
973     virtual int get_trace_status (struct trace_status *ts)
974       TARGET_DEFAULT_RETURN (-1);
975
976     virtual void get_tracepoint_status (struct breakpoint *tp,
977                                         struct uploaded_tp *utp)
978       TARGET_DEFAULT_NORETURN (tcomplain ());
979
980     /* Stop a trace run.  */
981     virtual void trace_stop ()
982       TARGET_DEFAULT_NORETURN (tcomplain ());
983
984    /* Ask the target to find a trace frame of the given type TYPE,
985       using NUM, ADDR1, and ADDR2 as search parameters.  Returns the
986       number of the trace frame, and also the tracepoint number at
987       TPP.  If no trace frame matches, return -1.  May throw if the
988       operation fails.  */
989     virtual int trace_find (enum trace_find_type type, int num,
990                             CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
991       TARGET_DEFAULT_RETURN (-1);
992
993     /* Get the value of the trace state variable number TSV, returning
994        1 if the value is known and writing the value itself into the
995        location pointed to by VAL, else returning 0.  */
996     virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
997       TARGET_DEFAULT_RETURN (false);
998
999     virtual int save_trace_data (const char *filename)
1000       TARGET_DEFAULT_NORETURN (tcomplain ());
1001
1002     virtual int upload_tracepoints (struct uploaded_tp **utpp)
1003       TARGET_DEFAULT_RETURN (0);
1004
1005     virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1006       TARGET_DEFAULT_RETURN (0);
1007
1008     virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1009                                         ULONGEST offset, LONGEST len)
1010       TARGET_DEFAULT_NORETURN (tcomplain ());
1011
1012     /* Get the minimum length of instruction on which a fast tracepoint
1013        may be set on the target.  If this operation is unsupported,
1014        return -1.  If for some reason the minimum length cannot be
1015        determined, return 0.  */
1016     virtual int get_min_fast_tracepoint_insn_len ()
1017       TARGET_DEFAULT_RETURN (-1);
1018
1019     /* Set the target's tracing behavior in response to unexpected
1020        disconnection - set VAL to 1 to keep tracing, 0 to stop.  */
1021     virtual void set_disconnected_tracing (int val)
1022       TARGET_DEFAULT_IGNORE ();
1023     virtual void set_circular_trace_buffer (int val)
1024       TARGET_DEFAULT_IGNORE ();
1025     /* Set the size of trace buffer in the target.  */
1026     virtual void set_trace_buffer_size (LONGEST val)
1027       TARGET_DEFAULT_IGNORE ();
1028
1029     /* Add/change textual notes about the trace run, returning 1 if
1030        successful, 0 otherwise.  */
1031     virtual bool set_trace_notes (const char *user, const char *notes,
1032                                   const char *stopnotes)
1033       TARGET_DEFAULT_RETURN (false);
1034
1035     /* Return the processor core that thread PTID was last seen on.
1036        This information is updated only when:
1037        - update_thread_list is called
1038        - thread stops
1039        If the core cannot be determined -- either for the specified
1040        thread, or right now, or in this debug session, or for this
1041        target -- return -1.  */
1042     virtual int core_of_thread (ptid_t ptid)
1043       TARGET_DEFAULT_RETURN (-1);
1044
1045     /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1046        matches the contents of [DATA,DATA+SIZE).  Returns 1 if there's
1047        a match, 0 if there's a mismatch, and -1 if an error is
1048        encountered while reading memory.  */
1049     virtual int verify_memory (const gdb_byte *data,
1050                                CORE_ADDR memaddr, ULONGEST size)
1051       TARGET_DEFAULT_FUNC (default_verify_memory);
1052
1053     /* Return the address of the start of the Thread Information Block
1054        a Windows OS specific feature.  */
1055     virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1056       TARGET_DEFAULT_NORETURN (tcomplain ());
1057
1058     /* Send the new settings of write permission variables.  */
1059     virtual void set_permissions ()
1060       TARGET_DEFAULT_IGNORE ();
1061
1062     /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1063        with its details.  Return true on success, false on failure.  */
1064     virtual bool static_tracepoint_marker_at (CORE_ADDR,
1065                                               static_tracepoint_marker *marker)
1066       TARGET_DEFAULT_RETURN (false);
1067
1068     /* Return a vector of all tracepoints markers string id ID, or all
1069        markers if ID is NULL.  */
1070     virtual std::vector<static_tracepoint_marker>
1071       static_tracepoint_markers_by_strid (const char *id)
1072       TARGET_DEFAULT_NORETURN (tcomplain ());
1073
1074     /* Return a traceframe info object describing the current
1075        traceframe's contents.  This method should not cache data;
1076        higher layers take care of caching, invalidating, and
1077        re-fetching when necessary.  */
1078     virtual traceframe_info_up traceframe_info ()
1079       TARGET_DEFAULT_NORETURN (tcomplain ());
1080
1081     /* Ask the target to use or not to use agent according to USE.
1082        Return true if successful, false otherwise.  */
1083     virtual bool use_agent (bool use)
1084       TARGET_DEFAULT_NORETURN (tcomplain ());
1085
1086     /* Is the target able to use agent in current state?  */
1087     virtual bool can_use_agent ()
1088       TARGET_DEFAULT_RETURN (false);
1089
1090     /* Enable branch tracing for PTID using CONF configuration.
1091        Return a branch trace target information struct for reading and for
1092        disabling branch trace.  */
1093     virtual struct btrace_target_info *enable_btrace (ptid_t ptid,
1094                                                       const struct btrace_config *conf)
1095       TARGET_DEFAULT_NORETURN (tcomplain ());
1096
1097     /* Disable branch tracing and deallocate TINFO.  */
1098     virtual void disable_btrace (struct btrace_target_info *tinfo)
1099       TARGET_DEFAULT_NORETURN (tcomplain ());
1100
1101     /* Disable branch tracing and deallocate TINFO.  This function is similar
1102        to to_disable_btrace, except that it is called during teardown and is
1103        only allowed to perform actions that are safe.  A counter-example would
1104        be attempting to talk to a remote target.  */
1105     virtual void teardown_btrace (struct btrace_target_info *tinfo)
1106       TARGET_DEFAULT_NORETURN (tcomplain ());
1107
1108     /* Read branch trace data for the thread indicated by BTINFO into DATA.
1109        DATA is cleared before new trace is added.  */
1110     virtual enum btrace_error read_btrace (struct btrace_data *data,
1111                                            struct btrace_target_info *btinfo,
1112                                            enum btrace_read_type type)
1113       TARGET_DEFAULT_NORETURN (tcomplain ());
1114
1115     /* Get the branch trace configuration.  */
1116     virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1117       TARGET_DEFAULT_RETURN (NULL);
1118
1119     /* Current recording method.  */
1120     virtual enum record_method record_method (ptid_t ptid)
1121       TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1122
1123     /* Stop trace recording.  */
1124     virtual void stop_recording ()
1125       TARGET_DEFAULT_IGNORE ();
1126
1127     /* Print information about the recording.  */
1128     virtual void info_record ()
1129       TARGET_DEFAULT_IGNORE ();
1130
1131     /* Save the recorded execution trace into a file.  */
1132     virtual void save_record (const char *filename)
1133       TARGET_DEFAULT_NORETURN (tcomplain ());
1134
1135     /* Delete the recorded execution trace from the current position
1136        onwards.  */
1137     virtual bool supports_delete_record ()
1138       TARGET_DEFAULT_RETURN (false);
1139     virtual void delete_record ()
1140       TARGET_DEFAULT_NORETURN (tcomplain ());
1141
1142     /* Query if the record target is currently replaying PTID.  */
1143     virtual bool record_is_replaying (ptid_t ptid)
1144       TARGET_DEFAULT_RETURN (false);
1145
1146     /* Query if the record target will replay PTID if it were resumed in
1147        execution direction DIR.  */
1148     virtual bool record_will_replay (ptid_t ptid, int dir)
1149       TARGET_DEFAULT_RETURN (false);
1150
1151     /* Stop replaying.  */
1152     virtual void record_stop_replaying ()
1153       TARGET_DEFAULT_IGNORE ();
1154
1155     /* Go to the begin of the execution trace.  */
1156     virtual void goto_record_begin ()
1157       TARGET_DEFAULT_NORETURN (tcomplain ());
1158
1159     /* Go to the end of the execution trace.  */
1160     virtual void goto_record_end ()
1161       TARGET_DEFAULT_NORETURN (tcomplain ());
1162
1163     /* Go to a specific location in the recorded execution trace.  */
1164     virtual void goto_record (ULONGEST insn)
1165       TARGET_DEFAULT_NORETURN (tcomplain ());
1166
1167     /* Disassemble SIZE instructions in the recorded execution trace from
1168        the current position.
1169        If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1170        disassemble SIZE succeeding instructions.  */
1171     virtual void insn_history (int size, gdb_disassembly_flags flags)
1172       TARGET_DEFAULT_NORETURN (tcomplain ());
1173
1174     /* Disassemble SIZE instructions in the recorded execution trace around
1175        FROM.
1176        If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1177        disassemble SIZE instructions after FROM.  */
1178     virtual void insn_history_from (ULONGEST from, int size,
1179                                     gdb_disassembly_flags flags)
1180       TARGET_DEFAULT_NORETURN (tcomplain ());
1181
1182     /* Disassemble a section of the recorded execution trace from instruction
1183        BEGIN (inclusive) to instruction END (inclusive).  */
1184     virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1185                                      gdb_disassembly_flags flags)
1186       TARGET_DEFAULT_NORETURN (tcomplain ());
1187
1188     /* Print a function trace of the recorded execution trace.
1189        If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1190        succeeding functions.  */
1191     virtual void call_history (int size, record_print_flags flags)
1192       TARGET_DEFAULT_NORETURN (tcomplain ());
1193
1194     /* Print a function trace of the recorded execution trace starting
1195        at function FROM.
1196        If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1197        SIZE functions after FROM.  */
1198     virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1199       TARGET_DEFAULT_NORETURN (tcomplain ());
1200
1201     /* Print a function trace of an execution trace section from function BEGIN
1202        (inclusive) to function END (inclusive).  */
1203     virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1204       TARGET_DEFAULT_NORETURN (tcomplain ());
1205
1206     /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1207        non-empty annex.  */
1208     virtual bool augmented_libraries_svr4_read ()
1209       TARGET_DEFAULT_RETURN (false);
1210
1211     /* Those unwinders are tried before any other arch unwinders.  If
1212        SELF doesn't have unwinders, it should delegate to the
1213        "beneath" target.  */
1214     virtual const struct frame_unwind *get_unwinder ()
1215       TARGET_DEFAULT_RETURN (NULL);
1216
1217     virtual const struct frame_unwind *get_tailcall_unwinder ()
1218       TARGET_DEFAULT_RETURN (NULL);
1219
1220     /* Prepare to generate a core file.  */
1221     virtual void prepare_to_generate_core ()
1222       TARGET_DEFAULT_IGNORE ();
1223
1224     /* Cleanup after generating a core file.  */
1225     virtual void done_generating_core ()
1226       TARGET_DEFAULT_IGNORE ();
1227   };
1228
1229 /* The ops structure for our "current" target process.  This should
1230    never be NULL.  If there is no target, it points to the dummy_target.  */
1231
1232 extern struct target_ops *target_stack;
1233
1234 /* Define easy words for doing these operations on our current target.  */
1235
1236 #define target_shortname        (target_stack->shortname ())
1237 #define target_longname         (target_stack->longname ())
1238
1239 /* Does whatever cleanup is required for a target that we are no
1240    longer going to be calling.  This routine is automatically always
1241    called after popping the target off the target stack - the target's
1242    own methods are no longer available through the target vector.
1243    Closing file descriptors and freeing all memory allocated memory are
1244    typical things it should do.  */
1245
1246 void target_close (struct target_ops *targ);
1247
1248 /* Find the correct target to use for "attach".  If a target on the
1249    current stack supports attaching, then it is returned.  Otherwise,
1250    the default run target is returned.  */
1251
1252 extern struct target_ops *find_attach_target (void);
1253
1254 /* Find the correct target to use for "run".  If a target on the
1255    current stack supports creating a new inferior, then it is
1256    returned.  Otherwise, the default run target is returned.  */
1257
1258 extern struct target_ops *find_run_target (void);
1259
1260 /* Some targets don't generate traps when attaching to the inferior,
1261    or their target_attach implementation takes care of the waiting.
1262    These targets must set to_attach_no_wait.  */
1263
1264 #define target_attach_no_wait() \
1265   (target_stack->attach_no_wait ())
1266
1267 /* The target_attach operation places a process under debugger control,
1268    and stops the process.
1269
1270    This operation provides a target-specific hook that allows the
1271    necessary bookkeeping to be performed after an attach completes.  */
1272 #define target_post_attach(pid) \
1273      (target_stack->post_attach) (pid)
1274
1275 /* Display a message indicating we're about to detach from the current
1276    inferior process.  */
1277
1278 extern void target_announce_detach (int from_tty);
1279
1280 /* Takes a program previously attached to and detaches it.
1281    The program may resume execution (some targets do, some don't) and will
1282    no longer stop on signals, etc.  We better not have left any breakpoints
1283    in the program or it'll die when it hits one.  FROM_TTY says whether to be
1284    verbose or not.  */
1285
1286 extern void target_detach (inferior *inf, int from_tty);
1287
1288 /* Disconnect from the current target without resuming it (leaving it
1289    waiting for a debugger).  */
1290
1291 extern void target_disconnect (const char *, int);
1292
1293 /* Resume execution (or prepare for execution) of a target thread,
1294    process or all processes.  STEP says whether to hardware
1295    single-step or to run free; SIGGNAL is the signal to be given to
1296    the target, or GDB_SIGNAL_0 for no signal.  The caller may not pass
1297    GDB_SIGNAL_DEFAULT.  A specific PTID means `step/resume only this
1298    process id'.  A wildcard PTID (all threads, or all threads of
1299    process) means `step/resume INFERIOR_PTID, and let other threads
1300    (for which the wildcard PTID matches) resume with their
1301    'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1302    is in "pass" state, or with no signal if in "no pass" state.
1303
1304    In order to efficiently handle batches of resumption requests,
1305    targets may implement this method such that it records the
1306    resumption request, but defers the actual resumption to the
1307    target_commit_resume method implementation.  See
1308    target_commit_resume below.  */
1309 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1310
1311 /* Commit a series of resumption requests previously prepared with
1312    target_resume calls.
1313
1314    GDB always calls target_commit_resume after calling target_resume
1315    one or more times.  A target may thus use this method in
1316    coordination with the target_resume method to batch target-side
1317    resumption requests.  In that case, the target doesn't actually
1318    resume in its target_resume implementation.  Instead, it prepares
1319    the resumption in target_resume, and defers the actual resumption
1320    to target_commit_resume.  E.g., the remote target uses this to
1321    coalesce multiple resumption requests in a single vCont packet.  */
1322 extern void target_commit_resume ();
1323
1324 /* Setup to defer target_commit_resume calls, and reactivate
1325    target_commit_resume on destruction, if it was previously
1326    active.  */
1327 extern scoped_restore_tmpl<int> make_scoped_defer_target_commit_resume ();
1328
1329 /* For target_read_memory see target/target.h.  */
1330
1331 /* The default target_ops::to_wait implementation.  */
1332
1333 extern ptid_t default_target_wait (struct target_ops *ops,
1334                                    ptid_t ptid,
1335                                    struct target_waitstatus *status,
1336                                    int options);
1337
1338 /* Fetch at least register REGNO, or all regs if regno == -1.  No result.  */
1339
1340 extern void target_fetch_registers (struct regcache *regcache, int regno);
1341
1342 /* Store at least register REGNO, or all regs if REGNO == -1.
1343    It can store as many registers as it wants to, so target_prepare_to_store
1344    must have been previously called.  Calls error() if there are problems.  */
1345
1346 extern void target_store_registers (struct regcache *regcache, int regs);
1347
1348 /* Get ready to modify the registers array.  On machines which store
1349    individual registers, this doesn't need to do anything.  On machines
1350    which store all the registers in one fell swoop, this makes sure
1351    that REGISTERS contains all the registers from the program being
1352    debugged.  */
1353
1354 #define target_prepare_to_store(regcache)       \
1355      (target_stack->prepare_to_store) (regcache)
1356
1357 /* Determine current address space of thread PTID.  */
1358
1359 struct address_space *target_thread_address_space (ptid_t);
1360
1361 /* Implement the "info proc" command.  This returns one if the request
1362    was handled, and zero otherwise.  It can also throw an exception if
1363    an error was encountered while attempting to handle the
1364    request.  */
1365
1366 int target_info_proc (const char *, enum info_proc_what);
1367
1368 /* Returns true if this target can disable address space randomization.  */
1369
1370 int target_supports_disable_randomization (void);
1371
1372 /* Returns true if this target can enable and disable tracepoints
1373    while a trace experiment is running.  */
1374
1375 #define target_supports_enable_disable_tracepoint() \
1376   (target_stack->supports_enable_disable_tracepoint) ()
1377
1378 #define target_supports_string_tracing() \
1379   (target_stack->supports_string_tracing) ()
1380
1381 /* Returns true if this target can handle breakpoint conditions
1382    on its end.  */
1383
1384 #define target_supports_evaluation_of_breakpoint_conditions() \
1385   (target_stack->supports_evaluation_of_breakpoint_conditions) ()
1386
1387 /* Returns true if this target can handle breakpoint commands
1388    on its end.  */
1389
1390 #define target_can_run_breakpoint_commands() \
1391   (target_stack->can_run_breakpoint_commands) ()
1392
1393 extern int target_read_string (CORE_ADDR, gdb::unique_xmalloc_ptr<char> *,
1394                                int, int *);
1395
1396 /* For target_read_memory see target/target.h.  */
1397
1398 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1399                                    ssize_t len);
1400
1401 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1402
1403 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1404
1405 /* For target_write_memory see target/target.h.  */
1406
1407 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1408                                     ssize_t len);
1409
1410 /* Fetches the target's memory map.  If one is found it is sorted
1411    and returned, after some consistency checking.  Otherwise, NULL
1412    is returned.  */
1413 std::vector<mem_region> target_memory_map (void);
1414
1415 /* Erases all flash memory regions on the target.  */
1416 void flash_erase_command (const char *cmd, int from_tty);
1417
1418 /* Erase the specified flash region.  */
1419 void target_flash_erase (ULONGEST address, LONGEST length);
1420
1421 /* Finish a sequence of flash operations.  */
1422 void target_flash_done (void);
1423
1424 /* Describes a request for a memory write operation.  */
1425 struct memory_write_request
1426 {
1427   memory_write_request (ULONGEST begin_, ULONGEST end_,
1428                         gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1429     : begin (begin_), end (end_), data (data_), baton (baton_)
1430   {}
1431
1432   /* Begining address that must be written.  */
1433   ULONGEST begin;
1434   /* Past-the-end address.  */
1435   ULONGEST end;
1436   /* The data to write.  */
1437   gdb_byte *data;
1438   /* A callback baton for progress reporting for this request.  */
1439   void *baton;
1440 };
1441
1442 /* Enumeration specifying different flash preservation behaviour.  */
1443 enum flash_preserve_mode
1444   {
1445     flash_preserve,
1446     flash_discard
1447   };
1448
1449 /* Write several memory blocks at once.  This version can be more
1450    efficient than making several calls to target_write_memory, in
1451    particular because it can optimize accesses to flash memory.
1452
1453    Moreover, this is currently the only memory access function in gdb
1454    that supports writing to flash memory, and it should be used for
1455    all cases where access to flash memory is desirable.
1456
1457    REQUESTS is the vector (see vec.h) of memory_write_request.
1458    PRESERVE_FLASH_P indicates what to do with blocks which must be
1459      erased, but not completely rewritten.
1460    PROGRESS_CB is a function that will be periodically called to provide
1461      feedback to user.  It will be called with the baton corresponding
1462      to the request currently being written.  It may also be called
1463      with a NULL baton, when preserved flash sectors are being rewritten.
1464
1465    The function returns 0 on success, and error otherwise.  */
1466 int target_write_memory_blocks
1467     (const std::vector<memory_write_request> &requests,
1468      enum flash_preserve_mode preserve_flash_p,
1469      void (*progress_cb) (ULONGEST, void *));
1470
1471 /* Print a line about the current target.  */
1472
1473 #define target_files_info()     \
1474      (target_stack->files_info) ()
1475
1476 /* Insert a breakpoint at address BP_TGT->placed_address in
1477    the target machine.  Returns 0 for success, and returns non-zero or
1478    throws an error (with a detailed failure reason error code and
1479    message) otherwise.  */
1480
1481 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1482                                      struct bp_target_info *bp_tgt);
1483
1484 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1485    machine.  Result is 0 for success, non-zero for error.  */
1486
1487 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1488                                      struct bp_target_info *bp_tgt,
1489                                      enum remove_bp_reason reason);
1490
1491 /* Return true if the target stack has a non-default
1492   "terminal_ours" method.  */
1493
1494 extern int target_supports_terminal_ours (void);
1495
1496 /* Kill the inferior process.   Make it go away.  */
1497
1498 extern void target_kill (void);
1499
1500 /* Load an executable file into the target process.  This is expected
1501    to not only bring new code into the target process, but also to
1502    update GDB's symbol tables to match.
1503
1504    ARG contains command-line arguments, to be broken down with
1505    buildargv ().  The first non-switch argument is the filename to
1506    load, FILE; the second is a number (as parsed by strtoul (..., ...,
1507    0)), which is an offset to apply to the load addresses of FILE's
1508    sections.  The target may define switches, or other non-switch
1509    arguments, as it pleases.  */
1510
1511 extern void target_load (const char *arg, int from_tty);
1512
1513 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1514    notification of inferior events such as fork and vork immediately
1515    after the inferior is created.  (This because of how gdb gets an
1516    inferior created via invoking a shell to do it.  In such a scenario,
1517    if the shell init file has commands in it, the shell will fork and
1518    exec for each of those commands, and we will see each such fork
1519    event.  Very bad.)
1520
1521    Such targets will supply an appropriate definition for this function.  */
1522
1523 #define target_post_startup_inferior(ptid) \
1524      (target_stack->post_startup_inferior) (ptid)
1525
1526 /* On some targets, we can catch an inferior fork or vfork event when
1527    it occurs.  These functions insert/remove an already-created
1528    catchpoint for such events.  They return  0 for success, 1 if the
1529    catchpoint type is not supported and -1 for failure.  */
1530
1531 #define target_insert_fork_catchpoint(pid) \
1532      (target_stack->insert_fork_catchpoint) (pid)
1533
1534 #define target_remove_fork_catchpoint(pid) \
1535      (target_stack->remove_fork_catchpoint) (pid)
1536
1537 #define target_insert_vfork_catchpoint(pid) \
1538      (target_stack->insert_vfork_catchpoint) (pid)
1539
1540 #define target_remove_vfork_catchpoint(pid) \
1541      (target_stack->remove_vfork_catchpoint) (pid)
1542
1543 /* If the inferior forks or vforks, this function will be called at
1544    the next resume in order to perform any bookkeeping and fiddling
1545    necessary to continue debugging either the parent or child, as
1546    requested, and releasing the other.  Information about the fork
1547    or vfork event is available via get_last_target_status ().
1548    This function returns 1 if the inferior should not be resumed
1549    (i.e. there is another event pending).  */
1550
1551 int target_follow_fork (int follow_child, int detach_fork);
1552
1553 /* Handle the target-specific bookkeeping required when the inferior
1554    makes an exec call.  INF is the exec'd inferior.  */
1555
1556 void target_follow_exec (struct inferior *inf, char *execd_pathname);
1557
1558 /* On some targets, we can catch an inferior exec event when it
1559    occurs.  These functions insert/remove an already-created
1560    catchpoint for such events.  They return  0 for success, 1 if the
1561    catchpoint type is not supported and -1 for failure.  */
1562
1563 #define target_insert_exec_catchpoint(pid) \
1564      (target_stack->insert_exec_catchpoint) (pid)
1565
1566 #define target_remove_exec_catchpoint(pid) \
1567      (target_stack->remove_exec_catchpoint) (pid)
1568
1569 /* Syscall catch.
1570
1571    NEEDED is true if any syscall catch (of any kind) is requested.
1572    If NEEDED is false, it means the target can disable the mechanism to
1573    catch system calls because there are no more catchpoints of this type.
1574
1575    ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1576    being requested.  In this case, SYSCALL_COUNTS should be ignored.
1577
1578    SYSCALL_COUNTS is an array of ints, indexed by syscall number.  An
1579    element in this array is nonzero if that syscall should be caught.
1580    This argument only matters if ANY_COUNT is zero.
1581
1582    Return 0 for success, 1 if syscall catchpoints are not supported or -1
1583    for failure.  */
1584
1585 #define target_set_syscall_catchpoint(pid, needed, any_count, syscall_counts) \
1586      (target_stack->set_syscall_catchpoint) (pid, needed, any_count, \
1587                                              syscall_counts)
1588
1589 /* The debugger has completed a blocking wait() call.  There is now
1590    some process event that must be processed.  This function should
1591    be defined by those targets that require the debugger to perform
1592    cleanup or internal state changes in response to the process event.  */
1593
1594 /* For target_mourn_inferior see target/target.h.  */
1595
1596 /* Does target have enough data to do a run or attach command?  */
1597
1598 extern int target_can_run ();
1599
1600 /* Set list of signals to be handled in the target.
1601
1602    PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1603    (enum gdb_signal).  For every signal whose entry in this array is
1604    non-zero, the target is allowed -but not required- to skip reporting
1605    arrival of the signal to the GDB core by returning from target_wait,
1606    and to pass the signal directly to the inferior instead.
1607
1608    However, if the target is hardware single-stepping a thread that is
1609    about to receive a signal, it needs to be reported in any case, even
1610    if mentioned in a previous target_pass_signals call.   */
1611
1612 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1613
1614 /* Set list of signals the target may pass to the inferior.  This
1615    directly maps to the "handle SIGNAL pass/nopass" setting.
1616
1617    PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1618    number (enum gdb_signal).  For every signal whose entry in this
1619    array is non-zero, the target is allowed to pass the signal to the
1620    inferior.  Signals not present in the array shall be silently
1621    discarded.  This does not influence whether to pass signals to the
1622    inferior as a result of a target_resume call.  This is useful in
1623    scenarios where the target needs to decide whether to pass or not a
1624    signal to the inferior without GDB core involvement, such as for
1625    example, when detaching (as threads may have been suspended with
1626    pending signals not reported to GDB).  */
1627
1628 extern void target_program_signals (int nsig, unsigned char *program_signals);
1629
1630 /* Check to see if a thread is still alive.  */
1631
1632 extern int target_thread_alive (ptid_t ptid);
1633
1634 /* Sync the target's threads with GDB's thread list.  */
1635
1636 extern void target_update_thread_list (void);
1637
1638 /* Make target stop in a continuable fashion.  (For instance, under
1639    Unix, this should act like SIGSTOP).  Note that this function is
1640    asynchronous: it does not wait for the target to become stopped
1641    before returning.  If this is the behavior you want please use
1642    target_stop_and_wait.  */
1643
1644 extern void target_stop (ptid_t ptid);
1645
1646 /* Interrupt the target.  Unlike target_stop, this does not specify
1647    which thread/process reports the stop.  For most target this acts
1648    like raising a SIGINT, though that's not absolutely required.  This
1649    function is asynchronous.  */
1650
1651 extern void target_interrupt ();
1652
1653 /* Pass a ^C, as determined to have been pressed by checking the quit
1654    flag, to the target, as if the user had typed the ^C on the
1655    inferior's controlling terminal while the inferior was in the
1656    foreground.  Remote targets may take the opportunity to detect the
1657    remote side is not responding and offer to disconnect.  */
1658
1659 extern void target_pass_ctrlc (void);
1660
1661 /* The default target_ops::to_pass_ctrlc implementation.  Simply calls
1662    target_interrupt.  */
1663 extern void default_target_pass_ctrlc (struct target_ops *ops);
1664
1665 /* Send the specified COMMAND to the target's monitor
1666    (shell,interpreter) for execution.  The result of the query is
1667    placed in OUTBUF.  */
1668
1669 #define target_rcmd(command, outbuf) \
1670      (target_stack->rcmd) (command, outbuf)
1671
1672
1673 /* Does the target include all of memory, or only part of it?  This
1674    determines whether we look up the target chain for other parts of
1675    memory if this target can't satisfy a request.  */
1676
1677 extern int target_has_all_memory_1 (void);
1678 #define target_has_all_memory target_has_all_memory_1 ()
1679
1680 /* Does the target include memory?  (Dummy targets don't.)  */
1681
1682 extern int target_has_memory_1 (void);
1683 #define target_has_memory target_has_memory_1 ()
1684
1685 /* Does the target have a stack?  (Exec files don't, VxWorks doesn't, until
1686    we start a process.)  */
1687
1688 extern int target_has_stack_1 (void);
1689 #define target_has_stack target_has_stack_1 ()
1690
1691 /* Does the target have registers?  (Exec files don't.)  */
1692
1693 extern int target_has_registers_1 (void);
1694 #define target_has_registers target_has_registers_1 ()
1695
1696 /* Does the target have execution?  Can we make it jump (through
1697    hoops), or pop its stack a few times?  This means that the current
1698    target is currently executing; for some targets, that's the same as
1699    whether or not the target is capable of execution, but there are
1700    also targets which can be current while not executing.  In that
1701    case this will become true after to_create_inferior or
1702    to_attach.  */
1703
1704 extern int target_has_execution_1 (ptid_t);
1705
1706 /* Like target_has_execution_1, but always passes inferior_ptid.  */
1707
1708 extern int target_has_execution_current (void);
1709
1710 #define target_has_execution target_has_execution_current ()
1711
1712 /* Default implementations for process_stratum targets.  Return true
1713    if there's a selected inferior, false otherwise.  */
1714
1715 extern int default_child_has_all_memory ();
1716 extern int default_child_has_memory ();
1717 extern int default_child_has_stack ();
1718 extern int default_child_has_registers ();
1719 extern int default_child_has_execution (ptid_t the_ptid);
1720
1721 /* Can the target support the debugger control of thread execution?
1722    Can it lock the thread scheduler?  */
1723
1724 #define target_can_lock_scheduler \
1725   (target_stack->get_thread_control_capabilities () & tc_schedlock)
1726
1727 /* Controls whether async mode is permitted.  */
1728 extern int target_async_permitted;
1729
1730 /* Can the target support asynchronous execution?  */
1731 #define target_can_async_p() (target_stack->can_async_p ())
1732
1733 /* Is the target in asynchronous execution mode?  */
1734 #define target_is_async_p() (target_stack->is_async_p ())
1735
1736 /* Enables/disabled async target events.  */
1737 extern void target_async (int enable);
1738
1739 /* Enables/disables thread create and exit events.  */
1740 extern void target_thread_events (int enable);
1741
1742 /* Whether support for controlling the target backends always in
1743    non-stop mode is enabled.  */
1744 extern enum auto_boolean target_non_stop_enabled;
1745
1746 /* Is the target in non-stop mode?  Some targets control the inferior
1747    in non-stop mode even with "set non-stop off".  Always true if "set
1748    non-stop" is on.  */
1749 extern int target_is_non_stop_p (void);
1750
1751 #define target_execution_direction() \
1752   (target_stack->execution_direction ())
1753
1754 /* Converts a process id to a string.  Usually, the string just contains
1755    `process xyz', but on some systems it may contain
1756    `process xyz thread abc'.  */
1757
1758 extern const char *target_pid_to_str (ptid_t ptid);
1759
1760 extern const char *normal_pid_to_str (ptid_t ptid);
1761
1762 /* Return a short string describing extra information about PID,
1763    e.g. "sleeping", "runnable", "running on LWP 3".  Null return value
1764    is okay.  */
1765
1766 #define target_extra_thread_info(TP) \
1767      (target_stack->extra_thread_info (TP))
1768
1769 /* Return the thread's name, or NULL if the target is unable to determine it.
1770    The returned value must not be freed by the caller.  */
1771
1772 extern const char *target_thread_name (struct thread_info *);
1773
1774 /* Given a pointer to a thread library specific thread handle and
1775    its length, return a pointer to the corresponding thread_info struct.  */
1776
1777 extern struct thread_info *target_thread_handle_to_thread_info
1778   (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1779
1780 /* Attempts to find the pathname of the executable file
1781    that was run to create a specified process.
1782
1783    The process PID must be stopped when this operation is used.
1784
1785    If the executable file cannot be determined, NULL is returned.
1786
1787    Else, a pointer to a character string containing the pathname
1788    is returned.  This string should be copied into a buffer by
1789    the client if the string will not be immediately used, or if
1790    it must persist.  */
1791
1792 #define target_pid_to_exec_file(pid) \
1793      (target_stack->pid_to_exec_file) (pid)
1794
1795 /* See the to_thread_architecture description in struct target_ops.  */
1796
1797 #define target_thread_architecture(ptid) \
1798      (target_stack->thread_architecture (ptid))
1799
1800 /*
1801  * Iterator function for target memory regions.
1802  * Calls a callback function once for each memory region 'mapped'
1803  * in the child process.  Defined as a simple macro rather than
1804  * as a function macro so that it can be tested for nullity.
1805  */
1806
1807 #define target_find_memory_regions(FUNC, DATA) \
1808      (target_stack->find_memory_regions) (FUNC, DATA)
1809
1810 /*
1811  * Compose corefile .note section.
1812  */
1813
1814 #define target_make_corefile_notes(BFD, SIZE_P) \
1815      (target_stack->make_corefile_notes) (BFD, SIZE_P)
1816
1817 /* Bookmark interfaces.  */
1818 #define target_get_bookmark(ARGS, FROM_TTY) \
1819      (target_stack->get_bookmark) (ARGS, FROM_TTY)
1820
1821 #define target_goto_bookmark(ARG, FROM_TTY) \
1822      (target_stack->goto_bookmark) (ARG, FROM_TTY)
1823
1824 /* Hardware watchpoint interfaces.  */
1825
1826 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1827    write).  Only the INFERIOR_PTID task is being queried.  */
1828
1829 #define target_stopped_by_watchpoint()          \
1830   ((target_stack->stopped_by_watchpoint) ())
1831
1832 /* Returns non-zero if the target stopped because it executed a
1833    software breakpoint instruction.  */
1834
1835 #define target_stopped_by_sw_breakpoint()               \
1836   ((target_stack->stopped_by_sw_breakpoint) ())
1837
1838 #define target_supports_stopped_by_sw_breakpoint() \
1839   ((target_stack->supports_stopped_by_sw_breakpoint) ())
1840
1841 #define target_stopped_by_hw_breakpoint()                               \
1842   ((target_stack->stopped_by_hw_breakpoint) ())
1843
1844 #define target_supports_stopped_by_hw_breakpoint() \
1845   ((target_stack->supports_stopped_by_hw_breakpoint) ())
1846
1847 /* Non-zero if we have steppable watchpoints  */
1848
1849 #define target_have_steppable_watchpoint \
1850   (target_stack->have_steppable_watchpoint ())
1851
1852 /* Non-zero if we have continuable watchpoints  */
1853
1854 #define target_have_continuable_watchpoint \
1855   (target_stack->have_continuable_watchpoint ())
1856
1857 /* Provide defaults for hardware watchpoint functions.  */
1858
1859 /* If the *_hw_beakpoint functions have not been defined
1860    elsewhere use the definitions in the target vector.  */
1861
1862 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1863    Returns negative if the target doesn't have enough hardware debug
1864    registers available.  Return zero if hardware watchpoint of type
1865    TYPE isn't supported.  TYPE is one of bp_hardware_watchpoint,
1866    bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1867    CNT is the number of such watchpoints used so far, including this
1868    one.  OTHERTYPE is the number of watchpoints of other types than
1869    this one used so far.  */
1870
1871 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1872  (target_stack->can_use_hw_breakpoint) ( \
1873                                              TYPE, CNT, OTHERTYPE)
1874
1875 /* Returns the number of debug registers needed to watch the given
1876    memory region, or zero if not supported.  */
1877
1878 #define target_region_ok_for_hw_watchpoint(addr, len) \
1879     (target_stack->region_ok_for_hw_watchpoint) (addr, len)
1880
1881
1882 #define target_can_do_single_step() \
1883   (target_stack->can_do_single_step) ()
1884
1885 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1886    TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1887    COND is the expression for its condition, or NULL if there's none.
1888    Returns 0 for success, 1 if the watchpoint type is not supported,
1889    -1 for failure.  */
1890
1891 #define target_insert_watchpoint(addr, len, type, cond) \
1892      (target_stack->insert_watchpoint) (addr, len, type, cond)
1893
1894 #define target_remove_watchpoint(addr, len, type, cond) \
1895      (target_stack->remove_watchpoint) (addr, len, type, cond)
1896
1897 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1898    RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1899    or hw_access for an access watchpoint.  Returns 0 for success, 1 if
1900    masked watchpoints are not supported, -1 for failure.  */
1901
1902 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1903                                           enum target_hw_bp_type);
1904
1905 /* Remove a masked watchpoint at ADDR with the mask MASK.
1906    RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1907    or hw_access for an access watchpoint.  Returns 0 for success, non-zero
1908    for failure.  */
1909
1910 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1911                                           enum target_hw_bp_type);
1912
1913 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1914    the target machine.  Returns 0 for success, and returns non-zero or
1915    throws an error (with a detailed failure reason error code and
1916    message) otherwise.  */
1917
1918 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1919      (target_stack->insert_hw_breakpoint) (gdbarch, bp_tgt)
1920
1921 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1922      (target_stack->remove_hw_breakpoint) (gdbarch, bp_tgt)
1923
1924 /* Return number of debug registers needed for a ranged breakpoint,
1925    or -1 if ranged breakpoints are not supported.  */
1926
1927 extern int target_ranged_break_num_registers (void);
1928
1929 /* Return non-zero if target knows the data address which triggered this
1930    target_stopped_by_watchpoint, in such case place it to *ADDR_P.  Only the
1931    INFERIOR_PTID task is being queried.  */
1932 #define target_stopped_data_address(target, addr_p) \
1933   (target)->stopped_data_address (addr_p)
1934
1935 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1936    LENGTH bytes beginning at START.  */
1937 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1938   (target)->watchpoint_addr_within_range (addr, start, length)
1939
1940 /* Return non-zero if the target is capable of using hardware to evaluate
1941    the condition expression.  In this case, if the condition is false when
1942    the watched memory location changes, execution may continue without the
1943    debugger being notified.
1944
1945    Due to limitations in the hardware implementation, it may be capable of
1946    avoiding triggering the watchpoint in some cases where the condition
1947    expression is false, but may report some false positives as well.
1948    For this reason, GDB will still evaluate the condition expression when
1949    the watchpoint triggers.  */
1950 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1951   (target_stack->can_accel_watchpoint_condition) (addr, len, type, cond)
1952
1953 /* Return number of debug registers needed for a masked watchpoint,
1954    -1 if masked watchpoints are not supported or -2 if the given address
1955    and mask combination cannot be used.  */
1956
1957 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1958
1959 /* Target can execute in reverse?  */
1960 #define target_can_execute_reverse \
1961       target_stack->can_execute_reverse ()
1962
1963 extern const struct target_desc *target_read_description (struct target_ops *);
1964
1965 #define target_get_ada_task_ptid(lwp, tid) \
1966      (target_stack->get_ada_task_ptid) (lwp,tid)
1967
1968 /* Utility implementation of searching memory.  */
1969 extern int simple_search_memory (struct target_ops* ops,
1970                                  CORE_ADDR start_addr,
1971                                  ULONGEST search_space_len,
1972                                  const gdb_byte *pattern,
1973                                  ULONGEST pattern_len,
1974                                  CORE_ADDR *found_addrp);
1975
1976 /* Main entry point for searching memory.  */
1977 extern int target_search_memory (CORE_ADDR start_addr,
1978                                  ULONGEST search_space_len,
1979                                  const gdb_byte *pattern,
1980                                  ULONGEST pattern_len,
1981                                  CORE_ADDR *found_addrp);
1982
1983 /* Target file operations.  */
1984
1985 /* Return nonzero if the filesystem seen by the current inferior
1986    is the local filesystem, zero otherwise.  */
1987 #define target_filesystem_is_local() \
1988   target_stack->filesystem_is_local ()
1989
1990 /* Open FILENAME on the target, in the filesystem as seen by INF,
1991    using FLAGS and MODE.  If INF is NULL, use the filesystem seen
1992    by the debugger (GDB or, for remote targets, the remote stub).
1993    Return a target file descriptor, or -1 if an error occurs (and
1994    set *TARGET_ERRNO).  */
1995 extern int target_fileio_open (struct inferior *inf,
1996                                const char *filename, int flags,
1997                                int mode, int *target_errno);
1998
1999 /* Like target_fileio_open, but print a warning message if the
2000    file is being accessed over a link that may be slow.  */
2001 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2002                                             const char *filename,
2003                                             int flags,
2004                                             int mode,
2005                                             int *target_errno);
2006
2007 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2008    Return the number of bytes written, or -1 if an error occurs
2009    (and set *TARGET_ERRNO).  */
2010 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2011                                  ULONGEST offset, int *target_errno);
2012
2013 /* Read up to LEN bytes FD on the target into READ_BUF.
2014    Return the number of bytes read, or -1 if an error occurs
2015    (and set *TARGET_ERRNO).  */
2016 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2017                                 ULONGEST offset, int *target_errno);
2018
2019 /* Get information about the file opened as FD on the target
2020    and put it in SB.  Return 0 on success, or -1 if an error
2021    occurs (and set *TARGET_ERRNO).  */
2022 extern int target_fileio_fstat (int fd, struct stat *sb,
2023                                 int *target_errno);
2024
2025 /* Close FD on the target.  Return 0, or -1 if an error occurs
2026    (and set *TARGET_ERRNO).  */
2027 extern int target_fileio_close (int fd, int *target_errno);
2028
2029 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2030    If INF is NULL, use the filesystem seen by the debugger (GDB or,
2031    for remote targets, the remote stub).  Return 0, or -1 if an error
2032    occurs (and set *TARGET_ERRNO).  */
2033 extern int target_fileio_unlink (struct inferior *inf,
2034                                  const char *filename,
2035                                  int *target_errno);
2036
2037 /* Read value of symbolic link FILENAME on the target, in the
2038    filesystem as seen by INF.  If INF is NULL, use the filesystem seen
2039    by the debugger (GDB or, for remote targets, the remote stub).
2040    Return a null-terminated string allocated via xmalloc, or NULL if
2041    an error occurs (and set *TARGET_ERRNO).  */
2042 extern gdb::optional<std::string> target_fileio_readlink
2043     (struct inferior *inf, const char *filename, int *target_errno);
2044
2045 /* Read target file FILENAME, in the filesystem as seen by INF.  If
2046    INF is NULL, use the filesystem seen by the debugger (GDB or, for
2047    remote targets, the remote stub).  The return value will be -1 if
2048    the transfer fails or is not supported; 0 if the object is empty;
2049    or the length of the object otherwise.  If a positive value is
2050    returned, a sufficiently large buffer will be allocated using
2051    xmalloc and returned in *BUF_P containing the contents of the
2052    object.
2053
2054    This method should be used for objects sufficiently small to store
2055    in a single xmalloc'd buffer, when no fixed bound on the object's
2056    size is known in advance.  */
2057 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2058                                          const char *filename,
2059                                          gdb_byte **buf_p);
2060
2061 /* Read target file FILENAME, in the filesystem as seen by INF.  If
2062    INF is NULL, use the filesystem seen by the debugger (GDB or, for
2063    remote targets, the remote stub).  The result is NUL-terminated and
2064    returned as a string, allocated using xmalloc.  If an error occurs
2065    or the transfer is unsupported, NULL is returned.  Empty objects
2066    are returned as allocated but empty strings.  A warning is issued
2067    if the result contains any embedded NUL bytes.  */
2068 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2069     (struct inferior *inf, const char *filename);
2070
2071
2072 /* Tracepoint-related operations.  */
2073
2074 #define target_trace_init() \
2075   (target_stack->trace_init) ()
2076
2077 #define target_download_tracepoint(t) \
2078   (target_stack->download_tracepoint) (t)
2079
2080 #define target_can_download_tracepoint() \
2081   (target_stack->can_download_tracepoint) ()
2082
2083 #define target_download_trace_state_variable(tsv) \
2084   (target_stack->download_trace_state_variable) (tsv)
2085
2086 #define target_enable_tracepoint(loc) \
2087   (target_stack->enable_tracepoint) (loc)
2088
2089 #define target_disable_tracepoint(loc) \
2090   (target_stack->disable_tracepoint) (loc)
2091
2092 #define target_trace_start() \
2093   (target_stack->trace_start) ()
2094
2095 #define target_trace_set_readonly_regions() \
2096   (target_stack->trace_set_readonly_regions) ()
2097
2098 #define target_get_trace_status(ts) \
2099   (target_stack->get_trace_status) (ts)
2100
2101 #define target_get_tracepoint_status(tp,utp)            \
2102   (target_stack->get_tracepoint_status) (tp, utp)
2103
2104 #define target_trace_stop() \
2105   (target_stack->trace_stop) ()
2106
2107 #define target_trace_find(type,num,addr1,addr2,tpp) \
2108   (target_stack->trace_find) (\
2109                                    (type), (num), (addr1), (addr2), (tpp))
2110
2111 #define target_get_trace_state_variable_value(tsv,val) \
2112   (target_stack->get_trace_state_variable_value) ((tsv), (val))
2113
2114 #define target_save_trace_data(filename) \
2115   (target_stack->save_trace_data) (filename)
2116
2117 #define target_upload_tracepoints(utpp) \
2118   (target_stack->upload_tracepoints) (utpp)
2119
2120 #define target_upload_trace_state_variables(utsvp) \
2121   (target_stack->upload_trace_state_variables) (utsvp)
2122
2123 #define target_get_raw_trace_data(buf,offset,len) \
2124   (target_stack->get_raw_trace_data) ((buf), (offset), (len))
2125
2126 #define target_get_min_fast_tracepoint_insn_len() \
2127   (target_stack->get_min_fast_tracepoint_insn_len) ()
2128
2129 #define target_set_disconnected_tracing(val) \
2130   (target_stack->set_disconnected_tracing) (val)
2131
2132 #define target_set_circular_trace_buffer(val)   \
2133   (target_stack->set_circular_trace_buffer) (val)
2134
2135 #define target_set_trace_buffer_size(val)       \
2136   (target_stack->set_trace_buffer_size) (val)
2137
2138 #define target_set_trace_notes(user,notes,stopnotes)            \
2139   (target_stack->set_trace_notes) ((user), (notes), (stopnotes))
2140
2141 #define target_get_tib_address(ptid, addr) \
2142   (target_stack->get_tib_address) ((ptid), (addr))
2143
2144 #define target_set_permissions() \
2145   (target_stack->set_permissions) ()
2146
2147 #define target_static_tracepoint_marker_at(addr, marker) \
2148   (target_stack->static_tracepoint_marker_at) (addr, marker)
2149
2150 #define target_static_tracepoint_markers_by_strid(marker_id) \
2151   (target_stack->static_tracepoint_markers_by_strid) (marker_id)
2152
2153 #define target_traceframe_info() \
2154   (target_stack->traceframe_info) ()
2155
2156 #define target_use_agent(use) \
2157   (target_stack->use_agent) (use)
2158
2159 #define target_can_use_agent() \
2160   (target_stack->can_use_agent) ()
2161
2162 #define target_augmented_libraries_svr4_read() \
2163   (target_stack->augmented_libraries_svr4_read) ()
2164
2165 /* Command logging facility.  */
2166
2167 #define target_log_command(p)                                   \
2168   (target_stack->log_command) (p)
2169
2170
2171 extern int target_core_of_thread (ptid_t ptid);
2172
2173 /* See to_get_unwinder in struct target_ops.  */
2174 extern const struct frame_unwind *target_get_unwinder (void);
2175
2176 /* See to_get_tailcall_unwinder in struct target_ops.  */
2177 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2178
2179 /* This implements basic memory verification, reading target memory
2180    and performing the comparison here (as opposed to accelerated
2181    verification making use of the qCRC packet, for example).  */
2182
2183 extern int simple_verify_memory (struct target_ops* ops,
2184                                  const gdb_byte *data,
2185                                  CORE_ADDR memaddr, ULONGEST size);
2186
2187 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2188    the contents of [DATA,DATA+SIZE).  Returns 1 if there's a match, 0
2189    if there's a mismatch, and -1 if an error is encountered while
2190    reading memory.  Throws an error if the functionality is found not
2191    to be supported by the current target.  */
2192 int target_verify_memory (const gdb_byte *data,
2193                           CORE_ADDR memaddr, ULONGEST size);
2194
2195 /* Routines for maintenance of the target structures...
2196
2197    add_target:   Add a target to the list of all possible targets.
2198    This only makes sense for targets that should be activated using
2199    the "target TARGET_NAME ..." command.
2200
2201    push_target:  Make this target the top of the stack of currently used
2202    targets, within its particular stratum of the stack.  Result
2203    is 0 if now atop the stack, nonzero if not on top (maybe
2204    should warn user).
2205
2206    unpush_target: Remove this from the stack of currently used targets,
2207    no matter where it is on the list.  Returns 0 if no
2208    change, 1 if removed from stack.  */
2209
2210 extern void add_target (struct target_ops *);
2211
2212 extern void add_target_with_completer (struct target_ops *t,
2213                                        completer_ftype *completer);
2214
2215 /* Adds a command ALIAS for target T and marks it deprecated.  This is useful
2216    for maintaining backwards compatibility when renaming targets.  */
2217
2218 extern void add_deprecated_target_alias (struct target_ops *t,
2219                                          const char *alias);
2220
2221 extern void push_target (struct target_ops *);
2222
2223 extern int unpush_target (struct target_ops *);
2224
2225 extern void target_pre_inferior (int);
2226
2227 extern void target_preopen (int);
2228
2229 /* Does whatever cleanup is required to get rid of all pushed targets.  */
2230 extern void pop_all_targets (void);
2231
2232 /* Like pop_all_targets, but pops only targets whose stratum is at or
2233    above STRATUM.  */
2234 extern void pop_all_targets_at_and_above (enum strata stratum);
2235
2236 /* Like pop_all_targets, but pops only targets whose stratum is
2237    strictly above ABOVE_STRATUM.  */
2238 extern void pop_all_targets_above (enum strata above_stratum);
2239
2240 extern int target_is_pushed (struct target_ops *t);
2241
2242 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2243                                                CORE_ADDR offset);
2244
2245 /* Struct target_section maps address ranges to file sections.  It is
2246    mostly used with BFD files, but can be used without (e.g. for handling
2247    raw disks, or files not in formats handled by BFD).  */
2248
2249 struct target_section
2250   {
2251     CORE_ADDR addr;             /* Lowest address in section */
2252     CORE_ADDR endaddr;          /* 1+highest address in section */
2253
2254     struct bfd_section *the_bfd_section;
2255
2256     /* The "owner" of the section.
2257        It can be any unique value.  It is set by add_target_sections
2258        and used by remove_target_sections.
2259        For example, for executables it is a pointer to exec_bfd and
2260        for shlibs it is the so_list pointer.  */
2261     void *owner;
2262   };
2263
2264 /* Holds an array of target sections.  Defined by [SECTIONS..SECTIONS_END[.  */
2265
2266 struct target_section_table
2267 {
2268   struct target_section *sections;
2269   struct target_section *sections_end;
2270 };
2271
2272 /* Return the "section" containing the specified address.  */
2273 struct target_section *target_section_by_addr (struct target_ops *target,
2274                                                CORE_ADDR addr);
2275
2276 /* Return the target section table this target (or the targets
2277    beneath) currently manipulate.  */
2278
2279 extern struct target_section_table *target_get_section_table
2280   (struct target_ops *target);
2281
2282 /* From mem-break.c */
2283
2284 extern int memory_remove_breakpoint (struct target_ops *,
2285                                      struct gdbarch *, struct bp_target_info *,
2286                                      enum remove_bp_reason);
2287
2288 extern int memory_insert_breakpoint (struct target_ops *,
2289                                      struct gdbarch *, struct bp_target_info *);
2290
2291 /* Convenience template use to add memory breakpoints support to a
2292    target.  */
2293
2294 template <typename BaseTarget>
2295 struct memory_breakpoint_target : public BaseTarget
2296 {
2297   int insert_breakpoint (struct gdbarch *gdbarch,
2298                          struct bp_target_info *bp_tgt) override
2299   { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2300
2301   int remove_breakpoint (struct gdbarch *gdbarch,
2302                          struct bp_target_info *bp_tgt,
2303                          enum remove_bp_reason reason) override
2304   { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2305 };
2306
2307 /* Check whether the memory at the breakpoint's placed address still
2308    contains the expected breakpoint instruction.  */
2309
2310 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2311                                        struct bp_target_info *bp_tgt);
2312
2313 extern int default_memory_remove_breakpoint (struct gdbarch *,
2314                                              struct bp_target_info *);
2315
2316 extern int default_memory_insert_breakpoint (struct gdbarch *,
2317                                              struct bp_target_info *);
2318
2319
2320 /* From target.c */
2321
2322 extern void initialize_targets (void);
2323
2324 extern void noprocess (void) ATTRIBUTE_NORETURN;
2325
2326 extern void target_require_runnable (void);
2327
2328 extern struct target_ops *find_target_beneath (struct target_ops *);
2329
2330 /* Find the target at STRATUM.  If no target is at that stratum,
2331    return NULL.  */
2332
2333 struct target_ops *find_target_at (enum strata stratum);
2334
2335 /* Read OS data object of type TYPE from the target, and return it in XML
2336    format.  The return value follows the same rules as target_read_stralloc.  */
2337
2338 extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2339
2340 /* Stuff that should be shared among the various remote targets.  */
2341
2342 /* Debugging level.  0 is off, and non-zero values mean to print some debug
2343    information (higher values, more information).  */
2344 extern int remote_debug;
2345
2346 /* Speed in bits per second, or -1 which means don't mess with the speed.  */
2347 extern int baud_rate;
2348
2349 /* Parity for serial port  */
2350 extern int serial_parity;
2351
2352 /* Timeout limit for response from target.  */
2353 extern int remote_timeout;
2354
2355 \f
2356
2357 /* Set the show memory breakpoints mode to show, and return a
2358    scoped_restore to restore it back to the current value.  */
2359 extern scoped_restore_tmpl<int>
2360     make_scoped_restore_show_memory_breakpoints (int show);
2361
2362 extern int may_write_registers;
2363 extern int may_write_memory;
2364 extern int may_insert_breakpoints;
2365 extern int may_insert_tracepoints;
2366 extern int may_insert_fast_tracepoints;
2367 extern int may_stop;
2368
2369 extern void update_target_permissions (void);
2370
2371 \f
2372 /* Imported from machine dependent code.  */
2373
2374 /* See to_enable_btrace in struct target_ops.  */
2375 extern struct btrace_target_info *
2376   target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2377
2378 /* See to_disable_btrace in struct target_ops.  */
2379 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2380
2381 /* See to_teardown_btrace in struct target_ops.  */
2382 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2383
2384 /* See to_read_btrace in struct target_ops.  */
2385 extern enum btrace_error target_read_btrace (struct btrace_data *,
2386                                              struct btrace_target_info *,
2387                                              enum btrace_read_type);
2388
2389 /* See to_btrace_conf in struct target_ops.  */
2390 extern const struct btrace_config *
2391   target_btrace_conf (const struct btrace_target_info *);
2392
2393 /* See to_stop_recording in struct target_ops.  */
2394 extern void target_stop_recording (void);
2395
2396 /* See to_save_record in struct target_ops.  */
2397 extern void target_save_record (const char *filename);
2398
2399 /* Query if the target supports deleting the execution log.  */
2400 extern int target_supports_delete_record (void);
2401
2402 /* See to_delete_record in struct target_ops.  */
2403 extern void target_delete_record (void);
2404
2405 /* See to_record_method.  */
2406 extern enum record_method target_record_method (ptid_t ptid);
2407
2408 /* See to_record_is_replaying in struct target_ops.  */
2409 extern int target_record_is_replaying (ptid_t ptid);
2410
2411 /* See to_record_will_replay in struct target_ops.  */
2412 extern int target_record_will_replay (ptid_t ptid, int dir);
2413
2414 /* See to_record_stop_replaying in struct target_ops.  */
2415 extern void target_record_stop_replaying (void);
2416
2417 /* See to_goto_record_begin in struct target_ops.  */
2418 extern void target_goto_record_begin (void);
2419
2420 /* See to_goto_record_end in struct target_ops.  */
2421 extern void target_goto_record_end (void);
2422
2423 /* See to_goto_record in struct target_ops.  */
2424 extern void target_goto_record (ULONGEST insn);
2425
2426 /* See to_insn_history.  */
2427 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2428
2429 /* See to_insn_history_from.  */
2430 extern void target_insn_history_from (ULONGEST from, int size,
2431                                       gdb_disassembly_flags flags);
2432
2433 /* See to_insn_history_range.  */
2434 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2435                                        gdb_disassembly_flags flags);
2436
2437 /* See to_call_history.  */
2438 extern void target_call_history (int size, record_print_flags flags);
2439
2440 /* See to_call_history_from.  */
2441 extern void target_call_history_from (ULONGEST begin, int size,
2442                                       record_print_flags flags);
2443
2444 /* See to_call_history_range.  */
2445 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2446                                        record_print_flags flags);
2447
2448 /* See to_prepare_to_generate_core.  */
2449 extern void target_prepare_to_generate_core (void);
2450
2451 /* See to_done_generating_core.  */
2452 extern void target_done_generating_core (void);
2453
2454 #if GDB_SELF_TEST
2455 namespace selftests {
2456
2457 /* A mock process_stratum target_ops that doesn't read/write registers
2458    anywhere.  */
2459
2460 class test_target_ops : public target_ops
2461 {
2462 public:
2463   test_target_ops ()
2464     : target_ops {}
2465   {
2466     to_stratum = process_stratum;
2467   }
2468
2469   const char *shortname () override
2470   {
2471     return NULL;
2472   }
2473
2474   const char *longname () override
2475   {
2476     return NULL;
2477   }
2478
2479   const char *doc () override
2480   {
2481     return NULL;
2482   }
2483
2484   bool has_registers () override
2485   {
2486     return true;
2487   }
2488
2489   bool has_stack () override
2490   {
2491     return true;
2492   }
2493
2494   bool has_memory () override
2495   {
2496     return true;
2497   }
2498
2499   void prepare_to_store (regcache *regs) override
2500   {
2501   }
2502
2503   void store_registers (regcache *regs, int regno) override
2504   {
2505   }
2506 };
2507
2508
2509 } // namespace selftests
2510 #endif /* GDB_SELF_TEST */
2511
2512 #endif /* !defined (TARGET_H) */