Warn when accessing binaries from remote targets
[external/binutils.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3    Copyright (C) 1990-2015 Free Software Foundation, Inc.
4
5    Contributed by Cygnus Support.  Written by John Gilmore.
6
7    This file is part of GDB.
8
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind.  */
44 #include "breakpoint.h" /* For enum bptype.  */
45
46 /* This include file defines the interface between the main part
47    of the debugger, and the part which is target-specific, or
48    specific to the communications interface between us and the
49    target.
50
51    A TARGET is an interface between the debugger and a particular
52    kind of file or process.  Targets can be STACKED in STRATA,
53    so that more than one target can potentially respond to a request.
54    In particular, memory accesses will walk down the stack of targets
55    until they find a target that is interested in handling that particular
56    address.  STRATA are artificial boundaries on the stack, within
57    which particular kinds of targets live.  Strata exist so that
58    people don't get confused by pushing e.g. a process target and then
59    a file target, and wondering why they can't see the current values
60    of variables any more (the file target is handling them and they
61    never get to the process target).  So when you push a file target,
62    it goes into the file stratum, which is always below the process
63    stratum.  */
64
65 #include "target/target.h"
66 #include "target/resume.h"
67 #include "target/wait.h"
68 #include "target/waitstatus.h"
69 #include "bfd.h"
70 #include "symtab.h"
71 #include "memattr.h"
72 #include "vec.h"
73 #include "gdb_signals.h"
74 #include "btrace.h"
75 #include "command.h"
76
77 #include "break-common.h" /* For enum target_hw_bp_type.  */
78
79 enum strata
80   {
81     dummy_stratum,              /* The lowest of the low */
82     file_stratum,               /* Executable files, etc */
83     process_stratum,            /* Executing processes or core dump files */
84     thread_stratum,             /* Executing threads */
85     record_stratum,             /* Support record debugging */
86     arch_stratum                /* Architecture overrides */
87   };
88
89 enum thread_control_capabilities
90   {
91     tc_none = 0,                /* Default: can't control thread execution.  */
92     tc_schedlock = 1,           /* Can lock the thread scheduler.  */
93   };
94
95 /* The structure below stores information about a system call.
96    It is basically used in the "catch syscall" command, and in
97    every function that gives information about a system call.
98    
99    It's also good to mention that its fields represent everything
100    that we currently know about a syscall in GDB.  */
101 struct syscall
102   {
103     /* The syscall number.  */
104     int number;
105
106     /* The syscall name.  */
107     const char *name;
108   };
109
110 /* Return a pretty printed form of target_waitstatus.
111    Space for the result is malloc'd, caller must free.  */
112 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
113
114 /* Return a pretty printed form of TARGET_OPTIONS.
115    Space for the result is malloc'd, caller must free.  */
116 extern char *target_options_to_string (int target_options);
117
118 /* Possible types of events that the inferior handler will have to
119    deal with.  */
120 enum inferior_event_type
121   {
122     /* Process a normal inferior event which will result in target_wait
123        being called.  */
124     INF_REG_EVENT,
125     /* We are called because a timer went off.  */
126     INF_TIMER,
127     /* We are called to do stuff after the inferior stops.  */
128     INF_EXEC_COMPLETE,
129     /* We are called to do some stuff after the inferior stops, but we
130        are expected to reenter the proceed() and
131        handle_inferior_event() functions.  This is used only in case of
132        'step n' like commands.  */
133     INF_EXEC_CONTINUE
134   };
135 \f
136 /* Target objects which can be transfered using target_read,
137    target_write, et cetera.  */
138
139 enum target_object
140 {
141   /* AVR target specific transfer.  See "avr-tdep.c" and "remote.c".  */
142   TARGET_OBJECT_AVR,
143   /* SPU target specific transfer.  See "spu-tdep.c".  */
144   TARGET_OBJECT_SPU,
145   /* Transfer up-to LEN bytes of memory starting at OFFSET.  */
146   TARGET_OBJECT_MEMORY,
147   /* Memory, avoiding GDB's data cache and trusting the executable.
148      Target implementations of to_xfer_partial never need to handle
149      this object, and most callers should not use it.  */
150   TARGET_OBJECT_RAW_MEMORY,
151   /* Memory known to be part of the target's stack.  This is cached even
152      if it is not in a region marked as such, since it is known to be
153      "normal" RAM.  */
154   TARGET_OBJECT_STACK_MEMORY,
155   /* Memory known to be part of the target code.   This is cached even
156      if it is not in a region marked as such.  */
157   TARGET_OBJECT_CODE_MEMORY,
158   /* Kernel Unwind Table.  See "ia64-tdep.c".  */
159   TARGET_OBJECT_UNWIND_TABLE,
160   /* Transfer auxilliary vector.  */
161   TARGET_OBJECT_AUXV,
162   /* StackGhost cookie.  See "sparc-tdep.c".  */
163   TARGET_OBJECT_WCOOKIE,
164   /* Target memory map in XML format.  */
165   TARGET_OBJECT_MEMORY_MAP,
166   /* Flash memory.  This object can be used to write contents to
167      a previously erased flash memory.  Using it without erasing
168      flash can have unexpected results.  Addresses are physical
169      address on target, and not relative to flash start.  */
170   TARGET_OBJECT_FLASH,
171   /* Available target-specific features, e.g. registers and coprocessors.
172      See "target-descriptions.c".  ANNEX should never be empty.  */
173   TARGET_OBJECT_AVAILABLE_FEATURES,
174   /* Currently loaded libraries, in XML format.  */
175   TARGET_OBJECT_LIBRARIES,
176   /* Currently loaded libraries specific for SVR4 systems, in XML format.  */
177   TARGET_OBJECT_LIBRARIES_SVR4,
178   /* Currently loaded libraries specific to AIX systems, in XML format.  */
179   TARGET_OBJECT_LIBRARIES_AIX,
180   /* Get OS specific data.  The ANNEX specifies the type (running
181      processes, etc.).  The data being transfered is expected to follow
182      the DTD specified in features/osdata.dtd.  */
183   TARGET_OBJECT_OSDATA,
184   /* Extra signal info.  Usually the contents of `siginfo_t' on unix
185      platforms.  */
186   TARGET_OBJECT_SIGNAL_INFO,
187   /* The list of threads that are being debugged.  */
188   TARGET_OBJECT_THREADS,
189   /* Collected static trace data.  */
190   TARGET_OBJECT_STATIC_TRACE_DATA,
191   /* The HP-UX registers (those that can be obtained or modified by using
192      the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests).  */
193   TARGET_OBJECT_HPUX_UREGS,
194   /* The HP-UX shared library linkage pointer.  ANNEX should be a string
195      image of the code address whose linkage pointer we are looking for.
196
197      The size of the data transfered is always 8 bytes (the size of an
198      address on ia64).  */
199   TARGET_OBJECT_HPUX_SOLIB_GOT,
200   /* Traceframe info, in XML format.  */
201   TARGET_OBJECT_TRACEFRAME_INFO,
202   /* Load maps for FDPIC systems.  */
203   TARGET_OBJECT_FDPIC,
204   /* Darwin dynamic linker info data.  */
205   TARGET_OBJECT_DARWIN_DYLD_INFO,
206   /* OpenVMS Unwind Information Block.  */
207   TARGET_OBJECT_OPENVMS_UIB,
208   /* Branch trace data, in XML format.  */
209   TARGET_OBJECT_BTRACE,
210   /* Branch trace configuration, in XML format.  */
211   TARGET_OBJECT_BTRACE_CONF,
212   /* The pathname of the executable file that was run to create
213      a specified process.  ANNEX should be a string representation
214      of the process ID of the process in question, in hexadecimal
215      format.  */
216   TARGET_OBJECT_EXEC_FILE,
217   /* Possible future objects: TARGET_OBJECT_FILE, ...  */
218 };
219
220 /* Possible values returned by target_xfer_partial, etc.  */
221
222 enum target_xfer_status
223 {
224   /* Some bytes are transferred.  */
225   TARGET_XFER_OK = 1,
226
227   /* No further transfer is possible.  */
228   TARGET_XFER_EOF = 0,
229
230   /* The piece of the object requested is unavailable.  */
231   TARGET_XFER_UNAVAILABLE = 2,
232
233   /* Generic I/O error.  Note that it's important that this is '-1',
234      as we still have target_xfer-related code returning hardcoded
235      '-1' on error.  */
236   TARGET_XFER_E_IO = -1,
237
238   /* Keep list in sync with target_xfer_status_to_string.  */
239 };
240
241 /* Return the string form of STATUS.  */
242
243 extern const char *
244   target_xfer_status_to_string (enum target_xfer_status status);
245
246 /* Enumeration of the kinds of traceframe searches that a target may
247    be able to perform.  */
248
249 enum trace_find_type
250   {
251     tfind_number,
252     tfind_pc,
253     tfind_tp,
254     tfind_range,
255     tfind_outside,
256   };
257
258 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
259 DEF_VEC_P(static_tracepoint_marker_p);
260
261 typedef enum target_xfer_status
262   target_xfer_partial_ftype (struct target_ops *ops,
263                              enum target_object object,
264                              const char *annex,
265                              gdb_byte *readbuf,
266                              const gdb_byte *writebuf,
267                              ULONGEST offset,
268                              ULONGEST len,
269                              ULONGEST *xfered_len);
270
271 enum target_xfer_status
272   raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
273                            const gdb_byte *writebuf, ULONGEST memaddr,
274                            LONGEST len, ULONGEST *xfered_len);
275
276 /* Request that OPS transfer up to LEN addressable units of the target's
277    OBJECT.  When reading from a memory object, the size of an addressable unit
278    is architecture dependent and can be found using
279    gdbarch_addressable_memory_unit_size.  Otherwise, an addressable unit is 1
280    byte long.  BUF should point to a buffer large enough to hold the read data,
281    taking into account the addressable unit size.  The OFFSET, for a seekable
282    object, specifies the starting point.  The ANNEX can be used to provide
283    additional data-specific information to the target.
284
285    Return the number of addressable units actually transferred, or a negative
286    error code (an 'enum target_xfer_error' value) if the transfer is not
287    supported or otherwise fails.  Return of a positive value less than
288    LEN indicates that no further transfer is possible.  Unlike the raw
289    to_xfer_partial interface, callers of these functions do not need
290    to retry partial transfers.  */
291
292 extern LONGEST target_read (struct target_ops *ops,
293                             enum target_object object,
294                             const char *annex, gdb_byte *buf,
295                             ULONGEST offset, LONGEST len);
296
297 struct memory_read_result
298   {
299     /* First address that was read.  */
300     ULONGEST begin;
301     /* Past-the-end address.  */
302     ULONGEST end;
303     /* The data.  */
304     gdb_byte *data;
305 };
306 typedef struct memory_read_result memory_read_result_s;
307 DEF_VEC_O(memory_read_result_s);
308
309 extern void free_memory_read_result_vector (void *);
310
311 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
312                                                       const ULONGEST offset,
313                                                       const LONGEST len);
314
315 /* Request that OPS transfer up to LEN addressable units from BUF to the
316    target's OBJECT.  When writing to a memory object, the addressable unit
317    size is architecture dependent and can be found using
318    gdbarch_addressable_memory_unit_size.  Otherwise, an addressable unit is 1
319    byte long.  The OFFSET, for a seekable object, specifies the starting point.
320    The ANNEX can be used to provide additional data-specific information to
321    the target.
322
323    Return the number of addressable units actually transferred, or a negative
324    error code (an 'enum target_xfer_status' value) if the transfer is not
325    supported or otherwise fails.  Return of a positive value less than
326    LEN indicates that no further transfer is possible.  Unlike the raw
327    to_xfer_partial interface, callers of these functions do not need to
328    retry partial transfers.  */
329
330 extern LONGEST target_write (struct target_ops *ops,
331                              enum target_object object,
332                              const char *annex, const gdb_byte *buf,
333                              ULONGEST offset, LONGEST len);
334
335 /* Similar to target_write, except that it also calls PROGRESS with
336    the number of bytes written and the opaque BATON after every
337    successful partial write (and before the first write).  This is
338    useful for progress reporting and user interaction while writing
339    data.  To abort the transfer, the progress callback can throw an
340    exception.  */
341
342 LONGEST target_write_with_progress (struct target_ops *ops,
343                                     enum target_object object,
344                                     const char *annex, const gdb_byte *buf,
345                                     ULONGEST offset, LONGEST len,
346                                     void (*progress) (ULONGEST, void *),
347                                     void *baton);
348
349 /* Wrapper to perform a full read of unknown size.  OBJECT/ANNEX will
350    be read using OPS.  The return value will be -1 if the transfer
351    fails or is not supported; 0 if the object is empty; or the length
352    of the object otherwise.  If a positive value is returned, a
353    sufficiently large buffer will be allocated using xmalloc and
354    returned in *BUF_P containing the contents of the object.
355
356    This method should be used for objects sufficiently small to store
357    in a single xmalloc'd buffer, when no fixed bound on the object's
358    size is known in advance.  Don't try to read TARGET_OBJECT_MEMORY
359    through this function.  */
360
361 extern LONGEST target_read_alloc (struct target_ops *ops,
362                                   enum target_object object,
363                                   const char *annex, gdb_byte **buf_p);
364
365 /* Read OBJECT/ANNEX using OPS.  The result is NUL-terminated and
366    returned as a string, allocated using xmalloc.  If an error occurs
367    or the transfer is unsupported, NULL is returned.  Empty objects
368    are returned as allocated but empty strings.  A warning is issued
369    if the result contains any embedded NUL bytes.  */
370
371 extern char *target_read_stralloc (struct target_ops *ops,
372                                    enum target_object object,
373                                    const char *annex);
374
375 /* See target_ops->to_xfer_partial.  */
376 extern target_xfer_partial_ftype target_xfer_partial;
377
378 /* Wrappers to target read/write that perform memory transfers.  They
379    throw an error if the memory transfer fails.
380
381    NOTE: cagney/2003-10-23: The naming schema is lifted from
382    "frame.h".  The parameter order is lifted from get_frame_memory,
383    which in turn lifted it from read_memory.  */
384
385 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
386                                gdb_byte *buf, LONGEST len);
387 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
388                                             CORE_ADDR addr, int len,
389                                             enum bfd_endian byte_order);
390 \f
391 struct thread_info;             /* fwd decl for parameter list below: */
392
393 /* The type of the callback to the to_async method.  */
394
395 typedef void async_callback_ftype (enum inferior_event_type event_type,
396                                    void *context);
397
398 /* Normally target debug printing is purely type-based.  However,
399    sometimes it is necessary to override the debug printing on a
400    per-argument basis.  This macro can be used, attribute-style, to
401    name the target debug printing function for a particular method
402    argument.  FUNC is the name of the function.  The macro's
403    definition is empty because it is only used by the
404    make-target-delegates script.  */
405
406 #define TARGET_DEBUG_PRINTER(FUNC)
407
408 /* These defines are used to mark target_ops methods.  The script
409    make-target-delegates scans these and auto-generates the base
410    method implementations.  There are four macros that can be used:
411    
412    1. TARGET_DEFAULT_IGNORE.  There is no argument.  The base method
413    does nothing.  This is only valid if the method return type is
414    'void'.
415    
416    2. TARGET_DEFAULT_NORETURN.  The argument is a function call, like
417    'tcomplain ()'.  The base method simply makes this call, which is
418    assumed not to return.
419    
420    3. TARGET_DEFAULT_RETURN.  The argument is a C expression.  The
421    base method returns this expression's value.
422    
423    4. TARGET_DEFAULT_FUNC.  The argument is the name of a function.
424    make-target-delegates does not generate a base method in this case,
425    but instead uses the argument function as the base method.  */
426
427 #define TARGET_DEFAULT_IGNORE()
428 #define TARGET_DEFAULT_NORETURN(ARG)
429 #define TARGET_DEFAULT_RETURN(ARG)
430 #define TARGET_DEFAULT_FUNC(ARG)
431
432 struct target_ops
433   {
434     struct target_ops *beneath; /* To the target under this one.  */
435     const char *to_shortname;   /* Name this target type */
436     const char *to_longname;    /* Name for printing */
437     const char *to_doc;         /* Documentation.  Does not include trailing
438                                    newline, and starts with a one-line descrip-
439                                    tion (probably similar to to_longname).  */
440     /* Per-target scratch pad.  */
441     void *to_data;
442     /* The open routine takes the rest of the parameters from the
443        command, and (if successful) pushes a new target onto the
444        stack.  Targets should supply this routine, if only to provide
445        an error message.  */
446     void (*to_open) (const char *, int);
447     /* Old targets with a static target vector provide "to_close".
448        New re-entrant targets provide "to_xclose" and that is expected
449        to xfree everything (including the "struct target_ops").  */
450     void (*to_xclose) (struct target_ops *targ);
451     void (*to_close) (struct target_ops *);
452     /* Attaches to a process on the target side.  Arguments are as
453        passed to the `attach' command by the user.  This routine can
454        be called when the target is not on the target-stack, if the
455        target_can_run routine returns 1; in that case, it must push
456        itself onto the stack.  Upon exit, the target should be ready
457        for normal operations, and should be ready to deliver the
458        status of the process immediately (without waiting) to an
459        upcoming target_wait call.  */
460     void (*to_attach) (struct target_ops *ops, const char *, int);
461     void (*to_post_attach) (struct target_ops *, int)
462       TARGET_DEFAULT_IGNORE ();
463     void (*to_detach) (struct target_ops *ops, const char *, int)
464       TARGET_DEFAULT_IGNORE ();
465     void (*to_disconnect) (struct target_ops *, const char *, int)
466       TARGET_DEFAULT_NORETURN (tcomplain ());
467     void (*to_resume) (struct target_ops *, ptid_t,
468                        int TARGET_DEBUG_PRINTER (target_debug_print_step),
469                        enum gdb_signal)
470       TARGET_DEFAULT_NORETURN (noprocess ());
471     ptid_t (*to_wait) (struct target_ops *,
472                        ptid_t, struct target_waitstatus *,
473                        int TARGET_DEBUG_PRINTER (target_debug_print_options))
474       TARGET_DEFAULT_NORETURN (noprocess ());
475     void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
476       TARGET_DEFAULT_IGNORE ();
477     void (*to_store_registers) (struct target_ops *, struct regcache *, int)
478       TARGET_DEFAULT_NORETURN (noprocess ());
479     void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
480       TARGET_DEFAULT_NORETURN (noprocess ());
481
482     void (*to_files_info) (struct target_ops *)
483       TARGET_DEFAULT_IGNORE ();
484     int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
485                                  struct bp_target_info *)
486       TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
487     int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
488                                  struct bp_target_info *)
489       TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
490
491     /* Returns true if the target stopped because it executed a
492        software breakpoint.  This is necessary for correct background
493        execution / non-stop mode operation, and for correct PC
494        adjustment on targets where the PC needs to be adjusted when a
495        software breakpoint triggers.  In these modes, by the time GDB
496        processes a breakpoint event, the breakpoint may already be
497        done from the target, so GDB needs to be able to tell whether
498        it should ignore the event and whether it should adjust the PC.
499        See adjust_pc_after_break.  */
500     int (*to_stopped_by_sw_breakpoint) (struct target_ops *)
501       TARGET_DEFAULT_RETURN (0);
502     /* Returns true if the above method is supported.  */
503     int (*to_supports_stopped_by_sw_breakpoint) (struct target_ops *)
504       TARGET_DEFAULT_RETURN (0);
505
506     /* Returns true if the target stopped for a hardware breakpoint.
507        Likewise, if the target supports hardware breakpoints, this
508        method is necessary for correct background execution / non-stop
509        mode operation.  Even though hardware breakpoints do not
510        require PC adjustment, GDB needs to be able to tell whether the
511        hardware breakpoint event is a delayed event for a breakpoint
512        that is already gone and should thus be ignored.  */
513     int (*to_stopped_by_hw_breakpoint) (struct target_ops *)
514       TARGET_DEFAULT_RETURN (0);
515     /* Returns true if the above method is supported.  */
516     int (*to_supports_stopped_by_hw_breakpoint) (struct target_ops *)
517       TARGET_DEFAULT_RETURN (0);
518
519     int (*to_can_use_hw_breakpoint) (struct target_ops *,
520                                      enum bptype, int, int)
521       TARGET_DEFAULT_RETURN (0);
522     int (*to_ranged_break_num_registers) (struct target_ops *)
523       TARGET_DEFAULT_RETURN (-1);
524     int (*to_insert_hw_breakpoint) (struct target_ops *,
525                                     struct gdbarch *, struct bp_target_info *)
526       TARGET_DEFAULT_RETURN (-1);
527     int (*to_remove_hw_breakpoint) (struct target_ops *,
528                                     struct gdbarch *, struct bp_target_info *)
529       TARGET_DEFAULT_RETURN (-1);
530
531     /* Documentation of what the two routines below are expected to do is
532        provided with the corresponding target_* macros.  */
533     int (*to_remove_watchpoint) (struct target_ops *, CORE_ADDR, int,
534                                  enum target_hw_bp_type, struct expression *)
535       TARGET_DEFAULT_RETURN (-1);
536     int (*to_insert_watchpoint) (struct target_ops *, CORE_ADDR, int,
537                                  enum target_hw_bp_type, struct expression *)
538       TARGET_DEFAULT_RETURN (-1);
539
540     int (*to_insert_mask_watchpoint) (struct target_ops *,
541                                       CORE_ADDR, CORE_ADDR, int)
542       TARGET_DEFAULT_RETURN (1);
543     int (*to_remove_mask_watchpoint) (struct target_ops *,
544                                       CORE_ADDR, CORE_ADDR, int)
545       TARGET_DEFAULT_RETURN (1);
546     int (*to_stopped_by_watchpoint) (struct target_ops *)
547       TARGET_DEFAULT_RETURN (0);
548     int to_have_steppable_watchpoint;
549     int to_have_continuable_watchpoint;
550     int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
551       TARGET_DEFAULT_RETURN (0);
552     int (*to_watchpoint_addr_within_range) (struct target_ops *,
553                                             CORE_ADDR, CORE_ADDR, int)
554       TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
555
556     /* Documentation of this routine is provided with the corresponding
557        target_* macro.  */
558     int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
559                                            CORE_ADDR, int)
560       TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
561
562     int (*to_can_accel_watchpoint_condition) (struct target_ops *,
563                                               CORE_ADDR, int, int,
564                                               struct expression *)
565       TARGET_DEFAULT_RETURN (0);
566     int (*to_masked_watch_num_registers) (struct target_ops *,
567                                           CORE_ADDR, CORE_ADDR)
568       TARGET_DEFAULT_RETURN (-1);
569     void (*to_terminal_init) (struct target_ops *)
570       TARGET_DEFAULT_IGNORE ();
571     void (*to_terminal_inferior) (struct target_ops *)
572       TARGET_DEFAULT_IGNORE ();
573     void (*to_terminal_ours_for_output) (struct target_ops *)
574       TARGET_DEFAULT_IGNORE ();
575     void (*to_terminal_ours) (struct target_ops *)
576       TARGET_DEFAULT_IGNORE ();
577     void (*to_terminal_info) (struct target_ops *, const char *, int)
578       TARGET_DEFAULT_FUNC (default_terminal_info);
579     void (*to_kill) (struct target_ops *)
580       TARGET_DEFAULT_NORETURN (noprocess ());
581     void (*to_load) (struct target_ops *, const char *, int)
582       TARGET_DEFAULT_NORETURN (tcomplain ());
583     /* Start an inferior process and set inferior_ptid to its pid.
584        EXEC_FILE is the file to run.
585        ALLARGS is a string containing the arguments to the program.
586        ENV is the environment vector to pass.  Errors reported with error().
587        On VxWorks and various standalone systems, we ignore exec_file.  */
588     void (*to_create_inferior) (struct target_ops *, 
589                                 char *, char *, char **, int);
590     void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
591       TARGET_DEFAULT_IGNORE ();
592     int (*to_insert_fork_catchpoint) (struct target_ops *, int)
593       TARGET_DEFAULT_RETURN (1);
594     int (*to_remove_fork_catchpoint) (struct target_ops *, int)
595       TARGET_DEFAULT_RETURN (1);
596     int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
597       TARGET_DEFAULT_RETURN (1);
598     int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
599       TARGET_DEFAULT_RETURN (1);
600     int (*to_follow_fork) (struct target_ops *, int, int)
601       TARGET_DEFAULT_FUNC (default_follow_fork);
602     int (*to_insert_exec_catchpoint) (struct target_ops *, int)
603       TARGET_DEFAULT_RETURN (1);
604     int (*to_remove_exec_catchpoint) (struct target_ops *, int)
605       TARGET_DEFAULT_RETURN (1);
606     int (*to_set_syscall_catchpoint) (struct target_ops *,
607                                       int, int, int, int, int *)
608       TARGET_DEFAULT_RETURN (1);
609     int (*to_has_exited) (struct target_ops *, int, int, int *)
610       TARGET_DEFAULT_RETURN (0);
611     void (*to_mourn_inferior) (struct target_ops *)
612       TARGET_DEFAULT_FUNC (default_mourn_inferior);
613     /* Note that to_can_run is special and can be invoked on an
614        unpushed target.  Targets defining this method must also define
615        to_can_async_p and to_supports_non_stop.  */
616     int (*to_can_run) (struct target_ops *)
617       TARGET_DEFAULT_RETURN (0);
618
619     /* Documentation of this routine is provided with the corresponding
620        target_* macro.  */
621     void (*to_pass_signals) (struct target_ops *, int,
622                              unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
623       TARGET_DEFAULT_IGNORE ();
624
625     /* Documentation of this routine is provided with the
626        corresponding target_* function.  */
627     void (*to_program_signals) (struct target_ops *, int,
628                                 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
629       TARGET_DEFAULT_IGNORE ();
630
631     int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
632       TARGET_DEFAULT_RETURN (0);
633     void (*to_update_thread_list) (struct target_ops *)
634       TARGET_DEFAULT_IGNORE ();
635     char *(*to_pid_to_str) (struct target_ops *, ptid_t)
636       TARGET_DEFAULT_FUNC (default_pid_to_str);
637     char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
638       TARGET_DEFAULT_RETURN (NULL);
639     char *(*to_thread_name) (struct target_ops *, struct thread_info *)
640       TARGET_DEFAULT_RETURN (NULL);
641     void (*to_stop) (struct target_ops *, ptid_t)
642       TARGET_DEFAULT_IGNORE ();
643     void (*to_interrupt) (struct target_ops *, ptid_t)
644       TARGET_DEFAULT_IGNORE ();
645     void (*to_rcmd) (struct target_ops *,
646                      const char *command, struct ui_file *output)
647       TARGET_DEFAULT_FUNC (default_rcmd);
648     char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
649       TARGET_DEFAULT_RETURN (NULL);
650     void (*to_log_command) (struct target_ops *, const char *)
651       TARGET_DEFAULT_IGNORE ();
652     struct target_section_table *(*to_get_section_table) (struct target_ops *)
653       TARGET_DEFAULT_RETURN (NULL);
654     enum strata to_stratum;
655     int (*to_has_all_memory) (struct target_ops *);
656     int (*to_has_memory) (struct target_ops *);
657     int (*to_has_stack) (struct target_ops *);
658     int (*to_has_registers) (struct target_ops *);
659     int (*to_has_execution) (struct target_ops *, ptid_t);
660     int to_has_thread_control;  /* control thread execution */
661     int to_attach_no_wait;
662     /* This method must be implemented in some situations.  See the
663        comment on 'to_can_run'.  */
664     int (*to_can_async_p) (struct target_ops *)
665       TARGET_DEFAULT_RETURN (0);
666     int (*to_is_async_p) (struct target_ops *)
667       TARGET_DEFAULT_RETURN (0);
668     void (*to_async) (struct target_ops *, int)
669       TARGET_DEFAULT_NORETURN (tcomplain ());
670     /* This method must be implemented in some situations.  See the
671        comment on 'to_can_run'.  */
672     int (*to_supports_non_stop) (struct target_ops *)
673       TARGET_DEFAULT_RETURN (0);
674     /* Return true if the target operates in non-stop mode even with
675        "set non-stop off".  */
676     int (*to_always_non_stop_p) (struct target_ops *)
677       TARGET_DEFAULT_RETURN (0);
678     /* find_memory_regions support method for gcore */
679     int (*to_find_memory_regions) (struct target_ops *,
680                                    find_memory_region_ftype func, void *data)
681       TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
682     /* make_corefile_notes support method for gcore */
683     char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
684       TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
685     /* get_bookmark support method for bookmarks */
686     gdb_byte * (*to_get_bookmark) (struct target_ops *, const char *, int)
687       TARGET_DEFAULT_NORETURN (tcomplain ());
688     /* goto_bookmark support method for bookmarks */
689     void (*to_goto_bookmark) (struct target_ops *, const gdb_byte *, int)
690       TARGET_DEFAULT_NORETURN (tcomplain ());
691     /* Return the thread-local address at OFFSET in the
692        thread-local storage for the thread PTID and the shared library
693        or executable file given by OBJFILE.  If that block of
694        thread-local storage hasn't been allocated yet, this function
695        may return an error.  LOAD_MODULE_ADDR may be zero for statically
696        linked multithreaded inferiors.  */
697     CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
698                                               ptid_t ptid,
699                                               CORE_ADDR load_module_addr,
700                                               CORE_ADDR offset)
701       TARGET_DEFAULT_NORETURN (generic_tls_error ());
702
703     /* Request that OPS transfer up to LEN 8-bit bytes of the target's
704        OBJECT.  The OFFSET, for a seekable object, specifies the
705        starting point.  The ANNEX can be used to provide additional
706        data-specific information to the target.
707
708        Return the transferred status, error or OK (an
709        'enum target_xfer_status' value).  Save the number of bytes
710        actually transferred in *XFERED_LEN if transfer is successful
711        (TARGET_XFER_OK) or the number unavailable bytes if the requested
712        data is unavailable (TARGET_XFER_UNAVAILABLE).  *XFERED_LEN
713        smaller than LEN does not indicate the end of the object, only
714        the end of the transfer; higher level code should continue
715        transferring if desired.  This is handled in target.c.
716
717        The interface does not support a "retry" mechanism.  Instead it
718        assumes that at least one byte will be transfered on each
719        successful call.
720
721        NOTE: cagney/2003-10-17: The current interface can lead to
722        fragmented transfers.  Lower target levels should not implement
723        hacks, such as enlarging the transfer, in an attempt to
724        compensate for this.  Instead, the target stack should be
725        extended so that it implements supply/collect methods and a
726        look-aside object cache.  With that available, the lowest
727        target can safely and freely "push" data up the stack.
728
729        See target_read and target_write for more information.  One,
730        and only one, of readbuf or writebuf must be non-NULL.  */
731
732     enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
733                                                 enum target_object object,
734                                                 const char *annex,
735                                                 gdb_byte *readbuf,
736                                                 const gdb_byte *writebuf,
737                                                 ULONGEST offset, ULONGEST len,
738                                                 ULONGEST *xfered_len)
739       TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
740
741     /* Returns the memory map for the target.  A return value of NULL
742        means that no memory map is available.  If a memory address
743        does not fall within any returned regions, it's assumed to be
744        RAM.  The returned memory regions should not overlap.
745
746        The order of regions does not matter; target_memory_map will
747        sort regions by starting address.  For that reason, this
748        function should not be called directly except via
749        target_memory_map.
750
751        This method should not cache data; if the memory map could
752        change unexpectedly, it should be invalidated, and higher
753        layers will re-fetch it.  */
754     VEC(mem_region_s) *(*to_memory_map) (struct target_ops *)
755       TARGET_DEFAULT_RETURN (NULL);
756
757     /* Erases the region of flash memory starting at ADDRESS, of
758        length LENGTH.
759
760        Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
761        on flash block boundaries, as reported by 'to_memory_map'.  */
762     void (*to_flash_erase) (struct target_ops *,
763                            ULONGEST address, LONGEST length)
764       TARGET_DEFAULT_NORETURN (tcomplain ());
765
766     /* Finishes a flash memory write sequence.  After this operation
767        all flash memory should be available for writing and the result
768        of reading from areas written by 'to_flash_write' should be
769        equal to what was written.  */
770     void (*to_flash_done) (struct target_ops *)
771       TARGET_DEFAULT_NORETURN (tcomplain ());
772
773     /* Describe the architecture-specific features of this target.  If
774        OPS doesn't have a description, this should delegate to the
775        "beneath" target.  Returns the description found, or NULL if no
776        description was available.  */
777     const struct target_desc *(*to_read_description) (struct target_ops *ops)
778          TARGET_DEFAULT_RETURN (NULL);
779
780     /* Build the PTID of the thread on which a given task is running,
781        based on LWP and THREAD.  These values are extracted from the
782        task Private_Data section of the Ada Task Control Block, and
783        their interpretation depends on the target.  */
784     ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
785                                     long lwp, long thread)
786       TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
787
788     /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
789        Return 0 if *READPTR is already at the end of the buffer.
790        Return -1 if there is insufficient buffer for a whole entry.
791        Return 1 if an entry was read into *TYPEP and *VALP.  */
792     int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
793                          gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
794       TARGET_DEFAULT_FUNC (default_auxv_parse);
795
796     /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
797        sequence of bytes in PATTERN with length PATTERN_LEN.
798
799        The result is 1 if found, 0 if not found, and -1 if there was an error
800        requiring halting of the search (e.g. memory read error).
801        If the pattern is found the address is recorded in FOUND_ADDRP.  */
802     int (*to_search_memory) (struct target_ops *ops,
803                              CORE_ADDR start_addr, ULONGEST search_space_len,
804                              const gdb_byte *pattern, ULONGEST pattern_len,
805                              CORE_ADDR *found_addrp)
806       TARGET_DEFAULT_FUNC (default_search_memory);
807
808     /* Can target execute in reverse?  */
809     int (*to_can_execute_reverse) (struct target_ops *)
810       TARGET_DEFAULT_RETURN (0);
811
812     /* The direction the target is currently executing.  Must be
813        implemented on targets that support reverse execution and async
814        mode.  The default simply returns forward execution.  */
815     enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
816       TARGET_DEFAULT_FUNC (default_execution_direction);
817
818     /* Does this target support debugging multiple processes
819        simultaneously?  */
820     int (*to_supports_multi_process) (struct target_ops *)
821       TARGET_DEFAULT_RETURN (0);
822
823     /* Does this target support enabling and disabling tracepoints while a trace
824        experiment is running?  */
825     int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
826       TARGET_DEFAULT_RETURN (0);
827
828     /* Does this target support disabling address space randomization?  */
829     int (*to_supports_disable_randomization) (struct target_ops *);
830
831     /* Does this target support the tracenz bytecode for string collection?  */
832     int (*to_supports_string_tracing) (struct target_ops *)
833       TARGET_DEFAULT_RETURN (0);
834
835     /* Does this target support evaluation of breakpoint conditions on its
836        end?  */
837     int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
838       TARGET_DEFAULT_RETURN (0);
839
840     /* Does this target support evaluation of breakpoint commands on its
841        end?  */
842     int (*to_can_run_breakpoint_commands) (struct target_ops *)
843       TARGET_DEFAULT_RETURN (0);
844
845     /* Determine current architecture of thread PTID.
846
847        The target is supposed to determine the architecture of the code where
848        the target is currently stopped at (on Cell, if a target is in spu_run,
849        to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
850        This is architecture used to perform decr_pc_after_break adjustment,
851        and also determines the frame architecture of the innermost frame.
852        ptrace operations need to operate according to target_gdbarch ().
853
854        The default implementation always returns target_gdbarch ().  */
855     struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
856       TARGET_DEFAULT_FUNC (default_thread_architecture);
857
858     /* Determine current address space of thread PTID.
859
860        The default implementation always returns the inferior's
861        address space.  */
862     struct address_space *(*to_thread_address_space) (struct target_ops *,
863                                                       ptid_t)
864       TARGET_DEFAULT_FUNC (default_thread_address_space);
865
866     /* Target file operations.  */
867
868     /* Return nonzero if the filesystem seen by the current inferior
869        is the local filesystem, zero otherwise.  */
870     int (*to_filesystem_is_local) (struct target_ops *)
871       TARGET_DEFAULT_RETURN (1);
872
873     /* Open FILENAME on the target, in the filesystem as seen by INF,
874        using FLAGS and MODE.  If INF is NULL, use the filesystem seen
875        by the debugger (GDB or, for remote targets, the remote stub).
876        If WARN_IF_SLOW is nonzero, print a warning message if the file
877        is being accessed over a link that may be slow.  Return a
878        target file descriptor, or -1 if an error occurs (and set
879        *TARGET_ERRNO).  */
880     int (*to_fileio_open) (struct target_ops *,
881                            struct inferior *inf, const char *filename,
882                            int flags, int mode, int warn_if_slow,
883                            int *target_errno);
884
885     /* Write up to LEN bytes from WRITE_BUF to FD on the target.
886        Return the number of bytes written, or -1 if an error occurs
887        (and set *TARGET_ERRNO).  */
888     int (*to_fileio_pwrite) (struct target_ops *,
889                              int fd, const gdb_byte *write_buf, int len,
890                              ULONGEST offset, int *target_errno);
891
892     /* Read up to LEN bytes FD on the target into READ_BUF.
893        Return the number of bytes read, or -1 if an error occurs
894        (and set *TARGET_ERRNO).  */
895     int (*to_fileio_pread) (struct target_ops *,
896                             int fd, gdb_byte *read_buf, int len,
897                             ULONGEST offset, int *target_errno);
898
899     /* Get information about the file opened as FD and put it in
900        SB.  Return 0 on success, or -1 if an error occurs (and set
901        *TARGET_ERRNO).  */
902     int (*to_fileio_fstat) (struct target_ops *,
903                             int fd, struct stat *sb, int *target_errno);
904
905     /* Close FD on the target.  Return 0, or -1 if an error occurs
906        (and set *TARGET_ERRNO).  */
907     int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
908
909     /* Unlink FILENAME on the target, in the filesystem as seen by
910        INF.  If INF is NULL, use the filesystem seen by the debugger
911        (GDB or, for remote targets, the remote stub).  Return 0, or
912        -1 if an error occurs (and set *TARGET_ERRNO).  */
913     int (*to_fileio_unlink) (struct target_ops *,
914                              struct inferior *inf,
915                              const char *filename,
916                              int *target_errno);
917
918     /* Read value of symbolic link FILENAME on the target, in the
919        filesystem as seen by INF.  If INF is NULL, use the filesystem
920        seen by the debugger (GDB or, for remote targets, the remote
921        stub).  Return a null-terminated string allocated via xmalloc,
922        or NULL if an error occurs (and set *TARGET_ERRNO).  */
923     char *(*to_fileio_readlink) (struct target_ops *,
924                                  struct inferior *inf,
925                                  const char *filename,
926                                  int *target_errno);
927
928
929     /* Implement the "info proc" command.  */
930     void (*to_info_proc) (struct target_ops *, const char *,
931                           enum info_proc_what);
932
933     /* Tracepoint-related operations.  */
934
935     /* Prepare the target for a tracing run.  */
936     void (*to_trace_init) (struct target_ops *)
937       TARGET_DEFAULT_NORETURN (tcomplain ());
938
939     /* Send full details of a tracepoint location to the target.  */
940     void (*to_download_tracepoint) (struct target_ops *,
941                                     struct bp_location *location)
942       TARGET_DEFAULT_NORETURN (tcomplain ());
943
944     /* Is the target able to download tracepoint locations in current
945        state?  */
946     int (*to_can_download_tracepoint) (struct target_ops *)
947       TARGET_DEFAULT_RETURN (0);
948
949     /* Send full details of a trace state variable to the target.  */
950     void (*to_download_trace_state_variable) (struct target_ops *,
951                                               struct trace_state_variable *tsv)
952       TARGET_DEFAULT_NORETURN (tcomplain ());
953
954     /* Enable a tracepoint on the target.  */
955     void (*to_enable_tracepoint) (struct target_ops *,
956                                   struct bp_location *location)
957       TARGET_DEFAULT_NORETURN (tcomplain ());
958
959     /* Disable a tracepoint on the target.  */
960     void (*to_disable_tracepoint) (struct target_ops *,
961                                    struct bp_location *location)
962       TARGET_DEFAULT_NORETURN (tcomplain ());
963
964     /* Inform the target info of memory regions that are readonly
965        (such as text sections), and so it should return data from
966        those rather than look in the trace buffer.  */
967     void (*to_trace_set_readonly_regions) (struct target_ops *)
968       TARGET_DEFAULT_NORETURN (tcomplain ());
969
970     /* Start a trace run.  */
971     void (*to_trace_start) (struct target_ops *)
972       TARGET_DEFAULT_NORETURN (tcomplain ());
973
974     /* Get the current status of a tracing run.  */
975     int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
976       TARGET_DEFAULT_RETURN (-1);
977
978     void (*to_get_tracepoint_status) (struct target_ops *,
979                                       struct breakpoint *tp,
980                                       struct uploaded_tp *utp)
981       TARGET_DEFAULT_NORETURN (tcomplain ());
982
983     /* Stop a trace run.  */
984     void (*to_trace_stop) (struct target_ops *)
985       TARGET_DEFAULT_NORETURN (tcomplain ());
986
987    /* Ask the target to find a trace frame of the given type TYPE,
988       using NUM, ADDR1, and ADDR2 as search parameters.  Returns the
989       number of the trace frame, and also the tracepoint number at
990       TPP.  If no trace frame matches, return -1.  May throw if the
991       operation fails.  */
992     int (*to_trace_find) (struct target_ops *,
993                           enum trace_find_type type, int num,
994                           CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
995       TARGET_DEFAULT_RETURN (-1);
996
997     /* Get the value of the trace state variable number TSV, returning
998        1 if the value is known and writing the value itself into the
999        location pointed to by VAL, else returning 0.  */
1000     int (*to_get_trace_state_variable_value) (struct target_ops *,
1001                                               int tsv, LONGEST *val)
1002       TARGET_DEFAULT_RETURN (0);
1003
1004     int (*to_save_trace_data) (struct target_ops *, const char *filename)
1005       TARGET_DEFAULT_NORETURN (tcomplain ());
1006
1007     int (*to_upload_tracepoints) (struct target_ops *,
1008                                   struct uploaded_tp **utpp)
1009       TARGET_DEFAULT_RETURN (0);
1010
1011     int (*to_upload_trace_state_variables) (struct target_ops *,
1012                                             struct uploaded_tsv **utsvp)
1013       TARGET_DEFAULT_RETURN (0);
1014
1015     LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
1016                                       ULONGEST offset, LONGEST len)
1017       TARGET_DEFAULT_NORETURN (tcomplain ());
1018
1019     /* Get the minimum length of instruction on which a fast tracepoint
1020        may be set on the target.  If this operation is unsupported,
1021        return -1.  If for some reason the minimum length cannot be
1022        determined, return 0.  */
1023     int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
1024       TARGET_DEFAULT_RETURN (-1);
1025
1026     /* Set the target's tracing behavior in response to unexpected
1027        disconnection - set VAL to 1 to keep tracing, 0 to stop.  */
1028     void (*to_set_disconnected_tracing) (struct target_ops *, int val)
1029       TARGET_DEFAULT_IGNORE ();
1030     void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
1031       TARGET_DEFAULT_IGNORE ();
1032     /* Set the size of trace buffer in the target.  */
1033     void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
1034       TARGET_DEFAULT_IGNORE ();
1035
1036     /* Add/change textual notes about the trace run, returning 1 if
1037        successful, 0 otherwise.  */
1038     int (*to_set_trace_notes) (struct target_ops *,
1039                                const char *user, const char *notes,
1040                                const char *stopnotes)
1041       TARGET_DEFAULT_RETURN (0);
1042
1043     /* Return the processor core that thread PTID was last seen on.
1044        This information is updated only when:
1045        - update_thread_list is called
1046        - thread stops
1047        If the core cannot be determined -- either for the specified
1048        thread, or right now, or in this debug session, or for this
1049        target -- return -1.  */
1050     int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
1051       TARGET_DEFAULT_RETURN (-1);
1052
1053     /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1054        matches the contents of [DATA,DATA+SIZE).  Returns 1 if there's
1055        a match, 0 if there's a mismatch, and -1 if an error is
1056        encountered while reading memory.  */
1057     int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
1058                              CORE_ADDR memaddr, ULONGEST size)
1059       TARGET_DEFAULT_FUNC (default_verify_memory);
1060
1061     /* Return the address of the start of the Thread Information Block
1062        a Windows OS specific feature.  */
1063     int (*to_get_tib_address) (struct target_ops *,
1064                                ptid_t ptid, CORE_ADDR *addr)
1065       TARGET_DEFAULT_NORETURN (tcomplain ());
1066
1067     /* Send the new settings of write permission variables.  */
1068     void (*to_set_permissions) (struct target_ops *)
1069       TARGET_DEFAULT_IGNORE ();
1070
1071     /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1072        with its details.  Return 1 on success, 0 on failure.  */
1073     int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
1074                                            struct static_tracepoint_marker *marker)
1075       TARGET_DEFAULT_RETURN (0);
1076
1077     /* Return a vector of all tracepoints markers string id ID, or all
1078        markers if ID is NULL.  */
1079     VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
1080       TARGET_DEFAULT_NORETURN (tcomplain ());
1081
1082     /* Return a traceframe info object describing the current
1083        traceframe's contents.  This method should not cache data;
1084        higher layers take care of caching, invalidating, and
1085        re-fetching when necessary.  */
1086     struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
1087         TARGET_DEFAULT_NORETURN (tcomplain ());
1088
1089     /* Ask the target to use or not to use agent according to USE.  Return 1
1090        successful, 0 otherwise.  */
1091     int (*to_use_agent) (struct target_ops *, int use)
1092       TARGET_DEFAULT_NORETURN (tcomplain ());
1093
1094     /* Is the target able to use agent in current state?  */
1095     int (*to_can_use_agent) (struct target_ops *)
1096       TARGET_DEFAULT_RETURN (0);
1097
1098     /* Check whether the target supports branch tracing.  */
1099     int (*to_supports_btrace) (struct target_ops *, enum btrace_format)
1100       TARGET_DEFAULT_RETURN (0);
1101
1102     /* Enable branch tracing for PTID using CONF configuration.
1103        Return a branch trace target information struct for reading and for
1104        disabling branch trace.  */
1105     struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
1106                                                     ptid_t ptid,
1107                                                     const struct btrace_config *conf)
1108       TARGET_DEFAULT_NORETURN (tcomplain ());
1109
1110     /* Disable branch tracing and deallocate TINFO.  */
1111     void (*to_disable_btrace) (struct target_ops *,
1112                                struct btrace_target_info *tinfo)
1113       TARGET_DEFAULT_NORETURN (tcomplain ());
1114
1115     /* Disable branch tracing and deallocate TINFO.  This function is similar
1116        to to_disable_btrace, except that it is called during teardown and is
1117        only allowed to perform actions that are safe.  A counter-example would
1118        be attempting to talk to a remote target.  */
1119     void (*to_teardown_btrace) (struct target_ops *,
1120                                 struct btrace_target_info *tinfo)
1121       TARGET_DEFAULT_NORETURN (tcomplain ());
1122
1123     /* Read branch trace data for the thread indicated by BTINFO into DATA.
1124        DATA is cleared before new trace is added.  */
1125     enum btrace_error (*to_read_btrace) (struct target_ops *self,
1126                                          struct btrace_data *data,
1127                                          struct btrace_target_info *btinfo,
1128                                          enum btrace_read_type type)
1129       TARGET_DEFAULT_NORETURN (tcomplain ());
1130
1131     /* Get the branch trace configuration.  */
1132     const struct btrace_config *(*to_btrace_conf) (struct target_ops *self,
1133                                                    const struct btrace_target_info *)
1134       TARGET_DEFAULT_RETURN (NULL);
1135
1136     /* Stop trace recording.  */
1137     void (*to_stop_recording) (struct target_ops *)
1138       TARGET_DEFAULT_IGNORE ();
1139
1140     /* Print information about the recording.  */
1141     void (*to_info_record) (struct target_ops *)
1142       TARGET_DEFAULT_IGNORE ();
1143
1144     /* Save the recorded execution trace into a file.  */
1145     void (*to_save_record) (struct target_ops *, const char *filename)
1146       TARGET_DEFAULT_NORETURN (tcomplain ());
1147
1148     /* Delete the recorded execution trace from the current position
1149        onwards.  */
1150     void (*to_delete_record) (struct target_ops *)
1151       TARGET_DEFAULT_NORETURN (tcomplain ());
1152
1153     /* Query if the record target is currently replaying.  */
1154     int (*to_record_is_replaying) (struct target_ops *)
1155       TARGET_DEFAULT_RETURN (0);
1156
1157     /* Go to the begin of the execution trace.  */
1158     void (*to_goto_record_begin) (struct target_ops *)
1159       TARGET_DEFAULT_NORETURN (tcomplain ());
1160
1161     /* Go to the end of the execution trace.  */
1162     void (*to_goto_record_end) (struct target_ops *)
1163       TARGET_DEFAULT_NORETURN (tcomplain ());
1164
1165     /* Go to a specific location in the recorded execution trace.  */
1166     void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1167       TARGET_DEFAULT_NORETURN (tcomplain ());
1168
1169     /* Disassemble SIZE instructions in the recorded execution trace from
1170        the current position.
1171        If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1172        disassemble SIZE succeeding instructions.  */
1173     void (*to_insn_history) (struct target_ops *, int size, int flags)
1174       TARGET_DEFAULT_NORETURN (tcomplain ());
1175
1176     /* Disassemble SIZE instructions in the recorded execution trace around
1177        FROM.
1178        If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1179        disassemble SIZE instructions after FROM.  */
1180     void (*to_insn_history_from) (struct target_ops *,
1181                                   ULONGEST from, int size, int flags)
1182       TARGET_DEFAULT_NORETURN (tcomplain ());
1183
1184     /* Disassemble a section of the recorded execution trace from instruction
1185        BEGIN (inclusive) to instruction END (inclusive).  */
1186     void (*to_insn_history_range) (struct target_ops *,
1187                                    ULONGEST begin, ULONGEST end, int flags)
1188       TARGET_DEFAULT_NORETURN (tcomplain ());
1189
1190     /* Print a function trace of the recorded execution trace.
1191        If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1192        succeeding functions.  */
1193     void (*to_call_history) (struct target_ops *, int size, int flags)
1194       TARGET_DEFAULT_NORETURN (tcomplain ());
1195
1196     /* Print a function trace of the recorded execution trace starting
1197        at function FROM.
1198        If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1199        SIZE functions after FROM.  */
1200     void (*to_call_history_from) (struct target_ops *,
1201                                   ULONGEST begin, int size, int flags)
1202       TARGET_DEFAULT_NORETURN (tcomplain ());
1203
1204     /* Print a function trace of an execution trace section from function BEGIN
1205        (inclusive) to function END (inclusive).  */
1206     void (*to_call_history_range) (struct target_ops *,
1207                                    ULONGEST begin, ULONGEST end, int flags)
1208       TARGET_DEFAULT_NORETURN (tcomplain ());
1209
1210     /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1211        non-empty annex.  */
1212     int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1213       TARGET_DEFAULT_RETURN (0);
1214
1215     /* Those unwinders are tried before any other arch unwinders.  If
1216        SELF doesn't have unwinders, it should delegate to the
1217        "beneath" target.  */
1218     const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self)
1219       TARGET_DEFAULT_RETURN (NULL);
1220
1221     const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self)
1222       TARGET_DEFAULT_RETURN (NULL);
1223
1224     /* Prepare to generate a core file.  */
1225     void (*to_prepare_to_generate_core) (struct target_ops *)
1226       TARGET_DEFAULT_IGNORE ();
1227
1228     /* Cleanup after generating a core file.  */
1229     void (*to_done_generating_core) (struct target_ops *)
1230       TARGET_DEFAULT_IGNORE ();
1231
1232     int to_magic;
1233     /* Need sub-structure for target machine related rather than comm related?
1234      */
1235   };
1236
1237 /* Magic number for checking ops size.  If a struct doesn't end with this
1238    number, somebody changed the declaration but didn't change all the
1239    places that initialize one.  */
1240
1241 #define OPS_MAGIC       3840
1242
1243 /* The ops structure for our "current" target process.  This should
1244    never be NULL.  If there is no target, it points to the dummy_target.  */
1245
1246 extern struct target_ops current_target;
1247
1248 /* Define easy words for doing these operations on our current target.  */
1249
1250 #define target_shortname        (current_target.to_shortname)
1251 #define target_longname         (current_target.to_longname)
1252
1253 /* Does whatever cleanup is required for a target that we are no
1254    longer going to be calling.  This routine is automatically always
1255    called after popping the target off the target stack - the target's
1256    own methods are no longer available through the target vector.
1257    Closing file descriptors and freeing all memory allocated memory are
1258    typical things it should do.  */
1259
1260 void target_close (struct target_ops *targ);
1261
1262 /* Find the correct target to use for "attach".  If a target on the
1263    current stack supports attaching, then it is returned.  Otherwise,
1264    the default run target is returned.  */
1265
1266 extern struct target_ops *find_attach_target (void);
1267
1268 /* Find the correct target to use for "run".  If a target on the
1269    current stack supports creating a new inferior, then it is
1270    returned.  Otherwise, the default run target is returned.  */
1271
1272 extern struct target_ops *find_run_target (void);
1273
1274 /* Some targets don't generate traps when attaching to the inferior,
1275    or their target_attach implementation takes care of the waiting.
1276    These targets must set to_attach_no_wait.  */
1277
1278 #define target_attach_no_wait \
1279      (current_target.to_attach_no_wait)
1280
1281 /* The target_attach operation places a process under debugger control,
1282    and stops the process.
1283
1284    This operation provides a target-specific hook that allows the
1285    necessary bookkeeping to be performed after an attach completes.  */
1286 #define target_post_attach(pid) \
1287      (*current_target.to_post_attach) (&current_target, pid)
1288
1289 /* Takes a program previously attached to and detaches it.
1290    The program may resume execution (some targets do, some don't) and will
1291    no longer stop on signals, etc.  We better not have left any breakpoints
1292    in the program or it'll die when it hits one.  ARGS is arguments
1293    typed by the user (e.g. a signal to send the process).  FROM_TTY
1294    says whether to be verbose or not.  */
1295
1296 extern void target_detach (const char *, int);
1297
1298 /* Disconnect from the current target without resuming it (leaving it
1299    waiting for a debugger).  */
1300
1301 extern void target_disconnect (const char *, int);
1302
1303 /* Resume execution of the target process PTID (or a group of
1304    threads).  STEP says whether to hardware single-step or to run free;
1305    SIGGNAL is the signal to be given to the target, or GDB_SIGNAL_0 for no
1306    signal.  The caller may not pass GDB_SIGNAL_DEFAULT.  A specific
1307    PTID means `step/resume only this process id'.  A wildcard PTID
1308    (all threads, or all threads of process) means `step/resume
1309    INFERIOR_PTID, and let other threads (for which the wildcard PTID
1310    matches) resume with their 'thread->suspend.stop_signal' signal
1311    (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1312    if in "no pass" state.  */
1313
1314 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1315
1316 /* Wait for process pid to do something.  PTID = -1 to wait for any
1317    pid to do something.  Return pid of child, or -1 in case of error;
1318    store status through argument pointer STATUS.  Note that it is
1319    _NOT_ OK to throw_exception() out of target_wait() without popping
1320    the debugging target from the stack; GDB isn't prepared to get back
1321    to the prompt with a debugging target but without the frame cache,
1322    stop_pc, etc., set up.  OPTIONS is a bitwise OR of TARGET_W*
1323    options.  */
1324
1325 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1326                            int options);
1327
1328 /* Fetch at least register REGNO, or all regs if regno == -1.  No result.  */
1329
1330 extern void target_fetch_registers (struct regcache *regcache, int regno);
1331
1332 /* Store at least register REGNO, or all regs if REGNO == -1.
1333    It can store as many registers as it wants to, so target_prepare_to_store
1334    must have been previously called.  Calls error() if there are problems.  */
1335
1336 extern void target_store_registers (struct regcache *regcache, int regs);
1337
1338 /* Get ready to modify the registers array.  On machines which store
1339    individual registers, this doesn't need to do anything.  On machines
1340    which store all the registers in one fell swoop, this makes sure
1341    that REGISTERS contains all the registers from the program being
1342    debugged.  */
1343
1344 #define target_prepare_to_store(regcache)       \
1345      (*current_target.to_prepare_to_store) (&current_target, regcache)
1346
1347 /* Determine current address space of thread PTID.  */
1348
1349 struct address_space *target_thread_address_space (ptid_t);
1350
1351 /* Implement the "info proc" command.  This returns one if the request
1352    was handled, and zero otherwise.  It can also throw an exception if
1353    an error was encountered while attempting to handle the
1354    request.  */
1355
1356 int target_info_proc (const char *, enum info_proc_what);
1357
1358 /* Returns true if this target can debug multiple processes
1359    simultaneously.  */
1360
1361 #define target_supports_multi_process() \
1362      (*current_target.to_supports_multi_process) (&current_target)
1363
1364 /* Returns true if this target can disable address space randomization.  */
1365
1366 int target_supports_disable_randomization (void);
1367
1368 /* Returns true if this target can enable and disable tracepoints
1369    while a trace experiment is running.  */
1370
1371 #define target_supports_enable_disable_tracepoint() \
1372   (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1373
1374 #define target_supports_string_tracing() \
1375   (*current_target.to_supports_string_tracing) (&current_target)
1376
1377 /* Returns true if this target can handle breakpoint conditions
1378    on its end.  */
1379
1380 #define target_supports_evaluation_of_breakpoint_conditions() \
1381   (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1382
1383 /* Returns true if this target can handle breakpoint commands
1384    on its end.  */
1385
1386 #define target_can_run_breakpoint_commands() \
1387   (*current_target.to_can_run_breakpoint_commands) (&current_target)
1388
1389 extern int target_read_string (CORE_ADDR, char **, int, int *);
1390
1391 /* For target_read_memory see target/target.h.  */
1392
1393 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1394                                    ssize_t len);
1395
1396 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1397
1398 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1399
1400 /* For target_write_memory see target/target.h.  */
1401
1402 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1403                                     ssize_t len);
1404
1405 /* Fetches the target's memory map.  If one is found it is sorted
1406    and returned, after some consistency checking.  Otherwise, NULL
1407    is returned.  */
1408 VEC(mem_region_s) *target_memory_map (void);
1409
1410 /* Erase the specified flash region.  */
1411 void target_flash_erase (ULONGEST address, LONGEST length);
1412
1413 /* Finish a sequence of flash operations.  */
1414 void target_flash_done (void);
1415
1416 /* Describes a request for a memory write operation.  */
1417 struct memory_write_request
1418   {
1419     /* Begining address that must be written.  */
1420     ULONGEST begin;
1421     /* Past-the-end address.  */
1422     ULONGEST end;
1423     /* The data to write.  */
1424     gdb_byte *data;
1425     /* A callback baton for progress reporting for this request.  */
1426     void *baton;
1427   };
1428 typedef struct memory_write_request memory_write_request_s;
1429 DEF_VEC_O(memory_write_request_s);
1430
1431 /* Enumeration specifying different flash preservation behaviour.  */
1432 enum flash_preserve_mode
1433   {
1434     flash_preserve,
1435     flash_discard
1436   };
1437
1438 /* Write several memory blocks at once.  This version can be more
1439    efficient than making several calls to target_write_memory, in
1440    particular because it can optimize accesses to flash memory.
1441
1442    Moreover, this is currently the only memory access function in gdb
1443    that supports writing to flash memory, and it should be used for
1444    all cases where access to flash memory is desirable.
1445
1446    REQUESTS is the vector (see vec.h) of memory_write_request.
1447    PRESERVE_FLASH_P indicates what to do with blocks which must be
1448      erased, but not completely rewritten.
1449    PROGRESS_CB is a function that will be periodically called to provide
1450      feedback to user.  It will be called with the baton corresponding
1451      to the request currently being written.  It may also be called
1452      with a NULL baton, when preserved flash sectors are being rewritten.
1453
1454    The function returns 0 on success, and error otherwise.  */
1455 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1456                                 enum flash_preserve_mode preserve_flash_p,
1457                                 void (*progress_cb) (ULONGEST, void *));
1458
1459 /* Print a line about the current target.  */
1460
1461 #define target_files_info()     \
1462      (*current_target.to_files_info) (&current_target)
1463
1464 /* Insert a breakpoint at address BP_TGT->placed_address in
1465    the target machine.  Returns 0 for success, and returns non-zero or
1466    throws an error (with a detailed failure reason error code and
1467    message) otherwise.  */
1468
1469 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1470                                      struct bp_target_info *bp_tgt);
1471
1472 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1473    machine.  Result is 0 for success, non-zero for error.  */
1474
1475 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1476                                      struct bp_target_info *bp_tgt);
1477
1478 /* Returns true if the terminal settings of the inferior are in
1479    effect.  */
1480
1481 extern int target_terminal_is_inferior (void);
1482
1483 /* Initialize the terminal settings we record for the inferior,
1484    before we actually run the inferior.  */
1485
1486 extern void target_terminal_init (void);
1487
1488 /* Put the inferior's terminal settings into effect.
1489    This is preparation for starting or resuming the inferior.  */
1490
1491 extern void target_terminal_inferior (void);
1492
1493 /* Put some of our terminal settings into effect, enough to get proper
1494    results from our output, but do not change into or out of RAW mode
1495    so that no input is discarded.  This is a no-op if terminal_ours
1496    was most recently called.  */
1497
1498 extern void target_terminal_ours_for_output (void);
1499
1500 /* Put our terminal settings into effect.
1501    First record the inferior's terminal settings
1502    so they can be restored properly later.  */
1503
1504 extern void target_terminal_ours (void);
1505
1506 /* Return true if the target stack has a non-default
1507   "to_terminal_ours" method.  */
1508
1509 extern int target_supports_terminal_ours (void);
1510
1511 /* Make a cleanup that restores the state of the terminal to the current
1512    state.  */
1513 extern struct cleanup *make_cleanup_restore_target_terminal (void);
1514
1515 /* Print useful information about our terminal status, if such a thing
1516    exists.  */
1517
1518 #define target_terminal_info(arg, from_tty) \
1519      (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1520
1521 /* Kill the inferior process.   Make it go away.  */
1522
1523 extern void target_kill (void);
1524
1525 /* Load an executable file into the target process.  This is expected
1526    to not only bring new code into the target process, but also to
1527    update GDB's symbol tables to match.
1528
1529    ARG contains command-line arguments, to be broken down with
1530    buildargv ().  The first non-switch argument is the filename to
1531    load, FILE; the second is a number (as parsed by strtoul (..., ...,
1532    0)), which is an offset to apply to the load addresses of FILE's
1533    sections.  The target may define switches, or other non-switch
1534    arguments, as it pleases.  */
1535
1536 extern void target_load (const char *arg, int from_tty);
1537
1538 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1539    notification of inferior events such as fork and vork immediately
1540    after the inferior is created.  (This because of how gdb gets an
1541    inferior created via invoking a shell to do it.  In such a scenario,
1542    if the shell init file has commands in it, the shell will fork and
1543    exec for each of those commands, and we will see each such fork
1544    event.  Very bad.)
1545
1546    Such targets will supply an appropriate definition for this function.  */
1547
1548 #define target_post_startup_inferior(ptid) \
1549      (*current_target.to_post_startup_inferior) (&current_target, ptid)
1550
1551 /* On some targets, we can catch an inferior fork or vfork event when
1552    it occurs.  These functions insert/remove an already-created
1553    catchpoint for such events.  They return  0 for success, 1 if the
1554    catchpoint type is not supported and -1 for failure.  */
1555
1556 #define target_insert_fork_catchpoint(pid) \
1557      (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1558
1559 #define target_remove_fork_catchpoint(pid) \
1560      (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1561
1562 #define target_insert_vfork_catchpoint(pid) \
1563      (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1564
1565 #define target_remove_vfork_catchpoint(pid) \
1566      (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1567
1568 /* If the inferior forks or vforks, this function will be called at
1569    the next resume in order to perform any bookkeeping and fiddling
1570    necessary to continue debugging either the parent or child, as
1571    requested, and releasing the other.  Information about the fork
1572    or vfork event is available via get_last_target_status ().
1573    This function returns 1 if the inferior should not be resumed
1574    (i.e. there is another event pending).  */
1575
1576 int target_follow_fork (int follow_child, int detach_fork);
1577
1578 /* On some targets, we can catch an inferior exec event when it
1579    occurs.  These functions insert/remove an already-created
1580    catchpoint for such events.  They return  0 for success, 1 if the
1581    catchpoint type is not supported and -1 for failure.  */
1582
1583 #define target_insert_exec_catchpoint(pid) \
1584      (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1585
1586 #define target_remove_exec_catchpoint(pid) \
1587      (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1588
1589 /* Syscall catch.
1590
1591    NEEDED is nonzero if any syscall catch (of any kind) is requested.
1592    If NEEDED is zero, it means the target can disable the mechanism to
1593    catch system calls because there are no more catchpoints of this type.
1594
1595    ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1596    being requested.  In this case, both TABLE_SIZE and TABLE should
1597    be ignored.
1598
1599    TABLE_SIZE is the number of elements in TABLE.  It only matters if
1600    ANY_COUNT is zero.
1601
1602    TABLE is an array of ints, indexed by syscall number.  An element in
1603    this array is nonzero if that syscall should be caught.  This argument
1604    only matters if ANY_COUNT is zero.
1605
1606    Return 0 for success, 1 if syscall catchpoints are not supported or -1
1607    for failure.  */
1608
1609 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1610      (*current_target.to_set_syscall_catchpoint) (&current_target,      \
1611                                                   pid, needed, any_count, \
1612                                                   table_size, table)
1613
1614 /* Returns TRUE if PID has exited.  And, also sets EXIT_STATUS to the
1615    exit code of PID, if any.  */
1616
1617 #define target_has_exited(pid,wait_status,exit_status) \
1618      (*current_target.to_has_exited) (&current_target, \
1619                                       pid,wait_status,exit_status)
1620
1621 /* The debugger has completed a blocking wait() call.  There is now
1622    some process event that must be processed.  This function should
1623    be defined by those targets that require the debugger to perform
1624    cleanup or internal state changes in response to the process event.  */
1625
1626 /* The inferior process has died.  Do what is right.  */
1627
1628 void target_mourn_inferior (void);
1629
1630 /* Does target have enough data to do a run or attach command? */
1631
1632 #define target_can_run(t) \
1633      ((t)->to_can_run) (t)
1634
1635 /* Set list of signals to be handled in the target.
1636
1637    PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1638    (enum gdb_signal).  For every signal whose entry in this array is
1639    non-zero, the target is allowed -but not required- to skip reporting
1640    arrival of the signal to the GDB core by returning from target_wait,
1641    and to pass the signal directly to the inferior instead.
1642
1643    However, if the target is hardware single-stepping a thread that is
1644    about to receive a signal, it needs to be reported in any case, even
1645    if mentioned in a previous target_pass_signals call.   */
1646
1647 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1648
1649 /* Set list of signals the target may pass to the inferior.  This
1650    directly maps to the "handle SIGNAL pass/nopass" setting.
1651
1652    PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1653    number (enum gdb_signal).  For every signal whose entry in this
1654    array is non-zero, the target is allowed to pass the signal to the
1655    inferior.  Signals not present in the array shall be silently
1656    discarded.  This does not influence whether to pass signals to the
1657    inferior as a result of a target_resume call.  This is useful in
1658    scenarios where the target needs to decide whether to pass or not a
1659    signal to the inferior without GDB core involvement, such as for
1660    example, when detaching (as threads may have been suspended with
1661    pending signals not reported to GDB).  */
1662
1663 extern void target_program_signals (int nsig, unsigned char *program_signals);
1664
1665 /* Check to see if a thread is still alive.  */
1666
1667 extern int target_thread_alive (ptid_t ptid);
1668
1669 /* Sync the target's threads with GDB's thread list.  */
1670
1671 extern void target_update_thread_list (void);
1672
1673 /* Make target stop in a continuable fashion.  (For instance, under
1674    Unix, this should act like SIGSTOP).  Note that this function is
1675    asynchronous: it does not wait for the target to become stopped
1676    before returning.  If this is the behavior you want please use
1677    target_stop_and_wait.  */
1678
1679 extern void target_stop (ptid_t ptid);
1680
1681 /* Interrupt the target just like the user typed a ^C on the
1682    inferior's controlling terminal.  (For instance, under Unix, this
1683    should act like SIGINT).  This function is asynchronous.  */
1684
1685 extern void target_interrupt (ptid_t ptid);
1686
1687 /* Send the specified COMMAND to the target's monitor
1688    (shell,interpreter) for execution.  The result of the query is
1689    placed in OUTBUF.  */
1690
1691 #define target_rcmd(command, outbuf) \
1692      (*current_target.to_rcmd) (&current_target, command, outbuf)
1693
1694
1695 /* Does the target include all of memory, or only part of it?  This
1696    determines whether we look up the target chain for other parts of
1697    memory if this target can't satisfy a request.  */
1698
1699 extern int target_has_all_memory_1 (void);
1700 #define target_has_all_memory target_has_all_memory_1 ()
1701
1702 /* Does the target include memory?  (Dummy targets don't.)  */
1703
1704 extern int target_has_memory_1 (void);
1705 #define target_has_memory target_has_memory_1 ()
1706
1707 /* Does the target have a stack?  (Exec files don't, VxWorks doesn't, until
1708    we start a process.)  */
1709
1710 extern int target_has_stack_1 (void);
1711 #define target_has_stack target_has_stack_1 ()
1712
1713 /* Does the target have registers?  (Exec files don't.)  */
1714
1715 extern int target_has_registers_1 (void);
1716 #define target_has_registers target_has_registers_1 ()
1717
1718 /* Does the target have execution?  Can we make it jump (through
1719    hoops), or pop its stack a few times?  This means that the current
1720    target is currently executing; for some targets, that's the same as
1721    whether or not the target is capable of execution, but there are
1722    also targets which can be current while not executing.  In that
1723    case this will become true after to_create_inferior or
1724    to_attach.  */
1725
1726 extern int target_has_execution_1 (ptid_t);
1727
1728 /* Like target_has_execution_1, but always passes inferior_ptid.  */
1729
1730 extern int target_has_execution_current (void);
1731
1732 #define target_has_execution target_has_execution_current ()
1733
1734 /* Default implementations for process_stratum targets.  Return true
1735    if there's a selected inferior, false otherwise.  */
1736
1737 extern int default_child_has_all_memory (struct target_ops *ops);
1738 extern int default_child_has_memory (struct target_ops *ops);
1739 extern int default_child_has_stack (struct target_ops *ops);
1740 extern int default_child_has_registers (struct target_ops *ops);
1741 extern int default_child_has_execution (struct target_ops *ops,
1742                                         ptid_t the_ptid);
1743
1744 /* Can the target support the debugger control of thread execution?
1745    Can it lock the thread scheduler?  */
1746
1747 #define target_can_lock_scheduler \
1748      (current_target.to_has_thread_control & tc_schedlock)
1749
1750 /* Controls whether async mode is permitted.  */
1751 extern int target_async_permitted;
1752
1753 /* Can the target support asynchronous execution?  */
1754 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1755
1756 /* Is the target in asynchronous execution mode?  */
1757 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1758
1759 /* Enables/disabled async target events.  */
1760 extern void target_async (int enable);
1761
1762 /* Whether support for controlling the target backends always in
1763    non-stop mode is enabled.  */
1764 extern enum auto_boolean target_non_stop_enabled;
1765
1766 /* Is the target in non-stop mode?  Some targets control the inferior
1767    in non-stop mode even with "set non-stop off".  Always true if "set
1768    non-stop" is on.  */
1769 extern int target_is_non_stop_p (void);
1770
1771 #define target_execution_direction() \
1772   (current_target.to_execution_direction (&current_target))
1773
1774 /* Converts a process id to a string.  Usually, the string just contains
1775    `process xyz', but on some systems it may contain
1776    `process xyz thread abc'.  */
1777
1778 extern char *target_pid_to_str (ptid_t ptid);
1779
1780 extern char *normal_pid_to_str (ptid_t ptid);
1781
1782 /* Return a short string describing extra information about PID,
1783    e.g. "sleeping", "runnable", "running on LWP 3".  Null return value
1784    is okay.  */
1785
1786 #define target_extra_thread_info(TP) \
1787      (current_target.to_extra_thread_info (&current_target, TP))
1788
1789 /* Return the thread's name.  A NULL result means that the target
1790    could not determine this thread's name.  */
1791
1792 extern char *target_thread_name (struct thread_info *);
1793
1794 /* Attempts to find the pathname of the executable file
1795    that was run to create a specified process.
1796
1797    The process PID must be stopped when this operation is used.
1798
1799    If the executable file cannot be determined, NULL is returned.
1800
1801    Else, a pointer to a character string containing the pathname
1802    is returned.  This string should be copied into a buffer by
1803    the client if the string will not be immediately used, or if
1804    it must persist.  */
1805
1806 #define target_pid_to_exec_file(pid) \
1807      (current_target.to_pid_to_exec_file) (&current_target, pid)
1808
1809 /* See the to_thread_architecture description in struct target_ops.  */
1810
1811 #define target_thread_architecture(ptid) \
1812      (current_target.to_thread_architecture (&current_target, ptid))
1813
1814 /*
1815  * Iterator function for target memory regions.
1816  * Calls a callback function once for each memory region 'mapped'
1817  * in the child process.  Defined as a simple macro rather than
1818  * as a function macro so that it can be tested for nullity.
1819  */
1820
1821 #define target_find_memory_regions(FUNC, DATA) \
1822      (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1823
1824 /*
1825  * Compose corefile .note section.
1826  */
1827
1828 #define target_make_corefile_notes(BFD, SIZE_P) \
1829      (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1830
1831 /* Bookmark interfaces.  */
1832 #define target_get_bookmark(ARGS, FROM_TTY) \
1833      (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1834
1835 #define target_goto_bookmark(ARG, FROM_TTY) \
1836      (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1837
1838 /* Hardware watchpoint interfaces.  */
1839
1840 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1841    write).  Only the INFERIOR_PTID task is being queried.  */
1842
1843 #define target_stopped_by_watchpoint()          \
1844   ((*current_target.to_stopped_by_watchpoint) (&current_target))
1845
1846 /* Returns non-zero if the target stopped because it executed a
1847    software breakpoint instruction.  */
1848
1849 #define target_stopped_by_sw_breakpoint()               \
1850   ((*current_target.to_stopped_by_sw_breakpoint) (&current_target))
1851
1852 #define target_supports_stopped_by_sw_breakpoint() \
1853   ((*current_target.to_supports_stopped_by_sw_breakpoint) (&current_target))
1854
1855 #define target_stopped_by_hw_breakpoint()                               \
1856   ((*current_target.to_stopped_by_hw_breakpoint) (&current_target))
1857
1858 #define target_supports_stopped_by_hw_breakpoint() \
1859   ((*current_target.to_supports_stopped_by_hw_breakpoint) (&current_target))
1860
1861 /* Non-zero if we have steppable watchpoints  */
1862
1863 #define target_have_steppable_watchpoint \
1864    (current_target.to_have_steppable_watchpoint)
1865
1866 /* Non-zero if we have continuable watchpoints  */
1867
1868 #define target_have_continuable_watchpoint \
1869    (current_target.to_have_continuable_watchpoint)
1870
1871 /* Provide defaults for hardware watchpoint functions.  */
1872
1873 /* If the *_hw_beakpoint functions have not been defined
1874    elsewhere use the definitions in the target vector.  */
1875
1876 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1877    Returns negative if the target doesn't have enough hardware debug
1878    registers available.  Return zero if hardware watchpoint of type
1879    TYPE isn't supported.  TYPE is one of bp_hardware_watchpoint,
1880    bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1881    CNT is the number of such watchpoints used so far, including this
1882    one.  OTHERTYPE is who knows what...  */
1883
1884 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1885  (*current_target.to_can_use_hw_breakpoint) (&current_target,  \
1886                                              TYPE, CNT, OTHERTYPE)
1887
1888 /* Returns the number of debug registers needed to watch the given
1889    memory region, or zero if not supported.  */
1890
1891 #define target_region_ok_for_hw_watchpoint(addr, len) \
1892     (*current_target.to_region_ok_for_hw_watchpoint) (&current_target,  \
1893                                                       addr, len)
1894
1895
1896 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1897    TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1898    COND is the expression for its condition, or NULL if there's none.
1899    Returns 0 for success, 1 if the watchpoint type is not supported,
1900    -1 for failure.  */
1901
1902 #define target_insert_watchpoint(addr, len, type, cond) \
1903      (*current_target.to_insert_watchpoint) (&current_target,   \
1904                                              addr, len, type, cond)
1905
1906 #define target_remove_watchpoint(addr, len, type, cond) \
1907      (*current_target.to_remove_watchpoint) (&current_target,   \
1908                                              addr, len, type, cond)
1909
1910 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1911    RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1912    or hw_access for an access watchpoint.  Returns 0 for success, 1 if
1913    masked watchpoints are not supported, -1 for failure.  */
1914
1915 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1916
1917 /* Remove a masked watchpoint at ADDR with the mask MASK.
1918    RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1919    or hw_access for an access watchpoint.  Returns 0 for success, non-zero
1920    for failure.  */
1921
1922 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1923
1924 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1925    the target machine.  Returns 0 for success, and returns non-zero or
1926    throws an error (with a detailed failure reason error code and
1927    message) otherwise.  */
1928
1929 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1930      (*current_target.to_insert_hw_breakpoint) (&current_target,        \
1931                                                 gdbarch, bp_tgt)
1932
1933 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1934      (*current_target.to_remove_hw_breakpoint) (&current_target,        \
1935                                                 gdbarch, bp_tgt)
1936
1937 /* Return number of debug registers needed for a ranged breakpoint,
1938    or -1 if ranged breakpoints are not supported.  */
1939
1940 extern int target_ranged_break_num_registers (void);
1941
1942 /* Return non-zero if target knows the data address which triggered this
1943    target_stopped_by_watchpoint, in such case place it to *ADDR_P.  Only the
1944    INFERIOR_PTID task is being queried.  */
1945 #define target_stopped_data_address(target, addr_p) \
1946     (*(target)->to_stopped_data_address) (target, addr_p)
1947
1948 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1949    LENGTH bytes beginning at START.  */
1950 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1951   (*(target)->to_watchpoint_addr_within_range) (target, addr, start, length)
1952
1953 /* Return non-zero if the target is capable of using hardware to evaluate
1954    the condition expression.  In this case, if the condition is false when
1955    the watched memory location changes, execution may continue without the
1956    debugger being notified.
1957
1958    Due to limitations in the hardware implementation, it may be capable of
1959    avoiding triggering the watchpoint in some cases where the condition
1960    expression is false, but may report some false positives as well.
1961    For this reason, GDB will still evaluate the condition expression when
1962    the watchpoint triggers.  */
1963 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1964   (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1965                                                        addr, len, type, cond)
1966
1967 /* Return number of debug registers needed for a masked watchpoint,
1968    -1 if masked watchpoints are not supported or -2 if the given address
1969    and mask combination cannot be used.  */
1970
1971 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1972
1973 /* Target can execute in reverse?  */
1974 #define target_can_execute_reverse \
1975       current_target.to_can_execute_reverse (&current_target)
1976
1977 extern const struct target_desc *target_read_description (struct target_ops *);
1978
1979 #define target_get_ada_task_ptid(lwp, tid) \
1980      (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1981
1982 /* Utility implementation of searching memory.  */
1983 extern int simple_search_memory (struct target_ops* ops,
1984                                  CORE_ADDR start_addr,
1985                                  ULONGEST search_space_len,
1986                                  const gdb_byte *pattern,
1987                                  ULONGEST pattern_len,
1988                                  CORE_ADDR *found_addrp);
1989
1990 /* Main entry point for searching memory.  */
1991 extern int target_search_memory (CORE_ADDR start_addr,
1992                                  ULONGEST search_space_len,
1993                                  const gdb_byte *pattern,
1994                                  ULONGEST pattern_len,
1995                                  CORE_ADDR *found_addrp);
1996
1997 /* Target file operations.  */
1998
1999 /* Return nonzero if the filesystem seen by the current inferior
2000    is the local filesystem, zero otherwise.  */
2001 #define target_filesystem_is_local() \
2002   current_target.to_filesystem_is_local (&current_target)
2003
2004 /* Open FILENAME on the target, in the filesystem as seen by INF,
2005    using FLAGS and MODE.  If INF is NULL, use the filesystem seen
2006    by the debugger (GDB or, for remote targets, the remote stub).
2007    Return a target file descriptor, or -1 if an error occurs (and
2008    set *TARGET_ERRNO).  */
2009 extern int target_fileio_open (struct inferior *inf,
2010                                const char *filename, int flags,
2011                                int mode, int *target_errno);
2012
2013 /* Like target_fileio_open, but print a warning message if the
2014    file is being accessed over a link that may be slow.  */
2015 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2016                                             const char *filename,
2017                                             int flags,
2018                                             int mode,
2019                                             int *target_errno);
2020
2021 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2022    Return the number of bytes written, or -1 if an error occurs
2023    (and set *TARGET_ERRNO).  */
2024 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2025                                  ULONGEST offset, int *target_errno);
2026
2027 /* Read up to LEN bytes FD on the target into READ_BUF.
2028    Return the number of bytes read, or -1 if an error occurs
2029    (and set *TARGET_ERRNO).  */
2030 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2031                                 ULONGEST offset, int *target_errno);
2032
2033 /* Get information about the file opened as FD on the target
2034    and put it in SB.  Return 0 on success, or -1 if an error
2035    occurs (and set *TARGET_ERRNO).  */
2036 extern int target_fileio_fstat (int fd, struct stat *sb,
2037                                 int *target_errno);
2038
2039 /* Close FD on the target.  Return 0, or -1 if an error occurs
2040    (and set *TARGET_ERRNO).  */
2041 extern int target_fileio_close (int fd, int *target_errno);
2042
2043 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2044    If INF is NULL, use the filesystem seen by the debugger (GDB or,
2045    for remote targets, the remote stub).  Return 0, or -1 if an error
2046    occurs (and set *TARGET_ERRNO).  */
2047 extern int target_fileio_unlink (struct inferior *inf,
2048                                  const char *filename,
2049                                  int *target_errno);
2050
2051 /* Read value of symbolic link FILENAME on the target, in the
2052    filesystem as seen by INF.  If INF is NULL, use the filesystem seen
2053    by the debugger (GDB or, for remote targets, the remote stub).
2054    Return a null-terminated string allocated via xmalloc, or NULL if
2055    an error occurs (and set *TARGET_ERRNO).  */
2056 extern char *target_fileio_readlink (struct inferior *inf,
2057                                      const char *filename,
2058                                      int *target_errno);
2059
2060 /* Read target file FILENAME, in the filesystem as seen by INF.  If
2061    INF is NULL, use the filesystem seen by the debugger (GDB or, for
2062    remote targets, the remote stub).  The return value will be -1 if
2063    the transfer fails or is not supported; 0 if the object is empty;
2064    or the length of the object otherwise.  If a positive value is
2065    returned, a sufficiently large buffer will be allocated using
2066    xmalloc and returned in *BUF_P containing the contents of the
2067    object.
2068
2069    This method should be used for objects sufficiently small to store
2070    in a single xmalloc'd buffer, when no fixed bound on the object's
2071    size is known in advance.  */
2072 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2073                                          const char *filename,
2074                                          gdb_byte **buf_p);
2075
2076 /* Read target file FILENAME, in the filesystem as seen by INF.  If
2077    INF is NULL, use the filesystem seen by the debugger (GDB or, for
2078    remote targets, the remote stub).  The result is NUL-terminated and
2079    returned as a string, allocated using xmalloc.  If an error occurs
2080    or the transfer is unsupported, NULL is returned.  Empty objects
2081    are returned as allocated but empty strings.  A warning is issued
2082    if the result contains any embedded NUL bytes.  */
2083 extern char *target_fileio_read_stralloc (struct inferior *inf,
2084                                           const char *filename);
2085
2086
2087 /* Tracepoint-related operations.  */
2088
2089 #define target_trace_init() \
2090   (*current_target.to_trace_init) (&current_target)
2091
2092 #define target_download_tracepoint(t) \
2093   (*current_target.to_download_tracepoint) (&current_target, t)
2094
2095 #define target_can_download_tracepoint() \
2096   (*current_target.to_can_download_tracepoint) (&current_target)
2097
2098 #define target_download_trace_state_variable(tsv) \
2099   (*current_target.to_download_trace_state_variable) (&current_target, tsv)
2100
2101 #define target_enable_tracepoint(loc) \
2102   (*current_target.to_enable_tracepoint) (&current_target, loc)
2103
2104 #define target_disable_tracepoint(loc) \
2105   (*current_target.to_disable_tracepoint) (&current_target, loc)
2106
2107 #define target_trace_start() \
2108   (*current_target.to_trace_start) (&current_target)
2109
2110 #define target_trace_set_readonly_regions() \
2111   (*current_target.to_trace_set_readonly_regions) (&current_target)
2112
2113 #define target_get_trace_status(ts) \
2114   (*current_target.to_get_trace_status) (&current_target, ts)
2115
2116 #define target_get_tracepoint_status(tp,utp)            \
2117   (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
2118
2119 #define target_trace_stop() \
2120   (*current_target.to_trace_stop) (&current_target)
2121
2122 #define target_trace_find(type,num,addr1,addr2,tpp) \
2123   (*current_target.to_trace_find) (&current_target, \
2124                                    (type), (num), (addr1), (addr2), (tpp))
2125
2126 #define target_get_trace_state_variable_value(tsv,val) \
2127   (*current_target.to_get_trace_state_variable_value) (&current_target, \
2128                                                        (tsv), (val))
2129
2130 #define target_save_trace_data(filename) \
2131   (*current_target.to_save_trace_data) (&current_target, filename)
2132
2133 #define target_upload_tracepoints(utpp) \
2134   (*current_target.to_upload_tracepoints) (&current_target, utpp)
2135
2136 #define target_upload_trace_state_variables(utsvp) \
2137   (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
2138
2139 #define target_get_raw_trace_data(buf,offset,len) \
2140   (*current_target.to_get_raw_trace_data) (&current_target,     \
2141                                            (buf), (offset), (len))
2142
2143 #define target_get_min_fast_tracepoint_insn_len() \
2144   (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
2145
2146 #define target_set_disconnected_tracing(val) \
2147   (*current_target.to_set_disconnected_tracing) (&current_target, val)
2148
2149 #define target_set_circular_trace_buffer(val)   \
2150   (*current_target.to_set_circular_trace_buffer) (&current_target, val)
2151
2152 #define target_set_trace_buffer_size(val)       \
2153   (*current_target.to_set_trace_buffer_size) (&current_target, val)
2154
2155 #define target_set_trace_notes(user,notes,stopnotes)            \
2156   (*current_target.to_set_trace_notes) (&current_target,        \
2157                                         (user), (notes), (stopnotes))
2158
2159 #define target_get_tib_address(ptid, addr) \
2160   (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
2161
2162 #define target_set_permissions() \
2163   (*current_target.to_set_permissions) (&current_target)
2164
2165 #define target_static_tracepoint_marker_at(addr, marker) \
2166   (*current_target.to_static_tracepoint_marker_at) (&current_target,    \
2167                                                     addr, marker)
2168
2169 #define target_static_tracepoint_markers_by_strid(marker_id) \
2170   (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
2171                                                            marker_id)
2172
2173 #define target_traceframe_info() \
2174   (*current_target.to_traceframe_info) (&current_target)
2175
2176 #define target_use_agent(use) \
2177   (*current_target.to_use_agent) (&current_target, use)
2178
2179 #define target_can_use_agent() \
2180   (*current_target.to_can_use_agent) (&current_target)
2181
2182 #define target_augmented_libraries_svr4_read() \
2183   (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2184
2185 /* Command logging facility.  */
2186
2187 #define target_log_command(p)                                   \
2188   (*current_target.to_log_command) (&current_target, p)
2189
2190
2191 extern int target_core_of_thread (ptid_t ptid);
2192
2193 /* See to_get_unwinder in struct target_ops.  */
2194 extern const struct frame_unwind *target_get_unwinder (void);
2195
2196 /* See to_get_tailcall_unwinder in struct target_ops.  */
2197 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2198
2199 /* This implements basic memory verification, reading target memory
2200    and performing the comparison here (as opposed to accelerated
2201    verification making use of the qCRC packet, for example).  */
2202
2203 extern int simple_verify_memory (struct target_ops* ops,
2204                                  const gdb_byte *data,
2205                                  CORE_ADDR memaddr, ULONGEST size);
2206
2207 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2208    the contents of [DATA,DATA+SIZE).  Returns 1 if there's a match, 0
2209    if there's a mismatch, and -1 if an error is encountered while
2210    reading memory.  Throws an error if the functionality is found not
2211    to be supported by the current target.  */
2212 int target_verify_memory (const gdb_byte *data,
2213                           CORE_ADDR memaddr, ULONGEST size);
2214
2215 /* Routines for maintenance of the target structures...
2216
2217    complete_target_initialization: Finalize a target_ops by filling in
2218    any fields needed by the target implementation.  Unnecessary for
2219    targets which are registered via add_target, as this part gets
2220    taken care of then.
2221
2222    add_target:   Add a target to the list of all possible targets.
2223    This only makes sense for targets that should be activated using
2224    the "target TARGET_NAME ..." command.
2225
2226    push_target:  Make this target the top of the stack of currently used
2227    targets, within its particular stratum of the stack.  Result
2228    is 0 if now atop the stack, nonzero if not on top (maybe
2229    should warn user).
2230
2231    unpush_target: Remove this from the stack of currently used targets,
2232    no matter where it is on the list.  Returns 0 if no
2233    change, 1 if removed from stack.  */
2234
2235 extern void add_target (struct target_ops *);
2236
2237 extern void add_target_with_completer (struct target_ops *t,
2238                                        completer_ftype *completer);
2239
2240 extern void complete_target_initialization (struct target_ops *t);
2241
2242 /* Adds a command ALIAS for target T and marks it deprecated.  This is useful
2243    for maintaining backwards compatibility when renaming targets.  */
2244
2245 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2246
2247 extern void push_target (struct target_ops *);
2248
2249 extern int unpush_target (struct target_ops *);
2250
2251 extern void target_pre_inferior (int);
2252
2253 extern void target_preopen (int);
2254
2255 /* Does whatever cleanup is required to get rid of all pushed targets.  */
2256 extern void pop_all_targets (void);
2257
2258 /* Like pop_all_targets, but pops only targets whose stratum is
2259    strictly above ABOVE_STRATUM.  */
2260 extern void pop_all_targets_above (enum strata above_stratum);
2261
2262 extern int target_is_pushed (struct target_ops *t);
2263
2264 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2265                                                CORE_ADDR offset);
2266
2267 /* Struct target_section maps address ranges to file sections.  It is
2268    mostly used with BFD files, but can be used without (e.g. for handling
2269    raw disks, or files not in formats handled by BFD).  */
2270
2271 struct target_section
2272   {
2273     CORE_ADDR addr;             /* Lowest address in section */
2274     CORE_ADDR endaddr;          /* 1+highest address in section */
2275
2276     struct bfd_section *the_bfd_section;
2277
2278     /* The "owner" of the section.
2279        It can be any unique value.  It is set by add_target_sections
2280        and used by remove_target_sections.
2281        For example, for executables it is a pointer to exec_bfd and
2282        for shlibs it is the so_list pointer.  */
2283     void *owner;
2284   };
2285
2286 /* Holds an array of target sections.  Defined by [SECTIONS..SECTIONS_END[.  */
2287
2288 struct target_section_table
2289 {
2290   struct target_section *sections;
2291   struct target_section *sections_end;
2292 };
2293
2294 /* Return the "section" containing the specified address.  */
2295 struct target_section *target_section_by_addr (struct target_ops *target,
2296                                                CORE_ADDR addr);
2297
2298 /* Return the target section table this target (or the targets
2299    beneath) currently manipulate.  */
2300
2301 extern struct target_section_table *target_get_section_table
2302   (struct target_ops *target);
2303
2304 /* From mem-break.c */
2305
2306 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2307                                      struct bp_target_info *);
2308
2309 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2310                                      struct bp_target_info *);
2311
2312 /* Check whether the memory at the breakpoint's placed address still
2313    contains the expected breakpoint instruction.  */
2314
2315 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2316                                        struct bp_target_info *bp_tgt);
2317
2318 extern int default_memory_remove_breakpoint (struct gdbarch *,
2319                                              struct bp_target_info *);
2320
2321 extern int default_memory_insert_breakpoint (struct gdbarch *,
2322                                              struct bp_target_info *);
2323
2324
2325 /* From target.c */
2326
2327 extern void initialize_targets (void);
2328
2329 extern void noprocess (void) ATTRIBUTE_NORETURN;
2330
2331 extern void target_require_runnable (void);
2332
2333 extern struct target_ops *find_target_beneath (struct target_ops *);
2334
2335 /* Find the target at STRATUM.  If no target is at that stratum,
2336    return NULL.  */
2337
2338 struct target_ops *find_target_at (enum strata stratum);
2339
2340 /* Read OS data object of type TYPE from the target, and return it in
2341    XML format.  The result is NUL-terminated and returned as a string,
2342    allocated using xmalloc.  If an error occurs or the transfer is
2343    unsupported, NULL is returned.  Empty objects are returned as
2344    allocated but empty strings.  */
2345
2346 extern char *target_get_osdata (const char *type);
2347
2348 \f
2349 /* Stuff that should be shared among the various remote targets.  */
2350
2351 /* Debugging level.  0 is off, and non-zero values mean to print some debug
2352    information (higher values, more information).  */
2353 extern int remote_debug;
2354
2355 /* Speed in bits per second, or -1 which means don't mess with the speed.  */
2356 extern int baud_rate;
2357
2358 /* Parity for serial port  */
2359 extern int serial_parity;
2360
2361 /* Timeout limit for response from target.  */
2362 extern int remote_timeout;
2363
2364 \f
2365
2366 /* Set the show memory breakpoints mode to show, and installs a cleanup
2367    to restore it back to the current value.  */
2368 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2369
2370 extern int may_write_registers;
2371 extern int may_write_memory;
2372 extern int may_insert_breakpoints;
2373 extern int may_insert_tracepoints;
2374 extern int may_insert_fast_tracepoints;
2375 extern int may_stop;
2376
2377 extern void update_target_permissions (void);
2378
2379 \f
2380 /* Imported from machine dependent code.  */
2381
2382 /* See to_supports_btrace in struct target_ops.  */
2383 extern int target_supports_btrace (enum btrace_format);
2384
2385 /* See to_enable_btrace in struct target_ops.  */
2386 extern struct btrace_target_info *
2387   target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2388
2389 /* See to_disable_btrace in struct target_ops.  */
2390 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2391
2392 /* See to_teardown_btrace in struct target_ops.  */
2393 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2394
2395 /* See to_read_btrace in struct target_ops.  */
2396 extern enum btrace_error target_read_btrace (struct btrace_data *,
2397                                              struct btrace_target_info *,
2398                                              enum btrace_read_type);
2399
2400 /* See to_btrace_conf in struct target_ops.  */
2401 extern const struct btrace_config *
2402   target_btrace_conf (const struct btrace_target_info *);
2403
2404 /* See to_stop_recording in struct target_ops.  */
2405 extern void target_stop_recording (void);
2406
2407 /* See to_save_record in struct target_ops.  */
2408 extern void target_save_record (const char *filename);
2409
2410 /* Query if the target supports deleting the execution log.  */
2411 extern int target_supports_delete_record (void);
2412
2413 /* See to_delete_record in struct target_ops.  */
2414 extern void target_delete_record (void);
2415
2416 /* See to_record_is_replaying in struct target_ops.  */
2417 extern int target_record_is_replaying (void);
2418
2419 /* See to_goto_record_begin in struct target_ops.  */
2420 extern void target_goto_record_begin (void);
2421
2422 /* See to_goto_record_end in struct target_ops.  */
2423 extern void target_goto_record_end (void);
2424
2425 /* See to_goto_record in struct target_ops.  */
2426 extern void target_goto_record (ULONGEST insn);
2427
2428 /* See to_insn_history.  */
2429 extern void target_insn_history (int size, int flags);
2430
2431 /* See to_insn_history_from.  */
2432 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2433
2434 /* See to_insn_history_range.  */
2435 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2436
2437 /* See to_call_history.  */
2438 extern void target_call_history (int size, int flags);
2439
2440 /* See to_call_history_from.  */
2441 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2442
2443 /* See to_call_history_range.  */
2444 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2445
2446 /* See to_prepare_to_generate_core.  */
2447 extern void target_prepare_to_generate_core (void);
2448
2449 /* See to_done_generating_core.  */
2450 extern void target_done_generating_core (void);
2451
2452 #endif /* !defined (TARGET_H) */