Automatic date update in version.in
[external/binutils.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3    Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5    Contributed by Cygnus Support.  Written by John Gilmore.
6
7    This file is part of GDB.
8
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind.  */
44 #include "breakpoint.h" /* For enum bptype.  */
45 #include "common/scoped_restore.h"
46
47 /* This include file defines the interface between the main part
48    of the debugger, and the part which is target-specific, or
49    specific to the communications interface between us and the
50    target.
51
52    A TARGET is an interface between the debugger and a particular
53    kind of file or process.  Targets can be STACKED in STRATA,
54    so that more than one target can potentially respond to a request.
55    In particular, memory accesses will walk down the stack of targets
56    until they find a target that is interested in handling that particular
57    address.  STRATA are artificial boundaries on the stack, within
58    which particular kinds of targets live.  Strata exist so that
59    people don't get confused by pushing e.g. a process target and then
60    a file target, and wondering why they can't see the current values
61    of variables any more (the file target is handling them and they
62    never get to the process target).  So when you push a file target,
63    it goes into the file stratum, which is always below the process
64    stratum.  */
65
66 #include "target/target.h"
67 #include "target/resume.h"
68 #include "target/wait.h"
69 #include "target/waitstatus.h"
70 #include "bfd.h"
71 #include "symtab.h"
72 #include "memattr.h"
73 #include "vec.h"
74 #include "gdb_signals.h"
75 #include "btrace.h"
76 #include "record.h"
77 #include "command.h"
78 #include "disasm.h"
79 #include "tracepoint.h"
80
81 #include "break-common.h" /* For enum target_hw_bp_type.  */
82
83 enum strata
84   {
85     dummy_stratum,              /* The lowest of the low */
86     file_stratum,               /* Executable files, etc */
87     process_stratum,            /* Executing processes or core dump files */
88     thread_stratum,             /* Executing threads */
89     record_stratum,             /* Support record debugging */
90     arch_stratum                /* Architecture overrides */
91   };
92
93 enum thread_control_capabilities
94   {
95     tc_none = 0,                /* Default: can't control thread execution.  */
96     tc_schedlock = 1,           /* Can lock the thread scheduler.  */
97   };
98
99 /* The structure below stores information about a system call.
100    It is basically used in the "catch syscall" command, and in
101    every function that gives information about a system call.
102    
103    It's also good to mention that its fields represent everything
104    that we currently know about a syscall in GDB.  */
105 struct syscall
106   {
107     /* The syscall number.  */
108     int number;
109
110     /* The syscall name.  */
111     const char *name;
112   };
113
114 /* Return a pretty printed form of TARGET_OPTIONS.
115    Space for the result is malloc'd, caller must free.  */
116 extern char *target_options_to_string (int target_options);
117
118 /* Possible types of events that the inferior handler will have to
119    deal with.  */
120 enum inferior_event_type
121   {
122     /* Process a normal inferior event which will result in target_wait
123        being called.  */
124     INF_REG_EVENT,
125     /* We are called to do stuff after the inferior stops.  */
126     INF_EXEC_COMPLETE,
127   };
128 \f
129 /* Target objects which can be transfered using target_read,
130    target_write, et cetera.  */
131
132 enum target_object
133 {
134   /* AVR target specific transfer.  See "avr-tdep.c" and "remote.c".  */
135   TARGET_OBJECT_AVR,
136   /* SPU target specific transfer.  See "spu-tdep.c".  */
137   TARGET_OBJECT_SPU,
138   /* Transfer up-to LEN bytes of memory starting at OFFSET.  */
139   TARGET_OBJECT_MEMORY,
140   /* Memory, avoiding GDB's data cache and trusting the executable.
141      Target implementations of to_xfer_partial never need to handle
142      this object, and most callers should not use it.  */
143   TARGET_OBJECT_RAW_MEMORY,
144   /* Memory known to be part of the target's stack.  This is cached even
145      if it is not in a region marked as such, since it is known to be
146      "normal" RAM.  */
147   TARGET_OBJECT_STACK_MEMORY,
148   /* Memory known to be part of the target code.   This is cached even
149      if it is not in a region marked as such.  */
150   TARGET_OBJECT_CODE_MEMORY,
151   /* Kernel Unwind Table.  See "ia64-tdep.c".  */
152   TARGET_OBJECT_UNWIND_TABLE,
153   /* Transfer auxilliary vector.  */
154   TARGET_OBJECT_AUXV,
155   /* StackGhost cookie.  See "sparc-tdep.c".  */
156   TARGET_OBJECT_WCOOKIE,
157   /* Target memory map in XML format.  */
158   TARGET_OBJECT_MEMORY_MAP,
159   /* Flash memory.  This object can be used to write contents to
160      a previously erased flash memory.  Using it without erasing
161      flash can have unexpected results.  Addresses are physical
162      address on target, and not relative to flash start.  */
163   TARGET_OBJECT_FLASH,
164   /* Available target-specific features, e.g. registers and coprocessors.
165      See "target-descriptions.c".  ANNEX should never be empty.  */
166   TARGET_OBJECT_AVAILABLE_FEATURES,
167   /* Currently loaded libraries, in XML format.  */
168   TARGET_OBJECT_LIBRARIES,
169   /* Currently loaded libraries specific for SVR4 systems, in XML format.  */
170   TARGET_OBJECT_LIBRARIES_SVR4,
171   /* Currently loaded libraries specific to AIX systems, in XML format.  */
172   TARGET_OBJECT_LIBRARIES_AIX,
173   /* Get OS specific data.  The ANNEX specifies the type (running
174      processes, etc.).  The data being transfered is expected to follow
175      the DTD specified in features/osdata.dtd.  */
176   TARGET_OBJECT_OSDATA,
177   /* Extra signal info.  Usually the contents of `siginfo_t' on unix
178      platforms.  */
179   TARGET_OBJECT_SIGNAL_INFO,
180   /* The list of threads that are being debugged.  */
181   TARGET_OBJECT_THREADS,
182   /* Collected static trace data.  */
183   TARGET_OBJECT_STATIC_TRACE_DATA,
184   /* The HP-UX registers (those that can be obtained or modified by using
185      the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests).  */
186   TARGET_OBJECT_HPUX_UREGS,
187   /* The HP-UX shared library linkage pointer.  ANNEX should be a string
188      image of the code address whose linkage pointer we are looking for.
189
190      The size of the data transfered is always 8 bytes (the size of an
191      address on ia64).  */
192   TARGET_OBJECT_HPUX_SOLIB_GOT,
193   /* Traceframe info, in XML format.  */
194   TARGET_OBJECT_TRACEFRAME_INFO,
195   /* Load maps for FDPIC systems.  */
196   TARGET_OBJECT_FDPIC,
197   /* Darwin dynamic linker info data.  */
198   TARGET_OBJECT_DARWIN_DYLD_INFO,
199   /* OpenVMS Unwind Information Block.  */
200   TARGET_OBJECT_OPENVMS_UIB,
201   /* Branch trace data, in XML format.  */
202   TARGET_OBJECT_BTRACE,
203   /* Branch trace configuration, in XML format.  */
204   TARGET_OBJECT_BTRACE_CONF,
205   /* The pathname of the executable file that was run to create
206      a specified process.  ANNEX should be a string representation
207      of the process ID of the process in question, in hexadecimal
208      format.  */
209   TARGET_OBJECT_EXEC_FILE,
210   /* Possible future objects: TARGET_OBJECT_FILE, ...  */
211 };
212
213 /* Possible values returned by target_xfer_partial, etc.  */
214
215 enum target_xfer_status
216 {
217   /* Some bytes are transferred.  */
218   TARGET_XFER_OK = 1,
219
220   /* No further transfer is possible.  */
221   TARGET_XFER_EOF = 0,
222
223   /* The piece of the object requested is unavailable.  */
224   TARGET_XFER_UNAVAILABLE = 2,
225
226   /* Generic I/O error.  Note that it's important that this is '-1',
227      as we still have target_xfer-related code returning hardcoded
228      '-1' on error.  */
229   TARGET_XFER_E_IO = -1,
230
231   /* Keep list in sync with target_xfer_status_to_string.  */
232 };
233
234 /* Return the string form of STATUS.  */
235
236 extern const char *
237   target_xfer_status_to_string (enum target_xfer_status status);
238
239 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
240 DEF_VEC_P(static_tracepoint_marker_p);
241
242 typedef enum target_xfer_status
243   target_xfer_partial_ftype (struct target_ops *ops,
244                              enum target_object object,
245                              const char *annex,
246                              gdb_byte *readbuf,
247                              const gdb_byte *writebuf,
248                              ULONGEST offset,
249                              ULONGEST len,
250                              ULONGEST *xfered_len);
251
252 enum target_xfer_status
253   raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
254                            const gdb_byte *writebuf, ULONGEST memaddr,
255                            LONGEST len, ULONGEST *xfered_len);
256
257 /* Request that OPS transfer up to LEN addressable units of the target's
258    OBJECT.  When reading from a memory object, the size of an addressable unit
259    is architecture dependent and can be found using
260    gdbarch_addressable_memory_unit_size.  Otherwise, an addressable unit is 1
261    byte long.  BUF should point to a buffer large enough to hold the read data,
262    taking into account the addressable unit size.  The OFFSET, for a seekable
263    object, specifies the starting point.  The ANNEX can be used to provide
264    additional data-specific information to the target.
265
266    Return the number of addressable units actually transferred, or a negative
267    error code (an 'enum target_xfer_error' value) if the transfer is not
268    supported or otherwise fails.  Return of a positive value less than
269    LEN indicates that no further transfer is possible.  Unlike the raw
270    to_xfer_partial interface, callers of these functions do not need
271    to retry partial transfers.  */
272
273 extern LONGEST target_read (struct target_ops *ops,
274                             enum target_object object,
275                             const char *annex, gdb_byte *buf,
276                             ULONGEST offset, LONGEST len);
277
278 struct memory_read_result
279 {
280   memory_read_result (ULONGEST begin_, ULONGEST end_,
281                       gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
282     : begin (begin_),
283       end (end_),
284       data (std::move (data_))
285   {
286   }
287
288   ~memory_read_result () = default;
289
290   memory_read_result (memory_read_result &&other) = default;
291
292   DISABLE_COPY_AND_ASSIGN (memory_read_result);
293
294   /* First address that was read.  */
295   ULONGEST begin;
296   /* Past-the-end address.  */
297   ULONGEST end;
298   /* The data.  */
299   gdb::unique_xmalloc_ptr<gdb_byte> data;
300 };
301
302 extern std::vector<memory_read_result> read_memory_robust
303     (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
304
305 /* Request that OPS transfer up to LEN addressable units from BUF to the
306    target's OBJECT.  When writing to a memory object, the addressable unit
307    size is architecture dependent and can be found using
308    gdbarch_addressable_memory_unit_size.  Otherwise, an addressable unit is 1
309    byte long.  The OFFSET, for a seekable object, specifies the starting point.
310    The ANNEX can be used to provide additional data-specific information to
311    the target.
312
313    Return the number of addressable units actually transferred, or a negative
314    error code (an 'enum target_xfer_status' value) if the transfer is not
315    supported or otherwise fails.  Return of a positive value less than
316    LEN indicates that no further transfer is possible.  Unlike the raw
317    to_xfer_partial interface, callers of these functions do not need to
318    retry partial transfers.  */
319
320 extern LONGEST target_write (struct target_ops *ops,
321                              enum target_object object,
322                              const char *annex, const gdb_byte *buf,
323                              ULONGEST offset, LONGEST len);
324
325 /* Similar to target_write, except that it also calls PROGRESS with
326    the number of bytes written and the opaque BATON after every
327    successful partial write (and before the first write).  This is
328    useful for progress reporting and user interaction while writing
329    data.  To abort the transfer, the progress callback can throw an
330    exception.  */
331
332 LONGEST target_write_with_progress (struct target_ops *ops,
333                                     enum target_object object,
334                                     const char *annex, const gdb_byte *buf,
335                                     ULONGEST offset, LONGEST len,
336                                     void (*progress) (ULONGEST, void *),
337                                     void *baton);
338
339 /* Wrapper to perform a full read of unknown size.  OBJECT/ANNEX will
340    be read using OPS.  The return value will be -1 if the transfer
341    fails or is not supported; 0 if the object is empty; or the length
342    of the object otherwise.  If a positive value is returned, a
343    sufficiently large buffer will be allocated using xmalloc and
344    returned in *BUF_P containing the contents of the object.
345
346    This method should be used for objects sufficiently small to store
347    in a single xmalloc'd buffer, when no fixed bound on the object's
348    size is known in advance.  Don't try to read TARGET_OBJECT_MEMORY
349    through this function.  */
350
351 extern LONGEST target_read_alloc (struct target_ops *ops,
352                                   enum target_object object,
353                                   const char *annex, gdb_byte **buf_p);
354
355 /* Read OBJECT/ANNEX using OPS.  The result is NUL-terminated and
356    returned as a string.  If an error occurs or the transfer is
357    unsupported, NULL is returned.  Empty objects are returned as
358    allocated but empty strings.  A warning is issued if the result
359    contains any embedded NUL bytes.  */
360
361 extern gdb::unique_xmalloc_ptr<char> target_read_stralloc
362     (struct target_ops *ops, enum target_object object, const char *annex);
363
364 /* See target_ops->to_xfer_partial.  */
365 extern target_xfer_partial_ftype target_xfer_partial;
366
367 /* Wrappers to target read/write that perform memory transfers.  They
368    throw an error if the memory transfer fails.
369
370    NOTE: cagney/2003-10-23: The naming schema is lifted from
371    "frame.h".  The parameter order is lifted from get_frame_memory,
372    which in turn lifted it from read_memory.  */
373
374 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
375                                gdb_byte *buf, LONGEST len);
376 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
377                                             CORE_ADDR addr, int len,
378                                             enum bfd_endian byte_order);
379 \f
380 struct thread_info;             /* fwd decl for parameter list below: */
381
382 /* The type of the callback to the to_async method.  */
383
384 typedef void async_callback_ftype (enum inferior_event_type event_type,
385                                    void *context);
386
387 /* Normally target debug printing is purely type-based.  However,
388    sometimes it is necessary to override the debug printing on a
389    per-argument basis.  This macro can be used, attribute-style, to
390    name the target debug printing function for a particular method
391    argument.  FUNC is the name of the function.  The macro's
392    definition is empty because it is only used by the
393    make-target-delegates script.  */
394
395 #define TARGET_DEBUG_PRINTER(FUNC)
396
397 /* These defines are used to mark target_ops methods.  The script
398    make-target-delegates scans these and auto-generates the base
399    method implementations.  There are four macros that can be used:
400    
401    1. TARGET_DEFAULT_IGNORE.  There is no argument.  The base method
402    does nothing.  This is only valid if the method return type is
403    'void'.
404    
405    2. TARGET_DEFAULT_NORETURN.  The argument is a function call, like
406    'tcomplain ()'.  The base method simply makes this call, which is
407    assumed not to return.
408    
409    3. TARGET_DEFAULT_RETURN.  The argument is a C expression.  The
410    base method returns this expression's value.
411    
412    4. TARGET_DEFAULT_FUNC.  The argument is the name of a function.
413    make-target-delegates does not generate a base method in this case,
414    but instead uses the argument function as the base method.  */
415
416 #define TARGET_DEFAULT_IGNORE()
417 #define TARGET_DEFAULT_NORETURN(ARG)
418 #define TARGET_DEFAULT_RETURN(ARG)
419 #define TARGET_DEFAULT_FUNC(ARG)
420
421 /* Define a typedef, because make-target-delegates doesn't currently handle type
422    names with templates.  */
423
424 typedef std::vector<mem_region> mem_region_vector;
425
426 struct target_ops
427   {
428     struct target_ops *beneath; /* To the target under this one.  */
429     const char *to_shortname;   /* Name this target type */
430     const char *to_longname;    /* Name for printing */
431     const char *to_doc;         /* Documentation.  Does not include trailing
432                                    newline, and starts with a one-line descrip-
433                                    tion (probably similar to to_longname).  */
434     /* Per-target scratch pad.  */
435     void *to_data;
436     /* The open routine takes the rest of the parameters from the
437        command, and (if successful) pushes a new target onto the
438        stack.  Targets should supply this routine, if only to provide
439        an error message.  */
440     void (*to_open) (const char *, int);
441     /* Old targets with a static target vector provide "to_close".
442        New re-entrant targets provide "to_xclose" and that is expected
443        to xfree everything (including the "struct target_ops").  */
444     void (*to_xclose) (struct target_ops *targ);
445     void (*to_close) (struct target_ops *);
446     /* Attaches to a process on the target side.  Arguments are as
447        passed to the `attach' command by the user.  This routine can
448        be called when the target is not on the target-stack, if the
449        target_can_run routine returns 1; in that case, it must push
450        itself onto the stack.  Upon exit, the target should be ready
451        for normal operations, and should be ready to deliver the
452        status of the process immediately (without waiting) to an
453        upcoming target_wait call.  */
454     void (*to_attach) (struct target_ops *ops, const char *, int);
455     void (*to_post_attach) (struct target_ops *, int)
456       TARGET_DEFAULT_IGNORE ();
457     void (*to_detach) (struct target_ops *ops, const char *, int)
458       TARGET_DEFAULT_IGNORE ();
459     void (*to_disconnect) (struct target_ops *, const char *, int)
460       TARGET_DEFAULT_NORETURN (tcomplain ());
461     void (*to_resume) (struct target_ops *, ptid_t,
462                        int TARGET_DEBUG_PRINTER (target_debug_print_step),
463                        enum gdb_signal)
464       TARGET_DEFAULT_NORETURN (noprocess ());
465     void (*to_commit_resume) (struct target_ops *)
466       TARGET_DEFAULT_IGNORE ();
467     ptid_t (*to_wait) (struct target_ops *,
468                        ptid_t, struct target_waitstatus *,
469                        int TARGET_DEBUG_PRINTER (target_debug_print_options))
470       TARGET_DEFAULT_FUNC (default_target_wait);
471     void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
472       TARGET_DEFAULT_IGNORE ();
473     void (*to_store_registers) (struct target_ops *, struct regcache *, int)
474       TARGET_DEFAULT_NORETURN (noprocess ());
475     void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
476       TARGET_DEFAULT_NORETURN (noprocess ());
477
478     void (*to_files_info) (struct target_ops *)
479       TARGET_DEFAULT_IGNORE ();
480     int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
481                                  struct bp_target_info *)
482       TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
483     int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
484                                  struct bp_target_info *,
485                                  enum remove_bp_reason)
486       TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
487
488     /* Returns true if the target stopped because it executed a
489        software breakpoint.  This is necessary for correct background
490        execution / non-stop mode operation, and for correct PC
491        adjustment on targets where the PC needs to be adjusted when a
492        software breakpoint triggers.  In these modes, by the time GDB
493        processes a breakpoint event, the breakpoint may already be
494        done from the target, so GDB needs to be able to tell whether
495        it should ignore the event and whether it should adjust the PC.
496        See adjust_pc_after_break.  */
497     int (*to_stopped_by_sw_breakpoint) (struct target_ops *)
498       TARGET_DEFAULT_RETURN (0);
499     /* Returns true if the above method is supported.  */
500     int (*to_supports_stopped_by_sw_breakpoint) (struct target_ops *)
501       TARGET_DEFAULT_RETURN (0);
502
503     /* Returns true if the target stopped for a hardware breakpoint.
504        Likewise, if the target supports hardware breakpoints, this
505        method is necessary for correct background execution / non-stop
506        mode operation.  Even though hardware breakpoints do not
507        require PC adjustment, GDB needs to be able to tell whether the
508        hardware breakpoint event is a delayed event for a breakpoint
509        that is already gone and should thus be ignored.  */
510     int (*to_stopped_by_hw_breakpoint) (struct target_ops *)
511       TARGET_DEFAULT_RETURN (0);
512     /* Returns true if the above method is supported.  */
513     int (*to_supports_stopped_by_hw_breakpoint) (struct target_ops *)
514       TARGET_DEFAULT_RETURN (0);
515
516     int (*to_can_use_hw_breakpoint) (struct target_ops *,
517                                      enum bptype, int, int)
518       TARGET_DEFAULT_RETURN (0);
519     int (*to_ranged_break_num_registers) (struct target_ops *)
520       TARGET_DEFAULT_RETURN (-1);
521     int (*to_insert_hw_breakpoint) (struct target_ops *,
522                                     struct gdbarch *, struct bp_target_info *)
523       TARGET_DEFAULT_RETURN (-1);
524     int (*to_remove_hw_breakpoint) (struct target_ops *,
525                                     struct gdbarch *, struct bp_target_info *)
526       TARGET_DEFAULT_RETURN (-1);
527
528     /* Documentation of what the two routines below are expected to do is
529        provided with the corresponding target_* macros.  */
530     int (*to_remove_watchpoint) (struct target_ops *, CORE_ADDR, int,
531                                  enum target_hw_bp_type, struct expression *)
532       TARGET_DEFAULT_RETURN (-1);
533     int (*to_insert_watchpoint) (struct target_ops *, CORE_ADDR, int,
534                                  enum target_hw_bp_type, struct expression *)
535       TARGET_DEFAULT_RETURN (-1);
536
537     int (*to_insert_mask_watchpoint) (struct target_ops *,
538                                       CORE_ADDR, CORE_ADDR,
539                                       enum target_hw_bp_type)
540       TARGET_DEFAULT_RETURN (1);
541     int (*to_remove_mask_watchpoint) (struct target_ops *,
542                                       CORE_ADDR, CORE_ADDR,
543                                       enum target_hw_bp_type)
544       TARGET_DEFAULT_RETURN (1);
545     int (*to_stopped_by_watchpoint) (struct target_ops *)
546       TARGET_DEFAULT_RETURN (0);
547     int to_have_steppable_watchpoint;
548     int to_have_continuable_watchpoint;
549     int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
550       TARGET_DEFAULT_RETURN (0);
551     int (*to_watchpoint_addr_within_range) (struct target_ops *,
552                                             CORE_ADDR, CORE_ADDR, int)
553       TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
554
555     /* Documentation of this routine is provided with the corresponding
556        target_* macro.  */
557     int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
558                                            CORE_ADDR, int)
559       TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
560
561     int (*to_can_accel_watchpoint_condition) (struct target_ops *,
562                                               CORE_ADDR, int, int,
563                                               struct expression *)
564       TARGET_DEFAULT_RETURN (0);
565     int (*to_masked_watch_num_registers) (struct target_ops *,
566                                           CORE_ADDR, CORE_ADDR)
567       TARGET_DEFAULT_RETURN (-1);
568
569     /* Return 1 for sure target can do single step.  Return -1 for
570        unknown.  Return 0 for target can't do.  */
571     int (*to_can_do_single_step) (struct target_ops *)
572       TARGET_DEFAULT_RETURN (-1);
573
574     void (*to_terminal_init) (struct target_ops *)
575       TARGET_DEFAULT_IGNORE ();
576     void (*to_terminal_inferior) (struct target_ops *)
577       TARGET_DEFAULT_IGNORE ();
578     void (*to_terminal_ours_for_output) (struct target_ops *)
579       TARGET_DEFAULT_IGNORE ();
580     void (*to_terminal_ours) (struct target_ops *)
581       TARGET_DEFAULT_IGNORE ();
582     void (*to_terminal_info) (struct target_ops *, const char *, int)
583       TARGET_DEFAULT_FUNC (default_terminal_info);
584     void (*to_kill) (struct target_ops *)
585       TARGET_DEFAULT_NORETURN (noprocess ());
586     void (*to_load) (struct target_ops *, const char *, int)
587       TARGET_DEFAULT_NORETURN (tcomplain ());
588     /* Start an inferior process and set inferior_ptid to its pid.
589        EXEC_FILE is the file to run.
590        ALLARGS is a string containing the arguments to the program.
591        ENV is the environment vector to pass.  Errors reported with error().
592        On VxWorks and various standalone systems, we ignore exec_file.  */
593     void (*to_create_inferior) (struct target_ops *, 
594                                 const char *, const std::string &,
595                                 char **, int);
596     void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
597       TARGET_DEFAULT_IGNORE ();
598     int (*to_insert_fork_catchpoint) (struct target_ops *, int)
599       TARGET_DEFAULT_RETURN (1);
600     int (*to_remove_fork_catchpoint) (struct target_ops *, int)
601       TARGET_DEFAULT_RETURN (1);
602     int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
603       TARGET_DEFAULT_RETURN (1);
604     int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
605       TARGET_DEFAULT_RETURN (1);
606     int (*to_follow_fork) (struct target_ops *, int, int)
607       TARGET_DEFAULT_FUNC (default_follow_fork);
608     int (*to_insert_exec_catchpoint) (struct target_ops *, int)
609       TARGET_DEFAULT_RETURN (1);
610     int (*to_remove_exec_catchpoint) (struct target_ops *, int)
611       TARGET_DEFAULT_RETURN (1);
612     void (*to_follow_exec) (struct target_ops *, struct inferior *, char *)
613       TARGET_DEFAULT_IGNORE ();
614     int (*to_set_syscall_catchpoint) (struct target_ops *,
615                                       int, int, int, int, int *)
616       TARGET_DEFAULT_RETURN (1);
617     int (*to_has_exited) (struct target_ops *, int, int, int *)
618       TARGET_DEFAULT_RETURN (0);
619     void (*to_mourn_inferior) (struct target_ops *)
620       TARGET_DEFAULT_FUNC (default_mourn_inferior);
621     /* Note that to_can_run is special and can be invoked on an
622        unpushed target.  Targets defining this method must also define
623        to_can_async_p and to_supports_non_stop.  */
624     int (*to_can_run) (struct target_ops *)
625       TARGET_DEFAULT_RETURN (0);
626
627     /* Documentation of this routine is provided with the corresponding
628        target_* macro.  */
629     void (*to_pass_signals) (struct target_ops *, int,
630                              unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
631       TARGET_DEFAULT_IGNORE ();
632
633     /* Documentation of this routine is provided with the
634        corresponding target_* function.  */
635     void (*to_program_signals) (struct target_ops *, int,
636                                 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
637       TARGET_DEFAULT_IGNORE ();
638
639     int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
640       TARGET_DEFAULT_RETURN (0);
641     void (*to_update_thread_list) (struct target_ops *)
642       TARGET_DEFAULT_IGNORE ();
643     const char *(*to_pid_to_str) (struct target_ops *, ptid_t)
644       TARGET_DEFAULT_FUNC (default_pid_to_str);
645     const char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
646       TARGET_DEFAULT_RETURN (NULL);
647     const char *(*to_thread_name) (struct target_ops *, struct thread_info *)
648       TARGET_DEFAULT_RETURN (NULL);
649     struct thread_info *(*to_thread_handle_to_thread_info) (struct target_ops *,
650                                                             const gdb_byte *,
651                                                             int,
652                                                             struct inferior *inf)
653       TARGET_DEFAULT_RETURN (NULL);
654     void (*to_stop) (struct target_ops *, ptid_t)
655       TARGET_DEFAULT_IGNORE ();
656     void (*to_interrupt) (struct target_ops *, ptid_t)
657       TARGET_DEFAULT_IGNORE ();
658     void (*to_pass_ctrlc) (struct target_ops *)
659       TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
660     void (*to_rcmd) (struct target_ops *,
661                      const char *command, struct ui_file *output)
662       TARGET_DEFAULT_FUNC (default_rcmd);
663     char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
664       TARGET_DEFAULT_RETURN (NULL);
665     void (*to_log_command) (struct target_ops *, const char *)
666       TARGET_DEFAULT_IGNORE ();
667     struct target_section_table *(*to_get_section_table) (struct target_ops *)
668       TARGET_DEFAULT_RETURN (NULL);
669     enum strata to_stratum;
670     int (*to_has_all_memory) (struct target_ops *);
671     int (*to_has_memory) (struct target_ops *);
672     int (*to_has_stack) (struct target_ops *);
673     int (*to_has_registers) (struct target_ops *);
674     int (*to_has_execution) (struct target_ops *, ptid_t);
675     int to_has_thread_control;  /* control thread execution */
676     int to_attach_no_wait;
677     /* This method must be implemented in some situations.  See the
678        comment on 'to_can_run'.  */
679     int (*to_can_async_p) (struct target_ops *)
680       TARGET_DEFAULT_RETURN (0);
681     int (*to_is_async_p) (struct target_ops *)
682       TARGET_DEFAULT_RETURN (0);
683     void (*to_async) (struct target_ops *, int)
684       TARGET_DEFAULT_NORETURN (tcomplain ());
685     void (*to_thread_events) (struct target_ops *, int)
686       TARGET_DEFAULT_IGNORE ();
687     /* This method must be implemented in some situations.  See the
688        comment on 'to_can_run'.  */
689     int (*to_supports_non_stop) (struct target_ops *)
690       TARGET_DEFAULT_RETURN (0);
691     /* Return true if the target operates in non-stop mode even with
692        "set non-stop off".  */
693     int (*to_always_non_stop_p) (struct target_ops *)
694       TARGET_DEFAULT_RETURN (0);
695     /* find_memory_regions support method for gcore */
696     int (*to_find_memory_regions) (struct target_ops *,
697                                    find_memory_region_ftype func, void *data)
698       TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
699     /* make_corefile_notes support method for gcore */
700     char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
701       TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
702     /* get_bookmark support method for bookmarks */
703     gdb_byte * (*to_get_bookmark) (struct target_ops *, const char *, int)
704       TARGET_DEFAULT_NORETURN (tcomplain ());
705     /* goto_bookmark support method for bookmarks */
706     void (*to_goto_bookmark) (struct target_ops *, const gdb_byte *, int)
707       TARGET_DEFAULT_NORETURN (tcomplain ());
708     /* Return the thread-local address at OFFSET in the
709        thread-local storage for the thread PTID and the shared library
710        or executable file given by OBJFILE.  If that block of
711        thread-local storage hasn't been allocated yet, this function
712        may return an error.  LOAD_MODULE_ADDR may be zero for statically
713        linked multithreaded inferiors.  */
714     CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
715                                               ptid_t ptid,
716                                               CORE_ADDR load_module_addr,
717                                               CORE_ADDR offset)
718       TARGET_DEFAULT_NORETURN (generic_tls_error ());
719
720     /* Request that OPS transfer up to LEN addressable units of the target's
721        OBJECT.  When reading from a memory object, the size of an addressable
722        unit is architecture dependent and can be found using
723        gdbarch_addressable_memory_unit_size.  Otherwise, an addressable unit is
724        1 byte long.  The OFFSET, for a seekable object, specifies the
725        starting point.  The ANNEX can be used to provide additional
726        data-specific information to the target.
727
728        Return the transferred status, error or OK (an
729        'enum target_xfer_status' value).  Save the number of addressable units
730        actually transferred in *XFERED_LEN if transfer is successful
731        (TARGET_XFER_OK) or the number unavailable units if the requested
732        data is unavailable (TARGET_XFER_UNAVAILABLE).  *XFERED_LEN
733        smaller than LEN does not indicate the end of the object, only
734        the end of the transfer; higher level code should continue
735        transferring if desired.  This is handled in target.c.
736
737        The interface does not support a "retry" mechanism.  Instead it
738        assumes that at least one addressable unit will be transfered on each
739        successful call.
740
741        NOTE: cagney/2003-10-17: The current interface can lead to
742        fragmented transfers.  Lower target levels should not implement
743        hacks, such as enlarging the transfer, in an attempt to
744        compensate for this.  Instead, the target stack should be
745        extended so that it implements supply/collect methods and a
746        look-aside object cache.  With that available, the lowest
747        target can safely and freely "push" data up the stack.
748
749        See target_read and target_write for more information.  One,
750        and only one, of readbuf or writebuf must be non-NULL.  */
751
752     enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
753                                                 enum target_object object,
754                                                 const char *annex,
755                                                 gdb_byte *readbuf,
756                                                 const gdb_byte *writebuf,
757                                                 ULONGEST offset, ULONGEST len,
758                                                 ULONGEST *xfered_len)
759       TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
760
761     /* Return the limit on the size of any single memory transfer
762        for the target.  */
763
764     ULONGEST (*to_get_memory_xfer_limit) (struct target_ops *)
765       TARGET_DEFAULT_RETURN (ULONGEST_MAX);
766
767     /* Returns the memory map for the target.  A return value of NULL
768        means that no memory map is available.  If a memory address
769        does not fall within any returned regions, it's assumed to be
770        RAM.  The returned memory regions should not overlap.
771
772        The order of regions does not matter; target_memory_map will
773        sort regions by starting address.  For that reason, this
774        function should not be called directly except via
775        target_memory_map.
776
777        This method should not cache data; if the memory map could
778        change unexpectedly, it should be invalidated, and higher
779        layers will re-fetch it.  */
780     mem_region_vector (*to_memory_map) (struct target_ops *)
781       TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
782
783     /* Erases the region of flash memory starting at ADDRESS, of
784        length LENGTH.
785
786        Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
787        on flash block boundaries, as reported by 'to_memory_map'.  */
788     void (*to_flash_erase) (struct target_ops *,
789                            ULONGEST address, LONGEST length)
790       TARGET_DEFAULT_NORETURN (tcomplain ());
791
792     /* Finishes a flash memory write sequence.  After this operation
793        all flash memory should be available for writing and the result
794        of reading from areas written by 'to_flash_write' should be
795        equal to what was written.  */
796     void (*to_flash_done) (struct target_ops *)
797       TARGET_DEFAULT_NORETURN (tcomplain ());
798
799     /* Describe the architecture-specific features of this target.  If
800        OPS doesn't have a description, this should delegate to the
801        "beneath" target.  Returns the description found, or NULL if no
802        description was available.  */
803     const struct target_desc *(*to_read_description) (struct target_ops *ops)
804          TARGET_DEFAULT_RETURN (NULL);
805
806     /* Build the PTID of the thread on which a given task is running,
807        based on LWP and THREAD.  These values are extracted from the
808        task Private_Data section of the Ada Task Control Block, and
809        their interpretation depends on the target.  */
810     ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
811                                     long lwp, long thread)
812       TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
813
814     /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
815        Return 0 if *READPTR is already at the end of the buffer.
816        Return -1 if there is insufficient buffer for a whole entry.
817        Return 1 if an entry was read into *TYPEP and *VALP.  */
818     int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
819                          gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
820       TARGET_DEFAULT_FUNC (default_auxv_parse);
821
822     /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
823        sequence of bytes in PATTERN with length PATTERN_LEN.
824
825        The result is 1 if found, 0 if not found, and -1 if there was an error
826        requiring halting of the search (e.g. memory read error).
827        If the pattern is found the address is recorded in FOUND_ADDRP.  */
828     int (*to_search_memory) (struct target_ops *ops,
829                              CORE_ADDR start_addr, ULONGEST search_space_len,
830                              const gdb_byte *pattern, ULONGEST pattern_len,
831                              CORE_ADDR *found_addrp)
832       TARGET_DEFAULT_FUNC (default_search_memory);
833
834     /* Can target execute in reverse?  */
835     int (*to_can_execute_reverse) (struct target_ops *)
836       TARGET_DEFAULT_RETURN (0);
837
838     /* The direction the target is currently executing.  Must be
839        implemented on targets that support reverse execution and async
840        mode.  The default simply returns forward execution.  */
841     enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
842       TARGET_DEFAULT_FUNC (default_execution_direction);
843
844     /* Does this target support debugging multiple processes
845        simultaneously?  */
846     int (*to_supports_multi_process) (struct target_ops *)
847       TARGET_DEFAULT_RETURN (0);
848
849     /* Does this target support enabling and disabling tracepoints while a trace
850        experiment is running?  */
851     int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
852       TARGET_DEFAULT_RETURN (0);
853
854     /* Does this target support disabling address space randomization?  */
855     int (*to_supports_disable_randomization) (struct target_ops *);
856
857     /* Does this target support the tracenz bytecode for string collection?  */
858     int (*to_supports_string_tracing) (struct target_ops *)
859       TARGET_DEFAULT_RETURN (0);
860
861     /* Does this target support evaluation of breakpoint conditions on its
862        end?  */
863     int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
864       TARGET_DEFAULT_RETURN (0);
865
866     /* Does this target support evaluation of breakpoint commands on its
867        end?  */
868     int (*to_can_run_breakpoint_commands) (struct target_ops *)
869       TARGET_DEFAULT_RETURN (0);
870
871     /* Determine current architecture of thread PTID.
872
873        The target is supposed to determine the architecture of the code where
874        the target is currently stopped at (on Cell, if a target is in spu_run,
875        to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
876        This is architecture used to perform decr_pc_after_break adjustment,
877        and also determines the frame architecture of the innermost frame.
878        ptrace operations need to operate according to target_gdbarch ().
879
880        The default implementation always returns target_gdbarch ().  */
881     struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
882       TARGET_DEFAULT_FUNC (default_thread_architecture);
883
884     /* Determine current address space of thread PTID.
885
886        The default implementation always returns the inferior's
887        address space.  */
888     struct address_space *(*to_thread_address_space) (struct target_ops *,
889                                                       ptid_t)
890       TARGET_DEFAULT_FUNC (default_thread_address_space);
891
892     /* Target file operations.  */
893
894     /* Return nonzero if the filesystem seen by the current inferior
895        is the local filesystem, zero otherwise.  */
896     int (*to_filesystem_is_local) (struct target_ops *)
897       TARGET_DEFAULT_RETURN (1);
898
899     /* Open FILENAME on the target, in the filesystem as seen by INF,
900        using FLAGS and MODE.  If INF is NULL, use the filesystem seen
901        by the debugger (GDB or, for remote targets, the remote stub).
902        If WARN_IF_SLOW is nonzero, print a warning message if the file
903        is being accessed over a link that may be slow.  Return a
904        target file descriptor, or -1 if an error occurs (and set
905        *TARGET_ERRNO).  */
906     int (*to_fileio_open) (struct target_ops *,
907                            struct inferior *inf, const char *filename,
908                            int flags, int mode, int warn_if_slow,
909                            int *target_errno);
910
911     /* Write up to LEN bytes from WRITE_BUF to FD on the target.
912        Return the number of bytes written, or -1 if an error occurs
913        (and set *TARGET_ERRNO).  */
914     int (*to_fileio_pwrite) (struct target_ops *,
915                              int fd, const gdb_byte *write_buf, int len,
916                              ULONGEST offset, int *target_errno);
917
918     /* Read up to LEN bytes FD on the target into READ_BUF.
919        Return the number of bytes read, or -1 if an error occurs
920        (and set *TARGET_ERRNO).  */
921     int (*to_fileio_pread) (struct target_ops *,
922                             int fd, gdb_byte *read_buf, int len,
923                             ULONGEST offset, int *target_errno);
924
925     /* Get information about the file opened as FD and put it in
926        SB.  Return 0 on success, or -1 if an error occurs (and set
927        *TARGET_ERRNO).  */
928     int (*to_fileio_fstat) (struct target_ops *,
929                             int fd, struct stat *sb, int *target_errno);
930
931     /* Close FD on the target.  Return 0, or -1 if an error occurs
932        (and set *TARGET_ERRNO).  */
933     int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
934
935     /* Unlink FILENAME on the target, in the filesystem as seen by
936        INF.  If INF is NULL, use the filesystem seen by the debugger
937        (GDB or, for remote targets, the remote stub).  Return 0, or
938        -1 if an error occurs (and set *TARGET_ERRNO).  */
939     int (*to_fileio_unlink) (struct target_ops *,
940                              struct inferior *inf,
941                              const char *filename,
942                              int *target_errno);
943
944     /* Read value of symbolic link FILENAME on the target, in the
945        filesystem as seen by INF.  If INF is NULL, use the filesystem
946        seen by the debugger (GDB or, for remote targets, the remote
947        stub).  Return a null-terminated string allocated via xmalloc,
948        or NULL if an error occurs (and set *TARGET_ERRNO).  */
949     char *(*to_fileio_readlink) (struct target_ops *,
950                                  struct inferior *inf,
951                                  const char *filename,
952                                  int *target_errno);
953
954
955     /* Implement the "info proc" command.  */
956     void (*to_info_proc) (struct target_ops *, const char *,
957                           enum info_proc_what);
958
959     /* Tracepoint-related operations.  */
960
961     /* Prepare the target for a tracing run.  */
962     void (*to_trace_init) (struct target_ops *)
963       TARGET_DEFAULT_NORETURN (tcomplain ());
964
965     /* Send full details of a tracepoint location to the target.  */
966     void (*to_download_tracepoint) (struct target_ops *,
967                                     struct bp_location *location)
968       TARGET_DEFAULT_NORETURN (tcomplain ());
969
970     /* Is the target able to download tracepoint locations in current
971        state?  */
972     int (*to_can_download_tracepoint) (struct target_ops *)
973       TARGET_DEFAULT_RETURN (0);
974
975     /* Send full details of a trace state variable to the target.  */
976     void (*to_download_trace_state_variable) (struct target_ops *,
977                                               struct trace_state_variable *tsv)
978       TARGET_DEFAULT_NORETURN (tcomplain ());
979
980     /* Enable a tracepoint on the target.  */
981     void (*to_enable_tracepoint) (struct target_ops *,
982                                   struct bp_location *location)
983       TARGET_DEFAULT_NORETURN (tcomplain ());
984
985     /* Disable a tracepoint on the target.  */
986     void (*to_disable_tracepoint) (struct target_ops *,
987                                    struct bp_location *location)
988       TARGET_DEFAULT_NORETURN (tcomplain ());
989
990     /* Inform the target info of memory regions that are readonly
991        (such as text sections), and so it should return data from
992        those rather than look in the trace buffer.  */
993     void (*to_trace_set_readonly_regions) (struct target_ops *)
994       TARGET_DEFAULT_NORETURN (tcomplain ());
995
996     /* Start a trace run.  */
997     void (*to_trace_start) (struct target_ops *)
998       TARGET_DEFAULT_NORETURN (tcomplain ());
999
1000     /* Get the current status of a tracing run.  */
1001     int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
1002       TARGET_DEFAULT_RETURN (-1);
1003
1004     void (*to_get_tracepoint_status) (struct target_ops *,
1005                                       struct breakpoint *tp,
1006                                       struct uploaded_tp *utp)
1007       TARGET_DEFAULT_NORETURN (tcomplain ());
1008
1009     /* Stop a trace run.  */
1010     void (*to_trace_stop) (struct target_ops *)
1011       TARGET_DEFAULT_NORETURN (tcomplain ());
1012
1013    /* Ask the target to find a trace frame of the given type TYPE,
1014       using NUM, ADDR1, and ADDR2 as search parameters.  Returns the
1015       number of the trace frame, and also the tracepoint number at
1016       TPP.  If no trace frame matches, return -1.  May throw if the
1017       operation fails.  */
1018     int (*to_trace_find) (struct target_ops *,
1019                           enum trace_find_type type, int num,
1020                           CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1021       TARGET_DEFAULT_RETURN (-1);
1022
1023     /* Get the value of the trace state variable number TSV, returning
1024        1 if the value is known and writing the value itself into the
1025        location pointed to by VAL, else returning 0.  */
1026     int (*to_get_trace_state_variable_value) (struct target_ops *,
1027                                               int tsv, LONGEST *val)
1028       TARGET_DEFAULT_RETURN (0);
1029
1030     int (*to_save_trace_data) (struct target_ops *, const char *filename)
1031       TARGET_DEFAULT_NORETURN (tcomplain ());
1032
1033     int (*to_upload_tracepoints) (struct target_ops *,
1034                                   struct uploaded_tp **utpp)
1035       TARGET_DEFAULT_RETURN (0);
1036
1037     int (*to_upload_trace_state_variables) (struct target_ops *,
1038                                             struct uploaded_tsv **utsvp)
1039       TARGET_DEFAULT_RETURN (0);
1040
1041     LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
1042                                       ULONGEST offset, LONGEST len)
1043       TARGET_DEFAULT_NORETURN (tcomplain ());
1044
1045     /* Get the minimum length of instruction on which a fast tracepoint
1046        may be set on the target.  If this operation is unsupported,
1047        return -1.  If for some reason the minimum length cannot be
1048        determined, return 0.  */
1049     int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
1050       TARGET_DEFAULT_RETURN (-1);
1051
1052     /* Set the target's tracing behavior in response to unexpected
1053        disconnection - set VAL to 1 to keep tracing, 0 to stop.  */
1054     void (*to_set_disconnected_tracing) (struct target_ops *, int val)
1055       TARGET_DEFAULT_IGNORE ();
1056     void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
1057       TARGET_DEFAULT_IGNORE ();
1058     /* Set the size of trace buffer in the target.  */
1059     void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
1060       TARGET_DEFAULT_IGNORE ();
1061
1062     /* Add/change textual notes about the trace run, returning 1 if
1063        successful, 0 otherwise.  */
1064     int (*to_set_trace_notes) (struct target_ops *,
1065                                const char *user, const char *notes,
1066                                const char *stopnotes)
1067       TARGET_DEFAULT_RETURN (0);
1068
1069     /* Return the processor core that thread PTID was last seen on.
1070        This information is updated only when:
1071        - update_thread_list is called
1072        - thread stops
1073        If the core cannot be determined -- either for the specified
1074        thread, or right now, or in this debug session, or for this
1075        target -- return -1.  */
1076     int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
1077       TARGET_DEFAULT_RETURN (-1);
1078
1079     /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1080        matches the contents of [DATA,DATA+SIZE).  Returns 1 if there's
1081        a match, 0 if there's a mismatch, and -1 if an error is
1082        encountered while reading memory.  */
1083     int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
1084                              CORE_ADDR memaddr, ULONGEST size)
1085       TARGET_DEFAULT_FUNC (default_verify_memory);
1086
1087     /* Return the address of the start of the Thread Information Block
1088        a Windows OS specific feature.  */
1089     int (*to_get_tib_address) (struct target_ops *,
1090                                ptid_t ptid, CORE_ADDR *addr)
1091       TARGET_DEFAULT_NORETURN (tcomplain ());
1092
1093     /* Send the new settings of write permission variables.  */
1094     void (*to_set_permissions) (struct target_ops *)
1095       TARGET_DEFAULT_IGNORE ();
1096
1097     /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1098        with its details.  Return 1 on success, 0 on failure.  */
1099     int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
1100                                            struct static_tracepoint_marker *marker)
1101       TARGET_DEFAULT_RETURN (0);
1102
1103     /* Return a vector of all tracepoints markers string id ID, or all
1104        markers if ID is NULL.  */
1105     VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
1106       TARGET_DEFAULT_NORETURN (tcomplain ());
1107
1108     /* Return a traceframe info object describing the current
1109        traceframe's contents.  This method should not cache data;
1110        higher layers take care of caching, invalidating, and
1111        re-fetching when necessary.  */
1112     traceframe_info_up (*to_traceframe_info) (struct target_ops *)
1113       TARGET_DEFAULT_NORETURN (tcomplain ());
1114
1115     /* Ask the target to use or not to use agent according to USE.  Return 1
1116        successful, 0 otherwise.  */
1117     int (*to_use_agent) (struct target_ops *, int use)
1118       TARGET_DEFAULT_NORETURN (tcomplain ());
1119
1120     /* Is the target able to use agent in current state?  */
1121     int (*to_can_use_agent) (struct target_ops *)
1122       TARGET_DEFAULT_RETURN (0);
1123
1124     /* Check whether the target supports branch tracing.  */
1125     int (*to_supports_btrace) (struct target_ops *, enum btrace_format)
1126       TARGET_DEFAULT_RETURN (0);
1127
1128     /* Enable branch tracing for PTID using CONF configuration.
1129        Return a branch trace target information struct for reading and for
1130        disabling branch trace.  */
1131     struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
1132                                                     ptid_t ptid,
1133                                                     const struct btrace_config *conf)
1134       TARGET_DEFAULT_NORETURN (tcomplain ());
1135
1136     /* Disable branch tracing and deallocate TINFO.  */
1137     void (*to_disable_btrace) (struct target_ops *,
1138                                struct btrace_target_info *tinfo)
1139       TARGET_DEFAULT_NORETURN (tcomplain ());
1140
1141     /* Disable branch tracing and deallocate TINFO.  This function is similar
1142        to to_disable_btrace, except that it is called during teardown and is
1143        only allowed to perform actions that are safe.  A counter-example would
1144        be attempting to talk to a remote target.  */
1145     void (*to_teardown_btrace) (struct target_ops *,
1146                                 struct btrace_target_info *tinfo)
1147       TARGET_DEFAULT_NORETURN (tcomplain ());
1148
1149     /* Read branch trace data for the thread indicated by BTINFO into DATA.
1150        DATA is cleared before new trace is added.  */
1151     enum btrace_error (*to_read_btrace) (struct target_ops *self,
1152                                          struct btrace_data *data,
1153                                          struct btrace_target_info *btinfo,
1154                                          enum btrace_read_type type)
1155       TARGET_DEFAULT_NORETURN (tcomplain ());
1156
1157     /* Get the branch trace configuration.  */
1158     const struct btrace_config *(*to_btrace_conf) (struct target_ops *self,
1159                                                    const struct btrace_target_info *)
1160       TARGET_DEFAULT_RETURN (NULL);
1161
1162     /* Current recording method.  */
1163     enum record_method (*to_record_method) (struct target_ops *, ptid_t ptid)
1164       TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1165
1166     /* Stop trace recording.  */
1167     void (*to_stop_recording) (struct target_ops *)
1168       TARGET_DEFAULT_IGNORE ();
1169
1170     /* Print information about the recording.  */
1171     void (*to_info_record) (struct target_ops *)
1172       TARGET_DEFAULT_IGNORE ();
1173
1174     /* Save the recorded execution trace into a file.  */
1175     void (*to_save_record) (struct target_ops *, const char *filename)
1176       TARGET_DEFAULT_NORETURN (tcomplain ());
1177
1178     /* Delete the recorded execution trace from the current position
1179        onwards.  */
1180     void (*to_delete_record) (struct target_ops *)
1181       TARGET_DEFAULT_NORETURN (tcomplain ());
1182
1183     /* Query if the record target is currently replaying PTID.  */
1184     int (*to_record_is_replaying) (struct target_ops *, ptid_t ptid)
1185       TARGET_DEFAULT_RETURN (0);
1186
1187     /* Query if the record target will replay PTID if it were resumed in
1188        execution direction DIR.  */
1189     int (*to_record_will_replay) (struct target_ops *, ptid_t ptid, int dir)
1190       TARGET_DEFAULT_RETURN (0);
1191
1192     /* Stop replaying.  */
1193     void (*to_record_stop_replaying) (struct target_ops *)
1194       TARGET_DEFAULT_IGNORE ();
1195
1196     /* Go to the begin of the execution trace.  */
1197     void (*to_goto_record_begin) (struct target_ops *)
1198       TARGET_DEFAULT_NORETURN (tcomplain ());
1199
1200     /* Go to the end of the execution trace.  */
1201     void (*to_goto_record_end) (struct target_ops *)
1202       TARGET_DEFAULT_NORETURN (tcomplain ());
1203
1204     /* Go to a specific location in the recorded execution trace.  */
1205     void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1206       TARGET_DEFAULT_NORETURN (tcomplain ());
1207
1208     /* Disassemble SIZE instructions in the recorded execution trace from
1209        the current position.
1210        If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1211        disassemble SIZE succeeding instructions.  */
1212     void (*to_insn_history) (struct target_ops *, int size,
1213                              gdb_disassembly_flags flags)
1214       TARGET_DEFAULT_NORETURN (tcomplain ());
1215
1216     /* Disassemble SIZE instructions in the recorded execution trace around
1217        FROM.
1218        If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1219        disassemble SIZE instructions after FROM.  */
1220     void (*to_insn_history_from) (struct target_ops *,
1221                                   ULONGEST from, int size,
1222                                   gdb_disassembly_flags flags)
1223       TARGET_DEFAULT_NORETURN (tcomplain ());
1224
1225     /* Disassemble a section of the recorded execution trace from instruction
1226        BEGIN (inclusive) to instruction END (inclusive).  */
1227     void (*to_insn_history_range) (struct target_ops *,
1228                                    ULONGEST begin, ULONGEST end,
1229                                    gdb_disassembly_flags flags)
1230       TARGET_DEFAULT_NORETURN (tcomplain ());
1231
1232     /* Print a function trace of the recorded execution trace.
1233        If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1234        succeeding functions.  */
1235     void (*to_call_history) (struct target_ops *, int size, int flags)
1236       TARGET_DEFAULT_NORETURN (tcomplain ());
1237
1238     /* Print a function trace of the recorded execution trace starting
1239        at function FROM.
1240        If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1241        SIZE functions after FROM.  */
1242     void (*to_call_history_from) (struct target_ops *,
1243                                   ULONGEST begin, int size, int flags)
1244       TARGET_DEFAULT_NORETURN (tcomplain ());
1245
1246     /* Print a function trace of an execution trace section from function BEGIN
1247        (inclusive) to function END (inclusive).  */
1248     void (*to_call_history_range) (struct target_ops *,
1249                                    ULONGEST begin, ULONGEST end, int flags)
1250       TARGET_DEFAULT_NORETURN (tcomplain ());
1251
1252     /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1253        non-empty annex.  */
1254     int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1255       TARGET_DEFAULT_RETURN (0);
1256
1257     /* Those unwinders are tried before any other arch unwinders.  If
1258        SELF doesn't have unwinders, it should delegate to the
1259        "beneath" target.  */
1260     const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self)
1261       TARGET_DEFAULT_RETURN (NULL);
1262
1263     const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self)
1264       TARGET_DEFAULT_RETURN (NULL);
1265
1266     /* Prepare to generate a core file.  */
1267     void (*to_prepare_to_generate_core) (struct target_ops *)
1268       TARGET_DEFAULT_IGNORE ();
1269
1270     /* Cleanup after generating a core file.  */
1271     void (*to_done_generating_core) (struct target_ops *)
1272       TARGET_DEFAULT_IGNORE ();
1273
1274     int to_magic;
1275     /* Need sub-structure for target machine related rather than comm related?
1276      */
1277   };
1278
1279 /* Magic number for checking ops size.  If a struct doesn't end with this
1280    number, somebody changed the declaration but didn't change all the
1281    places that initialize one.  */
1282
1283 #define OPS_MAGIC       3840
1284
1285 /* The ops structure for our "current" target process.  This should
1286    never be NULL.  If there is no target, it points to the dummy_target.  */
1287
1288 extern struct target_ops current_target;
1289
1290 /* Define easy words for doing these operations on our current target.  */
1291
1292 #define target_shortname        (current_target.to_shortname)
1293 #define target_longname         (current_target.to_longname)
1294
1295 /* Does whatever cleanup is required for a target that we are no
1296    longer going to be calling.  This routine is automatically always
1297    called after popping the target off the target stack - the target's
1298    own methods are no longer available through the target vector.
1299    Closing file descriptors and freeing all memory allocated memory are
1300    typical things it should do.  */
1301
1302 void target_close (struct target_ops *targ);
1303
1304 /* Find the correct target to use for "attach".  If a target on the
1305    current stack supports attaching, then it is returned.  Otherwise,
1306    the default run target is returned.  */
1307
1308 extern struct target_ops *find_attach_target (void);
1309
1310 /* Find the correct target to use for "run".  If a target on the
1311    current stack supports creating a new inferior, then it is
1312    returned.  Otherwise, the default run target is returned.  */
1313
1314 extern struct target_ops *find_run_target (void);
1315
1316 /* Some targets don't generate traps when attaching to the inferior,
1317    or their target_attach implementation takes care of the waiting.
1318    These targets must set to_attach_no_wait.  */
1319
1320 #define target_attach_no_wait \
1321      (current_target.to_attach_no_wait)
1322
1323 /* The target_attach operation places a process under debugger control,
1324    and stops the process.
1325
1326    This operation provides a target-specific hook that allows the
1327    necessary bookkeeping to be performed after an attach completes.  */
1328 #define target_post_attach(pid) \
1329      (*current_target.to_post_attach) (&current_target, pid)
1330
1331 /* Display a message indicating we're about to detach from the current
1332    inferior process.  */
1333
1334 extern void target_announce_detach (int from_tty);
1335
1336 /* Takes a program previously attached to and detaches it.
1337    The program may resume execution (some targets do, some don't) and will
1338    no longer stop on signals, etc.  We better not have left any breakpoints
1339    in the program or it'll die when it hits one.  ARGS is arguments
1340    typed by the user (e.g. a signal to send the process).  FROM_TTY
1341    says whether to be verbose or not.  */
1342
1343 extern void target_detach (const char *, int);
1344
1345 /* Disconnect from the current target without resuming it (leaving it
1346    waiting for a debugger).  */
1347
1348 extern void target_disconnect (const char *, int);
1349
1350 /* Resume execution (or prepare for execution) of a target thread,
1351    process or all processes.  STEP says whether to hardware
1352    single-step or to run free; SIGGNAL is the signal to be given to
1353    the target, or GDB_SIGNAL_0 for no signal.  The caller may not pass
1354    GDB_SIGNAL_DEFAULT.  A specific PTID means `step/resume only this
1355    process id'.  A wildcard PTID (all threads, or all threads of
1356    process) means `step/resume INFERIOR_PTID, and let other threads
1357    (for which the wildcard PTID matches) resume with their
1358    'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1359    is in "pass" state, or with no signal if in "no pass" state.
1360
1361    In order to efficiently handle batches of resumption requests,
1362    targets may implement this method such that it records the
1363    resumption request, but defers the actual resumption to the
1364    target_commit_resume method implementation.  See
1365    target_commit_resume below.  */
1366 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1367
1368 /* Commit a series of resumption requests previously prepared with
1369    target_resume calls.
1370
1371    GDB always calls target_commit_resume after calling target_resume
1372    one or more times.  A target may thus use this method in
1373    coordination with the target_resume method to batch target-side
1374    resumption requests.  In that case, the target doesn't actually
1375    resume in its target_resume implementation.  Instead, it prepares
1376    the resumption in target_resume, and defers the actual resumption
1377    to target_commit_resume.  E.g., the remote target uses this to
1378    coalesce multiple resumption requests in a single vCont packet.  */
1379 extern void target_commit_resume ();
1380
1381 /* Setup to defer target_commit_resume calls, and reactivate
1382    target_commit_resume on destruction, if it was previously
1383    active.  */
1384 extern scoped_restore_tmpl<int> make_scoped_defer_target_commit_resume ();
1385
1386 /* For target_read_memory see target/target.h.  */
1387
1388 /* The default target_ops::to_wait implementation.  */
1389
1390 extern ptid_t default_target_wait (struct target_ops *ops,
1391                                    ptid_t ptid,
1392                                    struct target_waitstatus *status,
1393                                    int options);
1394
1395 /* Fetch at least register REGNO, or all regs if regno == -1.  No result.  */
1396
1397 extern void target_fetch_registers (struct regcache *regcache, int regno);
1398
1399 /* Store at least register REGNO, or all regs if REGNO == -1.
1400    It can store as many registers as it wants to, so target_prepare_to_store
1401    must have been previously called.  Calls error() if there are problems.  */
1402
1403 extern void target_store_registers (struct regcache *regcache, int regs);
1404
1405 /* Get ready to modify the registers array.  On machines which store
1406    individual registers, this doesn't need to do anything.  On machines
1407    which store all the registers in one fell swoop, this makes sure
1408    that REGISTERS contains all the registers from the program being
1409    debugged.  */
1410
1411 #define target_prepare_to_store(regcache)       \
1412      (*current_target.to_prepare_to_store) (&current_target, regcache)
1413
1414 /* Determine current address space of thread PTID.  */
1415
1416 struct address_space *target_thread_address_space (ptid_t);
1417
1418 /* Implement the "info proc" command.  This returns one if the request
1419    was handled, and zero otherwise.  It can also throw an exception if
1420    an error was encountered while attempting to handle the
1421    request.  */
1422
1423 int target_info_proc (const char *, enum info_proc_what);
1424
1425 /* Returns true if this target can disable address space randomization.  */
1426
1427 int target_supports_disable_randomization (void);
1428
1429 /* Returns true if this target can enable and disable tracepoints
1430    while a trace experiment is running.  */
1431
1432 #define target_supports_enable_disable_tracepoint() \
1433   (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1434
1435 #define target_supports_string_tracing() \
1436   (*current_target.to_supports_string_tracing) (&current_target)
1437
1438 /* Returns true if this target can handle breakpoint conditions
1439    on its end.  */
1440
1441 #define target_supports_evaluation_of_breakpoint_conditions() \
1442   (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1443
1444 /* Returns true if this target can handle breakpoint commands
1445    on its end.  */
1446
1447 #define target_can_run_breakpoint_commands() \
1448   (*current_target.to_can_run_breakpoint_commands) (&current_target)
1449
1450 extern int target_read_string (CORE_ADDR, char **, int, int *);
1451
1452 /* For target_read_memory see target/target.h.  */
1453
1454 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1455                                    ssize_t len);
1456
1457 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1458
1459 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1460
1461 /* For target_write_memory see target/target.h.  */
1462
1463 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1464                                     ssize_t len);
1465
1466 /* Fetches the target's memory map.  If one is found it is sorted
1467    and returned, after some consistency checking.  Otherwise, NULL
1468    is returned.  */
1469 std::vector<mem_region> target_memory_map (void);
1470
1471 /* Erases all flash memory regions on the target.  */
1472 void flash_erase_command (char *cmd, int from_tty);
1473
1474 /* Erase the specified flash region.  */
1475 void target_flash_erase (ULONGEST address, LONGEST length);
1476
1477 /* Finish a sequence of flash operations.  */
1478 void target_flash_done (void);
1479
1480 /* Describes a request for a memory write operation.  */
1481 struct memory_write_request
1482   {
1483     /* Begining address that must be written.  */
1484     ULONGEST begin;
1485     /* Past-the-end address.  */
1486     ULONGEST end;
1487     /* The data to write.  */
1488     gdb_byte *data;
1489     /* A callback baton for progress reporting for this request.  */
1490     void *baton;
1491   };
1492 typedef struct memory_write_request memory_write_request_s;
1493 DEF_VEC_O(memory_write_request_s);
1494
1495 /* Enumeration specifying different flash preservation behaviour.  */
1496 enum flash_preserve_mode
1497   {
1498     flash_preserve,
1499     flash_discard
1500   };
1501
1502 /* Write several memory blocks at once.  This version can be more
1503    efficient than making several calls to target_write_memory, in
1504    particular because it can optimize accesses to flash memory.
1505
1506    Moreover, this is currently the only memory access function in gdb
1507    that supports writing to flash memory, and it should be used for
1508    all cases where access to flash memory is desirable.
1509
1510    REQUESTS is the vector (see vec.h) of memory_write_request.
1511    PRESERVE_FLASH_P indicates what to do with blocks which must be
1512      erased, but not completely rewritten.
1513    PROGRESS_CB is a function that will be periodically called to provide
1514      feedback to user.  It will be called with the baton corresponding
1515      to the request currently being written.  It may also be called
1516      with a NULL baton, when preserved flash sectors are being rewritten.
1517
1518    The function returns 0 on success, and error otherwise.  */
1519 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1520                                 enum flash_preserve_mode preserve_flash_p,
1521                                 void (*progress_cb) (ULONGEST, void *));
1522
1523 /* Print a line about the current target.  */
1524
1525 #define target_files_info()     \
1526      (*current_target.to_files_info) (&current_target)
1527
1528 /* Insert a breakpoint at address BP_TGT->placed_address in
1529    the target machine.  Returns 0 for success, and returns non-zero or
1530    throws an error (with a detailed failure reason error code and
1531    message) otherwise.  */
1532
1533 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1534                                      struct bp_target_info *bp_tgt);
1535
1536 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1537    machine.  Result is 0 for success, non-zero for error.  */
1538
1539 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1540                                      struct bp_target_info *bp_tgt,
1541                                      enum remove_bp_reason reason);
1542
1543 /* Return true if the target stack has a non-default
1544   "to_terminal_ours" method.  */
1545
1546 extern int target_supports_terminal_ours (void);
1547
1548 /* Kill the inferior process.   Make it go away.  */
1549
1550 extern void target_kill (void);
1551
1552 /* Load an executable file into the target process.  This is expected
1553    to not only bring new code into the target process, but also to
1554    update GDB's symbol tables to match.
1555
1556    ARG contains command-line arguments, to be broken down with
1557    buildargv ().  The first non-switch argument is the filename to
1558    load, FILE; the second is a number (as parsed by strtoul (..., ...,
1559    0)), which is an offset to apply to the load addresses of FILE's
1560    sections.  The target may define switches, or other non-switch
1561    arguments, as it pleases.  */
1562
1563 extern void target_load (const char *arg, int from_tty);
1564
1565 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1566    notification of inferior events such as fork and vork immediately
1567    after the inferior is created.  (This because of how gdb gets an
1568    inferior created via invoking a shell to do it.  In such a scenario,
1569    if the shell init file has commands in it, the shell will fork and
1570    exec for each of those commands, and we will see each such fork
1571    event.  Very bad.)
1572
1573    Such targets will supply an appropriate definition for this function.  */
1574
1575 #define target_post_startup_inferior(ptid) \
1576      (*current_target.to_post_startup_inferior) (&current_target, ptid)
1577
1578 /* On some targets, we can catch an inferior fork or vfork event when
1579    it occurs.  These functions insert/remove an already-created
1580    catchpoint for such events.  They return  0 for success, 1 if the
1581    catchpoint type is not supported and -1 for failure.  */
1582
1583 #define target_insert_fork_catchpoint(pid) \
1584      (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1585
1586 #define target_remove_fork_catchpoint(pid) \
1587      (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1588
1589 #define target_insert_vfork_catchpoint(pid) \
1590      (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1591
1592 #define target_remove_vfork_catchpoint(pid) \
1593      (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1594
1595 /* If the inferior forks or vforks, this function will be called at
1596    the next resume in order to perform any bookkeeping and fiddling
1597    necessary to continue debugging either the parent or child, as
1598    requested, and releasing the other.  Information about the fork
1599    or vfork event is available via get_last_target_status ().
1600    This function returns 1 if the inferior should not be resumed
1601    (i.e. there is another event pending).  */
1602
1603 int target_follow_fork (int follow_child, int detach_fork);
1604
1605 /* Handle the target-specific bookkeeping required when the inferior
1606    makes an exec call.  INF is the exec'd inferior.  */
1607
1608 void target_follow_exec (struct inferior *inf, char *execd_pathname);
1609
1610 /* On some targets, we can catch an inferior exec event when it
1611    occurs.  These functions insert/remove an already-created
1612    catchpoint for such events.  They return  0 for success, 1 if the
1613    catchpoint type is not supported and -1 for failure.  */
1614
1615 #define target_insert_exec_catchpoint(pid) \
1616      (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1617
1618 #define target_remove_exec_catchpoint(pid) \
1619      (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1620
1621 /* Syscall catch.
1622
1623    NEEDED is nonzero if any syscall catch (of any kind) is requested.
1624    If NEEDED is zero, it means the target can disable the mechanism to
1625    catch system calls because there are no more catchpoints of this type.
1626
1627    ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1628    being requested.  In this case, both TABLE_SIZE and TABLE should
1629    be ignored.
1630
1631    TABLE_SIZE is the number of elements in TABLE.  It only matters if
1632    ANY_COUNT is zero.
1633
1634    TABLE is an array of ints, indexed by syscall number.  An element in
1635    this array is nonzero if that syscall should be caught.  This argument
1636    only matters if ANY_COUNT is zero.
1637
1638    Return 0 for success, 1 if syscall catchpoints are not supported or -1
1639    for failure.  */
1640
1641 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1642      (*current_target.to_set_syscall_catchpoint) (&current_target,      \
1643                                                   pid, needed, any_count, \
1644                                                   table_size, table)
1645
1646 /* Returns TRUE if PID has exited.  And, also sets EXIT_STATUS to the
1647    exit code of PID, if any.  */
1648
1649 #define target_has_exited(pid,wait_status,exit_status) \
1650      (*current_target.to_has_exited) (&current_target, \
1651                                       pid,wait_status,exit_status)
1652
1653 /* The debugger has completed a blocking wait() call.  There is now
1654    some process event that must be processed.  This function should
1655    be defined by those targets that require the debugger to perform
1656    cleanup or internal state changes in response to the process event.  */
1657
1658 /* For target_mourn_inferior see target/target.h.  */
1659
1660 /* Does target have enough data to do a run or attach command? */
1661
1662 #define target_can_run(t) \
1663      ((t)->to_can_run) (t)
1664
1665 /* Set list of signals to be handled in the target.
1666
1667    PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1668    (enum gdb_signal).  For every signal whose entry in this array is
1669    non-zero, the target is allowed -but not required- to skip reporting
1670    arrival of the signal to the GDB core by returning from target_wait,
1671    and to pass the signal directly to the inferior instead.
1672
1673    However, if the target is hardware single-stepping a thread that is
1674    about to receive a signal, it needs to be reported in any case, even
1675    if mentioned in a previous target_pass_signals call.   */
1676
1677 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1678
1679 /* Set list of signals the target may pass to the inferior.  This
1680    directly maps to the "handle SIGNAL pass/nopass" setting.
1681
1682    PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1683    number (enum gdb_signal).  For every signal whose entry in this
1684    array is non-zero, the target is allowed to pass the signal to the
1685    inferior.  Signals not present in the array shall be silently
1686    discarded.  This does not influence whether to pass signals to the
1687    inferior as a result of a target_resume call.  This is useful in
1688    scenarios where the target needs to decide whether to pass or not a
1689    signal to the inferior without GDB core involvement, such as for
1690    example, when detaching (as threads may have been suspended with
1691    pending signals not reported to GDB).  */
1692
1693 extern void target_program_signals (int nsig, unsigned char *program_signals);
1694
1695 /* Check to see if a thread is still alive.  */
1696
1697 extern int target_thread_alive (ptid_t ptid);
1698
1699 /* Sync the target's threads with GDB's thread list.  */
1700
1701 extern void target_update_thread_list (void);
1702
1703 /* Make target stop in a continuable fashion.  (For instance, under
1704    Unix, this should act like SIGSTOP).  Note that this function is
1705    asynchronous: it does not wait for the target to become stopped
1706    before returning.  If this is the behavior you want please use
1707    target_stop_and_wait.  */
1708
1709 extern void target_stop (ptid_t ptid);
1710
1711 /* Interrupt the target just like the user typed a ^C on the
1712    inferior's controlling terminal.  (For instance, under Unix, this
1713    should act like SIGINT).  This function is asynchronous.  */
1714
1715 extern void target_interrupt (ptid_t ptid);
1716
1717 /* Pass a ^C, as determined to have been pressed by checking the quit
1718    flag, to the target.  Normally calls target_interrupt, but remote
1719    targets may take the opportunity to detect the remote side is not
1720    responding and offer to disconnect.  */
1721
1722 extern void target_pass_ctrlc (void);
1723
1724 /* The default target_ops::to_pass_ctrlc implementation.  Simply calls
1725    target_interrupt.  */
1726 extern void default_target_pass_ctrlc (struct target_ops *ops);
1727
1728 /* Send the specified COMMAND to the target's monitor
1729    (shell,interpreter) for execution.  The result of the query is
1730    placed in OUTBUF.  */
1731
1732 #define target_rcmd(command, outbuf) \
1733      (*current_target.to_rcmd) (&current_target, command, outbuf)
1734
1735
1736 /* Does the target include all of memory, or only part of it?  This
1737    determines whether we look up the target chain for other parts of
1738    memory if this target can't satisfy a request.  */
1739
1740 extern int target_has_all_memory_1 (void);
1741 #define target_has_all_memory target_has_all_memory_1 ()
1742
1743 /* Does the target include memory?  (Dummy targets don't.)  */
1744
1745 extern int target_has_memory_1 (void);
1746 #define target_has_memory target_has_memory_1 ()
1747
1748 /* Does the target have a stack?  (Exec files don't, VxWorks doesn't, until
1749    we start a process.)  */
1750
1751 extern int target_has_stack_1 (void);
1752 #define target_has_stack target_has_stack_1 ()
1753
1754 /* Does the target have registers?  (Exec files don't.)  */
1755
1756 extern int target_has_registers_1 (void);
1757 #define target_has_registers target_has_registers_1 ()
1758
1759 /* Does the target have execution?  Can we make it jump (through
1760    hoops), or pop its stack a few times?  This means that the current
1761    target is currently executing; for some targets, that's the same as
1762    whether or not the target is capable of execution, but there are
1763    also targets which can be current while not executing.  In that
1764    case this will become true after to_create_inferior or
1765    to_attach.  */
1766
1767 extern int target_has_execution_1 (ptid_t);
1768
1769 /* Like target_has_execution_1, but always passes inferior_ptid.  */
1770
1771 extern int target_has_execution_current (void);
1772
1773 #define target_has_execution target_has_execution_current ()
1774
1775 /* Default implementations for process_stratum targets.  Return true
1776    if there's a selected inferior, false otherwise.  */
1777
1778 extern int default_child_has_all_memory (struct target_ops *ops);
1779 extern int default_child_has_memory (struct target_ops *ops);
1780 extern int default_child_has_stack (struct target_ops *ops);
1781 extern int default_child_has_registers (struct target_ops *ops);
1782 extern int default_child_has_execution (struct target_ops *ops,
1783                                         ptid_t the_ptid);
1784
1785 /* Can the target support the debugger control of thread execution?
1786    Can it lock the thread scheduler?  */
1787
1788 #define target_can_lock_scheduler \
1789      (current_target.to_has_thread_control & tc_schedlock)
1790
1791 /* Controls whether async mode is permitted.  */
1792 extern int target_async_permitted;
1793
1794 /* Can the target support asynchronous execution?  */
1795 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1796
1797 /* Is the target in asynchronous execution mode?  */
1798 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1799
1800 /* Enables/disabled async target events.  */
1801 extern void target_async (int enable);
1802
1803 /* Enables/disables thread create and exit events.  */
1804 extern void target_thread_events (int enable);
1805
1806 /* Whether support for controlling the target backends always in
1807    non-stop mode is enabled.  */
1808 extern enum auto_boolean target_non_stop_enabled;
1809
1810 /* Is the target in non-stop mode?  Some targets control the inferior
1811    in non-stop mode even with "set non-stop off".  Always true if "set
1812    non-stop" is on.  */
1813 extern int target_is_non_stop_p (void);
1814
1815 #define target_execution_direction() \
1816   (current_target.to_execution_direction (&current_target))
1817
1818 /* Converts a process id to a string.  Usually, the string just contains
1819    `process xyz', but on some systems it may contain
1820    `process xyz thread abc'.  */
1821
1822 extern const char *target_pid_to_str (ptid_t ptid);
1823
1824 extern const char *normal_pid_to_str (ptid_t ptid);
1825
1826 /* Return a short string describing extra information about PID,
1827    e.g. "sleeping", "runnable", "running on LWP 3".  Null return value
1828    is okay.  */
1829
1830 #define target_extra_thread_info(TP) \
1831      (current_target.to_extra_thread_info (&current_target, TP))
1832
1833 /* Return the thread's name, or NULL if the target is unable to determine it.
1834    The returned value must not be freed by the caller.  */
1835
1836 extern const char *target_thread_name (struct thread_info *);
1837
1838 /* Given a pointer to a thread library specific thread handle and
1839    its length, return a pointer to the corresponding thread_info struct.  */
1840
1841 extern struct thread_info *target_thread_handle_to_thread_info
1842   (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1843
1844 /* Attempts to find the pathname of the executable file
1845    that was run to create a specified process.
1846
1847    The process PID must be stopped when this operation is used.
1848
1849    If the executable file cannot be determined, NULL is returned.
1850
1851    Else, a pointer to a character string containing the pathname
1852    is returned.  This string should be copied into a buffer by
1853    the client if the string will not be immediately used, or if
1854    it must persist.  */
1855
1856 #define target_pid_to_exec_file(pid) \
1857      (current_target.to_pid_to_exec_file) (&current_target, pid)
1858
1859 /* See the to_thread_architecture description in struct target_ops.  */
1860
1861 #define target_thread_architecture(ptid) \
1862      (current_target.to_thread_architecture (&current_target, ptid))
1863
1864 /*
1865  * Iterator function for target memory regions.
1866  * Calls a callback function once for each memory region 'mapped'
1867  * in the child process.  Defined as a simple macro rather than
1868  * as a function macro so that it can be tested for nullity.
1869  */
1870
1871 #define target_find_memory_regions(FUNC, DATA) \
1872      (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1873
1874 /*
1875  * Compose corefile .note section.
1876  */
1877
1878 #define target_make_corefile_notes(BFD, SIZE_P) \
1879      (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1880
1881 /* Bookmark interfaces.  */
1882 #define target_get_bookmark(ARGS, FROM_TTY) \
1883      (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1884
1885 #define target_goto_bookmark(ARG, FROM_TTY) \
1886      (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1887
1888 /* Hardware watchpoint interfaces.  */
1889
1890 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1891    write).  Only the INFERIOR_PTID task is being queried.  */
1892
1893 #define target_stopped_by_watchpoint()          \
1894   ((*current_target.to_stopped_by_watchpoint) (&current_target))
1895
1896 /* Returns non-zero if the target stopped because it executed a
1897    software breakpoint instruction.  */
1898
1899 #define target_stopped_by_sw_breakpoint()               \
1900   ((*current_target.to_stopped_by_sw_breakpoint) (&current_target))
1901
1902 #define target_supports_stopped_by_sw_breakpoint() \
1903   ((*current_target.to_supports_stopped_by_sw_breakpoint) (&current_target))
1904
1905 #define target_stopped_by_hw_breakpoint()                               \
1906   ((*current_target.to_stopped_by_hw_breakpoint) (&current_target))
1907
1908 #define target_supports_stopped_by_hw_breakpoint() \
1909   ((*current_target.to_supports_stopped_by_hw_breakpoint) (&current_target))
1910
1911 /* Non-zero if we have steppable watchpoints  */
1912
1913 #define target_have_steppable_watchpoint \
1914    (current_target.to_have_steppable_watchpoint)
1915
1916 /* Non-zero if we have continuable watchpoints  */
1917
1918 #define target_have_continuable_watchpoint \
1919    (current_target.to_have_continuable_watchpoint)
1920
1921 /* Provide defaults for hardware watchpoint functions.  */
1922
1923 /* If the *_hw_beakpoint functions have not been defined
1924    elsewhere use the definitions in the target vector.  */
1925
1926 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1927    Returns negative if the target doesn't have enough hardware debug
1928    registers available.  Return zero if hardware watchpoint of type
1929    TYPE isn't supported.  TYPE is one of bp_hardware_watchpoint,
1930    bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1931    CNT is the number of such watchpoints used so far, including this
1932    one.  OTHERTYPE is the number of watchpoints of other types than
1933    this one used so far.  */
1934
1935 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1936  (*current_target.to_can_use_hw_breakpoint) (&current_target,  \
1937                                              TYPE, CNT, OTHERTYPE)
1938
1939 /* Returns the number of debug registers needed to watch the given
1940    memory region, or zero if not supported.  */
1941
1942 #define target_region_ok_for_hw_watchpoint(addr, len) \
1943     (*current_target.to_region_ok_for_hw_watchpoint) (&current_target,  \
1944                                                       addr, len)
1945
1946
1947 #define target_can_do_single_step() \
1948   (*current_target.to_can_do_single_step) (&current_target)
1949
1950 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1951    TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1952    COND is the expression for its condition, or NULL if there's none.
1953    Returns 0 for success, 1 if the watchpoint type is not supported,
1954    -1 for failure.  */
1955
1956 #define target_insert_watchpoint(addr, len, type, cond) \
1957      (*current_target.to_insert_watchpoint) (&current_target,   \
1958                                              addr, len, type, cond)
1959
1960 #define target_remove_watchpoint(addr, len, type, cond) \
1961      (*current_target.to_remove_watchpoint) (&current_target,   \
1962                                              addr, len, type, cond)
1963
1964 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1965    RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1966    or hw_access for an access watchpoint.  Returns 0 for success, 1 if
1967    masked watchpoints are not supported, -1 for failure.  */
1968
1969 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1970                                           enum target_hw_bp_type);
1971
1972 /* Remove a masked watchpoint at ADDR with the mask MASK.
1973    RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1974    or hw_access for an access watchpoint.  Returns 0 for success, non-zero
1975    for failure.  */
1976
1977 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1978                                           enum target_hw_bp_type);
1979
1980 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1981    the target machine.  Returns 0 for success, and returns non-zero or
1982    throws an error (with a detailed failure reason error code and
1983    message) otherwise.  */
1984
1985 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1986      (*current_target.to_insert_hw_breakpoint) (&current_target,        \
1987                                                 gdbarch, bp_tgt)
1988
1989 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1990      (*current_target.to_remove_hw_breakpoint) (&current_target,        \
1991                                                 gdbarch, bp_tgt)
1992
1993 /* Return number of debug registers needed for a ranged breakpoint,
1994    or -1 if ranged breakpoints are not supported.  */
1995
1996 extern int target_ranged_break_num_registers (void);
1997
1998 /* Return non-zero if target knows the data address which triggered this
1999    target_stopped_by_watchpoint, in such case place it to *ADDR_P.  Only the
2000    INFERIOR_PTID task is being queried.  */
2001 #define target_stopped_data_address(target, addr_p) \
2002     (*(target)->to_stopped_data_address) (target, addr_p)
2003
2004 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2005    LENGTH bytes beginning at START.  */
2006 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2007   (*(target)->to_watchpoint_addr_within_range) (target, addr, start, length)
2008
2009 /* Return non-zero if the target is capable of using hardware to evaluate
2010    the condition expression.  In this case, if the condition is false when
2011    the watched memory location changes, execution may continue without the
2012    debugger being notified.
2013
2014    Due to limitations in the hardware implementation, it may be capable of
2015    avoiding triggering the watchpoint in some cases where the condition
2016    expression is false, but may report some false positives as well.
2017    For this reason, GDB will still evaluate the condition expression when
2018    the watchpoint triggers.  */
2019 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2020   (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
2021                                                        addr, len, type, cond)
2022
2023 /* Return number of debug registers needed for a masked watchpoint,
2024    -1 if masked watchpoints are not supported or -2 if the given address
2025    and mask combination cannot be used.  */
2026
2027 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2028
2029 /* Target can execute in reverse?  */
2030 #define target_can_execute_reverse \
2031       current_target.to_can_execute_reverse (&current_target)
2032
2033 extern const struct target_desc *target_read_description (struct target_ops *);
2034
2035 #define target_get_ada_task_ptid(lwp, tid) \
2036      (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
2037
2038 /* Utility implementation of searching memory.  */
2039 extern int simple_search_memory (struct target_ops* ops,
2040                                  CORE_ADDR start_addr,
2041                                  ULONGEST search_space_len,
2042                                  const gdb_byte *pattern,
2043                                  ULONGEST pattern_len,
2044                                  CORE_ADDR *found_addrp);
2045
2046 /* Main entry point for searching memory.  */
2047 extern int target_search_memory (CORE_ADDR start_addr,
2048                                  ULONGEST search_space_len,
2049                                  const gdb_byte *pattern,
2050                                  ULONGEST pattern_len,
2051                                  CORE_ADDR *found_addrp);
2052
2053 /* Target file operations.  */
2054
2055 /* Return nonzero if the filesystem seen by the current inferior
2056    is the local filesystem, zero otherwise.  */
2057 #define target_filesystem_is_local() \
2058   current_target.to_filesystem_is_local (&current_target)
2059
2060 /* Open FILENAME on the target, in the filesystem as seen by INF,
2061    using FLAGS and MODE.  If INF is NULL, use the filesystem seen
2062    by the debugger (GDB or, for remote targets, the remote stub).
2063    Return a target file descriptor, or -1 if an error occurs (and
2064    set *TARGET_ERRNO).  */
2065 extern int target_fileio_open (struct inferior *inf,
2066                                const char *filename, int flags,
2067                                int mode, int *target_errno);
2068
2069 /* Like target_fileio_open, but print a warning message if the
2070    file is being accessed over a link that may be slow.  */
2071 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2072                                             const char *filename,
2073                                             int flags,
2074                                             int mode,
2075                                             int *target_errno);
2076
2077 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2078    Return the number of bytes written, or -1 if an error occurs
2079    (and set *TARGET_ERRNO).  */
2080 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2081                                  ULONGEST offset, int *target_errno);
2082
2083 /* Read up to LEN bytes FD on the target into READ_BUF.
2084    Return the number of bytes read, or -1 if an error occurs
2085    (and set *TARGET_ERRNO).  */
2086 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2087                                 ULONGEST offset, int *target_errno);
2088
2089 /* Get information about the file opened as FD on the target
2090    and put it in SB.  Return 0 on success, or -1 if an error
2091    occurs (and set *TARGET_ERRNO).  */
2092 extern int target_fileio_fstat (int fd, struct stat *sb,
2093                                 int *target_errno);
2094
2095 /* Close FD on the target.  Return 0, or -1 if an error occurs
2096    (and set *TARGET_ERRNO).  */
2097 extern int target_fileio_close (int fd, int *target_errno);
2098
2099 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2100    If INF is NULL, use the filesystem seen by the debugger (GDB or,
2101    for remote targets, the remote stub).  Return 0, or -1 if an error
2102    occurs (and set *TARGET_ERRNO).  */
2103 extern int target_fileio_unlink (struct inferior *inf,
2104                                  const char *filename,
2105                                  int *target_errno);
2106
2107 /* Read value of symbolic link FILENAME on the target, in the
2108    filesystem as seen by INF.  If INF is NULL, use the filesystem seen
2109    by the debugger (GDB or, for remote targets, the remote stub).
2110    Return a null-terminated string allocated via xmalloc, or NULL if
2111    an error occurs (and set *TARGET_ERRNO).  */
2112 extern char *target_fileio_readlink (struct inferior *inf,
2113                                      const char *filename,
2114                                      int *target_errno);
2115
2116 /* Read target file FILENAME, in the filesystem as seen by INF.  If
2117    INF is NULL, use the filesystem seen by the debugger (GDB or, for
2118    remote targets, the remote stub).  The return value will be -1 if
2119    the transfer fails or is not supported; 0 if the object is empty;
2120    or the length of the object otherwise.  If a positive value is
2121    returned, a sufficiently large buffer will be allocated using
2122    xmalloc and returned in *BUF_P containing the contents of the
2123    object.
2124
2125    This method should be used for objects sufficiently small to store
2126    in a single xmalloc'd buffer, when no fixed bound on the object's
2127    size is known in advance.  */
2128 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2129                                          const char *filename,
2130                                          gdb_byte **buf_p);
2131
2132 /* Read target file FILENAME, in the filesystem as seen by INF.  If
2133    INF is NULL, use the filesystem seen by the debugger (GDB or, for
2134    remote targets, the remote stub).  The result is NUL-terminated and
2135    returned as a string, allocated using xmalloc.  If an error occurs
2136    or the transfer is unsupported, NULL is returned.  Empty objects
2137    are returned as allocated but empty strings.  A warning is issued
2138    if the result contains any embedded NUL bytes.  */
2139 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2140     (struct inferior *inf, const char *filename);
2141
2142
2143 /* Tracepoint-related operations.  */
2144
2145 #define target_trace_init() \
2146   (*current_target.to_trace_init) (&current_target)
2147
2148 #define target_download_tracepoint(t) \
2149   (*current_target.to_download_tracepoint) (&current_target, t)
2150
2151 #define target_can_download_tracepoint() \
2152   (*current_target.to_can_download_tracepoint) (&current_target)
2153
2154 #define target_download_trace_state_variable(tsv) \
2155   (*current_target.to_download_trace_state_variable) (&current_target, tsv)
2156
2157 #define target_enable_tracepoint(loc) \
2158   (*current_target.to_enable_tracepoint) (&current_target, loc)
2159
2160 #define target_disable_tracepoint(loc) \
2161   (*current_target.to_disable_tracepoint) (&current_target, loc)
2162
2163 #define target_trace_start() \
2164   (*current_target.to_trace_start) (&current_target)
2165
2166 #define target_trace_set_readonly_regions() \
2167   (*current_target.to_trace_set_readonly_regions) (&current_target)
2168
2169 #define target_get_trace_status(ts) \
2170   (*current_target.to_get_trace_status) (&current_target, ts)
2171
2172 #define target_get_tracepoint_status(tp,utp)            \
2173   (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
2174
2175 #define target_trace_stop() \
2176   (*current_target.to_trace_stop) (&current_target)
2177
2178 #define target_trace_find(type,num,addr1,addr2,tpp) \
2179   (*current_target.to_trace_find) (&current_target, \
2180                                    (type), (num), (addr1), (addr2), (tpp))
2181
2182 #define target_get_trace_state_variable_value(tsv,val) \
2183   (*current_target.to_get_trace_state_variable_value) (&current_target, \
2184                                                        (tsv), (val))
2185
2186 #define target_save_trace_data(filename) \
2187   (*current_target.to_save_trace_data) (&current_target, filename)
2188
2189 #define target_upload_tracepoints(utpp) \
2190   (*current_target.to_upload_tracepoints) (&current_target, utpp)
2191
2192 #define target_upload_trace_state_variables(utsvp) \
2193   (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
2194
2195 #define target_get_raw_trace_data(buf,offset,len) \
2196   (*current_target.to_get_raw_trace_data) (&current_target,     \
2197                                            (buf), (offset), (len))
2198
2199 #define target_get_min_fast_tracepoint_insn_len() \
2200   (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
2201
2202 #define target_set_disconnected_tracing(val) \
2203   (*current_target.to_set_disconnected_tracing) (&current_target, val)
2204
2205 #define target_set_circular_trace_buffer(val)   \
2206   (*current_target.to_set_circular_trace_buffer) (&current_target, val)
2207
2208 #define target_set_trace_buffer_size(val)       \
2209   (*current_target.to_set_trace_buffer_size) (&current_target, val)
2210
2211 #define target_set_trace_notes(user,notes,stopnotes)            \
2212   (*current_target.to_set_trace_notes) (&current_target,        \
2213                                         (user), (notes), (stopnotes))
2214
2215 #define target_get_tib_address(ptid, addr) \
2216   (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
2217
2218 #define target_set_permissions() \
2219   (*current_target.to_set_permissions) (&current_target)
2220
2221 #define target_static_tracepoint_marker_at(addr, marker) \
2222   (*current_target.to_static_tracepoint_marker_at) (&current_target,    \
2223                                                     addr, marker)
2224
2225 #define target_static_tracepoint_markers_by_strid(marker_id) \
2226   (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
2227                                                            marker_id)
2228
2229 #define target_traceframe_info() \
2230   (*current_target.to_traceframe_info) (&current_target)
2231
2232 #define target_use_agent(use) \
2233   (*current_target.to_use_agent) (&current_target, use)
2234
2235 #define target_can_use_agent() \
2236   (*current_target.to_can_use_agent) (&current_target)
2237
2238 #define target_augmented_libraries_svr4_read() \
2239   (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2240
2241 /* Command logging facility.  */
2242
2243 #define target_log_command(p)                                   \
2244   (*current_target.to_log_command) (&current_target, p)
2245
2246
2247 extern int target_core_of_thread (ptid_t ptid);
2248
2249 /* See to_get_unwinder in struct target_ops.  */
2250 extern const struct frame_unwind *target_get_unwinder (void);
2251
2252 /* See to_get_tailcall_unwinder in struct target_ops.  */
2253 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2254
2255 /* This implements basic memory verification, reading target memory
2256    and performing the comparison here (as opposed to accelerated
2257    verification making use of the qCRC packet, for example).  */
2258
2259 extern int simple_verify_memory (struct target_ops* ops,
2260                                  const gdb_byte *data,
2261                                  CORE_ADDR memaddr, ULONGEST size);
2262
2263 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2264    the contents of [DATA,DATA+SIZE).  Returns 1 if there's a match, 0
2265    if there's a mismatch, and -1 if an error is encountered while
2266    reading memory.  Throws an error if the functionality is found not
2267    to be supported by the current target.  */
2268 int target_verify_memory (const gdb_byte *data,
2269                           CORE_ADDR memaddr, ULONGEST size);
2270
2271 /* Routines for maintenance of the target structures...
2272
2273    complete_target_initialization: Finalize a target_ops by filling in
2274    any fields needed by the target implementation.  Unnecessary for
2275    targets which are registered via add_target, as this part gets
2276    taken care of then.
2277
2278    add_target:   Add a target to the list of all possible targets.
2279    This only makes sense for targets that should be activated using
2280    the "target TARGET_NAME ..." command.
2281
2282    push_target:  Make this target the top of the stack of currently used
2283    targets, within its particular stratum of the stack.  Result
2284    is 0 if now atop the stack, nonzero if not on top (maybe
2285    should warn user).
2286
2287    unpush_target: Remove this from the stack of currently used targets,
2288    no matter where it is on the list.  Returns 0 if no
2289    change, 1 if removed from stack.  */
2290
2291 extern void add_target (struct target_ops *);
2292
2293 extern void add_target_with_completer (struct target_ops *t,
2294                                        completer_ftype *completer);
2295
2296 extern void complete_target_initialization (struct target_ops *t);
2297
2298 /* Adds a command ALIAS for target T and marks it deprecated.  This is useful
2299    for maintaining backwards compatibility when renaming targets.  */
2300
2301 extern void add_deprecated_target_alias (struct target_ops *t,
2302                                          const char *alias);
2303
2304 extern void push_target (struct target_ops *);
2305
2306 extern int unpush_target (struct target_ops *);
2307
2308 extern void target_pre_inferior (int);
2309
2310 extern void target_preopen (int);
2311
2312 /* Does whatever cleanup is required to get rid of all pushed targets.  */
2313 extern void pop_all_targets (void);
2314
2315 /* Like pop_all_targets, but pops only targets whose stratum is at or
2316    above STRATUM.  */
2317 extern void pop_all_targets_at_and_above (enum strata stratum);
2318
2319 /* Like pop_all_targets, but pops only targets whose stratum is
2320    strictly above ABOVE_STRATUM.  */
2321 extern void pop_all_targets_above (enum strata above_stratum);
2322
2323 extern int target_is_pushed (struct target_ops *t);
2324
2325 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2326                                                CORE_ADDR offset);
2327
2328 /* Struct target_section maps address ranges to file sections.  It is
2329    mostly used with BFD files, but can be used without (e.g. for handling
2330    raw disks, or files not in formats handled by BFD).  */
2331
2332 struct target_section
2333   {
2334     CORE_ADDR addr;             /* Lowest address in section */
2335     CORE_ADDR endaddr;          /* 1+highest address in section */
2336
2337     struct bfd_section *the_bfd_section;
2338
2339     /* The "owner" of the section.
2340        It can be any unique value.  It is set by add_target_sections
2341        and used by remove_target_sections.
2342        For example, for executables it is a pointer to exec_bfd and
2343        for shlibs it is the so_list pointer.  */
2344     void *owner;
2345   };
2346
2347 /* Holds an array of target sections.  Defined by [SECTIONS..SECTIONS_END[.  */
2348
2349 struct target_section_table
2350 {
2351   struct target_section *sections;
2352   struct target_section *sections_end;
2353 };
2354
2355 /* Return the "section" containing the specified address.  */
2356 struct target_section *target_section_by_addr (struct target_ops *target,
2357                                                CORE_ADDR addr);
2358
2359 /* Return the target section table this target (or the targets
2360    beneath) currently manipulate.  */
2361
2362 extern struct target_section_table *target_get_section_table
2363   (struct target_ops *target);
2364
2365 /* From mem-break.c */
2366
2367 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2368                                      struct bp_target_info *,
2369                                      enum remove_bp_reason);
2370
2371 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2372                                      struct bp_target_info *);
2373
2374 /* Check whether the memory at the breakpoint's placed address still
2375    contains the expected breakpoint instruction.  */
2376
2377 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2378                                        struct bp_target_info *bp_tgt);
2379
2380 extern int default_memory_remove_breakpoint (struct gdbarch *,
2381                                              struct bp_target_info *);
2382
2383 extern int default_memory_insert_breakpoint (struct gdbarch *,
2384                                              struct bp_target_info *);
2385
2386
2387 /* From target.c */
2388
2389 extern void initialize_targets (void);
2390
2391 extern void noprocess (void) ATTRIBUTE_NORETURN;
2392
2393 extern void target_require_runnable (void);
2394
2395 extern struct target_ops *find_target_beneath (struct target_ops *);
2396
2397 /* Find the target at STRATUM.  If no target is at that stratum,
2398    return NULL.  */
2399
2400 struct target_ops *find_target_at (enum strata stratum);
2401
2402 /* Read OS data object of type TYPE from the target, and return it in
2403    XML format.  The result is NUL-terminated and returned as a string.
2404    If an error occurs or the transfer is unsupported, NULL is
2405    returned.  Empty objects are returned as allocated but empty
2406    strings.  */
2407
2408 extern gdb::unique_xmalloc_ptr<char> target_get_osdata (const char *type);
2409
2410 \f
2411 /* Stuff that should be shared among the various remote targets.  */
2412
2413 /* Debugging level.  0 is off, and non-zero values mean to print some debug
2414    information (higher values, more information).  */
2415 extern int remote_debug;
2416
2417 /* Speed in bits per second, or -1 which means don't mess with the speed.  */
2418 extern int baud_rate;
2419
2420 /* Parity for serial port  */
2421 extern int serial_parity;
2422
2423 /* Timeout limit for response from target.  */
2424 extern int remote_timeout;
2425
2426 \f
2427
2428 /* Set the show memory breakpoints mode to show, and return a
2429    scoped_restore to restore it back to the current value.  */
2430 extern scoped_restore_tmpl<int>
2431     make_scoped_restore_show_memory_breakpoints (int show);
2432
2433 extern int may_write_registers;
2434 extern int may_write_memory;
2435 extern int may_insert_breakpoints;
2436 extern int may_insert_tracepoints;
2437 extern int may_insert_fast_tracepoints;
2438 extern int may_stop;
2439
2440 extern void update_target_permissions (void);
2441
2442 \f
2443 /* Imported from machine dependent code.  */
2444
2445 /* See to_supports_btrace in struct target_ops.  */
2446 extern int target_supports_btrace (enum btrace_format);
2447
2448 /* See to_enable_btrace in struct target_ops.  */
2449 extern struct btrace_target_info *
2450   target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2451
2452 /* See to_disable_btrace in struct target_ops.  */
2453 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2454
2455 /* See to_teardown_btrace in struct target_ops.  */
2456 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2457
2458 /* See to_read_btrace in struct target_ops.  */
2459 extern enum btrace_error target_read_btrace (struct btrace_data *,
2460                                              struct btrace_target_info *,
2461                                              enum btrace_read_type);
2462
2463 /* See to_btrace_conf in struct target_ops.  */
2464 extern const struct btrace_config *
2465   target_btrace_conf (const struct btrace_target_info *);
2466
2467 /* See to_stop_recording in struct target_ops.  */
2468 extern void target_stop_recording (void);
2469
2470 /* See to_save_record in struct target_ops.  */
2471 extern void target_save_record (const char *filename);
2472
2473 /* Query if the target supports deleting the execution log.  */
2474 extern int target_supports_delete_record (void);
2475
2476 /* See to_delete_record in struct target_ops.  */
2477 extern void target_delete_record (void);
2478
2479 /* See to_record_method.  */
2480 extern enum record_method target_record_method (ptid_t ptid);
2481
2482 /* See to_record_is_replaying in struct target_ops.  */
2483 extern int target_record_is_replaying (ptid_t ptid);
2484
2485 /* See to_record_will_replay in struct target_ops.  */
2486 extern int target_record_will_replay (ptid_t ptid, int dir);
2487
2488 /* See to_record_stop_replaying in struct target_ops.  */
2489 extern void target_record_stop_replaying (void);
2490
2491 /* See to_goto_record_begin in struct target_ops.  */
2492 extern void target_goto_record_begin (void);
2493
2494 /* See to_goto_record_end in struct target_ops.  */
2495 extern void target_goto_record_end (void);
2496
2497 /* See to_goto_record in struct target_ops.  */
2498 extern void target_goto_record (ULONGEST insn);
2499
2500 /* See to_insn_history.  */
2501 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2502
2503 /* See to_insn_history_from.  */
2504 extern void target_insn_history_from (ULONGEST from, int size,
2505                                       gdb_disassembly_flags flags);
2506
2507 /* See to_insn_history_range.  */
2508 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2509                                        gdb_disassembly_flags flags);
2510
2511 /* See to_call_history.  */
2512 extern void target_call_history (int size, int flags);
2513
2514 /* See to_call_history_from.  */
2515 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2516
2517 /* See to_call_history_range.  */
2518 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2519
2520 /* See to_prepare_to_generate_core.  */
2521 extern void target_prepare_to_generate_core (void);
2522
2523 /* See to_done_generating_core.  */
2524 extern void target_done_generating_core (void);
2525
2526 #endif /* !defined (TARGET_H) */