e493d9d1492e0b9c73f68bea7b70b2de5b8c43d3
[external/binutils.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3    Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4    2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5    Free Software Foundation, Inc.
6
7    Contributed by Cygnus Support.  Written by John Gilmore.
8
9    This file is part of GDB.
10
11    This program is free software; you can redistribute it and/or modify
12    it under the terms of the GNU General Public License as published by
13    the Free Software Foundation; either version 3 of the License, or
14    (at your option) any later version.
15
16    This program is distributed in the hope that it will be useful,
17    but WITHOUT ANY WARRANTY; without even the implied warranty of
18    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19    GNU General Public License for more details.
20
21    You should have received a copy of the GNU General Public License
22    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
23
24 #if !defined (TARGET_H)
25 #define TARGET_H
26
27 struct objfile;
28 struct ui_file;
29 struct mem_attrib;
30 struct target_ops;
31 struct bp_target_info;
32 struct regcache;
33 struct target_section_table;
34 struct trace_state_variable;
35 struct trace_status;
36 struct uploaded_tsv;
37 struct uploaded_tp;
38 struct static_tracepoint_marker;
39
40 struct expression;
41
42 /* This include file defines the interface between the main part
43    of the debugger, and the part which is target-specific, or
44    specific to the communications interface between us and the
45    target.
46
47    A TARGET is an interface between the debugger and a particular
48    kind of file or process.  Targets can be STACKED in STRATA,
49    so that more than one target can potentially respond to a request.
50    In particular, memory accesses will walk down the stack of targets
51    until they find a target that is interested in handling that particular
52    address.  STRATA are artificial boundaries on the stack, within
53    which particular kinds of targets live.  Strata exist so that
54    people don't get confused by pushing e.g. a process target and then
55    a file target, and wondering why they can't see the current values
56    of variables any more (the file target is handling them and they
57    never get to the process target).  So when you push a file target,
58    it goes into the file stratum, which is always below the process
59    stratum.  */
60
61 #include "bfd.h"
62 #include "symtab.h"
63 #include "memattr.h"
64 #include "vec.h"
65 #include "gdb_signals.h"
66
67 enum strata
68   {
69     dummy_stratum,              /* The lowest of the low */
70     file_stratum,               /* Executable files, etc */
71     process_stratum,            /* Executing processes or core dump files */
72     thread_stratum,             /* Executing threads */
73     record_stratum,             /* Support record debugging */
74     arch_stratum                /* Architecture overrides */
75   };
76
77 enum thread_control_capabilities
78   {
79     tc_none = 0,                /* Default: can't control thread execution.  */
80     tc_schedlock = 1,           /* Can lock the thread scheduler.  */
81   };
82
83 /* Stuff for target_wait.  */
84
85 /* Generally, what has the program done?  */
86 enum target_waitkind
87   {
88     /* The program has exited.  The exit status is in value.integer.  */
89     TARGET_WAITKIND_EXITED,
90
91     /* The program has stopped with a signal.  Which signal is in
92        value.sig.  */
93     TARGET_WAITKIND_STOPPED,
94
95     /* The program has terminated with a signal.  Which signal is in
96        value.sig.  */
97     TARGET_WAITKIND_SIGNALLED,
98
99     /* The program is letting us know that it dynamically loaded something
100        (e.g. it called load(2) on AIX).  */
101     TARGET_WAITKIND_LOADED,
102
103     /* The program has forked.  A "related" process' PTID is in
104        value.related_pid.  I.e., if the child forks, value.related_pid
105        is the parent's ID.  */
106
107     TARGET_WAITKIND_FORKED,
108
109     /* The program has vforked.  A "related" process's PTID is in
110        value.related_pid.  */
111
112     TARGET_WAITKIND_VFORKED,
113
114     /* The program has exec'ed a new executable file.  The new file's
115        pathname is pointed to by value.execd_pathname.  */
116
117     TARGET_WAITKIND_EXECD,
118
119     /* The program had previously vforked, and now the child is done
120        with the shared memory region, because it exec'ed or exited.
121        Note that the event is reported to the vfork parent.  This is
122        only used if GDB did not stay attached to the vfork child,
123        otherwise, a TARGET_WAITKIND_EXECD or
124        TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
125        has the same effect.  */
126     TARGET_WAITKIND_VFORK_DONE,
127
128     /* The program has entered or returned from a system call.  On
129        HP-UX, this is used in the hardware watchpoint implementation.
130        The syscall's unique integer ID number is in value.syscall_id */
131
132     TARGET_WAITKIND_SYSCALL_ENTRY,
133     TARGET_WAITKIND_SYSCALL_RETURN,
134
135     /* Nothing happened, but we stopped anyway.  This perhaps should be handled
136        within target_wait, but I'm not sure target_wait should be resuming the
137        inferior.  */
138     TARGET_WAITKIND_SPURIOUS,
139
140     /* An event has occured, but we should wait again.
141        Remote_async_wait() returns this when there is an event
142        on the inferior, but the rest of the world is not interested in
143        it. The inferior has not stopped, but has just sent some output
144        to the console, for instance. In this case, we want to go back
145        to the event loop and wait there for another event from the
146        inferior, rather than being stuck in the remote_async_wait()
147        function. This way the event loop is responsive to other events,
148        like for instance the user typing.  */
149     TARGET_WAITKIND_IGNORE,
150
151     /* The target has run out of history information,
152        and cannot run backward any further.  */
153     TARGET_WAITKIND_NO_HISTORY
154   };
155
156 struct target_waitstatus
157   {
158     enum target_waitkind kind;
159
160     /* Forked child pid, execd pathname, exit status, signal number or
161        syscall number.  */
162     union
163       {
164         int integer;
165         enum target_signal sig;
166         ptid_t related_pid;
167         char *execd_pathname;
168         int syscall_number;
169       }
170     value;
171   };
172
173 /* Options that can be passed to target_wait.  */
174
175 /* Return immediately if there's no event already queued.  If this
176    options is not requested, target_wait blocks waiting for an
177    event.  */
178 #define TARGET_WNOHANG 1
179
180 /* The structure below stores information about a system call.
181    It is basically used in the "catch syscall" command, and in
182    every function that gives information about a system call.
183    
184    It's also good to mention that its fields represent everything
185    that we currently know about a syscall in GDB.  */
186 struct syscall
187   {
188     /* The syscall number.  */
189     int number;
190
191     /* The syscall name.  */
192     const char *name;
193   };
194
195 /* Return a pretty printed form of target_waitstatus.
196    Space for the result is malloc'd, caller must free.  */
197 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
198
199 /* Possible types of events that the inferior handler will have to
200    deal with.  */
201 enum inferior_event_type
202   {
203     /* There is a request to quit the inferior, abandon it.  */
204     INF_QUIT_REQ,
205     /* Process a normal inferior event which will result in target_wait
206        being called.  */
207     INF_REG_EVENT,
208     /* Deal with an error on the inferior.  */
209     INF_ERROR,
210     /* We are called because a timer went off.  */
211     INF_TIMER,
212     /* We are called to do stuff after the inferior stops.  */
213     INF_EXEC_COMPLETE,
214     /* We are called to do some stuff after the inferior stops, but we
215        are expected to reenter the proceed() and
216        handle_inferior_event() functions. This is used only in case of
217        'step n' like commands.  */
218     INF_EXEC_CONTINUE
219   };
220 \f
221 /* Target objects which can be transfered using target_read,
222    target_write, et cetera.  */
223
224 enum target_object
225 {
226   /* AVR target specific transfer.  See "avr-tdep.c" and "remote.c".  */
227   TARGET_OBJECT_AVR,
228   /* SPU target specific transfer.  See "spu-tdep.c".  */
229   TARGET_OBJECT_SPU,
230   /* Transfer up-to LEN bytes of memory starting at OFFSET.  */
231   TARGET_OBJECT_MEMORY,
232   /* Memory, avoiding GDB's data cache and trusting the executable.
233      Target implementations of to_xfer_partial never need to handle
234      this object, and most callers should not use it.  */
235   TARGET_OBJECT_RAW_MEMORY,
236   /* Memory known to be part of the target's stack.  This is cached even
237      if it is not in a region marked as such, since it is known to be
238      "normal" RAM.  */
239   TARGET_OBJECT_STACK_MEMORY,
240   /* Kernel Unwind Table.  See "ia64-tdep.c".  */
241   TARGET_OBJECT_UNWIND_TABLE,
242   /* Transfer auxilliary vector.  */
243   TARGET_OBJECT_AUXV,
244   /* StackGhost cookie.  See "sparc-tdep.c".  */
245   TARGET_OBJECT_WCOOKIE,
246   /* Target memory map in XML format.  */
247   TARGET_OBJECT_MEMORY_MAP,
248   /* Flash memory.  This object can be used to write contents to
249      a previously erased flash memory.  Using it without erasing
250      flash can have unexpected results.  Addresses are physical
251      address on target, and not relative to flash start.  */
252   TARGET_OBJECT_FLASH,
253   /* Available target-specific features, e.g. registers and coprocessors.
254      See "target-descriptions.c".  ANNEX should never be empty.  */
255   TARGET_OBJECT_AVAILABLE_FEATURES,
256   /* Currently loaded libraries, in XML format.  */
257   TARGET_OBJECT_LIBRARIES,
258   /* Get OS specific data.  The ANNEX specifies the type (running
259      processes, etc.).  */
260   TARGET_OBJECT_OSDATA,
261   /* Extra signal info.  Usually the contents of `siginfo_t' on unix
262      platforms.  */
263   TARGET_OBJECT_SIGNAL_INFO,
264   /* The list of threads that are being debugged.  */
265   TARGET_OBJECT_THREADS,
266   /* Collected static trace data.  */
267   TARGET_OBJECT_STATIC_TRACE_DATA,
268   /* Possible future objects: TARGET_OBJECT_FILE, ... */
269 };
270
271 /* Enumeration of the kinds of traceframe searches that a target may
272    be able to perform.  */
273
274 enum trace_find_type
275   {
276     tfind_number,
277     tfind_pc,
278     tfind_tp,
279     tfind_range,
280     tfind_outside,
281   };
282
283 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
284 DEF_VEC_P(static_tracepoint_marker_p);
285
286 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
287    OBJECT.  The OFFSET, for a seekable object, specifies the
288    starting point.  The ANNEX can be used to provide additional
289    data-specific information to the target.
290
291    Return the number of bytes actually transfered, or -1 if the
292    transfer is not supported or otherwise fails.  Return of a positive
293    value less than LEN indicates that no further transfer is possible.
294    Unlike the raw to_xfer_partial interface, callers of these
295    functions do not need to retry partial transfers.  */
296
297 extern LONGEST target_read (struct target_ops *ops,
298                             enum target_object object,
299                             const char *annex, gdb_byte *buf,
300                             ULONGEST offset, LONGEST len);
301
302 extern LONGEST target_read_until_error (struct target_ops *ops,
303                                         enum target_object object,
304                                         const char *annex, gdb_byte *buf,
305                                         ULONGEST offset, LONGEST len);
306   
307 extern LONGEST target_write (struct target_ops *ops,
308                              enum target_object object,
309                              const char *annex, const gdb_byte *buf,
310                              ULONGEST offset, LONGEST len);
311
312 /* Similar to target_write, except that it also calls PROGRESS with
313    the number of bytes written and the opaque BATON after every
314    successful partial write (and before the first write).  This is
315    useful for progress reporting and user interaction while writing
316    data.  To abort the transfer, the progress callback can throw an
317    exception.  */
318
319 LONGEST target_write_with_progress (struct target_ops *ops,
320                                     enum target_object object,
321                                     const char *annex, const gdb_byte *buf,
322                                     ULONGEST offset, LONGEST len,
323                                     void (*progress) (ULONGEST, void *),
324                                     void *baton);
325
326 /* Wrapper to perform a full read of unknown size.  OBJECT/ANNEX will
327    be read using OPS.  The return value will be -1 if the transfer
328    fails or is not supported; 0 if the object is empty; or the length
329    of the object otherwise.  If a positive value is returned, a
330    sufficiently large buffer will be allocated using xmalloc and
331    returned in *BUF_P containing the contents of the object.
332
333    This method should be used for objects sufficiently small to store
334    in a single xmalloc'd buffer, when no fixed bound on the object's
335    size is known in advance.  Don't try to read TARGET_OBJECT_MEMORY
336    through this function.  */
337
338 extern LONGEST target_read_alloc (struct target_ops *ops,
339                                   enum target_object object,
340                                   const char *annex, gdb_byte **buf_p);
341
342 /* Read OBJECT/ANNEX using OPS.  The result is NUL-terminated and
343    returned as a string, allocated using xmalloc.  If an error occurs
344    or the transfer is unsupported, NULL is returned.  Empty objects
345    are returned as allocated but empty strings.  A warning is issued
346    if the result contains any embedded NUL bytes.  */
347
348 extern char *target_read_stralloc (struct target_ops *ops,
349                                    enum target_object object,
350                                    const char *annex);
351
352 /* Wrappers to target read/write that perform memory transfers.  They
353    throw an error if the memory transfer fails.
354
355    NOTE: cagney/2003-10-23: The naming schema is lifted from
356    "frame.h".  The parameter order is lifted from get_frame_memory,
357    which in turn lifted it from read_memory.  */
358
359 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
360                                gdb_byte *buf, LONGEST len);
361 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
362                                             CORE_ADDR addr, int len,
363                                             enum bfd_endian byte_order);
364 \f
365 struct thread_info;             /* fwd decl for parameter list below: */
366
367 struct target_ops
368   {
369     struct target_ops *beneath; /* To the target under this one.  */
370     char *to_shortname;         /* Name this target type */
371     char *to_longname;          /* Name for printing */
372     char *to_doc;               /* Documentation.  Does not include trailing
373                                    newline, and starts with a one-line descrip-
374                                    tion (probably similar to to_longname).  */
375     /* Per-target scratch pad.  */
376     void *to_data;
377     /* The open routine takes the rest of the parameters from the
378        command, and (if successful) pushes a new target onto the
379        stack.  Targets should supply this routine, if only to provide
380        an error message.  */
381     void (*to_open) (char *, int);
382     /* Old targets with a static target vector provide "to_close".
383        New re-entrant targets provide "to_xclose" and that is expected
384        to xfree everything (including the "struct target_ops").  */
385     void (*to_xclose) (struct target_ops *targ, int quitting);
386     void (*to_close) (int);
387     void (*to_attach) (struct target_ops *ops, char *, int);
388     void (*to_post_attach) (int);
389     void (*to_detach) (struct target_ops *ops, char *, int);
390     void (*to_disconnect) (struct target_ops *, char *, int);
391     void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
392     ptid_t (*to_wait) (struct target_ops *,
393                        ptid_t, struct target_waitstatus *, int);
394     void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
395     void (*to_store_registers) (struct target_ops *, struct regcache *, int);
396     void (*to_prepare_to_store) (struct regcache *);
397
398     /* Transfer LEN bytes of memory between GDB address MYADDR and
399        target address MEMADDR.  If WRITE, transfer them to the target, else
400        transfer them from the target.  TARGET is the target from which we
401        get this function.
402
403        Return value, N, is one of the following:
404
405        0 means that we can't handle this.  If errno has been set, it is the
406        error which prevented us from doing it (FIXME: What about bfd_error?).
407
408        positive (call it N) means that we have transferred N bytes
409        starting at MEMADDR.  We might be able to handle more bytes
410        beyond this length, but no promises.
411
412        negative (call its absolute value N) means that we cannot
413        transfer right at MEMADDR, but we could transfer at least
414        something at MEMADDR + N.
415
416        NOTE: cagney/2004-10-01: This has been entirely superseeded by
417        to_xfer_partial and inferior inheritance.  */
418
419     int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
420                                    int len, int write,
421                                    struct mem_attrib *attrib,
422                                    struct target_ops *target);
423
424     void (*to_files_info) (struct target_ops *);
425     int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
426     int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
427     int (*to_can_use_hw_breakpoint) (int, int, int);
428     int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
429     int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
430
431     /* Documentation of what the two routines below are expected to do is
432        provided with the corresponding target_* macros.  */
433     int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
434     int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
435
436     int (*to_stopped_by_watchpoint) (void);
437     int to_have_steppable_watchpoint;
438     int to_have_continuable_watchpoint;
439     int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
440     int (*to_watchpoint_addr_within_range) (struct target_ops *,
441                                             CORE_ADDR, CORE_ADDR, int);
442     int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
443     int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
444                                               struct expression *);
445     void (*to_terminal_init) (void);
446     void (*to_terminal_inferior) (void);
447     void (*to_terminal_ours_for_output) (void);
448     void (*to_terminal_ours) (void);
449     void (*to_terminal_save_ours) (void);
450     void (*to_terminal_info) (char *, int);
451     void (*to_kill) (struct target_ops *);
452     void (*to_load) (char *, int);
453     int (*to_lookup_symbol) (char *, CORE_ADDR *);
454     void (*to_create_inferior) (struct target_ops *, 
455                                 char *, char *, char **, int);
456     void (*to_post_startup_inferior) (ptid_t);
457     void (*to_acknowledge_created_inferior) (int);
458     void (*to_insert_fork_catchpoint) (int);
459     int (*to_remove_fork_catchpoint) (int);
460     void (*to_insert_vfork_catchpoint) (int);
461     int (*to_remove_vfork_catchpoint) (int);
462     int (*to_follow_fork) (struct target_ops *, int);
463     void (*to_insert_exec_catchpoint) (int);
464     int (*to_remove_exec_catchpoint) (int);
465     int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
466     int (*to_has_exited) (int, int, int *);
467     void (*to_mourn_inferior) (struct target_ops *);
468     int (*to_can_run) (void);
469     void (*to_notice_signals) (ptid_t ptid);
470     int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
471     void (*to_find_new_threads) (struct target_ops *);
472     char *(*to_pid_to_str) (struct target_ops *, ptid_t);
473     char *(*to_extra_thread_info) (struct thread_info *);
474     void (*to_stop) (ptid_t);
475     void (*to_rcmd) (char *command, struct ui_file *output);
476     char *(*to_pid_to_exec_file) (int pid);
477     void (*to_log_command) (const char *);
478     struct target_section_table *(*to_get_section_table) (struct target_ops *);
479     enum strata to_stratum;
480     int (*to_has_all_memory) (struct target_ops *);
481     int (*to_has_memory) (struct target_ops *);
482     int (*to_has_stack) (struct target_ops *);
483     int (*to_has_registers) (struct target_ops *);
484     int (*to_has_execution) (struct target_ops *);
485     int to_has_thread_control;  /* control thread execution */
486     int to_attach_no_wait;
487     /* ASYNC target controls */
488     int (*to_can_async_p) (void);
489     int (*to_is_async_p) (void);
490     void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
491     int (*to_async_mask) (int);
492     int (*to_supports_non_stop) (void);
493     /* find_memory_regions support method for gcore */
494     int (*to_find_memory_regions) (int (*) (CORE_ADDR,
495                                             unsigned long,
496                                             int, int, int,
497                                             void *),
498                                    void *);
499     /* make_corefile_notes support method for gcore */
500     char * (*to_make_corefile_notes) (bfd *, int *);
501     /* get_bookmark support method for bookmarks */
502     gdb_byte * (*to_get_bookmark) (char *, int);
503     /* goto_bookmark support method for bookmarks */
504     void (*to_goto_bookmark) (gdb_byte *, int);
505     /* Return the thread-local address at OFFSET in the
506        thread-local storage for the thread PTID and the shared library
507        or executable file given by OBJFILE.  If that block of
508        thread-local storage hasn't been allocated yet, this function
509        may return an error.  */
510     CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
511                                               ptid_t ptid,
512                                               CORE_ADDR load_module_addr,
513                                               CORE_ADDR offset);
514
515     /* Request that OPS transfer up to LEN 8-bit bytes of the target's
516        OBJECT.  The OFFSET, for a seekable object, specifies the
517        starting point.  The ANNEX can be used to provide additional
518        data-specific information to the target.
519
520        Return the number of bytes actually transfered, zero when no
521        further transfer is possible, and -1 when the transfer is not
522        supported.  Return of a positive value smaller than LEN does
523        not indicate the end of the object, only the end of the
524        transfer; higher level code should continue transferring if
525        desired.  This is handled in target.c.
526
527        The interface does not support a "retry" mechanism.  Instead it
528        assumes that at least one byte will be transfered on each
529        successful call.
530
531        NOTE: cagney/2003-10-17: The current interface can lead to
532        fragmented transfers.  Lower target levels should not implement
533        hacks, such as enlarging the transfer, in an attempt to
534        compensate for this.  Instead, the target stack should be
535        extended so that it implements supply/collect methods and a
536        look-aside object cache.  With that available, the lowest
537        target can safely and freely "push" data up the stack.
538
539        See target_read and target_write for more information.  One,
540        and only one, of readbuf or writebuf must be non-NULL.  */
541
542     LONGEST (*to_xfer_partial) (struct target_ops *ops,
543                                 enum target_object object, const char *annex,
544                                 gdb_byte *readbuf, const gdb_byte *writebuf,
545                                 ULONGEST offset, LONGEST len);
546
547     /* Returns the memory map for the target.  A return value of NULL
548        means that no memory map is available.  If a memory address
549        does not fall within any returned regions, it's assumed to be
550        RAM.  The returned memory regions should not overlap.
551
552        The order of regions does not matter; target_memory_map will
553        sort regions by starting address. For that reason, this
554        function should not be called directly except via
555        target_memory_map.
556
557        This method should not cache data; if the memory map could
558        change unexpectedly, it should be invalidated, and higher
559        layers will re-fetch it.  */
560     VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
561
562     /* Erases the region of flash memory starting at ADDRESS, of
563        length LENGTH.
564
565        Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
566        on flash block boundaries, as reported by 'to_memory_map'.  */
567     void (*to_flash_erase) (struct target_ops *,
568                            ULONGEST address, LONGEST length);
569
570     /* Finishes a flash memory write sequence.  After this operation
571        all flash memory should be available for writing and the result
572        of reading from areas written by 'to_flash_write' should be
573        equal to what was written.  */
574     void (*to_flash_done) (struct target_ops *);
575
576     /* Describe the architecture-specific features of this target.
577        Returns the description found, or NULL if no description
578        was available.  */
579     const struct target_desc *(*to_read_description) (struct target_ops *ops);
580
581     /* Build the PTID of the thread on which a given task is running,
582        based on LWP and THREAD.  These values are extracted from the
583        task Private_Data section of the Ada Task Control Block, and
584        their interpretation depends on the target.  */
585     ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
586
587     /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
588        Return 0 if *READPTR is already at the end of the buffer.
589        Return -1 if there is insufficient buffer for a whole entry.
590        Return 1 if an entry was read into *TYPEP and *VALP.  */
591     int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
592                          gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
593
594     /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
595        sequence of bytes in PATTERN with length PATTERN_LEN.
596
597        The result is 1 if found, 0 if not found, and -1 if there was an error
598        requiring halting of the search (e.g. memory read error).
599        If the pattern is found the address is recorded in FOUND_ADDRP.  */
600     int (*to_search_memory) (struct target_ops *ops,
601                              CORE_ADDR start_addr, ULONGEST search_space_len,
602                              const gdb_byte *pattern, ULONGEST pattern_len,
603                              CORE_ADDR *found_addrp);
604
605     /* Can target execute in reverse?  */
606     int (*to_can_execute_reverse) (void);
607
608     /* Does this target support debugging multiple processes
609        simultaneously?  */
610     int (*to_supports_multi_process) (void);
611
612     /* Determine current architecture of thread PTID.
613
614        The target is supposed to determine the architecture of the code where
615        the target is currently stopped at (on Cell, if a target is in spu_run,
616        to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
617        This is architecture used to perform decr_pc_after_break adjustment,
618        and also determines the frame architecture of the innermost frame.
619        ptrace operations need to operate according to target_gdbarch.
620
621        The default implementation always returns target_gdbarch.  */
622     struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
623
624     /* Determine current address space of thread PTID.
625
626        The default implementation always returns the inferior's
627        address space.  */
628     struct address_space *(*to_thread_address_space) (struct target_ops *,
629                                                       ptid_t);
630
631     /* Tracepoint-related operations.  */
632
633     /* Prepare the target for a tracing run.  */
634     void (*to_trace_init) (void);
635
636     /* Send full details of a tracepoint to the target.  */
637     void (*to_download_tracepoint) (struct breakpoint *t);
638
639     /* Send full details of a trace state variable to the target.  */
640     void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
641
642     /* Inform the target info of memory regions that are readonly
643        (such as text sections), and so it should return data from
644        those rather than look in the trace buffer.  */
645     void (*to_trace_set_readonly_regions) (void);
646
647     /* Start a trace run.  */
648     void (*to_trace_start) (void);
649
650     /* Get the current status of a tracing run.  */
651     int (*to_get_trace_status) (struct trace_status *ts);
652
653     /* Stop a trace run.  */
654     void (*to_trace_stop) (void);
655
656    /* Ask the target to find a trace frame of the given type TYPE,
657       using NUM, ADDR1, and ADDR2 as search parameters.  Returns the
658       number of the trace frame, and also the tracepoint number at
659       TPP.  If no trace frame matches, return -1. May throw if the
660       operation fails.  */
661     int (*to_trace_find) (enum trace_find_type type, int num,
662                           ULONGEST addr1, ULONGEST addr2, int *tpp);
663
664     /* Get the value of the trace state variable number TSV, returning
665        1 if the value is known and writing the value itself into the
666        location pointed to by VAL, else returning 0.  */
667     int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
668
669     int (*to_save_trace_data) (const char *filename);
670
671     int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
672
673     int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
674
675     LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
676                                       ULONGEST offset, LONGEST len);
677
678     /* Set the target's tracing behavior in response to unexpected
679        disconnection - set VAL to 1 to keep tracing, 0 to stop.  */
680     void (*to_set_disconnected_tracing) (int val);
681     void (*to_set_circular_trace_buffer) (int val);
682
683     /* Return the processor core that thread PTID was last seen on.
684        This information is updated only when:
685        - update_thread_list is called
686        - thread stops
687        If the core cannot be determined -- either for the specified thread, or
688        right now, or in this debug session, or for this target -- return -1.  */
689     int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
690
691     /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
692        matches the contents of [DATA,DATA+SIZE).  Returns 1 if there's
693        a match, 0 if there's a mismatch, and -1 if an error is
694        encountered while reading memory.  */
695     int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
696                              CORE_ADDR memaddr, ULONGEST size);
697
698     /* Return the address of the start of the Thread Information Block
699        a Windows OS specific feature.  */
700     int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
701
702     /* Send the new settings of write permission variables.  */
703     void (*to_set_permissions) (void);
704
705     /* Look for a static tracepoint marker at ADDR, and fill in MARKER
706        with its details.  Return 1 on success, 0 on failure.  */
707     int (*to_static_tracepoint_marker_at) (CORE_ADDR,
708                                            struct static_tracepoint_marker *marker);
709
710     /* Return a vector of all tracepoints markers string id ID, or all
711        markers if ID is NULL.  */
712     VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
713       (const char *id);
714
715     int to_magic;
716     /* Need sub-structure for target machine related rather than comm related?
717      */
718   };
719
720 /* Magic number for checking ops size.  If a struct doesn't end with this
721    number, somebody changed the declaration but didn't change all the
722    places that initialize one.  */
723
724 #define OPS_MAGIC       3840
725
726 /* The ops structure for our "current" target process.  This should
727    never be NULL.  If there is no target, it points to the dummy_target.  */
728
729 extern struct target_ops current_target;
730
731 /* Define easy words for doing these operations on our current target.  */
732
733 #define target_shortname        (current_target.to_shortname)
734 #define target_longname         (current_target.to_longname)
735
736 /* Does whatever cleanup is required for a target that we are no
737    longer going to be calling.  QUITTING indicates that GDB is exiting
738    and should not get hung on an error (otherwise it is important to
739    perform clean termination, even if it takes a while).  This routine
740    is automatically always called when popping the target off the
741    target stack (to_beneath is undefined).  Closing file descriptors
742    and freeing all memory allocated memory are typical things it
743    should do.  */
744
745 void target_close (struct target_ops *targ, int quitting);
746
747 /* Attaches to a process on the target side.  Arguments are as passed
748    to the `attach' command by the user.  This routine can be called
749    when the target is not on the target-stack, if the target_can_run
750    routine returns 1; in that case, it must push itself onto the stack.
751    Upon exit, the target should be ready for normal operations, and
752    should be ready to deliver the status of the process immediately
753    (without waiting) to an upcoming target_wait call.  */
754
755 void target_attach (char *, int);
756
757 /* Some targets don't generate traps when attaching to the inferior,
758    or their target_attach implementation takes care of the waiting.
759    These targets must set to_attach_no_wait.  */
760
761 #define target_attach_no_wait \
762      (current_target.to_attach_no_wait)
763
764 /* The target_attach operation places a process under debugger control,
765    and stops the process.
766
767    This operation provides a target-specific hook that allows the
768    necessary bookkeeping to be performed after an attach completes.  */
769 #define target_post_attach(pid) \
770      (*current_target.to_post_attach) (pid)
771
772 /* Takes a program previously attached to and detaches it.
773    The program may resume execution (some targets do, some don't) and will
774    no longer stop on signals, etc.  We better not have left any breakpoints
775    in the program or it'll die when it hits one.  ARGS is arguments
776    typed by the user (e.g. a signal to send the process).  FROM_TTY
777    says whether to be verbose or not.  */
778
779 extern void target_detach (char *, int);
780
781 /* Disconnect from the current target without resuming it (leaving it
782    waiting for a debugger).  */
783
784 extern void target_disconnect (char *, int);
785
786 /* Resume execution of the target process PTID.  STEP says whether to
787    single-step or to run free; SIGGNAL is the signal to be given to
788    the target, or TARGET_SIGNAL_0 for no signal.  The caller may not
789    pass TARGET_SIGNAL_DEFAULT.  */
790
791 extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
792
793 /* Wait for process pid to do something.  PTID = -1 to wait for any
794    pid to do something.  Return pid of child, or -1 in case of error;
795    store status through argument pointer STATUS.  Note that it is
796    _NOT_ OK to throw_exception() out of target_wait() without popping
797    the debugging target from the stack; GDB isn't prepared to get back
798    to the prompt with a debugging target but without the frame cache,
799    stop_pc, etc., set up.  OPTIONS is a bitwise OR of TARGET_W*
800    options.  */
801
802 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
803                            int options);
804
805 /* Fetch at least register REGNO, or all regs if regno == -1.  No result.  */
806
807 extern void target_fetch_registers (struct regcache *regcache, int regno);
808
809 /* Store at least register REGNO, or all regs if REGNO == -1.
810    It can store as many registers as it wants to, so target_prepare_to_store
811    must have been previously called.  Calls error() if there are problems.  */
812
813 extern void target_store_registers (struct regcache *regcache, int regs);
814
815 /* Get ready to modify the registers array.  On machines which store
816    individual registers, this doesn't need to do anything.  On machines
817    which store all the registers in one fell swoop, this makes sure
818    that REGISTERS contains all the registers from the program being
819    debugged.  */
820
821 #define target_prepare_to_store(regcache)       \
822      (*current_target.to_prepare_to_store) (regcache)
823
824 /* Determine current address space of thread PTID.  */
825
826 struct address_space *target_thread_address_space (ptid_t);
827
828 /* Returns true if this target can debug multiple processes
829    simultaneously.  */
830
831 #define target_supports_multi_process() \
832      (*current_target.to_supports_multi_process) ()
833
834 /* Invalidate all target dcaches.  */
835 extern void target_dcache_invalidate (void);
836
837 extern int target_read_string (CORE_ADDR, char **, int, int *);
838
839 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
840
841 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
842
843 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
844                                 int len);
845
846 /* Fetches the target's memory map.  If one is found it is sorted
847    and returned, after some consistency checking.  Otherwise, NULL
848    is returned.  */
849 VEC(mem_region_s) *target_memory_map (void);
850
851 /* Erase the specified flash region.  */
852 void target_flash_erase (ULONGEST address, LONGEST length);
853
854 /* Finish a sequence of flash operations.  */
855 void target_flash_done (void);
856
857 /* Describes a request for a memory write operation.  */
858 struct memory_write_request
859   {
860     /* Begining address that must be written. */
861     ULONGEST begin;
862     /* Past-the-end address. */
863     ULONGEST end;
864     /* The data to write. */
865     gdb_byte *data;
866     /* A callback baton for progress reporting for this request.  */
867     void *baton;
868   };
869 typedef struct memory_write_request memory_write_request_s;
870 DEF_VEC_O(memory_write_request_s);
871
872 /* Enumeration specifying different flash preservation behaviour.  */
873 enum flash_preserve_mode
874   {
875     flash_preserve,
876     flash_discard
877   };
878
879 /* Write several memory blocks at once.  This version can be more
880    efficient than making several calls to target_write_memory, in
881    particular because it can optimize accesses to flash memory.
882
883    Moreover, this is currently the only memory access function in gdb
884    that supports writing to flash memory, and it should be used for
885    all cases where access to flash memory is desirable.
886
887    REQUESTS is the vector (see vec.h) of memory_write_request.
888    PRESERVE_FLASH_P indicates what to do with blocks which must be
889      erased, but not completely rewritten.
890    PROGRESS_CB is a function that will be periodically called to provide
891      feedback to user.  It will be called with the baton corresponding
892      to the request currently being written.  It may also be called
893      with a NULL baton, when preserved flash sectors are being rewritten.
894
895    The function returns 0 on success, and error otherwise.  */
896 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
897                                 enum flash_preserve_mode preserve_flash_p,
898                                 void (*progress_cb) (ULONGEST, void *));
899
900 /* From infrun.c.  */
901
902 extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
903
904 extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
905
906 extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
907
908 extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
909
910 /* Print a line about the current target.  */
911
912 #define target_files_info()     \
913      (*current_target.to_files_info) (&current_target)
914
915 /* Insert a breakpoint at address BP_TGT->placed_address in the target
916    machine.  Result is 0 for success, or an errno value.  */
917
918 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
919                                      struct bp_target_info *bp_tgt);
920
921 /* Remove a breakpoint at address BP_TGT->placed_address in the target
922    machine.  Result is 0 for success, or an errno value.  */
923
924 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
925                                      struct bp_target_info *bp_tgt);
926
927 /* Initialize the terminal settings we record for the inferior,
928    before we actually run the inferior.  */
929
930 #define target_terminal_init() \
931      (*current_target.to_terminal_init) ()
932
933 /* Put the inferior's terminal settings into effect.
934    This is preparation for starting or resuming the inferior.  */
935
936 extern void target_terminal_inferior (void);
937
938 /* Put some of our terminal settings into effect,
939    enough to get proper results from our output,
940    but do not change into or out of RAW mode
941    so that no input is discarded.
942
943    After doing this, either terminal_ours or terminal_inferior
944    should be called to get back to a normal state of affairs.  */
945
946 #define target_terminal_ours_for_output() \
947      (*current_target.to_terminal_ours_for_output) ()
948
949 /* Put our terminal settings into effect.
950    First record the inferior's terminal settings
951    so they can be restored properly later.  */
952
953 #define target_terminal_ours() \
954      (*current_target.to_terminal_ours) ()
955
956 /* Save our terminal settings.
957    This is called from TUI after entering or leaving the curses
958    mode.  Since curses modifies our terminal this call is here
959    to take this change into account.  */
960
961 #define target_terminal_save_ours() \
962      (*current_target.to_terminal_save_ours) ()
963
964 /* Print useful information about our terminal status, if such a thing
965    exists.  */
966
967 #define target_terminal_info(arg, from_tty) \
968      (*current_target.to_terminal_info) (arg, from_tty)
969
970 /* Kill the inferior process.   Make it go away.  */
971
972 extern void target_kill (void);
973
974 /* Load an executable file into the target process.  This is expected
975    to not only bring new code into the target process, but also to
976    update GDB's symbol tables to match.
977
978    ARG contains command-line arguments, to be broken down with
979    buildargv ().  The first non-switch argument is the filename to
980    load, FILE; the second is a number (as parsed by strtoul (..., ...,
981    0)), which is an offset to apply to the load addresses of FILE's
982    sections.  The target may define switches, or other non-switch
983    arguments, as it pleases.  */
984
985 extern void target_load (char *arg, int from_tty);
986
987 /* Look up a symbol in the target's symbol table.  NAME is the symbol
988    name.  ADDRP is a CORE_ADDR * pointing to where the value of the
989    symbol should be returned.  The result is 0 if successful, nonzero
990    if the symbol does not exist in the target environment.  This
991    function should not call error() if communication with the target
992    is interrupted, since it is called from symbol reading, but should
993    return nonzero, possibly doing a complain().  */
994
995 #define target_lookup_symbol(name, addrp) \
996      (*current_target.to_lookup_symbol) (name, addrp)
997
998 /* Start an inferior process and set inferior_ptid to its pid.
999    EXEC_FILE is the file to run.
1000    ALLARGS is a string containing the arguments to the program.
1001    ENV is the environment vector to pass.  Errors reported with error().
1002    On VxWorks and various standalone systems, we ignore exec_file.  */
1003
1004 void target_create_inferior (char *exec_file, char *args,
1005                              char **env, int from_tty);
1006
1007 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1008    notification of inferior events such as fork and vork immediately
1009    after the inferior is created.  (This because of how gdb gets an
1010    inferior created via invoking a shell to do it.  In such a scenario,
1011    if the shell init file has commands in it, the shell will fork and
1012    exec for each of those commands, and we will see each such fork
1013    event.  Very bad.)
1014
1015    Such targets will supply an appropriate definition for this function.  */
1016
1017 #define target_post_startup_inferior(ptid) \
1018      (*current_target.to_post_startup_inferior) (ptid)
1019
1020 /* On some targets, the sequence of starting up an inferior requires
1021    some synchronization between gdb and the new inferior process, PID.  */
1022
1023 #define target_acknowledge_created_inferior(pid) \
1024      (*current_target.to_acknowledge_created_inferior) (pid)
1025
1026 /* On some targets, we can catch an inferior fork or vfork event when
1027    it occurs.  These functions insert/remove an already-created
1028    catchpoint for such events.  */
1029
1030 #define target_insert_fork_catchpoint(pid) \
1031      (*current_target.to_insert_fork_catchpoint) (pid)
1032
1033 #define target_remove_fork_catchpoint(pid) \
1034      (*current_target.to_remove_fork_catchpoint) (pid)
1035
1036 #define target_insert_vfork_catchpoint(pid) \
1037      (*current_target.to_insert_vfork_catchpoint) (pid)
1038
1039 #define target_remove_vfork_catchpoint(pid) \
1040      (*current_target.to_remove_vfork_catchpoint) (pid)
1041
1042 /* If the inferior forks or vforks, this function will be called at
1043    the next resume in order to perform any bookkeeping and fiddling
1044    necessary to continue debugging either the parent or child, as
1045    requested, and releasing the other.  Information about the fork
1046    or vfork event is available via get_last_target_status ().
1047    This function returns 1 if the inferior should not be resumed
1048    (i.e. there is another event pending).  */
1049
1050 int target_follow_fork (int follow_child);
1051
1052 /* On some targets, we can catch an inferior exec event when it
1053    occurs.  These functions insert/remove an already-created
1054    catchpoint for such events.  */
1055
1056 #define target_insert_exec_catchpoint(pid) \
1057      (*current_target.to_insert_exec_catchpoint) (pid)
1058
1059 #define target_remove_exec_catchpoint(pid) \
1060      (*current_target.to_remove_exec_catchpoint) (pid)
1061
1062 /* Syscall catch.
1063
1064    NEEDED is nonzero if any syscall catch (of any kind) is requested.
1065    If NEEDED is zero, it means the target can disable the mechanism to
1066    catch system calls because there are no more catchpoints of this type.
1067
1068    ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1069    being requested.  In this case, both TABLE_SIZE and TABLE should
1070    be ignored.
1071
1072    TABLE_SIZE is the number of elements in TABLE.  It only matters if
1073    ANY_COUNT is zero.
1074
1075    TABLE is an array of ints, indexed by syscall number.  An element in
1076    this array is nonzero if that syscall should be caught.  This argument
1077    only matters if ANY_COUNT is zero.  */
1078
1079 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1080      (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1081                                                   table_size, table)
1082
1083 /* Returns TRUE if PID has exited.  And, also sets EXIT_STATUS to the
1084    exit code of PID, if any.  */
1085
1086 #define target_has_exited(pid,wait_status,exit_status) \
1087      (*current_target.to_has_exited) (pid,wait_status,exit_status)
1088
1089 /* The debugger has completed a blocking wait() call.  There is now
1090    some process event that must be processed.  This function should
1091    be defined by those targets that require the debugger to perform
1092    cleanup or internal state changes in response to the process event.  */
1093
1094 /* The inferior process has died.  Do what is right.  */
1095
1096 void target_mourn_inferior (void);
1097
1098 /* Does target have enough data to do a run or attach command? */
1099
1100 #define target_can_run(t) \
1101      ((t)->to_can_run) ()
1102
1103 /* post process changes to signal handling in the inferior.  */
1104
1105 #define target_notice_signals(ptid) \
1106      (*current_target.to_notice_signals) (ptid)
1107
1108 /* Check to see if a thread is still alive.  */
1109
1110 extern int target_thread_alive (ptid_t ptid);
1111
1112 /* Query for new threads and add them to the thread list.  */
1113
1114 extern void target_find_new_threads (void);
1115
1116 /* Make target stop in a continuable fashion.  (For instance, under
1117    Unix, this should act like SIGSTOP).  This function is normally
1118    used by GUIs to implement a stop button.  */
1119
1120 extern void target_stop (ptid_t ptid);
1121
1122 /* Send the specified COMMAND to the target's monitor
1123    (shell,interpreter) for execution.  The result of the query is
1124    placed in OUTBUF.  */
1125
1126 #define target_rcmd(command, outbuf) \
1127      (*current_target.to_rcmd) (command, outbuf)
1128
1129
1130 /* Does the target include all of memory, or only part of it?  This
1131    determines whether we look up the target chain for other parts of
1132    memory if this target can't satisfy a request.  */
1133
1134 extern int target_has_all_memory_1 (void);
1135 #define target_has_all_memory target_has_all_memory_1 ()
1136
1137 /* Does the target include memory?  (Dummy targets don't.)  */
1138
1139 extern int target_has_memory_1 (void);
1140 #define target_has_memory target_has_memory_1 ()
1141
1142 /* Does the target have a stack?  (Exec files don't, VxWorks doesn't, until
1143    we start a process.)  */
1144
1145 extern int target_has_stack_1 (void);
1146 #define target_has_stack target_has_stack_1 ()
1147
1148 /* Does the target have registers?  (Exec files don't.)  */
1149
1150 extern int target_has_registers_1 (void);
1151 #define target_has_registers target_has_registers_1 ()
1152
1153 /* Does the target have execution?  Can we make it jump (through
1154    hoops), or pop its stack a few times?  This means that the current
1155    target is currently executing; for some targets, that's the same as
1156    whether or not the target is capable of execution, but there are
1157    also targets which can be current while not executing.  In that
1158    case this will become true after target_create_inferior or
1159    target_attach.  */
1160
1161 extern int target_has_execution_1 (void);
1162 #define target_has_execution target_has_execution_1 ()
1163
1164 /* Default implementations for process_stratum targets.  Return true
1165    if there's a selected inferior, false otherwise.  */
1166
1167 extern int default_child_has_all_memory (struct target_ops *ops);
1168 extern int default_child_has_memory (struct target_ops *ops);
1169 extern int default_child_has_stack (struct target_ops *ops);
1170 extern int default_child_has_registers (struct target_ops *ops);
1171 extern int default_child_has_execution (struct target_ops *ops);
1172
1173 /* Can the target support the debugger control of thread execution?
1174    Can it lock the thread scheduler?  */
1175
1176 #define target_can_lock_scheduler \
1177      (current_target.to_has_thread_control & tc_schedlock)
1178
1179 /* Should the target enable async mode if it is supported?  Temporary
1180    cludge until async mode is a strict superset of sync mode.  */
1181 extern int target_async_permitted;
1182
1183 /* Can the target support asynchronous execution? */
1184 #define target_can_async_p() (current_target.to_can_async_p ())
1185
1186 /* Is the target in asynchronous execution mode? */
1187 #define target_is_async_p() (current_target.to_is_async_p ())
1188
1189 int target_supports_non_stop (void);
1190
1191 /* Put the target in async mode with the specified callback function. */
1192 #define target_async(CALLBACK,CONTEXT) \
1193      (current_target.to_async ((CALLBACK), (CONTEXT)))
1194
1195 /* This is to be used ONLY within call_function_by_hand(). It provides
1196    a workaround, to have inferior function calls done in sychronous
1197    mode, even though the target is asynchronous. After
1198    target_async_mask(0) is called, calls to target_can_async_p() will
1199    return FALSE , so that target_resume() will not try to start the
1200    target asynchronously. After the inferior stops, we IMMEDIATELY
1201    restore the previous nature of the target, by calling
1202    target_async_mask(1). After that, target_can_async_p() will return
1203    TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1204
1205    FIXME ezannoni 1999-12-13: we won't need this once we move
1206    the turning async on and off to the single execution commands,
1207    from where it is done currently, in remote_resume().  */
1208
1209 #define target_async_mask(MASK) \
1210   (current_target.to_async_mask (MASK))
1211
1212 /* Converts a process id to a string.  Usually, the string just contains
1213    `process xyz', but on some systems it may contain
1214    `process xyz thread abc'.  */
1215
1216 extern char *target_pid_to_str (ptid_t ptid);
1217
1218 extern char *normal_pid_to_str (ptid_t ptid);
1219
1220 /* Return a short string describing extra information about PID,
1221    e.g. "sleeping", "runnable", "running on LWP 3".  Null return value
1222    is okay.  */
1223
1224 #define target_extra_thread_info(TP) \
1225      (current_target.to_extra_thread_info (TP))
1226
1227 /* Attempts to find the pathname of the executable file
1228    that was run to create a specified process.
1229
1230    The process PID must be stopped when this operation is used.
1231
1232    If the executable file cannot be determined, NULL is returned.
1233
1234    Else, a pointer to a character string containing the pathname
1235    is returned.  This string should be copied into a buffer by
1236    the client if the string will not be immediately used, or if
1237    it must persist.  */
1238
1239 #define target_pid_to_exec_file(pid) \
1240      (current_target.to_pid_to_exec_file) (pid)
1241
1242 /* See the to_thread_architecture description in struct target_ops.  */
1243
1244 #define target_thread_architecture(ptid) \
1245      (current_target.to_thread_architecture (&current_target, ptid))
1246
1247 /*
1248  * Iterator function for target memory regions.
1249  * Calls a callback function once for each memory region 'mapped'
1250  * in the child process.  Defined as a simple macro rather than
1251  * as a function macro so that it can be tested for nullity.
1252  */
1253
1254 #define target_find_memory_regions(FUNC, DATA) \
1255      (current_target.to_find_memory_regions) (FUNC, DATA)
1256
1257 /*
1258  * Compose corefile .note section.
1259  */
1260
1261 #define target_make_corefile_notes(BFD, SIZE_P) \
1262      (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1263
1264 /* Bookmark interfaces.  */
1265 #define target_get_bookmark(ARGS, FROM_TTY) \
1266      (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1267
1268 #define target_goto_bookmark(ARG, FROM_TTY) \
1269      (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1270
1271 /* Hardware watchpoint interfaces.  */
1272
1273 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1274    write).  Only the INFERIOR_PTID task is being queried.  */
1275
1276 #define target_stopped_by_watchpoint \
1277    (*current_target.to_stopped_by_watchpoint)
1278
1279 /* Non-zero if we have steppable watchpoints  */
1280
1281 #define target_have_steppable_watchpoint \
1282    (current_target.to_have_steppable_watchpoint)
1283
1284 /* Non-zero if we have continuable watchpoints  */
1285
1286 #define target_have_continuable_watchpoint \
1287    (current_target.to_have_continuable_watchpoint)
1288
1289 /* Provide defaults for hardware watchpoint functions.  */
1290
1291 /* If the *_hw_beakpoint functions have not been defined
1292    elsewhere use the definitions in the target vector.  */
1293
1294 /* Returns non-zero if we can set a hardware watchpoint of type TYPE.  TYPE is
1295    one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1296    bp_hardware_breakpoint.  CNT is the number of such watchpoints used so far
1297    (including this one?).  OTHERTYPE is who knows what...  */
1298
1299 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1300  (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1301
1302 #define target_region_ok_for_hw_watchpoint(addr, len) \
1303     (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1304
1305
1306 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1307    TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1308    COND is the expression for its condition, or NULL if there's none.
1309    Returns 0 for success, 1 if the watchpoint type is not supported,
1310    -1 for failure.  */
1311
1312 #define target_insert_watchpoint(addr, len, type, cond) \
1313      (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1314
1315 #define target_remove_watchpoint(addr, len, type, cond) \
1316      (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1317
1318 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1319      (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1320
1321 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1322      (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1323
1324 /* Return non-zero if target knows the data address which triggered this
1325    target_stopped_by_watchpoint, in such case place it to *ADDR_P.  Only the
1326    INFERIOR_PTID task is being queried.  */
1327 #define target_stopped_data_address(target, addr_p) \
1328     (*target.to_stopped_data_address) (target, addr_p)
1329
1330 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1331   (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1332
1333 /* Return non-zero if the target is capable of using hardware to evaluate
1334    the condition expression.  In this case, if the condition is false when
1335    the watched memory location changes, execution may continue without the
1336    debugger being notified.
1337
1338    Due to limitations in the hardware implementation, it may be capable of
1339    avoiding triggering the watchpoint in some cases where the condition
1340    expression is false, but may report some false positives as well.
1341    For this reason, GDB will still evaluate the condition expression when
1342    the watchpoint triggers.  */
1343 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1344   (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1345
1346 /* Target can execute in reverse?  */
1347 #define target_can_execute_reverse \
1348      (current_target.to_can_execute_reverse ? \
1349       current_target.to_can_execute_reverse () : 0)
1350
1351 extern const struct target_desc *target_read_description (struct target_ops *);
1352
1353 #define target_get_ada_task_ptid(lwp, tid) \
1354      (*current_target.to_get_ada_task_ptid) (lwp,tid)
1355
1356 /* Utility implementation of searching memory.  */
1357 extern int simple_search_memory (struct target_ops* ops,
1358                                  CORE_ADDR start_addr,
1359                                  ULONGEST search_space_len,
1360                                  const gdb_byte *pattern,
1361                                  ULONGEST pattern_len,
1362                                  CORE_ADDR *found_addrp);
1363
1364 /* Main entry point for searching memory.  */
1365 extern int target_search_memory (CORE_ADDR start_addr,
1366                                  ULONGEST search_space_len,
1367                                  const gdb_byte *pattern,
1368                                  ULONGEST pattern_len,
1369                                  CORE_ADDR *found_addrp);
1370
1371 /* Tracepoint-related operations.  */
1372
1373 #define target_trace_init() \
1374   (*current_target.to_trace_init) ()
1375
1376 #define target_download_tracepoint(t) \
1377   (*current_target.to_download_tracepoint) (t)
1378
1379 #define target_download_trace_state_variable(tsv) \
1380   (*current_target.to_download_trace_state_variable) (tsv)
1381
1382 #define target_trace_start() \
1383   (*current_target.to_trace_start) ()
1384
1385 #define target_trace_set_readonly_regions() \
1386   (*current_target.to_trace_set_readonly_regions) ()
1387
1388 #define target_get_trace_status(ts) \
1389   (*current_target.to_get_trace_status) (ts)
1390
1391 #define target_trace_stop() \
1392   (*current_target.to_trace_stop) ()
1393
1394 #define target_trace_find(type,num,addr1,addr2,tpp) \
1395   (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1396
1397 #define target_get_trace_state_variable_value(tsv,val) \
1398   (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1399
1400 #define target_save_trace_data(filename) \
1401   (*current_target.to_save_trace_data) (filename)
1402
1403 #define target_upload_tracepoints(utpp) \
1404   (*current_target.to_upload_tracepoints) (utpp)
1405
1406 #define target_upload_trace_state_variables(utsvp) \
1407   (*current_target.to_upload_trace_state_variables) (utsvp)
1408
1409 #define target_get_raw_trace_data(buf,offset,len) \
1410   (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1411
1412 #define target_set_disconnected_tracing(val) \
1413   (*current_target.to_set_disconnected_tracing) (val)
1414
1415 #define target_set_circular_trace_buffer(val)   \
1416   (*current_target.to_set_circular_trace_buffer) (val)
1417
1418 #define target_get_tib_address(ptid, addr) \
1419   (*current_target.to_get_tib_address) ((ptid), (addr))
1420
1421 #define target_set_permissions() \
1422   (*current_target.to_set_permissions) ()
1423
1424 #define target_static_tracepoint_marker_at(addr, marker) \
1425   (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1426
1427 #define target_static_tracepoint_markers_by_strid(marker_id) \
1428   (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1429
1430 /* Command logging facility.  */
1431
1432 #define target_log_command(p)                                           \
1433   do                                                                    \
1434     if (current_target.to_log_command)                                  \
1435       (*current_target.to_log_command) (p);                             \
1436   while (0)
1437
1438
1439 extern int target_core_of_thread (ptid_t ptid);
1440
1441 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1442    the contents of [DATA,DATA+SIZE).  Returns 1 if there's a match, 0
1443    if there's a mismatch, and -1 if an error is encountered while
1444    reading memory.  Throws an error if the functionality is found not
1445    to be supported by the current target.  */
1446 int target_verify_memory (const gdb_byte *data,
1447                           CORE_ADDR memaddr, ULONGEST size);
1448
1449 /* Routines for maintenance of the target structures...
1450
1451    add_target:   Add a target to the list of all possible targets.
1452
1453    push_target:  Make this target the top of the stack of currently used
1454    targets, within its particular stratum of the stack.  Result
1455    is 0 if now atop the stack, nonzero if not on top (maybe
1456    should warn user).
1457
1458    unpush_target: Remove this from the stack of currently used targets,
1459    no matter where it is on the list.  Returns 0 if no
1460    change, 1 if removed from stack.
1461
1462    pop_target:   Remove the top thing on the stack of current targets.  */
1463
1464 extern void add_target (struct target_ops *);
1465
1466 extern void push_target (struct target_ops *);
1467
1468 extern int unpush_target (struct target_ops *);
1469
1470 extern void target_pre_inferior (int);
1471
1472 extern void target_preopen (int);
1473
1474 extern void pop_target (void);
1475
1476 /* Does whatever cleanup is required to get rid of all pushed targets.
1477    QUITTING is propagated to target_close; it indicates that GDB is
1478    exiting and should not get hung on an error (otherwise it is
1479    important to perform clean termination, even if it takes a
1480    while).  */
1481 extern void pop_all_targets (int quitting);
1482
1483 /* Like pop_all_targets, but pops only targets whose stratum is
1484    strictly above ABOVE_STRATUM.  */
1485 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1486
1487 extern int target_is_pushed (struct target_ops *t);
1488
1489 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1490                                                CORE_ADDR offset);
1491
1492 /* Struct target_section maps address ranges to file sections.  It is
1493    mostly used with BFD files, but can be used without (e.g. for handling
1494    raw disks, or files not in formats handled by BFD).  */
1495
1496 struct target_section
1497   {
1498     CORE_ADDR addr;             /* Lowest address in section */
1499     CORE_ADDR endaddr;          /* 1+highest address in section */
1500
1501     struct bfd_section *the_bfd_section;
1502
1503     bfd *bfd;                   /* BFD file pointer */
1504   };
1505
1506 /* Holds an array of target sections.  Defined by [SECTIONS..SECTIONS_END[.  */
1507
1508 struct target_section_table
1509 {
1510   struct target_section *sections;
1511   struct target_section *sections_end;
1512 };
1513
1514 /* Return the "section" containing the specified address.  */
1515 struct target_section *target_section_by_addr (struct target_ops *target,
1516                                                CORE_ADDR addr);
1517
1518 /* Return the target section table this target (or the targets
1519    beneath) currently manipulate.  */
1520
1521 extern struct target_section_table *target_get_section_table
1522   (struct target_ops *target);
1523
1524 /* From mem-break.c */
1525
1526 extern int memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
1527
1528 extern int memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
1529
1530 extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
1531
1532 extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
1533
1534
1535 /* From target.c */
1536
1537 extern void initialize_targets (void);
1538
1539 extern void noprocess (void) ATTRIBUTE_NORETURN;
1540
1541 extern void target_require_runnable (void);
1542
1543 extern void find_default_attach (struct target_ops *, char *, int);
1544
1545 extern void find_default_create_inferior (struct target_ops *,
1546                                           char *, char *, char **, int);
1547
1548 extern struct target_ops *find_run_target (void);
1549
1550 extern struct target_ops *find_target_beneath (struct target_ops *);
1551
1552 /* Read OS data object of type TYPE from the target, and return it in
1553    XML format.  The result is NUL-terminated and returned as a string,
1554    allocated using xmalloc.  If an error occurs or the transfer is
1555    unsupported, NULL is returned.  Empty objects are returned as
1556    allocated but empty strings.  */
1557
1558 extern char *target_get_osdata (const char *type);
1559
1560 \f
1561 /* Stuff that should be shared among the various remote targets.  */
1562
1563 /* Debugging level.  0 is off, and non-zero values mean to print some debug
1564    information (higher values, more information).  */
1565 extern int remote_debug;
1566
1567 /* Speed in bits per second, or -1 which means don't mess with the speed.  */
1568 extern int baud_rate;
1569 /* Timeout limit for response from target. */
1570 extern int remote_timeout;
1571
1572 \f
1573 /* Functions for helping to write a native target.  */
1574
1575 /* This is for native targets which use a unix/POSIX-style waitstatus.  */
1576 extern void store_waitstatus (struct target_waitstatus *, int);
1577
1578 /* These are in common/signals.c, but they're only used by gdb.  */
1579 extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1580                                                            int);
1581 extern int default_target_signal_to_host (struct gdbarch *, 
1582                                           enum target_signal);
1583
1584 /* Convert from a number used in a GDB command to an enum target_signal.  */
1585 extern enum target_signal target_signal_from_command (int);
1586 /* End of files in common/signals.c.  */
1587
1588 /* Set the show memory breakpoints mode to show, and installs a cleanup
1589    to restore it back to the current value.  */
1590 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1591
1592 extern int may_write_registers;
1593 extern int may_write_memory;
1594 extern int may_insert_breakpoints;
1595 extern int may_insert_tracepoints;
1596 extern int may_insert_fast_tracepoints;
1597 extern int may_stop;
1598
1599 extern void update_target_permissions (void);
1600
1601 \f
1602 /* Imported from machine dependent code */
1603
1604 /* Blank target vector entries are initialized to target_ignore. */
1605 void target_ignore (void);
1606
1607 extern struct target_ops deprecated_child_ops;
1608
1609 #endif /* !defined (TARGET_H) */