hp merge changes -- too numerous to mention here; see ChangeLog and
[external/binutils.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2    Copyright 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3    Contributed by Cygnus Support.  Written by John Gilmore.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
20
21 #if !defined (TARGET_H)
22 #define TARGET_H
23
24 /* This include file defines the interface between the main part
25    of the debugger, and the part which is target-specific, or
26    specific to the communications interface between us and the
27    target.
28
29    A TARGET is an interface between the debugger and a particular 
30    kind of file or process.  Targets can be STACKED in STRATA, 
31    so that more than one target can potentially respond to a request.
32    In particular, memory accesses will walk down the stack of targets
33    until they find a target that is interested in handling that particular
34    address.  STRATA are artificial boundaries on the stack, within
35    which particular kinds of targets live.  Strata exist so that
36    people don't get confused by pushing e.g. a process target and then
37    a file target, and wondering why they can't see the current values
38    of variables any more (the file target is handling them and they
39    never get to the process target).  So when you push a file target,
40    it goes into the file stratum, which is always below the process
41    stratum.  */
42
43 #include "bfd.h"
44 #include "symtab.h"
45
46 enum strata {
47         dummy_stratum,          /* The lowest of the low */
48         file_stratum,           /* Executable files, etc */
49         core_stratum,           /* Core dump files */
50         download_stratum,       /* Downloading of remote targets */
51         process_stratum         /* Executing processes */
52 };
53
54 /* Stuff for target_wait.  */
55
56 /* Generally, what has the program done?  */
57 enum target_waitkind {
58   /* The program has exited.  The exit status is in value.integer.  */
59   TARGET_WAITKIND_EXITED,
60
61   /* The program has stopped with a signal.  Which signal is in value.sig.  */
62   TARGET_WAITKIND_STOPPED,
63
64   /* The program has terminated with a signal.  Which signal is in
65      value.sig.  */
66   TARGET_WAITKIND_SIGNALLED,
67
68   /* The program is letting us know that it dynamically loaded something
69      (e.g. it called load(2) on AIX).  */
70   TARGET_WAITKIND_LOADED,
71
72   /* The program has forked.  A "related" process' ID is in value.related_pid.
73      I.e., if the child forks, value.related_pid is the parent's ID.
74      */
75   TARGET_WAITKIND_FORKED,
76
77   /* The program has vforked.  A "related" process's ID is in value.related_pid.
78      */
79   TARGET_WAITKIND_VFORKED,
80
81   /* The program has exec'ed a new executable file.  The new file's pathname
82      is pointed to by value.execd_pathname.
83      */
84   TARGET_WAITKIND_EXECD,
85
86   /* The program has entered or returned from a system call.  On HP-UX, this
87      is used in the hardware watchpoint implementation.  The syscall's unique
88      integer ID number is in value.syscall_id;
89      */
90   TARGET_WAITKIND_SYSCALL_ENTRY,
91   TARGET_WAITKIND_SYSCALL_RETURN,
92
93   /* Nothing happened, but we stopped anyway.  This perhaps should be handled
94      within target_wait, but I'm not sure target_wait should be resuming the
95      inferior.  */
96   TARGET_WAITKIND_SPURIOUS
97   };
98
99 /* The numbering of these signals is chosen to match traditional unix
100    signals (insofar as various unices use the same numbers, anyway).
101    It is also the numbering of the GDB remote protocol.  Other remote
102    protocols, if they use a different numbering, should make sure to
103    translate appropriately.  */
104
105 /* This is based strongly on Unix/POSIX signals for several reasons:
106    (1) This set of signals represents a widely-accepted attempt to
107    represent events of this sort in a portable fashion, (2) we want a
108    signal to make it from wait to child_wait to the user intact, (3) many
109    remote protocols use a similar encoding.  However, it is
110    recognized that this set of signals has limitations (such as not
111    distinguishing between various kinds of SIGSEGV, or not
112    distinguishing hitting a breakpoint from finishing a single step).
113    So in the future we may get around this either by adding additional
114    signals for breakpoint, single-step, etc., or by adding signal
115    codes; the latter seems more in the spirit of what BSD, System V,
116    etc. are doing to address these issues.  */
117
118 /* For an explanation of what each signal means, see
119    target_signal_to_string.  */
120
121 enum target_signal {
122   /* Used some places (e.g. stop_signal) to record the concept that
123      there is no signal.  */
124   TARGET_SIGNAL_0 = 0,
125   TARGET_SIGNAL_FIRST = 0,
126   TARGET_SIGNAL_HUP = 1,
127   TARGET_SIGNAL_INT = 2,
128   TARGET_SIGNAL_QUIT = 3,
129   TARGET_SIGNAL_ILL = 4,
130   TARGET_SIGNAL_TRAP = 5,
131   TARGET_SIGNAL_ABRT = 6,
132   TARGET_SIGNAL_EMT = 7,
133   TARGET_SIGNAL_FPE = 8,
134   TARGET_SIGNAL_KILL = 9,
135   TARGET_SIGNAL_BUS = 10,
136   TARGET_SIGNAL_SEGV = 11,
137   TARGET_SIGNAL_SYS = 12,
138   TARGET_SIGNAL_PIPE = 13,
139   TARGET_SIGNAL_ALRM = 14,
140   TARGET_SIGNAL_TERM = 15,
141   TARGET_SIGNAL_URG = 16,
142   TARGET_SIGNAL_STOP = 17,
143   TARGET_SIGNAL_TSTP = 18,
144   TARGET_SIGNAL_CONT = 19,
145   TARGET_SIGNAL_CHLD = 20,
146   TARGET_SIGNAL_TTIN = 21,
147   TARGET_SIGNAL_TTOU = 22,
148   TARGET_SIGNAL_IO = 23,
149   TARGET_SIGNAL_XCPU = 24,
150   TARGET_SIGNAL_XFSZ = 25,
151   TARGET_SIGNAL_VTALRM = 26,
152   TARGET_SIGNAL_PROF = 27,
153   TARGET_SIGNAL_WINCH = 28,
154   TARGET_SIGNAL_LOST = 29,
155   TARGET_SIGNAL_USR1 = 30,
156   TARGET_SIGNAL_USR2 = 31,
157   TARGET_SIGNAL_PWR = 32,
158   /* Similar to SIGIO.  Perhaps they should have the same number.  */
159   TARGET_SIGNAL_POLL = 33,
160   TARGET_SIGNAL_WIND = 34,
161   TARGET_SIGNAL_PHONE = 35,
162   TARGET_SIGNAL_WAITING = 36,
163   TARGET_SIGNAL_LWP = 37,
164   TARGET_SIGNAL_DANGER = 38,
165   TARGET_SIGNAL_GRANT = 39,
166   TARGET_SIGNAL_RETRACT = 40,
167   TARGET_SIGNAL_MSG = 41,
168   TARGET_SIGNAL_SOUND = 42,
169   TARGET_SIGNAL_SAK = 43,
170   TARGET_SIGNAL_PRIO = 44,
171   TARGET_SIGNAL_REALTIME_33 = 45,
172   TARGET_SIGNAL_REALTIME_34 = 46,
173   TARGET_SIGNAL_REALTIME_35 = 47,
174   TARGET_SIGNAL_REALTIME_36 = 48,
175   TARGET_SIGNAL_REALTIME_37 = 49,
176   TARGET_SIGNAL_REALTIME_38 = 50,
177   TARGET_SIGNAL_REALTIME_39 = 51,
178   TARGET_SIGNAL_REALTIME_40 = 52,
179   TARGET_SIGNAL_REALTIME_41 = 53,
180   TARGET_SIGNAL_REALTIME_42 = 54,
181   TARGET_SIGNAL_REALTIME_43 = 55,
182   TARGET_SIGNAL_REALTIME_44 = 56,
183   TARGET_SIGNAL_REALTIME_45 = 57,
184   TARGET_SIGNAL_REALTIME_46 = 58,
185   TARGET_SIGNAL_REALTIME_47 = 59,
186   TARGET_SIGNAL_REALTIME_48 = 60,
187   TARGET_SIGNAL_REALTIME_49 = 61,
188   TARGET_SIGNAL_REALTIME_50 = 62,
189   TARGET_SIGNAL_REALTIME_51 = 63,
190   TARGET_SIGNAL_REALTIME_52 = 64,
191   TARGET_SIGNAL_REALTIME_53 = 65,
192   TARGET_SIGNAL_REALTIME_54 = 66,
193   TARGET_SIGNAL_REALTIME_55 = 67,
194   TARGET_SIGNAL_REALTIME_56 = 68,
195   TARGET_SIGNAL_REALTIME_57 = 69,
196   TARGET_SIGNAL_REALTIME_58 = 70,
197   TARGET_SIGNAL_REALTIME_59 = 71,
198   TARGET_SIGNAL_REALTIME_60 = 72,
199   TARGET_SIGNAL_REALTIME_61 = 73,
200   TARGET_SIGNAL_REALTIME_62 = 74,
201   TARGET_SIGNAL_REALTIME_63 = 75,
202 #if defined(MACH) || defined(__MACH__)
203   /* Mach exceptions */
204   TARGET_EXC_BAD_ACCESS = 76,
205   TARGET_EXC_BAD_INSTRUCTION = 77,
206   TARGET_EXC_ARITHMETIC = 78,
207   TARGET_EXC_EMULATION = 79,
208   TARGET_EXC_SOFTWARE = 80,
209   TARGET_EXC_BREAKPOINT = 81,
210 #endif
211   /* Some signal we don't know about.  */
212   TARGET_SIGNAL_UNKNOWN,
213
214   /* Use whatever signal we use when one is not specifically specified
215      (for passing to proceed and so on).  */
216   TARGET_SIGNAL_DEFAULT,
217
218   /* Last and unused enum value, for sizing arrays, etc.  */
219   TARGET_SIGNAL_LAST
220 };
221
222 struct target_waitstatus {
223   enum target_waitkind kind;
224
225   /* Forked child pid, execd pathname, exit status or signal number.  */
226   union {
227     int integer;
228     enum target_signal sig;
229     int  related_pid;
230     char *  execd_pathname;
231     int  syscall_id;
232   } value;
233 };
234
235 /* Return the string for a signal.  */
236 extern char *target_signal_to_string PARAMS ((enum target_signal));
237
238 /* Return the name (SIGHUP, etc.) for a signal.  */
239 extern char *target_signal_to_name PARAMS ((enum target_signal));
240
241 /* Given a name (SIGHUP, etc.), return its signal.  */
242 enum target_signal target_signal_from_name PARAMS ((char *));
243
244 \f
245 /* If certain kinds of activity happen, target_wait should perform
246    callbacks.  */
247 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
248    on TARGET_ACTIVITY_FD.   */
249 extern int target_activity_fd;
250 /* Returns zero to leave the inferior alone, one to interrupt it.  */
251 extern int (*target_activity_function) PARAMS ((void));
252 \f
253 struct target_ops
254 {
255   char         *to_shortname;   /* Name this target type */
256   char         *to_longname;    /* Name for printing */
257   char         *to_doc;         /* Documentation.  Does not include trailing
258                                    newline, and starts with a one-line descrip-
259                                    tion (probably similar to to_longname). */
260   void        (*to_open) PARAMS ((char *, int));
261   void        (*to_close) PARAMS ((int));
262   void        (*to_attach) PARAMS ((char *, int));
263   void        (*to_post_attach) PARAMS ((int));
264   void        (*to_require_attach) PARAMS ((char *, int));
265   void        (*to_detach) PARAMS ((char *, int));
266   void        (*to_require_detach) PARAMS ((int, char *, int));
267   void        (*to_resume) PARAMS ((int, int, enum target_signal));
268   int         (*to_wait) PARAMS ((int, struct target_waitstatus *));
269   void        (*to_post_wait) PARAMS ((int, int));
270   void        (*to_fetch_registers) PARAMS ((int));
271   void        (*to_store_registers) PARAMS ((int));
272   void        (*to_prepare_to_store) PARAMS ((void));
273
274   /* Transfer LEN bytes of memory between GDB address MYADDR and
275      target address MEMADDR.  If WRITE, transfer them to the target, else
276      transfer them from the target.  TARGET is the target from which we
277      get this function.
278
279      Return value, N, is one of the following:
280
281      0 means that we can't handle this.  If errno has been set, it is the
282      error which prevented us from doing it (FIXME: What about bfd_error?).
283
284      positive (call it N) means that we have transferred N bytes
285      starting at MEMADDR.  We might be able to handle more bytes
286      beyond this length, but no promises.
287
288      negative (call its absolute value N) means that we cannot
289      transfer right at MEMADDR, but we could transfer at least
290      something at MEMADDR + N.  */
291
292   int         (*to_xfer_memory) PARAMS ((CORE_ADDR memaddr, char *myaddr,
293                                          int len, int write,
294                                          struct target_ops * target));
295
296 #if 0
297   /* Enable this after 4.12.  */
298
299   /* Search target memory.  Start at STARTADDR and take LEN bytes of
300      target memory, and them with MASK, and compare to DATA.  If they
301      match, set *ADDR_FOUND to the address we found it at, store the data
302      we found at LEN bytes starting at DATA_FOUND, and return.  If
303      not, add INCREMENT to the search address and keep trying until
304      the search address is outside of the range [LORANGE,HIRANGE).
305
306      If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and return.  */
307   void (*to_search) PARAMS ((int len, char *data, char *mask,
308                              CORE_ADDR startaddr, int increment,
309                              CORE_ADDR lorange, CORE_ADDR hirange,
310                              CORE_ADDR *addr_found, char *data_found));
311
312 #define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found)  \
313   (*current_target.to_search) (len, data, mask, startaddr, increment, \
314                                 lorange, hirange, addr_found, data_found)
315 #endif /* 0 */
316
317   void        (*to_files_info) PARAMS ((struct target_ops *));
318   int         (*to_insert_breakpoint) PARAMS ((CORE_ADDR, char *));
319   int         (*to_remove_breakpoint) PARAMS ((CORE_ADDR, char *));
320   void        (*to_terminal_init) PARAMS ((void));
321   void        (*to_terminal_inferior) PARAMS ((void));
322   void        (*to_terminal_ours_for_output) PARAMS ((void));
323   void        (*to_terminal_ours) PARAMS ((void));
324   void        (*to_terminal_info) PARAMS ((char *, int));
325   void        (*to_kill) PARAMS ((void));
326   void        (*to_load) PARAMS ((char *, int));
327   int         (*to_lookup_symbol) PARAMS ((char *, CORE_ADDR *));
328   void        (*to_create_inferior) PARAMS ((char *, char *, char **));
329   void        (*to_post_startup_inferior) PARAMS ((int));
330   void        (*to_acknowledge_created_inferior) PARAMS ((int));
331   void        (*to_clone_and_follow_inferior) PARAMS ((int, int *));
332   void        (*to_post_follow_inferior_by_clone) PARAMS ((void));
333   int         (*to_insert_fork_catchpoint) PARAMS ((int));
334   int         (*to_remove_fork_catchpoint) PARAMS ((int));
335   int         (*to_insert_vfork_catchpoint) PARAMS ((int));
336   int         (*to_remove_vfork_catchpoint) PARAMS ((int));
337   int         (*to_has_forked) PARAMS ((int, int *));
338   int         (*to_has_vforked) PARAMS ((int, int *));
339   int         (*to_can_follow_vfork_prior_to_exec) PARAMS ((void));
340   void        (*to_post_follow_vfork) PARAMS ((int, int, int, int));
341   int         (*to_insert_exec_catchpoint) PARAMS ((int));
342   int         (*to_remove_exec_catchpoint) PARAMS ((int));
343   int         (*to_has_execd) PARAMS ((int, char **));
344   int         (*to_reported_exec_events_per_exec_call) PARAMS ((void));
345   int         (*to_has_syscall_event) PARAMS ((int, enum target_waitkind *, int *));
346   int         (*to_has_exited) PARAMS ((int, int, int *));
347   void        (*to_mourn_inferior) PARAMS ((void));
348   int         (*to_can_run) PARAMS ((void));
349   void        (*to_notice_signals) PARAMS ((int pid));
350   int         (*to_thread_alive) PARAMS ((int pid));
351   void        (*to_stop) PARAMS ((void));
352   struct symtab_and_line * (*to_enable_exception_callback) PARAMS ((enum exception_event_kind, int));
353   struct exception_event_record * (*to_get_current_exception_event) PARAMS ((void));
354   char *      (*to_pid_to_exec_file) PARAMS ((int pid));
355   char *      (*to_core_file_to_sym_file) PARAMS ((char *));
356   enum strata   to_stratum;
357   struct target_ops
358                 *DONT_USE;      /* formerly to_next */
359   int           to_has_all_memory;
360   int           to_has_memory;
361   int           to_has_stack;
362   int           to_has_registers;
363   int           to_has_execution;
364   struct section_table
365                *to_sections;
366   struct section_table
367                *to_sections_end;
368   int           to_magic;
369   /* Need sub-structure for target machine related rather than comm related? */
370 };
371
372 /* Magic number for checking ops size.  If a struct doesn't end with this
373    number, somebody changed the declaration but didn't change all the
374    places that initialize one.  */
375
376 #define OPS_MAGIC       3840
377
378 /* The ops structure for our "current" target process.  This should
379    never be NULL.  If there is no target, it points to the dummy_target.  */
380
381 extern struct target_ops        current_target;
382
383 /* An item on the target stack.  */
384
385 struct target_stack_item
386 {
387   struct target_stack_item *next;
388   struct target_ops *target_ops;
389 };
390
391 /* The target stack.  */
392
393 extern struct target_stack_item *target_stack;
394
395 /* Define easy words for doing these operations on our current target.  */
396
397 #define target_shortname        (current_target.to_shortname)
398 #define target_longname         (current_target.to_longname)
399
400 /* The open routine takes the rest of the parameters from the command,
401    and (if successful) pushes a new target onto the stack.
402    Targets should supply this routine, if only to provide an error message.  */
403 #define target_open(name, from_tty)     \
404         (*current_target.to_open) (name, from_tty)
405
406 /* Does whatever cleanup is required for a target that we are no longer
407    going to be calling.  Argument says whether we are quitting gdb and
408    should not get hung in case of errors, or whether we want a clean
409    termination even if it takes a while.  This routine is automatically
410    always called just before a routine is popped off the target stack.
411    Closing file descriptors and freeing memory are typical things it should
412    do.  */
413
414 #define target_close(quitting)  \
415         (*current_target.to_close) (quitting)
416
417 /* Attaches to a process on the target side.  Arguments are as passed
418    to the `attach' command by the user.  This routine can be called
419    when the target is not on the target-stack, if the target_can_run
420    routine returns 1; in that case, it must push itself onto the stack.  
421    Upon exit, the target should be ready for normal operations, and
422    should be ready to deliver the status of the process immediately 
423    (without waiting) to an upcoming target_wait call.  */
424
425 #define target_attach(args, from_tty)   \
426         (*current_target.to_attach) (args, from_tty)
427
428 /* The target_attach operation places a process under debugger control,
429    and stops the process.
430
431    This operation provides a target-specific hook that allows the
432    necessary bookkeeping to be performed after an attach completes.
433    */
434 #define target_post_attach(pid) \
435         (*current_target.to_post_attach) (pid)
436
437 /* Attaches to a process on the target side, if not already attached.
438    (If already attached, takes no action.)
439
440    This operation can be used to follow the child process of a fork.
441    On some targets, such child processes of an original inferior process
442    are automatically under debugger control, and thus do not require an
443    actual attach operation.  */
444
445 #define target_require_attach(args, from_tty)   \
446         (*current_target.to_require_attach) (args, from_tty)
447
448 /* Takes a program previously attached to and detaches it.
449    The program may resume execution (some targets do, some don't) and will
450    no longer stop on signals, etc.  We better not have left any breakpoints
451    in the program or it'll die when it hits one.  ARGS is arguments
452    typed by the user (e.g. a signal to send the process).  FROM_TTY
453    says whether to be verbose or not.  */
454
455 extern void
456 target_detach PARAMS ((char *, int));
457
458 /* Detaches from a process on the target side, if not already dettached.
459    (If already detached, takes no action.)
460
461    This operation can be used to follow the parent process of a fork.
462    On some targets, such child processes of an original inferior process
463    are automatically under debugger control, and thus do require an actual
464    detach operation.
465
466    PID is the process id of the child to detach from.
467    ARGS is arguments typed by the user (e.g. a signal to send the process).
468    FROM_TTY says whether to be verbose or not.  */
469
470 #define target_require_detach(pid, args, from_tty) \
471         (*current_target.to_require_detach) (pid, args, from_tty)
472
473 /* Resume execution of the target process PID.  STEP says whether to
474    single-step or to run free; SIGGNAL is the signal to be given to
475    the target, or TARGET_SIGNAL_0 for no signal.  The caller may not
476    pass TARGET_SIGNAL_DEFAULT.  */
477
478 #define target_resume(pid, step, siggnal)       \
479         (*current_target.to_resume) (pid, step, siggnal)
480
481 /* Wait for process pid to do something.  Pid = -1 to wait for any pid
482    to do something.  Return pid of child, or -1 in case of error;
483    store status through argument pointer STATUS.  Note that it is
484    *not* OK to return_to_top_level out of target_wait without popping
485    the debugging target from the stack; GDB isn't prepared to get back
486    to the prompt with a debugging target but without the frame cache,
487    stop_pc, etc., set up.  */
488
489 #define target_wait(pid, status)                \
490         (*current_target.to_wait) (pid, status)
491
492 /* The target_wait operation waits for a process event to occur, and
493    thereby stop the process.
494
495    On some targets, certain events may happen in sequences.  gdb's
496    correct response to any single event of such a sequence may require
497    knowledge of what earlier events in the sequence have been seen.
498
499    This operation provides a target-specific hook that allows the
500    necessary bookkeeping to be performed to track such sequences.
501    */
502
503 #define target_post_wait(pid, status) \
504         (*current_target.to_post_wait) (pid, status)
505
506 /* Fetch register REGNO, or all regs if regno == -1.  No result.  */
507
508 #define target_fetch_registers(regno)   \
509         (*current_target.to_fetch_registers) (regno)
510
511 /* Store at least register REGNO, or all regs if REGNO == -1.
512    It can store as many registers as it wants to, so target_prepare_to_store
513    must have been previously called.  Calls error() if there are problems.  */
514
515 #define target_store_registers(regs)    \
516         (*current_target.to_store_registers) (regs)
517
518 /* Get ready to modify the registers array.  On machines which store
519    individual registers, this doesn't need to do anything.  On machines
520    which store all the registers in one fell swoop, this makes sure
521    that REGISTERS contains all the registers from the program being
522    debugged.  */
523
524 #define target_prepare_to_store()       \
525         (*current_target.to_prepare_to_store) ()
526
527 extern int target_read_string PARAMS ((CORE_ADDR, char **, int, int *));
528
529 extern int
530 target_read_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len));
531
532 extern int
533 target_read_memory_section PARAMS ((CORE_ADDR memaddr, char *myaddr, int len,
534                                     asection *bfd_section));
535
536 extern int
537 target_read_memory_partial PARAMS ((CORE_ADDR, char *, int, int *));
538
539 extern int
540 target_write_memory PARAMS ((CORE_ADDR, char *, int));
541
542 extern int
543 xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
544
545 extern int
546 child_xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
547
548 extern char *
549 child_pid_to_exec_file PARAMS ((int));
550
551 extern char *
552 child_core_file_to_sym_file PARAMS ((char *));
553
554 extern void
555 child_post_attach PARAMS ((int));
556
557 extern void
558 child_post_wait PARAMS ((int, int));
559
560 extern void
561 child_post_startup_inferior PARAMS ((int));
562
563 extern void
564 child_acknowledge_created_inferior PARAMS ((int));
565
566 extern void
567 child_clone_and_follow_inferior PARAMS ((int, int *));
568
569 extern void
570 child_post_follow_inferior_by_clone PARAMS ((void));
571
572 extern int
573 child_insert_fork_catchpoint PARAMS ((int));
574
575 extern int
576 child_remove_fork_catchpoint PARAMS ((int));
577
578 extern int
579 child_insert_vfork_catchpoint PARAMS ((int));
580
581 extern int
582 child_remove_vfork_catchpoint PARAMS ((int));
583
584 extern int
585 child_has_forked PARAMS ((int, int *));
586
587 extern int
588 child_has_vforked PARAMS ((int, int *));
589
590 extern void
591 child_acknowledge_created_inferior PARAMS ((int));
592
593 extern int
594 child_can_follow_vfork_prior_to_exec PARAMS ((void));
595
596 extern void
597 child_post_follow_vfork PARAMS ((int, int, int, int));
598
599 extern int
600 child_insert_exec_catchpoint PARAMS ((int));
601
602 extern int
603 child_remove_exec_catchpoint PARAMS ((int));
604
605 extern int
606 child_has_execd PARAMS ((int, char **));
607
608 extern int
609 child_reported_exec_events_per_exec_call PARAMS ((void));
610
611 extern int
612 child_has_syscall_event PARAMS ((int, enum target_waitkind *, int *));
613
614 extern int
615 child_has_exited PARAMS ((int, int, int *));
616
617 extern int
618 child_thread_alive PARAMS ((int));
619
620 /* From exec.c */
621
622 extern void
623 print_section_info PARAMS ((struct target_ops *, bfd *));
624
625 /* Print a line about the current target.  */
626
627 #define target_files_info()     \
628         (*current_target.to_files_info) (&current_target)
629
630 /* Insert a breakpoint at address ADDR in the target machine.
631    SAVE is a pointer to memory allocated for saving the
632    target contents.  It is guaranteed by the caller to be long enough
633    to save "sizeof BREAKPOINT" bytes.  Result is 0 for success, or
634    an errno value.  */
635
636 #define target_insert_breakpoint(addr, save)    \
637         (*current_target.to_insert_breakpoint) (addr, save)
638
639 /* Remove a breakpoint at address ADDR in the target machine.
640    SAVE is a pointer to the same save area 
641    that was previously passed to target_insert_breakpoint.  
642    Result is 0 for success, or an errno value.  */
643
644 #define target_remove_breakpoint(addr, save)    \
645         (*current_target.to_remove_breakpoint) (addr, save)
646
647 /* Initialize the terminal settings we record for the inferior,
648    before we actually run the inferior.  */
649
650 #define target_terminal_init() \
651         (*current_target.to_terminal_init) ()
652
653 /* Put the inferior's terminal settings into effect.
654    This is preparation for starting or resuming the inferior.  */
655
656 #define target_terminal_inferior() \
657         (*current_target.to_terminal_inferior) ()
658
659 /* Put some of our terminal settings into effect,
660    enough to get proper results from our output,
661    but do not change into or out of RAW mode
662    so that no input is discarded.
663
664    After doing this, either terminal_ours or terminal_inferior
665    should be called to get back to a normal state of affairs.  */
666
667 #define target_terminal_ours_for_output() \
668         (*current_target.to_terminal_ours_for_output) ()
669
670 /* Put our terminal settings into effect.
671    First record the inferior's terminal settings
672    so they can be restored properly later.  */
673
674 #define target_terminal_ours() \
675         (*current_target.to_terminal_ours) ()
676
677 /* Print useful information about our terminal status, if such a thing
678    exists.  */
679
680 #define target_terminal_info(arg, from_tty) \
681         (*current_target.to_terminal_info) (arg, from_tty)
682
683 /* Kill the inferior process.   Make it go away.  */
684
685 #define target_kill() \
686         (*current_target.to_kill) ()
687
688 /* Load an executable file into the target process.  This is expected to
689    not only bring new code into the target process, but also to update
690    GDB's symbol tables to match.  */
691
692 #define target_load(arg, from_tty) \
693         (*current_target.to_load) (arg, from_tty)
694
695 /* Look up a symbol in the target's symbol table.  NAME is the symbol
696    name.  ADDRP is a CORE_ADDR * pointing to where the value of the symbol
697    should be returned.  The result is 0 if successful, nonzero if the
698    symbol does not exist in the target environment.  This function should
699    not call error() if communication with the target is interrupted, since
700    it is called from symbol reading, but should return nonzero, possibly
701    doing a complain().  */
702
703 #define target_lookup_symbol(name, addrp)       \
704   (*current_target.to_lookup_symbol) (name, addrp)
705
706 /* Start an inferior process and set inferior_pid to its pid.
707    EXEC_FILE is the file to run.
708    ALLARGS is a string containing the arguments to the program.
709    ENV is the environment vector to pass.  Errors reported with error().
710    On VxWorks and various standalone systems, we ignore exec_file.  */
711  
712 #define target_create_inferior(exec_file, args, env)    \
713         (*current_target.to_create_inferior) (exec_file, args, env)
714
715
716 /* Some targets (such as ttrace-based HPUX) don't allow us to request
717    notification of inferior events such as fork and vork immediately
718    after the inferior is created.  (This because of how gdb gets an
719    inferior created via invoking a shell to do it.  In such a scenario,
720    if the shell init file has commands in it, the shell will fork and
721    exec for each of those commands, and we will see each such fork
722    event.  Very bad.)
723    
724    Such targets will supply an appropriate definition for this function.
725    */
726 #define target_post_startup_inferior(pid) \
727         (*current_target.to_post_startup_inferior) (pid)
728
729 /* On some targets, the sequence of starting up an inferior requires
730    some synchronization between gdb and the new inferior process, PID.
731    */
732 #define target_acknowledge_created_inferior(pid) \
733         (*current_target.to_acknowledge_created_inferior) (pid)
734
735 /* An inferior process has been created via a fork() or similar
736    system call.  This function will clone the debugger, then ensure
737    that CHILD_PID is attached to by that debugger.
738
739    FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
740    and FALSE otherwise.  (The original and clone debuggers can use this
741    to determine which they are, if need be.)
742
743    (This is not a terribly useful feature without a GUI to prevent
744    the two debuggers from competing for shell input.)
745    */
746 #define target_clone_and_follow_inferior(child_pid,followed_child) \
747         (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
748
749 /* This operation is intended to be used as the last in a sequence of
750    steps taken when following both parent and child of a fork.  This
751    is used by a clone of the debugger, which will follow the child.
752
753    The original debugger has detached from this process, and the
754    clone has attached to it.
755
756    On some targets, this requires a bit of cleanup to make it work
757    correctly.
758    */
759 #define target_post_follow_inferior_by_clone() \
760         (*current_target.to_post_follow_inferior_by_clone) ()
761
762 /* On some targets, we can catch an inferior fork or vfork event when it
763    occurs.  These functions insert/remove an already-created catchpoint for
764    such events.
765    */
766 #define target_insert_fork_catchpoint(pid) \
767         (*current_target.to_insert_fork_catchpoint) (pid)
768
769 #define target_remove_fork_catchpoint(pid) \
770         (*current_target.to_remove_fork_catchpoint) (pid)
771
772 #define target_insert_vfork_catchpoint(pid) \
773         (*current_target.to_insert_vfork_catchpoint) (pid)
774
775 #define target_remove_vfork_catchpoint(pid) \
776         (*current_target.to_remove_vfork_catchpoint) (pid)
777
778 /* Returns TRUE if PID has invoked the fork() system call.  And,
779    also sets CHILD_PID to the process id of the other ("child")
780    inferior process that was created by that call.
781    */
782 #define target_has_forked(pid,child_pid) \
783         (*current_target.to_has_forked) (pid,child_pid)
784
785 /* Returns TRUE if PID has invoked the vfork() system call.  And,
786    also sets CHILD_PID to the process id of the other ("child")
787    inferior process that was created by that call.
788    */
789 #define target_has_vforked(pid,child_pid) \
790         (*current_target.to_has_vforked) (pid,child_pid)
791
792 /* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
793    anything to a vforked child before it subsequently calls exec().
794    On such platforms, we say that the debugger cannot "follow" the
795    child until it has vforked.
796
797    This function should be defined to return 1 by those targets
798    which can allow the debugger to immediately follow a vforked
799    child, and 0 if they cannot.
800    */
801 #define target_can_follow_vfork_prior_to_exec() \
802         (*current_target.to_can_follow_vfork_prior_to_exec) ()
803
804 /* An inferior process has been created via a vfork() system call.
805    The debugger has followed the parent, the child, or both.  The
806    process of setting up for that follow may have required some
807    target-specific trickery to track the sequence of reported events.
808    If so, this function should be defined by those targets that
809    require the debugger to perform cleanup or initialization after
810    the vfork follow.
811    */
812 #define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
813         (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
814
815 /* On some targets, we can catch an inferior exec event when it
816    occurs.  These functions insert/remove an already-created catchpoint
817    for such events.
818    */
819 #define target_insert_exec_catchpoint(pid) \
820         (*current_target.to_insert_exec_catchpoint) (pid)
821  
822 #define target_remove_exec_catchpoint(pid) \
823         (*current_target.to_remove_exec_catchpoint) (pid)
824
825 /* Returns TRUE if PID has invoked a flavor of the exec() system call.
826    And, also sets EXECD_PATHNAME to the pathname of the executable file
827    that was passed to exec(), and is now being executed.
828    */
829 #define target_has_execd(pid,execd_pathname) \
830         (*current_target.to_has_execd) (pid,execd_pathname)
831
832 /* Returns the number of exec events that are reported when a process
833    invokes a flavor of the exec() system call on this target, if exec
834    events are being reported.
835    */
836 #define target_reported_exec_events_per_exec_call() \
837         (*current_target.to_reported_exec_events_per_exec_call) ()
838
839 /* Returns TRUE if PID has reported a syscall event.  And, also sets
840    KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
841    the unique integer ID of the syscall.
842    */
843 #define target_has_syscall_event(pid,kind,syscall_id) \
844   (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
845
846 /* Returns TRUE if PID has exited.  And, also sets EXIT_STATUS to the
847    exit code of PID, if any.
848    */
849 #define target_has_exited(pid,wait_status,exit_status) \
850         (*current_target.to_has_exited) (pid,wait_status,exit_status)
851
852 /* The debugger has completed a blocking wait() call.  There is now
853    some process event that must be processed.  This function should
854    be defined by those targets that require the debugger to perform
855    cleanup or internal state changes in response to the process event.
856    */
857
858 /* The inferior process has died.  Do what is right.  */
859
860 #define target_mourn_inferior() \
861         (*current_target.to_mourn_inferior) ()
862
863 /* Does target have enough data to do a run or attach command? */
864
865 #define target_can_run(t) \
866         ((t)->to_can_run) ()
867
868 /* post process changes to signal handling in the inferior.  */
869
870 #define target_notice_signals(pid) \
871         (*current_target.to_notice_signals) (pid)
872
873 /* Check to see if a thread is still alive.  */
874
875 #define target_thread_alive(pid) \
876         (*current_target.to_thread_alive) (pid)
877
878 /* Make target stop in a continuable fashion.  (For instance, under Unix, this
879    should act like SIGSTOP).  This function is normally used by GUIs to
880    implement a stop button.  */
881
882 #define target_stop current_target.to_stop
883
884 /* Get the symbol information for a breakpointable routine called when
885    an exception event occurs. 
886    Intended mainly for C++, and for those
887    platforms/implementations where such a callback mechanism is available,
888    e.g. HP-UX with ANSI C++ (aCC).  Some compilers (e.g. g++) support
889    different mechanisms for debugging exceptions. */
890
891 #define target_enable_exception_callback(kind, enable) \
892         (*current_target.to_enable_exception_callback) (kind, enable)
893
894 /* Get the current exception event kind -- throw or catch, etc. */
895    
896 #define target_get_current_exception_event() \
897         (*current_target.to_get_current_exception_event) ()
898
899 /* Pointer to next target in the chain, e.g. a core file and an exec file.  */
900
901 #define target_next \
902         (current_target.to_next)
903
904 /* Does the target include all of memory, or only part of it?  This
905    determines whether we look up the target chain for other parts of
906    memory if this target can't satisfy a request.  */
907
908 #define target_has_all_memory   \
909         (current_target.to_has_all_memory)
910
911 /* Does the target include memory?  (Dummy targets don't.)  */
912
913 #define target_has_memory       \
914         (current_target.to_has_memory)
915
916 /* Does the target have a stack?  (Exec files don't, VxWorks doesn't, until
917    we start a process.)  */
918    
919 #define target_has_stack        \
920         (current_target.to_has_stack)
921
922 /* Does the target have registers?  (Exec files don't.)  */
923
924 #define target_has_registers    \
925         (current_target.to_has_registers)
926
927 /* Does the target have execution?  Can we make it jump (through
928    hoops), or pop its stack a few times?  FIXME: If this is to work that
929    way, it needs to check whether an inferior actually exists.
930    remote-udi.c and probably other targets can be the current target
931    when the inferior doesn't actually exist at the moment.  Right now
932    this just tells us whether this target is *capable* of execution.  */
933
934 #define target_has_execution    \
935         (current_target.to_has_execution)
936
937 extern void target_link PARAMS ((char *, CORE_ADDR *));
938
939 /* Converts a process id to a string.  Usually, the string just contains
940    `process xyz', but on some systems it may contain
941    `process xyz thread abc'.  */
942
943 #ifndef target_pid_to_str
944 #define target_pid_to_str(PID) \
945         normal_pid_to_str (PID)
946 extern char *normal_pid_to_str PARAMS ((int pid));
947 #endif
948
949 #ifndef target_tid_to_str
950 #define target_tid_to_str(PID) \
951         normal_pid_to_str (PID)
952 extern char *normal_pid_to_str PARAMS ((int pid));
953 #endif
954  
955
956 #ifndef target_new_objfile
957 #define target_new_objfile(OBJFILE)
958 #endif
959
960 #ifndef target_pid_or_tid_to_str
961 #define target_pid_or_tid_to_str(ID) \
962         normal_pid_to_str (ID)
963 #endif
964
965 /* Attempts to find the pathname of the executable file
966    that was run to create a specified process.
967
968    The process PID must be stopped when this operation is used.
969    
970    If the executable file cannot be determined, NULL is returned.
971
972    Else, a pointer to a character string containing the pathname
973    is returned.  This string should be copied into a buffer by
974    the client if the string will not be immediately used, or if
975    it must persist.
976    */
977
978 #define target_pid_to_exec_file(pid) \
979         (current_target.to_pid_to_exec_file) (pid)
980
981 /* Hook to call target-dependant code after reading in a new symbol table. */
982
983 #ifndef TARGET_SYMFILE_POSTREAD
984 #define TARGET_SYMFILE_POSTREAD(OBJFILE)
985 #endif
986
987 /* Hook to call target dependant code just after inferior target process has
988    started.  */
989
990 #ifndef TARGET_CREATE_INFERIOR_HOOK
991 #define TARGET_CREATE_INFERIOR_HOOK(PID)
992 #endif
993
994 /* Hardware watchpoint interfaces.  */
995
996 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
997    write).  */
998
999 #ifndef STOPPED_BY_WATCHPOINT
1000 #define STOPPED_BY_WATCHPOINT(w) 0
1001 #endif
1002
1003 /* HP-UX supplies these operations, which respectively disable and enable
1004    the memory page-protections that are used to implement hardware watchpoints
1005    on that platform.  See wait_for_inferior's use of these.
1006    */
1007 #if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1008 #define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1009 #endif
1010
1011 #if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1012 #define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1013 #endif
1014
1015 /* Provide defaults for systems that don't support hardware watchpoints. */
1016
1017 #ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
1018
1019 /* Returns non-zero if we can set a hardware watchpoint of type TYPE.  TYPE is
1020    one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1021    bp_hardware_breakpoint.  CNT is the number of such watchpoints used so far
1022    (including this one?).  OTHERTYPE is who knows what...  */
1023
1024 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
1025
1026 #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1027 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1028         (LONGEST)(byte_count) <= REGISTER_SIZE
1029 #endif
1030
1031 /* However, some addresses may not be profitable to use hardware to watch,
1032    or may be difficult to understand when the addressed object is out of
1033    scope, and hence should be unwatched.  On some targets, this may have
1034    severe performance penalties, such that we might as well use regular
1035    watchpoints, and save (possibly precious) hardware watchpoints for other
1036    locations.
1037    */
1038 #if !defined(TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT)
1039 #define TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT(pid,start,len) 0
1040 #endif
1041
1042
1043 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.  TYPE is 0
1044    for write, 1 for read, and 2 for read/write accesses.  Returns 0 for
1045    success, non-zero for failure.  */
1046
1047 #define target_remove_watchpoint(ADDR,LEN,TYPE) -1
1048 #define target_insert_watchpoint(ADDR,LEN,TYPE) -1
1049
1050 #endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
1051
1052 #ifndef target_insert_hw_breakpoint
1053 #define target_remove_hw_breakpoint(ADDR,SHADOW) -1
1054 #define target_insert_hw_breakpoint(ADDR,SHADOW) -1
1055 #endif
1056
1057 #ifndef target_stopped_data_address
1058 #define target_stopped_data_address() 0
1059 #endif
1060
1061 /* If defined, then we need to decr pc by this much after a hardware break-
1062    point.  Presumably this overrides DECR_PC_AFTER_BREAK...  */
1063
1064 #ifndef DECR_PC_AFTER_HW_BREAK
1065 #define DECR_PC_AFTER_HW_BREAK 0
1066 #endif
1067
1068 /* Sometimes gdb may pick up what appears to be a valid target address
1069    from a minimal symbol, but the value really means, essentially,
1070    "This is an index into a table which is populated when the inferior
1071    is run.  Therefore, do not attempt to use this as a PC."
1072    */
1073 #if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1074 #define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1075 #endif
1076
1077 /* This will only be defined by a target that supports catching vfork events,
1078    such as HP-UX.
1079
1080    On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1081    child process after it has exec'd, causes the parent process to resume as
1082    well.  To prevent the parent from running spontaneously, such targets should
1083    define this to a function that prevents that from happening.
1084    */
1085 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1086 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1087 #endif
1088
1089 /* This will only be defined by a target that supports catching vfork events,
1090    such as HP-UX.
1091
1092    On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1093    process must be resumed when it delivers its exec event, before the parent
1094    vfork event will be delivered to us.
1095    */
1096 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1097 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1098 #endif
1099
1100 /* Routines for maintenance of the target structures...
1101
1102    add_target:   Add a target to the list of all possible targets.
1103
1104    push_target:  Make this target the top of the stack of currently used
1105                  targets, within its particular stratum of the stack.  Result
1106                  is 0 if now atop the stack, nonzero if not on top (maybe
1107                  should warn user).
1108
1109    unpush_target: Remove this from the stack of currently used targets,
1110                  no matter where it is on the list.  Returns 0 if no
1111                  change, 1 if removed from stack.
1112
1113    pop_target:   Remove the top thing on the stack of current targets.  */
1114
1115 extern void
1116 add_target PARAMS ((struct target_ops *));
1117
1118 extern int
1119 push_target PARAMS ((struct target_ops *));
1120
1121 extern int
1122 unpush_target PARAMS ((struct target_ops *));
1123
1124 extern void
1125 target_preopen PARAMS ((int));
1126
1127 extern void
1128 pop_target PARAMS ((void));
1129
1130 /* Struct section_table maps address ranges to file sections.  It is
1131    mostly used with BFD files, but can be used without (e.g. for handling
1132    raw disks, or files not in formats handled by BFD).  */
1133
1134 struct section_table {
1135   CORE_ADDR addr;               /* Lowest address in section */
1136   CORE_ADDR endaddr;            /* 1+highest address in section */
1137
1138   sec_ptr the_bfd_section;
1139
1140   bfd      *bfd;                /* BFD file pointer */
1141 };
1142
1143 /* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1144    Returns 0 if OK, 1 on error.  */
1145
1146 extern int
1147 build_section_table PARAMS ((bfd *, struct section_table **,
1148                              struct section_table **));
1149
1150 /* From mem-break.c */
1151
1152 extern int memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
1153
1154 extern int memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
1155
1156 extern breakpoint_from_pc_fn memory_breakpoint_from_pc;
1157 #ifndef BREAKPOINT_FROM_PC
1158 #define BREAKPOINT_FROM_PC(pcptr, lenptr) memory_breakpoint_from_pc (pcptr, lenptr)
1159 #endif
1160
1161
1162 /* From target.c */
1163
1164 extern void
1165 initialize_targets PARAMS ((void));
1166
1167 extern void
1168 noprocess PARAMS ((void));
1169
1170 extern void
1171 find_default_attach PARAMS ((char *, int));
1172
1173 void
1174 find_default_require_attach PARAMS ((char *, int));
1175
1176 void
1177 find_default_require_detach PARAMS ((int, char *, int));
1178
1179 extern void
1180 find_default_create_inferior PARAMS ((char *, char *, char **));
1181
1182 void
1183 find_default_clone_and_follow_inferior PARAMS ((int, int *));
1184
1185 extern struct target_ops *
1186 find_core_target PARAMS ((void));
1187 \f
1188 /* Stuff that should be shared among the various remote targets.  */
1189
1190 /* Debugging level.  0 is off, and non-zero values mean to print some debug
1191    information (higher values, more information).  */
1192 extern int remote_debug;
1193
1194 /* Speed in bits per second, or -1 which means don't mess with the speed.  */
1195 extern int baud_rate;
1196 /* Timeout limit for response from target. */
1197 extern int remote_timeout;
1198
1199 extern asection *target_memory_bfd_section;
1200 \f
1201 /* Functions for helping to write a native target.  */
1202
1203 /* This is for native targets which use a unix/POSIX-style waitstatus.  */
1204 extern void store_waitstatus PARAMS ((struct target_waitstatus *, int));
1205
1206 /* Convert between host signal numbers and enum target_signal's.  */
1207 extern enum target_signal target_signal_from_host PARAMS ((int));
1208 extern int target_signal_to_host PARAMS ((enum target_signal));
1209
1210 /* Convert from a number used in a GDB command to an enum target_signal.  */
1211 extern enum target_signal target_signal_from_command PARAMS ((int));
1212
1213 /* Any target can call this to switch to remote protocol (in remote.c). */
1214 extern void push_remote_target PARAMS ((char *name, int from_tty));
1215 \f
1216 /* Imported from machine dependent code */
1217
1218 #ifndef SOFTWARE_SINGLE_STEP_P
1219 #define SOFTWARE_SINGLE_STEP_P 0
1220 #define SOFTWARE_SINGLE_STEP(sig,bp_p) abort ()
1221 #endif /* SOFTWARE_SINGLE_STEP_P */
1222
1223 /* Blank target vector entries are initialized to target_ignore. */
1224 void target_ignore PARAMS ((void));
1225
1226 /* Macro for getting target's idea of a frame pointer.
1227    FIXME: GDB's whole scheme for dealing with "frames" and
1228    "frame pointers" needs a serious shakedown.  */
1229 #ifndef TARGET_VIRTUAL_FRAME_POINTER
1230 #define TARGET_VIRTUAL_FRAME_POINTER(ADDR, REGP, OFFP) \
1231    do { *(REGP) = FP_REGNUM; *(OFFP) =  0; } while (0)
1232 #endif /* TARGET_VIRTUAL_FRAME_POINTER */
1233
1234 #endif  /* !defined (TARGET_H) */