* breakpoint.c (must_shift_inst_regs): Delete.
[external/binutils.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3    Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4    1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6    Contributed by Cygnus Support.  Written by John Gilmore.
7
8    This file is part of GDB.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 2 of the License, or
13    (at your option) any later version.
14
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19
20    You should have received a copy of the GNU General Public License
21    along with this program; if not, write to the Free Software
22    Foundation, Inc., 59 Temple Place - Suite 330,
23    Boston, MA 02111-1307, USA.  */
24
25 #if !defined (TARGET_H)
26 #define TARGET_H
27
28 struct objfile;
29 struct ui_file;
30 struct mem_attrib;
31 struct target_ops;
32
33 /* This include file defines the interface between the main part
34    of the debugger, and the part which is target-specific, or
35    specific to the communications interface between us and the
36    target.
37
38    A TARGET is an interface between the debugger and a particular 
39    kind of file or process.  Targets can be STACKED in STRATA, 
40    so that more than one target can potentially respond to a request.
41    In particular, memory accesses will walk down the stack of targets
42    until they find a target that is interested in handling that particular
43    address.  STRATA are artificial boundaries on the stack, within
44    which particular kinds of targets live.  Strata exist so that
45    people don't get confused by pushing e.g. a process target and then
46    a file target, and wondering why they can't see the current values
47    of variables any more (the file target is handling them and they
48    never get to the process target).  So when you push a file target,
49    it goes into the file stratum, which is always below the process
50    stratum.  */
51
52 #include "bfd.h"
53 #include "symtab.h"
54 #include "dcache.h"
55 #include "memattr.h"
56
57 enum strata
58   {
59     dummy_stratum,              /* The lowest of the low */
60     file_stratum,               /* Executable files, etc */
61     core_stratum,               /* Core dump files */
62     download_stratum,           /* Downloading of remote targets */
63     process_stratum,            /* Executing processes */
64     thread_stratum              /* Executing threads */
65   };
66
67 enum thread_control_capabilities
68   {
69     tc_none = 0,                /* Default: can't control thread execution.  */
70     tc_schedlock = 1,           /* Can lock the thread scheduler.  */
71     tc_switch = 2               /* Can switch the running thread on demand.  */
72   };
73
74 /* Stuff for target_wait.  */
75
76 /* Generally, what has the program done?  */
77 enum target_waitkind
78   {
79     /* The program has exited.  The exit status is in value.integer.  */
80     TARGET_WAITKIND_EXITED,
81
82     /* The program has stopped with a signal.  Which signal is in
83        value.sig.  */
84     TARGET_WAITKIND_STOPPED,
85
86     /* The program has terminated with a signal.  Which signal is in
87        value.sig.  */
88     TARGET_WAITKIND_SIGNALLED,
89
90     /* The program is letting us know that it dynamically loaded something
91        (e.g. it called load(2) on AIX).  */
92     TARGET_WAITKIND_LOADED,
93
94     /* The program has forked.  A "related" process' ID is in
95        value.related_pid.  I.e., if the child forks, value.related_pid
96        is the parent's ID.  */
97
98     TARGET_WAITKIND_FORKED,
99
100     /* The program has vforked.  A "related" process's ID is in
101        value.related_pid.  */
102
103     TARGET_WAITKIND_VFORKED,
104
105     /* The program has exec'ed a new executable file.  The new file's
106        pathname is pointed to by value.execd_pathname.  */
107
108     TARGET_WAITKIND_EXECD,
109
110     /* The program has entered or returned from a system call.  On
111        HP-UX, this is used in the hardware watchpoint implementation.
112        The syscall's unique integer ID number is in value.syscall_id */
113
114     TARGET_WAITKIND_SYSCALL_ENTRY,
115     TARGET_WAITKIND_SYSCALL_RETURN,
116
117     /* Nothing happened, but we stopped anyway.  This perhaps should be handled
118        within target_wait, but I'm not sure target_wait should be resuming the
119        inferior.  */
120     TARGET_WAITKIND_SPURIOUS,
121
122     /* An event has occured, but we should wait again.
123        Remote_async_wait() returns this when there is an event
124        on the inferior, but the rest of the world is not interested in
125        it. The inferior has not stopped, but has just sent some output
126        to the console, for instance. In this case, we want to go back
127        to the event loop and wait there for another event from the
128        inferior, rather than being stuck in the remote_async_wait()
129        function. This way the event loop is responsive to other events,
130        like for instance the user typing.  */
131     TARGET_WAITKIND_IGNORE
132   };
133
134 struct target_waitstatus
135   {
136     enum target_waitkind kind;
137
138     /* Forked child pid, execd pathname, exit status or signal number.  */
139     union
140       {
141         int integer;
142         enum target_signal sig;
143         int related_pid;
144         char *execd_pathname;
145         int syscall_id;
146       }
147     value;
148   };
149
150 /* Possible types of events that the inferior handler will have to
151    deal with.  */
152 enum inferior_event_type
153   {
154     /* There is a request to quit the inferior, abandon it.  */
155     INF_QUIT_REQ,
156     /* Process a normal inferior event which will result in target_wait
157        being called.  */
158     INF_REG_EVENT, 
159     /* Deal with an error on the inferior.  */
160     INF_ERROR,
161     /* We are called because a timer went off.  */
162     INF_TIMER,
163     /* We are called to do stuff after the inferior stops.  */
164     INF_EXEC_COMPLETE,
165     /* We are called to do some stuff after the inferior stops, but we
166        are expected to reenter the proceed() and
167        handle_inferior_event() functions. This is used only in case of
168        'step n' like commands.  */
169     INF_EXEC_CONTINUE
170   };
171
172 /* Return the string for a signal.  */
173 extern char *target_signal_to_string (enum target_signal);
174
175 /* Return the name (SIGHUP, etc.) for a signal.  */
176 extern char *target_signal_to_name (enum target_signal);
177
178 /* Given a name (SIGHUP, etc.), return its signal.  */
179 enum target_signal target_signal_from_name (char *);
180 \f
181 /* Request the transfer of up to LEN 8-bit bytes of the target's
182    OBJECT.  The OFFSET, for a seekable object, specifies the starting
183    point.  The ANNEX can be used to provide additional data-specific
184    information to the target.
185
186    Return the number of bytes actually transfered, zero when no
187    further transfer is possible, and -1 when the transfer is not
188    supported.
189    
190    NOTE: cagney/2003-10-17: The current interface does not support a
191    "retry" mechanism.  Instead it assumes that at least one byte will
192    be transfered on each call.
193
194    NOTE: cagney/2003-10-17: The current interface can lead to
195    fragmented transfers.  Lower target levels should not implement
196    hacks, such as enlarging the transfer, in an attempt to compensate
197    for this.  Instead, the target stack should be extended so that it
198    implements supply/collect methods and a look-aside object cache.
199    With that available, the lowest target can safely and freely "push"
200    data up the stack.
201
202    NOTE: cagney/2003-10-17: Unlike the old query and the memory
203    transfer mechanisms, these methods are explicitly parameterized by
204    the target that it should be applied to.
205
206    NOTE: cagney/2003-10-17: Just like the old query and memory xfer
207    methods, these new methods perform partial transfers.  The only
208    difference is that these new methods thought to include "partial"
209    in the name.  The old code's failure to do this lead to much
210    confusion and duplication of effort as each target object attempted
211    to locally take responsibility for something it didn't have to
212    worry about.
213
214    NOTE: cagney/2003-10-17: With a TARGET_OBJECT_KOD object, for
215    backward compatibility with the "target_query" method that this
216    replaced, when OFFSET and LEN are both zero, return the "minimum"
217    buffer size.  See "remote.c" for further information.  */
218
219 enum target_object
220 {
221   /* Kernel Object Display transfer.  See "kod.c" and "remote.c".  */
222   TARGET_OBJECT_KOD,
223   /* AVR target specific transfer.  See "avr-tdep.c" and "remote.c".  */
224   TARGET_OBJECT_AVR,
225   /* Transfer up-to LEN bytes of memory starting at OFFSET.  */
226   TARGET_OBJECT_MEMORY,
227   /* Kernel Unwind Table.  See "ia64-tdep.c".  */
228   TARGET_OBJECT_UNWIND_TABLE,
229   /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC,
230      TARGET_OBJECT_AUXV, ...  */
231 };
232
233 extern LONGEST target_read_partial (struct target_ops *ops,
234                                     enum target_object object,
235                                     const char *annex, void *buf,
236                                     ULONGEST offset, LONGEST len);
237
238 extern LONGEST target_write_partial (struct target_ops *ops,
239                                      enum target_object object,
240                                      const char *annex, const void *buf,
241                                      ULONGEST offset, LONGEST len);
242
243 /* Wrappers to perform the full transfer.  */
244 extern LONGEST target_read (struct target_ops *ops,
245                             enum target_object object,
246                             const char *annex, void *buf,
247                             ULONGEST offset, LONGEST len);
248
249 extern LONGEST target_write (struct target_ops *ops,
250                              enum target_object object,
251                              const char *annex, const void *buf,
252                              ULONGEST offset, LONGEST len);
253
254 /* Wrappers to target read/write that perform memory transfers.  They
255    throw an error if the memory transfer fails.
256
257    NOTE: cagney/2003-10-23: The naming schema is lifted from
258    "frame.h".  The parameter order is lifted from get_frame_memory,
259    which in turn lifted it from read_memory.  */
260
261 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
262                                void *buf, LONGEST len);
263 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
264                                             CORE_ADDR addr, int len);
265 \f
266
267 /* If certain kinds of activity happen, target_wait should perform
268    callbacks.  */
269 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
270    on TARGET_ACTIVITY_FD.  */
271 extern int target_activity_fd;
272 /* Returns zero to leave the inferior alone, one to interrupt it.  */
273 extern int (*target_activity_function) (void);
274 \f
275 struct thread_info;             /* fwd decl for parameter list below: */
276
277 struct target_ops
278   {
279     struct target_ops *beneath; /* To the target under this one.  */
280     char *to_shortname;         /* Name this target type */
281     char *to_longname;          /* Name for printing */
282     char *to_doc;               /* Documentation.  Does not include trailing
283                                    newline, and starts with a one-line descrip-
284                                    tion (probably similar to to_longname).  */
285     /* Per-target scratch pad.  */
286     void *to_data;
287     /* The open routine takes the rest of the parameters from the
288        command, and (if successful) pushes a new target onto the
289        stack.  Targets should supply this routine, if only to provide
290        an error message.  */
291     void (*to_open) (char *, int);
292     /* Old targets with a static target vector provide "to_close".
293        New re-entrant targets provide "to_xclose" and that is expected
294        to xfree everything (including the "struct target_ops").  */
295     void (*to_xclose) (struct target_ops *targ, int quitting);
296     void (*to_close) (int);
297     void (*to_attach) (char *, int);
298     void (*to_post_attach) (int);
299     void (*to_detach) (char *, int);
300     void (*to_disconnect) (char *, int);
301     void (*to_resume) (ptid_t, int, enum target_signal);
302     ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
303     void (*to_post_wait) (ptid_t, int);
304     void (*to_fetch_registers) (int);
305     void (*to_store_registers) (int);
306     void (*to_prepare_to_store) (void);
307
308     /* Transfer LEN bytes of memory between GDB address MYADDR and
309        target address MEMADDR.  If WRITE, transfer them to the target, else
310        transfer them from the target.  TARGET is the target from which we
311        get this function.
312
313        Return value, N, is one of the following:
314
315        0 means that we can't handle this.  If errno has been set, it is the
316        error which prevented us from doing it (FIXME: What about bfd_error?).
317
318        positive (call it N) means that we have transferred N bytes
319        starting at MEMADDR.  We might be able to handle more bytes
320        beyond this length, but no promises.
321
322        negative (call its absolute value N) means that we cannot
323        transfer right at MEMADDR, but we could transfer at least
324        something at MEMADDR + N.  */
325
326     int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
327                            int len, int write, 
328                            struct mem_attrib *attrib,
329                            struct target_ops *target);
330
331     void (*to_files_info) (struct target_ops *);
332     int (*to_insert_breakpoint) (CORE_ADDR, char *);
333     int (*to_remove_breakpoint) (CORE_ADDR, char *);
334     int (*to_can_use_hw_breakpoint) (int, int, int);
335     int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
336     int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
337     int (*to_remove_watchpoint) (CORE_ADDR, int, int);
338     int (*to_insert_watchpoint) (CORE_ADDR, int, int);
339     int (*to_stopped_by_watchpoint) (void);
340     int to_have_continuable_watchpoint;
341     CORE_ADDR (*to_stopped_data_address) (void);
342     int (*to_region_size_ok_for_hw_watchpoint) (int);
343     void (*to_terminal_init) (void);
344     void (*to_terminal_inferior) (void);
345     void (*to_terminal_ours_for_output) (void);
346     void (*to_terminal_ours) (void);
347     void (*to_terminal_save_ours) (void);
348     void (*to_terminal_info) (char *, int);
349     void (*to_kill) (void);
350     void (*to_load) (char *, int);
351     int (*to_lookup_symbol) (char *, CORE_ADDR *);
352     void (*to_create_inferior) (char *, char *, char **);
353     void (*to_post_startup_inferior) (ptid_t);
354     void (*to_acknowledge_created_inferior) (int);
355     int (*to_insert_fork_catchpoint) (int);
356     int (*to_remove_fork_catchpoint) (int);
357     int (*to_insert_vfork_catchpoint) (int);
358     int (*to_remove_vfork_catchpoint) (int);
359     int (*to_follow_fork) (int);
360     int (*to_insert_exec_catchpoint) (int);
361     int (*to_remove_exec_catchpoint) (int);
362     int (*to_reported_exec_events_per_exec_call) (void);
363     int (*to_has_exited) (int, int, int *);
364     void (*to_mourn_inferior) (void);
365     int (*to_can_run) (void);
366     void (*to_notice_signals) (ptid_t ptid);
367     int (*to_thread_alive) (ptid_t ptid);
368     void (*to_find_new_threads) (void);
369     char *(*to_pid_to_str) (ptid_t);
370     char *(*to_extra_thread_info) (struct thread_info *);
371     void (*to_stop) (void);
372     void (*to_rcmd) (char *command, struct ui_file *output);
373     struct symtab_and_line *(*to_enable_exception_callback) (enum
374                                                              exception_event_kind,
375                                                              int);
376     struct exception_event_record *(*to_get_current_exception_event) (void);
377     char *(*to_pid_to_exec_file) (int pid);
378     enum strata to_stratum;
379     int to_has_all_memory;
380     int to_has_memory;
381     int to_has_stack;
382     int to_has_registers;
383     int to_has_execution;
384     int to_has_thread_control;  /* control thread execution */
385     struct section_table
386      *to_sections;
387     struct section_table
388      *to_sections_end;
389     /* ASYNC target controls */
390     int (*to_can_async_p) (void);
391     int (*to_is_async_p) (void);
392     void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
393                       void *context);
394     int to_async_mask_value;
395     int (*to_find_memory_regions) (int (*) (CORE_ADDR, 
396                                             unsigned long, 
397                                             int, int, int, 
398                                             void *), 
399                                    void *);
400     char * (*to_make_corefile_notes) (bfd *, int *);
401
402     /* Return the thread-local address at OFFSET in the
403        thread-local storage for the thread PTID and the shared library
404        or executable file given by OBJFILE.  If that block of
405        thread-local storage hasn't been allocated yet, this function
406        may return an error.  */
407     CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
408                                               struct objfile *objfile,
409                                               CORE_ADDR offset);
410
411     /* Perform partial transfers on OBJECT.  See target_read_partial
412        and target_write_partial for details of each variant.  One, and
413        only one, of readbuf or writebuf must be non-NULL.  */
414     LONGEST (*to_xfer_partial) (struct target_ops *ops,
415                                 enum target_object object, const char *annex,
416                                 void *readbuf, const void *writebuf, 
417                                 ULONGEST offset, LONGEST len);
418
419     int to_magic;
420     /* Need sub-structure for target machine related rather than comm related?
421      */
422   };
423
424 /* Magic number for checking ops size.  If a struct doesn't end with this
425    number, somebody changed the declaration but didn't change all the
426    places that initialize one.  */
427
428 #define OPS_MAGIC       3840
429
430 /* The ops structure for our "current" target process.  This should
431    never be NULL.  If there is no target, it points to the dummy_target.  */
432
433 extern struct target_ops current_target;
434
435 /* Define easy words for doing these operations on our current target.  */
436
437 #define target_shortname        (current_target.to_shortname)
438 #define target_longname         (current_target.to_longname)
439
440 /* Does whatever cleanup is required for a target that we are no
441    longer going to be calling.  QUITTING indicates that GDB is exiting
442    and should not get hung on an error (otherwise it is important to
443    perform clean termination, even if it takes a while).  This routine
444    is automatically always called when popping the target off the
445    target stack (to_beneath is undefined).  Closing file descriptors
446    and freeing all memory allocated memory are typical things it
447    should do.  */
448
449 void target_close (struct target_ops *targ, int quitting);
450
451 /* Attaches to a process on the target side.  Arguments are as passed
452    to the `attach' command by the user.  This routine can be called
453    when the target is not on the target-stack, if the target_can_run
454    routine returns 1; in that case, it must push itself onto the stack.  
455    Upon exit, the target should be ready for normal operations, and
456    should be ready to deliver the status of the process immediately 
457    (without waiting) to an upcoming target_wait call.  */
458
459 #define target_attach(args, from_tty)   \
460      (*current_target.to_attach) (args, from_tty)
461
462 /* The target_attach operation places a process under debugger control,
463    and stops the process.
464
465    This operation provides a target-specific hook that allows the
466    necessary bookkeeping to be performed after an attach completes.  */
467 #define target_post_attach(pid) \
468      (*current_target.to_post_attach) (pid)
469
470 /* Takes a program previously attached to and detaches it.
471    The program may resume execution (some targets do, some don't) and will
472    no longer stop on signals, etc.  We better not have left any breakpoints
473    in the program or it'll die when it hits one.  ARGS is arguments
474    typed by the user (e.g. a signal to send the process).  FROM_TTY
475    says whether to be verbose or not.  */
476
477 extern void target_detach (char *, int);
478
479 /* Disconnect from the current target without resuming it (leaving it
480    waiting for a debugger).  */
481
482 extern void target_disconnect (char *, int);
483
484 /* Resume execution of the target process PTID.  STEP says whether to
485    single-step or to run free; SIGGNAL is the signal to be given to
486    the target, or TARGET_SIGNAL_0 for no signal.  The caller may not
487    pass TARGET_SIGNAL_DEFAULT.  */
488
489 #define target_resume(ptid, step, siggnal)                              \
490   do {                                                                  \
491     dcache_invalidate(target_dcache);                                   \
492     (*current_target.to_resume) (ptid, step, siggnal);                  \
493   } while (0)
494
495 /* Wait for process pid to do something.  PTID = -1 to wait for any
496    pid to do something.  Return pid of child, or -1 in case of error;
497    store status through argument pointer STATUS.  Note that it is
498    _NOT_ OK to throw_exception() out of target_wait() without popping
499    the debugging target from the stack; GDB isn't prepared to get back
500    to the prompt with a debugging target but without the frame cache,
501    stop_pc, etc., set up.  */
502
503 #define target_wait(ptid, status)               \
504      (*current_target.to_wait) (ptid, status)
505
506 /* The target_wait operation waits for a process event to occur, and
507    thereby stop the process.
508
509    On some targets, certain events may happen in sequences.  gdb's
510    correct response to any single event of such a sequence may require
511    knowledge of what earlier events in the sequence have been seen.
512
513    This operation provides a target-specific hook that allows the
514    necessary bookkeeping to be performed to track such sequences.  */
515
516 #define target_post_wait(ptid, status) \
517      (*current_target.to_post_wait) (ptid, status)
518
519 /* Fetch at least register REGNO, or all regs if regno == -1.  No result.  */
520
521 #define target_fetch_registers(regno)   \
522      (*current_target.to_fetch_registers) (regno)
523
524 /* Store at least register REGNO, or all regs if REGNO == -1.
525    It can store as many registers as it wants to, so target_prepare_to_store
526    must have been previously called.  Calls error() if there are problems.  */
527
528 #define target_store_registers(regs)    \
529      (*current_target.to_store_registers) (regs)
530
531 /* Get ready to modify the registers array.  On machines which store
532    individual registers, this doesn't need to do anything.  On machines
533    which store all the registers in one fell swoop, this makes sure
534    that REGISTERS contains all the registers from the program being
535    debugged.  */
536
537 #define target_prepare_to_store()       \
538      (*current_target.to_prepare_to_store) ()
539
540 extern DCACHE *target_dcache;
541
542 extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
543                            struct mem_attrib *attrib);
544
545 extern int target_read_string (CORE_ADDR, char **, int, int *);
546
547 extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
548
549 extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
550
551 extern int xfer_memory (CORE_ADDR, char *, int, int, 
552                         struct mem_attrib *, struct target_ops *);
553
554 extern int child_xfer_memory (CORE_ADDR, char *, int, int, 
555                               struct mem_attrib *, struct target_ops *);
556
557 /* Make a single attempt at transfering LEN bytes.  On a successful
558    transfer, the number of bytes actually transfered is returned and
559    ERR is set to 0.  When a transfer fails, -1 is returned (the number
560    of bytes actually transfered is not defined) and ERR is set to a
561    non-zero error indication.  */
562
563 extern int target_read_memory_partial (CORE_ADDR addr, char *buf, int len,
564                                        int *err);
565
566 extern int target_write_memory_partial (CORE_ADDR addr, char *buf, int len,
567                                         int *err);
568
569 extern char *child_pid_to_exec_file (int);
570
571 extern char *child_core_file_to_sym_file (char *);
572
573 #if defined(CHILD_POST_ATTACH)
574 extern void child_post_attach (int);
575 #endif
576
577 extern void child_post_wait (ptid_t, int);
578
579 extern void child_post_startup_inferior (ptid_t);
580
581 extern void child_acknowledge_created_inferior (int);
582
583 extern int child_insert_fork_catchpoint (int);
584
585 extern int child_remove_fork_catchpoint (int);
586
587 extern int child_insert_vfork_catchpoint (int);
588
589 extern int child_remove_vfork_catchpoint (int);
590
591 extern void child_acknowledge_created_inferior (int);
592
593 extern int child_follow_fork (int);
594
595 extern int child_insert_exec_catchpoint (int);
596
597 extern int child_remove_exec_catchpoint (int);
598
599 extern int child_reported_exec_events_per_exec_call (void);
600
601 extern int child_has_exited (int, int, int *);
602
603 extern int child_thread_alive (ptid_t);
604
605 /* From infrun.c.  */
606
607 extern int inferior_has_forked (int pid, int *child_pid);
608
609 extern int inferior_has_vforked (int pid, int *child_pid);
610
611 extern int inferior_has_execd (int pid, char **execd_pathname);
612
613 /* From exec.c */
614
615 extern void print_section_info (struct target_ops *, bfd *);
616
617 /* Print a line about the current target.  */
618
619 #define target_files_info()     \
620      (*current_target.to_files_info) (&current_target)
621
622 /* Insert a breakpoint at address ADDR in the target machine.  SAVE is
623    a pointer to memory allocated for saving the target contents.  It
624    is guaranteed by the caller to be long enough to save the number of
625    breakpoint bytes indicated by BREAKPOINT_FROM_PC.  Result is 0 for
626    success, or an errno value.  */
627
628 #define target_insert_breakpoint(addr, save)    \
629      (*current_target.to_insert_breakpoint) (addr, save)
630
631 /* Remove a breakpoint at address ADDR in the target machine.
632    SAVE is a pointer to the same save area 
633    that was previously passed to target_insert_breakpoint.  
634    Result is 0 for success, or an errno value.  */
635
636 #define target_remove_breakpoint(addr, save)    \
637      (*current_target.to_remove_breakpoint) (addr, save)
638
639 /* Initialize the terminal settings we record for the inferior,
640    before we actually run the inferior.  */
641
642 #define target_terminal_init() \
643      (*current_target.to_terminal_init) ()
644
645 /* Put the inferior's terminal settings into effect.
646    This is preparation for starting or resuming the inferior.  */
647
648 #define target_terminal_inferior() \
649      (*current_target.to_terminal_inferior) ()
650
651 /* Put some of our terminal settings into effect,
652    enough to get proper results from our output,
653    but do not change into or out of RAW mode
654    so that no input is discarded.
655
656    After doing this, either terminal_ours or terminal_inferior
657    should be called to get back to a normal state of affairs.  */
658
659 #define target_terminal_ours_for_output() \
660      (*current_target.to_terminal_ours_for_output) ()
661
662 /* Put our terminal settings into effect.
663    First record the inferior's terminal settings
664    so they can be restored properly later.  */
665
666 #define target_terminal_ours() \
667      (*current_target.to_terminal_ours) ()
668
669 /* Save our terminal settings.
670    This is called from TUI after entering or leaving the curses
671    mode.  Since curses modifies our terminal this call is here
672    to take this change into account.  */
673
674 #define target_terminal_save_ours() \
675      (*current_target.to_terminal_save_ours) ()
676
677 /* Print useful information about our terminal status, if such a thing
678    exists.  */
679
680 #define target_terminal_info(arg, from_tty) \
681      (*current_target.to_terminal_info) (arg, from_tty)
682
683 /* Kill the inferior process.   Make it go away.  */
684
685 #define target_kill() \
686      (*current_target.to_kill) ()
687
688 /* Load an executable file into the target process.  This is expected
689    to not only bring new code into the target process, but also to
690    update GDB's symbol tables to match.  */
691
692 extern void target_load (char *arg, int from_tty);
693
694 /* Look up a symbol in the target's symbol table.  NAME is the symbol
695    name.  ADDRP is a CORE_ADDR * pointing to where the value of the
696    symbol should be returned.  The result is 0 if successful, nonzero
697    if the symbol does not exist in the target environment.  This
698    function should not call error() if communication with the target
699    is interrupted, since it is called from symbol reading, but should
700    return nonzero, possibly doing a complain().  */
701
702 #define target_lookup_symbol(name, addrp) \
703      (*current_target.to_lookup_symbol) (name, addrp)
704
705 /* Start an inferior process and set inferior_ptid to its pid.
706    EXEC_FILE is the file to run.
707    ALLARGS is a string containing the arguments to the program.
708    ENV is the environment vector to pass.  Errors reported with error().
709    On VxWorks and various standalone systems, we ignore exec_file.  */
710
711 #define target_create_inferior(exec_file, args, env)    \
712      (*current_target.to_create_inferior) (exec_file, args, env)
713
714
715 /* Some targets (such as ttrace-based HPUX) don't allow us to request
716    notification of inferior events such as fork and vork immediately
717    after the inferior is created.  (This because of how gdb gets an
718    inferior created via invoking a shell to do it.  In such a scenario,
719    if the shell init file has commands in it, the shell will fork and
720    exec for each of those commands, and we will see each such fork
721    event.  Very bad.)
722
723    Such targets will supply an appropriate definition for this function.  */
724
725 #define target_post_startup_inferior(ptid) \
726      (*current_target.to_post_startup_inferior) (ptid)
727
728 /* On some targets, the sequence of starting up an inferior requires
729    some synchronization between gdb and the new inferior process, PID.  */
730
731 #define target_acknowledge_created_inferior(pid) \
732      (*current_target.to_acknowledge_created_inferior) (pid)
733
734 /* On some targets, we can catch an inferior fork or vfork event when
735    it occurs.  These functions insert/remove an already-created
736    catchpoint for such events.  */
737
738 #define target_insert_fork_catchpoint(pid) \
739      (*current_target.to_insert_fork_catchpoint) (pid)
740
741 #define target_remove_fork_catchpoint(pid) \
742      (*current_target.to_remove_fork_catchpoint) (pid)
743
744 #define target_insert_vfork_catchpoint(pid) \
745      (*current_target.to_insert_vfork_catchpoint) (pid)
746
747 #define target_remove_vfork_catchpoint(pid) \
748      (*current_target.to_remove_vfork_catchpoint) (pid)
749
750 /* If the inferior forks or vforks, this function will be called at
751    the next resume in order to perform any bookkeeping and fiddling
752    necessary to continue debugging either the parent or child, as
753    requested, and releasing the other.  Information about the fork
754    or vfork event is available via get_last_target_status ().
755    This function returns 1 if the inferior should not be resumed
756    (i.e. there is another event pending).  */
757
758 #define target_follow_fork(follow_child) \
759      (*current_target.to_follow_fork) (follow_child)
760
761 /* On some targets, we can catch an inferior exec event when it
762    occurs.  These functions insert/remove an already-created
763    catchpoint for such events.  */
764
765 #define target_insert_exec_catchpoint(pid) \
766      (*current_target.to_insert_exec_catchpoint) (pid)
767
768 #define target_remove_exec_catchpoint(pid) \
769      (*current_target.to_remove_exec_catchpoint) (pid)
770
771 /* Returns the number of exec events that are reported when a process
772    invokes a flavor of the exec() system call on this target, if exec
773    events are being reported.  */
774
775 #define target_reported_exec_events_per_exec_call() \
776      (*current_target.to_reported_exec_events_per_exec_call) ()
777
778 /* Returns TRUE if PID has exited.  And, also sets EXIT_STATUS to the
779    exit code of PID, if any.  */
780
781 #define target_has_exited(pid,wait_status,exit_status) \
782      (*current_target.to_has_exited) (pid,wait_status,exit_status)
783
784 /* The debugger has completed a blocking wait() call.  There is now
785    some process event that must be processed.  This function should 
786    be defined by those targets that require the debugger to perform
787    cleanup or internal state changes in response to the process event.  */
788
789 /* The inferior process has died.  Do what is right.  */
790
791 #define target_mourn_inferior() \
792      (*current_target.to_mourn_inferior) ()
793
794 /* Does target have enough data to do a run or attach command? */
795
796 #define target_can_run(t) \
797      ((t)->to_can_run) ()
798
799 /* post process changes to signal handling in the inferior.  */
800
801 #define target_notice_signals(ptid) \
802      (*current_target.to_notice_signals) (ptid)
803
804 /* Check to see if a thread is still alive.  */
805
806 #define target_thread_alive(ptid) \
807      (*current_target.to_thread_alive) (ptid)
808
809 /* Query for new threads and add them to the thread list.  */
810
811 #define target_find_new_threads() \
812      (*current_target.to_find_new_threads) (); \
813
814 /* Make target stop in a continuable fashion.  (For instance, under
815    Unix, this should act like SIGSTOP).  This function is normally
816    used by GUIs to implement a stop button.  */
817
818 #define target_stop current_target.to_stop
819
820 /* Send the specified COMMAND to the target's monitor
821    (shell,interpreter) for execution.  The result of the query is
822    placed in OUTBUF.  */
823
824 #define target_rcmd(command, outbuf) \
825      (*current_target.to_rcmd) (command, outbuf)
826
827
828 /* Get the symbol information for a breakpointable routine called when
829    an exception event occurs. 
830    Intended mainly for C++, and for those
831    platforms/implementations where such a callback mechanism is available,
832    e.g. HP-UX with ANSI C++ (aCC).  Some compilers (e.g. g++) support
833    different mechanisms for debugging exceptions.  */
834
835 #define target_enable_exception_callback(kind, enable) \
836      (*current_target.to_enable_exception_callback) (kind, enable)
837
838 /* Get the current exception event kind -- throw or catch, etc.  */
839
840 #define target_get_current_exception_event() \
841      (*current_target.to_get_current_exception_event) ()
842
843 /* Does the target include all of memory, or only part of it?  This
844    determines whether we look up the target chain for other parts of
845    memory if this target can't satisfy a request.  */
846
847 #define target_has_all_memory   \
848      (current_target.to_has_all_memory)
849
850 /* Does the target include memory?  (Dummy targets don't.)  */
851
852 #define target_has_memory       \
853      (current_target.to_has_memory)
854
855 /* Does the target have a stack?  (Exec files don't, VxWorks doesn't, until
856    we start a process.)  */
857
858 #define target_has_stack        \
859      (current_target.to_has_stack)
860
861 /* Does the target have registers?  (Exec files don't.)  */
862
863 #define target_has_registers    \
864      (current_target.to_has_registers)
865
866 /* Does the target have execution?  Can we make it jump (through
867    hoops), or pop its stack a few times?  FIXME: If this is to work that
868    way, it needs to check whether an inferior actually exists.
869    remote-udi.c and probably other targets can be the current target
870    when the inferior doesn't actually exist at the moment.  Right now
871    this just tells us whether this target is *capable* of execution.  */
872
873 #define target_has_execution    \
874      (current_target.to_has_execution)
875
876 /* Can the target support the debugger control of thread execution?
877    a) Can it lock the thread scheduler?
878    b) Can it switch the currently running thread?  */
879
880 #define target_can_lock_scheduler \
881      (current_target.to_has_thread_control & tc_schedlock)
882
883 #define target_can_switch_threads \
884      (current_target.to_has_thread_control & tc_switch)
885
886 /* Can the target support asynchronous execution? */
887 #define target_can_async_p() (current_target.to_can_async_p ())
888
889 /* Is the target in asynchronous execution mode? */
890 #define target_is_async_p() (current_target.to_is_async_p())
891
892 /* Put the target in async mode with the specified callback function. */
893 #define target_async(CALLBACK,CONTEXT) \
894      (current_target.to_async((CALLBACK), (CONTEXT)))
895
896 /* This is to be used ONLY within call_function_by_hand(). It provides
897    a workaround, to have inferior function calls done in sychronous
898    mode, even though the target is asynchronous. After
899    target_async_mask(0) is called, calls to target_can_async_p() will
900    return FALSE , so that target_resume() will not try to start the
901    target asynchronously. After the inferior stops, we IMMEDIATELY
902    restore the previous nature of the target, by calling
903    target_async_mask(1). After that, target_can_async_p() will return
904    TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
905
906    FIXME ezannoni 1999-12-13: we won't need this once we move
907    the turning async on and off to the single execution commands,
908    from where it is done currently, in remote_resume().  */
909
910 #define target_async_mask_value \
911      (current_target.to_async_mask_value)
912
913 extern int target_async_mask (int mask);     
914
915 extern void target_link (char *, CORE_ADDR *);
916
917 /* Converts a process id to a string.  Usually, the string just contains
918    `process xyz', but on some systems it may contain
919    `process xyz thread abc'.  */
920
921 #undef target_pid_to_str
922 #define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
923
924 #ifndef target_tid_to_str
925 #define target_tid_to_str(PID) \
926      target_pid_to_str (PID)
927 extern char *normal_pid_to_str (ptid_t ptid);
928 #endif
929
930 /* Return a short string describing extra information about PID,
931    e.g. "sleeping", "runnable", "running on LWP 3".  Null return value
932    is okay.  */
933
934 #define target_extra_thread_info(TP) \
935      (current_target.to_extra_thread_info (TP))
936
937 /*
938  * New Objfile Event Hook:
939  *
940  * Sometimes a GDB component wants to get notified whenever a new
941  * objfile is loaded.  Mainly this is used by thread-debugging 
942  * implementations that need to know when symbols for the target
943  * thread implemenation are available.
944  *
945  * The old way of doing this is to define a macro 'target_new_objfile'
946  * that points to the function that you want to be called on every
947  * objfile/shlib load.
948  *
949  * The new way is to grab the function pointer, 'target_new_objfile_hook',
950  * and point it to the function that you want to be called on every
951  * objfile/shlib load.
952  *
953  * If multiple clients are willing to be cooperative, they can each
954  * save a pointer to the previous value of target_new_objfile_hook
955  * before modifying it, and arrange for their function to call the
956  * previous function in the chain.  In that way, multiple clients
957  * can receive this notification (something like with signal handlers).
958  */
959
960 extern void (*target_new_objfile_hook) (struct objfile *);
961
962 #ifndef target_pid_or_tid_to_str
963 #define target_pid_or_tid_to_str(ID) \
964      target_pid_to_str (ID)
965 #endif
966
967 /* Attempts to find the pathname of the executable file
968    that was run to create a specified process.
969
970    The process PID must be stopped when this operation is used.
971
972    If the executable file cannot be determined, NULL is returned.
973
974    Else, a pointer to a character string containing the pathname
975    is returned.  This string should be copied into a buffer by
976    the client if the string will not be immediately used, or if
977    it must persist.  */
978
979 #define target_pid_to_exec_file(pid) \
980      (current_target.to_pid_to_exec_file) (pid)
981
982 /*
983  * Iterator function for target memory regions.
984  * Calls a callback function once for each memory region 'mapped'
985  * in the child process.  Defined as a simple macro rather than
986  * as a function macro so that it can be tested for nullity.  
987  */
988
989 #define target_find_memory_regions(FUNC, DATA) \
990      (current_target.to_find_memory_regions) (FUNC, DATA)
991
992 /*
993  * Compose corefile .note section.
994  */
995
996 #define target_make_corefile_notes(BFD, SIZE_P) \
997      (current_target.to_make_corefile_notes) (BFD, SIZE_P)
998
999 /* Thread-local values.  */
1000 #define target_get_thread_local_address \
1001     (current_target.to_get_thread_local_address)
1002 #define target_get_thread_local_address_p() \
1003     (target_get_thread_local_address != NULL)
1004
1005 /* Hook to call target dependent code just after inferior target process has
1006    started.  */
1007
1008 #ifndef TARGET_CREATE_INFERIOR_HOOK
1009 #define TARGET_CREATE_INFERIOR_HOOK(PID)
1010 #endif
1011
1012 /* Hardware watchpoint interfaces.  */
1013
1014 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1015    write).  */
1016
1017 #ifndef STOPPED_BY_WATCHPOINT
1018 #define STOPPED_BY_WATCHPOINT(w) \
1019    (*current_target.to_stopped_by_watchpoint) ()
1020 #endif
1021
1022 /* Non-zero if we have continuable watchpoints  */
1023
1024 #ifndef HAVE_CONTINUABLE_WATCHPOINT
1025 #define HAVE_CONTINUABLE_WATCHPOINT \
1026    (current_target.to_have_continuable_watchpoint)
1027 #endif
1028
1029 /* HP-UX supplies these operations, which respectively disable and enable
1030    the memory page-protections that are used to implement hardware watchpoints
1031    on that platform.  See wait_for_inferior's use of these.  */
1032
1033 #if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1034 #define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1035 #endif
1036
1037 #if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1038 #define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1039 #endif
1040
1041 /* Provide defaults for hardware watchpoint functions.  */
1042
1043 /* If the *_hw_beakpoint functions have not been defined 
1044    elsewhere use the definitions in the target vector.  */
1045
1046 /* Returns non-zero if we can set a hardware watchpoint of type TYPE.  TYPE is
1047    one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1048    bp_hardware_breakpoint.  CNT is the number of such watchpoints used so far
1049    (including this one?).  OTHERTYPE is who knows what...  */
1050
1051 #ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1052 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1053  (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1054 #endif
1055
1056 #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1057 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1058     (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
1059 #endif
1060
1061
1062 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.  TYPE is 0
1063    for write, 1 for read, and 2 for read/write accesses.  Returns 0 for
1064    success, non-zero for failure.  */
1065
1066 #ifndef target_insert_watchpoint
1067 #define target_insert_watchpoint(addr, len, type)       \
1068      (*current_target.to_insert_watchpoint) (addr, len, type)
1069
1070 #define target_remove_watchpoint(addr, len, type)       \
1071      (*current_target.to_remove_watchpoint) (addr, len, type)
1072 #endif
1073
1074 #ifndef target_insert_hw_breakpoint
1075 #define target_insert_hw_breakpoint(addr, save) \
1076      (*current_target.to_insert_hw_breakpoint) (addr, save)
1077
1078 #define target_remove_hw_breakpoint(addr, save) \
1079      (*current_target.to_remove_hw_breakpoint) (addr, save)
1080 #endif
1081
1082 #ifndef target_stopped_data_address
1083 #define target_stopped_data_address() \
1084     (*current_target.to_stopped_data_address) ()
1085 #endif
1086
1087 /* Sometimes gdb may pick up what appears to be a valid target address
1088    from a minimal symbol, but the value really means, essentially,
1089    "This is an index into a table which is populated when the inferior
1090    is run.  Therefore, do not attempt to use this as a PC."  */
1091
1092 #if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1093 #define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1094 #endif
1095
1096 /* This will only be defined by a target that supports catching vfork events,
1097    such as HP-UX.
1098
1099    On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1100    child process after it has exec'd, causes the parent process to resume as
1101    well.  To prevent the parent from running spontaneously, such targets should
1102    define this to a function that prevents that from happening.  */
1103 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1104 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1105 #endif
1106
1107 /* This will only be defined by a target that supports catching vfork events,
1108    such as HP-UX.
1109
1110    On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1111    process must be resumed when it delivers its exec event, before the parent
1112    vfork event will be delivered to us.  */
1113
1114 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1115 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1116 #endif
1117
1118 /* Routines for maintenance of the target structures...
1119
1120    add_target:   Add a target to the list of all possible targets.
1121
1122    push_target:  Make this target the top of the stack of currently used
1123    targets, within its particular stratum of the stack.  Result
1124    is 0 if now atop the stack, nonzero if not on top (maybe
1125    should warn user).
1126
1127    unpush_target: Remove this from the stack of currently used targets,
1128    no matter where it is on the list.  Returns 0 if no
1129    change, 1 if removed from stack.
1130
1131    pop_target:   Remove the top thing on the stack of current targets.  */
1132
1133 extern void add_target (struct target_ops *);
1134
1135 extern int push_target (struct target_ops *);
1136
1137 extern int unpush_target (struct target_ops *);
1138
1139 extern void target_preopen (int);
1140
1141 extern void pop_target (void);
1142
1143 /* Struct section_table maps address ranges to file sections.  It is
1144    mostly used with BFD files, but can be used without (e.g. for handling
1145    raw disks, or files not in formats handled by BFD).  */
1146
1147 struct section_table
1148   {
1149     CORE_ADDR addr;             /* Lowest address in section */
1150     CORE_ADDR endaddr;          /* 1+highest address in section */
1151
1152     struct bfd_section *the_bfd_section;
1153
1154     bfd *bfd;                   /* BFD file pointer */
1155   };
1156
1157 /* Return the "section" containing the specified address.  */
1158 struct section_table *target_section_by_addr (struct target_ops *target,
1159                                               CORE_ADDR addr);
1160
1161
1162 /* From mem-break.c */
1163
1164 extern int memory_remove_breakpoint (CORE_ADDR, char *);
1165
1166 extern int memory_insert_breakpoint (CORE_ADDR, char *);
1167
1168 extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
1169
1170 extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
1171
1172
1173 /* From target.c */
1174
1175 extern void initialize_targets (void);
1176
1177 extern void noprocess (void);
1178
1179 extern void find_default_attach (char *, int);
1180
1181 extern void find_default_create_inferior (char *, char *, char **);
1182
1183 extern struct target_ops *find_run_target (void);
1184
1185 extern struct target_ops *find_core_target (void);
1186
1187 extern struct target_ops *find_target_beneath (struct target_ops *);
1188
1189 extern int target_resize_to_sections (struct target_ops *target,
1190                                       int num_added);
1191
1192 extern void remove_target_sections (bfd *abfd);
1193
1194 \f
1195 /* Stuff that should be shared among the various remote targets.  */
1196
1197 /* Debugging level.  0 is off, and non-zero values mean to print some debug
1198    information (higher values, more information).  */
1199 extern int remote_debug;
1200
1201 /* Speed in bits per second, or -1 which means don't mess with the speed.  */
1202 extern int baud_rate;
1203 /* Timeout limit for response from target. */
1204 extern int remote_timeout;
1205
1206 \f
1207 /* Functions for helping to write a native target.  */
1208
1209 /* This is for native targets which use a unix/POSIX-style waitstatus.  */
1210 extern void store_waitstatus (struct target_waitstatus *, int);
1211
1212 /* Predicate to target_signal_to_host(). Return non-zero if the enum
1213    targ_signal SIGNO has an equivalent ``host'' representation.  */
1214 /* FIXME: cagney/1999-11-22: The name below was chosen in preference
1215    to the shorter target_signal_p() because it is far less ambigious.
1216    In this context ``target_signal'' refers to GDB's internal
1217    representation of the target's set of signals while ``host signal''
1218    refers to the target operating system's signal.  Confused?  */
1219
1220 extern int target_signal_to_host_p (enum target_signal signo);
1221
1222 /* Convert between host signal numbers and enum target_signal's.
1223    target_signal_to_host() returns 0 and prints a warning() on GDB's
1224    console if SIGNO has no equivalent host representation.  */
1225 /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1226    refering to the target operating system's signal numbering.
1227    Similarly, ``enum target_signal'' is named incorrectly, ``enum
1228    gdb_signal'' would probably be better as it is refering to GDB's
1229    internal representation of a target operating system's signal.  */
1230
1231 extern enum target_signal target_signal_from_host (int);
1232 extern int target_signal_to_host (enum target_signal);
1233
1234 /* Convert from a number used in a GDB command to an enum target_signal.  */
1235 extern enum target_signal target_signal_from_command (int);
1236
1237 /* Any target can call this to switch to remote protocol (in remote.c). */
1238 extern void push_remote_target (char *name, int from_tty);
1239 \f
1240 /* Imported from machine dependent code */
1241
1242 /* Blank target vector entries are initialized to target_ignore. */
1243 void target_ignore (void);
1244
1245 #endif /* !defined (TARGET_H) */