ld/testsuite/
[external/binutils.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3    Copyright (C) 1990-2012 Free Software Foundation, Inc.
4
5    Contributed by Cygnus Support.  Written by John Gilmore.
6
7    This file is part of GDB.
8
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40
41 /* This include file defines the interface between the main part
42    of the debugger, and the part which is target-specific, or
43    specific to the communications interface between us and the
44    target.
45
46    A TARGET is an interface between the debugger and a particular
47    kind of file or process.  Targets can be STACKED in STRATA,
48    so that more than one target can potentially respond to a request.
49    In particular, memory accesses will walk down the stack of targets
50    until they find a target that is interested in handling that particular
51    address.  STRATA are artificial boundaries on the stack, within
52    which particular kinds of targets live.  Strata exist so that
53    people don't get confused by pushing e.g. a process target and then
54    a file target, and wondering why they can't see the current values
55    of variables any more (the file target is handling them and they
56    never get to the process target).  So when you push a file target,
57    it goes into the file stratum, which is always below the process
58    stratum.  */
59
60 #include "bfd.h"
61 #include "symtab.h"
62 #include "memattr.h"
63 #include "vec.h"
64 #include "gdb_signals.h"
65
66 enum strata
67   {
68     dummy_stratum,              /* The lowest of the low */
69     file_stratum,               /* Executable files, etc */
70     process_stratum,            /* Executing processes or core dump files */
71     thread_stratum,             /* Executing threads */
72     record_stratum,             /* Support record debugging */
73     arch_stratum                /* Architecture overrides */
74   };
75
76 enum thread_control_capabilities
77   {
78     tc_none = 0,                /* Default: can't control thread execution.  */
79     tc_schedlock = 1,           /* Can lock the thread scheduler.  */
80   };
81
82 /* Stuff for target_wait.  */
83
84 /* Generally, what has the program done?  */
85 enum target_waitkind
86   {
87     /* The program has exited.  The exit status is in value.integer.  */
88     TARGET_WAITKIND_EXITED,
89
90     /* The program has stopped with a signal.  Which signal is in
91        value.sig.  */
92     TARGET_WAITKIND_STOPPED,
93
94     /* The program has terminated with a signal.  Which signal is in
95        value.sig.  */
96     TARGET_WAITKIND_SIGNALLED,
97
98     /* The program is letting us know that it dynamically loaded something
99        (e.g. it called load(2) on AIX).  */
100     TARGET_WAITKIND_LOADED,
101
102     /* The program has forked.  A "related" process' PTID is in
103        value.related_pid.  I.e., if the child forks, value.related_pid
104        is the parent's ID.  */
105
106     TARGET_WAITKIND_FORKED,
107
108     /* The program has vforked.  A "related" process's PTID is in
109        value.related_pid.  */
110
111     TARGET_WAITKIND_VFORKED,
112
113     /* The program has exec'ed a new executable file.  The new file's
114        pathname is pointed to by value.execd_pathname.  */
115
116     TARGET_WAITKIND_EXECD,
117
118     /* The program had previously vforked, and now the child is done
119        with the shared memory region, because it exec'ed or exited.
120        Note that the event is reported to the vfork parent.  This is
121        only used if GDB did not stay attached to the vfork child,
122        otherwise, a TARGET_WAITKIND_EXECD or
123        TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
124        has the same effect.  */
125     TARGET_WAITKIND_VFORK_DONE,
126
127     /* The program has entered or returned from a system call.  On
128        HP-UX, this is used in the hardware watchpoint implementation.
129        The syscall's unique integer ID number is in value.syscall_id.  */
130
131     TARGET_WAITKIND_SYSCALL_ENTRY,
132     TARGET_WAITKIND_SYSCALL_RETURN,
133
134     /* Nothing happened, but we stopped anyway.  This perhaps should be handled
135        within target_wait, but I'm not sure target_wait should be resuming the
136        inferior.  */
137     TARGET_WAITKIND_SPURIOUS,
138
139     /* An event has occured, but we should wait again.
140        Remote_async_wait() returns this when there is an event
141        on the inferior, but the rest of the world is not interested in
142        it.  The inferior has not stopped, but has just sent some output
143        to the console, for instance.  In this case, we want to go back
144        to the event loop and wait there for another event from the
145        inferior, rather than being stuck in the remote_async_wait()
146        function. sThis way the event loop is responsive to other events,
147        like for instance the user typing.  */
148     TARGET_WAITKIND_IGNORE,
149
150     /* The target has run out of history information,
151        and cannot run backward any further.  */
152     TARGET_WAITKIND_NO_HISTORY,
153
154     /* There are no resumed children left in the program.  */
155     TARGET_WAITKIND_NO_RESUMED
156   };
157
158 struct target_waitstatus
159   {
160     enum target_waitkind kind;
161
162     /* Forked child pid, execd pathname, exit status, signal number or
163        syscall number.  */
164     union
165       {
166         int integer;
167         enum gdb_signal sig;
168         ptid_t related_pid;
169         char *execd_pathname;
170         int syscall_number;
171       }
172     value;
173   };
174
175 /* Options that can be passed to target_wait.  */
176
177 /* Return immediately if there's no event already queued.  If this
178    options is not requested, target_wait blocks waiting for an
179    event.  */
180 #define TARGET_WNOHANG 1
181
182 /* The structure below stores information about a system call.
183    It is basically used in the "catch syscall" command, and in
184    every function that gives information about a system call.
185    
186    It's also good to mention that its fields represent everything
187    that we currently know about a syscall in GDB.  */
188 struct syscall
189   {
190     /* The syscall number.  */
191     int number;
192
193     /* The syscall name.  */
194     const char *name;
195   };
196
197 /* Return a pretty printed form of target_waitstatus.
198    Space for the result is malloc'd, caller must free.  */
199 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
200
201 /* Possible types of events that the inferior handler will have to
202    deal with.  */
203 enum inferior_event_type
204   {
205     /* Process a normal inferior event which will result in target_wait
206        being called.  */
207     INF_REG_EVENT,
208     /* We are called because a timer went off.  */
209     INF_TIMER,
210     /* We are called to do stuff after the inferior stops.  */
211     INF_EXEC_COMPLETE,
212     /* We are called to do some stuff after the inferior stops, but we
213        are expected to reenter the proceed() and
214        handle_inferior_event() functions.  This is used only in case of
215        'step n' like commands.  */
216     INF_EXEC_CONTINUE
217   };
218 \f
219 /* Target objects which can be transfered using target_read,
220    target_write, et cetera.  */
221
222 enum target_object
223 {
224   /* AVR target specific transfer.  See "avr-tdep.c" and "remote.c".  */
225   TARGET_OBJECT_AVR,
226   /* SPU target specific transfer.  See "spu-tdep.c".  */
227   TARGET_OBJECT_SPU,
228   /* Transfer up-to LEN bytes of memory starting at OFFSET.  */
229   TARGET_OBJECT_MEMORY,
230   /* Memory, avoiding GDB's data cache and trusting the executable.
231      Target implementations of to_xfer_partial never need to handle
232      this object, and most callers should not use it.  */
233   TARGET_OBJECT_RAW_MEMORY,
234   /* Memory known to be part of the target's stack.  This is cached even
235      if it is not in a region marked as such, since it is known to be
236      "normal" RAM.  */
237   TARGET_OBJECT_STACK_MEMORY,
238   /* Kernel Unwind Table.  See "ia64-tdep.c".  */
239   TARGET_OBJECT_UNWIND_TABLE,
240   /* Transfer auxilliary vector.  */
241   TARGET_OBJECT_AUXV,
242   /* StackGhost cookie.  See "sparc-tdep.c".  */
243   TARGET_OBJECT_WCOOKIE,
244   /* Target memory map in XML format.  */
245   TARGET_OBJECT_MEMORY_MAP,
246   /* Flash memory.  This object can be used to write contents to
247      a previously erased flash memory.  Using it without erasing
248      flash can have unexpected results.  Addresses are physical
249      address on target, and not relative to flash start.  */
250   TARGET_OBJECT_FLASH,
251   /* Available target-specific features, e.g. registers and coprocessors.
252      See "target-descriptions.c".  ANNEX should never be empty.  */
253   TARGET_OBJECT_AVAILABLE_FEATURES,
254   /* Currently loaded libraries, in XML format.  */
255   TARGET_OBJECT_LIBRARIES,
256   /* Currently loaded libraries specific for SVR4 systems, in XML format.  */
257   TARGET_OBJECT_LIBRARIES_SVR4,
258   /* Get OS specific data.  The ANNEX specifies the type (running
259      processes, etc.).  The data being transfered is expected to follow
260      the DTD specified in features/osdata.dtd.  */
261   TARGET_OBJECT_OSDATA,
262   /* Extra signal info.  Usually the contents of `siginfo_t' on unix
263      platforms.  */
264   TARGET_OBJECT_SIGNAL_INFO,
265   /* The list of threads that are being debugged.  */
266   TARGET_OBJECT_THREADS,
267   /* Collected static trace data.  */
268   TARGET_OBJECT_STATIC_TRACE_DATA,
269   /* The HP-UX registers (those that can be obtained or modified by using
270      the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests).  */
271   TARGET_OBJECT_HPUX_UREGS,
272   /* The HP-UX shared library linkage pointer.  ANNEX should be a string
273      image of the code address whose linkage pointer we are looking for.
274
275      The size of the data transfered is always 8 bytes (the size of an
276      address on ia64).  */
277   TARGET_OBJECT_HPUX_SOLIB_GOT,
278   /* Traceframe info, in XML format.  */
279   TARGET_OBJECT_TRACEFRAME_INFO,
280   /* Load maps for FDPIC systems.  */
281   TARGET_OBJECT_FDPIC,
282   /* Darwin dynamic linker info data.  */
283   TARGET_OBJECT_DARWIN_DYLD_INFO,
284   /* OpenVMS Unwind Information Block.  */
285   TARGET_OBJECT_OPENVMS_UIB
286   /* Possible future objects: TARGET_OBJECT_FILE, ...  */
287 };
288
289 /* Enumeration of the kinds of traceframe searches that a target may
290    be able to perform.  */
291
292 enum trace_find_type
293   {
294     tfind_number,
295     tfind_pc,
296     tfind_tp,
297     tfind_range,
298     tfind_outside,
299   };
300
301 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
302 DEF_VEC_P(static_tracepoint_marker_p);
303
304 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
305    OBJECT.  The OFFSET, for a seekable object, specifies the
306    starting point.  The ANNEX can be used to provide additional
307    data-specific information to the target.
308
309    Return the number of bytes actually transfered, or -1 if the
310    transfer is not supported or otherwise fails.  Return of a positive
311    value less than LEN indicates that no further transfer is possible.
312    Unlike the raw to_xfer_partial interface, callers of these
313    functions do not need to retry partial transfers.  */
314
315 extern LONGEST target_read (struct target_ops *ops,
316                             enum target_object object,
317                             const char *annex, gdb_byte *buf,
318                             ULONGEST offset, LONGEST len);
319
320 struct memory_read_result
321   {
322     /* First address that was read.  */
323     ULONGEST begin;
324     /* Past-the-end address.  */
325     ULONGEST end;
326     /* The data.  */
327     gdb_byte *data;
328 };
329 typedef struct memory_read_result memory_read_result_s;
330 DEF_VEC_O(memory_read_result_s);
331
332 extern void free_memory_read_result_vector (void *);
333
334 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
335                                                       ULONGEST offset,
336                                                       LONGEST len);
337   
338 extern LONGEST target_write (struct target_ops *ops,
339                              enum target_object object,
340                              const char *annex, const gdb_byte *buf,
341                              ULONGEST offset, LONGEST len);
342
343 /* Similar to target_write, except that it also calls PROGRESS with
344    the number of bytes written and the opaque BATON after every
345    successful partial write (and before the first write).  This is
346    useful for progress reporting and user interaction while writing
347    data.  To abort the transfer, the progress callback can throw an
348    exception.  */
349
350 LONGEST target_write_with_progress (struct target_ops *ops,
351                                     enum target_object object,
352                                     const char *annex, const gdb_byte *buf,
353                                     ULONGEST offset, LONGEST len,
354                                     void (*progress) (ULONGEST, void *),
355                                     void *baton);
356
357 /* Wrapper to perform a full read of unknown size.  OBJECT/ANNEX will
358    be read using OPS.  The return value will be -1 if the transfer
359    fails or is not supported; 0 if the object is empty; or the length
360    of the object otherwise.  If a positive value is returned, a
361    sufficiently large buffer will be allocated using xmalloc and
362    returned in *BUF_P containing the contents of the object.
363
364    This method should be used for objects sufficiently small to store
365    in a single xmalloc'd buffer, when no fixed bound on the object's
366    size is known in advance.  Don't try to read TARGET_OBJECT_MEMORY
367    through this function.  */
368
369 extern LONGEST target_read_alloc (struct target_ops *ops,
370                                   enum target_object object,
371                                   const char *annex, gdb_byte **buf_p);
372
373 /* Read OBJECT/ANNEX using OPS.  The result is NUL-terminated and
374    returned as a string, allocated using xmalloc.  If an error occurs
375    or the transfer is unsupported, NULL is returned.  Empty objects
376    are returned as allocated but empty strings.  A warning is issued
377    if the result contains any embedded NUL bytes.  */
378
379 extern char *target_read_stralloc (struct target_ops *ops,
380                                    enum target_object object,
381                                    const char *annex);
382
383 /* Wrappers to target read/write that perform memory transfers.  They
384    throw an error if the memory transfer fails.
385
386    NOTE: cagney/2003-10-23: The naming schema is lifted from
387    "frame.h".  The parameter order is lifted from get_frame_memory,
388    which in turn lifted it from read_memory.  */
389
390 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
391                                gdb_byte *buf, LONGEST len);
392 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
393                                             CORE_ADDR addr, int len,
394                                             enum bfd_endian byte_order);
395 \f
396 struct thread_info;             /* fwd decl for parameter list below: */
397
398 struct target_ops
399   {
400     struct target_ops *beneath; /* To the target under this one.  */
401     char *to_shortname;         /* Name this target type */
402     char *to_longname;          /* Name for printing */
403     char *to_doc;               /* Documentation.  Does not include trailing
404                                    newline, and starts with a one-line descrip-
405                                    tion (probably similar to to_longname).  */
406     /* Per-target scratch pad.  */
407     void *to_data;
408     /* The open routine takes the rest of the parameters from the
409        command, and (if successful) pushes a new target onto the
410        stack.  Targets should supply this routine, if only to provide
411        an error message.  */
412     void (*to_open) (char *, int);
413     /* Old targets with a static target vector provide "to_close".
414        New re-entrant targets provide "to_xclose" and that is expected
415        to xfree everything (including the "struct target_ops").  */
416     void (*to_xclose) (struct target_ops *targ, int quitting);
417     void (*to_close) (int);
418     void (*to_attach) (struct target_ops *ops, char *, int);
419     void (*to_post_attach) (int);
420     void (*to_detach) (struct target_ops *ops, char *, int);
421     void (*to_disconnect) (struct target_ops *, char *, int);
422     void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal);
423     ptid_t (*to_wait) (struct target_ops *,
424                        ptid_t, struct target_waitstatus *, int);
425     void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
426     void (*to_store_registers) (struct target_ops *, struct regcache *, int);
427     void (*to_prepare_to_store) (struct regcache *);
428
429     /* Transfer LEN bytes of memory between GDB address MYADDR and
430        target address MEMADDR.  If WRITE, transfer them to the target, else
431        transfer them from the target.  TARGET is the target from which we
432        get this function.
433
434        Return value, N, is one of the following:
435
436        0 means that we can't handle this.  If errno has been set, it is the
437        error which prevented us from doing it (FIXME: What about bfd_error?).
438
439        positive (call it N) means that we have transferred N bytes
440        starting at MEMADDR.  We might be able to handle more bytes
441        beyond this length, but no promises.
442
443        negative (call its absolute value N) means that we cannot
444        transfer right at MEMADDR, but we could transfer at least
445        something at MEMADDR + N.
446
447        NOTE: cagney/2004-10-01: This has been entirely superseeded by
448        to_xfer_partial and inferior inheritance.  */
449
450     int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
451                                    int len, int write,
452                                    struct mem_attrib *attrib,
453                                    struct target_ops *target);
454
455     void (*to_files_info) (struct target_ops *);
456     int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
457     int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
458     int (*to_can_use_hw_breakpoint) (int, int, int);
459     int (*to_ranged_break_num_registers) (struct target_ops *);
460     int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
461     int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
462
463     /* Documentation of what the two routines below are expected to do is
464        provided with the corresponding target_* macros.  */
465     int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
466     int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
467
468     int (*to_insert_mask_watchpoint) (struct target_ops *,
469                                       CORE_ADDR, CORE_ADDR, int);
470     int (*to_remove_mask_watchpoint) (struct target_ops *,
471                                       CORE_ADDR, CORE_ADDR, int);
472     int (*to_stopped_by_watchpoint) (void);
473     int to_have_steppable_watchpoint;
474     int to_have_continuable_watchpoint;
475     int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
476     int (*to_watchpoint_addr_within_range) (struct target_ops *,
477                                             CORE_ADDR, CORE_ADDR, int);
478
479     /* Documentation of this routine is provided with the corresponding
480        target_* macro.  */
481     int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
482
483     int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
484                                               struct expression *);
485     int (*to_masked_watch_num_registers) (struct target_ops *,
486                                           CORE_ADDR, CORE_ADDR);
487     void (*to_terminal_init) (void);
488     void (*to_terminal_inferior) (void);
489     void (*to_terminal_ours_for_output) (void);
490     void (*to_terminal_ours) (void);
491     void (*to_terminal_save_ours) (void);
492     void (*to_terminal_info) (char *, int);
493     void (*to_kill) (struct target_ops *);
494     void (*to_load) (char *, int);
495     void (*to_create_inferior) (struct target_ops *, 
496                                 char *, char *, char **, int);
497     void (*to_post_startup_inferior) (ptid_t);
498     int (*to_insert_fork_catchpoint) (int);
499     int (*to_remove_fork_catchpoint) (int);
500     int (*to_insert_vfork_catchpoint) (int);
501     int (*to_remove_vfork_catchpoint) (int);
502     int (*to_follow_fork) (struct target_ops *, int);
503     int (*to_insert_exec_catchpoint) (int);
504     int (*to_remove_exec_catchpoint) (int);
505     int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
506     int (*to_has_exited) (int, int, int *);
507     void (*to_mourn_inferior) (struct target_ops *);
508     int (*to_can_run) (void);
509
510     /* Documentation of this routine is provided with the corresponding
511        target_* macro.  */
512     void (*to_pass_signals) (int, unsigned char *);
513
514     /* Documentation of this routine is provided with the
515        corresponding target_* function.  */
516     void (*to_program_signals) (int, unsigned char *);
517
518     int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
519     void (*to_find_new_threads) (struct target_ops *);
520     char *(*to_pid_to_str) (struct target_ops *, ptid_t);
521     char *(*to_extra_thread_info) (struct thread_info *);
522     char *(*to_thread_name) (struct thread_info *);
523     void (*to_stop) (ptid_t);
524     void (*to_rcmd) (char *command, struct ui_file *output);
525     char *(*to_pid_to_exec_file) (int pid);
526     void (*to_log_command) (const char *);
527     struct target_section_table *(*to_get_section_table) (struct target_ops *);
528     enum strata to_stratum;
529     int (*to_has_all_memory) (struct target_ops *);
530     int (*to_has_memory) (struct target_ops *);
531     int (*to_has_stack) (struct target_ops *);
532     int (*to_has_registers) (struct target_ops *);
533     int (*to_has_execution) (struct target_ops *, ptid_t);
534     int to_has_thread_control;  /* control thread execution */
535     int to_attach_no_wait;
536     /* ASYNC target controls */
537     int (*to_can_async_p) (void);
538     int (*to_is_async_p) (void);
539     void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
540     int (*to_supports_non_stop) (void);
541     /* find_memory_regions support method for gcore */
542     int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
543     /* make_corefile_notes support method for gcore */
544     char * (*to_make_corefile_notes) (bfd *, int *);
545     /* get_bookmark support method for bookmarks */
546     gdb_byte * (*to_get_bookmark) (char *, int);
547     /* goto_bookmark support method for bookmarks */
548     void (*to_goto_bookmark) (gdb_byte *, int);
549     /* Return the thread-local address at OFFSET in the
550        thread-local storage for the thread PTID and the shared library
551        or executable file given by OBJFILE.  If that block of
552        thread-local storage hasn't been allocated yet, this function
553        may return an error.  */
554     CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
555                                               ptid_t ptid,
556                                               CORE_ADDR load_module_addr,
557                                               CORE_ADDR offset);
558
559     /* Request that OPS transfer up to LEN 8-bit bytes of the target's
560        OBJECT.  The OFFSET, for a seekable object, specifies the
561        starting point.  The ANNEX can be used to provide additional
562        data-specific information to the target.
563
564        Return the number of bytes actually transfered, zero when no
565        further transfer is possible, and -1 when the transfer is not
566        supported.  Return of a positive value smaller than LEN does
567        not indicate the end of the object, only the end of the
568        transfer; higher level code should continue transferring if
569        desired.  This is handled in target.c.
570
571        The interface does not support a "retry" mechanism.  Instead it
572        assumes that at least one byte will be transfered on each
573        successful call.
574
575        NOTE: cagney/2003-10-17: The current interface can lead to
576        fragmented transfers.  Lower target levels should not implement
577        hacks, such as enlarging the transfer, in an attempt to
578        compensate for this.  Instead, the target stack should be
579        extended so that it implements supply/collect methods and a
580        look-aside object cache.  With that available, the lowest
581        target can safely and freely "push" data up the stack.
582
583        See target_read and target_write for more information.  One,
584        and only one, of readbuf or writebuf must be non-NULL.  */
585
586     LONGEST (*to_xfer_partial) (struct target_ops *ops,
587                                 enum target_object object, const char *annex,
588                                 gdb_byte *readbuf, const gdb_byte *writebuf,
589                                 ULONGEST offset, LONGEST len);
590
591     /* Returns the memory map for the target.  A return value of NULL
592        means that no memory map is available.  If a memory address
593        does not fall within any returned regions, it's assumed to be
594        RAM.  The returned memory regions should not overlap.
595
596        The order of regions does not matter; target_memory_map will
597        sort regions by starting address.  For that reason, this
598        function should not be called directly except via
599        target_memory_map.
600
601        This method should not cache data; if the memory map could
602        change unexpectedly, it should be invalidated, and higher
603        layers will re-fetch it.  */
604     VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
605
606     /* Erases the region of flash memory starting at ADDRESS, of
607        length LENGTH.
608
609        Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
610        on flash block boundaries, as reported by 'to_memory_map'.  */
611     void (*to_flash_erase) (struct target_ops *,
612                            ULONGEST address, LONGEST length);
613
614     /* Finishes a flash memory write sequence.  After this operation
615        all flash memory should be available for writing and the result
616        of reading from areas written by 'to_flash_write' should be
617        equal to what was written.  */
618     void (*to_flash_done) (struct target_ops *);
619
620     /* Describe the architecture-specific features of this target.
621        Returns the description found, or NULL if no description
622        was available.  */
623     const struct target_desc *(*to_read_description) (struct target_ops *ops);
624
625     /* Build the PTID of the thread on which a given task is running,
626        based on LWP and THREAD.  These values are extracted from the
627        task Private_Data section of the Ada Task Control Block, and
628        their interpretation depends on the target.  */
629     ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
630
631     /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
632        Return 0 if *READPTR is already at the end of the buffer.
633        Return -1 if there is insufficient buffer for a whole entry.
634        Return 1 if an entry was read into *TYPEP and *VALP.  */
635     int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
636                          gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
637
638     /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
639        sequence of bytes in PATTERN with length PATTERN_LEN.
640
641        The result is 1 if found, 0 if not found, and -1 if there was an error
642        requiring halting of the search (e.g. memory read error).
643        If the pattern is found the address is recorded in FOUND_ADDRP.  */
644     int (*to_search_memory) (struct target_ops *ops,
645                              CORE_ADDR start_addr, ULONGEST search_space_len,
646                              const gdb_byte *pattern, ULONGEST pattern_len,
647                              CORE_ADDR *found_addrp);
648
649     /* Can target execute in reverse?  */
650     int (*to_can_execute_reverse) (void);
651
652     /* The direction the target is currently executing.  Must be
653        implemented on targets that support reverse execution and async
654        mode.  The default simply returns forward execution.  */
655     enum exec_direction_kind (*to_execution_direction) (void);
656
657     /* Does this target support debugging multiple processes
658        simultaneously?  */
659     int (*to_supports_multi_process) (void);
660
661     /* Does this target support enabling and disabling tracepoints while a trace
662        experiment is running?  */
663     int (*to_supports_enable_disable_tracepoint) (void);
664
665     /* Does this target support disabling address space randomization?  */
666     int (*to_supports_disable_randomization) (void);
667
668     /* Does this target support the tracenz bytecode for string collection?  */
669     int (*to_supports_string_tracing) (void);
670
671     /* Does this target support evaluation of breakpoint conditions on its
672        end?  */
673     int (*to_supports_evaluation_of_breakpoint_conditions) (void);
674
675     /* Does this target support evaluation of breakpoint commands on its
676        end?  */
677     int (*to_can_run_breakpoint_commands) (void);
678
679     /* Determine current architecture of thread PTID.
680
681        The target is supposed to determine the architecture of the code where
682        the target is currently stopped at (on Cell, if a target is in spu_run,
683        to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
684        This is architecture used to perform decr_pc_after_break adjustment,
685        and also determines the frame architecture of the innermost frame.
686        ptrace operations need to operate according to target_gdbarch.
687
688        The default implementation always returns target_gdbarch.  */
689     struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
690
691     /* Determine current address space of thread PTID.
692
693        The default implementation always returns the inferior's
694        address space.  */
695     struct address_space *(*to_thread_address_space) (struct target_ops *,
696                                                       ptid_t);
697
698     /* Target file operations.  */
699
700     /* Open FILENAME on the target, using FLAGS and MODE.  Return a
701        target file descriptor, or -1 if an error occurs (and set
702        *TARGET_ERRNO).  */
703     int (*to_fileio_open) (const char *filename, int flags, int mode,
704                            int *target_errno);
705
706     /* Write up to LEN bytes from WRITE_BUF to FD on the target.
707        Return the number of bytes written, or -1 if an error occurs
708        (and set *TARGET_ERRNO).  */
709     int (*to_fileio_pwrite) (int fd, const gdb_byte *write_buf, int len,
710                              ULONGEST offset, int *target_errno);
711
712     /* Read up to LEN bytes FD on the target into READ_BUF.
713        Return the number of bytes read, or -1 if an error occurs
714        (and set *TARGET_ERRNO).  */
715     int (*to_fileio_pread) (int fd, gdb_byte *read_buf, int len,
716                             ULONGEST offset, int *target_errno);
717
718     /* Close FD on the target.  Return 0, or -1 if an error occurs
719        (and set *TARGET_ERRNO).  */
720     int (*to_fileio_close) (int fd, int *target_errno);
721
722     /* Unlink FILENAME on the target.  Return 0, or -1 if an error
723        occurs (and set *TARGET_ERRNO).  */
724     int (*to_fileio_unlink) (const char *filename, int *target_errno);
725
726     /* Read value of symbolic link FILENAME on the target.  Return a
727        null-terminated string allocated via xmalloc, or NULL if an error
728        occurs (and set *TARGET_ERRNO).  */
729     char *(*to_fileio_readlink) (const char *filename, int *target_errno);
730
731
732     /* Implement the "info proc" command.  */
733     void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
734
735     /* Tracepoint-related operations.  */
736
737     /* Prepare the target for a tracing run.  */
738     void (*to_trace_init) (void);
739
740     /* Send full details of a tracepoint location to the target.  */
741     void (*to_download_tracepoint) (struct bp_location *location);
742
743     /* Is the target able to download tracepoint locations in current
744        state?  */
745     int (*to_can_download_tracepoint) (void);
746
747     /* Send full details of a trace state variable to the target.  */
748     void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
749
750     /* Enable a tracepoint on the target.  */
751     void (*to_enable_tracepoint) (struct bp_location *location);
752
753     /* Disable a tracepoint on the target.  */
754     void (*to_disable_tracepoint) (struct bp_location *location);
755
756     /* Inform the target info of memory regions that are readonly
757        (such as text sections), and so it should return data from
758        those rather than look in the trace buffer.  */
759     void (*to_trace_set_readonly_regions) (void);
760
761     /* Start a trace run.  */
762     void (*to_trace_start) (void);
763
764     /* Get the current status of a tracing run.  */
765     int (*to_get_trace_status) (struct trace_status *ts);
766
767     void (*to_get_tracepoint_status) (struct breakpoint *tp,
768                                       struct uploaded_tp *utp);
769
770     /* Stop a trace run.  */
771     void (*to_trace_stop) (void);
772
773    /* Ask the target to find a trace frame of the given type TYPE,
774       using NUM, ADDR1, and ADDR2 as search parameters.  Returns the
775       number of the trace frame, and also the tracepoint number at
776       TPP.  If no trace frame matches, return -1.  May throw if the
777       operation fails.  */
778     int (*to_trace_find) (enum trace_find_type type, int num,
779                           ULONGEST addr1, ULONGEST addr2, int *tpp);
780
781     /* Get the value of the trace state variable number TSV, returning
782        1 if the value is known and writing the value itself into the
783        location pointed to by VAL, else returning 0.  */
784     int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
785
786     int (*to_save_trace_data) (const char *filename);
787
788     int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
789
790     int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
791
792     LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
793                                       ULONGEST offset, LONGEST len);
794
795     /* Get the minimum length of instruction on which a fast tracepoint
796        may be set on the target.  If this operation is unsupported,
797        return -1.  If for some reason the minimum length cannot be
798        determined, return 0.  */
799     int (*to_get_min_fast_tracepoint_insn_len) (void);
800
801     /* Set the target's tracing behavior in response to unexpected
802        disconnection - set VAL to 1 to keep tracing, 0 to stop.  */
803     void (*to_set_disconnected_tracing) (int val);
804     void (*to_set_circular_trace_buffer) (int val);
805
806     /* Add/change textual notes about the trace run, returning 1 if
807        successful, 0 otherwise.  */
808     int (*to_set_trace_notes) (char *user, char *notes, char* stopnotes);
809
810     /* Return the processor core that thread PTID was last seen on.
811        This information is updated only when:
812        - update_thread_list is called
813        - thread stops
814        If the core cannot be determined -- either for the specified
815        thread, or right now, or in this debug session, or for this
816        target -- return -1.  */
817     int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
818
819     /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
820        matches the contents of [DATA,DATA+SIZE).  Returns 1 if there's
821        a match, 0 if there's a mismatch, and -1 if an error is
822        encountered while reading memory.  */
823     int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
824                              CORE_ADDR memaddr, ULONGEST size);
825
826     /* Return the address of the start of the Thread Information Block
827        a Windows OS specific feature.  */
828     int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
829
830     /* Send the new settings of write permission variables.  */
831     void (*to_set_permissions) (void);
832
833     /* Look for a static tracepoint marker at ADDR, and fill in MARKER
834        with its details.  Return 1 on success, 0 on failure.  */
835     int (*to_static_tracepoint_marker_at) (CORE_ADDR,
836                                            struct static_tracepoint_marker *marker);
837
838     /* Return a vector of all tracepoints markers string id ID, or all
839        markers if ID is NULL.  */
840     VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
841       (const char *id);
842
843     /* Return a traceframe info object describing the current
844        traceframe's contents.  This method should not cache data;
845        higher layers take care of caching, invalidating, and
846        re-fetching when necessary.  */
847     struct traceframe_info *(*to_traceframe_info) (void);
848
849     /* Ask the target to use or not to use agent according to USE.  Return 1
850        successful, 0 otherwise.  */
851     int (*to_use_agent) (int use);
852
853     /* Is the target able to use agent in current state?  */
854     int (*to_can_use_agent) (void);
855
856     int to_magic;
857     /* Need sub-structure for target machine related rather than comm related?
858      */
859   };
860
861 /* Magic number for checking ops size.  If a struct doesn't end with this
862    number, somebody changed the declaration but didn't change all the
863    places that initialize one.  */
864
865 #define OPS_MAGIC       3840
866
867 /* The ops structure for our "current" target process.  This should
868    never be NULL.  If there is no target, it points to the dummy_target.  */
869
870 extern struct target_ops current_target;
871
872 /* Define easy words for doing these operations on our current target.  */
873
874 #define target_shortname        (current_target.to_shortname)
875 #define target_longname         (current_target.to_longname)
876
877 /* Does whatever cleanup is required for a target that we are no
878    longer going to be calling.  QUITTING indicates that GDB is exiting
879    and should not get hung on an error (otherwise it is important to
880    perform clean termination, even if it takes a while).  This routine
881    is automatically always called after popping the target off the
882    target stack - the target's own methods are no longer available
883    through the target vector.  Closing file descriptors and freeing all
884    memory allocated memory are typical things it should do.  */
885
886 void target_close (struct target_ops *targ, int quitting);
887
888 /* Attaches to a process on the target side.  Arguments are as passed
889    to the `attach' command by the user.  This routine can be called
890    when the target is not on the target-stack, if the target_can_run
891    routine returns 1; in that case, it must push itself onto the stack.
892    Upon exit, the target should be ready for normal operations, and
893    should be ready to deliver the status of the process immediately
894    (without waiting) to an upcoming target_wait call.  */
895
896 void target_attach (char *, int);
897
898 /* Some targets don't generate traps when attaching to the inferior,
899    or their target_attach implementation takes care of the waiting.
900    These targets must set to_attach_no_wait.  */
901
902 #define target_attach_no_wait \
903      (current_target.to_attach_no_wait)
904
905 /* The target_attach operation places a process under debugger control,
906    and stops the process.
907
908    This operation provides a target-specific hook that allows the
909    necessary bookkeeping to be performed after an attach completes.  */
910 #define target_post_attach(pid) \
911      (*current_target.to_post_attach) (pid)
912
913 /* Takes a program previously attached to and detaches it.
914    The program may resume execution (some targets do, some don't) and will
915    no longer stop on signals, etc.  We better not have left any breakpoints
916    in the program or it'll die when it hits one.  ARGS is arguments
917    typed by the user (e.g. a signal to send the process).  FROM_TTY
918    says whether to be verbose or not.  */
919
920 extern void target_detach (char *, int);
921
922 /* Disconnect from the current target without resuming it (leaving it
923    waiting for a debugger).  */
924
925 extern void target_disconnect (char *, int);
926
927 /* Resume execution of the target process PTID (or a group of
928    threads).  STEP says whether to single-step or to run free; SIGGNAL
929    is the signal to be given to the target, or GDB_SIGNAL_0 for no
930    signal.  The caller may not pass GDB_SIGNAL_DEFAULT.  A specific
931    PTID means `step/resume only this process id'.  A wildcard PTID
932    (all threads, or all threads of process) means `step/resume
933    INFERIOR_PTID, and let other threads (for which the wildcard PTID
934    matches) resume with their 'thread->suspend.stop_signal' signal
935    (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
936    if in "no pass" state.  */
937
938 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
939
940 /* Wait for process pid to do something.  PTID = -1 to wait for any
941    pid to do something.  Return pid of child, or -1 in case of error;
942    store status through argument pointer STATUS.  Note that it is
943    _NOT_ OK to throw_exception() out of target_wait() without popping
944    the debugging target from the stack; GDB isn't prepared to get back
945    to the prompt with a debugging target but without the frame cache,
946    stop_pc, etc., set up.  OPTIONS is a bitwise OR of TARGET_W*
947    options.  */
948
949 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
950                            int options);
951
952 /* Fetch at least register REGNO, or all regs if regno == -1.  No result.  */
953
954 extern void target_fetch_registers (struct regcache *regcache, int regno);
955
956 /* Store at least register REGNO, or all regs if REGNO == -1.
957    It can store as many registers as it wants to, so target_prepare_to_store
958    must have been previously called.  Calls error() if there are problems.  */
959
960 extern void target_store_registers (struct regcache *regcache, int regs);
961
962 /* Get ready to modify the registers array.  On machines which store
963    individual registers, this doesn't need to do anything.  On machines
964    which store all the registers in one fell swoop, this makes sure
965    that REGISTERS contains all the registers from the program being
966    debugged.  */
967
968 #define target_prepare_to_store(regcache)       \
969      (*current_target.to_prepare_to_store) (regcache)
970
971 /* Determine current address space of thread PTID.  */
972
973 struct address_space *target_thread_address_space (ptid_t);
974
975 /* Implement the "info proc" command.  */
976
977 void target_info_proc (char *, enum info_proc_what);
978
979 /* Returns true if this target can debug multiple processes
980    simultaneously.  */
981
982 #define target_supports_multi_process() \
983      (*current_target.to_supports_multi_process) ()
984
985 /* Returns true if this target can disable address space randomization.  */
986
987 int target_supports_disable_randomization (void);
988
989 /* Returns true if this target can enable and disable tracepoints
990    while a trace experiment is running.  */
991
992 #define target_supports_enable_disable_tracepoint() \
993   (*current_target.to_supports_enable_disable_tracepoint) ()
994
995 #define target_supports_string_tracing() \
996   (*current_target.to_supports_string_tracing) ()
997
998 /* Returns true if this target can handle breakpoint conditions
999    on its end.  */
1000
1001 #define target_supports_evaluation_of_breakpoint_conditions() \
1002   (*current_target.to_supports_evaluation_of_breakpoint_conditions) ()
1003
1004 /* Returns true if this target can handle breakpoint commands
1005    on its end.  */
1006
1007 #define target_can_run_breakpoint_commands() \
1008   (*current_target.to_can_run_breakpoint_commands) ()
1009
1010 /* Invalidate all target dcaches.  */
1011 extern void target_dcache_invalidate (void);
1012
1013 extern int target_read_string (CORE_ADDR, char **, int, int *);
1014
1015 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1016                                ssize_t len);
1017
1018 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1019
1020 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1021                                 ssize_t len);
1022
1023 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1024                                     ssize_t len);
1025
1026 /* Fetches the target's memory map.  If one is found it is sorted
1027    and returned, after some consistency checking.  Otherwise, NULL
1028    is returned.  */
1029 VEC(mem_region_s) *target_memory_map (void);
1030
1031 /* Erase the specified flash region.  */
1032 void target_flash_erase (ULONGEST address, LONGEST length);
1033
1034 /* Finish a sequence of flash operations.  */
1035 void target_flash_done (void);
1036
1037 /* Describes a request for a memory write operation.  */
1038 struct memory_write_request
1039   {
1040     /* Begining address that must be written.  */
1041     ULONGEST begin;
1042     /* Past-the-end address.  */
1043     ULONGEST end;
1044     /* The data to write.  */
1045     gdb_byte *data;
1046     /* A callback baton for progress reporting for this request.  */
1047     void *baton;
1048   };
1049 typedef struct memory_write_request memory_write_request_s;
1050 DEF_VEC_O(memory_write_request_s);
1051
1052 /* Enumeration specifying different flash preservation behaviour.  */
1053 enum flash_preserve_mode
1054   {
1055     flash_preserve,
1056     flash_discard
1057   };
1058
1059 /* Write several memory blocks at once.  This version can be more
1060    efficient than making several calls to target_write_memory, in
1061    particular because it can optimize accesses to flash memory.
1062
1063    Moreover, this is currently the only memory access function in gdb
1064    that supports writing to flash memory, and it should be used for
1065    all cases where access to flash memory is desirable.
1066
1067    REQUESTS is the vector (see vec.h) of memory_write_request.
1068    PRESERVE_FLASH_P indicates what to do with blocks which must be
1069      erased, but not completely rewritten.
1070    PROGRESS_CB is a function that will be periodically called to provide
1071      feedback to user.  It will be called with the baton corresponding
1072      to the request currently being written.  It may also be called
1073      with a NULL baton, when preserved flash sectors are being rewritten.
1074
1075    The function returns 0 on success, and error otherwise.  */
1076 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1077                                 enum flash_preserve_mode preserve_flash_p,
1078                                 void (*progress_cb) (ULONGEST, void *));
1079
1080 /* From infrun.c.  */
1081
1082 extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
1083
1084 extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
1085
1086 extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
1087
1088 extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
1089
1090 /* Print a line about the current target.  */
1091
1092 #define target_files_info()     \
1093      (*current_target.to_files_info) (&current_target)
1094
1095 /* Insert a breakpoint at address BP_TGT->placed_address in the target
1096    machine.  Result is 0 for success, or an errno value.  */
1097
1098 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1099                                      struct bp_target_info *bp_tgt);
1100
1101 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1102    machine.  Result is 0 for success, or an errno value.  */
1103
1104 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1105                                      struct bp_target_info *bp_tgt);
1106
1107 /* Initialize the terminal settings we record for the inferior,
1108    before we actually run the inferior.  */
1109
1110 #define target_terminal_init() \
1111      (*current_target.to_terminal_init) ()
1112
1113 /* Put the inferior's terminal settings into effect.
1114    This is preparation for starting or resuming the inferior.  */
1115
1116 extern void target_terminal_inferior (void);
1117
1118 /* Put some of our terminal settings into effect,
1119    enough to get proper results from our output,
1120    but do not change into or out of RAW mode
1121    so that no input is discarded.
1122
1123    After doing this, either terminal_ours or terminal_inferior
1124    should be called to get back to a normal state of affairs.  */
1125
1126 #define target_terminal_ours_for_output() \
1127      (*current_target.to_terminal_ours_for_output) ()
1128
1129 /* Put our terminal settings into effect.
1130    First record the inferior's terminal settings
1131    so they can be restored properly later.  */
1132
1133 #define target_terminal_ours() \
1134      (*current_target.to_terminal_ours) ()
1135
1136 /* Save our terminal settings.
1137    This is called from TUI after entering or leaving the curses
1138    mode.  Since curses modifies our terminal this call is here
1139    to take this change into account.  */
1140
1141 #define target_terminal_save_ours() \
1142      (*current_target.to_terminal_save_ours) ()
1143
1144 /* Print useful information about our terminal status, if such a thing
1145    exists.  */
1146
1147 #define target_terminal_info(arg, from_tty) \
1148      (*current_target.to_terminal_info) (arg, from_tty)
1149
1150 /* Kill the inferior process.   Make it go away.  */
1151
1152 extern void target_kill (void);
1153
1154 /* Load an executable file into the target process.  This is expected
1155    to not only bring new code into the target process, but also to
1156    update GDB's symbol tables to match.
1157
1158    ARG contains command-line arguments, to be broken down with
1159    buildargv ().  The first non-switch argument is the filename to
1160    load, FILE; the second is a number (as parsed by strtoul (..., ...,
1161    0)), which is an offset to apply to the load addresses of FILE's
1162    sections.  The target may define switches, or other non-switch
1163    arguments, as it pleases.  */
1164
1165 extern void target_load (char *arg, int from_tty);
1166
1167 /* Start an inferior process and set inferior_ptid to its pid.
1168    EXEC_FILE is the file to run.
1169    ALLARGS is a string containing the arguments to the program.
1170    ENV is the environment vector to pass.  Errors reported with error().
1171    On VxWorks and various standalone systems, we ignore exec_file.  */
1172
1173 void target_create_inferior (char *exec_file, char *args,
1174                              char **env, int from_tty);
1175
1176 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1177    notification of inferior events such as fork and vork immediately
1178    after the inferior is created.  (This because of how gdb gets an
1179    inferior created via invoking a shell to do it.  In such a scenario,
1180    if the shell init file has commands in it, the shell will fork and
1181    exec for each of those commands, and we will see each such fork
1182    event.  Very bad.)
1183
1184    Such targets will supply an appropriate definition for this function.  */
1185
1186 #define target_post_startup_inferior(ptid) \
1187      (*current_target.to_post_startup_inferior) (ptid)
1188
1189 /* On some targets, we can catch an inferior fork or vfork event when
1190    it occurs.  These functions insert/remove an already-created
1191    catchpoint for such events.  They return  0 for success, 1 if the
1192    catchpoint type is not supported and -1 for failure.  */
1193
1194 #define target_insert_fork_catchpoint(pid) \
1195      (*current_target.to_insert_fork_catchpoint) (pid)
1196
1197 #define target_remove_fork_catchpoint(pid) \
1198      (*current_target.to_remove_fork_catchpoint) (pid)
1199
1200 #define target_insert_vfork_catchpoint(pid) \
1201      (*current_target.to_insert_vfork_catchpoint) (pid)
1202
1203 #define target_remove_vfork_catchpoint(pid) \
1204      (*current_target.to_remove_vfork_catchpoint) (pid)
1205
1206 /* If the inferior forks or vforks, this function will be called at
1207    the next resume in order to perform any bookkeeping and fiddling
1208    necessary to continue debugging either the parent or child, as
1209    requested, and releasing the other.  Information about the fork
1210    or vfork event is available via get_last_target_status ().
1211    This function returns 1 if the inferior should not be resumed
1212    (i.e. there is another event pending).  */
1213
1214 int target_follow_fork (int follow_child);
1215
1216 /* On some targets, we can catch an inferior exec event when it
1217    occurs.  These functions insert/remove an already-created
1218    catchpoint for such events.  They return  0 for success, 1 if the
1219    catchpoint type is not supported and -1 for failure.  */
1220
1221 #define target_insert_exec_catchpoint(pid) \
1222      (*current_target.to_insert_exec_catchpoint) (pid)
1223
1224 #define target_remove_exec_catchpoint(pid) \
1225      (*current_target.to_remove_exec_catchpoint) (pid)
1226
1227 /* Syscall catch.
1228
1229    NEEDED is nonzero if any syscall catch (of any kind) is requested.
1230    If NEEDED is zero, it means the target can disable the mechanism to
1231    catch system calls because there are no more catchpoints of this type.
1232
1233    ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1234    being requested.  In this case, both TABLE_SIZE and TABLE should
1235    be ignored.
1236
1237    TABLE_SIZE is the number of elements in TABLE.  It only matters if
1238    ANY_COUNT is zero.
1239
1240    TABLE is an array of ints, indexed by syscall number.  An element in
1241    this array is nonzero if that syscall should be caught.  This argument
1242    only matters if ANY_COUNT is zero.
1243
1244    Return 0 for success, 1 if syscall catchpoints are not supported or -1
1245    for failure.  */
1246
1247 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1248      (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1249                                                   table_size, table)
1250
1251 /* Returns TRUE if PID has exited.  And, also sets EXIT_STATUS to the
1252    exit code of PID, if any.  */
1253
1254 #define target_has_exited(pid,wait_status,exit_status) \
1255      (*current_target.to_has_exited) (pid,wait_status,exit_status)
1256
1257 /* The debugger has completed a blocking wait() call.  There is now
1258    some process event that must be processed.  This function should
1259    be defined by those targets that require the debugger to perform
1260    cleanup or internal state changes in response to the process event.  */
1261
1262 /* The inferior process has died.  Do what is right.  */
1263
1264 void target_mourn_inferior (void);
1265
1266 /* Does target have enough data to do a run or attach command? */
1267
1268 #define target_can_run(t) \
1269      ((t)->to_can_run) ()
1270
1271 /* Set list of signals to be handled in the target.
1272
1273    PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1274    (enum gdb_signal).  For every signal whose entry in this array is
1275    non-zero, the target is allowed -but not required- to skip reporting
1276    arrival of the signal to the GDB core by returning from target_wait,
1277    and to pass the signal directly to the inferior instead.
1278
1279    However, if the target is hardware single-stepping a thread that is
1280    about to receive a signal, it needs to be reported in any case, even
1281    if mentioned in a previous target_pass_signals call.   */
1282
1283 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1284
1285 /* Set list of signals the target may pass to the inferior.  This
1286    directly maps to the "handle SIGNAL pass/nopass" setting.
1287
1288    PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1289    number (enum gdb_signal).  For every signal whose entry in this
1290    array is non-zero, the target is allowed to pass the signal to the
1291    inferior.  Signals not present in the array shall be silently
1292    discarded.  This does not influence whether to pass signals to the
1293    inferior as a result of a target_resume call.  This is useful in
1294    scenarios where the target needs to decide whether to pass or not a
1295    signal to the inferior without GDB core involvement, such as for
1296    example, when detaching (as threads may have been suspended with
1297    pending signals not reported to GDB).  */
1298
1299 extern void target_program_signals (int nsig, unsigned char *program_signals);
1300
1301 /* Check to see if a thread is still alive.  */
1302
1303 extern int target_thread_alive (ptid_t ptid);
1304
1305 /* Query for new threads and add them to the thread list.  */
1306
1307 extern void target_find_new_threads (void);
1308
1309 /* Make target stop in a continuable fashion.  (For instance, under
1310    Unix, this should act like SIGSTOP).  This function is normally
1311    used by GUIs to implement a stop button.  */
1312
1313 extern void target_stop (ptid_t ptid);
1314
1315 /* Send the specified COMMAND to the target's monitor
1316    (shell,interpreter) for execution.  The result of the query is
1317    placed in OUTBUF.  */
1318
1319 #define target_rcmd(command, outbuf) \
1320      (*current_target.to_rcmd) (command, outbuf)
1321
1322
1323 /* Does the target include all of memory, or only part of it?  This
1324    determines whether we look up the target chain for other parts of
1325    memory if this target can't satisfy a request.  */
1326
1327 extern int target_has_all_memory_1 (void);
1328 #define target_has_all_memory target_has_all_memory_1 ()
1329
1330 /* Does the target include memory?  (Dummy targets don't.)  */
1331
1332 extern int target_has_memory_1 (void);
1333 #define target_has_memory target_has_memory_1 ()
1334
1335 /* Does the target have a stack?  (Exec files don't, VxWorks doesn't, until
1336    we start a process.)  */
1337
1338 extern int target_has_stack_1 (void);
1339 #define target_has_stack target_has_stack_1 ()
1340
1341 /* Does the target have registers?  (Exec files don't.)  */
1342
1343 extern int target_has_registers_1 (void);
1344 #define target_has_registers target_has_registers_1 ()
1345
1346 /* Does the target have execution?  Can we make it jump (through
1347    hoops), or pop its stack a few times?  This means that the current
1348    target is currently executing; for some targets, that's the same as
1349    whether or not the target is capable of execution, but there are
1350    also targets which can be current while not executing.  In that
1351    case this will become true after target_create_inferior or
1352    target_attach.  */
1353
1354 extern int target_has_execution_1 (ptid_t);
1355
1356 /* Like target_has_execution_1, but always passes inferior_ptid.  */
1357
1358 extern int target_has_execution_current (void);
1359
1360 #define target_has_execution target_has_execution_current ()
1361
1362 /* Default implementations for process_stratum targets.  Return true
1363    if there's a selected inferior, false otherwise.  */
1364
1365 extern int default_child_has_all_memory (struct target_ops *ops);
1366 extern int default_child_has_memory (struct target_ops *ops);
1367 extern int default_child_has_stack (struct target_ops *ops);
1368 extern int default_child_has_registers (struct target_ops *ops);
1369 extern int default_child_has_execution (struct target_ops *ops,
1370                                         ptid_t the_ptid);
1371
1372 /* Can the target support the debugger control of thread execution?
1373    Can it lock the thread scheduler?  */
1374
1375 #define target_can_lock_scheduler \
1376      (current_target.to_has_thread_control & tc_schedlock)
1377
1378 /* Should the target enable async mode if it is supported?  Temporary
1379    cludge until async mode is a strict superset of sync mode.  */
1380 extern int target_async_permitted;
1381
1382 /* Can the target support asynchronous execution?  */
1383 #define target_can_async_p() (current_target.to_can_async_p ())
1384
1385 /* Is the target in asynchronous execution mode?  */
1386 #define target_is_async_p() (current_target.to_is_async_p ())
1387
1388 int target_supports_non_stop (void);
1389
1390 /* Put the target in async mode with the specified callback function.  */
1391 #define target_async(CALLBACK,CONTEXT) \
1392      (current_target.to_async ((CALLBACK), (CONTEXT)))
1393
1394 #define target_execution_direction() \
1395   (current_target.to_execution_direction ())
1396
1397 /* Converts a process id to a string.  Usually, the string just contains
1398    `process xyz', but on some systems it may contain
1399    `process xyz thread abc'.  */
1400
1401 extern char *target_pid_to_str (ptid_t ptid);
1402
1403 extern char *normal_pid_to_str (ptid_t ptid);
1404
1405 /* Return a short string describing extra information about PID,
1406    e.g. "sleeping", "runnable", "running on LWP 3".  Null return value
1407    is okay.  */
1408
1409 #define target_extra_thread_info(TP) \
1410      (current_target.to_extra_thread_info (TP))
1411
1412 /* Return the thread's name.  A NULL result means that the target
1413    could not determine this thread's name.  */
1414
1415 extern char *target_thread_name (struct thread_info *);
1416
1417 /* Attempts to find the pathname of the executable file
1418    that was run to create a specified process.
1419
1420    The process PID must be stopped when this operation is used.
1421
1422    If the executable file cannot be determined, NULL is returned.
1423
1424    Else, a pointer to a character string containing the pathname
1425    is returned.  This string should be copied into a buffer by
1426    the client if the string will not be immediately used, or if
1427    it must persist.  */
1428
1429 #define target_pid_to_exec_file(pid) \
1430      (current_target.to_pid_to_exec_file) (pid)
1431
1432 /* See the to_thread_architecture description in struct target_ops.  */
1433
1434 #define target_thread_architecture(ptid) \
1435      (current_target.to_thread_architecture (&current_target, ptid))
1436
1437 /*
1438  * Iterator function for target memory regions.
1439  * Calls a callback function once for each memory region 'mapped'
1440  * in the child process.  Defined as a simple macro rather than
1441  * as a function macro so that it can be tested for nullity.
1442  */
1443
1444 #define target_find_memory_regions(FUNC, DATA) \
1445      (current_target.to_find_memory_regions) (FUNC, DATA)
1446
1447 /*
1448  * Compose corefile .note section.
1449  */
1450
1451 #define target_make_corefile_notes(BFD, SIZE_P) \
1452      (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1453
1454 /* Bookmark interfaces.  */
1455 #define target_get_bookmark(ARGS, FROM_TTY) \
1456      (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1457
1458 #define target_goto_bookmark(ARG, FROM_TTY) \
1459      (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1460
1461 /* Hardware watchpoint interfaces.  */
1462
1463 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1464    write).  Only the INFERIOR_PTID task is being queried.  */
1465
1466 #define target_stopped_by_watchpoint \
1467    (*current_target.to_stopped_by_watchpoint)
1468
1469 /* Non-zero if we have steppable watchpoints  */
1470
1471 #define target_have_steppable_watchpoint \
1472    (current_target.to_have_steppable_watchpoint)
1473
1474 /* Non-zero if we have continuable watchpoints  */
1475
1476 #define target_have_continuable_watchpoint \
1477    (current_target.to_have_continuable_watchpoint)
1478
1479 /* Provide defaults for hardware watchpoint functions.  */
1480
1481 /* If the *_hw_beakpoint functions have not been defined
1482    elsewhere use the definitions in the target vector.  */
1483
1484 /* Returns non-zero if we can set a hardware watchpoint of type TYPE.  TYPE is
1485    one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1486    bp_hardware_breakpoint.  CNT is the number of such watchpoints used so far
1487    (including this one?).  OTHERTYPE is who knows what...  */
1488
1489 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1490  (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1491
1492 /* Returns the number of debug registers needed to watch the given
1493    memory region, or zero if not supported.  */
1494
1495 #define target_region_ok_for_hw_watchpoint(addr, len) \
1496     (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1497
1498
1499 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1500    TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1501    COND is the expression for its condition, or NULL if there's none.
1502    Returns 0 for success, 1 if the watchpoint type is not supported,
1503    -1 for failure.  */
1504
1505 #define target_insert_watchpoint(addr, len, type, cond) \
1506      (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1507
1508 #define target_remove_watchpoint(addr, len, type, cond) \
1509      (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1510
1511 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1512    RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1513    or hw_access for an access watchpoint.  Returns 0 for success, 1 if
1514    masked watchpoints are not supported, -1 for failure.  */
1515
1516 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1517
1518 /* Remove a masked watchpoint at ADDR with the mask MASK.
1519    RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1520    or hw_access for an access watchpoint.  Returns 0 for success, non-zero
1521    for failure.  */
1522
1523 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1524
1525 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1526      (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1527
1528 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1529      (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1530
1531 /* Return number of debug registers needed for a ranged breakpoint,
1532    or -1 if ranged breakpoints are not supported.  */
1533
1534 extern int target_ranged_break_num_registers (void);
1535
1536 /* Return non-zero if target knows the data address which triggered this
1537    target_stopped_by_watchpoint, in such case place it to *ADDR_P.  Only the
1538    INFERIOR_PTID task is being queried.  */
1539 #define target_stopped_data_address(target, addr_p) \
1540     (*target.to_stopped_data_address) (target, addr_p)
1541
1542 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1543    LENGTH bytes beginning at START.  */
1544 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1545   (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1546
1547 /* Return non-zero if the target is capable of using hardware to evaluate
1548    the condition expression.  In this case, if the condition is false when
1549    the watched memory location changes, execution may continue without the
1550    debugger being notified.
1551
1552    Due to limitations in the hardware implementation, it may be capable of
1553    avoiding triggering the watchpoint in some cases where the condition
1554    expression is false, but may report some false positives as well.
1555    For this reason, GDB will still evaluate the condition expression when
1556    the watchpoint triggers.  */
1557 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1558   (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1559
1560 /* Return number of debug registers needed for a masked watchpoint,
1561    -1 if masked watchpoints are not supported or -2 if the given address
1562    and mask combination cannot be used.  */
1563
1564 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1565
1566 /* Target can execute in reverse?  */
1567 #define target_can_execute_reverse \
1568      (current_target.to_can_execute_reverse ? \
1569       current_target.to_can_execute_reverse () : 0)
1570
1571 extern const struct target_desc *target_read_description (struct target_ops *);
1572
1573 #define target_get_ada_task_ptid(lwp, tid) \
1574      (*current_target.to_get_ada_task_ptid) (lwp,tid)
1575
1576 /* Utility implementation of searching memory.  */
1577 extern int simple_search_memory (struct target_ops* ops,
1578                                  CORE_ADDR start_addr,
1579                                  ULONGEST search_space_len,
1580                                  const gdb_byte *pattern,
1581                                  ULONGEST pattern_len,
1582                                  CORE_ADDR *found_addrp);
1583
1584 /* Main entry point for searching memory.  */
1585 extern int target_search_memory (CORE_ADDR start_addr,
1586                                  ULONGEST search_space_len,
1587                                  const gdb_byte *pattern,
1588                                  ULONGEST pattern_len,
1589                                  CORE_ADDR *found_addrp);
1590
1591 /* Target file operations.  */
1592
1593 /* Open FILENAME on the target, using FLAGS and MODE.  Return a
1594    target file descriptor, or -1 if an error occurs (and set
1595    *TARGET_ERRNO).  */
1596 extern int target_fileio_open (const char *filename, int flags, int mode,
1597                                int *target_errno);
1598
1599 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1600    Return the number of bytes written, or -1 if an error occurs
1601    (and set *TARGET_ERRNO).  */
1602 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1603                                  ULONGEST offset, int *target_errno);
1604
1605 /* Read up to LEN bytes FD on the target into READ_BUF.
1606    Return the number of bytes read, or -1 if an error occurs
1607    (and set *TARGET_ERRNO).  */
1608 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1609                                 ULONGEST offset, int *target_errno);
1610
1611 /* Close FD on the target.  Return 0, or -1 if an error occurs
1612    (and set *TARGET_ERRNO).  */
1613 extern int target_fileio_close (int fd, int *target_errno);
1614
1615 /* Unlink FILENAME on the target.  Return 0, or -1 if an error
1616    occurs (and set *TARGET_ERRNO).  */
1617 extern int target_fileio_unlink (const char *filename, int *target_errno);
1618
1619 /* Read value of symbolic link FILENAME on the target.  Return a
1620    null-terminated string allocated via xmalloc, or NULL if an error
1621    occurs (and set *TARGET_ERRNO).  */
1622 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1623
1624 /* Read target file FILENAME.  The return value will be -1 if the transfer
1625    fails or is not supported; 0 if the object is empty; or the length
1626    of the object otherwise.  If a positive value is returned, a
1627    sufficiently large buffer will be allocated using xmalloc and
1628    returned in *BUF_P containing the contents of the object.
1629
1630    This method should be used for objects sufficiently small to store
1631    in a single xmalloc'd buffer, when no fixed bound on the object's
1632    size is known in advance.  */
1633 extern LONGEST target_fileio_read_alloc (const char *filename,
1634                                          gdb_byte **buf_p);
1635
1636 /* Read target file FILENAME.  The result is NUL-terminated and
1637    returned as a string, allocated using xmalloc.  If an error occurs
1638    or the transfer is unsupported, NULL is returned.  Empty objects
1639    are returned as allocated but empty strings.  A warning is issued
1640    if the result contains any embedded NUL bytes.  */
1641 extern char *target_fileio_read_stralloc (const char *filename);
1642
1643
1644 /* Tracepoint-related operations.  */
1645
1646 #define target_trace_init() \
1647   (*current_target.to_trace_init) ()
1648
1649 #define target_download_tracepoint(t) \
1650   (*current_target.to_download_tracepoint) (t)
1651
1652 #define target_can_download_tracepoint() \
1653   (*current_target.to_can_download_tracepoint) ()
1654
1655 #define target_download_trace_state_variable(tsv) \
1656   (*current_target.to_download_trace_state_variable) (tsv)
1657
1658 #define target_enable_tracepoint(loc) \
1659   (*current_target.to_enable_tracepoint) (loc)
1660
1661 #define target_disable_tracepoint(loc) \
1662   (*current_target.to_disable_tracepoint) (loc)
1663
1664 #define target_trace_start() \
1665   (*current_target.to_trace_start) ()
1666
1667 #define target_trace_set_readonly_regions() \
1668   (*current_target.to_trace_set_readonly_regions) ()
1669
1670 #define target_get_trace_status(ts) \
1671   (*current_target.to_get_trace_status) (ts)
1672
1673 #define target_get_tracepoint_status(tp,utp)            \
1674   (*current_target.to_get_tracepoint_status) (tp, utp)
1675
1676 #define target_trace_stop() \
1677   (*current_target.to_trace_stop) ()
1678
1679 #define target_trace_find(type,num,addr1,addr2,tpp) \
1680   (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1681
1682 #define target_get_trace_state_variable_value(tsv,val) \
1683   (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1684
1685 #define target_save_trace_data(filename) \
1686   (*current_target.to_save_trace_data) (filename)
1687
1688 #define target_upload_tracepoints(utpp) \
1689   (*current_target.to_upload_tracepoints) (utpp)
1690
1691 #define target_upload_trace_state_variables(utsvp) \
1692   (*current_target.to_upload_trace_state_variables) (utsvp)
1693
1694 #define target_get_raw_trace_data(buf,offset,len) \
1695   (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1696
1697 #define target_get_min_fast_tracepoint_insn_len() \
1698   (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1699
1700 #define target_set_disconnected_tracing(val) \
1701   (*current_target.to_set_disconnected_tracing) (val)
1702
1703 #define target_set_circular_trace_buffer(val)   \
1704   (*current_target.to_set_circular_trace_buffer) (val)
1705
1706 #define target_set_trace_notes(user,notes,stopnotes)            \
1707   (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1708
1709 #define target_get_tib_address(ptid, addr) \
1710   (*current_target.to_get_tib_address) ((ptid), (addr))
1711
1712 #define target_set_permissions() \
1713   (*current_target.to_set_permissions) ()
1714
1715 #define target_static_tracepoint_marker_at(addr, marker) \
1716   (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1717
1718 #define target_static_tracepoint_markers_by_strid(marker_id) \
1719   (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1720
1721 #define target_traceframe_info() \
1722   (*current_target.to_traceframe_info) ()
1723
1724 #define target_use_agent(use) \
1725   (*current_target.to_use_agent) (use)
1726
1727 #define target_can_use_agent() \
1728   (*current_target.to_can_use_agent) ()
1729
1730 /* Command logging facility.  */
1731
1732 #define target_log_command(p)                                           \
1733   do                                                                    \
1734     if (current_target.to_log_command)                                  \
1735       (*current_target.to_log_command) (p);                             \
1736   while (0)
1737
1738
1739 extern int target_core_of_thread (ptid_t ptid);
1740
1741 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1742    the contents of [DATA,DATA+SIZE).  Returns 1 if there's a match, 0
1743    if there's a mismatch, and -1 if an error is encountered while
1744    reading memory.  Throws an error if the functionality is found not
1745    to be supported by the current target.  */
1746 int target_verify_memory (const gdb_byte *data,
1747                           CORE_ADDR memaddr, ULONGEST size);
1748
1749 /* Routines for maintenance of the target structures...
1750
1751    add_target:   Add a target to the list of all possible targets.
1752
1753    push_target:  Make this target the top of the stack of currently used
1754    targets, within its particular stratum of the stack.  Result
1755    is 0 if now atop the stack, nonzero if not on top (maybe
1756    should warn user).
1757
1758    unpush_target: Remove this from the stack of currently used targets,
1759    no matter where it is on the list.  Returns 0 if no
1760    change, 1 if removed from stack.
1761
1762    pop_target:   Remove the top thing on the stack of current targets.  */
1763
1764 extern void add_target (struct target_ops *);
1765
1766 extern void push_target (struct target_ops *);
1767
1768 extern int unpush_target (struct target_ops *);
1769
1770 extern void target_pre_inferior (int);
1771
1772 extern void target_preopen (int);
1773
1774 extern void pop_target (void);
1775
1776 /* Does whatever cleanup is required to get rid of all pushed targets.
1777    QUITTING is propagated to target_close; it indicates that GDB is
1778    exiting and should not get hung on an error (otherwise it is
1779    important to perform clean termination, even if it takes a
1780    while).  */
1781 extern void pop_all_targets (int quitting);
1782
1783 /* Like pop_all_targets, but pops only targets whose stratum is
1784    strictly above ABOVE_STRATUM.  */
1785 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1786
1787 extern int target_is_pushed (struct target_ops *t);
1788
1789 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1790                                                CORE_ADDR offset);
1791
1792 /* Struct target_section maps address ranges to file sections.  It is
1793    mostly used with BFD files, but can be used without (e.g. for handling
1794    raw disks, or files not in formats handled by BFD).  */
1795
1796 struct target_section
1797   {
1798     CORE_ADDR addr;             /* Lowest address in section */
1799     CORE_ADDR endaddr;          /* 1+highest address in section */
1800
1801     struct bfd_section *the_bfd_section;
1802
1803     bfd *bfd;                   /* BFD file pointer */
1804   };
1805
1806 /* Holds an array of target sections.  Defined by [SECTIONS..SECTIONS_END[.  */
1807
1808 struct target_section_table
1809 {
1810   struct target_section *sections;
1811   struct target_section *sections_end;
1812 };
1813
1814 /* Return the "section" containing the specified address.  */
1815 struct target_section *target_section_by_addr (struct target_ops *target,
1816                                                CORE_ADDR addr);
1817
1818 /* Return the target section table this target (or the targets
1819    beneath) currently manipulate.  */
1820
1821 extern struct target_section_table *target_get_section_table
1822   (struct target_ops *target);
1823
1824 /* From mem-break.c */
1825
1826 extern int memory_remove_breakpoint (struct gdbarch *,
1827                                      struct bp_target_info *);
1828
1829 extern int memory_insert_breakpoint (struct gdbarch *,
1830                                      struct bp_target_info *);
1831
1832 extern int default_memory_remove_breakpoint (struct gdbarch *,
1833                                              struct bp_target_info *);
1834
1835 extern int default_memory_insert_breakpoint (struct gdbarch *,
1836                                              struct bp_target_info *);
1837
1838
1839 /* From target.c */
1840
1841 extern void initialize_targets (void);
1842
1843 extern void noprocess (void) ATTRIBUTE_NORETURN;
1844
1845 extern void target_require_runnable (void);
1846
1847 extern void find_default_attach (struct target_ops *, char *, int);
1848
1849 extern void find_default_create_inferior (struct target_ops *,
1850                                           char *, char *, char **, int);
1851
1852 extern struct target_ops *find_run_target (void);
1853
1854 extern struct target_ops *find_target_beneath (struct target_ops *);
1855
1856 /* Read OS data object of type TYPE from the target, and return it in
1857    XML format.  The result is NUL-terminated and returned as a string,
1858    allocated using xmalloc.  If an error occurs or the transfer is
1859    unsupported, NULL is returned.  Empty objects are returned as
1860    allocated but empty strings.  */
1861
1862 extern char *target_get_osdata (const char *type);
1863
1864 \f
1865 /* Stuff that should be shared among the various remote targets.  */
1866
1867 /* Debugging level.  0 is off, and non-zero values mean to print some debug
1868    information (higher values, more information).  */
1869 extern int remote_debug;
1870
1871 /* Speed in bits per second, or -1 which means don't mess with the speed.  */
1872 extern int baud_rate;
1873 /* Timeout limit for response from target.  */
1874 extern int remote_timeout;
1875
1876 \f
1877
1878 /* Set the show memory breakpoints mode to show, and installs a cleanup
1879    to restore it back to the current value.  */
1880 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1881
1882 extern int may_write_registers;
1883 extern int may_write_memory;
1884 extern int may_insert_breakpoints;
1885 extern int may_insert_tracepoints;
1886 extern int may_insert_fast_tracepoints;
1887 extern int may_stop;
1888
1889 extern void update_target_permissions (void);
1890
1891 \f
1892 /* Imported from machine dependent code.  */
1893
1894 /* Blank target vector entries are initialized to target_ignore.  */
1895 void target_ignore (void);
1896
1897 #endif /* !defined (TARGET_H) */