319fcc34a160444fe3885a99c25f7c4134a2cd00
[external/binutils.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3    Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5    Contributed by Cygnus Support.  Written by John Gilmore.
6
7    This file is part of GDB.
8
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40
41 /* This include file defines the interface between the main part
42    of the debugger, and the part which is target-specific, or
43    specific to the communications interface between us and the
44    target.
45
46    A TARGET is an interface between the debugger and a particular
47    kind of file or process.  Targets can be STACKED in STRATA,
48    so that more than one target can potentially respond to a request.
49    In particular, memory accesses will walk down the stack of targets
50    until they find a target that is interested in handling that particular
51    address.  STRATA are artificial boundaries on the stack, within
52    which particular kinds of targets live.  Strata exist so that
53    people don't get confused by pushing e.g. a process target and then
54    a file target, and wondering why they can't see the current values
55    of variables any more (the file target is handling them and they
56    never get to the process target).  So when you push a file target,
57    it goes into the file stratum, which is always below the process
58    stratum.  */
59
60 #include "bfd.h"
61 #include "symtab.h"
62 #include "memattr.h"
63 #include "vec.h"
64 #include "gdb_signals.h"
65 #include "btrace.h"
66 #include "command.h"
67
68 enum strata
69   {
70     dummy_stratum,              /* The lowest of the low */
71     file_stratum,               /* Executable files, etc */
72     process_stratum,            /* Executing processes or core dump files */
73     thread_stratum,             /* Executing threads */
74     record_stratum,             /* Support record debugging */
75     arch_stratum                /* Architecture overrides */
76   };
77
78 enum thread_control_capabilities
79   {
80     tc_none = 0,                /* Default: can't control thread execution.  */
81     tc_schedlock = 1,           /* Can lock the thread scheduler.  */
82   };
83
84 /* Stuff for target_wait.  */
85
86 /* Generally, what has the program done?  */
87 enum target_waitkind
88   {
89     /* The program has exited.  The exit status is in value.integer.  */
90     TARGET_WAITKIND_EXITED,
91
92     /* The program has stopped with a signal.  Which signal is in
93        value.sig.  */
94     TARGET_WAITKIND_STOPPED,
95
96     /* The program has terminated with a signal.  Which signal is in
97        value.sig.  */
98     TARGET_WAITKIND_SIGNALLED,
99
100     /* The program is letting us know that it dynamically loaded something
101        (e.g. it called load(2) on AIX).  */
102     TARGET_WAITKIND_LOADED,
103
104     /* The program has forked.  A "related" process' PTID is in
105        value.related_pid.  I.e., if the child forks, value.related_pid
106        is the parent's ID.  */
107
108     TARGET_WAITKIND_FORKED,
109
110     /* The program has vforked.  A "related" process's PTID is in
111        value.related_pid.  */
112
113     TARGET_WAITKIND_VFORKED,
114
115     /* The program has exec'ed a new executable file.  The new file's
116        pathname is pointed to by value.execd_pathname.  */
117
118     TARGET_WAITKIND_EXECD,
119
120     /* The program had previously vforked, and now the child is done
121        with the shared memory region, because it exec'ed or exited.
122        Note that the event is reported to the vfork parent.  This is
123        only used if GDB did not stay attached to the vfork child,
124        otherwise, a TARGET_WAITKIND_EXECD or
125        TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
126        has the same effect.  */
127     TARGET_WAITKIND_VFORK_DONE,
128
129     /* The program has entered or returned from a system call.  On
130        HP-UX, this is used in the hardware watchpoint implementation.
131        The syscall's unique integer ID number is in value.syscall_id.  */
132
133     TARGET_WAITKIND_SYSCALL_ENTRY,
134     TARGET_WAITKIND_SYSCALL_RETURN,
135
136     /* Nothing happened, but we stopped anyway.  This perhaps should be handled
137        within target_wait, but I'm not sure target_wait should be resuming the
138        inferior.  */
139     TARGET_WAITKIND_SPURIOUS,
140
141     /* An event has occured, but we should wait again.
142        Remote_async_wait() returns this when there is an event
143        on the inferior, but the rest of the world is not interested in
144        it.  The inferior has not stopped, but has just sent some output
145        to the console, for instance.  In this case, we want to go back
146        to the event loop and wait there for another event from the
147        inferior, rather than being stuck in the remote_async_wait()
148        function. sThis way the event loop is responsive to other events,
149        like for instance the user typing.  */
150     TARGET_WAITKIND_IGNORE,
151
152     /* The target has run out of history information,
153        and cannot run backward any further.  */
154     TARGET_WAITKIND_NO_HISTORY,
155
156     /* There are no resumed children left in the program.  */
157     TARGET_WAITKIND_NO_RESUMED
158   };
159
160 struct target_waitstatus
161   {
162     enum target_waitkind kind;
163
164     /* Forked child pid, execd pathname, exit status, signal number or
165        syscall number.  */
166     union
167       {
168         int integer;
169         enum gdb_signal sig;
170         ptid_t related_pid;
171         char *execd_pathname;
172         int syscall_number;
173       }
174     value;
175   };
176
177 /* Options that can be passed to target_wait.  */
178
179 /* Return immediately if there's no event already queued.  If this
180    options is not requested, target_wait blocks waiting for an
181    event.  */
182 #define TARGET_WNOHANG 1
183
184 /* The structure below stores information about a system call.
185    It is basically used in the "catch syscall" command, and in
186    every function that gives information about a system call.
187    
188    It's also good to mention that its fields represent everything
189    that we currently know about a syscall in GDB.  */
190 struct syscall
191   {
192     /* The syscall number.  */
193     int number;
194
195     /* The syscall name.  */
196     const char *name;
197   };
198
199 /* Return a pretty printed form of target_waitstatus.
200    Space for the result is malloc'd, caller must free.  */
201 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
202
203 /* Return a pretty printed form of TARGET_OPTIONS.
204    Space for the result is malloc'd, caller must free.  */
205 extern char *target_options_to_string (int target_options);
206
207 /* Possible types of events that the inferior handler will have to
208    deal with.  */
209 enum inferior_event_type
210   {
211     /* Process a normal inferior event which will result in target_wait
212        being called.  */
213     INF_REG_EVENT,
214     /* We are called because a timer went off.  */
215     INF_TIMER,
216     /* We are called to do stuff after the inferior stops.  */
217     INF_EXEC_COMPLETE,
218     /* We are called to do some stuff after the inferior stops, but we
219        are expected to reenter the proceed() and
220        handle_inferior_event() functions.  This is used only in case of
221        'step n' like commands.  */
222     INF_EXEC_CONTINUE
223   };
224 \f
225 /* Target objects which can be transfered using target_read,
226    target_write, et cetera.  */
227
228 enum target_object
229 {
230   /* AVR target specific transfer.  See "avr-tdep.c" and "remote.c".  */
231   TARGET_OBJECT_AVR,
232   /* SPU target specific transfer.  See "spu-tdep.c".  */
233   TARGET_OBJECT_SPU,
234   /* Transfer up-to LEN bytes of memory starting at OFFSET.  */
235   TARGET_OBJECT_MEMORY,
236   /* Memory, avoiding GDB's data cache and trusting the executable.
237      Target implementations of to_xfer_partial never need to handle
238      this object, and most callers should not use it.  */
239   TARGET_OBJECT_RAW_MEMORY,
240   /* Memory known to be part of the target's stack.  This is cached even
241      if it is not in a region marked as such, since it is known to be
242      "normal" RAM.  */
243   TARGET_OBJECT_STACK_MEMORY,
244   /* Kernel Unwind Table.  See "ia64-tdep.c".  */
245   TARGET_OBJECT_UNWIND_TABLE,
246   /* Transfer auxilliary vector.  */
247   TARGET_OBJECT_AUXV,
248   /* StackGhost cookie.  See "sparc-tdep.c".  */
249   TARGET_OBJECT_WCOOKIE,
250   /* Target memory map in XML format.  */
251   TARGET_OBJECT_MEMORY_MAP,
252   /* Flash memory.  This object can be used to write contents to
253      a previously erased flash memory.  Using it without erasing
254      flash can have unexpected results.  Addresses are physical
255      address on target, and not relative to flash start.  */
256   TARGET_OBJECT_FLASH,
257   /* Available target-specific features, e.g. registers and coprocessors.
258      See "target-descriptions.c".  ANNEX should never be empty.  */
259   TARGET_OBJECT_AVAILABLE_FEATURES,
260   /* Currently loaded libraries, in XML format.  */
261   TARGET_OBJECT_LIBRARIES,
262   /* Currently loaded libraries specific for SVR4 systems, in XML format.  */
263   TARGET_OBJECT_LIBRARIES_SVR4,
264   /* Get OS specific data.  The ANNEX specifies the type (running
265      processes, etc.).  The data being transfered is expected to follow
266      the DTD specified in features/osdata.dtd.  */
267   TARGET_OBJECT_OSDATA,
268   /* Extra signal info.  Usually the contents of `siginfo_t' on unix
269      platforms.  */
270   TARGET_OBJECT_SIGNAL_INFO,
271   /* The list of threads that are being debugged.  */
272   TARGET_OBJECT_THREADS,
273   /* Collected static trace data.  */
274   TARGET_OBJECT_STATIC_TRACE_DATA,
275   /* The HP-UX registers (those that can be obtained or modified by using
276      the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests).  */
277   TARGET_OBJECT_HPUX_UREGS,
278   /* The HP-UX shared library linkage pointer.  ANNEX should be a string
279      image of the code address whose linkage pointer we are looking for.
280
281      The size of the data transfered is always 8 bytes (the size of an
282      address on ia64).  */
283   TARGET_OBJECT_HPUX_SOLIB_GOT,
284   /* Traceframe info, in XML format.  */
285   TARGET_OBJECT_TRACEFRAME_INFO,
286   /* Load maps for FDPIC systems.  */
287   TARGET_OBJECT_FDPIC,
288   /* Darwin dynamic linker info data.  */
289   TARGET_OBJECT_DARWIN_DYLD_INFO,
290   /* OpenVMS Unwind Information Block.  */
291   TARGET_OBJECT_OPENVMS_UIB,
292   /* Branch trace data, in XML format.  */
293   TARGET_OBJECT_BTRACE
294   /* Possible future objects: TARGET_OBJECT_FILE, ...  */
295 };
296
297 /* Enumeration of the kinds of traceframe searches that a target may
298    be able to perform.  */
299
300 enum trace_find_type
301   {
302     tfind_number,
303     tfind_pc,
304     tfind_tp,
305     tfind_range,
306     tfind_outside,
307   };
308
309 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
310 DEF_VEC_P(static_tracepoint_marker_p);
311
312 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
313    OBJECT.  The OFFSET, for a seekable object, specifies the
314    starting point.  The ANNEX can be used to provide additional
315    data-specific information to the target.
316
317    Return the number of bytes actually transfered, or -1 if the
318    transfer is not supported or otherwise fails.  Return of a positive
319    value less than LEN indicates that no further transfer is possible.
320    Unlike the raw to_xfer_partial interface, callers of these
321    functions do not need to retry partial transfers.  */
322
323 extern LONGEST target_read (struct target_ops *ops,
324                             enum target_object object,
325                             const char *annex, gdb_byte *buf,
326                             ULONGEST offset, LONGEST len);
327
328 struct memory_read_result
329   {
330     /* First address that was read.  */
331     ULONGEST begin;
332     /* Past-the-end address.  */
333     ULONGEST end;
334     /* The data.  */
335     gdb_byte *data;
336 };
337 typedef struct memory_read_result memory_read_result_s;
338 DEF_VEC_O(memory_read_result_s);
339
340 extern void free_memory_read_result_vector (void *);
341
342 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
343                                                       ULONGEST offset,
344                                                       LONGEST len);
345   
346 extern LONGEST target_write (struct target_ops *ops,
347                              enum target_object object,
348                              const char *annex, const gdb_byte *buf,
349                              ULONGEST offset, LONGEST len);
350
351 /* Similar to target_write, except that it also calls PROGRESS with
352    the number of bytes written and the opaque BATON after every
353    successful partial write (and before the first write).  This is
354    useful for progress reporting and user interaction while writing
355    data.  To abort the transfer, the progress callback can throw an
356    exception.  */
357
358 LONGEST target_write_with_progress (struct target_ops *ops,
359                                     enum target_object object,
360                                     const char *annex, const gdb_byte *buf,
361                                     ULONGEST offset, LONGEST len,
362                                     void (*progress) (ULONGEST, void *),
363                                     void *baton);
364
365 /* Wrapper to perform a full read of unknown size.  OBJECT/ANNEX will
366    be read using OPS.  The return value will be -1 if the transfer
367    fails or is not supported; 0 if the object is empty; or the length
368    of the object otherwise.  If a positive value is returned, a
369    sufficiently large buffer will be allocated using xmalloc and
370    returned in *BUF_P containing the contents of the object.
371
372    This method should be used for objects sufficiently small to store
373    in a single xmalloc'd buffer, when no fixed bound on the object's
374    size is known in advance.  Don't try to read TARGET_OBJECT_MEMORY
375    through this function.  */
376
377 extern LONGEST target_read_alloc (struct target_ops *ops,
378                                   enum target_object object,
379                                   const char *annex, gdb_byte **buf_p);
380
381 /* Read OBJECT/ANNEX using OPS.  The result is NUL-terminated and
382    returned as a string, allocated using xmalloc.  If an error occurs
383    or the transfer is unsupported, NULL is returned.  Empty objects
384    are returned as allocated but empty strings.  A warning is issued
385    if the result contains any embedded NUL bytes.  */
386
387 extern char *target_read_stralloc (struct target_ops *ops,
388                                    enum target_object object,
389                                    const char *annex);
390
391 /* Wrappers to target read/write that perform memory transfers.  They
392    throw an error if the memory transfer fails.
393
394    NOTE: cagney/2003-10-23: The naming schema is lifted from
395    "frame.h".  The parameter order is lifted from get_frame_memory,
396    which in turn lifted it from read_memory.  */
397
398 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
399                                gdb_byte *buf, LONGEST len);
400 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
401                                             CORE_ADDR addr, int len,
402                                             enum bfd_endian byte_order);
403 \f
404 struct thread_info;             /* fwd decl for parameter list below: */
405
406 struct target_ops
407   {
408     struct target_ops *beneath; /* To the target under this one.  */
409     char *to_shortname;         /* Name this target type */
410     char *to_longname;          /* Name for printing */
411     char *to_doc;               /* Documentation.  Does not include trailing
412                                    newline, and starts with a one-line descrip-
413                                    tion (probably similar to to_longname).  */
414     /* Per-target scratch pad.  */
415     void *to_data;
416     /* The open routine takes the rest of the parameters from the
417        command, and (if successful) pushes a new target onto the
418        stack.  Targets should supply this routine, if only to provide
419        an error message.  */
420     void (*to_open) (char *, int);
421     /* Old targets with a static target vector provide "to_close".
422        New re-entrant targets provide "to_xclose" and that is expected
423        to xfree everything (including the "struct target_ops").  */
424     void (*to_xclose) (struct target_ops *targ);
425     void (*to_close) (void);
426     void (*to_attach) (struct target_ops *ops, char *, int);
427     void (*to_post_attach) (int);
428     void (*to_detach) (struct target_ops *ops, char *, int);
429     void (*to_disconnect) (struct target_ops *, char *, int);
430     void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal);
431     ptid_t (*to_wait) (struct target_ops *,
432                        ptid_t, struct target_waitstatus *, int);
433     void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
434     void (*to_store_registers) (struct target_ops *, struct regcache *, int);
435     void (*to_prepare_to_store) (struct regcache *);
436
437     /* Transfer LEN bytes of memory between GDB address MYADDR and
438        target address MEMADDR.  If WRITE, transfer them to the target, else
439        transfer them from the target.  TARGET is the target from which we
440        get this function.
441
442        Return value, N, is one of the following:
443
444        0 means that we can't handle this.  If errno has been set, it is the
445        error which prevented us from doing it (FIXME: What about bfd_error?).
446
447        positive (call it N) means that we have transferred N bytes
448        starting at MEMADDR.  We might be able to handle more bytes
449        beyond this length, but no promises.
450
451        negative (call its absolute value N) means that we cannot
452        transfer right at MEMADDR, but we could transfer at least
453        something at MEMADDR + N.
454
455        NOTE: cagney/2004-10-01: This has been entirely superseeded by
456        to_xfer_partial and inferior inheritance.  */
457
458     int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
459                                    int len, int write,
460                                    struct mem_attrib *attrib,
461                                    struct target_ops *target);
462
463     void (*to_files_info) (struct target_ops *);
464     int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
465     int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
466     int (*to_can_use_hw_breakpoint) (int, int, int);
467     int (*to_ranged_break_num_registers) (struct target_ops *);
468     int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
469     int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
470
471     /* Documentation of what the two routines below are expected to do is
472        provided with the corresponding target_* macros.  */
473     int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
474     int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
475
476     int (*to_insert_mask_watchpoint) (struct target_ops *,
477                                       CORE_ADDR, CORE_ADDR, int);
478     int (*to_remove_mask_watchpoint) (struct target_ops *,
479                                       CORE_ADDR, CORE_ADDR, int);
480     int (*to_stopped_by_watchpoint) (void);
481     int to_have_steppable_watchpoint;
482     int to_have_continuable_watchpoint;
483     int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
484     int (*to_watchpoint_addr_within_range) (struct target_ops *,
485                                             CORE_ADDR, CORE_ADDR, int);
486
487     /* Documentation of this routine is provided with the corresponding
488        target_* macro.  */
489     int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
490
491     int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
492                                               struct expression *);
493     int (*to_masked_watch_num_registers) (struct target_ops *,
494                                           CORE_ADDR, CORE_ADDR);
495     void (*to_terminal_init) (void);
496     void (*to_terminal_inferior) (void);
497     void (*to_terminal_ours_for_output) (void);
498     void (*to_terminal_ours) (void);
499     void (*to_terminal_save_ours) (void);
500     void (*to_terminal_info) (char *, int);
501     void (*to_kill) (struct target_ops *);
502     void (*to_load) (char *, int);
503     void (*to_create_inferior) (struct target_ops *, 
504                                 char *, char *, char **, int);
505     void (*to_post_startup_inferior) (ptid_t);
506     int (*to_insert_fork_catchpoint) (int);
507     int (*to_remove_fork_catchpoint) (int);
508     int (*to_insert_vfork_catchpoint) (int);
509     int (*to_remove_vfork_catchpoint) (int);
510     int (*to_follow_fork) (struct target_ops *, int);
511     int (*to_insert_exec_catchpoint) (int);
512     int (*to_remove_exec_catchpoint) (int);
513     int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
514     int (*to_has_exited) (int, int, int *);
515     void (*to_mourn_inferior) (struct target_ops *);
516     int (*to_can_run) (void);
517
518     /* Documentation of this routine is provided with the corresponding
519        target_* macro.  */
520     void (*to_pass_signals) (int, unsigned char *);
521
522     /* Documentation of this routine is provided with the
523        corresponding target_* function.  */
524     void (*to_program_signals) (int, unsigned char *);
525
526     int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
527     void (*to_find_new_threads) (struct target_ops *);
528     char *(*to_pid_to_str) (struct target_ops *, ptid_t);
529     char *(*to_extra_thread_info) (struct thread_info *);
530     char *(*to_thread_name) (struct thread_info *);
531     void (*to_stop) (ptid_t);
532     void (*to_rcmd) (char *command, struct ui_file *output);
533     char *(*to_pid_to_exec_file) (int pid);
534     void (*to_log_command) (const char *);
535     struct target_section_table *(*to_get_section_table) (struct target_ops *);
536     enum strata to_stratum;
537     int (*to_has_all_memory) (struct target_ops *);
538     int (*to_has_memory) (struct target_ops *);
539     int (*to_has_stack) (struct target_ops *);
540     int (*to_has_registers) (struct target_ops *);
541     int (*to_has_execution) (struct target_ops *, ptid_t);
542     int to_has_thread_control;  /* control thread execution */
543     int to_attach_no_wait;
544     /* ASYNC target controls */
545     int (*to_can_async_p) (void);
546     int (*to_is_async_p) (void);
547     void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
548     int (*to_supports_non_stop) (void);
549     /* find_memory_regions support method for gcore */
550     int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
551     /* make_corefile_notes support method for gcore */
552     char * (*to_make_corefile_notes) (bfd *, int *);
553     /* get_bookmark support method for bookmarks */
554     gdb_byte * (*to_get_bookmark) (char *, int);
555     /* goto_bookmark support method for bookmarks */
556     void (*to_goto_bookmark) (gdb_byte *, int);
557     /* Return the thread-local address at OFFSET in the
558        thread-local storage for the thread PTID and the shared library
559        or executable file given by OBJFILE.  If that block of
560        thread-local storage hasn't been allocated yet, this function
561        may return an error.  */
562     CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
563                                               ptid_t ptid,
564                                               CORE_ADDR load_module_addr,
565                                               CORE_ADDR offset);
566
567     /* Request that OPS transfer up to LEN 8-bit bytes of the target's
568        OBJECT.  The OFFSET, for a seekable object, specifies the
569        starting point.  The ANNEX can be used to provide additional
570        data-specific information to the target.
571
572        Return the number of bytes actually transfered, zero when no
573        further transfer is possible, and -1 when the transfer is not
574        supported.  Return of a positive value smaller than LEN does
575        not indicate the end of the object, only the end of the
576        transfer; higher level code should continue transferring if
577        desired.  This is handled in target.c.
578
579        The interface does not support a "retry" mechanism.  Instead it
580        assumes that at least one byte will be transfered on each
581        successful call.
582
583        NOTE: cagney/2003-10-17: The current interface can lead to
584        fragmented transfers.  Lower target levels should not implement
585        hacks, such as enlarging the transfer, in an attempt to
586        compensate for this.  Instead, the target stack should be
587        extended so that it implements supply/collect methods and a
588        look-aside object cache.  With that available, the lowest
589        target can safely and freely "push" data up the stack.
590
591        See target_read and target_write for more information.  One,
592        and only one, of readbuf or writebuf must be non-NULL.  */
593
594     LONGEST (*to_xfer_partial) (struct target_ops *ops,
595                                 enum target_object object, const char *annex,
596                                 gdb_byte *readbuf, const gdb_byte *writebuf,
597                                 ULONGEST offset, LONGEST len);
598
599     /* Returns the memory map for the target.  A return value of NULL
600        means that no memory map is available.  If a memory address
601        does not fall within any returned regions, it's assumed to be
602        RAM.  The returned memory regions should not overlap.
603
604        The order of regions does not matter; target_memory_map will
605        sort regions by starting address.  For that reason, this
606        function should not be called directly except via
607        target_memory_map.
608
609        This method should not cache data; if the memory map could
610        change unexpectedly, it should be invalidated, and higher
611        layers will re-fetch it.  */
612     VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
613
614     /* Erases the region of flash memory starting at ADDRESS, of
615        length LENGTH.
616
617        Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
618        on flash block boundaries, as reported by 'to_memory_map'.  */
619     void (*to_flash_erase) (struct target_ops *,
620                            ULONGEST address, LONGEST length);
621
622     /* Finishes a flash memory write sequence.  After this operation
623        all flash memory should be available for writing and the result
624        of reading from areas written by 'to_flash_write' should be
625        equal to what was written.  */
626     void (*to_flash_done) (struct target_ops *);
627
628     /* Describe the architecture-specific features of this target.
629        Returns the description found, or NULL if no description
630        was available.  */
631     const struct target_desc *(*to_read_description) (struct target_ops *ops);
632
633     /* Build the PTID of the thread on which a given task is running,
634        based on LWP and THREAD.  These values are extracted from the
635        task Private_Data section of the Ada Task Control Block, and
636        their interpretation depends on the target.  */
637     ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
638
639     /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
640        Return 0 if *READPTR is already at the end of the buffer.
641        Return -1 if there is insufficient buffer for a whole entry.
642        Return 1 if an entry was read into *TYPEP and *VALP.  */
643     int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
644                          gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
645
646     /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
647        sequence of bytes in PATTERN with length PATTERN_LEN.
648
649        The result is 1 if found, 0 if not found, and -1 if there was an error
650        requiring halting of the search (e.g. memory read error).
651        If the pattern is found the address is recorded in FOUND_ADDRP.  */
652     int (*to_search_memory) (struct target_ops *ops,
653                              CORE_ADDR start_addr, ULONGEST search_space_len,
654                              const gdb_byte *pattern, ULONGEST pattern_len,
655                              CORE_ADDR *found_addrp);
656
657     /* Can target execute in reverse?  */
658     int (*to_can_execute_reverse) (void);
659
660     /* The direction the target is currently executing.  Must be
661        implemented on targets that support reverse execution and async
662        mode.  The default simply returns forward execution.  */
663     enum exec_direction_kind (*to_execution_direction) (void);
664
665     /* Does this target support debugging multiple processes
666        simultaneously?  */
667     int (*to_supports_multi_process) (void);
668
669     /* Does this target support enabling and disabling tracepoints while a trace
670        experiment is running?  */
671     int (*to_supports_enable_disable_tracepoint) (void);
672
673     /* Does this target support disabling address space randomization?  */
674     int (*to_supports_disable_randomization) (void);
675
676     /* Does this target support the tracenz bytecode for string collection?  */
677     int (*to_supports_string_tracing) (void);
678
679     /* Does this target support evaluation of breakpoint conditions on its
680        end?  */
681     int (*to_supports_evaluation_of_breakpoint_conditions) (void);
682
683     /* Does this target support evaluation of breakpoint commands on its
684        end?  */
685     int (*to_can_run_breakpoint_commands) (void);
686
687     /* Determine current architecture of thread PTID.
688
689        The target is supposed to determine the architecture of the code where
690        the target is currently stopped at (on Cell, if a target is in spu_run,
691        to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
692        This is architecture used to perform decr_pc_after_break adjustment,
693        and also determines the frame architecture of the innermost frame.
694        ptrace operations need to operate according to target_gdbarch ().
695
696        The default implementation always returns target_gdbarch ().  */
697     struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
698
699     /* Determine current address space of thread PTID.
700
701        The default implementation always returns the inferior's
702        address space.  */
703     struct address_space *(*to_thread_address_space) (struct target_ops *,
704                                                       ptid_t);
705
706     /* Target file operations.  */
707
708     /* Open FILENAME on the target, using FLAGS and MODE.  Return a
709        target file descriptor, or -1 if an error occurs (and set
710        *TARGET_ERRNO).  */
711     int (*to_fileio_open) (const char *filename, int flags, int mode,
712                            int *target_errno);
713
714     /* Write up to LEN bytes from WRITE_BUF to FD on the target.
715        Return the number of bytes written, or -1 if an error occurs
716        (and set *TARGET_ERRNO).  */
717     int (*to_fileio_pwrite) (int fd, const gdb_byte *write_buf, int len,
718                              ULONGEST offset, int *target_errno);
719
720     /* Read up to LEN bytes FD on the target into READ_BUF.
721        Return the number of bytes read, or -1 if an error occurs
722        (and set *TARGET_ERRNO).  */
723     int (*to_fileio_pread) (int fd, gdb_byte *read_buf, int len,
724                             ULONGEST offset, int *target_errno);
725
726     /* Close FD on the target.  Return 0, or -1 if an error occurs
727        (and set *TARGET_ERRNO).  */
728     int (*to_fileio_close) (int fd, int *target_errno);
729
730     /* Unlink FILENAME on the target.  Return 0, or -1 if an error
731        occurs (and set *TARGET_ERRNO).  */
732     int (*to_fileio_unlink) (const char *filename, int *target_errno);
733
734     /* Read value of symbolic link FILENAME on the target.  Return a
735        null-terminated string allocated via xmalloc, or NULL if an error
736        occurs (and set *TARGET_ERRNO).  */
737     char *(*to_fileio_readlink) (const char *filename, int *target_errno);
738
739
740     /* Implement the "info proc" command.  */
741     void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
742
743     /* Tracepoint-related operations.  */
744
745     /* Prepare the target for a tracing run.  */
746     void (*to_trace_init) (void);
747
748     /* Send full details of a tracepoint location to the target.  */
749     void (*to_download_tracepoint) (struct bp_location *location);
750
751     /* Is the target able to download tracepoint locations in current
752        state?  */
753     int (*to_can_download_tracepoint) (void);
754
755     /* Send full details of a trace state variable to the target.  */
756     void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
757
758     /* Enable a tracepoint on the target.  */
759     void (*to_enable_tracepoint) (struct bp_location *location);
760
761     /* Disable a tracepoint on the target.  */
762     void (*to_disable_tracepoint) (struct bp_location *location);
763
764     /* Inform the target info of memory regions that are readonly
765        (such as text sections), and so it should return data from
766        those rather than look in the trace buffer.  */
767     void (*to_trace_set_readonly_regions) (void);
768
769     /* Start a trace run.  */
770     void (*to_trace_start) (void);
771
772     /* Get the current status of a tracing run.  */
773     int (*to_get_trace_status) (struct trace_status *ts);
774
775     void (*to_get_tracepoint_status) (struct breakpoint *tp,
776                                       struct uploaded_tp *utp);
777
778     /* Stop a trace run.  */
779     void (*to_trace_stop) (void);
780
781    /* Ask the target to find a trace frame of the given type TYPE,
782       using NUM, ADDR1, and ADDR2 as search parameters.  Returns the
783       number of the trace frame, and also the tracepoint number at
784       TPP.  If no trace frame matches, return -1.  May throw if the
785       operation fails.  */
786     int (*to_trace_find) (enum trace_find_type type, int num,
787                           CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
788
789     /* Get the value of the trace state variable number TSV, returning
790        1 if the value is known and writing the value itself into the
791        location pointed to by VAL, else returning 0.  */
792     int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
793
794     int (*to_save_trace_data) (const char *filename);
795
796     int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
797
798     int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
799
800     LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
801                                       ULONGEST offset, LONGEST len);
802
803     /* Get the minimum length of instruction on which a fast tracepoint
804        may be set on the target.  If this operation is unsupported,
805        return -1.  If for some reason the minimum length cannot be
806        determined, return 0.  */
807     int (*to_get_min_fast_tracepoint_insn_len) (void);
808
809     /* Set the target's tracing behavior in response to unexpected
810        disconnection - set VAL to 1 to keep tracing, 0 to stop.  */
811     void (*to_set_disconnected_tracing) (int val);
812     void (*to_set_circular_trace_buffer) (int val);
813     /* Set the size of trace buffer in the target.  */
814     void (*to_set_trace_buffer_size) (LONGEST val);
815
816     /* Add/change textual notes about the trace run, returning 1 if
817        successful, 0 otherwise.  */
818     int (*to_set_trace_notes) (char *user, char *notes, char* stopnotes);
819
820     /* Return the processor core that thread PTID was last seen on.
821        This information is updated only when:
822        - update_thread_list is called
823        - thread stops
824        If the core cannot be determined -- either for the specified
825        thread, or right now, or in this debug session, or for this
826        target -- return -1.  */
827     int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
828
829     /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
830        matches the contents of [DATA,DATA+SIZE).  Returns 1 if there's
831        a match, 0 if there's a mismatch, and -1 if an error is
832        encountered while reading memory.  */
833     int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
834                              CORE_ADDR memaddr, ULONGEST size);
835
836     /* Return the address of the start of the Thread Information Block
837        a Windows OS specific feature.  */
838     int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
839
840     /* Send the new settings of write permission variables.  */
841     void (*to_set_permissions) (void);
842
843     /* Look for a static tracepoint marker at ADDR, and fill in MARKER
844        with its details.  Return 1 on success, 0 on failure.  */
845     int (*to_static_tracepoint_marker_at) (CORE_ADDR,
846                                            struct static_tracepoint_marker *marker);
847
848     /* Return a vector of all tracepoints markers string id ID, or all
849        markers if ID is NULL.  */
850     VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
851       (const char *id);
852
853     /* Return a traceframe info object describing the current
854        traceframe's contents.  This method should not cache data;
855        higher layers take care of caching, invalidating, and
856        re-fetching when necessary.  */
857     struct traceframe_info *(*to_traceframe_info) (void);
858
859     /* Ask the target to use or not to use agent according to USE.  Return 1
860        successful, 0 otherwise.  */
861     int (*to_use_agent) (int use);
862
863     /* Is the target able to use agent in current state?  */
864     int (*to_can_use_agent) (void);
865
866     /* Check whether the target supports branch tracing.  */
867     int (*to_supports_btrace) (void);
868
869     /* Enable branch tracing for PTID and allocate a branch trace target
870        information struct for reading and for disabling branch trace.  */
871     struct btrace_target_info *(*to_enable_btrace) (ptid_t ptid);
872
873     /* Disable branch tracing and deallocate TINFO.  */
874     void (*to_disable_btrace) (struct btrace_target_info *tinfo);
875
876     /* Disable branch tracing and deallocate TINFO.  This function is similar
877        to to_disable_btrace, except that it is called during teardown and is
878        only allowed to perform actions that are safe.  A counter-example would
879        be attempting to talk to a remote target.  */
880     void (*to_teardown_btrace) (struct btrace_target_info *tinfo);
881
882     /* Read branch trace data.  */
883     VEC (btrace_block_s) *(*to_read_btrace) (struct btrace_target_info *,
884                                              enum btrace_read_type);
885
886     /* Stop trace recording.  */
887     void (*to_stop_recording) (void);
888
889     /* Print information about the recording.  */
890     void (*to_info_record) (void);
891
892     /* Save the recorded execution trace into a file.  */
893     void (*to_save_record) (char *filename);
894
895     /* Delete the recorded execution trace from the current position onwards.  */
896     void (*to_delete_record) (void);
897
898     /* Query if the record target is currently replaying.  */
899     int (*to_record_is_replaying) (void);
900
901     /* Go to the begin of the execution trace.  */
902     void (*to_goto_record_begin) (void);
903
904     /* Go to the end of the execution trace.  */
905     void (*to_goto_record_end) (void);
906
907     /* Go to a specific location in the recorded execution trace.  */
908     void (*to_goto_record) (ULONGEST insn);
909
910     /* Disassemble SIZE instructions in the recorded execution trace from
911        the current position.
912        If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
913        disassemble SIZE succeeding instructions.  */
914     void (*to_insn_history) (int size, int flags);
915
916     /* Disassemble SIZE instructions in the recorded execution trace around
917        FROM.
918        If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
919        disassemble SIZE instructions after FROM.  */
920     void (*to_insn_history_from) (ULONGEST from, int size, int flags);
921
922     /* Disassemble a section of the recorded execution trace from instruction
923        BEGIN (inclusive) to instruction END (exclusive).  */
924     void (*to_insn_history_range) (ULONGEST begin, ULONGEST end, int flags);
925
926     /* Print a function trace of the recorded execution trace.
927        If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
928        succeeding functions.  */
929     void (*to_call_history) (int size, int flags);
930
931     /* Print a function trace of the recorded execution trace starting
932        at function FROM.
933        If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
934        SIZE functions after FROM.  */
935     void (*to_call_history_from) (ULONGEST begin, int size, int flags);
936
937     /* Print a function trace of an execution trace section from function BEGIN
938        (inclusive) to function END (exclusive).  */
939     void (*to_call_history_range) (ULONGEST begin, ULONGEST end, int flags);
940
941     int to_magic;
942     /* Need sub-structure for target machine related rather than comm related?
943      */
944   };
945
946 /* Magic number for checking ops size.  If a struct doesn't end with this
947    number, somebody changed the declaration but didn't change all the
948    places that initialize one.  */
949
950 #define OPS_MAGIC       3840
951
952 /* The ops structure for our "current" target process.  This should
953    never be NULL.  If there is no target, it points to the dummy_target.  */
954
955 extern struct target_ops current_target;
956
957 /* Define easy words for doing these operations on our current target.  */
958
959 #define target_shortname        (current_target.to_shortname)
960 #define target_longname         (current_target.to_longname)
961
962 /* Does whatever cleanup is required for a target that we are no
963    longer going to be calling.  This routine is automatically always
964    called after popping the target off the target stack - the target's
965    own methods are no longer available through the target vector.
966    Closing file descriptors and freeing all memory allocated memory are
967    typical things it should do.  */
968
969 void target_close (struct target_ops *targ);
970
971 /* Attaches to a process on the target side.  Arguments are as passed
972    to the `attach' command by the user.  This routine can be called
973    when the target is not on the target-stack, if the target_can_run
974    routine returns 1; in that case, it must push itself onto the stack.
975    Upon exit, the target should be ready for normal operations, and
976    should be ready to deliver the status of the process immediately
977    (without waiting) to an upcoming target_wait call.  */
978
979 void target_attach (char *, int);
980
981 /* Some targets don't generate traps when attaching to the inferior,
982    or their target_attach implementation takes care of the waiting.
983    These targets must set to_attach_no_wait.  */
984
985 #define target_attach_no_wait \
986      (current_target.to_attach_no_wait)
987
988 /* The target_attach operation places a process under debugger control,
989    and stops the process.
990
991    This operation provides a target-specific hook that allows the
992    necessary bookkeeping to be performed after an attach completes.  */
993 #define target_post_attach(pid) \
994      (*current_target.to_post_attach) (pid)
995
996 /* Takes a program previously attached to and detaches it.
997    The program may resume execution (some targets do, some don't) and will
998    no longer stop on signals, etc.  We better not have left any breakpoints
999    in the program or it'll die when it hits one.  ARGS is arguments
1000    typed by the user (e.g. a signal to send the process).  FROM_TTY
1001    says whether to be verbose or not.  */
1002
1003 extern void target_detach (char *, int);
1004
1005 /* Disconnect from the current target without resuming it (leaving it
1006    waiting for a debugger).  */
1007
1008 extern void target_disconnect (char *, int);
1009
1010 /* Resume execution of the target process PTID (or a group of
1011    threads).  STEP says whether to single-step or to run free; SIGGNAL
1012    is the signal to be given to the target, or GDB_SIGNAL_0 for no
1013    signal.  The caller may not pass GDB_SIGNAL_DEFAULT.  A specific
1014    PTID means `step/resume only this process id'.  A wildcard PTID
1015    (all threads, or all threads of process) means `step/resume
1016    INFERIOR_PTID, and let other threads (for which the wildcard PTID
1017    matches) resume with their 'thread->suspend.stop_signal' signal
1018    (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1019    if in "no pass" state.  */
1020
1021 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1022
1023 /* Wait for process pid to do something.  PTID = -1 to wait for any
1024    pid to do something.  Return pid of child, or -1 in case of error;
1025    store status through argument pointer STATUS.  Note that it is
1026    _NOT_ OK to throw_exception() out of target_wait() without popping
1027    the debugging target from the stack; GDB isn't prepared to get back
1028    to the prompt with a debugging target but without the frame cache,
1029    stop_pc, etc., set up.  OPTIONS is a bitwise OR of TARGET_W*
1030    options.  */
1031
1032 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1033                            int options);
1034
1035 /* Fetch at least register REGNO, or all regs if regno == -1.  No result.  */
1036
1037 extern void target_fetch_registers (struct regcache *regcache, int regno);
1038
1039 /* Store at least register REGNO, or all regs if REGNO == -1.
1040    It can store as many registers as it wants to, so target_prepare_to_store
1041    must have been previously called.  Calls error() if there are problems.  */
1042
1043 extern void target_store_registers (struct regcache *regcache, int regs);
1044
1045 /* Get ready to modify the registers array.  On machines which store
1046    individual registers, this doesn't need to do anything.  On machines
1047    which store all the registers in one fell swoop, this makes sure
1048    that REGISTERS contains all the registers from the program being
1049    debugged.  */
1050
1051 #define target_prepare_to_store(regcache)       \
1052      (*current_target.to_prepare_to_store) (regcache)
1053
1054 /* Determine current address space of thread PTID.  */
1055
1056 struct address_space *target_thread_address_space (ptid_t);
1057
1058 /* Implement the "info proc" command.  This returns one if the request
1059    was handled, and zero otherwise.  It can also throw an exception if
1060    an error was encountered while attempting to handle the
1061    request.  */
1062
1063 int target_info_proc (char *, enum info_proc_what);
1064
1065 /* Returns true if this target can debug multiple processes
1066    simultaneously.  */
1067
1068 #define target_supports_multi_process() \
1069      (*current_target.to_supports_multi_process) ()
1070
1071 /* Returns true if this target can disable address space randomization.  */
1072
1073 int target_supports_disable_randomization (void);
1074
1075 /* Returns true if this target can enable and disable tracepoints
1076    while a trace experiment is running.  */
1077
1078 #define target_supports_enable_disable_tracepoint() \
1079   (*current_target.to_supports_enable_disable_tracepoint) ()
1080
1081 #define target_supports_string_tracing() \
1082   (*current_target.to_supports_string_tracing) ()
1083
1084 /* Returns true if this target can handle breakpoint conditions
1085    on its end.  */
1086
1087 #define target_supports_evaluation_of_breakpoint_conditions() \
1088   (*current_target.to_supports_evaluation_of_breakpoint_conditions) ()
1089
1090 /* Returns true if this target can handle breakpoint commands
1091    on its end.  */
1092
1093 #define target_can_run_breakpoint_commands() \
1094   (*current_target.to_can_run_breakpoint_commands) ()
1095
1096 /* Invalidate all target dcaches.  */
1097 extern void target_dcache_invalidate (void);
1098
1099 extern int target_read_string (CORE_ADDR, char **, int, int *);
1100
1101 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1102                                ssize_t len);
1103
1104 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1105
1106 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1107                                 ssize_t len);
1108
1109 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1110                                     ssize_t len);
1111
1112 /* Fetches the target's memory map.  If one is found it is sorted
1113    and returned, after some consistency checking.  Otherwise, NULL
1114    is returned.  */
1115 VEC(mem_region_s) *target_memory_map (void);
1116
1117 /* Erase the specified flash region.  */
1118 void target_flash_erase (ULONGEST address, LONGEST length);
1119
1120 /* Finish a sequence of flash operations.  */
1121 void target_flash_done (void);
1122
1123 /* Describes a request for a memory write operation.  */
1124 struct memory_write_request
1125   {
1126     /* Begining address that must be written.  */
1127     ULONGEST begin;
1128     /* Past-the-end address.  */
1129     ULONGEST end;
1130     /* The data to write.  */
1131     gdb_byte *data;
1132     /* A callback baton for progress reporting for this request.  */
1133     void *baton;
1134   };
1135 typedef struct memory_write_request memory_write_request_s;
1136 DEF_VEC_O(memory_write_request_s);
1137
1138 /* Enumeration specifying different flash preservation behaviour.  */
1139 enum flash_preserve_mode
1140   {
1141     flash_preserve,
1142     flash_discard
1143   };
1144
1145 /* Write several memory blocks at once.  This version can be more
1146    efficient than making several calls to target_write_memory, in
1147    particular because it can optimize accesses to flash memory.
1148
1149    Moreover, this is currently the only memory access function in gdb
1150    that supports writing to flash memory, and it should be used for
1151    all cases where access to flash memory is desirable.
1152
1153    REQUESTS is the vector (see vec.h) of memory_write_request.
1154    PRESERVE_FLASH_P indicates what to do with blocks which must be
1155      erased, but not completely rewritten.
1156    PROGRESS_CB is a function that will be periodically called to provide
1157      feedback to user.  It will be called with the baton corresponding
1158      to the request currently being written.  It may also be called
1159      with a NULL baton, when preserved flash sectors are being rewritten.
1160
1161    The function returns 0 on success, and error otherwise.  */
1162 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1163                                 enum flash_preserve_mode preserve_flash_p,
1164                                 void (*progress_cb) (ULONGEST, void *));
1165
1166 /* Print a line about the current target.  */
1167
1168 #define target_files_info()     \
1169      (*current_target.to_files_info) (&current_target)
1170
1171 /* Insert a breakpoint at address BP_TGT->placed_address in the target
1172    machine.  Result is 0 for success, or an errno value.  */
1173
1174 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1175                                      struct bp_target_info *bp_tgt);
1176
1177 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1178    machine.  Result is 0 for success, or an errno value.  */
1179
1180 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1181                                      struct bp_target_info *bp_tgt);
1182
1183 /* Initialize the terminal settings we record for the inferior,
1184    before we actually run the inferior.  */
1185
1186 #define target_terminal_init() \
1187      (*current_target.to_terminal_init) ()
1188
1189 /* Put the inferior's terminal settings into effect.
1190    This is preparation for starting or resuming the inferior.  */
1191
1192 extern void target_terminal_inferior (void);
1193
1194 /* Put some of our terminal settings into effect,
1195    enough to get proper results from our output,
1196    but do not change into or out of RAW mode
1197    so that no input is discarded.
1198
1199    After doing this, either terminal_ours or terminal_inferior
1200    should be called to get back to a normal state of affairs.  */
1201
1202 #define target_terminal_ours_for_output() \
1203      (*current_target.to_terminal_ours_for_output) ()
1204
1205 /* Put our terminal settings into effect.
1206    First record the inferior's terminal settings
1207    so they can be restored properly later.  */
1208
1209 #define target_terminal_ours() \
1210      (*current_target.to_terminal_ours) ()
1211
1212 /* Save our terminal settings.
1213    This is called from TUI after entering or leaving the curses
1214    mode.  Since curses modifies our terminal this call is here
1215    to take this change into account.  */
1216
1217 #define target_terminal_save_ours() \
1218      (*current_target.to_terminal_save_ours) ()
1219
1220 /* Print useful information about our terminal status, if such a thing
1221    exists.  */
1222
1223 #define target_terminal_info(arg, from_tty) \
1224      (*current_target.to_terminal_info) (arg, from_tty)
1225
1226 /* Kill the inferior process.   Make it go away.  */
1227
1228 extern void target_kill (void);
1229
1230 /* Load an executable file into the target process.  This is expected
1231    to not only bring new code into the target process, but also to
1232    update GDB's symbol tables to match.
1233
1234    ARG contains command-line arguments, to be broken down with
1235    buildargv ().  The first non-switch argument is the filename to
1236    load, FILE; the second is a number (as parsed by strtoul (..., ...,
1237    0)), which is an offset to apply to the load addresses of FILE's
1238    sections.  The target may define switches, or other non-switch
1239    arguments, as it pleases.  */
1240
1241 extern void target_load (char *arg, int from_tty);
1242
1243 /* Start an inferior process and set inferior_ptid to its pid.
1244    EXEC_FILE is the file to run.
1245    ALLARGS is a string containing the arguments to the program.
1246    ENV is the environment vector to pass.  Errors reported with error().
1247    On VxWorks and various standalone systems, we ignore exec_file.  */
1248
1249 void target_create_inferior (char *exec_file, char *args,
1250                              char **env, int from_tty);
1251
1252 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1253    notification of inferior events such as fork and vork immediately
1254    after the inferior is created.  (This because of how gdb gets an
1255    inferior created via invoking a shell to do it.  In such a scenario,
1256    if the shell init file has commands in it, the shell will fork and
1257    exec for each of those commands, and we will see each such fork
1258    event.  Very bad.)
1259
1260    Such targets will supply an appropriate definition for this function.  */
1261
1262 #define target_post_startup_inferior(ptid) \
1263      (*current_target.to_post_startup_inferior) (ptid)
1264
1265 /* On some targets, we can catch an inferior fork or vfork event when
1266    it occurs.  These functions insert/remove an already-created
1267    catchpoint for such events.  They return  0 for success, 1 if the
1268    catchpoint type is not supported and -1 for failure.  */
1269
1270 #define target_insert_fork_catchpoint(pid) \
1271      (*current_target.to_insert_fork_catchpoint) (pid)
1272
1273 #define target_remove_fork_catchpoint(pid) \
1274      (*current_target.to_remove_fork_catchpoint) (pid)
1275
1276 #define target_insert_vfork_catchpoint(pid) \
1277      (*current_target.to_insert_vfork_catchpoint) (pid)
1278
1279 #define target_remove_vfork_catchpoint(pid) \
1280      (*current_target.to_remove_vfork_catchpoint) (pid)
1281
1282 /* If the inferior forks or vforks, this function will be called at
1283    the next resume in order to perform any bookkeeping and fiddling
1284    necessary to continue debugging either the parent or child, as
1285    requested, and releasing the other.  Information about the fork
1286    or vfork event is available via get_last_target_status ().
1287    This function returns 1 if the inferior should not be resumed
1288    (i.e. there is another event pending).  */
1289
1290 int target_follow_fork (int follow_child);
1291
1292 /* On some targets, we can catch an inferior exec event when it
1293    occurs.  These functions insert/remove an already-created
1294    catchpoint for such events.  They return  0 for success, 1 if the
1295    catchpoint type is not supported and -1 for failure.  */
1296
1297 #define target_insert_exec_catchpoint(pid) \
1298      (*current_target.to_insert_exec_catchpoint) (pid)
1299
1300 #define target_remove_exec_catchpoint(pid) \
1301      (*current_target.to_remove_exec_catchpoint) (pid)
1302
1303 /* Syscall catch.
1304
1305    NEEDED is nonzero if any syscall catch (of any kind) is requested.
1306    If NEEDED is zero, it means the target can disable the mechanism to
1307    catch system calls because there are no more catchpoints of this type.
1308
1309    ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1310    being requested.  In this case, both TABLE_SIZE and TABLE should
1311    be ignored.
1312
1313    TABLE_SIZE is the number of elements in TABLE.  It only matters if
1314    ANY_COUNT is zero.
1315
1316    TABLE is an array of ints, indexed by syscall number.  An element in
1317    this array is nonzero if that syscall should be caught.  This argument
1318    only matters if ANY_COUNT is zero.
1319
1320    Return 0 for success, 1 if syscall catchpoints are not supported or -1
1321    for failure.  */
1322
1323 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1324      (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1325                                                   table_size, table)
1326
1327 /* Returns TRUE if PID has exited.  And, also sets EXIT_STATUS to the
1328    exit code of PID, if any.  */
1329
1330 #define target_has_exited(pid,wait_status,exit_status) \
1331      (*current_target.to_has_exited) (pid,wait_status,exit_status)
1332
1333 /* The debugger has completed a blocking wait() call.  There is now
1334    some process event that must be processed.  This function should
1335    be defined by those targets that require the debugger to perform
1336    cleanup or internal state changes in response to the process event.  */
1337
1338 /* The inferior process has died.  Do what is right.  */
1339
1340 void target_mourn_inferior (void);
1341
1342 /* Does target have enough data to do a run or attach command? */
1343
1344 #define target_can_run(t) \
1345      ((t)->to_can_run) ()
1346
1347 /* Set list of signals to be handled in the target.
1348
1349    PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1350    (enum gdb_signal).  For every signal whose entry in this array is
1351    non-zero, the target is allowed -but not required- to skip reporting
1352    arrival of the signal to the GDB core by returning from target_wait,
1353    and to pass the signal directly to the inferior instead.
1354
1355    However, if the target is hardware single-stepping a thread that is
1356    about to receive a signal, it needs to be reported in any case, even
1357    if mentioned in a previous target_pass_signals call.   */
1358
1359 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1360
1361 /* Set list of signals the target may pass to the inferior.  This
1362    directly maps to the "handle SIGNAL pass/nopass" setting.
1363
1364    PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1365    number (enum gdb_signal).  For every signal whose entry in this
1366    array is non-zero, the target is allowed to pass the signal to the
1367    inferior.  Signals not present in the array shall be silently
1368    discarded.  This does not influence whether to pass signals to the
1369    inferior as a result of a target_resume call.  This is useful in
1370    scenarios where the target needs to decide whether to pass or not a
1371    signal to the inferior without GDB core involvement, such as for
1372    example, when detaching (as threads may have been suspended with
1373    pending signals not reported to GDB).  */
1374
1375 extern void target_program_signals (int nsig, unsigned char *program_signals);
1376
1377 /* Check to see if a thread is still alive.  */
1378
1379 extern int target_thread_alive (ptid_t ptid);
1380
1381 /* Query for new threads and add them to the thread list.  */
1382
1383 extern void target_find_new_threads (void);
1384
1385 /* Make target stop in a continuable fashion.  (For instance, under
1386    Unix, this should act like SIGSTOP).  This function is normally
1387    used by GUIs to implement a stop button.  */
1388
1389 extern void target_stop (ptid_t ptid);
1390
1391 /* Send the specified COMMAND to the target's monitor
1392    (shell,interpreter) for execution.  The result of the query is
1393    placed in OUTBUF.  */
1394
1395 #define target_rcmd(command, outbuf) \
1396      (*current_target.to_rcmd) (command, outbuf)
1397
1398
1399 /* Does the target include all of memory, or only part of it?  This
1400    determines whether we look up the target chain for other parts of
1401    memory if this target can't satisfy a request.  */
1402
1403 extern int target_has_all_memory_1 (void);
1404 #define target_has_all_memory target_has_all_memory_1 ()
1405
1406 /* Does the target include memory?  (Dummy targets don't.)  */
1407
1408 extern int target_has_memory_1 (void);
1409 #define target_has_memory target_has_memory_1 ()
1410
1411 /* Does the target have a stack?  (Exec files don't, VxWorks doesn't, until
1412    we start a process.)  */
1413
1414 extern int target_has_stack_1 (void);
1415 #define target_has_stack target_has_stack_1 ()
1416
1417 /* Does the target have registers?  (Exec files don't.)  */
1418
1419 extern int target_has_registers_1 (void);
1420 #define target_has_registers target_has_registers_1 ()
1421
1422 /* Does the target have execution?  Can we make it jump (through
1423    hoops), or pop its stack a few times?  This means that the current
1424    target is currently executing; for some targets, that's the same as
1425    whether or not the target is capable of execution, but there are
1426    also targets which can be current while not executing.  In that
1427    case this will become true after target_create_inferior or
1428    target_attach.  */
1429
1430 extern int target_has_execution_1 (ptid_t);
1431
1432 /* Like target_has_execution_1, but always passes inferior_ptid.  */
1433
1434 extern int target_has_execution_current (void);
1435
1436 #define target_has_execution target_has_execution_current ()
1437
1438 /* Default implementations for process_stratum targets.  Return true
1439    if there's a selected inferior, false otherwise.  */
1440
1441 extern int default_child_has_all_memory (struct target_ops *ops);
1442 extern int default_child_has_memory (struct target_ops *ops);
1443 extern int default_child_has_stack (struct target_ops *ops);
1444 extern int default_child_has_registers (struct target_ops *ops);
1445 extern int default_child_has_execution (struct target_ops *ops,
1446                                         ptid_t the_ptid);
1447
1448 /* Can the target support the debugger control of thread execution?
1449    Can it lock the thread scheduler?  */
1450
1451 #define target_can_lock_scheduler \
1452      (current_target.to_has_thread_control & tc_schedlock)
1453
1454 /* Should the target enable async mode if it is supported?  Temporary
1455    cludge until async mode is a strict superset of sync mode.  */
1456 extern int target_async_permitted;
1457
1458 /* Can the target support asynchronous execution?  */
1459 #define target_can_async_p() (current_target.to_can_async_p ())
1460
1461 /* Is the target in asynchronous execution mode?  */
1462 #define target_is_async_p() (current_target.to_is_async_p ())
1463
1464 int target_supports_non_stop (void);
1465
1466 /* Put the target in async mode with the specified callback function.  */
1467 #define target_async(CALLBACK,CONTEXT) \
1468      (current_target.to_async ((CALLBACK), (CONTEXT)))
1469
1470 #define target_execution_direction() \
1471   (current_target.to_execution_direction ())
1472
1473 /* Converts a process id to a string.  Usually, the string just contains
1474    `process xyz', but on some systems it may contain
1475    `process xyz thread abc'.  */
1476
1477 extern char *target_pid_to_str (ptid_t ptid);
1478
1479 extern char *normal_pid_to_str (ptid_t ptid);
1480
1481 /* Return a short string describing extra information about PID,
1482    e.g. "sleeping", "runnable", "running on LWP 3".  Null return value
1483    is okay.  */
1484
1485 #define target_extra_thread_info(TP) \
1486      (current_target.to_extra_thread_info (TP))
1487
1488 /* Return the thread's name.  A NULL result means that the target
1489    could not determine this thread's name.  */
1490
1491 extern char *target_thread_name (struct thread_info *);
1492
1493 /* Attempts to find the pathname of the executable file
1494    that was run to create a specified process.
1495
1496    The process PID must be stopped when this operation is used.
1497
1498    If the executable file cannot be determined, NULL is returned.
1499
1500    Else, a pointer to a character string containing the pathname
1501    is returned.  This string should be copied into a buffer by
1502    the client if the string will not be immediately used, or if
1503    it must persist.  */
1504
1505 #define target_pid_to_exec_file(pid) \
1506      (current_target.to_pid_to_exec_file) (pid)
1507
1508 /* See the to_thread_architecture description in struct target_ops.  */
1509
1510 #define target_thread_architecture(ptid) \
1511      (current_target.to_thread_architecture (&current_target, ptid))
1512
1513 /*
1514  * Iterator function for target memory regions.
1515  * Calls a callback function once for each memory region 'mapped'
1516  * in the child process.  Defined as a simple macro rather than
1517  * as a function macro so that it can be tested for nullity.
1518  */
1519
1520 #define target_find_memory_regions(FUNC, DATA) \
1521      (current_target.to_find_memory_regions) (FUNC, DATA)
1522
1523 /*
1524  * Compose corefile .note section.
1525  */
1526
1527 #define target_make_corefile_notes(BFD, SIZE_P) \
1528      (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1529
1530 /* Bookmark interfaces.  */
1531 #define target_get_bookmark(ARGS, FROM_TTY) \
1532      (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1533
1534 #define target_goto_bookmark(ARG, FROM_TTY) \
1535      (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1536
1537 /* Hardware watchpoint interfaces.  */
1538
1539 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1540    write).  Only the INFERIOR_PTID task is being queried.  */
1541
1542 #define target_stopped_by_watchpoint \
1543    (*current_target.to_stopped_by_watchpoint)
1544
1545 /* Non-zero if we have steppable watchpoints  */
1546
1547 #define target_have_steppable_watchpoint \
1548    (current_target.to_have_steppable_watchpoint)
1549
1550 /* Non-zero if we have continuable watchpoints  */
1551
1552 #define target_have_continuable_watchpoint \
1553    (current_target.to_have_continuable_watchpoint)
1554
1555 /* Provide defaults for hardware watchpoint functions.  */
1556
1557 /* If the *_hw_beakpoint functions have not been defined
1558    elsewhere use the definitions in the target vector.  */
1559
1560 /* Returns non-zero if we can set a hardware watchpoint of type TYPE.  TYPE is
1561    one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1562    bp_hardware_breakpoint.  CNT is the number of such watchpoints used so far
1563    (including this one?).  OTHERTYPE is who knows what...  */
1564
1565 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1566  (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1567
1568 /* Returns the number of debug registers needed to watch the given
1569    memory region, or zero if not supported.  */
1570
1571 #define target_region_ok_for_hw_watchpoint(addr, len) \
1572     (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1573
1574
1575 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1576    TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1577    COND is the expression for its condition, or NULL if there's none.
1578    Returns 0 for success, 1 if the watchpoint type is not supported,
1579    -1 for failure.  */
1580
1581 #define target_insert_watchpoint(addr, len, type, cond) \
1582      (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1583
1584 #define target_remove_watchpoint(addr, len, type, cond) \
1585      (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1586
1587 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1588    RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1589    or hw_access for an access watchpoint.  Returns 0 for success, 1 if
1590    masked watchpoints are not supported, -1 for failure.  */
1591
1592 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1593
1594 /* Remove a masked watchpoint at ADDR with the mask MASK.
1595    RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1596    or hw_access for an access watchpoint.  Returns 0 for success, non-zero
1597    for failure.  */
1598
1599 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1600
1601 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1602      (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1603
1604 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1605      (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1606
1607 /* Return number of debug registers needed for a ranged breakpoint,
1608    or -1 if ranged breakpoints are not supported.  */
1609
1610 extern int target_ranged_break_num_registers (void);
1611
1612 /* Return non-zero if target knows the data address which triggered this
1613    target_stopped_by_watchpoint, in such case place it to *ADDR_P.  Only the
1614    INFERIOR_PTID task is being queried.  */
1615 #define target_stopped_data_address(target, addr_p) \
1616     (*target.to_stopped_data_address) (target, addr_p)
1617
1618 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1619    LENGTH bytes beginning at START.  */
1620 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1621   (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1622
1623 /* Return non-zero if the target is capable of using hardware to evaluate
1624    the condition expression.  In this case, if the condition is false when
1625    the watched memory location changes, execution may continue without the
1626    debugger being notified.
1627
1628    Due to limitations in the hardware implementation, it may be capable of
1629    avoiding triggering the watchpoint in some cases where the condition
1630    expression is false, but may report some false positives as well.
1631    For this reason, GDB will still evaluate the condition expression when
1632    the watchpoint triggers.  */
1633 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1634   (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1635
1636 /* Return number of debug registers needed for a masked watchpoint,
1637    -1 if masked watchpoints are not supported or -2 if the given address
1638    and mask combination cannot be used.  */
1639
1640 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1641
1642 /* Target can execute in reverse?  */
1643 #define target_can_execute_reverse \
1644      (current_target.to_can_execute_reverse ? \
1645       current_target.to_can_execute_reverse () : 0)
1646
1647 extern const struct target_desc *target_read_description (struct target_ops *);
1648
1649 #define target_get_ada_task_ptid(lwp, tid) \
1650      (*current_target.to_get_ada_task_ptid) (lwp,tid)
1651
1652 /* Utility implementation of searching memory.  */
1653 extern int simple_search_memory (struct target_ops* ops,
1654                                  CORE_ADDR start_addr,
1655                                  ULONGEST search_space_len,
1656                                  const gdb_byte *pattern,
1657                                  ULONGEST pattern_len,
1658                                  CORE_ADDR *found_addrp);
1659
1660 /* Main entry point for searching memory.  */
1661 extern int target_search_memory (CORE_ADDR start_addr,
1662                                  ULONGEST search_space_len,
1663                                  const gdb_byte *pattern,
1664                                  ULONGEST pattern_len,
1665                                  CORE_ADDR *found_addrp);
1666
1667 /* Target file operations.  */
1668
1669 /* Open FILENAME on the target, using FLAGS and MODE.  Return a
1670    target file descriptor, or -1 if an error occurs (and set
1671    *TARGET_ERRNO).  */
1672 extern int target_fileio_open (const char *filename, int flags, int mode,
1673                                int *target_errno);
1674
1675 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1676    Return the number of bytes written, or -1 if an error occurs
1677    (and set *TARGET_ERRNO).  */
1678 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1679                                  ULONGEST offset, int *target_errno);
1680
1681 /* Read up to LEN bytes FD on the target into READ_BUF.
1682    Return the number of bytes read, or -1 if an error occurs
1683    (and set *TARGET_ERRNO).  */
1684 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1685                                 ULONGEST offset, int *target_errno);
1686
1687 /* Close FD on the target.  Return 0, or -1 if an error occurs
1688    (and set *TARGET_ERRNO).  */
1689 extern int target_fileio_close (int fd, int *target_errno);
1690
1691 /* Unlink FILENAME on the target.  Return 0, or -1 if an error
1692    occurs (and set *TARGET_ERRNO).  */
1693 extern int target_fileio_unlink (const char *filename, int *target_errno);
1694
1695 /* Read value of symbolic link FILENAME on the target.  Return a
1696    null-terminated string allocated via xmalloc, or NULL if an error
1697    occurs (and set *TARGET_ERRNO).  */
1698 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1699
1700 /* Read target file FILENAME.  The return value will be -1 if the transfer
1701    fails or is not supported; 0 if the object is empty; or the length
1702    of the object otherwise.  If a positive value is returned, a
1703    sufficiently large buffer will be allocated using xmalloc and
1704    returned in *BUF_P containing the contents of the object.
1705
1706    This method should be used for objects sufficiently small to store
1707    in a single xmalloc'd buffer, when no fixed bound on the object's
1708    size is known in advance.  */
1709 extern LONGEST target_fileio_read_alloc (const char *filename,
1710                                          gdb_byte **buf_p);
1711
1712 /* Read target file FILENAME.  The result is NUL-terminated and
1713    returned as a string, allocated using xmalloc.  If an error occurs
1714    or the transfer is unsupported, NULL is returned.  Empty objects
1715    are returned as allocated but empty strings.  A warning is issued
1716    if the result contains any embedded NUL bytes.  */
1717 extern char *target_fileio_read_stralloc (const char *filename);
1718
1719
1720 /* Tracepoint-related operations.  */
1721
1722 #define target_trace_init() \
1723   (*current_target.to_trace_init) ()
1724
1725 #define target_download_tracepoint(t) \
1726   (*current_target.to_download_tracepoint) (t)
1727
1728 #define target_can_download_tracepoint() \
1729   (*current_target.to_can_download_tracepoint) ()
1730
1731 #define target_download_trace_state_variable(tsv) \
1732   (*current_target.to_download_trace_state_variable) (tsv)
1733
1734 #define target_enable_tracepoint(loc) \
1735   (*current_target.to_enable_tracepoint) (loc)
1736
1737 #define target_disable_tracepoint(loc) \
1738   (*current_target.to_disable_tracepoint) (loc)
1739
1740 #define target_trace_start() \
1741   (*current_target.to_trace_start) ()
1742
1743 #define target_trace_set_readonly_regions() \
1744   (*current_target.to_trace_set_readonly_regions) ()
1745
1746 #define target_get_trace_status(ts) \
1747   (*current_target.to_get_trace_status) (ts)
1748
1749 #define target_get_tracepoint_status(tp,utp)            \
1750   (*current_target.to_get_tracepoint_status) (tp, utp)
1751
1752 #define target_trace_stop() \
1753   (*current_target.to_trace_stop) ()
1754
1755 #define target_trace_find(type,num,addr1,addr2,tpp) \
1756   (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1757
1758 #define target_get_trace_state_variable_value(tsv,val) \
1759   (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1760
1761 #define target_save_trace_data(filename) \
1762   (*current_target.to_save_trace_data) (filename)
1763
1764 #define target_upload_tracepoints(utpp) \
1765   (*current_target.to_upload_tracepoints) (utpp)
1766
1767 #define target_upload_trace_state_variables(utsvp) \
1768   (*current_target.to_upload_trace_state_variables) (utsvp)
1769
1770 #define target_get_raw_trace_data(buf,offset,len) \
1771   (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1772
1773 #define target_get_min_fast_tracepoint_insn_len() \
1774   (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1775
1776 #define target_set_disconnected_tracing(val) \
1777   (*current_target.to_set_disconnected_tracing) (val)
1778
1779 #define target_set_circular_trace_buffer(val)   \
1780   (*current_target.to_set_circular_trace_buffer) (val)
1781
1782 #define target_set_trace_buffer_size(val)       \
1783   (*current_target.to_set_trace_buffer_size) (val)
1784
1785 #define target_set_trace_notes(user,notes,stopnotes)            \
1786   (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1787
1788 #define target_get_tib_address(ptid, addr) \
1789   (*current_target.to_get_tib_address) ((ptid), (addr))
1790
1791 #define target_set_permissions() \
1792   (*current_target.to_set_permissions) ()
1793
1794 #define target_static_tracepoint_marker_at(addr, marker) \
1795   (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1796
1797 #define target_static_tracepoint_markers_by_strid(marker_id) \
1798   (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1799
1800 #define target_traceframe_info() \
1801   (*current_target.to_traceframe_info) ()
1802
1803 #define target_use_agent(use) \
1804   (*current_target.to_use_agent) (use)
1805
1806 #define target_can_use_agent() \
1807   (*current_target.to_can_use_agent) ()
1808
1809 /* Command logging facility.  */
1810
1811 #define target_log_command(p)                                           \
1812   do                                                                    \
1813     if (current_target.to_log_command)                                  \
1814       (*current_target.to_log_command) (p);                             \
1815   while (0)
1816
1817
1818 extern int target_core_of_thread (ptid_t ptid);
1819
1820 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1821    the contents of [DATA,DATA+SIZE).  Returns 1 if there's a match, 0
1822    if there's a mismatch, and -1 if an error is encountered while
1823    reading memory.  Throws an error if the functionality is found not
1824    to be supported by the current target.  */
1825 int target_verify_memory (const gdb_byte *data,
1826                           CORE_ADDR memaddr, ULONGEST size);
1827
1828 /* Routines for maintenance of the target structures...
1829
1830    add_target:   Add a target to the list of all possible targets.
1831
1832    push_target:  Make this target the top of the stack of currently used
1833    targets, within its particular stratum of the stack.  Result
1834    is 0 if now atop the stack, nonzero if not on top (maybe
1835    should warn user).
1836
1837    unpush_target: Remove this from the stack of currently used targets,
1838    no matter where it is on the list.  Returns 0 if no
1839    change, 1 if removed from stack.
1840
1841    pop_target:   Remove the top thing on the stack of current targets.  */
1842
1843 extern void add_target (struct target_ops *);
1844
1845 extern void add_target_with_completer (struct target_ops *t,
1846                                        completer_ftype *completer);
1847
1848 /* Adds a command ALIAS for target T and marks it deprecated.  This is useful
1849    for maintaining backwards compatibility when renaming targets.  */
1850
1851 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1852
1853 extern void push_target (struct target_ops *);
1854
1855 extern int unpush_target (struct target_ops *);
1856
1857 extern void target_pre_inferior (int);
1858
1859 extern void target_preopen (int);
1860
1861 extern void pop_target (void);
1862
1863 /* Does whatever cleanup is required to get rid of all pushed targets.  */
1864 extern void pop_all_targets (void);
1865
1866 /* Like pop_all_targets, but pops only targets whose stratum is
1867    strictly above ABOVE_STRATUM.  */
1868 extern void pop_all_targets_above (enum strata above_stratum);
1869
1870 extern int target_is_pushed (struct target_ops *t);
1871
1872 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1873                                                CORE_ADDR offset);
1874
1875 /* Struct target_section maps address ranges to file sections.  It is
1876    mostly used with BFD files, but can be used without (e.g. for handling
1877    raw disks, or files not in formats handled by BFD).  */
1878
1879 struct target_section
1880   {
1881     CORE_ADDR addr;             /* Lowest address in section */
1882     CORE_ADDR endaddr;          /* 1+highest address in section */
1883
1884     struct bfd_section *the_bfd_section;
1885
1886     /* A given BFD may appear multiple times in the target section
1887        list, so each BFD is associated with a given key.  The key is
1888        just some convenient pointer that can be used to differentiate
1889        the BFDs.  These are managed only by convention.  */
1890     void *key;
1891
1892     bfd *bfd;                   /* BFD file pointer */
1893   };
1894
1895 /* Holds an array of target sections.  Defined by [SECTIONS..SECTIONS_END[.  */
1896
1897 struct target_section_table
1898 {
1899   struct target_section *sections;
1900   struct target_section *sections_end;
1901 };
1902
1903 /* Return the "section" containing the specified address.  */
1904 struct target_section *target_section_by_addr (struct target_ops *target,
1905                                                CORE_ADDR addr);
1906
1907 /* Return the target section table this target (or the targets
1908    beneath) currently manipulate.  */
1909
1910 extern struct target_section_table *target_get_section_table
1911   (struct target_ops *target);
1912
1913 /* From mem-break.c */
1914
1915 extern int memory_remove_breakpoint (struct gdbarch *,
1916                                      struct bp_target_info *);
1917
1918 extern int memory_insert_breakpoint (struct gdbarch *,
1919                                      struct bp_target_info *);
1920
1921 extern int default_memory_remove_breakpoint (struct gdbarch *,
1922                                              struct bp_target_info *);
1923
1924 extern int default_memory_insert_breakpoint (struct gdbarch *,
1925                                              struct bp_target_info *);
1926
1927
1928 /* From target.c */
1929
1930 extern void initialize_targets (void);
1931
1932 extern void noprocess (void) ATTRIBUTE_NORETURN;
1933
1934 extern void target_require_runnable (void);
1935
1936 extern void find_default_attach (struct target_ops *, char *, int);
1937
1938 extern void find_default_create_inferior (struct target_ops *,
1939                                           char *, char *, char **, int);
1940
1941 extern struct target_ops *find_run_target (void);
1942
1943 extern struct target_ops *find_target_beneath (struct target_ops *);
1944
1945 /* Read OS data object of type TYPE from the target, and return it in
1946    XML format.  The result is NUL-terminated and returned as a string,
1947    allocated using xmalloc.  If an error occurs or the transfer is
1948    unsupported, NULL is returned.  Empty objects are returned as
1949    allocated but empty strings.  */
1950
1951 extern char *target_get_osdata (const char *type);
1952
1953 \f
1954 /* Stuff that should be shared among the various remote targets.  */
1955
1956 /* Debugging level.  0 is off, and non-zero values mean to print some debug
1957    information (higher values, more information).  */
1958 extern int remote_debug;
1959
1960 /* Speed in bits per second, or -1 which means don't mess with the speed.  */
1961 extern int baud_rate;
1962 /* Timeout limit for response from target.  */
1963 extern int remote_timeout;
1964
1965 \f
1966
1967 /* Set the show memory breakpoints mode to show, and installs a cleanup
1968    to restore it back to the current value.  */
1969 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1970
1971 extern int may_write_registers;
1972 extern int may_write_memory;
1973 extern int may_insert_breakpoints;
1974 extern int may_insert_tracepoints;
1975 extern int may_insert_fast_tracepoints;
1976 extern int may_stop;
1977
1978 extern void update_target_permissions (void);
1979
1980 \f
1981 /* Imported from machine dependent code.  */
1982
1983 /* Blank target vector entries are initialized to target_ignore.  */
1984 void target_ignore (void);
1985
1986 /* See to_supports_btrace in struct target_ops.  */
1987 extern int target_supports_btrace (void);
1988
1989 /* See to_enable_btrace in struct target_ops.  */
1990 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
1991
1992 /* See to_disable_btrace in struct target_ops.  */
1993 extern void target_disable_btrace (struct btrace_target_info *btinfo);
1994
1995 /* See to_teardown_btrace in struct target_ops.  */
1996 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
1997
1998 /* See to_read_btrace in struct target_ops.  */
1999 extern VEC (btrace_block_s) *target_read_btrace (struct btrace_target_info *,
2000                                                  enum btrace_read_type);
2001
2002 /* See to_stop_recording in struct target_ops.  */
2003 extern void target_stop_recording (void);
2004
2005 /* See to_info_record in struct target_ops.  */
2006 extern void target_info_record (void);
2007
2008 /* See to_save_record in struct target_ops.  */
2009 extern void target_save_record (char *filename);
2010
2011 /* Query if the target supports deleting the execution log.  */
2012 extern int target_supports_delete_record (void);
2013
2014 /* See to_delete_record in struct target_ops.  */
2015 extern void target_delete_record (void);
2016
2017 /* See to_record_is_replaying in struct target_ops.  */
2018 extern int target_record_is_replaying (void);
2019
2020 /* See to_goto_record_begin in struct target_ops.  */
2021 extern void target_goto_record_begin (void);
2022
2023 /* See to_goto_record_end in struct target_ops.  */
2024 extern void target_goto_record_end (void);
2025
2026 /* See to_goto_record in struct target_ops.  */
2027 extern void target_goto_record (ULONGEST insn);
2028
2029 /* See to_insn_history.  */
2030 extern void target_insn_history (int size, int flags);
2031
2032 /* See to_insn_history_from.  */
2033 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2034
2035 /* See to_insn_history_range.  */
2036 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2037
2038 /* See to_call_history.  */
2039 extern void target_call_history (int size, int flags);
2040
2041 /* See to_call_history_from.  */
2042 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2043
2044 /* See to_call_history_range.  */
2045 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2046
2047 #endif /* !defined (TARGET_H) */