1 /* Select target systems and architectures at runtime for GDB.
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
5 Contributed by Cygnus Support.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "target-dcache.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
45 #include "target-debug.h"
47 #include "event-top.h"
49 #include "byte-vector.h"
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
55 static void default_terminal_info (struct target_ops *, const char *, int);
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
68 static int default_follow_fork (struct target_ops *self, int follow_child,
71 static void default_mourn_inferior (struct target_ops *self);
73 static int default_search_memory (struct target_ops *ops,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
78 CORE_ADDR *found_addrp);
80 static int default_verify_memory (struct target_ops *self,
82 CORE_ADDR memaddr, ULONGEST size);
84 static struct address_space *default_thread_address_space
85 (struct target_ops *self, ptid_t ptid);
87 static void tcomplain (void) ATTRIBUTE_NORETURN;
89 static struct target_ops *find_default_run_target (const char *);
91 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 static int dummy_find_memory_regions (struct target_ops *self,
95 find_memory_region_ftype ignore1,
98 static char *dummy_make_corefile_notes (struct target_ops *self,
99 bfd *ignore1, int *ignore2);
101 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
103 static enum exec_direction_kind default_execution_direction
104 (struct target_ops *self);
106 /* Vector of existing target structures. */
107 typedef struct target_ops *target_ops_p;
108 DEF_VEC_P (target_ops_p);
109 static VEC (target_ops_p) *target_structs;
111 /* The initial current target, so that there is always a semi-valid
114 static struct target_ops *the_dummy_target;
115 static struct target_ops *the_debug_target;
117 /* Top of target stack. */
118 /* The target structure we are currently using to talk to a process
119 or file or whatever "inferior" we have. */
121 struct target_ops *target_stack;
123 /* Command list for target. */
125 static struct cmd_list_element *targetlist = NULL;
127 /* Nonzero if we should trust readonly sections from the
128 executable when reading memory. */
130 static int trust_readonly = 0;
132 /* Nonzero if we should show true memory content including
133 memory breakpoint inserted by gdb. */
135 static int show_memory_breakpoints = 0;
137 /* These globals control whether GDB attempts to perform these
138 operations; they are useful for targets that need to prevent
139 inadvertant disruption, such as in non-stop mode. */
141 int may_write_registers = 1;
143 int may_write_memory = 1;
145 int may_insert_breakpoints = 1;
147 int may_insert_tracepoints = 1;
149 int may_insert_fast_tracepoints = 1;
153 /* Non-zero if we want to see trace of target level stuff. */
155 static unsigned int targetdebug = 0;
158 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
161 push_target (the_debug_target);
163 unpush_target (the_debug_target);
167 show_targetdebug (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
170 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
173 /* The user just typed 'target' without the name of a target. */
176 target_command (const char *arg, int from_tty)
178 fputs_filtered ("Argument required (target name). Try `help target'\n",
182 /* Default target_has_* methods for process_stratum targets. */
185 default_child_has_all_memory ()
187 /* If no inferior selected, then we can't read memory here. */
188 if (ptid_equal (inferior_ptid, null_ptid))
195 default_child_has_memory ()
197 /* If no inferior selected, then we can't read memory here. */
198 if (ptid_equal (inferior_ptid, null_ptid))
205 default_child_has_stack ()
207 /* If no inferior selected, there's no stack. */
208 if (ptid_equal (inferior_ptid, null_ptid))
215 default_child_has_registers ()
217 /* Can't read registers from no inferior. */
218 if (ptid_equal (inferior_ptid, null_ptid))
225 default_child_has_execution (ptid_t the_ptid)
227 /* If there's no thread selected, then we can't make it run through
229 if (ptid_equal (the_ptid, null_ptid))
237 target_has_all_memory_1 (void)
239 struct target_ops *t;
241 for (t = target_stack; t != NULL; t = t->beneath)
242 if (t->has_all_memory ())
249 target_has_memory_1 (void)
251 struct target_ops *t;
253 for (t = target_stack; t != NULL; t = t->beneath)
254 if (t->has_memory ())
261 target_has_stack_1 (void)
263 struct target_ops *t;
265 for (t = target_stack; t != NULL; t = t->beneath)
273 target_has_registers_1 (void)
275 struct target_ops *t;
277 for (t = target_stack; t != NULL; t = t->beneath)
278 if (t->has_registers ())
285 target_has_execution_1 (ptid_t the_ptid)
287 struct target_ops *t;
289 for (t = target_stack; t != NULL; t = t->beneath)
290 if (t->has_execution (the_ptid))
297 target_has_execution_current (void)
299 return target_has_execution_1 (inferior_ptid);
302 /* This is used to implement the various target commands. */
305 open_target (const char *args, int from_tty, struct cmd_list_element *command)
307 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
310 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
313 ops->open (args, from_tty);
316 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
317 ops->shortname (), args, from_tty);
320 /* Add possible target architecture T to the list and add a new
321 command 'target T->shortname ()'. Set COMPLETER as the command's
322 completer if not NULL. */
325 add_target_with_completer (struct target_ops *t,
326 completer_ftype *completer)
328 struct cmd_list_element *c;
330 VEC_safe_push (target_ops_p, target_structs, t);
332 if (targetlist == NULL)
333 add_prefix_cmd ("target", class_run, target_command, _("\
334 Connect to a target machine or process.\n\
335 The first argument is the type or protocol of the target machine.\n\
336 Remaining arguments are interpreted by the target protocol. For more\n\
337 information on the arguments for a particular protocol, type\n\
338 `help target ' followed by the protocol name."),
339 &targetlist, "target ", 0, &cmdlist);
340 c = add_cmd (t->shortname (), no_class, t->doc (), &targetlist);
341 set_cmd_sfunc (c, open_target);
342 set_cmd_context (c, t);
343 if (completer != NULL)
344 set_cmd_completer (c, completer);
347 /* Add a possible target architecture to the list. */
350 add_target (struct target_ops *t)
352 add_target_with_completer (t, NULL);
358 add_deprecated_target_alias (struct target_ops *t, const char *alias)
360 struct cmd_list_element *c;
363 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
365 c = add_cmd (alias, no_class, t->doc (), &targetlist);
366 set_cmd_sfunc (c, open_target);
367 set_cmd_context (c, t);
368 alt = xstrprintf ("target %s", t->shortname ());
369 deprecate_cmd (c, alt);
377 target_stack->kill ();
381 target_load (const char *arg, int from_tty)
383 target_dcache_invalidate ();
384 target_stack->load (arg, from_tty);
389 target_terminal_state target_terminal::m_terminal_state
390 = target_terminal_state::is_ours;
392 /* See target/target.h. */
395 target_terminal::init (void)
397 target_stack->terminal_init ();
399 m_terminal_state = target_terminal_state::is_ours;
402 /* See target/target.h. */
405 target_terminal::inferior (void)
407 struct ui *ui = current_ui;
409 /* A background resume (``run&'') should leave GDB in control of the
411 if (ui->prompt_state != PROMPT_BLOCKED)
414 /* Since we always run the inferior in the main console (unless "set
415 inferior-tty" is in effect), when some UI other than the main one
416 calls target_terminal::inferior, then we leave the main UI's
417 terminal settings as is. */
421 /* If GDB is resuming the inferior in the foreground, install
422 inferior's terminal modes. */
424 struct inferior *inf = current_inferior ();
426 if (inf->terminal_state != target_terminal_state::is_inferior)
428 target_stack->terminal_inferior ();
429 inf->terminal_state = target_terminal_state::is_inferior;
432 m_terminal_state = target_terminal_state::is_inferior;
434 /* If the user hit C-c before, pretend that it was hit right
436 if (check_quit_flag ())
437 target_pass_ctrlc ();
440 /* See target/target.h. */
443 target_terminal::restore_inferior (void)
445 struct ui *ui = current_ui;
447 /* See target_terminal::inferior(). */
448 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
451 /* Restore the terminal settings of inferiors that were in the
452 foreground but are now ours_for_output due to a temporary
453 target_target::ours_for_output() call. */
456 scoped_restore_current_inferior restore_inferior;
457 struct inferior *inf;
461 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
463 set_current_inferior (inf);
464 target_stack->terminal_inferior ();
465 inf->terminal_state = target_terminal_state::is_inferior;
470 m_terminal_state = target_terminal_state::is_inferior;
472 /* If the user hit C-c before, pretend that it was hit right
474 if (check_quit_flag ())
475 target_pass_ctrlc ();
478 /* Switch terminal state to DESIRED_STATE, either is_ours, or
479 is_ours_for_output. */
482 target_terminal_is_ours_kind (target_terminal_state desired_state)
484 scoped_restore_current_inferior restore_inferior;
485 struct inferior *inf;
487 /* Must do this in two passes. First, have all inferiors save the
488 current terminal settings. Then, after all inferiors have add a
489 chance to safely save the terminal settings, restore GDB's
490 terminal settings. */
494 if (inf->terminal_state == target_terminal_state::is_inferior)
496 set_current_inferior (inf);
497 target_stack->terminal_save_inferior ();
503 /* Note we don't check is_inferior here like above because we
504 need to handle 'is_ours_for_output -> is_ours' too. Careful
505 to never transition from 'is_ours' to 'is_ours_for_output',
507 if (inf->terminal_state != target_terminal_state::is_ours
508 && inf->terminal_state != desired_state)
510 set_current_inferior (inf);
511 if (desired_state == target_terminal_state::is_ours)
512 target_stack->terminal_ours ();
513 else if (desired_state == target_terminal_state::is_ours_for_output)
514 target_stack->terminal_ours_for_output ();
516 gdb_assert_not_reached ("unhandled desired state");
517 inf->terminal_state = desired_state;
522 /* See target/target.h. */
525 target_terminal::ours ()
527 struct ui *ui = current_ui;
529 /* See target_terminal::inferior. */
533 if (m_terminal_state == target_terminal_state::is_ours)
536 target_terminal_is_ours_kind (target_terminal_state::is_ours);
537 m_terminal_state = target_terminal_state::is_ours;
540 /* See target/target.h. */
543 target_terminal::ours_for_output ()
545 struct ui *ui = current_ui;
547 /* See target_terminal::inferior. */
551 if (!target_terminal::is_inferior ())
554 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
555 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
558 /* See target/target.h. */
561 target_terminal::info (const char *arg, int from_tty)
563 target_stack->terminal_info (arg, from_tty);
569 target_supports_terminal_ours (void)
571 return target_stack->supports_terminal_ours ();
577 error (_("You can't do that when your target is `%s'"),
578 target_stack->shortname ());
584 error (_("You can't do that without a process to debug."));
588 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
590 printf_unfiltered (_("No saved terminal information.\n"));
593 /* A default implementation for the to_get_ada_task_ptid target method.
595 This function builds the PTID by using both LWP and TID as part of
596 the PTID lwp and tid elements. The pid used is the pid of the
600 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
602 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
605 static enum exec_direction_kind
606 default_execution_direction (struct target_ops *self)
608 if (!target_can_execute_reverse)
610 else if (!target_can_async_p ())
613 gdb_assert_not_reached ("\
614 to_execution_direction must be implemented for reverse async");
617 /* Push a new target type into the stack of the existing target accessors,
618 possibly superseding some of the existing accessors.
620 Rather than allow an empty stack, we always have the dummy target at
621 the bottom stratum, so we can call the function vectors without
625 push_target (struct target_ops *t)
627 struct target_ops **cur;
629 /* Find the proper stratum to install this target in. */
630 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
632 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
636 /* If there's already targets at this stratum, remove them. */
637 /* FIXME: cagney/2003-10-15: I think this should be popping all
638 targets to CUR, and not just those at this stratum level. */
639 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
641 /* There's already something at this stratum level. Close it,
642 and un-hook it from the stack. */
643 struct target_ops *tmp = (*cur);
645 (*cur) = (*cur)->beneath;
650 /* We have removed all targets in our stratum, now add the new one. */
655 /* Remove a target_ops vector from the stack, wherever it may be.
656 Return how many times it was removed (0 or 1). */
659 unpush_target (struct target_ops *t)
661 struct target_ops **cur;
662 struct target_ops *tmp;
664 if (t->to_stratum == dummy_stratum)
665 internal_error (__FILE__, __LINE__,
666 _("Attempt to unpush the dummy target"));
668 /* Look for the specified target. Note that we assume that a target
669 can only occur once in the target stack. */
671 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
677 /* If we don't find target_ops, quit. Only open targets should be
682 /* Unchain the target. */
684 (*cur) = (*cur)->beneath;
687 /* Finally close the target. Note we do this after unchaining, so
688 any target method calls from within the target_close
689 implementation don't end up in T anymore. */
695 /* Unpush TARGET and assert that it worked. */
698 unpush_target_and_assert (struct target_ops *target)
700 if (!unpush_target (target))
702 fprintf_unfiltered (gdb_stderr,
703 "pop_all_targets couldn't find target %s\n",
704 target->shortname ());
705 internal_error (__FILE__, __LINE__,
706 _("failed internal consistency check"));
711 pop_all_targets_above (enum strata above_stratum)
713 while ((int) (target_stack->to_stratum) > (int) above_stratum)
714 unpush_target_and_assert (target_stack);
720 pop_all_targets_at_and_above (enum strata stratum)
722 while ((int) (target_stack->to_stratum) >= (int) stratum)
723 unpush_target_and_assert (target_stack);
727 pop_all_targets (void)
729 pop_all_targets_above (dummy_stratum);
732 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
735 target_is_pushed (struct target_ops *t)
737 struct target_ops *cur;
739 for (cur = target_stack; cur != NULL; cur = cur->beneath)
746 /* Default implementation of to_get_thread_local_address. */
749 generic_tls_error (void)
751 throw_error (TLS_GENERIC_ERROR,
752 _("Cannot find thread-local variables on this target"));
755 /* Using the objfile specified in OBJFILE, find the address for the
756 current thread's thread-local storage with offset OFFSET. */
758 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
760 volatile CORE_ADDR addr = 0;
761 struct target_ops *target = target_stack;
763 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
765 ptid_t ptid = inferior_ptid;
771 /* Fetch the load module address for this objfile. */
772 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
775 addr = target->get_thread_local_address (ptid, lm_addr, offset);
777 /* If an error occurred, print TLS related messages here. Otherwise,
778 throw the error to some higher catcher. */
779 CATCH (ex, RETURN_MASK_ALL)
781 int objfile_is_library = (objfile->flags & OBJF_SHARED);
785 case TLS_NO_LIBRARY_SUPPORT_ERROR:
786 error (_("Cannot find thread-local variables "
787 "in this thread library."));
789 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
790 if (objfile_is_library)
791 error (_("Cannot find shared library `%s' in dynamic"
792 " linker's load module list"), objfile_name (objfile));
794 error (_("Cannot find executable file `%s' in dynamic"
795 " linker's load module list"), objfile_name (objfile));
797 case TLS_NOT_ALLOCATED_YET_ERROR:
798 if (objfile_is_library)
799 error (_("The inferior has not yet allocated storage for"
800 " thread-local variables in\n"
801 "the shared library `%s'\n"
803 objfile_name (objfile), target_pid_to_str (ptid));
805 error (_("The inferior has not yet allocated storage for"
806 " thread-local variables in\n"
807 "the executable `%s'\n"
809 objfile_name (objfile), target_pid_to_str (ptid));
811 case TLS_GENERIC_ERROR:
812 if (objfile_is_library)
813 error (_("Cannot find thread-local storage for %s, "
814 "shared library %s:\n%s"),
815 target_pid_to_str (ptid),
816 objfile_name (objfile), ex.message);
818 error (_("Cannot find thread-local storage for %s, "
819 "executable file %s:\n%s"),
820 target_pid_to_str (ptid),
821 objfile_name (objfile), ex.message);
824 throw_exception (ex);
830 /* It wouldn't be wrong here to try a gdbarch method, too; finding
831 TLS is an ABI-specific thing. But we don't do that yet. */
833 error (_("Cannot find thread-local variables on this target"));
839 target_xfer_status_to_string (enum target_xfer_status status)
841 #define CASE(X) case X: return #X
844 CASE(TARGET_XFER_E_IO);
845 CASE(TARGET_XFER_UNAVAILABLE);
854 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
856 /* target_read_string -- read a null terminated string, up to LEN bytes,
857 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
858 Set *STRING to a pointer to malloc'd memory containing the data; the caller
859 is responsible for freeing it. Return the number of bytes successfully
863 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
864 int len, int *errnop)
870 int buffer_allocated;
872 unsigned int nbytes_read = 0;
876 /* Small for testing. */
877 buffer_allocated = 4;
878 buffer = (char *) xmalloc (buffer_allocated);
883 tlen = MIN (len, 4 - (memaddr & 3));
884 offset = memaddr & 3;
886 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
889 /* The transfer request might have crossed the boundary to an
890 unallocated region of memory. Retry the transfer, requesting
894 errcode = target_read_memory (memaddr, buf, 1);
899 if (bufptr - buffer + tlen > buffer_allocated)
903 bytes = bufptr - buffer;
904 buffer_allocated *= 2;
905 buffer = (char *) xrealloc (buffer, buffer_allocated);
906 bufptr = buffer + bytes;
909 for (i = 0; i < tlen; i++)
911 *bufptr++ = buf[i + offset];
912 if (buf[i + offset] == '\000')
914 nbytes_read += i + 1;
924 string->reset (buffer);
930 struct target_section_table *
931 target_get_section_table (struct target_ops *target)
933 return target->get_section_table ();
936 /* Find a section containing ADDR. */
938 struct target_section *
939 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
941 struct target_section_table *table = target_get_section_table (target);
942 struct target_section *secp;
947 for (secp = table->sections; secp < table->sections_end; secp++)
949 if (addr >= secp->addr && addr < secp->endaddr)
956 /* Helper for the memory xfer routines. Checks the attributes of the
957 memory region of MEMADDR against the read or write being attempted.
958 If the access is permitted returns true, otherwise returns false.
959 REGION_P is an optional output parameter. If not-NULL, it is
960 filled with a pointer to the memory region of MEMADDR. REG_LEN
961 returns LEN trimmed to the end of the region. This is how much the
962 caller can continue requesting, if the access is permitted. A
963 single xfer request must not straddle memory region boundaries. */
966 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
967 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
968 struct mem_region **region_p)
970 struct mem_region *region;
972 region = lookup_mem_region (memaddr);
974 if (region_p != NULL)
977 switch (region->attrib.mode)
980 if (writebuf != NULL)
990 /* We only support writing to flash during "load" for now. */
991 if (writebuf != NULL)
992 error (_("Writing to flash memory forbidden in this context"));
999 /* region->hi == 0 means there's no upper bound. */
1000 if (memaddr + len < region->hi || region->hi == 0)
1003 *reg_len = region->hi - memaddr;
1008 /* Read memory from more than one valid target. A core file, for
1009 instance, could have some of memory but delegate other bits to
1010 the target below it. So, we must manually try all targets. */
1012 enum target_xfer_status
1013 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1014 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1015 ULONGEST *xfered_len)
1017 enum target_xfer_status res;
1021 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
1022 readbuf, writebuf, memaddr, len,
1024 if (res == TARGET_XFER_OK)
1027 /* Stop if the target reports that the memory is not available. */
1028 if (res == TARGET_XFER_UNAVAILABLE)
1031 /* We want to continue past core files to executables, but not
1032 past a running target's memory. */
1033 if (ops->has_all_memory ())
1038 while (ops != NULL);
1040 /* The cache works at the raw memory level. Make sure the cache
1041 gets updated with raw contents no matter what kind of memory
1042 object was originally being written. Note we do write-through
1043 first, so that if it fails, we don't write to the cache contents
1044 that never made it to the target. */
1045 if (writebuf != NULL
1046 && !ptid_equal (inferior_ptid, null_ptid)
1047 && target_dcache_init_p ()
1048 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1050 DCACHE *dcache = target_dcache_get ();
1052 /* Note that writing to an area of memory which wasn't present
1053 in the cache doesn't cause it to be loaded in. */
1054 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1060 /* Perform a partial memory transfer.
1061 For docs see target.h, to_xfer_partial. */
1063 static enum target_xfer_status
1064 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1065 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1066 ULONGEST len, ULONGEST *xfered_len)
1068 enum target_xfer_status res;
1070 struct mem_region *region;
1071 struct inferior *inf;
1073 /* For accesses to unmapped overlay sections, read directly from
1074 files. Must do this first, as MEMADDR may need adjustment. */
1075 if (readbuf != NULL && overlay_debugging)
1077 struct obj_section *section = find_pc_overlay (memaddr);
1079 if (pc_in_unmapped_range (memaddr, section))
1081 struct target_section_table *table
1082 = target_get_section_table (ops);
1083 const char *section_name = section->the_bfd_section->name;
1085 memaddr = overlay_mapped_address (memaddr, section);
1086 return section_table_xfer_memory_partial (readbuf, writebuf,
1087 memaddr, len, xfered_len,
1089 table->sections_end,
1094 /* Try the executable files, if "trust-readonly-sections" is set. */
1095 if (readbuf != NULL && trust_readonly)
1097 struct target_section *secp;
1098 struct target_section_table *table;
1100 secp = target_section_by_addr (ops, memaddr);
1102 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1103 secp->the_bfd_section)
1106 table = target_get_section_table (ops);
1107 return section_table_xfer_memory_partial (readbuf, writebuf,
1108 memaddr, len, xfered_len,
1110 table->sections_end,
1115 /* Try GDB's internal data cache. */
1117 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, ®_len,
1119 return TARGET_XFER_E_IO;
1121 if (!ptid_equal (inferior_ptid, null_ptid))
1122 inf = find_inferior_ptid (inferior_ptid);
1128 /* The dcache reads whole cache lines; that doesn't play well
1129 with reading from a trace buffer, because reading outside of
1130 the collected memory range fails. */
1131 && get_traceframe_number () == -1
1132 && (region->attrib.cache
1133 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1134 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1136 DCACHE *dcache = target_dcache_get_or_init ();
1138 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1139 reg_len, xfered_len);
1142 /* If none of those methods found the memory we wanted, fall back
1143 to a target partial transfer. Normally a single call to
1144 to_xfer_partial is enough; if it doesn't recognize an object
1145 it will call the to_xfer_partial of the next target down.
1146 But for memory this won't do. Memory is the only target
1147 object which can be read from more than one valid target.
1148 A core file, for instance, could have some of memory but
1149 delegate other bits to the target below it. So, we must
1150 manually try all targets. */
1152 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1155 /* If we still haven't got anything, return the last error. We
1160 /* Perform a partial memory transfer. For docs see target.h,
1163 static enum target_xfer_status
1164 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1165 gdb_byte *readbuf, const gdb_byte *writebuf,
1166 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1168 enum target_xfer_status res;
1170 /* Zero length requests are ok and require no work. */
1172 return TARGET_XFER_EOF;
1174 memaddr = address_significant (target_gdbarch (), memaddr);
1176 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1177 breakpoint insns, thus hiding out from higher layers whether
1178 there are software breakpoints inserted in the code stream. */
1179 if (readbuf != NULL)
1181 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1184 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1185 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1189 /* A large write request is likely to be partially satisfied
1190 by memory_xfer_partial_1. We will continually malloc
1191 and free a copy of the entire write request for breakpoint
1192 shadow handling even though we only end up writing a small
1193 subset of it. Cap writes to a limit specified by the target
1194 to mitigate this. */
1195 len = std::min (ops->get_memory_xfer_limit (), len);
1197 gdb::byte_vector buf (writebuf, writebuf + len);
1198 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1199 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1206 scoped_restore_tmpl<int>
1207 make_scoped_restore_show_memory_breakpoints (int show)
1209 return make_scoped_restore (&show_memory_breakpoints, show);
1212 /* For docs see target.h, to_xfer_partial. */
1214 enum target_xfer_status
1215 target_xfer_partial (struct target_ops *ops,
1216 enum target_object object, const char *annex,
1217 gdb_byte *readbuf, const gdb_byte *writebuf,
1218 ULONGEST offset, ULONGEST len,
1219 ULONGEST *xfered_len)
1221 enum target_xfer_status retval;
1223 /* Transfer is done when LEN is zero. */
1225 return TARGET_XFER_EOF;
1227 if (writebuf && !may_write_memory)
1228 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1229 core_addr_to_string_nz (offset), plongest (len));
1233 /* If this is a memory transfer, let the memory-specific code
1234 have a look at it instead. Memory transfers are more
1236 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1237 || object == TARGET_OBJECT_CODE_MEMORY)
1238 retval = memory_xfer_partial (ops, object, readbuf,
1239 writebuf, offset, len, xfered_len);
1240 else if (object == TARGET_OBJECT_RAW_MEMORY)
1242 /* Skip/avoid accessing the target if the memory region
1243 attributes block the access. Check this here instead of in
1244 raw_memory_xfer_partial as otherwise we'd end up checking
1245 this twice in the case of the memory_xfer_partial path is
1246 taken; once before checking the dcache, and another in the
1247 tail call to raw_memory_xfer_partial. */
1248 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1250 return TARGET_XFER_E_IO;
1252 /* Request the normal memory object from other layers. */
1253 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1257 retval = ops->xfer_partial (object, annex, readbuf,
1258 writebuf, offset, len, xfered_len);
1262 const unsigned char *myaddr = NULL;
1264 fprintf_unfiltered (gdb_stdlog,
1265 "%s:target_xfer_partial "
1266 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1269 (annex ? annex : "(null)"),
1270 host_address_to_string (readbuf),
1271 host_address_to_string (writebuf),
1272 core_addr_to_string_nz (offset),
1273 pulongest (len), retval,
1274 pulongest (*xfered_len));
1280 if (retval == TARGET_XFER_OK && myaddr != NULL)
1284 fputs_unfiltered (", bytes =", gdb_stdlog);
1285 for (i = 0; i < *xfered_len; i++)
1287 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1289 if (targetdebug < 2 && i > 0)
1291 fprintf_unfiltered (gdb_stdlog, " ...");
1294 fprintf_unfiltered (gdb_stdlog, "\n");
1297 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1301 fputc_unfiltered ('\n', gdb_stdlog);
1304 /* Check implementations of to_xfer_partial update *XFERED_LEN
1305 properly. Do assertion after printing debug messages, so that we
1306 can find more clues on assertion failure from debugging messages. */
1307 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1308 gdb_assert (*xfered_len > 0);
1313 /* Read LEN bytes of target memory at address MEMADDR, placing the
1314 results in GDB's memory at MYADDR. Returns either 0 for success or
1315 -1 if any error occurs.
1317 If an error occurs, no guarantee is made about the contents of the data at
1318 MYADDR. In particular, the caller should not depend upon partial reads
1319 filling the buffer with good data. There is no way for the caller to know
1320 how much good data might have been transfered anyway. Callers that can
1321 deal with partial reads should call target_read (which will retry until
1322 it makes no progress, and then return how much was transferred). */
1325 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1327 if (target_read (target_stack, TARGET_OBJECT_MEMORY, NULL,
1328 myaddr, memaddr, len) == len)
1334 /* See target/target.h. */
1337 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1342 r = target_read_memory (memaddr, buf, sizeof buf);
1345 *result = extract_unsigned_integer (buf, sizeof buf,
1346 gdbarch_byte_order (target_gdbarch ()));
1350 /* Like target_read_memory, but specify explicitly that this is a read
1351 from the target's raw memory. That is, this read bypasses the
1352 dcache, breakpoint shadowing, etc. */
1355 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1357 if (target_read (target_stack, TARGET_OBJECT_RAW_MEMORY, NULL,
1358 myaddr, memaddr, len) == len)
1364 /* Like target_read_memory, but specify explicitly that this is a read from
1365 the target's stack. This may trigger different cache behavior. */
1368 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1370 if (target_read (target_stack, TARGET_OBJECT_STACK_MEMORY, NULL,
1371 myaddr, memaddr, len) == len)
1377 /* Like target_read_memory, but specify explicitly that this is a read from
1378 the target's code. This may trigger different cache behavior. */
1381 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1383 if (target_read (target_stack, TARGET_OBJECT_CODE_MEMORY, NULL,
1384 myaddr, memaddr, len) == len)
1390 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1391 Returns either 0 for success or -1 if any error occurs. If an
1392 error occurs, no guarantee is made about how much data got written.
1393 Callers that can deal with partial writes should call
1397 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1399 if (target_write (target_stack, TARGET_OBJECT_MEMORY, NULL,
1400 myaddr, memaddr, len) == len)
1406 /* Write LEN bytes from MYADDR to target raw memory at address
1407 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1408 If an error occurs, no guarantee is made about how much data got
1409 written. Callers that can deal with partial writes should call
1413 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1415 if (target_write (target_stack, TARGET_OBJECT_RAW_MEMORY, NULL,
1416 myaddr, memaddr, len) == len)
1422 /* Fetch the target's memory map. */
1424 std::vector<mem_region>
1425 target_memory_map (void)
1427 std::vector<mem_region> result = target_stack->memory_map ();
1428 if (result.empty ())
1431 std::sort (result.begin (), result.end ());
1433 /* Check that regions do not overlap. Simultaneously assign
1434 a numbering for the "mem" commands to use to refer to
1436 mem_region *last_one = NULL;
1437 for (size_t ix = 0; ix < result.size (); ix++)
1439 mem_region *this_one = &result[ix];
1440 this_one->number = ix;
1442 if (last_one != NULL && last_one->hi > this_one->lo)
1444 warning (_("Overlapping regions in memory map: ignoring"));
1445 return std::vector<mem_region> ();
1448 last_one = this_one;
1455 target_flash_erase (ULONGEST address, LONGEST length)
1457 target_stack->flash_erase (address, length);
1461 target_flash_done (void)
1463 target_stack->flash_done ();
1467 show_trust_readonly (struct ui_file *file, int from_tty,
1468 struct cmd_list_element *c, const char *value)
1470 fprintf_filtered (file,
1471 _("Mode for reading from readonly sections is %s.\n"),
1475 /* Target vector read/write partial wrapper functions. */
1477 static enum target_xfer_status
1478 target_read_partial (struct target_ops *ops,
1479 enum target_object object,
1480 const char *annex, gdb_byte *buf,
1481 ULONGEST offset, ULONGEST len,
1482 ULONGEST *xfered_len)
1484 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1488 static enum target_xfer_status
1489 target_write_partial (struct target_ops *ops,
1490 enum target_object object,
1491 const char *annex, const gdb_byte *buf,
1492 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1494 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1498 /* Wrappers to perform the full transfer. */
1500 /* For docs on target_read see target.h. */
1503 target_read (struct target_ops *ops,
1504 enum target_object object,
1505 const char *annex, gdb_byte *buf,
1506 ULONGEST offset, LONGEST len)
1508 LONGEST xfered_total = 0;
1511 /* If we are reading from a memory object, find the length of an addressable
1512 unit for that architecture. */
1513 if (object == TARGET_OBJECT_MEMORY
1514 || object == TARGET_OBJECT_STACK_MEMORY
1515 || object == TARGET_OBJECT_CODE_MEMORY
1516 || object == TARGET_OBJECT_RAW_MEMORY)
1517 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1519 while (xfered_total < len)
1521 ULONGEST xfered_partial;
1522 enum target_xfer_status status;
1524 status = target_read_partial (ops, object, annex,
1525 buf + xfered_total * unit_size,
1526 offset + xfered_total, len - xfered_total,
1529 /* Call an observer, notifying them of the xfer progress? */
1530 if (status == TARGET_XFER_EOF)
1531 return xfered_total;
1532 else if (status == TARGET_XFER_OK)
1534 xfered_total += xfered_partial;
1538 return TARGET_XFER_E_IO;
1544 /* Assuming that the entire [begin, end) range of memory cannot be
1545 read, try to read whatever subrange is possible to read.
1547 The function returns, in RESULT, either zero or one memory block.
1548 If there's a readable subrange at the beginning, it is completely
1549 read and returned. Any further readable subrange will not be read.
1550 Otherwise, if there's a readable subrange at the end, it will be
1551 completely read and returned. Any readable subranges before it
1552 (obviously, not starting at the beginning), will be ignored. In
1553 other cases -- either no readable subrange, or readable subrange(s)
1554 that is neither at the beginning, or end, nothing is returned.
1556 The purpose of this function is to handle a read across a boundary
1557 of accessible memory in a case when memory map is not available.
1558 The above restrictions are fine for this case, but will give
1559 incorrect results if the memory is 'patchy'. However, supporting
1560 'patchy' memory would require trying to read every single byte,
1561 and it seems unacceptable solution. Explicit memory map is
1562 recommended for this case -- and target_read_memory_robust will
1563 take care of reading multiple ranges then. */
1566 read_whatever_is_readable (struct target_ops *ops,
1567 const ULONGEST begin, const ULONGEST end,
1569 std::vector<memory_read_result> *result)
1571 ULONGEST current_begin = begin;
1572 ULONGEST current_end = end;
1574 ULONGEST xfered_len;
1576 /* If we previously failed to read 1 byte, nothing can be done here. */
1577 if (end - begin <= 1)
1580 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1582 /* Check that either first or the last byte is readable, and give up
1583 if not. This heuristic is meant to permit reading accessible memory
1584 at the boundary of accessible region. */
1585 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1586 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1591 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1592 buf.get () + (end - begin) - 1, end - 1, 1,
1593 &xfered_len) == TARGET_XFER_OK)
1601 /* Loop invariant is that the [current_begin, current_end) was previously
1602 found to be not readable as a whole.
1604 Note loop condition -- if the range has 1 byte, we can't divide the range
1605 so there's no point trying further. */
1606 while (current_end - current_begin > 1)
1608 ULONGEST first_half_begin, first_half_end;
1609 ULONGEST second_half_begin, second_half_end;
1611 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1615 first_half_begin = current_begin;
1616 first_half_end = middle;
1617 second_half_begin = middle;
1618 second_half_end = current_end;
1622 first_half_begin = middle;
1623 first_half_end = current_end;
1624 second_half_begin = current_begin;
1625 second_half_end = middle;
1628 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1629 buf.get () + (first_half_begin - begin) * unit_size,
1631 first_half_end - first_half_begin);
1633 if (xfer == first_half_end - first_half_begin)
1635 /* This half reads up fine. So, the error must be in the
1637 current_begin = second_half_begin;
1638 current_end = second_half_end;
1642 /* This half is not readable. Because we've tried one byte, we
1643 know some part of this half if actually readable. Go to the next
1644 iteration to divide again and try to read.
1646 We don't handle the other half, because this function only tries
1647 to read a single readable subrange. */
1648 current_begin = first_half_begin;
1649 current_end = first_half_end;
1655 /* The [begin, current_begin) range has been read. */
1656 result->emplace_back (begin, current_end, std::move (buf));
1660 /* The [current_end, end) range has been read. */
1661 LONGEST region_len = end - current_end;
1663 gdb::unique_xmalloc_ptr<gdb_byte> data
1664 ((gdb_byte *) xmalloc (region_len * unit_size));
1665 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1666 region_len * unit_size);
1667 result->emplace_back (current_end, end, std::move (data));
1671 std::vector<memory_read_result>
1672 read_memory_robust (struct target_ops *ops,
1673 const ULONGEST offset, const LONGEST len)
1675 std::vector<memory_read_result> result;
1676 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1678 LONGEST xfered_total = 0;
1679 while (xfered_total < len)
1681 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1684 /* If there is no explicit region, a fake one should be created. */
1685 gdb_assert (region);
1687 if (region->hi == 0)
1688 region_len = len - xfered_total;
1690 region_len = region->hi - offset;
1692 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1694 /* Cannot read this region. Note that we can end up here only
1695 if the region is explicitly marked inaccessible, or
1696 'inaccessible-by-default' is in effect. */
1697 xfered_total += region_len;
1701 LONGEST to_read = std::min (len - xfered_total, region_len);
1702 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1703 ((gdb_byte *) xmalloc (to_read * unit_size));
1705 LONGEST xfered_partial =
1706 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1707 offset + xfered_total, to_read);
1708 /* Call an observer, notifying them of the xfer progress? */
1709 if (xfered_partial <= 0)
1711 /* Got an error reading full chunk. See if maybe we can read
1713 read_whatever_is_readable (ops, offset + xfered_total,
1714 offset + xfered_total + to_read,
1715 unit_size, &result);
1716 xfered_total += to_read;
1720 result.emplace_back (offset + xfered_total,
1721 offset + xfered_total + xfered_partial,
1722 std::move (buffer));
1723 xfered_total += xfered_partial;
1733 /* An alternative to target_write with progress callbacks. */
1736 target_write_with_progress (struct target_ops *ops,
1737 enum target_object object,
1738 const char *annex, const gdb_byte *buf,
1739 ULONGEST offset, LONGEST len,
1740 void (*progress) (ULONGEST, void *), void *baton)
1742 LONGEST xfered_total = 0;
1745 /* If we are writing to a memory object, find the length of an addressable
1746 unit for that architecture. */
1747 if (object == TARGET_OBJECT_MEMORY
1748 || object == TARGET_OBJECT_STACK_MEMORY
1749 || object == TARGET_OBJECT_CODE_MEMORY
1750 || object == TARGET_OBJECT_RAW_MEMORY)
1751 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1753 /* Give the progress callback a chance to set up. */
1755 (*progress) (0, baton);
1757 while (xfered_total < len)
1759 ULONGEST xfered_partial;
1760 enum target_xfer_status status;
1762 status = target_write_partial (ops, object, annex,
1763 buf + xfered_total * unit_size,
1764 offset + xfered_total, len - xfered_total,
1767 if (status != TARGET_XFER_OK)
1768 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1771 (*progress) (xfered_partial, baton);
1773 xfered_total += xfered_partial;
1779 /* For docs on target_write see target.h. */
1782 target_write (struct target_ops *ops,
1783 enum target_object object,
1784 const char *annex, const gdb_byte *buf,
1785 ULONGEST offset, LONGEST len)
1787 return target_write_with_progress (ops, object, annex, buf, offset, len,
1791 /* Help for target_read_alloc and target_read_stralloc. See their comments
1794 template <typename T>
1795 gdb::optional<gdb::def_vector<T>>
1796 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1799 gdb::def_vector<T> buf;
1801 const int chunk = 4096;
1803 /* This function does not have a length parameter; it reads the
1804 entire OBJECT). Also, it doesn't support objects fetched partly
1805 from one target and partly from another (in a different stratum,
1806 e.g. a core file and an executable). Both reasons make it
1807 unsuitable for reading memory. */
1808 gdb_assert (object != TARGET_OBJECT_MEMORY);
1810 /* Start by reading up to 4K at a time. The target will throttle
1811 this number down if necessary. */
1814 ULONGEST xfered_len;
1815 enum target_xfer_status status;
1817 buf.resize (buf_pos + chunk);
1819 status = target_read_partial (ops, object, annex,
1820 (gdb_byte *) &buf[buf_pos],
1824 if (status == TARGET_XFER_EOF)
1826 /* Read all there was. */
1827 buf.resize (buf_pos);
1830 else if (status != TARGET_XFER_OK)
1832 /* An error occurred. */
1836 buf_pos += xfered_len;
1844 gdb::optional<gdb::byte_vector>
1845 target_read_alloc (struct target_ops *ops, enum target_object object,
1848 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1853 gdb::optional<gdb::char_vector>
1854 target_read_stralloc (struct target_ops *ops, enum target_object object,
1857 gdb::optional<gdb::char_vector> buf
1858 = target_read_alloc_1<char> (ops, object, annex);
1863 if (buf->back () != '\0')
1864 buf->push_back ('\0');
1866 /* Check for embedded NUL bytes; but allow trailing NULs. */
1867 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1868 it != buf->end (); it++)
1871 warning (_("target object %d, annex %s, "
1872 "contained unexpected null characters"),
1873 (int) object, annex ? annex : "(none)");
1880 /* Memory transfer methods. */
1883 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1886 /* This method is used to read from an alternate, non-current
1887 target. This read must bypass the overlay support (as symbols
1888 don't match this target), and GDB's internal cache (wrong cache
1889 for this target). */
1890 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1892 memory_error (TARGET_XFER_E_IO, addr);
1896 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1897 int len, enum bfd_endian byte_order)
1899 gdb_byte buf[sizeof (ULONGEST)];
1901 gdb_assert (len <= sizeof (buf));
1902 get_target_memory (ops, addr, buf, len);
1903 return extract_unsigned_integer (buf, len, byte_order);
1909 target_insert_breakpoint (struct gdbarch *gdbarch,
1910 struct bp_target_info *bp_tgt)
1912 if (!may_insert_breakpoints)
1914 warning (_("May not insert breakpoints"));
1918 return target_stack->insert_breakpoint (gdbarch, bp_tgt);
1924 target_remove_breakpoint (struct gdbarch *gdbarch,
1925 struct bp_target_info *bp_tgt,
1926 enum remove_bp_reason reason)
1928 /* This is kind of a weird case to handle, but the permission might
1929 have been changed after breakpoints were inserted - in which case
1930 we should just take the user literally and assume that any
1931 breakpoints should be left in place. */
1932 if (!may_insert_breakpoints)
1934 warning (_("May not remove breakpoints"));
1938 return target_stack->remove_breakpoint (gdbarch, bp_tgt, reason);
1942 info_target_command (const char *args, int from_tty)
1944 struct target_ops *t;
1945 int has_all_mem = 0;
1947 if (symfile_objfile != NULL)
1948 printf_unfiltered (_("Symbols from \"%s\".\n"),
1949 objfile_name (symfile_objfile));
1951 for (t = target_stack; t != NULL; t = t->beneath)
1953 if (!t->has_memory ())
1956 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1959 printf_unfiltered (_("\tWhile running this, "
1960 "GDB does not access memory from...\n"));
1961 printf_unfiltered ("%s:\n", t->longname ());
1963 has_all_mem = t->has_all_memory ();
1967 /* This function is called before any new inferior is created, e.g.
1968 by running a program, attaching, or connecting to a target.
1969 It cleans up any state from previous invocations which might
1970 change between runs. This is a subset of what target_preopen
1971 resets (things which might change between targets). */
1974 target_pre_inferior (int from_tty)
1976 /* Clear out solib state. Otherwise the solib state of the previous
1977 inferior might have survived and is entirely wrong for the new
1978 target. This has been observed on GNU/Linux using glibc 2.3. How
1990 Cannot access memory at address 0xdeadbeef
1993 /* In some OSs, the shared library list is the same/global/shared
1994 across inferiors. If code is shared between processes, so are
1995 memory regions and features. */
1996 if (!gdbarch_has_global_solist (target_gdbarch ()))
1998 no_shared_libraries (NULL, from_tty);
2000 invalidate_target_mem_regions ();
2002 target_clear_description ();
2005 /* attach_flag may be set if the previous process associated with
2006 the inferior was attached to. */
2007 current_inferior ()->attach_flag = 0;
2009 current_inferior ()->highest_thread_num = 0;
2011 agent_capability_invalidate ();
2014 /* Callback for iterate_over_inferiors. Gets rid of the given
2018 dispose_inferior (struct inferior *inf, void *args)
2020 struct thread_info *thread;
2022 thread = any_thread_of_process (inf->pid);
2025 switch_to_thread (thread->ptid);
2027 /* Core inferiors actually should be detached, not killed. */
2028 if (target_has_execution)
2031 target_detach (inf, 0);
2037 /* This is to be called by the open routine before it does
2041 target_preopen (int from_tty)
2045 if (have_inferiors ())
2048 || !have_live_inferiors ()
2049 || query (_("A program is being debugged already. Kill it? ")))
2050 iterate_over_inferiors (dispose_inferior, NULL);
2052 error (_("Program not killed."));
2055 /* Calling target_kill may remove the target from the stack. But if
2056 it doesn't (which seems like a win for UDI), remove it now. */
2057 /* Leave the exec target, though. The user may be switching from a
2058 live process to a core of the same program. */
2059 pop_all_targets_above (file_stratum);
2061 target_pre_inferior (from_tty);
2067 target_detach (inferior *inf, int from_tty)
2069 /* As long as some to_detach implementations rely on the current_inferior
2070 (either directly, or indirectly, like through target_gdbarch or by
2071 reading memory), INF needs to be the current inferior. When that
2072 requirement will become no longer true, then we can remove this
2074 gdb_assert (inf == current_inferior ());
2076 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2077 /* Don't remove global breakpoints here. They're removed on
2078 disconnection from the target. */
2081 /* If we're in breakpoints-always-inserted mode, have to remove
2082 them before detaching. */
2083 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2085 prepare_for_detach ();
2087 target_stack->detach (inf, from_tty);
2091 target_disconnect (const char *args, int from_tty)
2093 /* If we're in breakpoints-always-inserted mode or if breakpoints
2094 are global across processes, we have to remove them before
2096 remove_breakpoints ();
2098 target_stack->disconnect (args, from_tty);
2101 /* See target/target.h. */
2104 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2106 return target_stack->wait (ptid, status, options);
2112 default_target_wait (struct target_ops *ops,
2113 ptid_t ptid, struct target_waitstatus *status,
2116 status->kind = TARGET_WAITKIND_IGNORE;
2117 return minus_one_ptid;
2121 target_pid_to_str (ptid_t ptid)
2123 return target_stack->pid_to_str (ptid);
2127 target_thread_name (struct thread_info *info)
2129 return target_stack->thread_name (info);
2132 struct thread_info *
2133 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2135 struct inferior *inf)
2137 return target_stack->thread_handle_to_thread_info (thread_handle,
2142 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2144 target_dcache_invalidate ();
2146 target_stack->resume (ptid, step, signal);
2148 registers_changed_ptid (ptid);
2149 /* We only set the internal executing state here. The user/frontend
2150 running state is set at a higher level. */
2151 set_executing (ptid, 1);
2152 clear_inline_frame_state (ptid);
2155 /* If true, target_commit_resume is a nop. */
2156 static int defer_target_commit_resume;
2161 target_commit_resume (void)
2163 if (defer_target_commit_resume)
2166 target_stack->commit_resume ();
2171 scoped_restore_tmpl<int>
2172 make_scoped_defer_target_commit_resume ()
2174 return make_scoped_restore (&defer_target_commit_resume, 1);
2178 target_pass_signals (int numsigs, unsigned char *pass_signals)
2180 target_stack->pass_signals (numsigs, pass_signals);
2184 target_program_signals (int numsigs, unsigned char *program_signals)
2186 target_stack->program_signals (numsigs, program_signals);
2190 default_follow_fork (struct target_ops *self, int follow_child,
2193 /* Some target returned a fork event, but did not know how to follow it. */
2194 internal_error (__FILE__, __LINE__,
2195 _("could not find a target to follow fork"));
2198 /* Look through the list of possible targets for a target that can
2202 target_follow_fork (int follow_child, int detach_fork)
2204 return target_stack->follow_fork (follow_child, detach_fork);
2207 /* Target wrapper for follow exec hook. */
2210 target_follow_exec (struct inferior *inf, char *execd_pathname)
2212 target_stack->follow_exec (inf, execd_pathname);
2216 default_mourn_inferior (struct target_ops *self)
2218 internal_error (__FILE__, __LINE__,
2219 _("could not find a target to follow mourn inferior"));
2223 target_mourn_inferior (ptid_t ptid)
2225 gdb_assert (ptid_equal (ptid, inferior_ptid));
2226 target_stack->mourn_inferior ();
2228 /* We no longer need to keep handles on any of the object files.
2229 Make sure to release them to avoid unnecessarily locking any
2230 of them while we're not actually debugging. */
2231 bfd_cache_close_all ();
2234 /* Look for a target which can describe architectural features, starting
2235 from TARGET. If we find one, return its description. */
2237 const struct target_desc *
2238 target_read_description (struct target_ops *target)
2240 return target->read_description ();
2243 /* This implements a basic search of memory, reading target memory and
2244 performing the search here (as opposed to performing the search in on the
2245 target side with, for example, gdbserver). */
2248 simple_search_memory (struct target_ops *ops,
2249 CORE_ADDR start_addr, ULONGEST search_space_len,
2250 const gdb_byte *pattern, ULONGEST pattern_len,
2251 CORE_ADDR *found_addrp)
2253 /* NOTE: also defined in find.c testcase. */
2254 #define SEARCH_CHUNK_SIZE 16000
2255 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2256 /* Buffer to hold memory contents for searching. */
2257 unsigned search_buf_size;
2259 search_buf_size = chunk_size + pattern_len - 1;
2261 /* No point in trying to allocate a buffer larger than the search space. */
2262 if (search_space_len < search_buf_size)
2263 search_buf_size = search_space_len;
2265 gdb::byte_vector search_buf (search_buf_size);
2267 /* Prime the search buffer. */
2269 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2270 search_buf.data (), start_addr, search_buf_size)
2273 warning (_("Unable to access %s bytes of target "
2274 "memory at %s, halting search."),
2275 pulongest (search_buf_size), hex_string (start_addr));
2279 /* Perform the search.
2281 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2282 When we've scanned N bytes we copy the trailing bytes to the start and
2283 read in another N bytes. */
2285 while (search_space_len >= pattern_len)
2287 gdb_byte *found_ptr;
2288 unsigned nr_search_bytes
2289 = std::min (search_space_len, (ULONGEST) search_buf_size);
2291 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2292 pattern, pattern_len);
2294 if (found_ptr != NULL)
2296 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2298 *found_addrp = found_addr;
2302 /* Not found in this chunk, skip to next chunk. */
2304 /* Don't let search_space_len wrap here, it's unsigned. */
2305 if (search_space_len >= chunk_size)
2306 search_space_len -= chunk_size;
2308 search_space_len = 0;
2310 if (search_space_len >= pattern_len)
2312 unsigned keep_len = search_buf_size - chunk_size;
2313 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2316 /* Copy the trailing part of the previous iteration to the front
2317 of the buffer for the next iteration. */
2318 gdb_assert (keep_len == pattern_len - 1);
2319 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2321 nr_to_read = std::min (search_space_len - keep_len,
2322 (ULONGEST) chunk_size);
2324 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2325 &search_buf[keep_len], read_addr,
2326 nr_to_read) != nr_to_read)
2328 warning (_("Unable to access %s bytes of target "
2329 "memory at %s, halting search."),
2330 plongest (nr_to_read),
2331 hex_string (read_addr));
2335 start_addr += chunk_size;
2344 /* Default implementation of memory-searching. */
2347 default_search_memory (struct target_ops *self,
2348 CORE_ADDR start_addr, ULONGEST search_space_len,
2349 const gdb_byte *pattern, ULONGEST pattern_len,
2350 CORE_ADDR *found_addrp)
2352 /* Start over from the top of the target stack. */
2353 return simple_search_memory (target_stack,
2354 start_addr, search_space_len,
2355 pattern, pattern_len, found_addrp);
2358 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2359 sequence of bytes in PATTERN with length PATTERN_LEN.
2361 The result is 1 if found, 0 if not found, and -1 if there was an error
2362 requiring halting of the search (e.g. memory read error).
2363 If the pattern is found the address is recorded in FOUND_ADDRP. */
2366 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2367 const gdb_byte *pattern, ULONGEST pattern_len,
2368 CORE_ADDR *found_addrp)
2370 return target_stack->search_memory (start_addr, search_space_len,
2371 pattern, pattern_len, found_addrp);
2374 /* Look through the currently pushed targets. If none of them will
2375 be able to restart the currently running process, issue an error
2379 target_require_runnable (void)
2381 struct target_ops *t;
2383 for (t = target_stack; t != NULL; t = t->beneath)
2385 /* If this target knows how to create a new program, then
2386 assume we will still be able to after killing the current
2387 one. Either killing and mourning will not pop T, or else
2388 find_default_run_target will find it again. */
2389 if (t->can_create_inferior ())
2392 /* Do not worry about targets at certain strata that can not
2393 create inferiors. Assume they will be pushed again if
2394 necessary, and continue to the process_stratum. */
2395 if (t->to_stratum > process_stratum)
2398 error (_("The \"%s\" target does not support \"run\". "
2399 "Try \"help target\" or \"continue\"."),
2403 /* This function is only called if the target is running. In that
2404 case there should have been a process_stratum target and it
2405 should either know how to create inferiors, or not... */
2406 internal_error (__FILE__, __LINE__, _("No targets found"));
2409 /* Whether GDB is allowed to fall back to the default run target for
2410 "run", "attach", etc. when no target is connected yet. */
2411 static int auto_connect_native_target = 1;
2414 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2415 struct cmd_list_element *c, const char *value)
2417 fprintf_filtered (file,
2418 _("Whether GDB may automatically connect to the "
2419 "native target is %s.\n"),
2423 /* Look through the list of possible targets for a target that can
2424 execute a run or attach command without any other data. This is
2425 used to locate the default process stratum.
2427 If DO_MESG is not NULL, the result is always valid (error() is
2428 called for errors); else, return NULL on error. */
2430 static struct target_ops *
2431 find_default_run_target (const char *do_mesg)
2433 struct target_ops *runable = NULL;
2435 if (auto_connect_native_target)
2437 struct target_ops *t;
2441 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2454 if (runable == NULL)
2457 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2468 find_attach_target (void)
2470 struct target_ops *t;
2472 /* If a target on the current stack can attach, use it. */
2473 for (t = target_stack; t != NULL; t = t->beneath)
2475 if (t->can_attach ())
2479 /* Otherwise, use the default run target for attaching. */
2481 t = find_default_run_target ("attach");
2489 find_run_target (void)
2491 struct target_ops *t;
2493 /* If a target on the current stack can run, use it. */
2494 for (t = target_stack; t != NULL; t = t->beneath)
2496 if (t->can_create_inferior ())
2500 /* Otherwise, use the default run target. */
2502 t = find_default_run_target ("run");
2508 target_ops::info_proc (const char *args, enum info_proc_what what)
2513 /* Implement the "info proc" command. */
2516 target_info_proc (const char *args, enum info_proc_what what)
2518 struct target_ops *t;
2520 /* If we're already connected to something that can get us OS
2521 related data, use it. Otherwise, try using the native
2523 t = find_target_at (process_stratum);
2525 t = find_default_run_target (NULL);
2527 for (; t != NULL; t = t->beneath)
2529 if (t->info_proc (args, what))
2532 fprintf_unfiltered (gdb_stdlog,
2533 "target_info_proc (\"%s\", %d)\n", args, what);
2543 find_default_supports_disable_randomization (struct target_ops *self)
2545 struct target_ops *t;
2547 t = find_default_run_target (NULL);
2549 return t->supports_disable_randomization ();
2554 target_supports_disable_randomization (void)
2556 return target_stack->supports_disable_randomization ();
2559 /* See target/target.h. */
2562 target_supports_multi_process (void)
2564 return target_stack->supports_multi_process ();
2569 gdb::optional<gdb::char_vector>
2570 target_get_osdata (const char *type)
2572 struct target_ops *t;
2574 /* If we're already connected to something that can get us OS
2575 related data, use it. Otherwise, try using the native
2577 t = find_target_at (process_stratum);
2579 t = find_default_run_target ("get OS data");
2584 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2587 static struct address_space *
2588 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2590 struct inferior *inf;
2592 /* Fall-back to the "main" address space of the inferior. */
2593 inf = find_inferior_ptid (ptid);
2595 if (inf == NULL || inf->aspace == NULL)
2596 internal_error (__FILE__, __LINE__,
2597 _("Can't determine the current "
2598 "address space of thread %s\n"),
2599 target_pid_to_str (ptid));
2604 /* Determine the current address space of thread PTID. */
2606 struct address_space *
2607 target_thread_address_space (ptid_t ptid)
2609 struct address_space *aspace;
2611 aspace = target_stack->thread_address_space (ptid);
2612 gdb_assert (aspace != NULL);
2618 target_ops::open (const char *, int)
2620 gdb_assert_not_reached ("target_ops::open called");
2624 target_ops::close ()
2629 target_ops::can_attach ()
2635 target_ops::attach (const char *, int)
2637 gdb_assert_not_reached ("target_ops::attach called");
2641 target_ops::can_create_inferior ()
2647 target_ops::create_inferior (const char *, const std::string &,
2650 gdb_assert_not_reached ("target_ops::create_inferior called");
2654 target_ops::can_run ()
2662 struct target_ops *t;
2664 for (t = target_stack; t != NULL; t = t->beneath)
2673 /* Target file operations. */
2675 static struct target_ops *
2676 default_fileio_target (void)
2678 struct target_ops *t;
2680 /* If we're already connected to something that can perform
2681 file I/O, use it. Otherwise, try using the native target. */
2682 t = find_target_at (process_stratum);
2685 return find_default_run_target ("file I/O");
2688 /* File handle for target file operations. */
2692 /* The target on which this file is open. NULL if the target is
2693 meanwhile closed while the handle is open. */
2696 /* The file descriptor on the target. */
2699 /* Check whether this fileio_fh_t represents a closed file. */
2702 return target_fd < 0;
2706 /* Vector of currently open file handles. The value returned by
2707 target_fileio_open and passed as the FD argument to other
2708 target_fileio_* functions is an index into this vector. This
2709 vector's entries are never freed; instead, files are marked as
2710 closed, and the handle becomes available for reuse. */
2711 static std::vector<fileio_fh_t> fileio_fhandles;
2713 /* Index into fileio_fhandles of the lowest handle that might be
2714 closed. This permits handle reuse without searching the whole
2715 list each time a new file is opened. */
2716 static int lowest_closed_fd;
2718 /* Invalidate the target associated with open handles that were open
2719 on target TARG, since we're about to close (and maybe destroy) the
2720 target. The handles remain open from the client's perspective, but
2721 trying to do anything with them other than closing them will fail
2725 fileio_handles_invalidate_target (target_ops *targ)
2727 for (fileio_fh_t &fh : fileio_fhandles)
2728 if (fh.target == targ)
2732 /* Acquire a target fileio file descriptor. */
2735 acquire_fileio_fd (target_ops *target, int target_fd)
2737 /* Search for closed handles to reuse. */
2738 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2740 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2742 if (fh.is_closed ())
2746 /* Push a new handle if no closed handles were found. */
2747 if (lowest_closed_fd == fileio_fhandles.size ())
2748 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2750 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2752 /* Should no longer be marked closed. */
2753 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2755 /* Return its index, and start the next lookup at
2757 return lowest_closed_fd++;
2760 /* Release a target fileio file descriptor. */
2763 release_fileio_fd (int fd, fileio_fh_t *fh)
2766 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2769 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2771 static fileio_fh_t *
2772 fileio_fd_to_fh (int fd)
2774 return &fileio_fhandles[fd];
2778 /* Default implementations of file i/o methods. We don't want these
2779 to delegate automatically, because we need to know which target
2780 supported the method, in order to call it directly from within
2781 pread/pwrite, etc. */
2784 target_ops::fileio_open (struct inferior *inf, const char *filename,
2785 int flags, int mode, int warn_if_slow,
2788 *target_errno = FILEIO_ENOSYS;
2793 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2794 ULONGEST offset, int *target_errno)
2796 *target_errno = FILEIO_ENOSYS;
2801 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2802 ULONGEST offset, int *target_errno)
2804 *target_errno = FILEIO_ENOSYS;
2809 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2811 *target_errno = FILEIO_ENOSYS;
2816 target_ops::fileio_close (int fd, int *target_errno)
2818 *target_errno = FILEIO_ENOSYS;
2823 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2826 *target_errno = FILEIO_ENOSYS;
2830 gdb::optional<std::string>
2831 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2834 *target_errno = FILEIO_ENOSYS;
2838 /* Helper for target_fileio_open and
2839 target_fileio_open_warn_if_slow. */
2842 target_fileio_open_1 (struct inferior *inf, const char *filename,
2843 int flags, int mode, int warn_if_slow,
2846 struct target_ops *t;
2848 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2850 int fd = t->fileio_open (inf, filename, flags, mode,
2851 warn_if_slow, target_errno);
2853 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2859 fd = acquire_fileio_fd (t, fd);
2862 fprintf_unfiltered (gdb_stdlog,
2863 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2865 inf == NULL ? 0 : inf->num,
2866 filename, flags, mode,
2868 fd != -1 ? 0 : *target_errno);
2872 *target_errno = FILEIO_ENOSYS;
2879 target_fileio_open (struct inferior *inf, const char *filename,
2880 int flags, int mode, int *target_errno)
2882 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2889 target_fileio_open_warn_if_slow (struct inferior *inf,
2890 const char *filename,
2891 int flags, int mode, int *target_errno)
2893 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2900 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2901 ULONGEST offset, int *target_errno)
2903 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2906 if (fh->is_closed ())
2907 *target_errno = EBADF;
2908 else if (fh->target == NULL)
2909 *target_errno = EIO;
2911 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2912 len, offset, target_errno);
2915 fprintf_unfiltered (gdb_stdlog,
2916 "target_fileio_pwrite (%d,...,%d,%s) "
2918 fd, len, pulongest (offset),
2919 ret, ret != -1 ? 0 : *target_errno);
2926 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2927 ULONGEST offset, int *target_errno)
2929 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2932 if (fh->is_closed ())
2933 *target_errno = EBADF;
2934 else if (fh->target == NULL)
2935 *target_errno = EIO;
2937 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2938 len, offset, target_errno);
2941 fprintf_unfiltered (gdb_stdlog,
2942 "target_fileio_pread (%d,...,%d,%s) "
2944 fd, len, pulongest (offset),
2945 ret, ret != -1 ? 0 : *target_errno);
2952 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2954 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2957 if (fh->is_closed ())
2958 *target_errno = EBADF;
2959 else if (fh->target == NULL)
2960 *target_errno = EIO;
2962 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2965 fprintf_unfiltered (gdb_stdlog,
2966 "target_fileio_fstat (%d) = %d (%d)\n",
2967 fd, ret, ret != -1 ? 0 : *target_errno);
2974 target_fileio_close (int fd, int *target_errno)
2976 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2979 if (fh->is_closed ())
2980 *target_errno = EBADF;
2983 if (fh->target != NULL)
2984 ret = fh->target->fileio_close (fh->target_fd,
2988 release_fileio_fd (fd, fh);
2992 fprintf_unfiltered (gdb_stdlog,
2993 "target_fileio_close (%d) = %d (%d)\n",
2994 fd, ret, ret != -1 ? 0 : *target_errno);
3001 target_fileio_unlink (struct inferior *inf, const char *filename,
3004 struct target_ops *t;
3006 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3008 int ret = t->fileio_unlink (inf, filename, target_errno);
3010 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
3014 fprintf_unfiltered (gdb_stdlog,
3015 "target_fileio_unlink (%d,%s)"
3017 inf == NULL ? 0 : inf->num, filename,
3018 ret, ret != -1 ? 0 : *target_errno);
3022 *target_errno = FILEIO_ENOSYS;
3028 gdb::optional<std::string>
3029 target_fileio_readlink (struct inferior *inf, const char *filename,
3032 struct target_ops *t;
3034 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3036 gdb::optional<std::string> ret
3037 = t->fileio_readlink (inf, filename, target_errno);
3039 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
3043 fprintf_unfiltered (gdb_stdlog,
3044 "target_fileio_readlink (%d,%s)"
3046 inf == NULL ? 0 : inf->num,
3047 filename, ret ? ret->c_str () : "(nil)",
3048 ret ? 0 : *target_errno);
3052 *target_errno = FILEIO_ENOSYS;
3056 /* Like scoped_fd, but specific to target fileio. */
3058 class scoped_target_fd
3061 explicit scoped_target_fd (int fd) noexcept
3066 ~scoped_target_fd ()
3072 target_fileio_close (m_fd, &target_errno);
3076 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3078 int get () const noexcept
3087 /* Read target file FILENAME, in the filesystem as seen by INF. If
3088 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3089 remote targets, the remote stub). Store the result in *BUF_P and
3090 return the size of the transferred data. PADDING additional bytes
3091 are available in *BUF_P. This is a helper function for
3092 target_fileio_read_alloc; see the declaration of that function for
3093 more information. */
3096 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3097 gdb_byte **buf_p, int padding)
3099 size_t buf_alloc, buf_pos;
3104 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3105 0700, &target_errno));
3106 if (fd.get () == -1)
3109 /* Start by reading up to 4K at a time. The target will throttle
3110 this number down if necessary. */
3112 buf = (gdb_byte *) xmalloc (buf_alloc);
3116 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3117 buf_alloc - buf_pos - padding, buf_pos,
3121 /* An error occurred. */
3127 /* Read all there was. */
3137 /* If the buffer is filling up, expand it. */
3138 if (buf_alloc < buf_pos * 2)
3141 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3151 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3154 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3159 gdb::unique_xmalloc_ptr<char>
3160 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3164 LONGEST i, transferred;
3166 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3167 bufstr = (char *) buffer;
3169 if (transferred < 0)
3170 return gdb::unique_xmalloc_ptr<char> (nullptr);
3172 if (transferred == 0)
3173 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3175 bufstr[transferred] = 0;
3177 /* Check for embedded NUL bytes; but allow trailing NULs. */
3178 for (i = strlen (bufstr); i < transferred; i++)
3181 warning (_("target file %s "
3182 "contained unexpected null characters"),
3187 return gdb::unique_xmalloc_ptr<char> (bufstr);
3192 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3193 CORE_ADDR addr, int len)
3195 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3199 default_watchpoint_addr_within_range (struct target_ops *target,
3201 CORE_ADDR start, int length)
3203 return addr >= start && addr < start + length;
3206 static struct gdbarch *
3207 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3209 inferior *inf = find_inferior_ptid (ptid);
3210 gdb_assert (inf != NULL);
3211 return inf->gdbarch;
3215 * Find the next target down the stack from the specified target.
3219 find_target_beneath (struct target_ops *t)
3227 find_target_at (enum strata stratum)
3229 struct target_ops *t;
3231 for (t = target_stack; t != NULL; t = t->beneath)
3232 if (t->to_stratum == stratum)
3243 target_announce_detach (int from_tty)
3246 const char *exec_file;
3251 exec_file = get_exec_file (0);
3252 if (exec_file == NULL)
3255 pid = ptid_get_pid (inferior_ptid);
3256 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3257 target_pid_to_str (pid_to_ptid (pid)));
3258 gdb_flush (gdb_stdout);
3261 /* The inferior process has died. Long live the inferior! */
3264 generic_mourn_inferior (void)
3268 ptid = inferior_ptid;
3269 inferior_ptid = null_ptid;
3271 /* Mark breakpoints uninserted in case something tries to delete a
3272 breakpoint while we delete the inferior's threads (which would
3273 fail, since the inferior is long gone). */
3274 mark_breakpoints_out ();
3276 if (!ptid_equal (ptid, null_ptid))
3278 int pid = ptid_get_pid (ptid);
3279 exit_inferior (pid);
3282 /* Note this wipes step-resume breakpoints, so needs to be done
3283 after exit_inferior, which ends up referencing the step-resume
3284 breakpoints through clear_thread_inferior_resources. */
3285 breakpoint_init_inferior (inf_exited);
3287 registers_changed ();
3289 reopen_exec_file ();
3290 reinit_frame_cache ();
3292 if (deprecated_detach_hook)
3293 deprecated_detach_hook ();
3296 /* Convert a normal process ID to a string. Returns the string in a
3300 normal_pid_to_str (ptid_t ptid)
3302 static char buf[32];
3304 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3309 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3311 return normal_pid_to_str (ptid);
3314 /* Error-catcher for target_find_memory_regions. */
3316 dummy_find_memory_regions (struct target_ops *self,
3317 find_memory_region_ftype ignore1, void *ignore2)
3319 error (_("Command not implemented for this target."));
3323 /* Error-catcher for target_make_corefile_notes. */
3325 dummy_make_corefile_notes (struct target_ops *self,
3326 bfd *ignore1, int *ignore2)
3328 error (_("Command not implemented for this target."));
3332 #include "target-delegates.c"
3335 dummy_target::dummy_target ()
3337 to_stratum = dummy_stratum;
3341 dummy_target::shortname ()
3347 dummy_target::longname ()
3353 dummy_target::doc ()
3358 debug_target::debug_target ()
3360 to_stratum = debug_stratum;
3364 debug_target::shortname ()
3366 return beneath->shortname ();
3370 debug_target::longname ()
3372 return beneath->longname ();
3376 debug_target::doc ()
3378 return beneath->doc ();
3384 target_close (struct target_ops *targ)
3386 gdb_assert (!target_is_pushed (targ));
3388 fileio_handles_invalidate_target (targ);
3393 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3397 target_thread_alive (ptid_t ptid)
3399 return target_stack->thread_alive (ptid);
3403 target_update_thread_list (void)
3405 target_stack->update_thread_list ();
3409 target_stop (ptid_t ptid)
3413 warning (_("May not interrupt or stop the target, ignoring attempt"));
3417 target_stack->stop (ptid);
3425 warning (_("May not interrupt or stop the target, ignoring attempt"));
3429 target_stack->interrupt ();
3435 target_pass_ctrlc (void)
3437 target_stack->pass_ctrlc ();
3443 default_target_pass_ctrlc (struct target_ops *ops)
3445 target_interrupt ();
3448 /* See target/target.h. */
3451 target_stop_and_wait (ptid_t ptid)
3453 struct target_waitstatus status;
3454 int was_non_stop = non_stop;
3459 memset (&status, 0, sizeof (status));
3460 target_wait (ptid, &status, 0);
3462 non_stop = was_non_stop;
3465 /* See target/target.h. */
3468 target_continue_no_signal (ptid_t ptid)
3470 target_resume (ptid, 0, GDB_SIGNAL_0);
3473 /* See target/target.h. */
3476 target_continue (ptid_t ptid, enum gdb_signal signal)
3478 target_resume (ptid, 0, signal);
3481 /* Concatenate ELEM to LIST, a comma separate list, and return the
3482 result. The LIST incoming argument is released. */
3485 str_comma_list_concat_elem (char *list, const char *elem)
3488 return xstrdup (elem);
3490 return reconcat (list, list, ", ", elem, (char *) NULL);
3493 /* Helper for target_options_to_string. If OPT is present in
3494 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3495 Returns the new resulting string. OPT is removed from
3499 do_option (int *target_options, char *ret,
3500 int opt, const char *opt_str)
3502 if ((*target_options & opt) != 0)
3504 ret = str_comma_list_concat_elem (ret, opt_str);
3505 *target_options &= ~opt;
3512 target_options_to_string (int target_options)
3516 #define DO_TARG_OPTION(OPT) \
3517 ret = do_option (&target_options, ret, OPT, #OPT)
3519 DO_TARG_OPTION (TARGET_WNOHANG);
3521 if (target_options != 0)
3522 ret = str_comma_list_concat_elem (ret, "unknown???");
3530 target_fetch_registers (struct regcache *regcache, int regno)
3532 target_stack->fetch_registers (regcache, regno);
3534 regcache->debug_print_register ("target_fetch_registers", regno);
3538 target_store_registers (struct regcache *regcache, int regno)
3540 if (!may_write_registers)
3541 error (_("Writing to registers is not allowed (regno %d)"), regno);
3543 target_stack->store_registers (regcache, regno);
3546 regcache->debug_print_register ("target_store_registers", regno);
3551 target_core_of_thread (ptid_t ptid)
3553 return target_stack->core_of_thread (ptid);
3557 simple_verify_memory (struct target_ops *ops,
3558 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3560 LONGEST total_xfered = 0;
3562 while (total_xfered < size)
3564 ULONGEST xfered_len;
3565 enum target_xfer_status status;
3567 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3569 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3570 buf, NULL, lma + total_xfered, howmuch,
3572 if (status == TARGET_XFER_OK
3573 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3575 total_xfered += xfered_len;
3584 /* Default implementation of memory verification. */
3587 default_verify_memory (struct target_ops *self,
3588 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3590 /* Start over from the top of the target stack. */
3591 return simple_verify_memory (target_stack,
3592 data, memaddr, size);
3596 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3598 return target_stack->verify_memory (data, memaddr, size);
3601 /* The documentation for this function is in its prototype declaration in
3605 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3606 enum target_hw_bp_type rw)
3608 return target_stack->insert_mask_watchpoint (addr, mask, rw);
3611 /* The documentation for this function is in its prototype declaration in
3615 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3616 enum target_hw_bp_type rw)
3618 return target_stack->remove_mask_watchpoint (addr, mask, rw);
3621 /* The documentation for this function is in its prototype declaration
3625 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3627 return target_stack->masked_watch_num_registers (addr, mask);
3630 /* The documentation for this function is in its prototype declaration
3634 target_ranged_break_num_registers (void)
3636 return target_stack->ranged_break_num_registers ();
3641 struct btrace_target_info *
3642 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3644 return target_stack->enable_btrace (ptid, conf);
3650 target_disable_btrace (struct btrace_target_info *btinfo)
3652 target_stack->disable_btrace (btinfo);
3658 target_teardown_btrace (struct btrace_target_info *btinfo)
3660 target_stack->teardown_btrace (btinfo);
3666 target_read_btrace (struct btrace_data *btrace,
3667 struct btrace_target_info *btinfo,
3668 enum btrace_read_type type)
3670 return target_stack->read_btrace (btrace, btinfo, type);
3675 const struct btrace_config *
3676 target_btrace_conf (const struct btrace_target_info *btinfo)
3678 return target_stack->btrace_conf (btinfo);
3684 target_stop_recording (void)
3686 target_stack->stop_recording ();
3692 target_save_record (const char *filename)
3694 target_stack->save_record (filename);
3700 target_supports_delete_record ()
3702 return target_stack->supports_delete_record ();
3708 target_delete_record (void)
3710 target_stack->delete_record ();
3716 target_record_method (ptid_t ptid)
3718 return target_stack->record_method (ptid);
3724 target_record_is_replaying (ptid_t ptid)
3726 return target_stack->record_is_replaying (ptid);
3732 target_record_will_replay (ptid_t ptid, int dir)
3734 return target_stack->record_will_replay (ptid, dir);
3740 target_record_stop_replaying (void)
3742 target_stack->record_stop_replaying ();
3748 target_goto_record_begin (void)
3750 target_stack->goto_record_begin ();
3756 target_goto_record_end (void)
3758 target_stack->goto_record_end ();
3764 target_goto_record (ULONGEST insn)
3766 target_stack->goto_record (insn);
3772 target_insn_history (int size, gdb_disassembly_flags flags)
3774 target_stack->insn_history (size, flags);
3780 target_insn_history_from (ULONGEST from, int size,
3781 gdb_disassembly_flags flags)
3783 target_stack->insn_history_from (from, size, flags);
3789 target_insn_history_range (ULONGEST begin, ULONGEST end,
3790 gdb_disassembly_flags flags)
3792 target_stack->insn_history_range (begin, end, flags);
3798 target_call_history (int size, record_print_flags flags)
3800 target_stack->call_history (size, flags);
3806 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3808 target_stack->call_history_from (begin, size, flags);
3814 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3816 target_stack->call_history_range (begin, end, flags);
3821 const struct frame_unwind *
3822 target_get_unwinder (void)
3824 return target_stack->get_unwinder ();
3829 const struct frame_unwind *
3830 target_get_tailcall_unwinder (void)
3832 return target_stack->get_tailcall_unwinder ();
3838 target_prepare_to_generate_core (void)
3840 target_stack->prepare_to_generate_core ();
3846 target_done_generating_core (void)
3848 target_stack->done_generating_core ();
3853 static char targ_desc[] =
3854 "Names of targets and files being debugged.\nShows the entire \
3855 stack of targets currently in use (including the exec-file,\n\
3856 core-file, and process, if any), as well as the symbol file name.";
3859 default_rcmd (struct target_ops *self, const char *command,
3860 struct ui_file *output)
3862 error (_("\"monitor\" command not supported by this target."));
3866 do_monitor_command (const char *cmd, int from_tty)
3868 target_rcmd (cmd, gdb_stdtarg);
3871 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3875 flash_erase_command (const char *cmd, int from_tty)
3877 /* Used to communicate termination of flash operations to the target. */
3878 bool found_flash_region = false;
3879 struct gdbarch *gdbarch = target_gdbarch ();
3881 std::vector<mem_region> mem_regions = target_memory_map ();
3883 /* Iterate over all memory regions. */
3884 for (const mem_region &m : mem_regions)
3886 /* Is this a flash memory region? */
3887 if (m.attrib.mode == MEM_FLASH)
3889 found_flash_region = true;
3890 target_flash_erase (m.lo, m.hi - m.lo);
3892 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3894 current_uiout->message (_("Erasing flash memory region at address "));
3895 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3896 current_uiout->message (", size = ");
3897 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3898 current_uiout->message ("\n");
3902 /* Did we do any flash operations? If so, we need to finalize them. */
3903 if (found_flash_region)
3904 target_flash_done ();
3906 current_uiout->message (_("No flash memory regions found.\n"));
3909 /* Print the name of each layers of our target stack. */
3912 maintenance_print_target_stack (const char *cmd, int from_tty)
3914 struct target_ops *t;
3916 printf_filtered (_("The current target stack is:\n"));
3918 for (t = target_stack; t != NULL; t = t->beneath)
3920 if (t->to_stratum == debug_stratum)
3922 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3929 target_async (int enable)
3931 infrun_async (enable);
3932 target_stack->async (enable);
3938 target_thread_events (int enable)
3940 target_stack->thread_events (enable);
3943 /* Controls if targets can report that they can/are async. This is
3944 just for maintainers to use when debugging gdb. */
3945 int target_async_permitted = 1;
3947 /* The set command writes to this variable. If the inferior is
3948 executing, target_async_permitted is *not* updated. */
3949 static int target_async_permitted_1 = 1;
3952 maint_set_target_async_command (const char *args, int from_tty,
3953 struct cmd_list_element *c)
3955 if (have_live_inferiors ())
3957 target_async_permitted_1 = target_async_permitted;
3958 error (_("Cannot change this setting while the inferior is running."));
3961 target_async_permitted = target_async_permitted_1;
3965 maint_show_target_async_command (struct ui_file *file, int from_tty,
3966 struct cmd_list_element *c,
3969 fprintf_filtered (file,
3970 _("Controlling the inferior in "
3971 "asynchronous mode is %s.\n"), value);
3974 /* Return true if the target operates in non-stop mode even with "set
3978 target_always_non_stop_p (void)
3980 return target_stack->always_non_stop_p ();
3986 target_is_non_stop_p (void)
3989 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3990 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3991 && target_always_non_stop_p ()));
3994 /* Controls if targets can report that they always run in non-stop
3995 mode. This is just for maintainers to use when debugging gdb. */
3996 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3998 /* The set command writes to this variable. If the inferior is
3999 executing, target_non_stop_enabled is *not* updated. */
4000 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
4002 /* Implementation of "maint set target-non-stop". */
4005 maint_set_target_non_stop_command (const char *args, int from_tty,
4006 struct cmd_list_element *c)
4008 if (have_live_inferiors ())
4010 target_non_stop_enabled_1 = target_non_stop_enabled;
4011 error (_("Cannot change this setting while the inferior is running."));
4014 target_non_stop_enabled = target_non_stop_enabled_1;
4017 /* Implementation of "maint show target-non-stop". */
4020 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
4021 struct cmd_list_element *c,
4024 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4025 fprintf_filtered (file,
4026 _("Whether the target is always in non-stop mode "
4027 "is %s (currently %s).\n"), value,
4028 target_always_non_stop_p () ? "on" : "off");
4030 fprintf_filtered (file,
4031 _("Whether the target is always in non-stop mode "
4032 "is %s.\n"), value);
4035 /* Temporary copies of permission settings. */
4037 static int may_write_registers_1 = 1;
4038 static int may_write_memory_1 = 1;
4039 static int may_insert_breakpoints_1 = 1;
4040 static int may_insert_tracepoints_1 = 1;
4041 static int may_insert_fast_tracepoints_1 = 1;
4042 static int may_stop_1 = 1;
4044 /* Make the user-set values match the real values again. */
4047 update_target_permissions (void)
4049 may_write_registers_1 = may_write_registers;
4050 may_write_memory_1 = may_write_memory;
4051 may_insert_breakpoints_1 = may_insert_breakpoints;
4052 may_insert_tracepoints_1 = may_insert_tracepoints;
4053 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4054 may_stop_1 = may_stop;
4057 /* The one function handles (most of) the permission flags in the same
4061 set_target_permissions (const char *args, int from_tty,
4062 struct cmd_list_element *c)
4064 if (target_has_execution)
4066 update_target_permissions ();
4067 error (_("Cannot change this setting while the inferior is running."));
4070 /* Make the real values match the user-changed values. */
4071 may_write_registers = may_write_registers_1;
4072 may_insert_breakpoints = may_insert_breakpoints_1;
4073 may_insert_tracepoints = may_insert_tracepoints_1;
4074 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4075 may_stop = may_stop_1;
4076 update_observer_mode ();
4079 /* Set memory write permission independently of observer mode. */
4082 set_write_memory_permission (const char *args, int from_tty,
4083 struct cmd_list_element *c)
4085 /* Make the real values match the user-changed values. */
4086 may_write_memory = may_write_memory_1;
4087 update_observer_mode ();
4091 initialize_targets (void)
4093 the_dummy_target = new dummy_target ();
4094 push_target (the_dummy_target);
4096 the_debug_target = new debug_target ();
4098 add_info ("target", info_target_command, targ_desc);
4099 add_info ("files", info_target_command, targ_desc);
4101 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4102 Set target debugging."), _("\
4103 Show target debugging."), _("\
4104 When non-zero, target debugging is enabled. Higher numbers are more\n\
4108 &setdebuglist, &showdebuglist);
4110 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4111 &trust_readonly, _("\
4112 Set mode for reading from readonly sections."), _("\
4113 Show mode for reading from readonly sections."), _("\
4114 When this mode is on, memory reads from readonly sections (such as .text)\n\
4115 will be read from the object file instead of from the target. This will\n\
4116 result in significant performance improvement for remote targets."),
4118 show_trust_readonly,
4119 &setlist, &showlist);
4121 add_com ("monitor", class_obscure, do_monitor_command,
4122 _("Send a command to the remote monitor (remote targets only)."));
4124 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4125 _("Print the name of each layer of the internal target stack."),
4126 &maintenanceprintlist);
4128 add_setshow_boolean_cmd ("target-async", no_class,
4129 &target_async_permitted_1, _("\
4130 Set whether gdb controls the inferior in asynchronous mode."), _("\
4131 Show whether gdb controls the inferior in asynchronous mode."), _("\
4132 Tells gdb whether to control the inferior in asynchronous mode."),
4133 maint_set_target_async_command,
4134 maint_show_target_async_command,
4135 &maintenance_set_cmdlist,
4136 &maintenance_show_cmdlist);
4138 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4139 &target_non_stop_enabled_1, _("\
4140 Set whether gdb always controls the inferior in non-stop mode."), _("\
4141 Show whether gdb always controls the inferior in non-stop mode."), _("\
4142 Tells gdb whether to control the inferior in non-stop mode."),
4143 maint_set_target_non_stop_command,
4144 maint_show_target_non_stop_command,
4145 &maintenance_set_cmdlist,
4146 &maintenance_show_cmdlist);
4148 add_setshow_boolean_cmd ("may-write-registers", class_support,
4149 &may_write_registers_1, _("\
4150 Set permission to write into registers."), _("\
4151 Show permission to write into registers."), _("\
4152 When this permission is on, GDB may write into the target's registers.\n\
4153 Otherwise, any sort of write attempt will result in an error."),
4154 set_target_permissions, NULL,
4155 &setlist, &showlist);
4157 add_setshow_boolean_cmd ("may-write-memory", class_support,
4158 &may_write_memory_1, _("\
4159 Set permission to write into target memory."), _("\
4160 Show permission to write into target memory."), _("\
4161 When this permission is on, GDB may write into the target's memory.\n\
4162 Otherwise, any sort of write attempt will result in an error."),
4163 set_write_memory_permission, NULL,
4164 &setlist, &showlist);
4166 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4167 &may_insert_breakpoints_1, _("\
4168 Set permission to insert breakpoints in the target."), _("\
4169 Show permission to insert breakpoints in the target."), _("\
4170 When this permission is on, GDB may insert breakpoints in the program.\n\
4171 Otherwise, any sort of insertion attempt will result in an error."),
4172 set_target_permissions, NULL,
4173 &setlist, &showlist);
4175 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4176 &may_insert_tracepoints_1, _("\
4177 Set permission to insert tracepoints in the target."), _("\
4178 Show permission to insert tracepoints in the target."), _("\
4179 When this permission is on, GDB may insert tracepoints in the program.\n\
4180 Otherwise, any sort of insertion attempt will result in an error."),
4181 set_target_permissions, NULL,
4182 &setlist, &showlist);
4184 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4185 &may_insert_fast_tracepoints_1, _("\
4186 Set permission to insert fast tracepoints in the target."), _("\
4187 Show permission to insert fast tracepoints in the target."), _("\
4188 When this permission is on, GDB may insert fast tracepoints.\n\
4189 Otherwise, any sort of insertion attempt will result in an error."),
4190 set_target_permissions, NULL,
4191 &setlist, &showlist);
4193 add_setshow_boolean_cmd ("may-interrupt", class_support,
4195 Set permission to interrupt or signal the target."), _("\
4196 Show permission to interrupt or signal the target."), _("\
4197 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4198 Otherwise, any attempt to interrupt or stop will be ignored."),
4199 set_target_permissions, NULL,
4200 &setlist, &showlist);
4202 add_com ("flash-erase", no_class, flash_erase_command,
4203 _("Erase all flash memory regions."));
4205 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4206 &auto_connect_native_target, _("\
4207 Set whether GDB may automatically connect to the native target."), _("\
4208 Show whether GDB may automatically connect to the native target."), _("\
4209 When on, and GDB is not connected to a target yet, GDB\n\
4210 attempts \"run\" and other commands with the native target."),
4211 NULL, show_auto_connect_native_target,
4212 &setlist, &showlist);