1 /* Select target systems and architectures at runtime for GDB.
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
5 Contributed by Cygnus Support.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "target-dcache.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
45 #include "target-debug.h"
47 #include "event-top.h"
49 #include "byte-vector.h"
52 #include <unordered_map>
54 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
56 static void default_terminal_info (struct target_ops *, const char *, int);
58 static int default_watchpoint_addr_within_range (struct target_ops *,
59 CORE_ADDR, CORE_ADDR, int);
61 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
64 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
66 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
69 static int default_follow_fork (struct target_ops *self, int follow_child,
72 static void default_mourn_inferior (struct target_ops *self);
74 static int default_search_memory (struct target_ops *ops,
76 ULONGEST search_space_len,
77 const gdb_byte *pattern,
79 CORE_ADDR *found_addrp);
81 static int default_verify_memory (struct target_ops *self,
83 CORE_ADDR memaddr, ULONGEST size);
85 static struct address_space *default_thread_address_space
86 (struct target_ops *self, ptid_t ptid);
88 static void tcomplain (void) ATTRIBUTE_NORETURN;
90 static struct target_ops *find_default_run_target (const char *);
92 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
95 static int dummy_find_memory_regions (struct target_ops *self,
96 find_memory_region_ftype ignore1,
99 static char *dummy_make_corefile_notes (struct target_ops *self,
100 bfd *ignore1, int *ignore2);
102 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104 static enum exec_direction_kind default_execution_direction
105 (struct target_ops *self);
107 /* Mapping between target_info objects (which have address identity)
108 and corresponding open/factory function/callback. Each add_target
109 call adds one entry to this map, and registers a "target
110 TARGET_NAME" command that when invoked calls the factory registered
111 here. The target_info object is associated with the command via
112 the command's context. */
113 static std::unordered_map<const target_info *, target_open_ftype *>
116 /* The initial current target, so that there is always a semi-valid
119 static struct target_ops *the_dummy_target;
120 static struct target_ops *the_debug_target;
122 /* Top of target stack. */
123 /* The target structure we are currently using to talk to a process
124 or file or whatever "inferior" we have. */
126 struct target_ops *target_stack;
128 /* Command list for target. */
130 static struct cmd_list_element *targetlist = NULL;
132 /* Nonzero if we should trust readonly sections from the
133 executable when reading memory. */
135 static int trust_readonly = 0;
137 /* Nonzero if we should show true memory content including
138 memory breakpoint inserted by gdb. */
140 static int show_memory_breakpoints = 0;
142 /* These globals control whether GDB attempts to perform these
143 operations; they are useful for targets that need to prevent
144 inadvertant disruption, such as in non-stop mode. */
146 int may_write_registers = 1;
148 int may_write_memory = 1;
150 int may_insert_breakpoints = 1;
152 int may_insert_tracepoints = 1;
154 int may_insert_fast_tracepoints = 1;
158 /* Non-zero if we want to see trace of target level stuff. */
160 static unsigned int targetdebug = 0;
163 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
166 push_target (the_debug_target);
168 unpush_target (the_debug_target);
172 show_targetdebug (struct ui_file *file, int from_tty,
173 struct cmd_list_element *c, const char *value)
175 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
178 /* The user just typed 'target' without the name of a target. */
181 target_command (const char *arg, int from_tty)
183 fputs_filtered ("Argument required (target name). Try `help target'\n",
188 namespace selftests {
190 /* A mock process_stratum target_ops that doesn't read/write registers
193 static const target_info test_target_info = {
195 N_("unit tests target"),
196 N_("You should never see this"),
200 test_target_ops::info () const
202 return test_target_info;
205 } /* namespace selftests */
206 #endif /* GDB_SELF_TEST */
208 /* Default target_has_* methods for process_stratum targets. */
211 default_child_has_all_memory ()
213 /* If no inferior selected, then we can't read memory here. */
214 if (ptid_equal (inferior_ptid, null_ptid))
221 default_child_has_memory ()
223 /* If no inferior selected, then we can't read memory here. */
224 if (ptid_equal (inferior_ptid, null_ptid))
231 default_child_has_stack ()
233 /* If no inferior selected, there's no stack. */
234 if (ptid_equal (inferior_ptid, null_ptid))
241 default_child_has_registers ()
243 /* Can't read registers from no inferior. */
244 if (ptid_equal (inferior_ptid, null_ptid))
251 default_child_has_execution (ptid_t the_ptid)
253 /* If there's no thread selected, then we can't make it run through
255 if (ptid_equal (the_ptid, null_ptid))
263 target_has_all_memory_1 (void)
265 struct target_ops *t;
267 for (t = target_stack; t != NULL; t = t->beneath)
268 if (t->has_all_memory ())
275 target_has_memory_1 (void)
277 struct target_ops *t;
279 for (t = target_stack; t != NULL; t = t->beneath)
280 if (t->has_memory ())
287 target_has_stack_1 (void)
289 struct target_ops *t;
291 for (t = target_stack; t != NULL; t = t->beneath)
299 target_has_registers_1 (void)
301 struct target_ops *t;
303 for (t = target_stack; t != NULL; t = t->beneath)
304 if (t->has_registers ())
311 target_has_execution_1 (ptid_t the_ptid)
313 struct target_ops *t;
315 for (t = target_stack; t != NULL; t = t->beneath)
316 if (t->has_execution (the_ptid))
323 target_has_execution_current (void)
325 return target_has_execution_1 (inferior_ptid);
328 /* This is used to implement the various target commands. */
331 open_target (const char *args, int from_tty, struct cmd_list_element *command)
333 auto *ti = static_cast<target_info *> (get_cmd_context (command));
334 target_open_ftype *func = target_factories[ti];
337 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
340 func (args, from_tty);
343 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
344 ti->shortname, args, from_tty);
350 add_target (const target_info &t, target_open_ftype *func,
351 completer_ftype *completer)
353 struct cmd_list_element *c;
355 auto &func_slot = target_factories[&t];
356 if (func_slot != nullptr)
357 internal_error (__FILE__, __LINE__,
358 _("target already added (\"%s\")."), t.shortname);
361 if (targetlist == NULL)
362 add_prefix_cmd ("target", class_run, target_command, _("\
363 Connect to a target machine or process.\n\
364 The first argument is the type or protocol of the target machine.\n\
365 Remaining arguments are interpreted by the target protocol. For more\n\
366 information on the arguments for a particular protocol, type\n\
367 `help target ' followed by the protocol name."),
368 &targetlist, "target ", 0, &cmdlist);
369 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
370 set_cmd_context (c, (void *) &t);
371 set_cmd_sfunc (c, open_target);
372 if (completer != NULL)
373 set_cmd_completer (c, completer);
379 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
381 struct cmd_list_element *c;
384 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
386 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
387 set_cmd_sfunc (c, open_target);
388 set_cmd_context (c, (void *) &tinfo);
389 alt = xstrprintf ("target %s", tinfo.shortname);
390 deprecate_cmd (c, alt);
398 target_stack->kill ();
402 target_load (const char *arg, int from_tty)
404 target_dcache_invalidate ();
405 target_stack->load (arg, from_tty);
410 target_terminal_state target_terminal::m_terminal_state
411 = target_terminal_state::is_ours;
413 /* See target/target.h. */
416 target_terminal::init (void)
418 target_stack->terminal_init ();
420 m_terminal_state = target_terminal_state::is_ours;
423 /* See target/target.h. */
426 target_terminal::inferior (void)
428 struct ui *ui = current_ui;
430 /* A background resume (``run&'') should leave GDB in control of the
432 if (ui->prompt_state != PROMPT_BLOCKED)
435 /* Since we always run the inferior in the main console (unless "set
436 inferior-tty" is in effect), when some UI other than the main one
437 calls target_terminal::inferior, then we leave the main UI's
438 terminal settings as is. */
442 /* If GDB is resuming the inferior in the foreground, install
443 inferior's terminal modes. */
445 struct inferior *inf = current_inferior ();
447 if (inf->terminal_state != target_terminal_state::is_inferior)
449 target_stack->terminal_inferior ();
450 inf->terminal_state = target_terminal_state::is_inferior;
453 m_terminal_state = target_terminal_state::is_inferior;
455 /* If the user hit C-c before, pretend that it was hit right
457 if (check_quit_flag ())
458 target_pass_ctrlc ();
461 /* See target/target.h. */
464 target_terminal::restore_inferior (void)
466 struct ui *ui = current_ui;
468 /* See target_terminal::inferior(). */
469 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
472 /* Restore the terminal settings of inferiors that were in the
473 foreground but are now ours_for_output due to a temporary
474 target_target::ours_for_output() call. */
477 scoped_restore_current_inferior restore_inferior;
478 struct inferior *inf;
482 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
484 set_current_inferior (inf);
485 target_stack->terminal_inferior ();
486 inf->terminal_state = target_terminal_state::is_inferior;
491 m_terminal_state = target_terminal_state::is_inferior;
493 /* If the user hit C-c before, pretend that it was hit right
495 if (check_quit_flag ())
496 target_pass_ctrlc ();
499 /* Switch terminal state to DESIRED_STATE, either is_ours, or
500 is_ours_for_output. */
503 target_terminal_is_ours_kind (target_terminal_state desired_state)
505 scoped_restore_current_inferior restore_inferior;
506 struct inferior *inf;
508 /* Must do this in two passes. First, have all inferiors save the
509 current terminal settings. Then, after all inferiors have add a
510 chance to safely save the terminal settings, restore GDB's
511 terminal settings. */
515 if (inf->terminal_state == target_terminal_state::is_inferior)
517 set_current_inferior (inf);
518 target_stack->terminal_save_inferior ();
524 /* Note we don't check is_inferior here like above because we
525 need to handle 'is_ours_for_output -> is_ours' too. Careful
526 to never transition from 'is_ours' to 'is_ours_for_output',
528 if (inf->terminal_state != target_terminal_state::is_ours
529 && inf->terminal_state != desired_state)
531 set_current_inferior (inf);
532 if (desired_state == target_terminal_state::is_ours)
533 target_stack->terminal_ours ();
534 else if (desired_state == target_terminal_state::is_ours_for_output)
535 target_stack->terminal_ours_for_output ();
537 gdb_assert_not_reached ("unhandled desired state");
538 inf->terminal_state = desired_state;
543 /* See target/target.h. */
546 target_terminal::ours ()
548 struct ui *ui = current_ui;
550 /* See target_terminal::inferior. */
554 if (m_terminal_state == target_terminal_state::is_ours)
557 target_terminal_is_ours_kind (target_terminal_state::is_ours);
558 m_terminal_state = target_terminal_state::is_ours;
561 /* See target/target.h. */
564 target_terminal::ours_for_output ()
566 struct ui *ui = current_ui;
568 /* See target_terminal::inferior. */
572 if (!target_terminal::is_inferior ())
575 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
576 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
579 /* See target/target.h. */
582 target_terminal::info (const char *arg, int from_tty)
584 target_stack->terminal_info (arg, from_tty);
590 target_supports_terminal_ours (void)
592 return target_stack->supports_terminal_ours ();
598 error (_("You can't do that when your target is `%s'"),
599 target_stack->shortname ());
605 error (_("You can't do that without a process to debug."));
609 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
611 printf_unfiltered (_("No saved terminal information.\n"));
614 /* A default implementation for the to_get_ada_task_ptid target method.
616 This function builds the PTID by using both LWP and TID as part of
617 the PTID lwp and tid elements. The pid used is the pid of the
621 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
623 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
626 static enum exec_direction_kind
627 default_execution_direction (struct target_ops *self)
629 if (!target_can_execute_reverse)
631 else if (!target_can_async_p ())
634 gdb_assert_not_reached ("\
635 to_execution_direction must be implemented for reverse async");
638 /* Push a new target type into the stack of the existing target accessors,
639 possibly superseding some of the existing accessors.
641 Rather than allow an empty stack, we always have the dummy target at
642 the bottom stratum, so we can call the function vectors without
646 push_target (struct target_ops *t)
648 struct target_ops **cur;
650 /* Find the proper stratum to install this target in. */
651 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
653 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
657 /* If there's already targets at this stratum, remove them. */
658 /* FIXME: cagney/2003-10-15: I think this should be popping all
659 targets to CUR, and not just those at this stratum level. */
660 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
662 /* There's already something at this stratum level. Close it,
663 and un-hook it from the stack. */
664 struct target_ops *tmp = (*cur);
666 (*cur) = (*cur)->beneath;
671 /* We have removed all targets in our stratum, now add the new one. */
676 /* Remove a target_ops vector from the stack, wherever it may be.
677 Return how many times it was removed (0 or 1). */
680 unpush_target (struct target_ops *t)
682 struct target_ops **cur;
683 struct target_ops *tmp;
685 if (t->to_stratum == dummy_stratum)
686 internal_error (__FILE__, __LINE__,
687 _("Attempt to unpush the dummy target"));
689 /* Look for the specified target. Note that we assume that a target
690 can only occur once in the target stack. */
692 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
698 /* If we don't find target_ops, quit. Only open targets should be
703 /* Unchain the target. */
705 (*cur) = (*cur)->beneath;
708 /* Finally close the target. Note we do this after unchaining, so
709 any target method calls from within the target_close
710 implementation don't end up in T anymore. */
716 /* Unpush TARGET and assert that it worked. */
719 unpush_target_and_assert (struct target_ops *target)
721 if (!unpush_target (target))
723 fprintf_unfiltered (gdb_stderr,
724 "pop_all_targets couldn't find target %s\n",
725 target->shortname ());
726 internal_error (__FILE__, __LINE__,
727 _("failed internal consistency check"));
732 pop_all_targets_above (enum strata above_stratum)
734 while ((int) (target_stack->to_stratum) > (int) above_stratum)
735 unpush_target_and_assert (target_stack);
741 pop_all_targets_at_and_above (enum strata stratum)
743 while ((int) (target_stack->to_stratum) >= (int) stratum)
744 unpush_target_and_assert (target_stack);
748 pop_all_targets (void)
750 pop_all_targets_above (dummy_stratum);
753 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
756 target_is_pushed (struct target_ops *t)
758 struct target_ops *cur;
760 for (cur = target_stack; cur != NULL; cur = cur->beneath)
767 /* Default implementation of to_get_thread_local_address. */
770 generic_tls_error (void)
772 throw_error (TLS_GENERIC_ERROR,
773 _("Cannot find thread-local variables on this target"));
776 /* Using the objfile specified in OBJFILE, find the address for the
777 current thread's thread-local storage with offset OFFSET. */
779 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
781 volatile CORE_ADDR addr = 0;
782 struct target_ops *target = target_stack;
784 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
786 ptid_t ptid = inferior_ptid;
792 /* Fetch the load module address for this objfile. */
793 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
796 addr = target->get_thread_local_address (ptid, lm_addr, offset);
798 /* If an error occurred, print TLS related messages here. Otherwise,
799 throw the error to some higher catcher. */
800 CATCH (ex, RETURN_MASK_ALL)
802 int objfile_is_library = (objfile->flags & OBJF_SHARED);
806 case TLS_NO_LIBRARY_SUPPORT_ERROR:
807 error (_("Cannot find thread-local variables "
808 "in this thread library."));
810 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
811 if (objfile_is_library)
812 error (_("Cannot find shared library `%s' in dynamic"
813 " linker's load module list"), objfile_name (objfile));
815 error (_("Cannot find executable file `%s' in dynamic"
816 " linker's load module list"), objfile_name (objfile));
818 case TLS_NOT_ALLOCATED_YET_ERROR:
819 if (objfile_is_library)
820 error (_("The inferior has not yet allocated storage for"
821 " thread-local variables in\n"
822 "the shared library `%s'\n"
824 objfile_name (objfile), target_pid_to_str (ptid));
826 error (_("The inferior has not yet allocated storage for"
827 " thread-local variables in\n"
828 "the executable `%s'\n"
830 objfile_name (objfile), target_pid_to_str (ptid));
832 case TLS_GENERIC_ERROR:
833 if (objfile_is_library)
834 error (_("Cannot find thread-local storage for %s, "
835 "shared library %s:\n%s"),
836 target_pid_to_str (ptid),
837 objfile_name (objfile), ex.message);
839 error (_("Cannot find thread-local storage for %s, "
840 "executable file %s:\n%s"),
841 target_pid_to_str (ptid),
842 objfile_name (objfile), ex.message);
845 throw_exception (ex);
851 /* It wouldn't be wrong here to try a gdbarch method, too; finding
852 TLS is an ABI-specific thing. But we don't do that yet. */
854 error (_("Cannot find thread-local variables on this target"));
860 target_xfer_status_to_string (enum target_xfer_status status)
862 #define CASE(X) case X: return #X
865 CASE(TARGET_XFER_E_IO);
866 CASE(TARGET_XFER_UNAVAILABLE);
875 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
877 /* target_read_string -- read a null terminated string, up to LEN bytes,
878 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
879 Set *STRING to a pointer to malloc'd memory containing the data; the caller
880 is responsible for freeing it. Return the number of bytes successfully
884 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
885 int len, int *errnop)
891 int buffer_allocated;
893 unsigned int nbytes_read = 0;
897 /* Small for testing. */
898 buffer_allocated = 4;
899 buffer = (char *) xmalloc (buffer_allocated);
904 tlen = MIN (len, 4 - (memaddr & 3));
905 offset = memaddr & 3;
907 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
910 /* The transfer request might have crossed the boundary to an
911 unallocated region of memory. Retry the transfer, requesting
915 errcode = target_read_memory (memaddr, buf, 1);
920 if (bufptr - buffer + tlen > buffer_allocated)
924 bytes = bufptr - buffer;
925 buffer_allocated *= 2;
926 buffer = (char *) xrealloc (buffer, buffer_allocated);
927 bufptr = buffer + bytes;
930 for (i = 0; i < tlen; i++)
932 *bufptr++ = buf[i + offset];
933 if (buf[i + offset] == '\000')
935 nbytes_read += i + 1;
945 string->reset (buffer);
951 struct target_section_table *
952 target_get_section_table (struct target_ops *target)
954 return target->get_section_table ();
957 /* Find a section containing ADDR. */
959 struct target_section *
960 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
962 struct target_section_table *table = target_get_section_table (target);
963 struct target_section *secp;
968 for (secp = table->sections; secp < table->sections_end; secp++)
970 if (addr >= secp->addr && addr < secp->endaddr)
977 /* Helper for the memory xfer routines. Checks the attributes of the
978 memory region of MEMADDR against the read or write being attempted.
979 If the access is permitted returns true, otherwise returns false.
980 REGION_P is an optional output parameter. If not-NULL, it is
981 filled with a pointer to the memory region of MEMADDR. REG_LEN
982 returns LEN trimmed to the end of the region. This is how much the
983 caller can continue requesting, if the access is permitted. A
984 single xfer request must not straddle memory region boundaries. */
987 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
988 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
989 struct mem_region **region_p)
991 struct mem_region *region;
993 region = lookup_mem_region (memaddr);
995 if (region_p != NULL)
998 switch (region->attrib.mode)
1001 if (writebuf != NULL)
1006 if (readbuf != NULL)
1011 /* We only support writing to flash during "load" for now. */
1012 if (writebuf != NULL)
1013 error (_("Writing to flash memory forbidden in this context"));
1020 /* region->hi == 0 means there's no upper bound. */
1021 if (memaddr + len < region->hi || region->hi == 0)
1024 *reg_len = region->hi - memaddr;
1029 /* Read memory from more than one valid target. A core file, for
1030 instance, could have some of memory but delegate other bits to
1031 the target below it. So, we must manually try all targets. */
1033 enum target_xfer_status
1034 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1035 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1036 ULONGEST *xfered_len)
1038 enum target_xfer_status res;
1042 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
1043 readbuf, writebuf, memaddr, len,
1045 if (res == TARGET_XFER_OK)
1048 /* Stop if the target reports that the memory is not available. */
1049 if (res == TARGET_XFER_UNAVAILABLE)
1052 /* We want to continue past core files to executables, but not
1053 past a running target's memory. */
1054 if (ops->has_all_memory ())
1059 while (ops != NULL);
1061 /* The cache works at the raw memory level. Make sure the cache
1062 gets updated with raw contents no matter what kind of memory
1063 object was originally being written. Note we do write-through
1064 first, so that if it fails, we don't write to the cache contents
1065 that never made it to the target. */
1066 if (writebuf != NULL
1067 && !ptid_equal (inferior_ptid, null_ptid)
1068 && target_dcache_init_p ()
1069 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1071 DCACHE *dcache = target_dcache_get ();
1073 /* Note that writing to an area of memory which wasn't present
1074 in the cache doesn't cause it to be loaded in. */
1075 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1081 /* Perform a partial memory transfer.
1082 For docs see target.h, to_xfer_partial. */
1084 static enum target_xfer_status
1085 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1086 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1087 ULONGEST len, ULONGEST *xfered_len)
1089 enum target_xfer_status res;
1091 struct mem_region *region;
1092 struct inferior *inf;
1094 /* For accesses to unmapped overlay sections, read directly from
1095 files. Must do this first, as MEMADDR may need adjustment. */
1096 if (readbuf != NULL && overlay_debugging)
1098 struct obj_section *section = find_pc_overlay (memaddr);
1100 if (pc_in_unmapped_range (memaddr, section))
1102 struct target_section_table *table
1103 = target_get_section_table (ops);
1104 const char *section_name = section->the_bfd_section->name;
1106 memaddr = overlay_mapped_address (memaddr, section);
1107 return section_table_xfer_memory_partial (readbuf, writebuf,
1108 memaddr, len, xfered_len,
1110 table->sections_end,
1115 /* Try the executable files, if "trust-readonly-sections" is set. */
1116 if (readbuf != NULL && trust_readonly)
1118 struct target_section *secp;
1119 struct target_section_table *table;
1121 secp = target_section_by_addr (ops, memaddr);
1123 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1124 secp->the_bfd_section)
1127 table = target_get_section_table (ops);
1128 return section_table_xfer_memory_partial (readbuf, writebuf,
1129 memaddr, len, xfered_len,
1131 table->sections_end,
1136 /* Try GDB's internal data cache. */
1138 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, ®_len,
1140 return TARGET_XFER_E_IO;
1142 if (!ptid_equal (inferior_ptid, null_ptid))
1143 inf = find_inferior_ptid (inferior_ptid);
1149 /* The dcache reads whole cache lines; that doesn't play well
1150 with reading from a trace buffer, because reading outside of
1151 the collected memory range fails. */
1152 && get_traceframe_number () == -1
1153 && (region->attrib.cache
1154 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1155 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1157 DCACHE *dcache = target_dcache_get_or_init ();
1159 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1160 reg_len, xfered_len);
1163 /* If none of those methods found the memory we wanted, fall back
1164 to a target partial transfer. Normally a single call to
1165 to_xfer_partial is enough; if it doesn't recognize an object
1166 it will call the to_xfer_partial of the next target down.
1167 But for memory this won't do. Memory is the only target
1168 object which can be read from more than one valid target.
1169 A core file, for instance, could have some of memory but
1170 delegate other bits to the target below it. So, we must
1171 manually try all targets. */
1173 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1176 /* If we still haven't got anything, return the last error. We
1181 /* Perform a partial memory transfer. For docs see target.h,
1184 static enum target_xfer_status
1185 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1186 gdb_byte *readbuf, const gdb_byte *writebuf,
1187 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1189 enum target_xfer_status res;
1191 /* Zero length requests are ok and require no work. */
1193 return TARGET_XFER_EOF;
1195 memaddr = address_significant (target_gdbarch (), memaddr);
1197 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1198 breakpoint insns, thus hiding out from higher layers whether
1199 there are software breakpoints inserted in the code stream. */
1200 if (readbuf != NULL)
1202 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1205 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1206 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1210 /* A large write request is likely to be partially satisfied
1211 by memory_xfer_partial_1. We will continually malloc
1212 and free a copy of the entire write request for breakpoint
1213 shadow handling even though we only end up writing a small
1214 subset of it. Cap writes to a limit specified by the target
1215 to mitigate this. */
1216 len = std::min (ops->get_memory_xfer_limit (), len);
1218 gdb::byte_vector buf (writebuf, writebuf + len);
1219 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1220 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1227 scoped_restore_tmpl<int>
1228 make_scoped_restore_show_memory_breakpoints (int show)
1230 return make_scoped_restore (&show_memory_breakpoints, show);
1233 /* For docs see target.h, to_xfer_partial. */
1235 enum target_xfer_status
1236 target_xfer_partial (struct target_ops *ops,
1237 enum target_object object, const char *annex,
1238 gdb_byte *readbuf, const gdb_byte *writebuf,
1239 ULONGEST offset, ULONGEST len,
1240 ULONGEST *xfered_len)
1242 enum target_xfer_status retval;
1244 /* Transfer is done when LEN is zero. */
1246 return TARGET_XFER_EOF;
1248 if (writebuf && !may_write_memory)
1249 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1250 core_addr_to_string_nz (offset), plongest (len));
1254 /* If this is a memory transfer, let the memory-specific code
1255 have a look at it instead. Memory transfers are more
1257 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1258 || object == TARGET_OBJECT_CODE_MEMORY)
1259 retval = memory_xfer_partial (ops, object, readbuf,
1260 writebuf, offset, len, xfered_len);
1261 else if (object == TARGET_OBJECT_RAW_MEMORY)
1263 /* Skip/avoid accessing the target if the memory region
1264 attributes block the access. Check this here instead of in
1265 raw_memory_xfer_partial as otherwise we'd end up checking
1266 this twice in the case of the memory_xfer_partial path is
1267 taken; once before checking the dcache, and another in the
1268 tail call to raw_memory_xfer_partial. */
1269 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1271 return TARGET_XFER_E_IO;
1273 /* Request the normal memory object from other layers. */
1274 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1278 retval = ops->xfer_partial (object, annex, readbuf,
1279 writebuf, offset, len, xfered_len);
1283 const unsigned char *myaddr = NULL;
1285 fprintf_unfiltered (gdb_stdlog,
1286 "%s:target_xfer_partial "
1287 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1290 (annex ? annex : "(null)"),
1291 host_address_to_string (readbuf),
1292 host_address_to_string (writebuf),
1293 core_addr_to_string_nz (offset),
1294 pulongest (len), retval,
1295 pulongest (*xfered_len));
1301 if (retval == TARGET_XFER_OK && myaddr != NULL)
1305 fputs_unfiltered (", bytes =", gdb_stdlog);
1306 for (i = 0; i < *xfered_len; i++)
1308 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1310 if (targetdebug < 2 && i > 0)
1312 fprintf_unfiltered (gdb_stdlog, " ...");
1315 fprintf_unfiltered (gdb_stdlog, "\n");
1318 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1322 fputc_unfiltered ('\n', gdb_stdlog);
1325 /* Check implementations of to_xfer_partial update *XFERED_LEN
1326 properly. Do assertion after printing debug messages, so that we
1327 can find more clues on assertion failure from debugging messages. */
1328 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1329 gdb_assert (*xfered_len > 0);
1334 /* Read LEN bytes of target memory at address MEMADDR, placing the
1335 results in GDB's memory at MYADDR. Returns either 0 for success or
1336 -1 if any error occurs.
1338 If an error occurs, no guarantee is made about the contents of the data at
1339 MYADDR. In particular, the caller should not depend upon partial reads
1340 filling the buffer with good data. There is no way for the caller to know
1341 how much good data might have been transfered anyway. Callers that can
1342 deal with partial reads should call target_read (which will retry until
1343 it makes no progress, and then return how much was transferred). */
1346 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1348 if (target_read (target_stack, TARGET_OBJECT_MEMORY, NULL,
1349 myaddr, memaddr, len) == len)
1355 /* See target/target.h. */
1358 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1363 r = target_read_memory (memaddr, buf, sizeof buf);
1366 *result = extract_unsigned_integer (buf, sizeof buf,
1367 gdbarch_byte_order (target_gdbarch ()));
1371 /* Like target_read_memory, but specify explicitly that this is a read
1372 from the target's raw memory. That is, this read bypasses the
1373 dcache, breakpoint shadowing, etc. */
1376 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1378 if (target_read (target_stack, TARGET_OBJECT_RAW_MEMORY, NULL,
1379 myaddr, memaddr, len) == len)
1385 /* Like target_read_memory, but specify explicitly that this is a read from
1386 the target's stack. This may trigger different cache behavior. */
1389 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1391 if (target_read (target_stack, TARGET_OBJECT_STACK_MEMORY, NULL,
1392 myaddr, memaddr, len) == len)
1398 /* Like target_read_memory, but specify explicitly that this is a read from
1399 the target's code. This may trigger different cache behavior. */
1402 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1404 if (target_read (target_stack, TARGET_OBJECT_CODE_MEMORY, NULL,
1405 myaddr, memaddr, len) == len)
1411 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1412 Returns either 0 for success or -1 if any error occurs. If an
1413 error occurs, no guarantee is made about how much data got written.
1414 Callers that can deal with partial writes should call
1418 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1420 if (target_write (target_stack, TARGET_OBJECT_MEMORY, NULL,
1421 myaddr, memaddr, len) == len)
1427 /* Write LEN bytes from MYADDR to target raw memory at address
1428 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1429 If an error occurs, no guarantee is made about how much data got
1430 written. Callers that can deal with partial writes should call
1434 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1436 if (target_write (target_stack, TARGET_OBJECT_RAW_MEMORY, NULL,
1437 myaddr, memaddr, len) == len)
1443 /* Fetch the target's memory map. */
1445 std::vector<mem_region>
1446 target_memory_map (void)
1448 std::vector<mem_region> result = target_stack->memory_map ();
1449 if (result.empty ())
1452 std::sort (result.begin (), result.end ());
1454 /* Check that regions do not overlap. Simultaneously assign
1455 a numbering for the "mem" commands to use to refer to
1457 mem_region *last_one = NULL;
1458 for (size_t ix = 0; ix < result.size (); ix++)
1460 mem_region *this_one = &result[ix];
1461 this_one->number = ix;
1463 if (last_one != NULL && last_one->hi > this_one->lo)
1465 warning (_("Overlapping regions in memory map: ignoring"));
1466 return std::vector<mem_region> ();
1469 last_one = this_one;
1476 target_flash_erase (ULONGEST address, LONGEST length)
1478 target_stack->flash_erase (address, length);
1482 target_flash_done (void)
1484 target_stack->flash_done ();
1488 show_trust_readonly (struct ui_file *file, int from_tty,
1489 struct cmd_list_element *c, const char *value)
1491 fprintf_filtered (file,
1492 _("Mode for reading from readonly sections is %s.\n"),
1496 /* Target vector read/write partial wrapper functions. */
1498 static enum target_xfer_status
1499 target_read_partial (struct target_ops *ops,
1500 enum target_object object,
1501 const char *annex, gdb_byte *buf,
1502 ULONGEST offset, ULONGEST len,
1503 ULONGEST *xfered_len)
1505 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1509 static enum target_xfer_status
1510 target_write_partial (struct target_ops *ops,
1511 enum target_object object,
1512 const char *annex, const gdb_byte *buf,
1513 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1515 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1519 /* Wrappers to perform the full transfer. */
1521 /* For docs on target_read see target.h. */
1524 target_read (struct target_ops *ops,
1525 enum target_object object,
1526 const char *annex, gdb_byte *buf,
1527 ULONGEST offset, LONGEST len)
1529 LONGEST xfered_total = 0;
1532 /* If we are reading from a memory object, find the length of an addressable
1533 unit for that architecture. */
1534 if (object == TARGET_OBJECT_MEMORY
1535 || object == TARGET_OBJECT_STACK_MEMORY
1536 || object == TARGET_OBJECT_CODE_MEMORY
1537 || object == TARGET_OBJECT_RAW_MEMORY)
1538 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1540 while (xfered_total < len)
1542 ULONGEST xfered_partial;
1543 enum target_xfer_status status;
1545 status = target_read_partial (ops, object, annex,
1546 buf + xfered_total * unit_size,
1547 offset + xfered_total, len - xfered_total,
1550 /* Call an observer, notifying them of the xfer progress? */
1551 if (status == TARGET_XFER_EOF)
1552 return xfered_total;
1553 else if (status == TARGET_XFER_OK)
1555 xfered_total += xfered_partial;
1559 return TARGET_XFER_E_IO;
1565 /* Assuming that the entire [begin, end) range of memory cannot be
1566 read, try to read whatever subrange is possible to read.
1568 The function returns, in RESULT, either zero or one memory block.
1569 If there's a readable subrange at the beginning, it is completely
1570 read and returned. Any further readable subrange will not be read.
1571 Otherwise, if there's a readable subrange at the end, it will be
1572 completely read and returned. Any readable subranges before it
1573 (obviously, not starting at the beginning), will be ignored. In
1574 other cases -- either no readable subrange, or readable subrange(s)
1575 that is neither at the beginning, or end, nothing is returned.
1577 The purpose of this function is to handle a read across a boundary
1578 of accessible memory in a case when memory map is not available.
1579 The above restrictions are fine for this case, but will give
1580 incorrect results if the memory is 'patchy'. However, supporting
1581 'patchy' memory would require trying to read every single byte,
1582 and it seems unacceptable solution. Explicit memory map is
1583 recommended for this case -- and target_read_memory_robust will
1584 take care of reading multiple ranges then. */
1587 read_whatever_is_readable (struct target_ops *ops,
1588 const ULONGEST begin, const ULONGEST end,
1590 std::vector<memory_read_result> *result)
1592 ULONGEST current_begin = begin;
1593 ULONGEST current_end = end;
1595 ULONGEST xfered_len;
1597 /* If we previously failed to read 1 byte, nothing can be done here. */
1598 if (end - begin <= 1)
1601 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1603 /* Check that either first or the last byte is readable, and give up
1604 if not. This heuristic is meant to permit reading accessible memory
1605 at the boundary of accessible region. */
1606 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1607 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1612 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1613 buf.get () + (end - begin) - 1, end - 1, 1,
1614 &xfered_len) == TARGET_XFER_OK)
1622 /* Loop invariant is that the [current_begin, current_end) was previously
1623 found to be not readable as a whole.
1625 Note loop condition -- if the range has 1 byte, we can't divide the range
1626 so there's no point trying further. */
1627 while (current_end - current_begin > 1)
1629 ULONGEST first_half_begin, first_half_end;
1630 ULONGEST second_half_begin, second_half_end;
1632 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1636 first_half_begin = current_begin;
1637 first_half_end = middle;
1638 second_half_begin = middle;
1639 second_half_end = current_end;
1643 first_half_begin = middle;
1644 first_half_end = current_end;
1645 second_half_begin = current_begin;
1646 second_half_end = middle;
1649 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1650 buf.get () + (first_half_begin - begin) * unit_size,
1652 first_half_end - first_half_begin);
1654 if (xfer == first_half_end - first_half_begin)
1656 /* This half reads up fine. So, the error must be in the
1658 current_begin = second_half_begin;
1659 current_end = second_half_end;
1663 /* This half is not readable. Because we've tried one byte, we
1664 know some part of this half if actually readable. Go to the next
1665 iteration to divide again and try to read.
1667 We don't handle the other half, because this function only tries
1668 to read a single readable subrange. */
1669 current_begin = first_half_begin;
1670 current_end = first_half_end;
1676 /* The [begin, current_begin) range has been read. */
1677 result->emplace_back (begin, current_end, std::move (buf));
1681 /* The [current_end, end) range has been read. */
1682 LONGEST region_len = end - current_end;
1684 gdb::unique_xmalloc_ptr<gdb_byte> data
1685 ((gdb_byte *) xmalloc (region_len * unit_size));
1686 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1687 region_len * unit_size);
1688 result->emplace_back (current_end, end, std::move (data));
1692 std::vector<memory_read_result>
1693 read_memory_robust (struct target_ops *ops,
1694 const ULONGEST offset, const LONGEST len)
1696 std::vector<memory_read_result> result;
1697 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1699 LONGEST xfered_total = 0;
1700 while (xfered_total < len)
1702 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1705 /* If there is no explicit region, a fake one should be created. */
1706 gdb_assert (region);
1708 if (region->hi == 0)
1709 region_len = len - xfered_total;
1711 region_len = region->hi - offset;
1713 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1715 /* Cannot read this region. Note that we can end up here only
1716 if the region is explicitly marked inaccessible, or
1717 'inaccessible-by-default' is in effect. */
1718 xfered_total += region_len;
1722 LONGEST to_read = std::min (len - xfered_total, region_len);
1723 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1724 ((gdb_byte *) xmalloc (to_read * unit_size));
1726 LONGEST xfered_partial =
1727 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1728 offset + xfered_total, to_read);
1729 /* Call an observer, notifying them of the xfer progress? */
1730 if (xfered_partial <= 0)
1732 /* Got an error reading full chunk. See if maybe we can read
1734 read_whatever_is_readable (ops, offset + xfered_total,
1735 offset + xfered_total + to_read,
1736 unit_size, &result);
1737 xfered_total += to_read;
1741 result.emplace_back (offset + xfered_total,
1742 offset + xfered_total + xfered_partial,
1743 std::move (buffer));
1744 xfered_total += xfered_partial;
1754 /* An alternative to target_write with progress callbacks. */
1757 target_write_with_progress (struct target_ops *ops,
1758 enum target_object object,
1759 const char *annex, const gdb_byte *buf,
1760 ULONGEST offset, LONGEST len,
1761 void (*progress) (ULONGEST, void *), void *baton)
1763 LONGEST xfered_total = 0;
1766 /* If we are writing to a memory object, find the length of an addressable
1767 unit for that architecture. */
1768 if (object == TARGET_OBJECT_MEMORY
1769 || object == TARGET_OBJECT_STACK_MEMORY
1770 || object == TARGET_OBJECT_CODE_MEMORY
1771 || object == TARGET_OBJECT_RAW_MEMORY)
1772 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1774 /* Give the progress callback a chance to set up. */
1776 (*progress) (0, baton);
1778 while (xfered_total < len)
1780 ULONGEST xfered_partial;
1781 enum target_xfer_status status;
1783 status = target_write_partial (ops, object, annex,
1784 buf + xfered_total * unit_size,
1785 offset + xfered_total, len - xfered_total,
1788 if (status != TARGET_XFER_OK)
1789 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1792 (*progress) (xfered_partial, baton);
1794 xfered_total += xfered_partial;
1800 /* For docs on target_write see target.h. */
1803 target_write (struct target_ops *ops,
1804 enum target_object object,
1805 const char *annex, const gdb_byte *buf,
1806 ULONGEST offset, LONGEST len)
1808 return target_write_with_progress (ops, object, annex, buf, offset, len,
1812 /* Help for target_read_alloc and target_read_stralloc. See their comments
1815 template <typename T>
1816 gdb::optional<gdb::def_vector<T>>
1817 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1820 gdb::def_vector<T> buf;
1822 const int chunk = 4096;
1824 /* This function does not have a length parameter; it reads the
1825 entire OBJECT). Also, it doesn't support objects fetched partly
1826 from one target and partly from another (in a different stratum,
1827 e.g. a core file and an executable). Both reasons make it
1828 unsuitable for reading memory. */
1829 gdb_assert (object != TARGET_OBJECT_MEMORY);
1831 /* Start by reading up to 4K at a time. The target will throttle
1832 this number down if necessary. */
1835 ULONGEST xfered_len;
1836 enum target_xfer_status status;
1838 buf.resize (buf_pos + chunk);
1840 status = target_read_partial (ops, object, annex,
1841 (gdb_byte *) &buf[buf_pos],
1845 if (status == TARGET_XFER_EOF)
1847 /* Read all there was. */
1848 buf.resize (buf_pos);
1851 else if (status != TARGET_XFER_OK)
1853 /* An error occurred. */
1857 buf_pos += xfered_len;
1865 gdb::optional<gdb::byte_vector>
1866 target_read_alloc (struct target_ops *ops, enum target_object object,
1869 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1874 gdb::optional<gdb::char_vector>
1875 target_read_stralloc (struct target_ops *ops, enum target_object object,
1878 gdb::optional<gdb::char_vector> buf
1879 = target_read_alloc_1<char> (ops, object, annex);
1884 if (buf->back () != '\0')
1885 buf->push_back ('\0');
1887 /* Check for embedded NUL bytes; but allow trailing NULs. */
1888 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1889 it != buf->end (); it++)
1892 warning (_("target object %d, annex %s, "
1893 "contained unexpected null characters"),
1894 (int) object, annex ? annex : "(none)");
1901 /* Memory transfer methods. */
1904 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1907 /* This method is used to read from an alternate, non-current
1908 target. This read must bypass the overlay support (as symbols
1909 don't match this target), and GDB's internal cache (wrong cache
1910 for this target). */
1911 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1913 memory_error (TARGET_XFER_E_IO, addr);
1917 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1918 int len, enum bfd_endian byte_order)
1920 gdb_byte buf[sizeof (ULONGEST)];
1922 gdb_assert (len <= sizeof (buf));
1923 get_target_memory (ops, addr, buf, len);
1924 return extract_unsigned_integer (buf, len, byte_order);
1930 target_insert_breakpoint (struct gdbarch *gdbarch,
1931 struct bp_target_info *bp_tgt)
1933 if (!may_insert_breakpoints)
1935 warning (_("May not insert breakpoints"));
1939 return target_stack->insert_breakpoint (gdbarch, bp_tgt);
1945 target_remove_breakpoint (struct gdbarch *gdbarch,
1946 struct bp_target_info *bp_tgt,
1947 enum remove_bp_reason reason)
1949 /* This is kind of a weird case to handle, but the permission might
1950 have been changed after breakpoints were inserted - in which case
1951 we should just take the user literally and assume that any
1952 breakpoints should be left in place. */
1953 if (!may_insert_breakpoints)
1955 warning (_("May not remove breakpoints"));
1959 return target_stack->remove_breakpoint (gdbarch, bp_tgt, reason);
1963 info_target_command (const char *args, int from_tty)
1965 struct target_ops *t;
1966 int has_all_mem = 0;
1968 if (symfile_objfile != NULL)
1969 printf_unfiltered (_("Symbols from \"%s\".\n"),
1970 objfile_name (symfile_objfile));
1972 for (t = target_stack; t != NULL; t = t->beneath)
1974 if (!t->has_memory ())
1977 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1980 printf_unfiltered (_("\tWhile running this, "
1981 "GDB does not access memory from...\n"));
1982 printf_unfiltered ("%s:\n", t->longname ());
1984 has_all_mem = t->has_all_memory ();
1988 /* This function is called before any new inferior is created, e.g.
1989 by running a program, attaching, or connecting to a target.
1990 It cleans up any state from previous invocations which might
1991 change between runs. This is a subset of what target_preopen
1992 resets (things which might change between targets). */
1995 target_pre_inferior (int from_tty)
1997 /* Clear out solib state. Otherwise the solib state of the previous
1998 inferior might have survived and is entirely wrong for the new
1999 target. This has been observed on GNU/Linux using glibc 2.3. How
2011 Cannot access memory at address 0xdeadbeef
2014 /* In some OSs, the shared library list is the same/global/shared
2015 across inferiors. If code is shared between processes, so are
2016 memory regions and features. */
2017 if (!gdbarch_has_global_solist (target_gdbarch ()))
2019 no_shared_libraries (NULL, from_tty);
2021 invalidate_target_mem_regions ();
2023 target_clear_description ();
2026 /* attach_flag may be set if the previous process associated with
2027 the inferior was attached to. */
2028 current_inferior ()->attach_flag = 0;
2030 current_inferior ()->highest_thread_num = 0;
2032 agent_capability_invalidate ();
2035 /* Callback for iterate_over_inferiors. Gets rid of the given
2039 dispose_inferior (struct inferior *inf, void *args)
2041 struct thread_info *thread;
2043 thread = any_thread_of_process (inf->pid);
2046 switch_to_thread (thread->ptid);
2048 /* Core inferiors actually should be detached, not killed. */
2049 if (target_has_execution)
2052 target_detach (inf, 0);
2058 /* This is to be called by the open routine before it does
2062 target_preopen (int from_tty)
2066 if (have_inferiors ())
2069 || !have_live_inferiors ()
2070 || query (_("A program is being debugged already. Kill it? ")))
2071 iterate_over_inferiors (dispose_inferior, NULL);
2073 error (_("Program not killed."));
2076 /* Calling target_kill may remove the target from the stack. But if
2077 it doesn't (which seems like a win for UDI), remove it now. */
2078 /* Leave the exec target, though. The user may be switching from a
2079 live process to a core of the same program. */
2080 pop_all_targets_above (file_stratum);
2082 target_pre_inferior (from_tty);
2088 target_detach (inferior *inf, int from_tty)
2090 /* As long as some to_detach implementations rely on the current_inferior
2091 (either directly, or indirectly, like through target_gdbarch or by
2092 reading memory), INF needs to be the current inferior. When that
2093 requirement will become no longer true, then we can remove this
2095 gdb_assert (inf == current_inferior ());
2097 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2098 /* Don't remove global breakpoints here. They're removed on
2099 disconnection from the target. */
2102 /* If we're in breakpoints-always-inserted mode, have to remove
2103 them before detaching. */
2104 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2106 prepare_for_detach ();
2108 target_stack->detach (inf, from_tty);
2112 target_disconnect (const char *args, int from_tty)
2114 /* If we're in breakpoints-always-inserted mode or if breakpoints
2115 are global across processes, we have to remove them before
2117 remove_breakpoints ();
2119 target_stack->disconnect (args, from_tty);
2122 /* See target/target.h. */
2125 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2127 return target_stack->wait (ptid, status, options);
2133 default_target_wait (struct target_ops *ops,
2134 ptid_t ptid, struct target_waitstatus *status,
2137 status->kind = TARGET_WAITKIND_IGNORE;
2138 return minus_one_ptid;
2142 target_pid_to_str (ptid_t ptid)
2144 return target_stack->pid_to_str (ptid);
2148 target_thread_name (struct thread_info *info)
2150 return target_stack->thread_name (info);
2153 struct thread_info *
2154 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2156 struct inferior *inf)
2158 return target_stack->thread_handle_to_thread_info (thread_handle,
2163 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2165 target_dcache_invalidate ();
2167 target_stack->resume (ptid, step, signal);
2169 registers_changed_ptid (ptid);
2170 /* We only set the internal executing state here. The user/frontend
2171 running state is set at a higher level. */
2172 set_executing (ptid, 1);
2173 clear_inline_frame_state (ptid);
2176 /* If true, target_commit_resume is a nop. */
2177 static int defer_target_commit_resume;
2182 target_commit_resume (void)
2184 if (defer_target_commit_resume)
2187 target_stack->commit_resume ();
2192 scoped_restore_tmpl<int>
2193 make_scoped_defer_target_commit_resume ()
2195 return make_scoped_restore (&defer_target_commit_resume, 1);
2199 target_pass_signals (int numsigs, unsigned char *pass_signals)
2201 target_stack->pass_signals (numsigs, pass_signals);
2205 target_program_signals (int numsigs, unsigned char *program_signals)
2207 target_stack->program_signals (numsigs, program_signals);
2211 default_follow_fork (struct target_ops *self, int follow_child,
2214 /* Some target returned a fork event, but did not know how to follow it. */
2215 internal_error (__FILE__, __LINE__,
2216 _("could not find a target to follow fork"));
2219 /* Look through the list of possible targets for a target that can
2223 target_follow_fork (int follow_child, int detach_fork)
2225 return target_stack->follow_fork (follow_child, detach_fork);
2228 /* Target wrapper for follow exec hook. */
2231 target_follow_exec (struct inferior *inf, char *execd_pathname)
2233 target_stack->follow_exec (inf, execd_pathname);
2237 default_mourn_inferior (struct target_ops *self)
2239 internal_error (__FILE__, __LINE__,
2240 _("could not find a target to follow mourn inferior"));
2244 target_mourn_inferior (ptid_t ptid)
2246 gdb_assert (ptid_equal (ptid, inferior_ptid));
2247 target_stack->mourn_inferior ();
2249 /* We no longer need to keep handles on any of the object files.
2250 Make sure to release them to avoid unnecessarily locking any
2251 of them while we're not actually debugging. */
2252 bfd_cache_close_all ();
2255 /* Look for a target which can describe architectural features, starting
2256 from TARGET. If we find one, return its description. */
2258 const struct target_desc *
2259 target_read_description (struct target_ops *target)
2261 return target->read_description ();
2264 /* This implements a basic search of memory, reading target memory and
2265 performing the search here (as opposed to performing the search in on the
2266 target side with, for example, gdbserver). */
2269 simple_search_memory (struct target_ops *ops,
2270 CORE_ADDR start_addr, ULONGEST search_space_len,
2271 const gdb_byte *pattern, ULONGEST pattern_len,
2272 CORE_ADDR *found_addrp)
2274 /* NOTE: also defined in find.c testcase. */
2275 #define SEARCH_CHUNK_SIZE 16000
2276 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2277 /* Buffer to hold memory contents for searching. */
2278 unsigned search_buf_size;
2280 search_buf_size = chunk_size + pattern_len - 1;
2282 /* No point in trying to allocate a buffer larger than the search space. */
2283 if (search_space_len < search_buf_size)
2284 search_buf_size = search_space_len;
2286 gdb::byte_vector search_buf (search_buf_size);
2288 /* Prime the search buffer. */
2290 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2291 search_buf.data (), start_addr, search_buf_size)
2294 warning (_("Unable to access %s bytes of target "
2295 "memory at %s, halting search."),
2296 pulongest (search_buf_size), hex_string (start_addr));
2300 /* Perform the search.
2302 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2303 When we've scanned N bytes we copy the trailing bytes to the start and
2304 read in another N bytes. */
2306 while (search_space_len >= pattern_len)
2308 gdb_byte *found_ptr;
2309 unsigned nr_search_bytes
2310 = std::min (search_space_len, (ULONGEST) search_buf_size);
2312 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2313 pattern, pattern_len);
2315 if (found_ptr != NULL)
2317 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2319 *found_addrp = found_addr;
2323 /* Not found in this chunk, skip to next chunk. */
2325 /* Don't let search_space_len wrap here, it's unsigned. */
2326 if (search_space_len >= chunk_size)
2327 search_space_len -= chunk_size;
2329 search_space_len = 0;
2331 if (search_space_len >= pattern_len)
2333 unsigned keep_len = search_buf_size - chunk_size;
2334 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2337 /* Copy the trailing part of the previous iteration to the front
2338 of the buffer for the next iteration. */
2339 gdb_assert (keep_len == pattern_len - 1);
2340 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2342 nr_to_read = std::min (search_space_len - keep_len,
2343 (ULONGEST) chunk_size);
2345 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2346 &search_buf[keep_len], read_addr,
2347 nr_to_read) != nr_to_read)
2349 warning (_("Unable to access %s bytes of target "
2350 "memory at %s, halting search."),
2351 plongest (nr_to_read),
2352 hex_string (read_addr));
2356 start_addr += chunk_size;
2365 /* Default implementation of memory-searching. */
2368 default_search_memory (struct target_ops *self,
2369 CORE_ADDR start_addr, ULONGEST search_space_len,
2370 const gdb_byte *pattern, ULONGEST pattern_len,
2371 CORE_ADDR *found_addrp)
2373 /* Start over from the top of the target stack. */
2374 return simple_search_memory (target_stack,
2375 start_addr, search_space_len,
2376 pattern, pattern_len, found_addrp);
2379 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2380 sequence of bytes in PATTERN with length PATTERN_LEN.
2382 The result is 1 if found, 0 if not found, and -1 if there was an error
2383 requiring halting of the search (e.g. memory read error).
2384 If the pattern is found the address is recorded in FOUND_ADDRP. */
2387 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2388 const gdb_byte *pattern, ULONGEST pattern_len,
2389 CORE_ADDR *found_addrp)
2391 return target_stack->search_memory (start_addr, search_space_len,
2392 pattern, pattern_len, found_addrp);
2395 /* Look through the currently pushed targets. If none of them will
2396 be able to restart the currently running process, issue an error
2400 target_require_runnable (void)
2402 struct target_ops *t;
2404 for (t = target_stack; t != NULL; t = t->beneath)
2406 /* If this target knows how to create a new program, then
2407 assume we will still be able to after killing the current
2408 one. Either killing and mourning will not pop T, or else
2409 find_default_run_target will find it again. */
2410 if (t->can_create_inferior ())
2413 /* Do not worry about targets at certain strata that can not
2414 create inferiors. Assume they will be pushed again if
2415 necessary, and continue to the process_stratum. */
2416 if (t->to_stratum > process_stratum)
2419 error (_("The \"%s\" target does not support \"run\". "
2420 "Try \"help target\" or \"continue\"."),
2424 /* This function is only called if the target is running. In that
2425 case there should have been a process_stratum target and it
2426 should either know how to create inferiors, or not... */
2427 internal_error (__FILE__, __LINE__, _("No targets found"));
2430 /* Whether GDB is allowed to fall back to the default run target for
2431 "run", "attach", etc. when no target is connected yet. */
2432 static int auto_connect_native_target = 1;
2435 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2436 struct cmd_list_element *c, const char *value)
2438 fprintf_filtered (file,
2439 _("Whether GDB may automatically connect to the "
2440 "native target is %s.\n"),
2444 /* A pointer to the target that can respond to "run" or "attach".
2445 Native targets are always singletons and instantiated early at GDB
2447 static target_ops *the_native_target;
2452 set_native_target (target_ops *target)
2454 if (the_native_target != NULL)
2455 internal_error (__FILE__, __LINE__,
2456 _("native target already set (\"%s\")."),
2457 the_native_target->longname ());
2459 the_native_target = target;
2465 get_native_target ()
2467 return the_native_target;
2470 /* Look through the list of possible targets for a target that can
2471 execute a run or attach command without any other data. This is
2472 used to locate the default process stratum.
2474 If DO_MESG is not NULL, the result is always valid (error() is
2475 called for errors); else, return NULL on error. */
2477 static struct target_ops *
2478 find_default_run_target (const char *do_mesg)
2480 if (auto_connect_native_target && the_native_target != NULL)
2481 return the_native_target;
2483 if (do_mesg != NULL)
2484 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2491 find_attach_target (void)
2493 /* If a target on the current stack can attach, use it. */
2494 for (target_ops *t = target_stack; t != NULL; t = t->beneath)
2496 if (t->can_attach ())
2500 /* Otherwise, use the default run target for attaching. */
2501 return find_default_run_target ("attach");
2507 find_run_target (void)
2509 /* If a target on the current stack can run, use it. */
2510 for (target_ops *t = target_stack; t != NULL; t = t->beneath)
2512 if (t->can_create_inferior ())
2516 /* Otherwise, use the default run target. */
2517 return find_default_run_target ("run");
2521 target_ops::info_proc (const char *args, enum info_proc_what what)
2526 /* Implement the "info proc" command. */
2529 target_info_proc (const char *args, enum info_proc_what what)
2531 struct target_ops *t;
2533 /* If we're already connected to something that can get us OS
2534 related data, use it. Otherwise, try using the native
2536 t = find_target_at (process_stratum);
2538 t = find_default_run_target (NULL);
2540 for (; t != NULL; t = t->beneath)
2542 if (t->info_proc (args, what))
2545 fprintf_unfiltered (gdb_stdlog,
2546 "target_info_proc (\"%s\", %d)\n", args, what);
2556 find_default_supports_disable_randomization (struct target_ops *self)
2558 struct target_ops *t;
2560 t = find_default_run_target (NULL);
2562 return t->supports_disable_randomization ();
2567 target_supports_disable_randomization (void)
2569 return target_stack->supports_disable_randomization ();
2572 /* See target/target.h. */
2575 target_supports_multi_process (void)
2577 return target_stack->supports_multi_process ();
2582 gdb::optional<gdb::char_vector>
2583 target_get_osdata (const char *type)
2585 struct target_ops *t;
2587 /* If we're already connected to something that can get us OS
2588 related data, use it. Otherwise, try using the native
2590 t = find_target_at (process_stratum);
2592 t = find_default_run_target ("get OS data");
2597 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2600 static struct address_space *
2601 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2603 struct inferior *inf;
2605 /* Fall-back to the "main" address space of the inferior. */
2606 inf = find_inferior_ptid (ptid);
2608 if (inf == NULL || inf->aspace == NULL)
2609 internal_error (__FILE__, __LINE__,
2610 _("Can't determine the current "
2611 "address space of thread %s\n"),
2612 target_pid_to_str (ptid));
2617 /* Determine the current address space of thread PTID. */
2619 struct address_space *
2620 target_thread_address_space (ptid_t ptid)
2622 struct address_space *aspace;
2624 aspace = target_stack->thread_address_space (ptid);
2625 gdb_assert (aspace != NULL);
2631 target_ops::close ()
2636 target_ops::can_attach ()
2642 target_ops::attach (const char *, int)
2644 gdb_assert_not_reached ("target_ops::attach called");
2648 target_ops::can_create_inferior ()
2654 target_ops::create_inferior (const char *, const std::string &,
2657 gdb_assert_not_reached ("target_ops::create_inferior called");
2661 target_ops::can_run ()
2669 struct target_ops *t;
2671 for (t = target_stack; t != NULL; t = t->beneath)
2680 /* Target file operations. */
2682 static struct target_ops *
2683 default_fileio_target (void)
2685 struct target_ops *t;
2687 /* If we're already connected to something that can perform
2688 file I/O, use it. Otherwise, try using the native target. */
2689 t = find_target_at (process_stratum);
2692 return find_default_run_target ("file I/O");
2695 /* File handle for target file operations. */
2699 /* The target on which this file is open. NULL if the target is
2700 meanwhile closed while the handle is open. */
2703 /* The file descriptor on the target. */
2706 /* Check whether this fileio_fh_t represents a closed file. */
2709 return target_fd < 0;
2713 /* Vector of currently open file handles. The value returned by
2714 target_fileio_open and passed as the FD argument to other
2715 target_fileio_* functions is an index into this vector. This
2716 vector's entries are never freed; instead, files are marked as
2717 closed, and the handle becomes available for reuse. */
2718 static std::vector<fileio_fh_t> fileio_fhandles;
2720 /* Index into fileio_fhandles of the lowest handle that might be
2721 closed. This permits handle reuse without searching the whole
2722 list each time a new file is opened. */
2723 static int lowest_closed_fd;
2725 /* Invalidate the target associated with open handles that were open
2726 on target TARG, since we're about to close (and maybe destroy) the
2727 target. The handles remain open from the client's perspective, but
2728 trying to do anything with them other than closing them will fail
2732 fileio_handles_invalidate_target (target_ops *targ)
2734 for (fileio_fh_t &fh : fileio_fhandles)
2735 if (fh.target == targ)
2739 /* Acquire a target fileio file descriptor. */
2742 acquire_fileio_fd (target_ops *target, int target_fd)
2744 /* Search for closed handles to reuse. */
2745 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2747 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2749 if (fh.is_closed ())
2753 /* Push a new handle if no closed handles were found. */
2754 if (lowest_closed_fd == fileio_fhandles.size ())
2755 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2757 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2759 /* Should no longer be marked closed. */
2760 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2762 /* Return its index, and start the next lookup at
2764 return lowest_closed_fd++;
2767 /* Release a target fileio file descriptor. */
2770 release_fileio_fd (int fd, fileio_fh_t *fh)
2773 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2776 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2778 static fileio_fh_t *
2779 fileio_fd_to_fh (int fd)
2781 return &fileio_fhandles[fd];
2785 /* Default implementations of file i/o methods. We don't want these
2786 to delegate automatically, because we need to know which target
2787 supported the method, in order to call it directly from within
2788 pread/pwrite, etc. */
2791 target_ops::fileio_open (struct inferior *inf, const char *filename,
2792 int flags, int mode, int warn_if_slow,
2795 *target_errno = FILEIO_ENOSYS;
2800 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2801 ULONGEST offset, int *target_errno)
2803 *target_errno = FILEIO_ENOSYS;
2808 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2809 ULONGEST offset, int *target_errno)
2811 *target_errno = FILEIO_ENOSYS;
2816 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2818 *target_errno = FILEIO_ENOSYS;
2823 target_ops::fileio_close (int fd, int *target_errno)
2825 *target_errno = FILEIO_ENOSYS;
2830 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2833 *target_errno = FILEIO_ENOSYS;
2837 gdb::optional<std::string>
2838 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2841 *target_errno = FILEIO_ENOSYS;
2845 /* Helper for target_fileio_open and
2846 target_fileio_open_warn_if_slow. */
2849 target_fileio_open_1 (struct inferior *inf, const char *filename,
2850 int flags, int mode, int warn_if_slow,
2853 struct target_ops *t;
2855 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2857 int fd = t->fileio_open (inf, filename, flags, mode,
2858 warn_if_slow, target_errno);
2860 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2866 fd = acquire_fileio_fd (t, fd);
2869 fprintf_unfiltered (gdb_stdlog,
2870 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2872 inf == NULL ? 0 : inf->num,
2873 filename, flags, mode,
2875 fd != -1 ? 0 : *target_errno);
2879 *target_errno = FILEIO_ENOSYS;
2886 target_fileio_open (struct inferior *inf, const char *filename,
2887 int flags, int mode, int *target_errno)
2889 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2896 target_fileio_open_warn_if_slow (struct inferior *inf,
2897 const char *filename,
2898 int flags, int mode, int *target_errno)
2900 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2907 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2908 ULONGEST offset, int *target_errno)
2910 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2913 if (fh->is_closed ())
2914 *target_errno = EBADF;
2915 else if (fh->target == NULL)
2916 *target_errno = EIO;
2918 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2919 len, offset, target_errno);
2922 fprintf_unfiltered (gdb_stdlog,
2923 "target_fileio_pwrite (%d,...,%d,%s) "
2925 fd, len, pulongest (offset),
2926 ret, ret != -1 ? 0 : *target_errno);
2933 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2934 ULONGEST offset, int *target_errno)
2936 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2939 if (fh->is_closed ())
2940 *target_errno = EBADF;
2941 else if (fh->target == NULL)
2942 *target_errno = EIO;
2944 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2945 len, offset, target_errno);
2948 fprintf_unfiltered (gdb_stdlog,
2949 "target_fileio_pread (%d,...,%d,%s) "
2951 fd, len, pulongest (offset),
2952 ret, ret != -1 ? 0 : *target_errno);
2959 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2961 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2964 if (fh->is_closed ())
2965 *target_errno = EBADF;
2966 else if (fh->target == NULL)
2967 *target_errno = EIO;
2969 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2972 fprintf_unfiltered (gdb_stdlog,
2973 "target_fileio_fstat (%d) = %d (%d)\n",
2974 fd, ret, ret != -1 ? 0 : *target_errno);
2981 target_fileio_close (int fd, int *target_errno)
2983 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2986 if (fh->is_closed ())
2987 *target_errno = EBADF;
2990 if (fh->target != NULL)
2991 ret = fh->target->fileio_close (fh->target_fd,
2995 release_fileio_fd (fd, fh);
2999 fprintf_unfiltered (gdb_stdlog,
3000 "target_fileio_close (%d) = %d (%d)\n",
3001 fd, ret, ret != -1 ? 0 : *target_errno);
3008 target_fileio_unlink (struct inferior *inf, const char *filename,
3011 struct target_ops *t;
3013 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3015 int ret = t->fileio_unlink (inf, filename, target_errno);
3017 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
3021 fprintf_unfiltered (gdb_stdlog,
3022 "target_fileio_unlink (%d,%s)"
3024 inf == NULL ? 0 : inf->num, filename,
3025 ret, ret != -1 ? 0 : *target_errno);
3029 *target_errno = FILEIO_ENOSYS;
3035 gdb::optional<std::string>
3036 target_fileio_readlink (struct inferior *inf, const char *filename,
3039 struct target_ops *t;
3041 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3043 gdb::optional<std::string> ret
3044 = t->fileio_readlink (inf, filename, target_errno);
3046 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
3050 fprintf_unfiltered (gdb_stdlog,
3051 "target_fileio_readlink (%d,%s)"
3053 inf == NULL ? 0 : inf->num,
3054 filename, ret ? ret->c_str () : "(nil)",
3055 ret ? 0 : *target_errno);
3059 *target_errno = FILEIO_ENOSYS;
3063 /* Like scoped_fd, but specific to target fileio. */
3065 class scoped_target_fd
3068 explicit scoped_target_fd (int fd) noexcept
3073 ~scoped_target_fd ()
3079 target_fileio_close (m_fd, &target_errno);
3083 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3085 int get () const noexcept
3094 /* Read target file FILENAME, in the filesystem as seen by INF. If
3095 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3096 remote targets, the remote stub). Store the result in *BUF_P and
3097 return the size of the transferred data. PADDING additional bytes
3098 are available in *BUF_P. This is a helper function for
3099 target_fileio_read_alloc; see the declaration of that function for
3100 more information. */
3103 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3104 gdb_byte **buf_p, int padding)
3106 size_t buf_alloc, buf_pos;
3111 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3112 0700, &target_errno));
3113 if (fd.get () == -1)
3116 /* Start by reading up to 4K at a time. The target will throttle
3117 this number down if necessary. */
3119 buf = (gdb_byte *) xmalloc (buf_alloc);
3123 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3124 buf_alloc - buf_pos - padding, buf_pos,
3128 /* An error occurred. */
3134 /* Read all there was. */
3144 /* If the buffer is filling up, expand it. */
3145 if (buf_alloc < buf_pos * 2)
3148 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3158 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3161 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3166 gdb::unique_xmalloc_ptr<char>
3167 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3171 LONGEST i, transferred;
3173 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3174 bufstr = (char *) buffer;
3176 if (transferred < 0)
3177 return gdb::unique_xmalloc_ptr<char> (nullptr);
3179 if (transferred == 0)
3180 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3182 bufstr[transferred] = 0;
3184 /* Check for embedded NUL bytes; but allow trailing NULs. */
3185 for (i = strlen (bufstr); i < transferred; i++)
3188 warning (_("target file %s "
3189 "contained unexpected null characters"),
3194 return gdb::unique_xmalloc_ptr<char> (bufstr);
3199 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3200 CORE_ADDR addr, int len)
3202 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3206 default_watchpoint_addr_within_range (struct target_ops *target,
3208 CORE_ADDR start, int length)
3210 return addr >= start && addr < start + length;
3213 static struct gdbarch *
3214 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3216 inferior *inf = find_inferior_ptid (ptid);
3217 gdb_assert (inf != NULL);
3218 return inf->gdbarch;
3222 * Find the next target down the stack from the specified target.
3226 find_target_beneath (struct target_ops *t)
3234 find_target_at (enum strata stratum)
3236 struct target_ops *t;
3238 for (t = target_stack; t != NULL; t = t->beneath)
3239 if (t->to_stratum == stratum)
3250 target_announce_detach (int from_tty)
3253 const char *exec_file;
3258 exec_file = get_exec_file (0);
3259 if (exec_file == NULL)
3262 pid = ptid_get_pid (inferior_ptid);
3263 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3264 target_pid_to_str (pid_to_ptid (pid)));
3265 gdb_flush (gdb_stdout);
3268 /* The inferior process has died. Long live the inferior! */
3271 generic_mourn_inferior (void)
3275 ptid = inferior_ptid;
3276 inferior_ptid = null_ptid;
3278 /* Mark breakpoints uninserted in case something tries to delete a
3279 breakpoint while we delete the inferior's threads (which would
3280 fail, since the inferior is long gone). */
3281 mark_breakpoints_out ();
3283 if (!ptid_equal (ptid, null_ptid))
3285 int pid = ptid_get_pid (ptid);
3286 exit_inferior (pid);
3289 /* Note this wipes step-resume breakpoints, so needs to be done
3290 after exit_inferior, which ends up referencing the step-resume
3291 breakpoints through clear_thread_inferior_resources. */
3292 breakpoint_init_inferior (inf_exited);
3294 registers_changed ();
3296 reopen_exec_file ();
3297 reinit_frame_cache ();
3299 if (deprecated_detach_hook)
3300 deprecated_detach_hook ();
3303 /* Convert a normal process ID to a string. Returns the string in a
3307 normal_pid_to_str (ptid_t ptid)
3309 static char buf[32];
3311 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3316 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3318 return normal_pid_to_str (ptid);
3321 /* Error-catcher for target_find_memory_regions. */
3323 dummy_find_memory_regions (struct target_ops *self,
3324 find_memory_region_ftype ignore1, void *ignore2)
3326 error (_("Command not implemented for this target."));
3330 /* Error-catcher for target_make_corefile_notes. */
3332 dummy_make_corefile_notes (struct target_ops *self,
3333 bfd *ignore1, int *ignore2)
3335 error (_("Command not implemented for this target."));
3339 #include "target-delegates.c"
3342 static const target_info dummy_target_info = {
3348 dummy_target::dummy_target ()
3350 to_stratum = dummy_stratum;
3353 debug_target::debug_target ()
3355 to_stratum = debug_stratum;
3359 dummy_target::info () const
3361 return dummy_target_info;
3365 debug_target::info () const
3367 return beneath->info ();
3373 target_close (struct target_ops *targ)
3375 gdb_assert (!target_is_pushed (targ));
3377 fileio_handles_invalidate_target (targ);
3382 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3386 target_thread_alive (ptid_t ptid)
3388 return target_stack->thread_alive (ptid);
3392 target_update_thread_list (void)
3394 target_stack->update_thread_list ();
3398 target_stop (ptid_t ptid)
3402 warning (_("May not interrupt or stop the target, ignoring attempt"));
3406 target_stack->stop (ptid);
3414 warning (_("May not interrupt or stop the target, ignoring attempt"));
3418 target_stack->interrupt ();
3424 target_pass_ctrlc (void)
3426 target_stack->pass_ctrlc ();
3432 default_target_pass_ctrlc (struct target_ops *ops)
3434 target_interrupt ();
3437 /* See target/target.h. */
3440 target_stop_and_wait (ptid_t ptid)
3442 struct target_waitstatus status;
3443 int was_non_stop = non_stop;
3448 memset (&status, 0, sizeof (status));
3449 target_wait (ptid, &status, 0);
3451 non_stop = was_non_stop;
3454 /* See target/target.h. */
3457 target_continue_no_signal (ptid_t ptid)
3459 target_resume (ptid, 0, GDB_SIGNAL_0);
3462 /* See target/target.h. */
3465 target_continue (ptid_t ptid, enum gdb_signal signal)
3467 target_resume (ptid, 0, signal);
3470 /* Concatenate ELEM to LIST, a comma separate list, and return the
3471 result. The LIST incoming argument is released. */
3474 str_comma_list_concat_elem (char *list, const char *elem)
3477 return xstrdup (elem);
3479 return reconcat (list, list, ", ", elem, (char *) NULL);
3482 /* Helper for target_options_to_string. If OPT is present in
3483 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3484 Returns the new resulting string. OPT is removed from
3488 do_option (int *target_options, char *ret,
3489 int opt, const char *opt_str)
3491 if ((*target_options & opt) != 0)
3493 ret = str_comma_list_concat_elem (ret, opt_str);
3494 *target_options &= ~opt;
3501 target_options_to_string (int target_options)
3505 #define DO_TARG_OPTION(OPT) \
3506 ret = do_option (&target_options, ret, OPT, #OPT)
3508 DO_TARG_OPTION (TARGET_WNOHANG);
3510 if (target_options != 0)
3511 ret = str_comma_list_concat_elem (ret, "unknown???");
3519 target_fetch_registers (struct regcache *regcache, int regno)
3521 target_stack->fetch_registers (regcache, regno);
3523 regcache->debug_print_register ("target_fetch_registers", regno);
3527 target_store_registers (struct regcache *regcache, int regno)
3529 if (!may_write_registers)
3530 error (_("Writing to registers is not allowed (regno %d)"), regno);
3532 target_stack->store_registers (regcache, regno);
3535 regcache->debug_print_register ("target_store_registers", regno);
3540 target_core_of_thread (ptid_t ptid)
3542 return target_stack->core_of_thread (ptid);
3546 simple_verify_memory (struct target_ops *ops,
3547 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3549 LONGEST total_xfered = 0;
3551 while (total_xfered < size)
3553 ULONGEST xfered_len;
3554 enum target_xfer_status status;
3556 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3558 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3559 buf, NULL, lma + total_xfered, howmuch,
3561 if (status == TARGET_XFER_OK
3562 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3564 total_xfered += xfered_len;
3573 /* Default implementation of memory verification. */
3576 default_verify_memory (struct target_ops *self,
3577 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3579 /* Start over from the top of the target stack. */
3580 return simple_verify_memory (target_stack,
3581 data, memaddr, size);
3585 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3587 return target_stack->verify_memory (data, memaddr, size);
3590 /* The documentation for this function is in its prototype declaration in
3594 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3595 enum target_hw_bp_type rw)
3597 return target_stack->insert_mask_watchpoint (addr, mask, rw);
3600 /* The documentation for this function is in its prototype declaration in
3604 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3605 enum target_hw_bp_type rw)
3607 return target_stack->remove_mask_watchpoint (addr, mask, rw);
3610 /* The documentation for this function is in its prototype declaration
3614 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3616 return target_stack->masked_watch_num_registers (addr, mask);
3619 /* The documentation for this function is in its prototype declaration
3623 target_ranged_break_num_registers (void)
3625 return target_stack->ranged_break_num_registers ();
3630 struct btrace_target_info *
3631 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3633 return target_stack->enable_btrace (ptid, conf);
3639 target_disable_btrace (struct btrace_target_info *btinfo)
3641 target_stack->disable_btrace (btinfo);
3647 target_teardown_btrace (struct btrace_target_info *btinfo)
3649 target_stack->teardown_btrace (btinfo);
3655 target_read_btrace (struct btrace_data *btrace,
3656 struct btrace_target_info *btinfo,
3657 enum btrace_read_type type)
3659 return target_stack->read_btrace (btrace, btinfo, type);
3664 const struct btrace_config *
3665 target_btrace_conf (const struct btrace_target_info *btinfo)
3667 return target_stack->btrace_conf (btinfo);
3673 target_stop_recording (void)
3675 target_stack->stop_recording ();
3681 target_save_record (const char *filename)
3683 target_stack->save_record (filename);
3689 target_supports_delete_record ()
3691 return target_stack->supports_delete_record ();
3697 target_delete_record (void)
3699 target_stack->delete_record ();
3705 target_record_method (ptid_t ptid)
3707 return target_stack->record_method (ptid);
3713 target_record_is_replaying (ptid_t ptid)
3715 return target_stack->record_is_replaying (ptid);
3721 target_record_will_replay (ptid_t ptid, int dir)
3723 return target_stack->record_will_replay (ptid, dir);
3729 target_record_stop_replaying (void)
3731 target_stack->record_stop_replaying ();
3737 target_goto_record_begin (void)
3739 target_stack->goto_record_begin ();
3745 target_goto_record_end (void)
3747 target_stack->goto_record_end ();
3753 target_goto_record (ULONGEST insn)
3755 target_stack->goto_record (insn);
3761 target_insn_history (int size, gdb_disassembly_flags flags)
3763 target_stack->insn_history (size, flags);
3769 target_insn_history_from (ULONGEST from, int size,
3770 gdb_disassembly_flags flags)
3772 target_stack->insn_history_from (from, size, flags);
3778 target_insn_history_range (ULONGEST begin, ULONGEST end,
3779 gdb_disassembly_flags flags)
3781 target_stack->insn_history_range (begin, end, flags);
3787 target_call_history (int size, record_print_flags flags)
3789 target_stack->call_history (size, flags);
3795 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3797 target_stack->call_history_from (begin, size, flags);
3803 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3805 target_stack->call_history_range (begin, end, flags);
3810 const struct frame_unwind *
3811 target_get_unwinder (void)
3813 return target_stack->get_unwinder ();
3818 const struct frame_unwind *
3819 target_get_tailcall_unwinder (void)
3821 return target_stack->get_tailcall_unwinder ();
3827 target_prepare_to_generate_core (void)
3829 target_stack->prepare_to_generate_core ();
3835 target_done_generating_core (void)
3837 target_stack->done_generating_core ();
3842 static char targ_desc[] =
3843 "Names of targets and files being debugged.\nShows the entire \
3844 stack of targets currently in use (including the exec-file,\n\
3845 core-file, and process, if any), as well as the symbol file name.";
3848 default_rcmd (struct target_ops *self, const char *command,
3849 struct ui_file *output)
3851 error (_("\"monitor\" command not supported by this target."));
3855 do_monitor_command (const char *cmd, int from_tty)
3857 target_rcmd (cmd, gdb_stdtarg);
3860 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3864 flash_erase_command (const char *cmd, int from_tty)
3866 /* Used to communicate termination of flash operations to the target. */
3867 bool found_flash_region = false;
3868 struct gdbarch *gdbarch = target_gdbarch ();
3870 std::vector<mem_region> mem_regions = target_memory_map ();
3872 /* Iterate over all memory regions. */
3873 for (const mem_region &m : mem_regions)
3875 /* Is this a flash memory region? */
3876 if (m.attrib.mode == MEM_FLASH)
3878 found_flash_region = true;
3879 target_flash_erase (m.lo, m.hi - m.lo);
3881 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3883 current_uiout->message (_("Erasing flash memory region at address "));
3884 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3885 current_uiout->message (", size = ");
3886 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3887 current_uiout->message ("\n");
3891 /* Did we do any flash operations? If so, we need to finalize them. */
3892 if (found_flash_region)
3893 target_flash_done ();
3895 current_uiout->message (_("No flash memory regions found.\n"));
3898 /* Print the name of each layers of our target stack. */
3901 maintenance_print_target_stack (const char *cmd, int from_tty)
3903 struct target_ops *t;
3905 printf_filtered (_("The current target stack is:\n"));
3907 for (t = target_stack; t != NULL; t = t->beneath)
3909 if (t->to_stratum == debug_stratum)
3911 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3918 target_async (int enable)
3920 infrun_async (enable);
3921 target_stack->async (enable);
3927 target_thread_events (int enable)
3929 target_stack->thread_events (enable);
3932 /* Controls if targets can report that they can/are async. This is
3933 just for maintainers to use when debugging gdb. */
3934 int target_async_permitted = 1;
3936 /* The set command writes to this variable. If the inferior is
3937 executing, target_async_permitted is *not* updated. */
3938 static int target_async_permitted_1 = 1;
3941 maint_set_target_async_command (const char *args, int from_tty,
3942 struct cmd_list_element *c)
3944 if (have_live_inferiors ())
3946 target_async_permitted_1 = target_async_permitted;
3947 error (_("Cannot change this setting while the inferior is running."));
3950 target_async_permitted = target_async_permitted_1;
3954 maint_show_target_async_command (struct ui_file *file, int from_tty,
3955 struct cmd_list_element *c,
3958 fprintf_filtered (file,
3959 _("Controlling the inferior in "
3960 "asynchronous mode is %s.\n"), value);
3963 /* Return true if the target operates in non-stop mode even with "set
3967 target_always_non_stop_p (void)
3969 return target_stack->always_non_stop_p ();
3975 target_is_non_stop_p (void)
3978 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3979 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3980 && target_always_non_stop_p ()));
3983 /* Controls if targets can report that they always run in non-stop
3984 mode. This is just for maintainers to use when debugging gdb. */
3985 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3987 /* The set command writes to this variable. If the inferior is
3988 executing, target_non_stop_enabled is *not* updated. */
3989 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3991 /* Implementation of "maint set target-non-stop". */
3994 maint_set_target_non_stop_command (const char *args, int from_tty,
3995 struct cmd_list_element *c)
3997 if (have_live_inferiors ())
3999 target_non_stop_enabled_1 = target_non_stop_enabled;
4000 error (_("Cannot change this setting while the inferior is running."));
4003 target_non_stop_enabled = target_non_stop_enabled_1;
4006 /* Implementation of "maint show target-non-stop". */
4009 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
4010 struct cmd_list_element *c,
4013 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4014 fprintf_filtered (file,
4015 _("Whether the target is always in non-stop mode "
4016 "is %s (currently %s).\n"), value,
4017 target_always_non_stop_p () ? "on" : "off");
4019 fprintf_filtered (file,
4020 _("Whether the target is always in non-stop mode "
4021 "is %s.\n"), value);
4024 /* Temporary copies of permission settings. */
4026 static int may_write_registers_1 = 1;
4027 static int may_write_memory_1 = 1;
4028 static int may_insert_breakpoints_1 = 1;
4029 static int may_insert_tracepoints_1 = 1;
4030 static int may_insert_fast_tracepoints_1 = 1;
4031 static int may_stop_1 = 1;
4033 /* Make the user-set values match the real values again. */
4036 update_target_permissions (void)
4038 may_write_registers_1 = may_write_registers;
4039 may_write_memory_1 = may_write_memory;
4040 may_insert_breakpoints_1 = may_insert_breakpoints;
4041 may_insert_tracepoints_1 = may_insert_tracepoints;
4042 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4043 may_stop_1 = may_stop;
4046 /* The one function handles (most of) the permission flags in the same
4050 set_target_permissions (const char *args, int from_tty,
4051 struct cmd_list_element *c)
4053 if (target_has_execution)
4055 update_target_permissions ();
4056 error (_("Cannot change this setting while the inferior is running."));
4059 /* Make the real values match the user-changed values. */
4060 may_write_registers = may_write_registers_1;
4061 may_insert_breakpoints = may_insert_breakpoints_1;
4062 may_insert_tracepoints = may_insert_tracepoints_1;
4063 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4064 may_stop = may_stop_1;
4065 update_observer_mode ();
4068 /* Set memory write permission independently of observer mode. */
4071 set_write_memory_permission (const char *args, int from_tty,
4072 struct cmd_list_element *c)
4074 /* Make the real values match the user-changed values. */
4075 may_write_memory = may_write_memory_1;
4076 update_observer_mode ();
4080 initialize_targets (void)
4082 the_dummy_target = new dummy_target ();
4083 push_target (the_dummy_target);
4085 the_debug_target = new debug_target ();
4087 add_info ("target", info_target_command, targ_desc);
4088 add_info ("files", info_target_command, targ_desc);
4090 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4091 Set target debugging."), _("\
4092 Show target debugging."), _("\
4093 When non-zero, target debugging is enabled. Higher numbers are more\n\
4097 &setdebuglist, &showdebuglist);
4099 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4100 &trust_readonly, _("\
4101 Set mode for reading from readonly sections."), _("\
4102 Show mode for reading from readonly sections."), _("\
4103 When this mode is on, memory reads from readonly sections (such as .text)\n\
4104 will be read from the object file instead of from the target. This will\n\
4105 result in significant performance improvement for remote targets."),
4107 show_trust_readonly,
4108 &setlist, &showlist);
4110 add_com ("monitor", class_obscure, do_monitor_command,
4111 _("Send a command to the remote monitor (remote targets only)."));
4113 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4114 _("Print the name of each layer of the internal target stack."),
4115 &maintenanceprintlist);
4117 add_setshow_boolean_cmd ("target-async", no_class,
4118 &target_async_permitted_1, _("\
4119 Set whether gdb controls the inferior in asynchronous mode."), _("\
4120 Show whether gdb controls the inferior in asynchronous mode."), _("\
4121 Tells gdb whether to control the inferior in asynchronous mode."),
4122 maint_set_target_async_command,
4123 maint_show_target_async_command,
4124 &maintenance_set_cmdlist,
4125 &maintenance_show_cmdlist);
4127 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4128 &target_non_stop_enabled_1, _("\
4129 Set whether gdb always controls the inferior in non-stop mode."), _("\
4130 Show whether gdb always controls the inferior in non-stop mode."), _("\
4131 Tells gdb whether to control the inferior in non-stop mode."),
4132 maint_set_target_non_stop_command,
4133 maint_show_target_non_stop_command,
4134 &maintenance_set_cmdlist,
4135 &maintenance_show_cmdlist);
4137 add_setshow_boolean_cmd ("may-write-registers", class_support,
4138 &may_write_registers_1, _("\
4139 Set permission to write into registers."), _("\
4140 Show permission to write into registers."), _("\
4141 When this permission is on, GDB may write into the target's registers.\n\
4142 Otherwise, any sort of write attempt will result in an error."),
4143 set_target_permissions, NULL,
4144 &setlist, &showlist);
4146 add_setshow_boolean_cmd ("may-write-memory", class_support,
4147 &may_write_memory_1, _("\
4148 Set permission to write into target memory."), _("\
4149 Show permission to write into target memory."), _("\
4150 When this permission is on, GDB may write into the target's memory.\n\
4151 Otherwise, any sort of write attempt will result in an error."),
4152 set_write_memory_permission, NULL,
4153 &setlist, &showlist);
4155 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4156 &may_insert_breakpoints_1, _("\
4157 Set permission to insert breakpoints in the target."), _("\
4158 Show permission to insert breakpoints in the target."), _("\
4159 When this permission is on, GDB may insert breakpoints in the program.\n\
4160 Otherwise, any sort of insertion attempt will result in an error."),
4161 set_target_permissions, NULL,
4162 &setlist, &showlist);
4164 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4165 &may_insert_tracepoints_1, _("\
4166 Set permission to insert tracepoints in the target."), _("\
4167 Show permission to insert tracepoints in the target."), _("\
4168 When this permission is on, GDB may insert tracepoints in the program.\n\
4169 Otherwise, any sort of insertion attempt will result in an error."),
4170 set_target_permissions, NULL,
4171 &setlist, &showlist);
4173 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4174 &may_insert_fast_tracepoints_1, _("\
4175 Set permission to insert fast tracepoints in the target."), _("\
4176 Show permission to insert fast tracepoints in the target."), _("\
4177 When this permission is on, GDB may insert fast tracepoints.\n\
4178 Otherwise, any sort of insertion attempt will result in an error."),
4179 set_target_permissions, NULL,
4180 &setlist, &showlist);
4182 add_setshow_boolean_cmd ("may-interrupt", class_support,
4184 Set permission to interrupt or signal the target."), _("\
4185 Show permission to interrupt or signal the target."), _("\
4186 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4187 Otherwise, any attempt to interrupt or stop will be ignored."),
4188 set_target_permissions, NULL,
4189 &setlist, &showlist);
4191 add_com ("flash-erase", no_class, flash_erase_command,
4192 _("Erase all flash memory regions."));
4194 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4195 &auto_connect_native_target, _("\
4196 Set whether GDB may automatically connect to the native target."), _("\
4197 Show whether GDB may automatically connect to the native target."), _("\
4198 When on, and GDB is not connected to a target yet, GDB\n\
4199 attempts \"run\" and other commands with the native target."),
4200 NULL, show_auto_connect_native_target,
4201 &setlist, &showlist);