1 /* Select target systems and architectures at runtime for GDB.
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
5 Contributed by Cygnus Support.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "target-dcache.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
45 #include "target-debug.h"
47 #include "event-top.h"
49 #include "byte-vector.h"
52 #include <unordered_map>
54 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
56 static void default_terminal_info (struct target_ops *, const char *, int);
58 static int default_watchpoint_addr_within_range (struct target_ops *,
59 CORE_ADDR, CORE_ADDR, int);
61 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
64 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
66 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
69 static int default_follow_fork (struct target_ops *self, int follow_child,
72 static void default_mourn_inferior (struct target_ops *self);
74 static int default_search_memory (struct target_ops *ops,
76 ULONGEST search_space_len,
77 const gdb_byte *pattern,
79 CORE_ADDR *found_addrp);
81 static int default_verify_memory (struct target_ops *self,
83 CORE_ADDR memaddr, ULONGEST size);
85 static struct address_space *default_thread_address_space
86 (struct target_ops *self, ptid_t ptid);
88 static void tcomplain (void) ATTRIBUTE_NORETURN;
90 static struct target_ops *find_default_run_target (const char *);
92 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
95 static int dummy_find_memory_regions (struct target_ops *self,
96 find_memory_region_ftype ignore1,
99 static char *dummy_make_corefile_notes (struct target_ops *self,
100 bfd *ignore1, int *ignore2);
102 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104 static enum exec_direction_kind default_execution_direction
105 (struct target_ops *self);
107 /* Mapping between target_info objects (which have address identity)
108 and corresponding open/factory function/callback. Each add_target
109 call adds one entry to this map, and registers a "target
110 TARGET_NAME" command that when invoked calls the factory registered
111 here. The target_info object is associated with the command via
112 the command's context. */
113 static std::unordered_map<const target_info *, target_open_ftype *>
116 /* The initial current target, so that there is always a semi-valid
119 static struct target_ops *the_dummy_target;
120 static struct target_ops *the_debug_target;
122 /* The target stack. */
124 static target_stack g_target_stack;
126 /* Top of target stack. */
127 /* The target structure we are currently using to talk to a process
128 or file or whatever "inferior" we have. */
131 current_top_target ()
133 return g_target_stack.top ();
136 /* Command list for target. */
138 static struct cmd_list_element *targetlist = NULL;
140 /* Nonzero if we should trust readonly sections from the
141 executable when reading memory. */
143 static int trust_readonly = 0;
145 /* Nonzero if we should show true memory content including
146 memory breakpoint inserted by gdb. */
148 static int show_memory_breakpoints = 0;
150 /* These globals control whether GDB attempts to perform these
151 operations; they are useful for targets that need to prevent
152 inadvertant disruption, such as in non-stop mode. */
154 int may_write_registers = 1;
156 int may_write_memory = 1;
158 int may_insert_breakpoints = 1;
160 int may_insert_tracepoints = 1;
162 int may_insert_fast_tracepoints = 1;
166 /* Non-zero if we want to see trace of target level stuff. */
168 static unsigned int targetdebug = 0;
171 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
174 push_target (the_debug_target);
176 unpush_target (the_debug_target);
180 show_targetdebug (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
183 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
186 /* The user just typed 'target' without the name of a target. */
189 target_command (const char *arg, int from_tty)
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
196 namespace selftests {
198 /* A mock process_stratum target_ops that doesn't read/write registers
201 static const target_info test_target_info = {
203 N_("unit tests target"),
204 N_("You should never see this"),
208 test_target_ops::info () const
210 return test_target_info;
213 } /* namespace selftests */
214 #endif /* GDB_SELF_TEST */
216 /* Default target_has_* methods for process_stratum targets. */
219 default_child_has_all_memory ()
221 /* If no inferior selected, then we can't read memory here. */
222 if (ptid_equal (inferior_ptid, null_ptid))
229 default_child_has_memory ()
231 /* If no inferior selected, then we can't read memory here. */
232 if (ptid_equal (inferior_ptid, null_ptid))
239 default_child_has_stack ()
241 /* If no inferior selected, there's no stack. */
242 if (ptid_equal (inferior_ptid, null_ptid))
249 default_child_has_registers ()
251 /* Can't read registers from no inferior. */
252 if (ptid_equal (inferior_ptid, null_ptid))
259 default_child_has_execution (ptid_t the_ptid)
261 /* If there's no thread selected, then we can't make it run through
263 if (ptid_equal (the_ptid, null_ptid))
271 target_has_all_memory_1 (void)
273 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
274 if (t->has_all_memory ())
281 target_has_memory_1 (void)
283 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
284 if (t->has_memory ())
291 target_has_stack_1 (void)
293 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
301 target_has_registers_1 (void)
303 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
304 if (t->has_registers ())
311 target_has_execution_1 (ptid_t the_ptid)
313 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
314 if (t->has_execution (the_ptid))
321 target_has_execution_current (void)
323 return target_has_execution_1 (inferior_ptid);
326 /* This is used to implement the various target commands. */
329 open_target (const char *args, int from_tty, struct cmd_list_element *command)
331 auto *ti = static_cast<target_info *> (get_cmd_context (command));
332 target_open_ftype *func = target_factories[ti];
335 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
338 func (args, from_tty);
341 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
342 ti->shortname, args, from_tty);
348 add_target (const target_info &t, target_open_ftype *func,
349 completer_ftype *completer)
351 struct cmd_list_element *c;
353 auto &func_slot = target_factories[&t];
354 if (func_slot != nullptr)
355 internal_error (__FILE__, __LINE__,
356 _("target already added (\"%s\")."), t.shortname);
359 if (targetlist == NULL)
360 add_prefix_cmd ("target", class_run, target_command, _("\
361 Connect to a target machine or process.\n\
362 The first argument is the type or protocol of the target machine.\n\
363 Remaining arguments are interpreted by the target protocol. For more\n\
364 information on the arguments for a particular protocol, type\n\
365 `help target ' followed by the protocol name."),
366 &targetlist, "target ", 0, &cmdlist);
367 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
368 set_cmd_context (c, (void *) &t);
369 set_cmd_sfunc (c, open_target);
370 if (completer != NULL)
371 set_cmd_completer (c, completer);
377 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
379 struct cmd_list_element *c;
382 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
384 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
385 set_cmd_sfunc (c, open_target);
386 set_cmd_context (c, (void *) &tinfo);
387 alt = xstrprintf ("target %s", tinfo.shortname);
388 deprecate_cmd (c, alt);
396 current_top_target ()->kill ();
400 target_load (const char *arg, int from_tty)
402 target_dcache_invalidate ();
403 current_top_target ()->load (arg, from_tty);
408 target_terminal_state target_terminal::m_terminal_state
409 = target_terminal_state::is_ours;
411 /* See target/target.h. */
414 target_terminal::init (void)
416 current_top_target ()->terminal_init ();
418 m_terminal_state = target_terminal_state::is_ours;
421 /* See target/target.h. */
424 target_terminal::inferior (void)
426 struct ui *ui = current_ui;
428 /* A background resume (``run&'') should leave GDB in control of the
430 if (ui->prompt_state != PROMPT_BLOCKED)
433 /* Since we always run the inferior in the main console (unless "set
434 inferior-tty" is in effect), when some UI other than the main one
435 calls target_terminal::inferior, then we leave the main UI's
436 terminal settings as is. */
440 /* If GDB is resuming the inferior in the foreground, install
441 inferior's terminal modes. */
443 struct inferior *inf = current_inferior ();
445 if (inf->terminal_state != target_terminal_state::is_inferior)
447 current_top_target ()->terminal_inferior ();
448 inf->terminal_state = target_terminal_state::is_inferior;
451 m_terminal_state = target_terminal_state::is_inferior;
453 /* If the user hit C-c before, pretend that it was hit right
455 if (check_quit_flag ())
456 target_pass_ctrlc ();
459 /* See target/target.h. */
462 target_terminal::restore_inferior (void)
464 struct ui *ui = current_ui;
466 /* See target_terminal::inferior(). */
467 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
470 /* Restore the terminal settings of inferiors that were in the
471 foreground but are now ours_for_output due to a temporary
472 target_target::ours_for_output() call. */
475 scoped_restore_current_inferior restore_inferior;
476 struct inferior *inf;
480 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
482 set_current_inferior (inf);
483 current_top_target ()->terminal_inferior ();
484 inf->terminal_state = target_terminal_state::is_inferior;
489 m_terminal_state = target_terminal_state::is_inferior;
491 /* If the user hit C-c before, pretend that it was hit right
493 if (check_quit_flag ())
494 target_pass_ctrlc ();
497 /* Switch terminal state to DESIRED_STATE, either is_ours, or
498 is_ours_for_output. */
501 target_terminal_is_ours_kind (target_terminal_state desired_state)
503 scoped_restore_current_inferior restore_inferior;
504 struct inferior *inf;
506 /* Must do this in two passes. First, have all inferiors save the
507 current terminal settings. Then, after all inferiors have add a
508 chance to safely save the terminal settings, restore GDB's
509 terminal settings. */
513 if (inf->terminal_state == target_terminal_state::is_inferior)
515 set_current_inferior (inf);
516 current_top_target ()->terminal_save_inferior ();
522 /* Note we don't check is_inferior here like above because we
523 need to handle 'is_ours_for_output -> is_ours' too. Careful
524 to never transition from 'is_ours' to 'is_ours_for_output',
526 if (inf->terminal_state != target_terminal_state::is_ours
527 && inf->terminal_state != desired_state)
529 set_current_inferior (inf);
530 if (desired_state == target_terminal_state::is_ours)
531 current_top_target ()->terminal_ours ();
532 else if (desired_state == target_terminal_state::is_ours_for_output)
533 current_top_target ()->terminal_ours_for_output ();
535 gdb_assert_not_reached ("unhandled desired state");
536 inf->terminal_state = desired_state;
541 /* See target/target.h. */
544 target_terminal::ours ()
546 struct ui *ui = current_ui;
548 /* See target_terminal::inferior. */
552 if (m_terminal_state == target_terminal_state::is_ours)
555 target_terminal_is_ours_kind (target_terminal_state::is_ours);
556 m_terminal_state = target_terminal_state::is_ours;
559 /* See target/target.h. */
562 target_terminal::ours_for_output ()
564 struct ui *ui = current_ui;
566 /* See target_terminal::inferior. */
570 if (!target_terminal::is_inferior ())
573 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
574 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
577 /* See target/target.h. */
580 target_terminal::info (const char *arg, int from_tty)
582 current_top_target ()->terminal_info (arg, from_tty);
588 target_supports_terminal_ours (void)
590 return current_top_target ()->supports_terminal_ours ();
596 error (_("You can't do that when your target is `%s'"),
597 current_top_target ()->shortname ());
603 error (_("You can't do that without a process to debug."));
607 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
609 printf_unfiltered (_("No saved terminal information.\n"));
612 /* A default implementation for the to_get_ada_task_ptid target method.
614 This function builds the PTID by using both LWP and TID as part of
615 the PTID lwp and tid elements. The pid used is the pid of the
619 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
621 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
624 static enum exec_direction_kind
625 default_execution_direction (struct target_ops *self)
627 if (!target_can_execute_reverse)
629 else if (!target_can_async_p ())
632 gdb_assert_not_reached ("\
633 to_execution_direction must be implemented for reverse async");
639 target_stack::push (target_ops *t)
641 /* If there's already a target at this stratum, remove it. */
642 if (m_stack[t->to_stratum] != NULL)
644 target_ops *prev = m_stack[t->to_stratum];
645 m_stack[t->to_stratum] = NULL;
649 /* Now add the new one. */
650 m_stack[t->to_stratum] = t;
652 if (m_top < t->to_stratum)
653 m_top = t->to_stratum;
659 push_target (struct target_ops *t)
661 g_target_stack.push (t);
667 unpush_target (struct target_ops *t)
669 return g_target_stack.unpush (t);
675 target_stack::unpush (target_ops *t)
677 struct target_ops **cur;
678 struct target_ops *tmp;
680 if (t->to_stratum == dummy_stratum)
681 internal_error (__FILE__, __LINE__,
682 _("Attempt to unpush the dummy target"));
684 gdb_assert (t != NULL);
686 /* Look for the specified target. Note that a target can only occur
687 once in the target stack. */
689 if (m_stack[t->to_stratum] != t)
691 /* If T wasn't pushed, quit. Only open targets should be
696 /* Unchain the target. */
697 m_stack[t->to_stratum] = NULL;
699 if (m_top == t->to_stratum)
700 m_top = t->beneath ()->to_stratum;
702 /* Finally close the target. Note we do this after unchaining, so
703 any target method calls from within the target_close
704 implementation don't end up in T anymore. */
710 /* Unpush TARGET and assert that it worked. */
713 unpush_target_and_assert (struct target_ops *target)
715 if (!unpush_target (target))
717 fprintf_unfiltered (gdb_stderr,
718 "pop_all_targets couldn't find target %s\n",
719 target->shortname ());
720 internal_error (__FILE__, __LINE__,
721 _("failed internal consistency check"));
726 pop_all_targets_above (enum strata above_stratum)
728 while ((int) (current_top_target ()->to_stratum) > (int) above_stratum)
729 unpush_target_and_assert (current_top_target ());
735 pop_all_targets_at_and_above (enum strata stratum)
737 while ((int) (current_top_target ()->to_stratum) >= (int) stratum)
738 unpush_target_and_assert (current_top_target ());
742 pop_all_targets (void)
744 pop_all_targets_above (dummy_stratum);
747 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
750 target_is_pushed (struct target_ops *t)
752 return g_target_stack.is_pushed (t);
755 /* Default implementation of to_get_thread_local_address. */
758 generic_tls_error (void)
760 throw_error (TLS_GENERIC_ERROR,
761 _("Cannot find thread-local variables on this target"));
764 /* Using the objfile specified in OBJFILE, find the address for the
765 current thread's thread-local storage with offset OFFSET. */
767 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
769 volatile CORE_ADDR addr = 0;
770 struct target_ops *target = current_top_target ();
772 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
774 ptid_t ptid = inferior_ptid;
780 /* Fetch the load module address for this objfile. */
781 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
784 addr = target->get_thread_local_address (ptid, lm_addr, offset);
786 /* If an error occurred, print TLS related messages here. Otherwise,
787 throw the error to some higher catcher. */
788 CATCH (ex, RETURN_MASK_ALL)
790 int objfile_is_library = (objfile->flags & OBJF_SHARED);
794 case TLS_NO_LIBRARY_SUPPORT_ERROR:
795 error (_("Cannot find thread-local variables "
796 "in this thread library."));
798 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
799 if (objfile_is_library)
800 error (_("Cannot find shared library `%s' in dynamic"
801 " linker's load module list"), objfile_name (objfile));
803 error (_("Cannot find executable file `%s' in dynamic"
804 " linker's load module list"), objfile_name (objfile));
806 case TLS_NOT_ALLOCATED_YET_ERROR:
807 if (objfile_is_library)
808 error (_("The inferior has not yet allocated storage for"
809 " thread-local variables in\n"
810 "the shared library `%s'\n"
812 objfile_name (objfile), target_pid_to_str (ptid));
814 error (_("The inferior has not yet allocated storage for"
815 " thread-local variables in\n"
816 "the executable `%s'\n"
818 objfile_name (objfile), target_pid_to_str (ptid));
820 case TLS_GENERIC_ERROR:
821 if (objfile_is_library)
822 error (_("Cannot find thread-local storage for %s, "
823 "shared library %s:\n%s"),
824 target_pid_to_str (ptid),
825 objfile_name (objfile), ex.message);
827 error (_("Cannot find thread-local storage for %s, "
828 "executable file %s:\n%s"),
829 target_pid_to_str (ptid),
830 objfile_name (objfile), ex.message);
833 throw_exception (ex);
839 /* It wouldn't be wrong here to try a gdbarch method, too; finding
840 TLS is an ABI-specific thing. But we don't do that yet. */
842 error (_("Cannot find thread-local variables on this target"));
848 target_xfer_status_to_string (enum target_xfer_status status)
850 #define CASE(X) case X: return #X
853 CASE(TARGET_XFER_E_IO);
854 CASE(TARGET_XFER_UNAVAILABLE);
863 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
865 /* target_read_string -- read a null terminated string, up to LEN bytes,
866 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
867 Set *STRING to a pointer to malloc'd memory containing the data; the caller
868 is responsible for freeing it. Return the number of bytes successfully
872 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
873 int len, int *errnop)
879 int buffer_allocated;
881 unsigned int nbytes_read = 0;
885 /* Small for testing. */
886 buffer_allocated = 4;
887 buffer = (char *) xmalloc (buffer_allocated);
892 tlen = MIN (len, 4 - (memaddr & 3));
893 offset = memaddr & 3;
895 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
898 /* The transfer request might have crossed the boundary to an
899 unallocated region of memory. Retry the transfer, requesting
903 errcode = target_read_memory (memaddr, buf, 1);
908 if (bufptr - buffer + tlen > buffer_allocated)
912 bytes = bufptr - buffer;
913 buffer_allocated *= 2;
914 buffer = (char *) xrealloc (buffer, buffer_allocated);
915 bufptr = buffer + bytes;
918 for (i = 0; i < tlen; i++)
920 *bufptr++ = buf[i + offset];
921 if (buf[i + offset] == '\000')
923 nbytes_read += i + 1;
933 string->reset (buffer);
939 struct target_section_table *
940 target_get_section_table (struct target_ops *target)
942 return target->get_section_table ();
945 /* Find a section containing ADDR. */
947 struct target_section *
948 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
950 struct target_section_table *table = target_get_section_table (target);
951 struct target_section *secp;
956 for (secp = table->sections; secp < table->sections_end; secp++)
958 if (addr >= secp->addr && addr < secp->endaddr)
965 /* Helper for the memory xfer routines. Checks the attributes of the
966 memory region of MEMADDR against the read or write being attempted.
967 If the access is permitted returns true, otherwise returns false.
968 REGION_P is an optional output parameter. If not-NULL, it is
969 filled with a pointer to the memory region of MEMADDR. REG_LEN
970 returns LEN trimmed to the end of the region. This is how much the
971 caller can continue requesting, if the access is permitted. A
972 single xfer request must not straddle memory region boundaries. */
975 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
976 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
977 struct mem_region **region_p)
979 struct mem_region *region;
981 region = lookup_mem_region (memaddr);
983 if (region_p != NULL)
986 switch (region->attrib.mode)
989 if (writebuf != NULL)
999 /* We only support writing to flash during "load" for now. */
1000 if (writebuf != NULL)
1001 error (_("Writing to flash memory forbidden in this context"));
1008 /* region->hi == 0 means there's no upper bound. */
1009 if (memaddr + len < region->hi || region->hi == 0)
1012 *reg_len = region->hi - memaddr;
1017 /* Read memory from more than one valid target. A core file, for
1018 instance, could have some of memory but delegate other bits to
1019 the target below it. So, we must manually try all targets. */
1021 enum target_xfer_status
1022 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1023 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1024 ULONGEST *xfered_len)
1026 enum target_xfer_status res;
1030 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
1031 readbuf, writebuf, memaddr, len,
1033 if (res == TARGET_XFER_OK)
1036 /* Stop if the target reports that the memory is not available. */
1037 if (res == TARGET_XFER_UNAVAILABLE)
1040 /* We want to continue past core files to executables, but not
1041 past a running target's memory. */
1042 if (ops->has_all_memory ())
1045 ops = ops->beneath ();
1047 while (ops != NULL);
1049 /* The cache works at the raw memory level. Make sure the cache
1050 gets updated with raw contents no matter what kind of memory
1051 object was originally being written. Note we do write-through
1052 first, so that if it fails, we don't write to the cache contents
1053 that never made it to the target. */
1054 if (writebuf != NULL
1055 && !ptid_equal (inferior_ptid, null_ptid)
1056 && target_dcache_init_p ()
1057 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1059 DCACHE *dcache = target_dcache_get ();
1061 /* Note that writing to an area of memory which wasn't present
1062 in the cache doesn't cause it to be loaded in. */
1063 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1069 /* Perform a partial memory transfer.
1070 For docs see target.h, to_xfer_partial. */
1072 static enum target_xfer_status
1073 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1074 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1075 ULONGEST len, ULONGEST *xfered_len)
1077 enum target_xfer_status res;
1079 struct mem_region *region;
1080 struct inferior *inf;
1082 /* For accesses to unmapped overlay sections, read directly from
1083 files. Must do this first, as MEMADDR may need adjustment. */
1084 if (readbuf != NULL && overlay_debugging)
1086 struct obj_section *section = find_pc_overlay (memaddr);
1088 if (pc_in_unmapped_range (memaddr, section))
1090 struct target_section_table *table
1091 = target_get_section_table (ops);
1092 const char *section_name = section->the_bfd_section->name;
1094 memaddr = overlay_mapped_address (memaddr, section);
1095 return section_table_xfer_memory_partial (readbuf, writebuf,
1096 memaddr, len, xfered_len,
1098 table->sections_end,
1103 /* Try the executable files, if "trust-readonly-sections" is set. */
1104 if (readbuf != NULL && trust_readonly)
1106 struct target_section *secp;
1107 struct target_section_table *table;
1109 secp = target_section_by_addr (ops, memaddr);
1111 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1112 secp->the_bfd_section)
1115 table = target_get_section_table (ops);
1116 return section_table_xfer_memory_partial (readbuf, writebuf,
1117 memaddr, len, xfered_len,
1119 table->sections_end,
1124 /* Try GDB's internal data cache. */
1126 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, ®_len,
1128 return TARGET_XFER_E_IO;
1130 if (!ptid_equal (inferior_ptid, null_ptid))
1131 inf = find_inferior_ptid (inferior_ptid);
1137 /* The dcache reads whole cache lines; that doesn't play well
1138 with reading from a trace buffer, because reading outside of
1139 the collected memory range fails. */
1140 && get_traceframe_number () == -1
1141 && (region->attrib.cache
1142 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1143 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1145 DCACHE *dcache = target_dcache_get_or_init ();
1147 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1148 reg_len, xfered_len);
1151 /* If none of those methods found the memory we wanted, fall back
1152 to a target partial transfer. Normally a single call to
1153 to_xfer_partial is enough; if it doesn't recognize an object
1154 it will call the to_xfer_partial of the next target down.
1155 But for memory this won't do. Memory is the only target
1156 object which can be read from more than one valid target.
1157 A core file, for instance, could have some of memory but
1158 delegate other bits to the target below it. So, we must
1159 manually try all targets. */
1161 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1164 /* If we still haven't got anything, return the last error. We
1169 /* Perform a partial memory transfer. For docs see target.h,
1172 static enum target_xfer_status
1173 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1174 gdb_byte *readbuf, const gdb_byte *writebuf,
1175 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1177 enum target_xfer_status res;
1179 /* Zero length requests are ok and require no work. */
1181 return TARGET_XFER_EOF;
1183 memaddr = address_significant (target_gdbarch (), memaddr);
1185 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1186 breakpoint insns, thus hiding out from higher layers whether
1187 there are software breakpoints inserted in the code stream. */
1188 if (readbuf != NULL)
1190 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1193 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1194 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1198 /* A large write request is likely to be partially satisfied
1199 by memory_xfer_partial_1. We will continually malloc
1200 and free a copy of the entire write request for breakpoint
1201 shadow handling even though we only end up writing a small
1202 subset of it. Cap writes to a limit specified by the target
1203 to mitigate this. */
1204 len = std::min (ops->get_memory_xfer_limit (), len);
1206 gdb::byte_vector buf (writebuf, writebuf + len);
1207 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1208 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1215 scoped_restore_tmpl<int>
1216 make_scoped_restore_show_memory_breakpoints (int show)
1218 return make_scoped_restore (&show_memory_breakpoints, show);
1221 /* For docs see target.h, to_xfer_partial. */
1223 enum target_xfer_status
1224 target_xfer_partial (struct target_ops *ops,
1225 enum target_object object, const char *annex,
1226 gdb_byte *readbuf, const gdb_byte *writebuf,
1227 ULONGEST offset, ULONGEST len,
1228 ULONGEST *xfered_len)
1230 enum target_xfer_status retval;
1232 /* Transfer is done when LEN is zero. */
1234 return TARGET_XFER_EOF;
1236 if (writebuf && !may_write_memory)
1237 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1238 core_addr_to_string_nz (offset), plongest (len));
1242 /* If this is a memory transfer, let the memory-specific code
1243 have a look at it instead. Memory transfers are more
1245 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1246 || object == TARGET_OBJECT_CODE_MEMORY)
1247 retval = memory_xfer_partial (ops, object, readbuf,
1248 writebuf, offset, len, xfered_len);
1249 else if (object == TARGET_OBJECT_RAW_MEMORY)
1251 /* Skip/avoid accessing the target if the memory region
1252 attributes block the access. Check this here instead of in
1253 raw_memory_xfer_partial as otherwise we'd end up checking
1254 this twice in the case of the memory_xfer_partial path is
1255 taken; once before checking the dcache, and another in the
1256 tail call to raw_memory_xfer_partial. */
1257 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1259 return TARGET_XFER_E_IO;
1261 /* Request the normal memory object from other layers. */
1262 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1266 retval = ops->xfer_partial (object, annex, readbuf,
1267 writebuf, offset, len, xfered_len);
1271 const unsigned char *myaddr = NULL;
1273 fprintf_unfiltered (gdb_stdlog,
1274 "%s:target_xfer_partial "
1275 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1278 (annex ? annex : "(null)"),
1279 host_address_to_string (readbuf),
1280 host_address_to_string (writebuf),
1281 core_addr_to_string_nz (offset),
1282 pulongest (len), retval,
1283 pulongest (*xfered_len));
1289 if (retval == TARGET_XFER_OK && myaddr != NULL)
1293 fputs_unfiltered (", bytes =", gdb_stdlog);
1294 for (i = 0; i < *xfered_len; i++)
1296 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1298 if (targetdebug < 2 && i > 0)
1300 fprintf_unfiltered (gdb_stdlog, " ...");
1303 fprintf_unfiltered (gdb_stdlog, "\n");
1306 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1310 fputc_unfiltered ('\n', gdb_stdlog);
1313 /* Check implementations of to_xfer_partial update *XFERED_LEN
1314 properly. Do assertion after printing debug messages, so that we
1315 can find more clues on assertion failure from debugging messages. */
1316 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1317 gdb_assert (*xfered_len > 0);
1322 /* Read LEN bytes of target memory at address MEMADDR, placing the
1323 results in GDB's memory at MYADDR. Returns either 0 for success or
1324 -1 if any error occurs.
1326 If an error occurs, no guarantee is made about the contents of the data at
1327 MYADDR. In particular, the caller should not depend upon partial reads
1328 filling the buffer with good data. There is no way for the caller to know
1329 how much good data might have been transfered anyway. Callers that can
1330 deal with partial reads should call target_read (which will retry until
1331 it makes no progress, and then return how much was transferred). */
1334 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1336 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1337 myaddr, memaddr, len) == len)
1343 /* See target/target.h. */
1346 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1351 r = target_read_memory (memaddr, buf, sizeof buf);
1354 *result = extract_unsigned_integer (buf, sizeof buf,
1355 gdbarch_byte_order (target_gdbarch ()));
1359 /* Like target_read_memory, but specify explicitly that this is a read
1360 from the target's raw memory. That is, this read bypasses the
1361 dcache, breakpoint shadowing, etc. */
1364 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1366 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1367 myaddr, memaddr, len) == len)
1373 /* Like target_read_memory, but specify explicitly that this is a read from
1374 the target's stack. This may trigger different cache behavior. */
1377 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1379 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1380 myaddr, memaddr, len) == len)
1386 /* Like target_read_memory, but specify explicitly that this is a read from
1387 the target's code. This may trigger different cache behavior. */
1390 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1392 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1393 myaddr, memaddr, len) == len)
1399 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1400 Returns either 0 for success or -1 if any error occurs. If an
1401 error occurs, no guarantee is made about how much data got written.
1402 Callers that can deal with partial writes should call
1406 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1408 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1409 myaddr, memaddr, len) == len)
1415 /* Write LEN bytes from MYADDR to target raw memory at address
1416 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1417 If an error occurs, no guarantee is made about how much data got
1418 written. Callers that can deal with partial writes should call
1422 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1424 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1425 myaddr, memaddr, len) == len)
1431 /* Fetch the target's memory map. */
1433 std::vector<mem_region>
1434 target_memory_map (void)
1436 std::vector<mem_region> result = current_top_target ()->memory_map ();
1437 if (result.empty ())
1440 std::sort (result.begin (), result.end ());
1442 /* Check that regions do not overlap. Simultaneously assign
1443 a numbering for the "mem" commands to use to refer to
1445 mem_region *last_one = NULL;
1446 for (size_t ix = 0; ix < result.size (); ix++)
1448 mem_region *this_one = &result[ix];
1449 this_one->number = ix;
1451 if (last_one != NULL && last_one->hi > this_one->lo)
1453 warning (_("Overlapping regions in memory map: ignoring"));
1454 return std::vector<mem_region> ();
1457 last_one = this_one;
1464 target_flash_erase (ULONGEST address, LONGEST length)
1466 current_top_target ()->flash_erase (address, length);
1470 target_flash_done (void)
1472 current_top_target ()->flash_done ();
1476 show_trust_readonly (struct ui_file *file, int from_tty,
1477 struct cmd_list_element *c, const char *value)
1479 fprintf_filtered (file,
1480 _("Mode for reading from readonly sections is %s.\n"),
1484 /* Target vector read/write partial wrapper functions. */
1486 static enum target_xfer_status
1487 target_read_partial (struct target_ops *ops,
1488 enum target_object object,
1489 const char *annex, gdb_byte *buf,
1490 ULONGEST offset, ULONGEST len,
1491 ULONGEST *xfered_len)
1493 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1497 static enum target_xfer_status
1498 target_write_partial (struct target_ops *ops,
1499 enum target_object object,
1500 const char *annex, const gdb_byte *buf,
1501 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1503 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1507 /* Wrappers to perform the full transfer. */
1509 /* For docs on target_read see target.h. */
1512 target_read (struct target_ops *ops,
1513 enum target_object object,
1514 const char *annex, gdb_byte *buf,
1515 ULONGEST offset, LONGEST len)
1517 LONGEST xfered_total = 0;
1520 /* If we are reading from a memory object, find the length of an addressable
1521 unit for that architecture. */
1522 if (object == TARGET_OBJECT_MEMORY
1523 || object == TARGET_OBJECT_STACK_MEMORY
1524 || object == TARGET_OBJECT_CODE_MEMORY
1525 || object == TARGET_OBJECT_RAW_MEMORY)
1526 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1528 while (xfered_total < len)
1530 ULONGEST xfered_partial;
1531 enum target_xfer_status status;
1533 status = target_read_partial (ops, object, annex,
1534 buf + xfered_total * unit_size,
1535 offset + xfered_total, len - xfered_total,
1538 /* Call an observer, notifying them of the xfer progress? */
1539 if (status == TARGET_XFER_EOF)
1540 return xfered_total;
1541 else if (status == TARGET_XFER_OK)
1543 xfered_total += xfered_partial;
1547 return TARGET_XFER_E_IO;
1553 /* Assuming that the entire [begin, end) range of memory cannot be
1554 read, try to read whatever subrange is possible to read.
1556 The function returns, in RESULT, either zero or one memory block.
1557 If there's a readable subrange at the beginning, it is completely
1558 read and returned. Any further readable subrange will not be read.
1559 Otherwise, if there's a readable subrange at the end, it will be
1560 completely read and returned. Any readable subranges before it
1561 (obviously, not starting at the beginning), will be ignored. In
1562 other cases -- either no readable subrange, or readable subrange(s)
1563 that is neither at the beginning, or end, nothing is returned.
1565 The purpose of this function is to handle a read across a boundary
1566 of accessible memory in a case when memory map is not available.
1567 The above restrictions are fine for this case, but will give
1568 incorrect results if the memory is 'patchy'. However, supporting
1569 'patchy' memory would require trying to read every single byte,
1570 and it seems unacceptable solution. Explicit memory map is
1571 recommended for this case -- and target_read_memory_robust will
1572 take care of reading multiple ranges then. */
1575 read_whatever_is_readable (struct target_ops *ops,
1576 const ULONGEST begin, const ULONGEST end,
1578 std::vector<memory_read_result> *result)
1580 ULONGEST current_begin = begin;
1581 ULONGEST current_end = end;
1583 ULONGEST xfered_len;
1585 /* If we previously failed to read 1 byte, nothing can be done here. */
1586 if (end - begin <= 1)
1589 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1591 /* Check that either first or the last byte is readable, and give up
1592 if not. This heuristic is meant to permit reading accessible memory
1593 at the boundary of accessible region. */
1594 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1595 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1600 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1601 buf.get () + (end - begin) - 1, end - 1, 1,
1602 &xfered_len) == TARGET_XFER_OK)
1610 /* Loop invariant is that the [current_begin, current_end) was previously
1611 found to be not readable as a whole.
1613 Note loop condition -- if the range has 1 byte, we can't divide the range
1614 so there's no point trying further. */
1615 while (current_end - current_begin > 1)
1617 ULONGEST first_half_begin, first_half_end;
1618 ULONGEST second_half_begin, second_half_end;
1620 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1624 first_half_begin = current_begin;
1625 first_half_end = middle;
1626 second_half_begin = middle;
1627 second_half_end = current_end;
1631 first_half_begin = middle;
1632 first_half_end = current_end;
1633 second_half_begin = current_begin;
1634 second_half_end = middle;
1637 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1638 buf.get () + (first_half_begin - begin) * unit_size,
1640 first_half_end - first_half_begin);
1642 if (xfer == first_half_end - first_half_begin)
1644 /* This half reads up fine. So, the error must be in the
1646 current_begin = second_half_begin;
1647 current_end = second_half_end;
1651 /* This half is not readable. Because we've tried one byte, we
1652 know some part of this half if actually readable. Go to the next
1653 iteration to divide again and try to read.
1655 We don't handle the other half, because this function only tries
1656 to read a single readable subrange. */
1657 current_begin = first_half_begin;
1658 current_end = first_half_end;
1664 /* The [begin, current_begin) range has been read. */
1665 result->emplace_back (begin, current_end, std::move (buf));
1669 /* The [current_end, end) range has been read. */
1670 LONGEST region_len = end - current_end;
1672 gdb::unique_xmalloc_ptr<gdb_byte> data
1673 ((gdb_byte *) xmalloc (region_len * unit_size));
1674 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1675 region_len * unit_size);
1676 result->emplace_back (current_end, end, std::move (data));
1680 std::vector<memory_read_result>
1681 read_memory_robust (struct target_ops *ops,
1682 const ULONGEST offset, const LONGEST len)
1684 std::vector<memory_read_result> result;
1685 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1687 LONGEST xfered_total = 0;
1688 while (xfered_total < len)
1690 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1693 /* If there is no explicit region, a fake one should be created. */
1694 gdb_assert (region);
1696 if (region->hi == 0)
1697 region_len = len - xfered_total;
1699 region_len = region->hi - offset;
1701 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1703 /* Cannot read this region. Note that we can end up here only
1704 if the region is explicitly marked inaccessible, or
1705 'inaccessible-by-default' is in effect. */
1706 xfered_total += region_len;
1710 LONGEST to_read = std::min (len - xfered_total, region_len);
1711 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1712 ((gdb_byte *) xmalloc (to_read * unit_size));
1714 LONGEST xfered_partial =
1715 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1716 offset + xfered_total, to_read);
1717 /* Call an observer, notifying them of the xfer progress? */
1718 if (xfered_partial <= 0)
1720 /* Got an error reading full chunk. See if maybe we can read
1722 read_whatever_is_readable (ops, offset + xfered_total,
1723 offset + xfered_total + to_read,
1724 unit_size, &result);
1725 xfered_total += to_read;
1729 result.emplace_back (offset + xfered_total,
1730 offset + xfered_total + xfered_partial,
1731 std::move (buffer));
1732 xfered_total += xfered_partial;
1742 /* An alternative to target_write with progress callbacks. */
1745 target_write_with_progress (struct target_ops *ops,
1746 enum target_object object,
1747 const char *annex, const gdb_byte *buf,
1748 ULONGEST offset, LONGEST len,
1749 void (*progress) (ULONGEST, void *), void *baton)
1751 LONGEST xfered_total = 0;
1754 /* If we are writing to a memory object, find the length of an addressable
1755 unit for that architecture. */
1756 if (object == TARGET_OBJECT_MEMORY
1757 || object == TARGET_OBJECT_STACK_MEMORY
1758 || object == TARGET_OBJECT_CODE_MEMORY
1759 || object == TARGET_OBJECT_RAW_MEMORY)
1760 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1762 /* Give the progress callback a chance to set up. */
1764 (*progress) (0, baton);
1766 while (xfered_total < len)
1768 ULONGEST xfered_partial;
1769 enum target_xfer_status status;
1771 status = target_write_partial (ops, object, annex,
1772 buf + xfered_total * unit_size,
1773 offset + xfered_total, len - xfered_total,
1776 if (status != TARGET_XFER_OK)
1777 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1780 (*progress) (xfered_partial, baton);
1782 xfered_total += xfered_partial;
1788 /* For docs on target_write see target.h. */
1791 target_write (struct target_ops *ops,
1792 enum target_object object,
1793 const char *annex, const gdb_byte *buf,
1794 ULONGEST offset, LONGEST len)
1796 return target_write_with_progress (ops, object, annex, buf, offset, len,
1800 /* Help for target_read_alloc and target_read_stralloc. See their comments
1803 template <typename T>
1804 gdb::optional<gdb::def_vector<T>>
1805 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1808 gdb::def_vector<T> buf;
1810 const int chunk = 4096;
1812 /* This function does not have a length parameter; it reads the
1813 entire OBJECT). Also, it doesn't support objects fetched partly
1814 from one target and partly from another (in a different stratum,
1815 e.g. a core file and an executable). Both reasons make it
1816 unsuitable for reading memory. */
1817 gdb_assert (object != TARGET_OBJECT_MEMORY);
1819 /* Start by reading up to 4K at a time. The target will throttle
1820 this number down if necessary. */
1823 ULONGEST xfered_len;
1824 enum target_xfer_status status;
1826 buf.resize (buf_pos + chunk);
1828 status = target_read_partial (ops, object, annex,
1829 (gdb_byte *) &buf[buf_pos],
1833 if (status == TARGET_XFER_EOF)
1835 /* Read all there was. */
1836 buf.resize (buf_pos);
1839 else if (status != TARGET_XFER_OK)
1841 /* An error occurred. */
1845 buf_pos += xfered_len;
1853 gdb::optional<gdb::byte_vector>
1854 target_read_alloc (struct target_ops *ops, enum target_object object,
1857 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1862 gdb::optional<gdb::char_vector>
1863 target_read_stralloc (struct target_ops *ops, enum target_object object,
1866 gdb::optional<gdb::char_vector> buf
1867 = target_read_alloc_1<char> (ops, object, annex);
1872 if (buf->back () != '\0')
1873 buf->push_back ('\0');
1875 /* Check for embedded NUL bytes; but allow trailing NULs. */
1876 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1877 it != buf->end (); it++)
1880 warning (_("target object %d, annex %s, "
1881 "contained unexpected null characters"),
1882 (int) object, annex ? annex : "(none)");
1889 /* Memory transfer methods. */
1892 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1895 /* This method is used to read from an alternate, non-current
1896 target. This read must bypass the overlay support (as symbols
1897 don't match this target), and GDB's internal cache (wrong cache
1898 for this target). */
1899 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1901 memory_error (TARGET_XFER_E_IO, addr);
1905 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1906 int len, enum bfd_endian byte_order)
1908 gdb_byte buf[sizeof (ULONGEST)];
1910 gdb_assert (len <= sizeof (buf));
1911 get_target_memory (ops, addr, buf, len);
1912 return extract_unsigned_integer (buf, len, byte_order);
1918 target_insert_breakpoint (struct gdbarch *gdbarch,
1919 struct bp_target_info *bp_tgt)
1921 if (!may_insert_breakpoints)
1923 warning (_("May not insert breakpoints"));
1927 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1933 target_remove_breakpoint (struct gdbarch *gdbarch,
1934 struct bp_target_info *bp_tgt,
1935 enum remove_bp_reason reason)
1937 /* This is kind of a weird case to handle, but the permission might
1938 have been changed after breakpoints were inserted - in which case
1939 we should just take the user literally and assume that any
1940 breakpoints should be left in place. */
1941 if (!may_insert_breakpoints)
1943 warning (_("May not remove breakpoints"));
1947 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1951 info_target_command (const char *args, int from_tty)
1953 int has_all_mem = 0;
1955 if (symfile_objfile != NULL)
1956 printf_unfiltered (_("Symbols from \"%s\".\n"),
1957 objfile_name (symfile_objfile));
1959 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1961 if (!t->has_memory ())
1964 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1967 printf_unfiltered (_("\tWhile running this, "
1968 "GDB does not access memory from...\n"));
1969 printf_unfiltered ("%s:\n", t->longname ());
1971 has_all_mem = t->has_all_memory ();
1975 /* This function is called before any new inferior is created, e.g.
1976 by running a program, attaching, or connecting to a target.
1977 It cleans up any state from previous invocations which might
1978 change between runs. This is a subset of what target_preopen
1979 resets (things which might change between targets). */
1982 target_pre_inferior (int from_tty)
1984 /* Clear out solib state. Otherwise the solib state of the previous
1985 inferior might have survived and is entirely wrong for the new
1986 target. This has been observed on GNU/Linux using glibc 2.3. How
1998 Cannot access memory at address 0xdeadbeef
2001 /* In some OSs, the shared library list is the same/global/shared
2002 across inferiors. If code is shared between processes, so are
2003 memory regions and features. */
2004 if (!gdbarch_has_global_solist (target_gdbarch ()))
2006 no_shared_libraries (NULL, from_tty);
2008 invalidate_target_mem_regions ();
2010 target_clear_description ();
2013 /* attach_flag may be set if the previous process associated with
2014 the inferior was attached to. */
2015 current_inferior ()->attach_flag = 0;
2017 current_inferior ()->highest_thread_num = 0;
2019 agent_capability_invalidate ();
2022 /* Callback for iterate_over_inferiors. Gets rid of the given
2026 dispose_inferior (struct inferior *inf, void *args)
2028 struct thread_info *thread;
2030 thread = any_thread_of_process (inf->pid);
2033 switch_to_thread (thread->ptid);
2035 /* Core inferiors actually should be detached, not killed. */
2036 if (target_has_execution)
2039 target_detach (inf, 0);
2045 /* This is to be called by the open routine before it does
2049 target_preopen (int from_tty)
2053 if (have_inferiors ())
2056 || !have_live_inferiors ()
2057 || query (_("A program is being debugged already. Kill it? ")))
2058 iterate_over_inferiors (dispose_inferior, NULL);
2060 error (_("Program not killed."));
2063 /* Calling target_kill may remove the target from the stack. But if
2064 it doesn't (which seems like a win for UDI), remove it now. */
2065 /* Leave the exec target, though. The user may be switching from a
2066 live process to a core of the same program. */
2067 pop_all_targets_above (file_stratum);
2069 target_pre_inferior (from_tty);
2075 target_detach (inferior *inf, int from_tty)
2077 /* As long as some to_detach implementations rely on the current_inferior
2078 (either directly, or indirectly, like through target_gdbarch or by
2079 reading memory), INF needs to be the current inferior. When that
2080 requirement will become no longer true, then we can remove this
2082 gdb_assert (inf == current_inferior ());
2084 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2085 /* Don't remove global breakpoints here. They're removed on
2086 disconnection from the target. */
2089 /* If we're in breakpoints-always-inserted mode, have to remove
2090 them before detaching. */
2091 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2093 prepare_for_detach ();
2095 current_top_target ()->detach (inf, from_tty);
2099 target_disconnect (const char *args, int from_tty)
2101 /* If we're in breakpoints-always-inserted mode or if breakpoints
2102 are global across processes, we have to remove them before
2104 remove_breakpoints ();
2106 current_top_target ()->disconnect (args, from_tty);
2109 /* See target/target.h. */
2112 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2114 return current_top_target ()->wait (ptid, status, options);
2120 default_target_wait (struct target_ops *ops,
2121 ptid_t ptid, struct target_waitstatus *status,
2124 status->kind = TARGET_WAITKIND_IGNORE;
2125 return minus_one_ptid;
2129 target_pid_to_str (ptid_t ptid)
2131 return current_top_target ()->pid_to_str (ptid);
2135 target_thread_name (struct thread_info *info)
2137 return current_top_target ()->thread_name (info);
2140 struct thread_info *
2141 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2143 struct inferior *inf)
2145 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2150 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2152 target_dcache_invalidate ();
2154 current_top_target ()->resume (ptid, step, signal);
2156 registers_changed_ptid (ptid);
2157 /* We only set the internal executing state here. The user/frontend
2158 running state is set at a higher level. */
2159 set_executing (ptid, 1);
2160 clear_inline_frame_state (ptid);
2163 /* If true, target_commit_resume is a nop. */
2164 static int defer_target_commit_resume;
2169 target_commit_resume (void)
2171 if (defer_target_commit_resume)
2174 current_top_target ()->commit_resume ();
2179 scoped_restore_tmpl<int>
2180 make_scoped_defer_target_commit_resume ()
2182 return make_scoped_restore (&defer_target_commit_resume, 1);
2186 target_pass_signals (int numsigs, unsigned char *pass_signals)
2188 current_top_target ()->pass_signals (numsigs, pass_signals);
2192 target_program_signals (int numsigs, unsigned char *program_signals)
2194 current_top_target ()->program_signals (numsigs, program_signals);
2198 default_follow_fork (struct target_ops *self, int follow_child,
2201 /* Some target returned a fork event, but did not know how to follow it. */
2202 internal_error (__FILE__, __LINE__,
2203 _("could not find a target to follow fork"));
2206 /* Look through the list of possible targets for a target that can
2210 target_follow_fork (int follow_child, int detach_fork)
2212 return current_top_target ()->follow_fork (follow_child, detach_fork);
2215 /* Target wrapper for follow exec hook. */
2218 target_follow_exec (struct inferior *inf, char *execd_pathname)
2220 current_top_target ()->follow_exec (inf, execd_pathname);
2224 default_mourn_inferior (struct target_ops *self)
2226 internal_error (__FILE__, __LINE__,
2227 _("could not find a target to follow mourn inferior"));
2231 target_mourn_inferior (ptid_t ptid)
2233 gdb_assert (ptid_equal (ptid, inferior_ptid));
2234 current_top_target ()->mourn_inferior ();
2236 /* We no longer need to keep handles on any of the object files.
2237 Make sure to release them to avoid unnecessarily locking any
2238 of them while we're not actually debugging. */
2239 bfd_cache_close_all ();
2242 /* Look for a target which can describe architectural features, starting
2243 from TARGET. If we find one, return its description. */
2245 const struct target_desc *
2246 target_read_description (struct target_ops *target)
2248 return target->read_description ();
2251 /* This implements a basic search of memory, reading target memory and
2252 performing the search here (as opposed to performing the search in on the
2253 target side with, for example, gdbserver). */
2256 simple_search_memory (struct target_ops *ops,
2257 CORE_ADDR start_addr, ULONGEST search_space_len,
2258 const gdb_byte *pattern, ULONGEST pattern_len,
2259 CORE_ADDR *found_addrp)
2261 /* NOTE: also defined in find.c testcase. */
2262 #define SEARCH_CHUNK_SIZE 16000
2263 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2264 /* Buffer to hold memory contents for searching. */
2265 unsigned search_buf_size;
2267 search_buf_size = chunk_size + pattern_len - 1;
2269 /* No point in trying to allocate a buffer larger than the search space. */
2270 if (search_space_len < search_buf_size)
2271 search_buf_size = search_space_len;
2273 gdb::byte_vector search_buf (search_buf_size);
2275 /* Prime the search buffer. */
2277 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2278 search_buf.data (), start_addr, search_buf_size)
2281 warning (_("Unable to access %s bytes of target "
2282 "memory at %s, halting search."),
2283 pulongest (search_buf_size), hex_string (start_addr));
2287 /* Perform the search.
2289 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2290 When we've scanned N bytes we copy the trailing bytes to the start and
2291 read in another N bytes. */
2293 while (search_space_len >= pattern_len)
2295 gdb_byte *found_ptr;
2296 unsigned nr_search_bytes
2297 = std::min (search_space_len, (ULONGEST) search_buf_size);
2299 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2300 pattern, pattern_len);
2302 if (found_ptr != NULL)
2304 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2306 *found_addrp = found_addr;
2310 /* Not found in this chunk, skip to next chunk. */
2312 /* Don't let search_space_len wrap here, it's unsigned. */
2313 if (search_space_len >= chunk_size)
2314 search_space_len -= chunk_size;
2316 search_space_len = 0;
2318 if (search_space_len >= pattern_len)
2320 unsigned keep_len = search_buf_size - chunk_size;
2321 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2324 /* Copy the trailing part of the previous iteration to the front
2325 of the buffer for the next iteration. */
2326 gdb_assert (keep_len == pattern_len - 1);
2327 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2329 nr_to_read = std::min (search_space_len - keep_len,
2330 (ULONGEST) chunk_size);
2332 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2333 &search_buf[keep_len], read_addr,
2334 nr_to_read) != nr_to_read)
2336 warning (_("Unable to access %s bytes of target "
2337 "memory at %s, halting search."),
2338 plongest (nr_to_read),
2339 hex_string (read_addr));
2343 start_addr += chunk_size;
2352 /* Default implementation of memory-searching. */
2355 default_search_memory (struct target_ops *self,
2356 CORE_ADDR start_addr, ULONGEST search_space_len,
2357 const gdb_byte *pattern, ULONGEST pattern_len,
2358 CORE_ADDR *found_addrp)
2360 /* Start over from the top of the target stack. */
2361 return simple_search_memory (current_top_target (),
2362 start_addr, search_space_len,
2363 pattern, pattern_len, found_addrp);
2366 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2367 sequence of bytes in PATTERN with length PATTERN_LEN.
2369 The result is 1 if found, 0 if not found, and -1 if there was an error
2370 requiring halting of the search (e.g. memory read error).
2371 If the pattern is found the address is recorded in FOUND_ADDRP. */
2374 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2375 const gdb_byte *pattern, ULONGEST pattern_len,
2376 CORE_ADDR *found_addrp)
2378 return current_top_target ()->search_memory (start_addr, search_space_len,
2379 pattern, pattern_len, found_addrp);
2382 /* Look through the currently pushed targets. If none of them will
2383 be able to restart the currently running process, issue an error
2387 target_require_runnable (void)
2389 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2391 /* If this target knows how to create a new program, then
2392 assume we will still be able to after killing the current
2393 one. Either killing and mourning will not pop T, or else
2394 find_default_run_target will find it again. */
2395 if (t->can_create_inferior ())
2398 /* Do not worry about targets at certain strata that can not
2399 create inferiors. Assume they will be pushed again if
2400 necessary, and continue to the process_stratum. */
2401 if (t->to_stratum > process_stratum)
2404 error (_("The \"%s\" target does not support \"run\". "
2405 "Try \"help target\" or \"continue\"."),
2409 /* This function is only called if the target is running. In that
2410 case there should have been a process_stratum target and it
2411 should either know how to create inferiors, or not... */
2412 internal_error (__FILE__, __LINE__, _("No targets found"));
2415 /* Whether GDB is allowed to fall back to the default run target for
2416 "run", "attach", etc. when no target is connected yet. */
2417 static int auto_connect_native_target = 1;
2420 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2421 struct cmd_list_element *c, const char *value)
2423 fprintf_filtered (file,
2424 _("Whether GDB may automatically connect to the "
2425 "native target is %s.\n"),
2429 /* A pointer to the target that can respond to "run" or "attach".
2430 Native targets are always singletons and instantiated early at GDB
2432 static target_ops *the_native_target;
2437 set_native_target (target_ops *target)
2439 if (the_native_target != NULL)
2440 internal_error (__FILE__, __LINE__,
2441 _("native target already set (\"%s\")."),
2442 the_native_target->longname ());
2444 the_native_target = target;
2450 get_native_target ()
2452 return the_native_target;
2455 /* Look through the list of possible targets for a target that can
2456 execute a run or attach command without any other data. This is
2457 used to locate the default process stratum.
2459 If DO_MESG is not NULL, the result is always valid (error() is
2460 called for errors); else, return NULL on error. */
2462 static struct target_ops *
2463 find_default_run_target (const char *do_mesg)
2465 if (auto_connect_native_target && the_native_target != NULL)
2466 return the_native_target;
2468 if (do_mesg != NULL)
2469 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2476 find_attach_target (void)
2478 /* If a target on the current stack can attach, use it. */
2479 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2481 if (t->can_attach ())
2485 /* Otherwise, use the default run target for attaching. */
2486 return find_default_run_target ("attach");
2492 find_run_target (void)
2494 /* If a target on the current stack can run, use it. */
2495 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2497 if (t->can_create_inferior ())
2501 /* Otherwise, use the default run target. */
2502 return find_default_run_target ("run");
2506 target_ops::info_proc (const char *args, enum info_proc_what what)
2511 /* Implement the "info proc" command. */
2514 target_info_proc (const char *args, enum info_proc_what what)
2516 struct target_ops *t;
2518 /* If we're already connected to something that can get us OS
2519 related data, use it. Otherwise, try using the native
2521 t = find_target_at (process_stratum);
2523 t = find_default_run_target (NULL);
2525 for (; t != NULL; t = t->beneath ())
2527 if (t->info_proc (args, what))
2530 fprintf_unfiltered (gdb_stdlog,
2531 "target_info_proc (\"%s\", %d)\n", args, what);
2541 find_default_supports_disable_randomization (struct target_ops *self)
2543 struct target_ops *t;
2545 t = find_default_run_target (NULL);
2547 return t->supports_disable_randomization ();
2552 target_supports_disable_randomization (void)
2554 return current_top_target ()->supports_disable_randomization ();
2557 /* See target/target.h. */
2560 target_supports_multi_process (void)
2562 return current_top_target ()->supports_multi_process ();
2567 gdb::optional<gdb::char_vector>
2568 target_get_osdata (const char *type)
2570 struct target_ops *t;
2572 /* If we're already connected to something that can get us OS
2573 related data, use it. Otherwise, try using the native
2575 t = find_target_at (process_stratum);
2577 t = find_default_run_target ("get OS data");
2582 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2585 static struct address_space *
2586 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2588 struct inferior *inf;
2590 /* Fall-back to the "main" address space of the inferior. */
2591 inf = find_inferior_ptid (ptid);
2593 if (inf == NULL || inf->aspace == NULL)
2594 internal_error (__FILE__, __LINE__,
2595 _("Can't determine the current "
2596 "address space of thread %s\n"),
2597 target_pid_to_str (ptid));
2602 /* Determine the current address space of thread PTID. */
2604 struct address_space *
2605 target_thread_address_space (ptid_t ptid)
2607 struct address_space *aspace;
2609 aspace = current_top_target ()->thread_address_space (ptid);
2610 gdb_assert (aspace != NULL);
2618 target_ops::beneath () const
2620 return g_target_stack.find_beneath (this);
2624 target_ops::close ()
2629 target_ops::can_attach ()
2635 target_ops::attach (const char *, int)
2637 gdb_assert_not_reached ("target_ops::attach called");
2641 target_ops::can_create_inferior ()
2647 target_ops::create_inferior (const char *, const std::string &,
2650 gdb_assert_not_reached ("target_ops::create_inferior called");
2654 target_ops::can_run ()
2662 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2671 /* Target file operations. */
2673 static struct target_ops *
2674 default_fileio_target (void)
2676 struct target_ops *t;
2678 /* If we're already connected to something that can perform
2679 file I/O, use it. Otherwise, try using the native target. */
2680 t = find_target_at (process_stratum);
2683 return find_default_run_target ("file I/O");
2686 /* File handle for target file operations. */
2690 /* The target on which this file is open. NULL if the target is
2691 meanwhile closed while the handle is open. */
2694 /* The file descriptor on the target. */
2697 /* Check whether this fileio_fh_t represents a closed file. */
2700 return target_fd < 0;
2704 /* Vector of currently open file handles. The value returned by
2705 target_fileio_open and passed as the FD argument to other
2706 target_fileio_* functions is an index into this vector. This
2707 vector's entries are never freed; instead, files are marked as
2708 closed, and the handle becomes available for reuse. */
2709 static std::vector<fileio_fh_t> fileio_fhandles;
2711 /* Index into fileio_fhandles of the lowest handle that might be
2712 closed. This permits handle reuse without searching the whole
2713 list each time a new file is opened. */
2714 static int lowest_closed_fd;
2716 /* Invalidate the target associated with open handles that were open
2717 on target TARG, since we're about to close (and maybe destroy) the
2718 target. The handles remain open from the client's perspective, but
2719 trying to do anything with them other than closing them will fail
2723 fileio_handles_invalidate_target (target_ops *targ)
2725 for (fileio_fh_t &fh : fileio_fhandles)
2726 if (fh.target == targ)
2730 /* Acquire a target fileio file descriptor. */
2733 acquire_fileio_fd (target_ops *target, int target_fd)
2735 /* Search for closed handles to reuse. */
2736 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2738 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2740 if (fh.is_closed ())
2744 /* Push a new handle if no closed handles were found. */
2745 if (lowest_closed_fd == fileio_fhandles.size ())
2746 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2748 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2750 /* Should no longer be marked closed. */
2751 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2753 /* Return its index, and start the next lookup at
2755 return lowest_closed_fd++;
2758 /* Release a target fileio file descriptor. */
2761 release_fileio_fd (int fd, fileio_fh_t *fh)
2764 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2767 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2769 static fileio_fh_t *
2770 fileio_fd_to_fh (int fd)
2772 return &fileio_fhandles[fd];
2776 /* Default implementations of file i/o methods. We don't want these
2777 to delegate automatically, because we need to know which target
2778 supported the method, in order to call it directly from within
2779 pread/pwrite, etc. */
2782 target_ops::fileio_open (struct inferior *inf, const char *filename,
2783 int flags, int mode, int warn_if_slow,
2786 *target_errno = FILEIO_ENOSYS;
2791 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2792 ULONGEST offset, int *target_errno)
2794 *target_errno = FILEIO_ENOSYS;
2799 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2800 ULONGEST offset, int *target_errno)
2802 *target_errno = FILEIO_ENOSYS;
2807 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2809 *target_errno = FILEIO_ENOSYS;
2814 target_ops::fileio_close (int fd, int *target_errno)
2816 *target_errno = FILEIO_ENOSYS;
2821 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2824 *target_errno = FILEIO_ENOSYS;
2828 gdb::optional<std::string>
2829 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2832 *target_errno = FILEIO_ENOSYS;
2836 /* Helper for target_fileio_open and
2837 target_fileio_open_warn_if_slow. */
2840 target_fileio_open_1 (struct inferior *inf, const char *filename,
2841 int flags, int mode, int warn_if_slow,
2844 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2846 int fd = t->fileio_open (inf, filename, flags, mode,
2847 warn_if_slow, target_errno);
2849 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2855 fd = acquire_fileio_fd (t, fd);
2858 fprintf_unfiltered (gdb_stdlog,
2859 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2861 inf == NULL ? 0 : inf->num,
2862 filename, flags, mode,
2864 fd != -1 ? 0 : *target_errno);
2868 *target_errno = FILEIO_ENOSYS;
2875 target_fileio_open (struct inferior *inf, const char *filename,
2876 int flags, int mode, int *target_errno)
2878 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2885 target_fileio_open_warn_if_slow (struct inferior *inf,
2886 const char *filename,
2887 int flags, int mode, int *target_errno)
2889 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2896 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2897 ULONGEST offset, int *target_errno)
2899 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2902 if (fh->is_closed ())
2903 *target_errno = EBADF;
2904 else if (fh->target == NULL)
2905 *target_errno = EIO;
2907 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2908 len, offset, target_errno);
2911 fprintf_unfiltered (gdb_stdlog,
2912 "target_fileio_pwrite (%d,...,%d,%s) "
2914 fd, len, pulongest (offset),
2915 ret, ret != -1 ? 0 : *target_errno);
2922 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2923 ULONGEST offset, int *target_errno)
2925 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2928 if (fh->is_closed ())
2929 *target_errno = EBADF;
2930 else if (fh->target == NULL)
2931 *target_errno = EIO;
2933 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2934 len, offset, target_errno);
2937 fprintf_unfiltered (gdb_stdlog,
2938 "target_fileio_pread (%d,...,%d,%s) "
2940 fd, len, pulongest (offset),
2941 ret, ret != -1 ? 0 : *target_errno);
2948 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2950 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2953 if (fh->is_closed ())
2954 *target_errno = EBADF;
2955 else if (fh->target == NULL)
2956 *target_errno = EIO;
2958 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2961 fprintf_unfiltered (gdb_stdlog,
2962 "target_fileio_fstat (%d) = %d (%d)\n",
2963 fd, ret, ret != -1 ? 0 : *target_errno);
2970 target_fileio_close (int fd, int *target_errno)
2972 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2975 if (fh->is_closed ())
2976 *target_errno = EBADF;
2979 if (fh->target != NULL)
2980 ret = fh->target->fileio_close (fh->target_fd,
2984 release_fileio_fd (fd, fh);
2988 fprintf_unfiltered (gdb_stdlog,
2989 "target_fileio_close (%d) = %d (%d)\n",
2990 fd, ret, ret != -1 ? 0 : *target_errno);
2997 target_fileio_unlink (struct inferior *inf, const char *filename,
3000 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3002 int ret = t->fileio_unlink (inf, filename, target_errno);
3004 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
3008 fprintf_unfiltered (gdb_stdlog,
3009 "target_fileio_unlink (%d,%s)"
3011 inf == NULL ? 0 : inf->num, filename,
3012 ret, ret != -1 ? 0 : *target_errno);
3016 *target_errno = FILEIO_ENOSYS;
3022 gdb::optional<std::string>
3023 target_fileio_readlink (struct inferior *inf, const char *filename,
3026 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3028 gdb::optional<std::string> ret
3029 = t->fileio_readlink (inf, filename, target_errno);
3031 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
3035 fprintf_unfiltered (gdb_stdlog,
3036 "target_fileio_readlink (%d,%s)"
3038 inf == NULL ? 0 : inf->num,
3039 filename, ret ? ret->c_str () : "(nil)",
3040 ret ? 0 : *target_errno);
3044 *target_errno = FILEIO_ENOSYS;
3048 /* Like scoped_fd, but specific to target fileio. */
3050 class scoped_target_fd
3053 explicit scoped_target_fd (int fd) noexcept
3058 ~scoped_target_fd ()
3064 target_fileio_close (m_fd, &target_errno);
3068 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3070 int get () const noexcept
3079 /* Read target file FILENAME, in the filesystem as seen by INF. If
3080 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3081 remote targets, the remote stub). Store the result in *BUF_P and
3082 return the size of the transferred data. PADDING additional bytes
3083 are available in *BUF_P. This is a helper function for
3084 target_fileio_read_alloc; see the declaration of that function for
3085 more information. */
3088 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3089 gdb_byte **buf_p, int padding)
3091 size_t buf_alloc, buf_pos;
3096 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3097 0700, &target_errno));
3098 if (fd.get () == -1)
3101 /* Start by reading up to 4K at a time. The target will throttle
3102 this number down if necessary. */
3104 buf = (gdb_byte *) xmalloc (buf_alloc);
3108 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3109 buf_alloc - buf_pos - padding, buf_pos,
3113 /* An error occurred. */
3119 /* Read all there was. */
3129 /* If the buffer is filling up, expand it. */
3130 if (buf_alloc < buf_pos * 2)
3133 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3143 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3146 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3151 gdb::unique_xmalloc_ptr<char>
3152 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3156 LONGEST i, transferred;
3158 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3159 bufstr = (char *) buffer;
3161 if (transferred < 0)
3162 return gdb::unique_xmalloc_ptr<char> (nullptr);
3164 if (transferred == 0)
3165 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3167 bufstr[transferred] = 0;
3169 /* Check for embedded NUL bytes; but allow trailing NULs. */
3170 for (i = strlen (bufstr); i < transferred; i++)
3173 warning (_("target file %s "
3174 "contained unexpected null characters"),
3179 return gdb::unique_xmalloc_ptr<char> (bufstr);
3184 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3185 CORE_ADDR addr, int len)
3187 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3191 default_watchpoint_addr_within_range (struct target_ops *target,
3193 CORE_ADDR start, int length)
3195 return addr >= start && addr < start + length;
3198 static struct gdbarch *
3199 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3201 inferior *inf = find_inferior_ptid (ptid);
3202 gdb_assert (inf != NULL);
3203 return inf->gdbarch;
3209 target_stack::find_beneath (const target_ops *t) const
3211 /* Look for a non-empty slot at stratum levels beneath T's. */
3212 for (int stratum = t->to_stratum - 1; stratum >= 0; --stratum)
3213 if (m_stack[stratum] != NULL)
3214 return m_stack[stratum];
3222 find_target_at (enum strata stratum)
3224 return g_target_stack.at (stratum);
3232 target_announce_detach (int from_tty)
3235 const char *exec_file;
3240 exec_file = get_exec_file (0);
3241 if (exec_file == NULL)
3244 pid = ptid_get_pid (inferior_ptid);
3245 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3246 target_pid_to_str (pid_to_ptid (pid)));
3247 gdb_flush (gdb_stdout);
3250 /* The inferior process has died. Long live the inferior! */
3253 generic_mourn_inferior (void)
3257 ptid = inferior_ptid;
3258 inferior_ptid = null_ptid;
3260 /* Mark breakpoints uninserted in case something tries to delete a
3261 breakpoint while we delete the inferior's threads (which would
3262 fail, since the inferior is long gone). */
3263 mark_breakpoints_out ();
3265 if (!ptid_equal (ptid, null_ptid))
3267 int pid = ptid_get_pid (ptid);
3268 exit_inferior (pid);
3271 /* Note this wipes step-resume breakpoints, so needs to be done
3272 after exit_inferior, which ends up referencing the step-resume
3273 breakpoints through clear_thread_inferior_resources. */
3274 breakpoint_init_inferior (inf_exited);
3276 registers_changed ();
3278 reopen_exec_file ();
3279 reinit_frame_cache ();
3281 if (deprecated_detach_hook)
3282 deprecated_detach_hook ();
3285 /* Convert a normal process ID to a string. Returns the string in a
3289 normal_pid_to_str (ptid_t ptid)
3291 static char buf[32];
3293 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3298 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3300 return normal_pid_to_str (ptid);
3303 /* Error-catcher for target_find_memory_regions. */
3305 dummy_find_memory_regions (struct target_ops *self,
3306 find_memory_region_ftype ignore1, void *ignore2)
3308 error (_("Command not implemented for this target."));
3312 /* Error-catcher for target_make_corefile_notes. */
3314 dummy_make_corefile_notes (struct target_ops *self,
3315 bfd *ignore1, int *ignore2)
3317 error (_("Command not implemented for this target."));
3321 #include "target-delegates.c"
3324 static const target_info dummy_target_info = {
3330 dummy_target::dummy_target ()
3332 to_stratum = dummy_stratum;
3335 debug_target::debug_target ()
3337 to_stratum = debug_stratum;
3341 dummy_target::info () const
3343 return dummy_target_info;
3347 debug_target::info () const
3349 return beneath ()->info ();
3355 target_close (struct target_ops *targ)
3357 gdb_assert (!target_is_pushed (targ));
3359 fileio_handles_invalidate_target (targ);
3364 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3368 target_thread_alive (ptid_t ptid)
3370 return current_top_target ()->thread_alive (ptid);
3374 target_update_thread_list (void)
3376 current_top_target ()->update_thread_list ();
3380 target_stop (ptid_t ptid)
3384 warning (_("May not interrupt or stop the target, ignoring attempt"));
3388 current_top_target ()->stop (ptid);
3396 warning (_("May not interrupt or stop the target, ignoring attempt"));
3400 current_top_target ()->interrupt ();
3406 target_pass_ctrlc (void)
3408 current_top_target ()->pass_ctrlc ();
3414 default_target_pass_ctrlc (struct target_ops *ops)
3416 target_interrupt ();
3419 /* See target/target.h. */
3422 target_stop_and_wait (ptid_t ptid)
3424 struct target_waitstatus status;
3425 int was_non_stop = non_stop;
3430 memset (&status, 0, sizeof (status));
3431 target_wait (ptid, &status, 0);
3433 non_stop = was_non_stop;
3436 /* See target/target.h. */
3439 target_continue_no_signal (ptid_t ptid)
3441 target_resume (ptid, 0, GDB_SIGNAL_0);
3444 /* See target/target.h. */
3447 target_continue (ptid_t ptid, enum gdb_signal signal)
3449 target_resume (ptid, 0, signal);
3452 /* Concatenate ELEM to LIST, a comma separate list, and return the
3453 result. The LIST incoming argument is released. */
3456 str_comma_list_concat_elem (char *list, const char *elem)
3459 return xstrdup (elem);
3461 return reconcat (list, list, ", ", elem, (char *) NULL);
3464 /* Helper for target_options_to_string. If OPT is present in
3465 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3466 Returns the new resulting string. OPT is removed from
3470 do_option (int *target_options, char *ret,
3471 int opt, const char *opt_str)
3473 if ((*target_options & opt) != 0)
3475 ret = str_comma_list_concat_elem (ret, opt_str);
3476 *target_options &= ~opt;
3483 target_options_to_string (int target_options)
3487 #define DO_TARG_OPTION(OPT) \
3488 ret = do_option (&target_options, ret, OPT, #OPT)
3490 DO_TARG_OPTION (TARGET_WNOHANG);
3492 if (target_options != 0)
3493 ret = str_comma_list_concat_elem (ret, "unknown???");
3501 target_fetch_registers (struct regcache *regcache, int regno)
3503 current_top_target ()->fetch_registers (regcache, regno);
3505 regcache->debug_print_register ("target_fetch_registers", regno);
3509 target_store_registers (struct regcache *regcache, int regno)
3511 if (!may_write_registers)
3512 error (_("Writing to registers is not allowed (regno %d)"), regno);
3514 current_top_target ()->store_registers (regcache, regno);
3517 regcache->debug_print_register ("target_store_registers", regno);
3522 target_core_of_thread (ptid_t ptid)
3524 return current_top_target ()->core_of_thread (ptid);
3528 simple_verify_memory (struct target_ops *ops,
3529 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3531 LONGEST total_xfered = 0;
3533 while (total_xfered < size)
3535 ULONGEST xfered_len;
3536 enum target_xfer_status status;
3538 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3540 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3541 buf, NULL, lma + total_xfered, howmuch,
3543 if (status == TARGET_XFER_OK
3544 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3546 total_xfered += xfered_len;
3555 /* Default implementation of memory verification. */
3558 default_verify_memory (struct target_ops *self,
3559 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3561 /* Start over from the top of the target stack. */
3562 return simple_verify_memory (current_top_target (),
3563 data, memaddr, size);
3567 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3569 return current_top_target ()->verify_memory (data, memaddr, size);
3572 /* The documentation for this function is in its prototype declaration in
3576 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3577 enum target_hw_bp_type rw)
3579 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3582 /* The documentation for this function is in its prototype declaration in
3586 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3587 enum target_hw_bp_type rw)
3589 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3592 /* The documentation for this function is in its prototype declaration
3596 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3598 return current_top_target ()->masked_watch_num_registers (addr, mask);
3601 /* The documentation for this function is in its prototype declaration
3605 target_ranged_break_num_registers (void)
3607 return current_top_target ()->ranged_break_num_registers ();
3612 struct btrace_target_info *
3613 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3615 return current_top_target ()->enable_btrace (ptid, conf);
3621 target_disable_btrace (struct btrace_target_info *btinfo)
3623 current_top_target ()->disable_btrace (btinfo);
3629 target_teardown_btrace (struct btrace_target_info *btinfo)
3631 current_top_target ()->teardown_btrace (btinfo);
3637 target_read_btrace (struct btrace_data *btrace,
3638 struct btrace_target_info *btinfo,
3639 enum btrace_read_type type)
3641 return current_top_target ()->read_btrace (btrace, btinfo, type);
3646 const struct btrace_config *
3647 target_btrace_conf (const struct btrace_target_info *btinfo)
3649 return current_top_target ()->btrace_conf (btinfo);
3655 target_stop_recording (void)
3657 current_top_target ()->stop_recording ();
3663 target_save_record (const char *filename)
3665 current_top_target ()->save_record (filename);
3671 target_supports_delete_record ()
3673 return current_top_target ()->supports_delete_record ();
3679 target_delete_record (void)
3681 current_top_target ()->delete_record ();
3687 target_record_method (ptid_t ptid)
3689 return current_top_target ()->record_method (ptid);
3695 target_record_is_replaying (ptid_t ptid)
3697 return current_top_target ()->record_is_replaying (ptid);
3703 target_record_will_replay (ptid_t ptid, int dir)
3705 return current_top_target ()->record_will_replay (ptid, dir);
3711 target_record_stop_replaying (void)
3713 current_top_target ()->record_stop_replaying ();
3719 target_goto_record_begin (void)
3721 current_top_target ()->goto_record_begin ();
3727 target_goto_record_end (void)
3729 current_top_target ()->goto_record_end ();
3735 target_goto_record (ULONGEST insn)
3737 current_top_target ()->goto_record (insn);
3743 target_insn_history (int size, gdb_disassembly_flags flags)
3745 current_top_target ()->insn_history (size, flags);
3751 target_insn_history_from (ULONGEST from, int size,
3752 gdb_disassembly_flags flags)
3754 current_top_target ()->insn_history_from (from, size, flags);
3760 target_insn_history_range (ULONGEST begin, ULONGEST end,
3761 gdb_disassembly_flags flags)
3763 current_top_target ()->insn_history_range (begin, end, flags);
3769 target_call_history (int size, record_print_flags flags)
3771 current_top_target ()->call_history (size, flags);
3777 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3779 current_top_target ()->call_history_from (begin, size, flags);
3785 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3787 current_top_target ()->call_history_range (begin, end, flags);
3792 const struct frame_unwind *
3793 target_get_unwinder (void)
3795 return current_top_target ()->get_unwinder ();
3800 const struct frame_unwind *
3801 target_get_tailcall_unwinder (void)
3803 return current_top_target ()->get_tailcall_unwinder ();
3809 target_prepare_to_generate_core (void)
3811 current_top_target ()->prepare_to_generate_core ();
3817 target_done_generating_core (void)
3819 current_top_target ()->done_generating_core ();
3824 static char targ_desc[] =
3825 "Names of targets and files being debugged.\nShows the entire \
3826 stack of targets currently in use (including the exec-file,\n\
3827 core-file, and process, if any), as well as the symbol file name.";
3830 default_rcmd (struct target_ops *self, const char *command,
3831 struct ui_file *output)
3833 error (_("\"monitor\" command not supported by this target."));
3837 do_monitor_command (const char *cmd, int from_tty)
3839 target_rcmd (cmd, gdb_stdtarg);
3842 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3846 flash_erase_command (const char *cmd, int from_tty)
3848 /* Used to communicate termination of flash operations to the target. */
3849 bool found_flash_region = false;
3850 struct gdbarch *gdbarch = target_gdbarch ();
3852 std::vector<mem_region> mem_regions = target_memory_map ();
3854 /* Iterate over all memory regions. */
3855 for (const mem_region &m : mem_regions)
3857 /* Is this a flash memory region? */
3858 if (m.attrib.mode == MEM_FLASH)
3860 found_flash_region = true;
3861 target_flash_erase (m.lo, m.hi - m.lo);
3863 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3865 current_uiout->message (_("Erasing flash memory region at address "));
3866 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3867 current_uiout->message (", size = ");
3868 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3869 current_uiout->message ("\n");
3873 /* Did we do any flash operations? If so, we need to finalize them. */
3874 if (found_flash_region)
3875 target_flash_done ();
3877 current_uiout->message (_("No flash memory regions found.\n"));
3880 /* Print the name of each layers of our target stack. */
3883 maintenance_print_target_stack (const char *cmd, int from_tty)
3885 printf_filtered (_("The current target stack is:\n"));
3887 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3889 if (t->to_stratum == debug_stratum)
3891 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3898 target_async (int enable)
3900 infrun_async (enable);
3901 current_top_target ()->async (enable);
3907 target_thread_events (int enable)
3909 current_top_target ()->thread_events (enable);
3912 /* Controls if targets can report that they can/are async. This is
3913 just for maintainers to use when debugging gdb. */
3914 int target_async_permitted = 1;
3916 /* The set command writes to this variable. If the inferior is
3917 executing, target_async_permitted is *not* updated. */
3918 static int target_async_permitted_1 = 1;
3921 maint_set_target_async_command (const char *args, int from_tty,
3922 struct cmd_list_element *c)
3924 if (have_live_inferiors ())
3926 target_async_permitted_1 = target_async_permitted;
3927 error (_("Cannot change this setting while the inferior is running."));
3930 target_async_permitted = target_async_permitted_1;
3934 maint_show_target_async_command (struct ui_file *file, int from_tty,
3935 struct cmd_list_element *c,
3938 fprintf_filtered (file,
3939 _("Controlling the inferior in "
3940 "asynchronous mode is %s.\n"), value);
3943 /* Return true if the target operates in non-stop mode even with "set
3947 target_always_non_stop_p (void)
3949 return current_top_target ()->always_non_stop_p ();
3955 target_is_non_stop_p (void)
3958 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3959 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3960 && target_always_non_stop_p ()));
3963 /* Controls if targets can report that they always run in non-stop
3964 mode. This is just for maintainers to use when debugging gdb. */
3965 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3967 /* The set command writes to this variable. If the inferior is
3968 executing, target_non_stop_enabled is *not* updated. */
3969 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3971 /* Implementation of "maint set target-non-stop". */
3974 maint_set_target_non_stop_command (const char *args, int from_tty,
3975 struct cmd_list_element *c)
3977 if (have_live_inferiors ())
3979 target_non_stop_enabled_1 = target_non_stop_enabled;
3980 error (_("Cannot change this setting while the inferior is running."));
3983 target_non_stop_enabled = target_non_stop_enabled_1;
3986 /* Implementation of "maint show target-non-stop". */
3989 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3990 struct cmd_list_element *c,
3993 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3994 fprintf_filtered (file,
3995 _("Whether the target is always in non-stop mode "
3996 "is %s (currently %s).\n"), value,
3997 target_always_non_stop_p () ? "on" : "off");
3999 fprintf_filtered (file,
4000 _("Whether the target is always in non-stop mode "
4001 "is %s.\n"), value);
4004 /* Temporary copies of permission settings. */
4006 static int may_write_registers_1 = 1;
4007 static int may_write_memory_1 = 1;
4008 static int may_insert_breakpoints_1 = 1;
4009 static int may_insert_tracepoints_1 = 1;
4010 static int may_insert_fast_tracepoints_1 = 1;
4011 static int may_stop_1 = 1;
4013 /* Make the user-set values match the real values again. */
4016 update_target_permissions (void)
4018 may_write_registers_1 = may_write_registers;
4019 may_write_memory_1 = may_write_memory;
4020 may_insert_breakpoints_1 = may_insert_breakpoints;
4021 may_insert_tracepoints_1 = may_insert_tracepoints;
4022 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4023 may_stop_1 = may_stop;
4026 /* The one function handles (most of) the permission flags in the same
4030 set_target_permissions (const char *args, int from_tty,
4031 struct cmd_list_element *c)
4033 if (target_has_execution)
4035 update_target_permissions ();
4036 error (_("Cannot change this setting while the inferior is running."));
4039 /* Make the real values match the user-changed values. */
4040 may_write_registers = may_write_registers_1;
4041 may_insert_breakpoints = may_insert_breakpoints_1;
4042 may_insert_tracepoints = may_insert_tracepoints_1;
4043 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4044 may_stop = may_stop_1;
4045 update_observer_mode ();
4048 /* Set memory write permission independently of observer mode. */
4051 set_write_memory_permission (const char *args, int from_tty,
4052 struct cmd_list_element *c)
4054 /* Make the real values match the user-changed values. */
4055 may_write_memory = may_write_memory_1;
4056 update_observer_mode ();
4060 initialize_targets (void)
4062 the_dummy_target = new dummy_target ();
4063 push_target (the_dummy_target);
4065 the_debug_target = new debug_target ();
4067 add_info ("target", info_target_command, targ_desc);
4068 add_info ("files", info_target_command, targ_desc);
4070 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4071 Set target debugging."), _("\
4072 Show target debugging."), _("\
4073 When non-zero, target debugging is enabled. Higher numbers are more\n\
4077 &setdebuglist, &showdebuglist);
4079 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4080 &trust_readonly, _("\
4081 Set mode for reading from readonly sections."), _("\
4082 Show mode for reading from readonly sections."), _("\
4083 When this mode is on, memory reads from readonly sections (such as .text)\n\
4084 will be read from the object file instead of from the target. This will\n\
4085 result in significant performance improvement for remote targets."),
4087 show_trust_readonly,
4088 &setlist, &showlist);
4090 add_com ("monitor", class_obscure, do_monitor_command,
4091 _("Send a command to the remote monitor (remote targets only)."));
4093 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4094 _("Print the name of each layer of the internal target stack."),
4095 &maintenanceprintlist);
4097 add_setshow_boolean_cmd ("target-async", no_class,
4098 &target_async_permitted_1, _("\
4099 Set whether gdb controls the inferior in asynchronous mode."), _("\
4100 Show whether gdb controls the inferior in asynchronous mode."), _("\
4101 Tells gdb whether to control the inferior in asynchronous mode."),
4102 maint_set_target_async_command,
4103 maint_show_target_async_command,
4104 &maintenance_set_cmdlist,
4105 &maintenance_show_cmdlist);
4107 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4108 &target_non_stop_enabled_1, _("\
4109 Set whether gdb always controls the inferior in non-stop mode."), _("\
4110 Show whether gdb always controls the inferior in non-stop mode."), _("\
4111 Tells gdb whether to control the inferior in non-stop mode."),
4112 maint_set_target_non_stop_command,
4113 maint_show_target_non_stop_command,
4114 &maintenance_set_cmdlist,
4115 &maintenance_show_cmdlist);
4117 add_setshow_boolean_cmd ("may-write-registers", class_support,
4118 &may_write_registers_1, _("\
4119 Set permission to write into registers."), _("\
4120 Show permission to write into registers."), _("\
4121 When this permission is on, GDB may write into the target's registers.\n\
4122 Otherwise, any sort of write attempt will result in an error."),
4123 set_target_permissions, NULL,
4124 &setlist, &showlist);
4126 add_setshow_boolean_cmd ("may-write-memory", class_support,
4127 &may_write_memory_1, _("\
4128 Set permission to write into target memory."), _("\
4129 Show permission to write into target memory."), _("\
4130 When this permission is on, GDB may write into the target's memory.\n\
4131 Otherwise, any sort of write attempt will result in an error."),
4132 set_write_memory_permission, NULL,
4133 &setlist, &showlist);
4135 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4136 &may_insert_breakpoints_1, _("\
4137 Set permission to insert breakpoints in the target."), _("\
4138 Show permission to insert breakpoints in the target."), _("\
4139 When this permission is on, GDB may insert breakpoints in the program.\n\
4140 Otherwise, any sort of insertion attempt will result in an error."),
4141 set_target_permissions, NULL,
4142 &setlist, &showlist);
4144 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4145 &may_insert_tracepoints_1, _("\
4146 Set permission to insert tracepoints in the target."), _("\
4147 Show permission to insert tracepoints in the target."), _("\
4148 When this permission is on, GDB may insert tracepoints in the program.\n\
4149 Otherwise, any sort of insertion attempt will result in an error."),
4150 set_target_permissions, NULL,
4151 &setlist, &showlist);
4153 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4154 &may_insert_fast_tracepoints_1, _("\
4155 Set permission to insert fast tracepoints in the target."), _("\
4156 Show permission to insert fast tracepoints in the target."), _("\
4157 When this permission is on, GDB may insert fast tracepoints.\n\
4158 Otherwise, any sort of insertion attempt will result in an error."),
4159 set_target_permissions, NULL,
4160 &setlist, &showlist);
4162 add_setshow_boolean_cmd ("may-interrupt", class_support,
4164 Set permission to interrupt or signal the target."), _("\
4165 Show permission to interrupt or signal the target."), _("\
4166 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4167 Otherwise, any attempt to interrupt or stop will be ignored."),
4168 set_target_permissions, NULL,
4169 &setlist, &showlist);
4171 add_com ("flash-erase", no_class, flash_erase_command,
4172 _("Erase all flash memory regions."));
4174 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4175 &auto_connect_native_target, _("\
4176 Set whether GDB may automatically connect to the native target."), _("\
4177 Show whether GDB may automatically connect to the native target."), _("\
4178 When on, and GDB is not connected to a target yet, GDB\n\
4179 attempts \"run\" and other commands with the native target."),
4180 NULL, show_auto_connect_native_target,
4181 &setlist, &showlist);