1 /* Select target systems and architectures at runtime for GDB.
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
5 Contributed by Cygnus Support.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "target-dcache.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
45 #include "target-debug.h"
47 #include "event-top.h"
49 #include "byte-vector.h"
52 #include <unordered_map>
54 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
56 static void default_terminal_info (struct target_ops *, const char *, int);
58 static int default_watchpoint_addr_within_range (struct target_ops *,
59 CORE_ADDR, CORE_ADDR, int);
61 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
64 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
66 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
69 static int default_follow_fork (struct target_ops *self, int follow_child,
72 static void default_mourn_inferior (struct target_ops *self);
74 static int default_search_memory (struct target_ops *ops,
76 ULONGEST search_space_len,
77 const gdb_byte *pattern,
79 CORE_ADDR *found_addrp);
81 static int default_verify_memory (struct target_ops *self,
83 CORE_ADDR memaddr, ULONGEST size);
85 static struct address_space *default_thread_address_space
86 (struct target_ops *self, ptid_t ptid);
88 static void tcomplain (void) ATTRIBUTE_NORETURN;
90 static struct target_ops *find_default_run_target (const char *);
92 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
95 static int dummy_find_memory_regions (struct target_ops *self,
96 find_memory_region_ftype ignore1,
99 static char *dummy_make_corefile_notes (struct target_ops *self,
100 bfd *ignore1, int *ignore2);
102 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104 static enum exec_direction_kind default_execution_direction
105 (struct target_ops *self);
107 /* Mapping between target_info objects (which have address identity)
108 and corresponding open/factory function/callback. Each add_target
109 call adds one entry to this map, and registers a "target
110 TARGET_NAME" command that when invoked calls the factory registered
111 here. The target_info object is associated with the command via
112 the command's context. */
113 static std::unordered_map<const target_info *, target_open_ftype *>
116 /* The initial current target, so that there is always a semi-valid
119 static struct target_ops *the_dummy_target;
120 static struct target_ops *the_debug_target;
122 /* The target stack. */
124 static target_stack g_target_stack;
126 /* Top of target stack. */
127 /* The target structure we are currently using to talk to a process
128 or file or whatever "inferior" we have. */
131 current_top_target ()
133 return g_target_stack.top ();
136 /* Command list for target. */
138 static struct cmd_list_element *targetlist = NULL;
140 /* Nonzero if we should trust readonly sections from the
141 executable when reading memory. */
143 static int trust_readonly = 0;
145 /* Nonzero if we should show true memory content including
146 memory breakpoint inserted by gdb. */
148 static int show_memory_breakpoints = 0;
150 /* These globals control whether GDB attempts to perform these
151 operations; they are useful for targets that need to prevent
152 inadvertant disruption, such as in non-stop mode. */
154 int may_write_registers = 1;
156 int may_write_memory = 1;
158 int may_insert_breakpoints = 1;
160 int may_insert_tracepoints = 1;
162 int may_insert_fast_tracepoints = 1;
166 /* Non-zero if we want to see trace of target level stuff. */
168 static unsigned int targetdebug = 0;
171 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
174 push_target (the_debug_target);
176 unpush_target (the_debug_target);
180 show_targetdebug (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
183 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
186 /* The user just typed 'target' without the name of a target. */
189 target_command (const char *arg, int from_tty)
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
196 namespace selftests {
198 /* A mock process_stratum target_ops that doesn't read/write registers
201 static const target_info test_target_info = {
203 N_("unit tests target"),
204 N_("You should never see this"),
208 test_target_ops::info () const
210 return test_target_info;
213 } /* namespace selftests */
214 #endif /* GDB_SELF_TEST */
216 /* Default target_has_* methods for process_stratum targets. */
219 default_child_has_all_memory ()
221 /* If no inferior selected, then we can't read memory here. */
222 if (ptid_equal (inferior_ptid, null_ptid))
229 default_child_has_memory ()
231 /* If no inferior selected, then we can't read memory here. */
232 if (ptid_equal (inferior_ptid, null_ptid))
239 default_child_has_stack ()
241 /* If no inferior selected, there's no stack. */
242 if (ptid_equal (inferior_ptid, null_ptid))
249 default_child_has_registers ()
251 /* Can't read registers from no inferior. */
252 if (ptid_equal (inferior_ptid, null_ptid))
259 default_child_has_execution (ptid_t the_ptid)
261 /* If there's no thread selected, then we can't make it run through
263 if (ptid_equal (the_ptid, null_ptid))
271 target_has_all_memory_1 (void)
273 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
274 if (t->has_all_memory ())
281 target_has_memory_1 (void)
283 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
284 if (t->has_memory ())
291 target_has_stack_1 (void)
293 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
301 target_has_registers_1 (void)
303 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
304 if (t->has_registers ())
311 target_has_execution_1 (ptid_t the_ptid)
313 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
314 if (t->has_execution (the_ptid))
321 target_has_execution_current (void)
323 return target_has_execution_1 (inferior_ptid);
326 /* This is used to implement the various target commands. */
329 open_target (const char *args, int from_tty, struct cmd_list_element *command)
331 auto *ti = static_cast<target_info *> (get_cmd_context (command));
332 target_open_ftype *func = target_factories[ti];
335 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
338 func (args, from_tty);
341 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
342 ti->shortname, args, from_tty);
348 add_target (const target_info &t, target_open_ftype *func,
349 completer_ftype *completer)
351 struct cmd_list_element *c;
353 auto &func_slot = target_factories[&t];
354 if (func_slot != nullptr)
355 internal_error (__FILE__, __LINE__,
356 _("target already added (\"%s\")."), t.shortname);
359 if (targetlist == NULL)
360 add_prefix_cmd ("target", class_run, target_command, _("\
361 Connect to a target machine or process.\n\
362 The first argument is the type or protocol of the target machine.\n\
363 Remaining arguments are interpreted by the target protocol. For more\n\
364 information on the arguments for a particular protocol, type\n\
365 `help target ' followed by the protocol name."),
366 &targetlist, "target ", 0, &cmdlist);
367 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
368 set_cmd_context (c, (void *) &t);
369 set_cmd_sfunc (c, open_target);
370 if (completer != NULL)
371 set_cmd_completer (c, completer);
377 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
379 struct cmd_list_element *c;
382 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
384 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
385 set_cmd_sfunc (c, open_target);
386 set_cmd_context (c, (void *) &tinfo);
387 alt = xstrprintf ("target %s", tinfo.shortname);
388 deprecate_cmd (c, alt);
396 current_top_target ()->kill ();
400 target_load (const char *arg, int from_tty)
402 target_dcache_invalidate ();
403 current_top_target ()->load (arg, from_tty);
408 target_terminal_state target_terminal::m_terminal_state
409 = target_terminal_state::is_ours;
411 /* See target/target.h. */
414 target_terminal::init (void)
416 current_top_target ()->terminal_init ();
418 m_terminal_state = target_terminal_state::is_ours;
421 /* See target/target.h. */
424 target_terminal::inferior (void)
426 struct ui *ui = current_ui;
428 /* A background resume (``run&'') should leave GDB in control of the
430 if (ui->prompt_state != PROMPT_BLOCKED)
433 /* Since we always run the inferior in the main console (unless "set
434 inferior-tty" is in effect), when some UI other than the main one
435 calls target_terminal::inferior, then we leave the main UI's
436 terminal settings as is. */
440 /* If GDB is resuming the inferior in the foreground, install
441 inferior's terminal modes. */
443 struct inferior *inf = current_inferior ();
445 if (inf->terminal_state != target_terminal_state::is_inferior)
447 current_top_target ()->terminal_inferior ();
448 inf->terminal_state = target_terminal_state::is_inferior;
451 m_terminal_state = target_terminal_state::is_inferior;
453 /* If the user hit C-c before, pretend that it was hit right
455 if (check_quit_flag ())
456 target_pass_ctrlc ();
459 /* See target/target.h. */
462 target_terminal::restore_inferior (void)
464 struct ui *ui = current_ui;
466 /* See target_terminal::inferior(). */
467 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
470 /* Restore the terminal settings of inferiors that were in the
471 foreground but are now ours_for_output due to a temporary
472 target_target::ours_for_output() call. */
475 scoped_restore_current_inferior restore_inferior;
476 struct inferior *inf;
480 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
482 set_current_inferior (inf);
483 current_top_target ()->terminal_inferior ();
484 inf->terminal_state = target_terminal_state::is_inferior;
489 m_terminal_state = target_terminal_state::is_inferior;
491 /* If the user hit C-c before, pretend that it was hit right
493 if (check_quit_flag ())
494 target_pass_ctrlc ();
497 /* Switch terminal state to DESIRED_STATE, either is_ours, or
498 is_ours_for_output. */
501 target_terminal_is_ours_kind (target_terminal_state desired_state)
503 scoped_restore_current_inferior restore_inferior;
504 struct inferior *inf;
506 /* Must do this in two passes. First, have all inferiors save the
507 current terminal settings. Then, after all inferiors have add a
508 chance to safely save the terminal settings, restore GDB's
509 terminal settings. */
513 if (inf->terminal_state == target_terminal_state::is_inferior)
515 set_current_inferior (inf);
516 current_top_target ()->terminal_save_inferior ();
522 /* Note we don't check is_inferior here like above because we
523 need to handle 'is_ours_for_output -> is_ours' too. Careful
524 to never transition from 'is_ours' to 'is_ours_for_output',
526 if (inf->terminal_state != target_terminal_state::is_ours
527 && inf->terminal_state != desired_state)
529 set_current_inferior (inf);
530 if (desired_state == target_terminal_state::is_ours)
531 current_top_target ()->terminal_ours ();
532 else if (desired_state == target_terminal_state::is_ours_for_output)
533 current_top_target ()->terminal_ours_for_output ();
535 gdb_assert_not_reached ("unhandled desired state");
536 inf->terminal_state = desired_state;
541 /* See target/target.h. */
544 target_terminal::ours ()
546 struct ui *ui = current_ui;
548 /* See target_terminal::inferior. */
552 if (m_terminal_state == target_terminal_state::is_ours)
555 target_terminal_is_ours_kind (target_terminal_state::is_ours);
556 m_terminal_state = target_terminal_state::is_ours;
559 /* See target/target.h. */
562 target_terminal::ours_for_output ()
564 struct ui *ui = current_ui;
566 /* See target_terminal::inferior. */
570 if (!target_terminal::is_inferior ())
573 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
574 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
577 /* See target/target.h. */
580 target_terminal::info (const char *arg, int from_tty)
582 current_top_target ()->terminal_info (arg, from_tty);
588 target_supports_terminal_ours (void)
590 return current_top_target ()->supports_terminal_ours ();
596 error (_("You can't do that when your target is `%s'"),
597 current_top_target ()->shortname ());
603 error (_("You can't do that without a process to debug."));
607 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
609 printf_unfiltered (_("No saved terminal information.\n"));
612 /* A default implementation for the to_get_ada_task_ptid target method.
614 This function builds the PTID by using both LWP and TID as part of
615 the PTID lwp and tid elements. The pid used is the pid of the
619 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
621 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
624 static enum exec_direction_kind
625 default_execution_direction (struct target_ops *self)
627 if (!target_can_execute_reverse)
629 else if (!target_can_async_p ())
632 gdb_assert_not_reached ("\
633 to_execution_direction must be implemented for reverse async");
639 target_stack::push (target_ops *t)
641 /* If there's already a target at this stratum, remove it. */
642 if (m_stack[t->to_stratum] != NULL)
644 target_ops *prev = m_stack[t->to_stratum];
645 m_stack[t->to_stratum] = NULL;
649 /* Now add the new one. */
650 m_stack[t->to_stratum] = t;
652 if (m_top < t->to_stratum)
653 m_top = t->to_stratum;
659 push_target (struct target_ops *t)
661 g_target_stack.push (t);
667 unpush_target (struct target_ops *t)
669 return g_target_stack.unpush (t);
675 target_stack::unpush (target_ops *t)
677 struct target_ops **cur;
678 struct target_ops *tmp;
680 if (t->to_stratum == dummy_stratum)
681 internal_error (__FILE__, __LINE__,
682 _("Attempt to unpush the dummy target"));
684 gdb_assert (t != NULL);
686 /* Look for the specified target. Note that a target can only occur
687 once in the target stack. */
689 if (m_stack[t->to_stratum] != t)
691 /* If T wasn't pushed, quit. Only open targets should be
696 /* Unchain the target. */
697 m_stack[t->to_stratum] = NULL;
699 if (m_top == t->to_stratum)
700 m_top = t->beneath ()->to_stratum;
702 /* Finally close the target. Note we do this after unchaining, so
703 any target method calls from within the target_close
704 implementation don't end up in T anymore. */
710 /* Unpush TARGET and assert that it worked. */
713 unpush_target_and_assert (struct target_ops *target)
715 if (!unpush_target (target))
717 fprintf_unfiltered (gdb_stderr,
718 "pop_all_targets couldn't find target %s\n",
719 target->shortname ());
720 internal_error (__FILE__, __LINE__,
721 _("failed internal consistency check"));
726 pop_all_targets_above (enum strata above_stratum)
728 while ((int) (current_top_target ()->to_stratum) > (int) above_stratum)
729 unpush_target_and_assert (current_top_target ());
735 pop_all_targets_at_and_above (enum strata stratum)
737 while ((int) (current_top_target ()->to_stratum) >= (int) stratum)
738 unpush_target_and_assert (current_top_target ());
742 pop_all_targets (void)
744 pop_all_targets_above (dummy_stratum);
747 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
750 target_is_pushed (struct target_ops *t)
752 return g_target_stack.is_pushed (t);
755 /* Default implementation of to_get_thread_local_address. */
758 generic_tls_error (void)
760 throw_error (TLS_GENERIC_ERROR,
761 _("Cannot find thread-local variables on this target"));
764 /* Using the objfile specified in OBJFILE, find the address for the
765 current thread's thread-local storage with offset OFFSET. */
767 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
769 volatile CORE_ADDR addr = 0;
770 struct target_ops *target = current_top_target ();
772 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
774 ptid_t ptid = inferior_ptid;
780 /* Fetch the load module address for this objfile. */
781 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
784 addr = target->get_thread_local_address (ptid, lm_addr, offset);
786 /* If an error occurred, print TLS related messages here. Otherwise,
787 throw the error to some higher catcher. */
788 CATCH (ex, RETURN_MASK_ALL)
790 int objfile_is_library = (objfile->flags & OBJF_SHARED);
794 case TLS_NO_LIBRARY_SUPPORT_ERROR:
795 error (_("Cannot find thread-local variables "
796 "in this thread library."));
798 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
799 if (objfile_is_library)
800 error (_("Cannot find shared library `%s' in dynamic"
801 " linker's load module list"), objfile_name (objfile));
803 error (_("Cannot find executable file `%s' in dynamic"
804 " linker's load module list"), objfile_name (objfile));
806 case TLS_NOT_ALLOCATED_YET_ERROR:
807 if (objfile_is_library)
808 error (_("The inferior has not yet allocated storage for"
809 " thread-local variables in\n"
810 "the shared library `%s'\n"
812 objfile_name (objfile), target_pid_to_str (ptid));
814 error (_("The inferior has not yet allocated storage for"
815 " thread-local variables in\n"
816 "the executable `%s'\n"
818 objfile_name (objfile), target_pid_to_str (ptid));
820 case TLS_GENERIC_ERROR:
821 if (objfile_is_library)
822 error (_("Cannot find thread-local storage for %s, "
823 "shared library %s:\n%s"),
824 target_pid_to_str (ptid),
825 objfile_name (objfile), ex.message);
827 error (_("Cannot find thread-local storage for %s, "
828 "executable file %s:\n%s"),
829 target_pid_to_str (ptid),
830 objfile_name (objfile), ex.message);
833 throw_exception (ex);
839 /* It wouldn't be wrong here to try a gdbarch method, too; finding
840 TLS is an ABI-specific thing. But we don't do that yet. */
842 error (_("Cannot find thread-local variables on this target"));
848 target_xfer_status_to_string (enum target_xfer_status status)
850 #define CASE(X) case X: return #X
853 CASE(TARGET_XFER_E_IO);
854 CASE(TARGET_XFER_UNAVAILABLE);
863 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
865 /* target_read_string -- read a null terminated string, up to LEN bytes,
866 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
867 Set *STRING to a pointer to malloc'd memory containing the data; the caller
868 is responsible for freeing it. Return the number of bytes successfully
872 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
873 int len, int *errnop)
879 int buffer_allocated;
881 unsigned int nbytes_read = 0;
885 /* Small for testing. */
886 buffer_allocated = 4;
887 buffer = (char *) xmalloc (buffer_allocated);
892 tlen = MIN (len, 4 - (memaddr & 3));
893 offset = memaddr & 3;
895 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
898 /* The transfer request might have crossed the boundary to an
899 unallocated region of memory. Retry the transfer, requesting
903 errcode = target_read_memory (memaddr, buf, 1);
908 if (bufptr - buffer + tlen > buffer_allocated)
912 bytes = bufptr - buffer;
913 buffer_allocated *= 2;
914 buffer = (char *) xrealloc (buffer, buffer_allocated);
915 bufptr = buffer + bytes;
918 for (i = 0; i < tlen; i++)
920 *bufptr++ = buf[i + offset];
921 if (buf[i + offset] == '\000')
923 nbytes_read += i + 1;
933 string->reset (buffer);
939 struct target_section_table *
940 target_get_section_table (struct target_ops *target)
942 return target->get_section_table ();
945 /* Find a section containing ADDR. */
947 struct target_section *
948 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
950 struct target_section_table *table = target_get_section_table (target);
951 struct target_section *secp;
956 for (secp = table->sections; secp < table->sections_end; secp++)
958 if (addr >= secp->addr && addr < secp->endaddr)
965 /* Helper for the memory xfer routines. Checks the attributes of the
966 memory region of MEMADDR against the read or write being attempted.
967 If the access is permitted returns true, otherwise returns false.
968 REGION_P is an optional output parameter. If not-NULL, it is
969 filled with a pointer to the memory region of MEMADDR. REG_LEN
970 returns LEN trimmed to the end of the region. This is how much the
971 caller can continue requesting, if the access is permitted. A
972 single xfer request must not straddle memory region boundaries. */
975 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
976 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
977 struct mem_region **region_p)
979 struct mem_region *region;
981 region = lookup_mem_region (memaddr);
983 if (region_p != NULL)
986 switch (region->attrib.mode)
989 if (writebuf != NULL)
999 /* We only support writing to flash during "load" for now. */
1000 if (writebuf != NULL)
1001 error (_("Writing to flash memory forbidden in this context"));
1008 /* region->hi == 0 means there's no upper bound. */
1009 if (memaddr + len < region->hi || region->hi == 0)
1012 *reg_len = region->hi - memaddr;
1017 /* Read memory from more than one valid target. A core file, for
1018 instance, could have some of memory but delegate other bits to
1019 the target below it. So, we must manually try all targets. */
1021 enum target_xfer_status
1022 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1023 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1024 ULONGEST *xfered_len)
1026 enum target_xfer_status res;
1030 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
1031 readbuf, writebuf, memaddr, len,
1033 if (res == TARGET_XFER_OK)
1036 /* Stop if the target reports that the memory is not available. */
1037 if (res == TARGET_XFER_UNAVAILABLE)
1040 /* We want to continue past core files to executables, but not
1041 past a running target's memory. */
1042 if (ops->has_all_memory ())
1045 ops = ops->beneath ();
1047 while (ops != NULL);
1049 /* The cache works at the raw memory level. Make sure the cache
1050 gets updated with raw contents no matter what kind of memory
1051 object was originally being written. Note we do write-through
1052 first, so that if it fails, we don't write to the cache contents
1053 that never made it to the target. */
1054 if (writebuf != NULL
1055 && !ptid_equal (inferior_ptid, null_ptid)
1056 && target_dcache_init_p ()
1057 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1059 DCACHE *dcache = target_dcache_get ();
1061 /* Note that writing to an area of memory which wasn't present
1062 in the cache doesn't cause it to be loaded in. */
1063 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1069 /* Perform a partial memory transfer.
1070 For docs see target.h, to_xfer_partial. */
1072 static enum target_xfer_status
1073 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1074 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1075 ULONGEST len, ULONGEST *xfered_len)
1077 enum target_xfer_status res;
1079 struct mem_region *region;
1080 struct inferior *inf;
1082 /* For accesses to unmapped overlay sections, read directly from
1083 files. Must do this first, as MEMADDR may need adjustment. */
1084 if (readbuf != NULL && overlay_debugging)
1086 struct obj_section *section = find_pc_overlay (memaddr);
1088 if (pc_in_unmapped_range (memaddr, section))
1090 struct target_section_table *table
1091 = target_get_section_table (ops);
1092 const char *section_name = section->the_bfd_section->name;
1094 memaddr = overlay_mapped_address (memaddr, section);
1095 return section_table_xfer_memory_partial (readbuf, writebuf,
1096 memaddr, len, xfered_len,
1098 table->sections_end,
1103 /* Try the executable files, if "trust-readonly-sections" is set. */
1104 if (readbuf != NULL && trust_readonly)
1106 struct target_section *secp;
1107 struct target_section_table *table;
1109 secp = target_section_by_addr (ops, memaddr);
1111 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1112 secp->the_bfd_section)
1115 table = target_get_section_table (ops);
1116 return section_table_xfer_memory_partial (readbuf, writebuf,
1117 memaddr, len, xfered_len,
1119 table->sections_end,
1124 /* Try GDB's internal data cache. */
1126 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, ®_len,
1128 return TARGET_XFER_E_IO;
1130 if (!ptid_equal (inferior_ptid, null_ptid))
1131 inf = current_inferior ();
1137 /* The dcache reads whole cache lines; that doesn't play well
1138 with reading from a trace buffer, because reading outside of
1139 the collected memory range fails. */
1140 && get_traceframe_number () == -1
1141 && (region->attrib.cache
1142 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1143 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1145 DCACHE *dcache = target_dcache_get_or_init ();
1147 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1148 reg_len, xfered_len);
1151 /* If none of those methods found the memory we wanted, fall back
1152 to a target partial transfer. Normally a single call to
1153 to_xfer_partial is enough; if it doesn't recognize an object
1154 it will call the to_xfer_partial of the next target down.
1155 But for memory this won't do. Memory is the only target
1156 object which can be read from more than one valid target.
1157 A core file, for instance, could have some of memory but
1158 delegate other bits to the target below it. So, we must
1159 manually try all targets. */
1161 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1164 /* If we still haven't got anything, return the last error. We
1169 /* Perform a partial memory transfer. For docs see target.h,
1172 static enum target_xfer_status
1173 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1174 gdb_byte *readbuf, const gdb_byte *writebuf,
1175 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1177 enum target_xfer_status res;
1179 /* Zero length requests are ok and require no work. */
1181 return TARGET_XFER_EOF;
1183 memaddr = address_significant (target_gdbarch (), memaddr);
1185 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1186 breakpoint insns, thus hiding out from higher layers whether
1187 there are software breakpoints inserted in the code stream. */
1188 if (readbuf != NULL)
1190 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1193 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1194 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1198 /* A large write request is likely to be partially satisfied
1199 by memory_xfer_partial_1. We will continually malloc
1200 and free a copy of the entire write request for breakpoint
1201 shadow handling even though we only end up writing a small
1202 subset of it. Cap writes to a limit specified by the target
1203 to mitigate this. */
1204 len = std::min (ops->get_memory_xfer_limit (), len);
1206 gdb::byte_vector buf (writebuf, writebuf + len);
1207 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1208 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1215 scoped_restore_tmpl<int>
1216 make_scoped_restore_show_memory_breakpoints (int show)
1218 return make_scoped_restore (&show_memory_breakpoints, show);
1221 /* For docs see target.h, to_xfer_partial. */
1223 enum target_xfer_status
1224 target_xfer_partial (struct target_ops *ops,
1225 enum target_object object, const char *annex,
1226 gdb_byte *readbuf, const gdb_byte *writebuf,
1227 ULONGEST offset, ULONGEST len,
1228 ULONGEST *xfered_len)
1230 enum target_xfer_status retval;
1232 /* Transfer is done when LEN is zero. */
1234 return TARGET_XFER_EOF;
1236 if (writebuf && !may_write_memory)
1237 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1238 core_addr_to_string_nz (offset), plongest (len));
1242 /* If this is a memory transfer, let the memory-specific code
1243 have a look at it instead. Memory transfers are more
1245 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1246 || object == TARGET_OBJECT_CODE_MEMORY)
1247 retval = memory_xfer_partial (ops, object, readbuf,
1248 writebuf, offset, len, xfered_len);
1249 else if (object == TARGET_OBJECT_RAW_MEMORY)
1251 /* Skip/avoid accessing the target if the memory region
1252 attributes block the access. Check this here instead of in
1253 raw_memory_xfer_partial as otherwise we'd end up checking
1254 this twice in the case of the memory_xfer_partial path is
1255 taken; once before checking the dcache, and another in the
1256 tail call to raw_memory_xfer_partial. */
1257 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1259 return TARGET_XFER_E_IO;
1261 /* Request the normal memory object from other layers. */
1262 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1266 retval = ops->xfer_partial (object, annex, readbuf,
1267 writebuf, offset, len, xfered_len);
1271 const unsigned char *myaddr = NULL;
1273 fprintf_unfiltered (gdb_stdlog,
1274 "%s:target_xfer_partial "
1275 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1278 (annex ? annex : "(null)"),
1279 host_address_to_string (readbuf),
1280 host_address_to_string (writebuf),
1281 core_addr_to_string_nz (offset),
1282 pulongest (len), retval,
1283 pulongest (*xfered_len));
1289 if (retval == TARGET_XFER_OK && myaddr != NULL)
1293 fputs_unfiltered (", bytes =", gdb_stdlog);
1294 for (i = 0; i < *xfered_len; i++)
1296 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1298 if (targetdebug < 2 && i > 0)
1300 fprintf_unfiltered (gdb_stdlog, " ...");
1303 fprintf_unfiltered (gdb_stdlog, "\n");
1306 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1310 fputc_unfiltered ('\n', gdb_stdlog);
1313 /* Check implementations of to_xfer_partial update *XFERED_LEN
1314 properly. Do assertion after printing debug messages, so that we
1315 can find more clues on assertion failure from debugging messages. */
1316 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1317 gdb_assert (*xfered_len > 0);
1322 /* Read LEN bytes of target memory at address MEMADDR, placing the
1323 results in GDB's memory at MYADDR. Returns either 0 for success or
1324 -1 if any error occurs.
1326 If an error occurs, no guarantee is made about the contents of the data at
1327 MYADDR. In particular, the caller should not depend upon partial reads
1328 filling the buffer with good data. There is no way for the caller to know
1329 how much good data might have been transfered anyway. Callers that can
1330 deal with partial reads should call target_read (which will retry until
1331 it makes no progress, and then return how much was transferred). */
1334 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1336 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1337 myaddr, memaddr, len) == len)
1343 /* See target/target.h. */
1346 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1351 r = target_read_memory (memaddr, buf, sizeof buf);
1354 *result = extract_unsigned_integer (buf, sizeof buf,
1355 gdbarch_byte_order (target_gdbarch ()));
1359 /* Like target_read_memory, but specify explicitly that this is a read
1360 from the target's raw memory. That is, this read bypasses the
1361 dcache, breakpoint shadowing, etc. */
1364 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1366 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1367 myaddr, memaddr, len) == len)
1373 /* Like target_read_memory, but specify explicitly that this is a read from
1374 the target's stack. This may trigger different cache behavior. */
1377 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1379 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1380 myaddr, memaddr, len) == len)
1386 /* Like target_read_memory, but specify explicitly that this is a read from
1387 the target's code. This may trigger different cache behavior. */
1390 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1392 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1393 myaddr, memaddr, len) == len)
1399 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1400 Returns either 0 for success or -1 if any error occurs. If an
1401 error occurs, no guarantee is made about how much data got written.
1402 Callers that can deal with partial writes should call
1406 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1408 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1409 myaddr, memaddr, len) == len)
1415 /* Write LEN bytes from MYADDR to target raw memory at address
1416 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1417 If an error occurs, no guarantee is made about how much data got
1418 written. Callers that can deal with partial writes should call
1422 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1424 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1425 myaddr, memaddr, len) == len)
1431 /* Fetch the target's memory map. */
1433 std::vector<mem_region>
1434 target_memory_map (void)
1436 std::vector<mem_region> result = current_top_target ()->memory_map ();
1437 if (result.empty ())
1440 std::sort (result.begin (), result.end ());
1442 /* Check that regions do not overlap. Simultaneously assign
1443 a numbering for the "mem" commands to use to refer to
1445 mem_region *last_one = NULL;
1446 for (size_t ix = 0; ix < result.size (); ix++)
1448 mem_region *this_one = &result[ix];
1449 this_one->number = ix;
1451 if (last_one != NULL && last_one->hi > this_one->lo)
1453 warning (_("Overlapping regions in memory map: ignoring"));
1454 return std::vector<mem_region> ();
1457 last_one = this_one;
1464 target_flash_erase (ULONGEST address, LONGEST length)
1466 current_top_target ()->flash_erase (address, length);
1470 target_flash_done (void)
1472 current_top_target ()->flash_done ();
1476 show_trust_readonly (struct ui_file *file, int from_tty,
1477 struct cmd_list_element *c, const char *value)
1479 fprintf_filtered (file,
1480 _("Mode for reading from readonly sections is %s.\n"),
1484 /* Target vector read/write partial wrapper functions. */
1486 static enum target_xfer_status
1487 target_read_partial (struct target_ops *ops,
1488 enum target_object object,
1489 const char *annex, gdb_byte *buf,
1490 ULONGEST offset, ULONGEST len,
1491 ULONGEST *xfered_len)
1493 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1497 static enum target_xfer_status
1498 target_write_partial (struct target_ops *ops,
1499 enum target_object object,
1500 const char *annex, const gdb_byte *buf,
1501 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1503 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1507 /* Wrappers to perform the full transfer. */
1509 /* For docs on target_read see target.h. */
1512 target_read (struct target_ops *ops,
1513 enum target_object object,
1514 const char *annex, gdb_byte *buf,
1515 ULONGEST offset, LONGEST len)
1517 LONGEST xfered_total = 0;
1520 /* If we are reading from a memory object, find the length of an addressable
1521 unit for that architecture. */
1522 if (object == TARGET_OBJECT_MEMORY
1523 || object == TARGET_OBJECT_STACK_MEMORY
1524 || object == TARGET_OBJECT_CODE_MEMORY
1525 || object == TARGET_OBJECT_RAW_MEMORY)
1526 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1528 while (xfered_total < len)
1530 ULONGEST xfered_partial;
1531 enum target_xfer_status status;
1533 status = target_read_partial (ops, object, annex,
1534 buf + xfered_total * unit_size,
1535 offset + xfered_total, len - xfered_total,
1538 /* Call an observer, notifying them of the xfer progress? */
1539 if (status == TARGET_XFER_EOF)
1540 return xfered_total;
1541 else if (status == TARGET_XFER_OK)
1543 xfered_total += xfered_partial;
1547 return TARGET_XFER_E_IO;
1553 /* Assuming that the entire [begin, end) range of memory cannot be
1554 read, try to read whatever subrange is possible to read.
1556 The function returns, in RESULT, either zero or one memory block.
1557 If there's a readable subrange at the beginning, it is completely
1558 read and returned. Any further readable subrange will not be read.
1559 Otherwise, if there's a readable subrange at the end, it will be
1560 completely read and returned. Any readable subranges before it
1561 (obviously, not starting at the beginning), will be ignored. In
1562 other cases -- either no readable subrange, or readable subrange(s)
1563 that is neither at the beginning, or end, nothing is returned.
1565 The purpose of this function is to handle a read across a boundary
1566 of accessible memory in a case when memory map is not available.
1567 The above restrictions are fine for this case, but will give
1568 incorrect results if the memory is 'patchy'. However, supporting
1569 'patchy' memory would require trying to read every single byte,
1570 and it seems unacceptable solution. Explicit memory map is
1571 recommended for this case -- and target_read_memory_robust will
1572 take care of reading multiple ranges then. */
1575 read_whatever_is_readable (struct target_ops *ops,
1576 const ULONGEST begin, const ULONGEST end,
1578 std::vector<memory_read_result> *result)
1580 ULONGEST current_begin = begin;
1581 ULONGEST current_end = end;
1583 ULONGEST xfered_len;
1585 /* If we previously failed to read 1 byte, nothing can be done here. */
1586 if (end - begin <= 1)
1589 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1591 /* Check that either first or the last byte is readable, and give up
1592 if not. This heuristic is meant to permit reading accessible memory
1593 at the boundary of accessible region. */
1594 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1595 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1600 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1601 buf.get () + (end - begin) - 1, end - 1, 1,
1602 &xfered_len) == TARGET_XFER_OK)
1610 /* Loop invariant is that the [current_begin, current_end) was previously
1611 found to be not readable as a whole.
1613 Note loop condition -- if the range has 1 byte, we can't divide the range
1614 so there's no point trying further. */
1615 while (current_end - current_begin > 1)
1617 ULONGEST first_half_begin, first_half_end;
1618 ULONGEST second_half_begin, second_half_end;
1620 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1624 first_half_begin = current_begin;
1625 first_half_end = middle;
1626 second_half_begin = middle;
1627 second_half_end = current_end;
1631 first_half_begin = middle;
1632 first_half_end = current_end;
1633 second_half_begin = current_begin;
1634 second_half_end = middle;
1637 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1638 buf.get () + (first_half_begin - begin) * unit_size,
1640 first_half_end - first_half_begin);
1642 if (xfer == first_half_end - first_half_begin)
1644 /* This half reads up fine. So, the error must be in the
1646 current_begin = second_half_begin;
1647 current_end = second_half_end;
1651 /* This half is not readable. Because we've tried one byte, we
1652 know some part of this half if actually readable. Go to the next
1653 iteration to divide again and try to read.
1655 We don't handle the other half, because this function only tries
1656 to read a single readable subrange. */
1657 current_begin = first_half_begin;
1658 current_end = first_half_end;
1664 /* The [begin, current_begin) range has been read. */
1665 result->emplace_back (begin, current_end, std::move (buf));
1669 /* The [current_end, end) range has been read. */
1670 LONGEST region_len = end - current_end;
1672 gdb::unique_xmalloc_ptr<gdb_byte> data
1673 ((gdb_byte *) xmalloc (region_len * unit_size));
1674 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1675 region_len * unit_size);
1676 result->emplace_back (current_end, end, std::move (data));
1680 std::vector<memory_read_result>
1681 read_memory_robust (struct target_ops *ops,
1682 const ULONGEST offset, const LONGEST len)
1684 std::vector<memory_read_result> result;
1685 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1687 LONGEST xfered_total = 0;
1688 while (xfered_total < len)
1690 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1693 /* If there is no explicit region, a fake one should be created. */
1694 gdb_assert (region);
1696 if (region->hi == 0)
1697 region_len = len - xfered_total;
1699 region_len = region->hi - offset;
1701 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1703 /* Cannot read this region. Note that we can end up here only
1704 if the region is explicitly marked inaccessible, or
1705 'inaccessible-by-default' is in effect. */
1706 xfered_total += region_len;
1710 LONGEST to_read = std::min (len - xfered_total, region_len);
1711 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1712 ((gdb_byte *) xmalloc (to_read * unit_size));
1714 LONGEST xfered_partial =
1715 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1716 offset + xfered_total, to_read);
1717 /* Call an observer, notifying them of the xfer progress? */
1718 if (xfered_partial <= 0)
1720 /* Got an error reading full chunk. See if maybe we can read
1722 read_whatever_is_readable (ops, offset + xfered_total,
1723 offset + xfered_total + to_read,
1724 unit_size, &result);
1725 xfered_total += to_read;
1729 result.emplace_back (offset + xfered_total,
1730 offset + xfered_total + xfered_partial,
1731 std::move (buffer));
1732 xfered_total += xfered_partial;
1742 /* An alternative to target_write with progress callbacks. */
1745 target_write_with_progress (struct target_ops *ops,
1746 enum target_object object,
1747 const char *annex, const gdb_byte *buf,
1748 ULONGEST offset, LONGEST len,
1749 void (*progress) (ULONGEST, void *), void *baton)
1751 LONGEST xfered_total = 0;
1754 /* If we are writing to a memory object, find the length of an addressable
1755 unit for that architecture. */
1756 if (object == TARGET_OBJECT_MEMORY
1757 || object == TARGET_OBJECT_STACK_MEMORY
1758 || object == TARGET_OBJECT_CODE_MEMORY
1759 || object == TARGET_OBJECT_RAW_MEMORY)
1760 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1762 /* Give the progress callback a chance to set up. */
1764 (*progress) (0, baton);
1766 while (xfered_total < len)
1768 ULONGEST xfered_partial;
1769 enum target_xfer_status status;
1771 status = target_write_partial (ops, object, annex,
1772 buf + xfered_total * unit_size,
1773 offset + xfered_total, len - xfered_total,
1776 if (status != TARGET_XFER_OK)
1777 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1780 (*progress) (xfered_partial, baton);
1782 xfered_total += xfered_partial;
1788 /* For docs on target_write see target.h. */
1791 target_write (struct target_ops *ops,
1792 enum target_object object,
1793 const char *annex, const gdb_byte *buf,
1794 ULONGEST offset, LONGEST len)
1796 return target_write_with_progress (ops, object, annex, buf, offset, len,
1800 /* Help for target_read_alloc and target_read_stralloc. See their comments
1803 template <typename T>
1804 gdb::optional<gdb::def_vector<T>>
1805 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1808 gdb::def_vector<T> buf;
1810 const int chunk = 4096;
1812 /* This function does not have a length parameter; it reads the
1813 entire OBJECT). Also, it doesn't support objects fetched partly
1814 from one target and partly from another (in a different stratum,
1815 e.g. a core file and an executable). Both reasons make it
1816 unsuitable for reading memory. */
1817 gdb_assert (object != TARGET_OBJECT_MEMORY);
1819 /* Start by reading up to 4K at a time. The target will throttle
1820 this number down if necessary. */
1823 ULONGEST xfered_len;
1824 enum target_xfer_status status;
1826 buf.resize (buf_pos + chunk);
1828 status = target_read_partial (ops, object, annex,
1829 (gdb_byte *) &buf[buf_pos],
1833 if (status == TARGET_XFER_EOF)
1835 /* Read all there was. */
1836 buf.resize (buf_pos);
1839 else if (status != TARGET_XFER_OK)
1841 /* An error occurred. */
1845 buf_pos += xfered_len;
1853 gdb::optional<gdb::byte_vector>
1854 target_read_alloc (struct target_ops *ops, enum target_object object,
1857 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1862 gdb::optional<gdb::char_vector>
1863 target_read_stralloc (struct target_ops *ops, enum target_object object,
1866 gdb::optional<gdb::char_vector> buf
1867 = target_read_alloc_1<char> (ops, object, annex);
1872 if (buf->back () != '\0')
1873 buf->push_back ('\0');
1875 /* Check for embedded NUL bytes; but allow trailing NULs. */
1876 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1877 it != buf->end (); it++)
1880 warning (_("target object %d, annex %s, "
1881 "contained unexpected null characters"),
1882 (int) object, annex ? annex : "(none)");
1889 /* Memory transfer methods. */
1892 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1895 /* This method is used to read from an alternate, non-current
1896 target. This read must bypass the overlay support (as symbols
1897 don't match this target), and GDB's internal cache (wrong cache
1898 for this target). */
1899 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1901 memory_error (TARGET_XFER_E_IO, addr);
1905 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1906 int len, enum bfd_endian byte_order)
1908 gdb_byte buf[sizeof (ULONGEST)];
1910 gdb_assert (len <= sizeof (buf));
1911 get_target_memory (ops, addr, buf, len);
1912 return extract_unsigned_integer (buf, len, byte_order);
1918 target_insert_breakpoint (struct gdbarch *gdbarch,
1919 struct bp_target_info *bp_tgt)
1921 if (!may_insert_breakpoints)
1923 warning (_("May not insert breakpoints"));
1927 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1933 target_remove_breakpoint (struct gdbarch *gdbarch,
1934 struct bp_target_info *bp_tgt,
1935 enum remove_bp_reason reason)
1937 /* This is kind of a weird case to handle, but the permission might
1938 have been changed after breakpoints were inserted - in which case
1939 we should just take the user literally and assume that any
1940 breakpoints should be left in place. */
1941 if (!may_insert_breakpoints)
1943 warning (_("May not remove breakpoints"));
1947 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1951 info_target_command (const char *args, int from_tty)
1953 int has_all_mem = 0;
1955 if (symfile_objfile != NULL)
1956 printf_unfiltered (_("Symbols from \"%s\".\n"),
1957 objfile_name (symfile_objfile));
1959 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1961 if (!t->has_memory ())
1964 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1967 printf_unfiltered (_("\tWhile running this, "
1968 "GDB does not access memory from...\n"));
1969 printf_unfiltered ("%s:\n", t->longname ());
1971 has_all_mem = t->has_all_memory ();
1975 /* This function is called before any new inferior is created, e.g.
1976 by running a program, attaching, or connecting to a target.
1977 It cleans up any state from previous invocations which might
1978 change between runs. This is a subset of what target_preopen
1979 resets (things which might change between targets). */
1982 target_pre_inferior (int from_tty)
1984 /* Clear out solib state. Otherwise the solib state of the previous
1985 inferior might have survived and is entirely wrong for the new
1986 target. This has been observed on GNU/Linux using glibc 2.3. How
1998 Cannot access memory at address 0xdeadbeef
2001 /* In some OSs, the shared library list is the same/global/shared
2002 across inferiors. If code is shared between processes, so are
2003 memory regions and features. */
2004 if (!gdbarch_has_global_solist (target_gdbarch ()))
2006 no_shared_libraries (NULL, from_tty);
2008 invalidate_target_mem_regions ();
2010 target_clear_description ();
2013 /* attach_flag may be set if the previous process associated with
2014 the inferior was attached to. */
2015 current_inferior ()->attach_flag = 0;
2017 current_inferior ()->highest_thread_num = 0;
2019 agent_capability_invalidate ();
2022 /* Callback for iterate_over_inferiors. Gets rid of the given
2026 dispose_inferior (struct inferior *inf, void *args)
2028 thread_info *thread = any_thread_of_inferior (inf);
2031 switch_to_thread (thread);
2033 /* Core inferiors actually should be detached, not killed. */
2034 if (target_has_execution)
2037 target_detach (inf, 0);
2043 /* This is to be called by the open routine before it does
2047 target_preopen (int from_tty)
2051 if (have_inferiors ())
2054 || !have_live_inferiors ()
2055 || query (_("A program is being debugged already. Kill it? ")))
2056 iterate_over_inferiors (dispose_inferior, NULL);
2058 error (_("Program not killed."));
2061 /* Calling target_kill may remove the target from the stack. But if
2062 it doesn't (which seems like a win for UDI), remove it now. */
2063 /* Leave the exec target, though. The user may be switching from a
2064 live process to a core of the same program. */
2065 pop_all_targets_above (file_stratum);
2067 target_pre_inferior (from_tty);
2073 target_detach (inferior *inf, int from_tty)
2075 /* As long as some to_detach implementations rely on the current_inferior
2076 (either directly, or indirectly, like through target_gdbarch or by
2077 reading memory), INF needs to be the current inferior. When that
2078 requirement will become no longer true, then we can remove this
2080 gdb_assert (inf == current_inferior ());
2082 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2083 /* Don't remove global breakpoints here. They're removed on
2084 disconnection from the target. */
2087 /* If we're in breakpoints-always-inserted mode, have to remove
2088 breakpoints before detaching. */
2089 remove_breakpoints_inf (current_inferior ());
2091 prepare_for_detach ();
2093 current_top_target ()->detach (inf, from_tty);
2097 target_disconnect (const char *args, int from_tty)
2099 /* If we're in breakpoints-always-inserted mode or if breakpoints
2100 are global across processes, we have to remove them before
2102 remove_breakpoints ();
2104 current_top_target ()->disconnect (args, from_tty);
2107 /* See target/target.h. */
2110 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2112 return current_top_target ()->wait (ptid, status, options);
2118 default_target_wait (struct target_ops *ops,
2119 ptid_t ptid, struct target_waitstatus *status,
2122 status->kind = TARGET_WAITKIND_IGNORE;
2123 return minus_one_ptid;
2127 target_pid_to_str (ptid_t ptid)
2129 return current_top_target ()->pid_to_str (ptid);
2133 target_thread_name (struct thread_info *info)
2135 return current_top_target ()->thread_name (info);
2138 struct thread_info *
2139 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2141 struct inferior *inf)
2143 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2148 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2150 target_dcache_invalidate ();
2152 current_top_target ()->resume (ptid, step, signal);
2154 registers_changed_ptid (ptid);
2155 /* We only set the internal executing state here. The user/frontend
2156 running state is set at a higher level. */
2157 set_executing (ptid, 1);
2158 clear_inline_frame_state (ptid);
2161 /* If true, target_commit_resume is a nop. */
2162 static int defer_target_commit_resume;
2167 target_commit_resume (void)
2169 if (defer_target_commit_resume)
2172 current_top_target ()->commit_resume ();
2177 scoped_restore_tmpl<int>
2178 make_scoped_defer_target_commit_resume ()
2180 return make_scoped_restore (&defer_target_commit_resume, 1);
2184 target_pass_signals (int numsigs, unsigned char *pass_signals)
2186 current_top_target ()->pass_signals (numsigs, pass_signals);
2190 target_program_signals (int numsigs, unsigned char *program_signals)
2192 current_top_target ()->program_signals (numsigs, program_signals);
2196 default_follow_fork (struct target_ops *self, int follow_child,
2199 /* Some target returned a fork event, but did not know how to follow it. */
2200 internal_error (__FILE__, __LINE__,
2201 _("could not find a target to follow fork"));
2204 /* Look through the list of possible targets for a target that can
2208 target_follow_fork (int follow_child, int detach_fork)
2210 return current_top_target ()->follow_fork (follow_child, detach_fork);
2213 /* Target wrapper for follow exec hook. */
2216 target_follow_exec (struct inferior *inf, char *execd_pathname)
2218 current_top_target ()->follow_exec (inf, execd_pathname);
2222 default_mourn_inferior (struct target_ops *self)
2224 internal_error (__FILE__, __LINE__,
2225 _("could not find a target to follow mourn inferior"));
2229 target_mourn_inferior (ptid_t ptid)
2231 gdb_assert (ptid_equal (ptid, inferior_ptid));
2232 current_top_target ()->mourn_inferior ();
2234 /* We no longer need to keep handles on any of the object files.
2235 Make sure to release them to avoid unnecessarily locking any
2236 of them while we're not actually debugging. */
2237 bfd_cache_close_all ();
2240 /* Look for a target which can describe architectural features, starting
2241 from TARGET. If we find one, return its description. */
2243 const struct target_desc *
2244 target_read_description (struct target_ops *target)
2246 return target->read_description ();
2249 /* This implements a basic search of memory, reading target memory and
2250 performing the search here (as opposed to performing the search in on the
2251 target side with, for example, gdbserver). */
2254 simple_search_memory (struct target_ops *ops,
2255 CORE_ADDR start_addr, ULONGEST search_space_len,
2256 const gdb_byte *pattern, ULONGEST pattern_len,
2257 CORE_ADDR *found_addrp)
2259 /* NOTE: also defined in find.c testcase. */
2260 #define SEARCH_CHUNK_SIZE 16000
2261 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2262 /* Buffer to hold memory contents for searching. */
2263 unsigned search_buf_size;
2265 search_buf_size = chunk_size + pattern_len - 1;
2267 /* No point in trying to allocate a buffer larger than the search space. */
2268 if (search_space_len < search_buf_size)
2269 search_buf_size = search_space_len;
2271 gdb::byte_vector search_buf (search_buf_size);
2273 /* Prime the search buffer. */
2275 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2276 search_buf.data (), start_addr, search_buf_size)
2279 warning (_("Unable to access %s bytes of target "
2280 "memory at %s, halting search."),
2281 pulongest (search_buf_size), hex_string (start_addr));
2285 /* Perform the search.
2287 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2288 When we've scanned N bytes we copy the trailing bytes to the start and
2289 read in another N bytes. */
2291 while (search_space_len >= pattern_len)
2293 gdb_byte *found_ptr;
2294 unsigned nr_search_bytes
2295 = std::min (search_space_len, (ULONGEST) search_buf_size);
2297 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2298 pattern, pattern_len);
2300 if (found_ptr != NULL)
2302 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2304 *found_addrp = found_addr;
2308 /* Not found in this chunk, skip to next chunk. */
2310 /* Don't let search_space_len wrap here, it's unsigned. */
2311 if (search_space_len >= chunk_size)
2312 search_space_len -= chunk_size;
2314 search_space_len = 0;
2316 if (search_space_len >= pattern_len)
2318 unsigned keep_len = search_buf_size - chunk_size;
2319 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2322 /* Copy the trailing part of the previous iteration to the front
2323 of the buffer for the next iteration. */
2324 gdb_assert (keep_len == pattern_len - 1);
2325 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2327 nr_to_read = std::min (search_space_len - keep_len,
2328 (ULONGEST) chunk_size);
2330 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2331 &search_buf[keep_len], read_addr,
2332 nr_to_read) != nr_to_read)
2334 warning (_("Unable to access %s bytes of target "
2335 "memory at %s, halting search."),
2336 plongest (nr_to_read),
2337 hex_string (read_addr));
2341 start_addr += chunk_size;
2350 /* Default implementation of memory-searching. */
2353 default_search_memory (struct target_ops *self,
2354 CORE_ADDR start_addr, ULONGEST search_space_len,
2355 const gdb_byte *pattern, ULONGEST pattern_len,
2356 CORE_ADDR *found_addrp)
2358 /* Start over from the top of the target stack. */
2359 return simple_search_memory (current_top_target (),
2360 start_addr, search_space_len,
2361 pattern, pattern_len, found_addrp);
2364 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2365 sequence of bytes in PATTERN with length PATTERN_LEN.
2367 The result is 1 if found, 0 if not found, and -1 if there was an error
2368 requiring halting of the search (e.g. memory read error).
2369 If the pattern is found the address is recorded in FOUND_ADDRP. */
2372 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2373 const gdb_byte *pattern, ULONGEST pattern_len,
2374 CORE_ADDR *found_addrp)
2376 return current_top_target ()->search_memory (start_addr, search_space_len,
2377 pattern, pattern_len, found_addrp);
2380 /* Look through the currently pushed targets. If none of them will
2381 be able to restart the currently running process, issue an error
2385 target_require_runnable (void)
2387 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2389 /* If this target knows how to create a new program, then
2390 assume we will still be able to after killing the current
2391 one. Either killing and mourning will not pop T, or else
2392 find_default_run_target will find it again. */
2393 if (t->can_create_inferior ())
2396 /* Do not worry about targets at certain strata that can not
2397 create inferiors. Assume they will be pushed again if
2398 necessary, and continue to the process_stratum. */
2399 if (t->to_stratum > process_stratum)
2402 error (_("The \"%s\" target does not support \"run\". "
2403 "Try \"help target\" or \"continue\"."),
2407 /* This function is only called if the target is running. In that
2408 case there should have been a process_stratum target and it
2409 should either know how to create inferiors, or not... */
2410 internal_error (__FILE__, __LINE__, _("No targets found"));
2413 /* Whether GDB is allowed to fall back to the default run target for
2414 "run", "attach", etc. when no target is connected yet. */
2415 static int auto_connect_native_target = 1;
2418 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2419 struct cmd_list_element *c, const char *value)
2421 fprintf_filtered (file,
2422 _("Whether GDB may automatically connect to the "
2423 "native target is %s.\n"),
2427 /* A pointer to the target that can respond to "run" or "attach".
2428 Native targets are always singletons and instantiated early at GDB
2430 static target_ops *the_native_target;
2435 set_native_target (target_ops *target)
2437 if (the_native_target != NULL)
2438 internal_error (__FILE__, __LINE__,
2439 _("native target already set (\"%s\")."),
2440 the_native_target->longname ());
2442 the_native_target = target;
2448 get_native_target ()
2450 return the_native_target;
2453 /* Look through the list of possible targets for a target that can
2454 execute a run or attach command without any other data. This is
2455 used to locate the default process stratum.
2457 If DO_MESG is not NULL, the result is always valid (error() is
2458 called for errors); else, return NULL on error. */
2460 static struct target_ops *
2461 find_default_run_target (const char *do_mesg)
2463 if (auto_connect_native_target && the_native_target != NULL)
2464 return the_native_target;
2466 if (do_mesg != NULL)
2467 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2474 find_attach_target (void)
2476 /* If a target on the current stack can attach, use it. */
2477 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2479 if (t->can_attach ())
2483 /* Otherwise, use the default run target for attaching. */
2484 return find_default_run_target ("attach");
2490 find_run_target (void)
2492 /* If a target on the current stack can run, use it. */
2493 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2495 if (t->can_create_inferior ())
2499 /* Otherwise, use the default run target. */
2500 return find_default_run_target ("run");
2504 target_ops::info_proc (const char *args, enum info_proc_what what)
2509 /* Implement the "info proc" command. */
2512 target_info_proc (const char *args, enum info_proc_what what)
2514 struct target_ops *t;
2516 /* If we're already connected to something that can get us OS
2517 related data, use it. Otherwise, try using the native
2519 t = find_target_at (process_stratum);
2521 t = find_default_run_target (NULL);
2523 for (; t != NULL; t = t->beneath ())
2525 if (t->info_proc (args, what))
2528 fprintf_unfiltered (gdb_stdlog,
2529 "target_info_proc (\"%s\", %d)\n", args, what);
2539 find_default_supports_disable_randomization (struct target_ops *self)
2541 struct target_ops *t;
2543 t = find_default_run_target (NULL);
2545 return t->supports_disable_randomization ();
2550 target_supports_disable_randomization (void)
2552 return current_top_target ()->supports_disable_randomization ();
2555 /* See target/target.h. */
2558 target_supports_multi_process (void)
2560 return current_top_target ()->supports_multi_process ();
2565 gdb::optional<gdb::char_vector>
2566 target_get_osdata (const char *type)
2568 struct target_ops *t;
2570 /* If we're already connected to something that can get us OS
2571 related data, use it. Otherwise, try using the native
2573 t = find_target_at (process_stratum);
2575 t = find_default_run_target ("get OS data");
2580 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2583 static struct address_space *
2584 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2586 struct inferior *inf;
2588 /* Fall-back to the "main" address space of the inferior. */
2589 inf = find_inferior_ptid (ptid);
2591 if (inf == NULL || inf->aspace == NULL)
2592 internal_error (__FILE__, __LINE__,
2593 _("Can't determine the current "
2594 "address space of thread %s\n"),
2595 target_pid_to_str (ptid));
2600 /* Determine the current address space of thread PTID. */
2602 struct address_space *
2603 target_thread_address_space (ptid_t ptid)
2605 struct address_space *aspace;
2607 aspace = current_top_target ()->thread_address_space (ptid);
2608 gdb_assert (aspace != NULL);
2616 target_ops::beneath () const
2618 return g_target_stack.find_beneath (this);
2622 target_ops::close ()
2627 target_ops::can_attach ()
2633 target_ops::attach (const char *, int)
2635 gdb_assert_not_reached ("target_ops::attach called");
2639 target_ops::can_create_inferior ()
2645 target_ops::create_inferior (const char *, const std::string &,
2648 gdb_assert_not_reached ("target_ops::create_inferior called");
2652 target_ops::can_run ()
2660 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2669 /* Target file operations. */
2671 static struct target_ops *
2672 default_fileio_target (void)
2674 struct target_ops *t;
2676 /* If we're already connected to something that can perform
2677 file I/O, use it. Otherwise, try using the native target. */
2678 t = find_target_at (process_stratum);
2681 return find_default_run_target ("file I/O");
2684 /* File handle for target file operations. */
2688 /* The target on which this file is open. NULL if the target is
2689 meanwhile closed while the handle is open. */
2692 /* The file descriptor on the target. */
2695 /* Check whether this fileio_fh_t represents a closed file. */
2698 return target_fd < 0;
2702 /* Vector of currently open file handles. The value returned by
2703 target_fileio_open and passed as the FD argument to other
2704 target_fileio_* functions is an index into this vector. This
2705 vector's entries are never freed; instead, files are marked as
2706 closed, and the handle becomes available for reuse. */
2707 static std::vector<fileio_fh_t> fileio_fhandles;
2709 /* Index into fileio_fhandles of the lowest handle that might be
2710 closed. This permits handle reuse without searching the whole
2711 list each time a new file is opened. */
2712 static int lowest_closed_fd;
2714 /* Invalidate the target associated with open handles that were open
2715 on target TARG, since we're about to close (and maybe destroy) the
2716 target. The handles remain open from the client's perspective, but
2717 trying to do anything with them other than closing them will fail
2721 fileio_handles_invalidate_target (target_ops *targ)
2723 for (fileio_fh_t &fh : fileio_fhandles)
2724 if (fh.target == targ)
2728 /* Acquire a target fileio file descriptor. */
2731 acquire_fileio_fd (target_ops *target, int target_fd)
2733 /* Search for closed handles to reuse. */
2734 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2736 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2738 if (fh.is_closed ())
2742 /* Push a new handle if no closed handles were found. */
2743 if (lowest_closed_fd == fileio_fhandles.size ())
2744 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2746 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2748 /* Should no longer be marked closed. */
2749 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2751 /* Return its index, and start the next lookup at
2753 return lowest_closed_fd++;
2756 /* Release a target fileio file descriptor. */
2759 release_fileio_fd (int fd, fileio_fh_t *fh)
2762 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2765 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2767 static fileio_fh_t *
2768 fileio_fd_to_fh (int fd)
2770 return &fileio_fhandles[fd];
2774 /* Default implementations of file i/o methods. We don't want these
2775 to delegate automatically, because we need to know which target
2776 supported the method, in order to call it directly from within
2777 pread/pwrite, etc. */
2780 target_ops::fileio_open (struct inferior *inf, const char *filename,
2781 int flags, int mode, int warn_if_slow,
2784 *target_errno = FILEIO_ENOSYS;
2789 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2790 ULONGEST offset, int *target_errno)
2792 *target_errno = FILEIO_ENOSYS;
2797 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2798 ULONGEST offset, int *target_errno)
2800 *target_errno = FILEIO_ENOSYS;
2805 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2807 *target_errno = FILEIO_ENOSYS;
2812 target_ops::fileio_close (int fd, int *target_errno)
2814 *target_errno = FILEIO_ENOSYS;
2819 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2822 *target_errno = FILEIO_ENOSYS;
2826 gdb::optional<std::string>
2827 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2830 *target_errno = FILEIO_ENOSYS;
2834 /* Helper for target_fileio_open and
2835 target_fileio_open_warn_if_slow. */
2838 target_fileio_open_1 (struct inferior *inf, const char *filename,
2839 int flags, int mode, int warn_if_slow,
2842 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2844 int fd = t->fileio_open (inf, filename, flags, mode,
2845 warn_if_slow, target_errno);
2847 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2853 fd = acquire_fileio_fd (t, fd);
2856 fprintf_unfiltered (gdb_stdlog,
2857 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2859 inf == NULL ? 0 : inf->num,
2860 filename, flags, mode,
2862 fd != -1 ? 0 : *target_errno);
2866 *target_errno = FILEIO_ENOSYS;
2873 target_fileio_open (struct inferior *inf, const char *filename,
2874 int flags, int mode, int *target_errno)
2876 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2883 target_fileio_open_warn_if_slow (struct inferior *inf,
2884 const char *filename,
2885 int flags, int mode, int *target_errno)
2887 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2894 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2895 ULONGEST offset, int *target_errno)
2897 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2900 if (fh->is_closed ())
2901 *target_errno = EBADF;
2902 else if (fh->target == NULL)
2903 *target_errno = EIO;
2905 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2906 len, offset, target_errno);
2909 fprintf_unfiltered (gdb_stdlog,
2910 "target_fileio_pwrite (%d,...,%d,%s) "
2912 fd, len, pulongest (offset),
2913 ret, ret != -1 ? 0 : *target_errno);
2920 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2921 ULONGEST offset, int *target_errno)
2923 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2926 if (fh->is_closed ())
2927 *target_errno = EBADF;
2928 else if (fh->target == NULL)
2929 *target_errno = EIO;
2931 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2932 len, offset, target_errno);
2935 fprintf_unfiltered (gdb_stdlog,
2936 "target_fileio_pread (%d,...,%d,%s) "
2938 fd, len, pulongest (offset),
2939 ret, ret != -1 ? 0 : *target_errno);
2946 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2948 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2951 if (fh->is_closed ())
2952 *target_errno = EBADF;
2953 else if (fh->target == NULL)
2954 *target_errno = EIO;
2956 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2959 fprintf_unfiltered (gdb_stdlog,
2960 "target_fileio_fstat (%d) = %d (%d)\n",
2961 fd, ret, ret != -1 ? 0 : *target_errno);
2968 target_fileio_close (int fd, int *target_errno)
2970 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2973 if (fh->is_closed ())
2974 *target_errno = EBADF;
2977 if (fh->target != NULL)
2978 ret = fh->target->fileio_close (fh->target_fd,
2982 release_fileio_fd (fd, fh);
2986 fprintf_unfiltered (gdb_stdlog,
2987 "target_fileio_close (%d) = %d (%d)\n",
2988 fd, ret, ret != -1 ? 0 : *target_errno);
2995 target_fileio_unlink (struct inferior *inf, const char *filename,
2998 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3000 int ret = t->fileio_unlink (inf, filename, target_errno);
3002 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
3006 fprintf_unfiltered (gdb_stdlog,
3007 "target_fileio_unlink (%d,%s)"
3009 inf == NULL ? 0 : inf->num, filename,
3010 ret, ret != -1 ? 0 : *target_errno);
3014 *target_errno = FILEIO_ENOSYS;
3020 gdb::optional<std::string>
3021 target_fileio_readlink (struct inferior *inf, const char *filename,
3024 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3026 gdb::optional<std::string> ret
3027 = t->fileio_readlink (inf, filename, target_errno);
3029 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
3033 fprintf_unfiltered (gdb_stdlog,
3034 "target_fileio_readlink (%d,%s)"
3036 inf == NULL ? 0 : inf->num,
3037 filename, ret ? ret->c_str () : "(nil)",
3038 ret ? 0 : *target_errno);
3042 *target_errno = FILEIO_ENOSYS;
3046 /* Like scoped_fd, but specific to target fileio. */
3048 class scoped_target_fd
3051 explicit scoped_target_fd (int fd) noexcept
3056 ~scoped_target_fd ()
3062 target_fileio_close (m_fd, &target_errno);
3066 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3068 int get () const noexcept
3077 /* Read target file FILENAME, in the filesystem as seen by INF. If
3078 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3079 remote targets, the remote stub). Store the result in *BUF_P and
3080 return the size of the transferred data. PADDING additional bytes
3081 are available in *BUF_P. This is a helper function for
3082 target_fileio_read_alloc; see the declaration of that function for
3083 more information. */
3086 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3087 gdb_byte **buf_p, int padding)
3089 size_t buf_alloc, buf_pos;
3094 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3095 0700, &target_errno));
3096 if (fd.get () == -1)
3099 /* Start by reading up to 4K at a time. The target will throttle
3100 this number down if necessary. */
3102 buf = (gdb_byte *) xmalloc (buf_alloc);
3106 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3107 buf_alloc - buf_pos - padding, buf_pos,
3111 /* An error occurred. */
3117 /* Read all there was. */
3127 /* If the buffer is filling up, expand it. */
3128 if (buf_alloc < buf_pos * 2)
3131 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3141 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3144 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3149 gdb::unique_xmalloc_ptr<char>
3150 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3154 LONGEST i, transferred;
3156 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3157 bufstr = (char *) buffer;
3159 if (transferred < 0)
3160 return gdb::unique_xmalloc_ptr<char> (nullptr);
3162 if (transferred == 0)
3163 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3165 bufstr[transferred] = 0;
3167 /* Check for embedded NUL bytes; but allow trailing NULs. */
3168 for (i = strlen (bufstr); i < transferred; i++)
3171 warning (_("target file %s "
3172 "contained unexpected null characters"),
3177 return gdb::unique_xmalloc_ptr<char> (bufstr);
3182 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3183 CORE_ADDR addr, int len)
3185 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3189 default_watchpoint_addr_within_range (struct target_ops *target,
3191 CORE_ADDR start, int length)
3193 return addr >= start && addr < start + length;
3196 static struct gdbarch *
3197 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3199 inferior *inf = find_inferior_ptid (ptid);
3200 gdb_assert (inf != NULL);
3201 return inf->gdbarch;
3207 target_stack::find_beneath (const target_ops *t) const
3209 /* Look for a non-empty slot at stratum levels beneath T's. */
3210 for (int stratum = t->to_stratum - 1; stratum >= 0; --stratum)
3211 if (m_stack[stratum] != NULL)
3212 return m_stack[stratum];
3220 find_target_at (enum strata stratum)
3222 return g_target_stack.at (stratum);
3230 target_announce_detach (int from_tty)
3233 const char *exec_file;
3238 exec_file = get_exec_file (0);
3239 if (exec_file == NULL)
3242 pid = ptid_get_pid (inferior_ptid);
3243 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3244 target_pid_to_str (pid_to_ptid (pid)));
3245 gdb_flush (gdb_stdout);
3248 /* The inferior process has died. Long live the inferior! */
3251 generic_mourn_inferior (void)
3253 inferior *inf = current_inferior ();
3255 inferior_ptid = null_ptid;
3257 /* Mark breakpoints uninserted in case something tries to delete a
3258 breakpoint while we delete the inferior's threads (which would
3259 fail, since the inferior is long gone). */
3260 mark_breakpoints_out ();
3263 exit_inferior (inf);
3265 /* Note this wipes step-resume breakpoints, so needs to be done
3266 after exit_inferior, which ends up referencing the step-resume
3267 breakpoints through clear_thread_inferior_resources. */
3268 breakpoint_init_inferior (inf_exited);
3270 registers_changed ();
3272 reopen_exec_file ();
3273 reinit_frame_cache ();
3275 if (deprecated_detach_hook)
3276 deprecated_detach_hook ();
3279 /* Convert a normal process ID to a string. Returns the string in a
3283 normal_pid_to_str (ptid_t ptid)
3285 static char buf[32];
3287 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3292 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3294 return normal_pid_to_str (ptid);
3297 /* Error-catcher for target_find_memory_regions. */
3299 dummy_find_memory_regions (struct target_ops *self,
3300 find_memory_region_ftype ignore1, void *ignore2)
3302 error (_("Command not implemented for this target."));
3306 /* Error-catcher for target_make_corefile_notes. */
3308 dummy_make_corefile_notes (struct target_ops *self,
3309 bfd *ignore1, int *ignore2)
3311 error (_("Command not implemented for this target."));
3315 #include "target-delegates.c"
3318 static const target_info dummy_target_info = {
3324 dummy_target::dummy_target ()
3326 to_stratum = dummy_stratum;
3329 debug_target::debug_target ()
3331 to_stratum = debug_stratum;
3335 dummy_target::info () const
3337 return dummy_target_info;
3341 debug_target::info () const
3343 return beneath ()->info ();
3349 target_close (struct target_ops *targ)
3351 gdb_assert (!target_is_pushed (targ));
3353 fileio_handles_invalidate_target (targ);
3358 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3362 target_thread_alive (ptid_t ptid)
3364 return current_top_target ()->thread_alive (ptid);
3368 target_update_thread_list (void)
3370 current_top_target ()->update_thread_list ();
3374 target_stop (ptid_t ptid)
3378 warning (_("May not interrupt or stop the target, ignoring attempt"));
3382 current_top_target ()->stop (ptid);
3390 warning (_("May not interrupt or stop the target, ignoring attempt"));
3394 current_top_target ()->interrupt ();
3400 target_pass_ctrlc (void)
3402 current_top_target ()->pass_ctrlc ();
3408 default_target_pass_ctrlc (struct target_ops *ops)
3410 target_interrupt ();
3413 /* See target/target.h. */
3416 target_stop_and_wait (ptid_t ptid)
3418 struct target_waitstatus status;
3419 int was_non_stop = non_stop;
3424 memset (&status, 0, sizeof (status));
3425 target_wait (ptid, &status, 0);
3427 non_stop = was_non_stop;
3430 /* See target/target.h. */
3433 target_continue_no_signal (ptid_t ptid)
3435 target_resume (ptid, 0, GDB_SIGNAL_0);
3438 /* See target/target.h. */
3441 target_continue (ptid_t ptid, enum gdb_signal signal)
3443 target_resume (ptid, 0, signal);
3446 /* Concatenate ELEM to LIST, a comma separate list, and return the
3447 result. The LIST incoming argument is released. */
3450 str_comma_list_concat_elem (char *list, const char *elem)
3453 return xstrdup (elem);
3455 return reconcat (list, list, ", ", elem, (char *) NULL);
3458 /* Helper for target_options_to_string. If OPT is present in
3459 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3460 Returns the new resulting string. OPT is removed from
3464 do_option (int *target_options, char *ret,
3465 int opt, const char *opt_str)
3467 if ((*target_options & opt) != 0)
3469 ret = str_comma_list_concat_elem (ret, opt_str);
3470 *target_options &= ~opt;
3477 target_options_to_string (int target_options)
3481 #define DO_TARG_OPTION(OPT) \
3482 ret = do_option (&target_options, ret, OPT, #OPT)
3484 DO_TARG_OPTION (TARGET_WNOHANG);
3486 if (target_options != 0)
3487 ret = str_comma_list_concat_elem (ret, "unknown???");
3495 target_fetch_registers (struct regcache *regcache, int regno)
3497 current_top_target ()->fetch_registers (regcache, regno);
3499 regcache->debug_print_register ("target_fetch_registers", regno);
3503 target_store_registers (struct regcache *regcache, int regno)
3505 if (!may_write_registers)
3506 error (_("Writing to registers is not allowed (regno %d)"), regno);
3508 current_top_target ()->store_registers (regcache, regno);
3511 regcache->debug_print_register ("target_store_registers", regno);
3516 target_core_of_thread (ptid_t ptid)
3518 return current_top_target ()->core_of_thread (ptid);
3522 simple_verify_memory (struct target_ops *ops,
3523 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3525 LONGEST total_xfered = 0;
3527 while (total_xfered < size)
3529 ULONGEST xfered_len;
3530 enum target_xfer_status status;
3532 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3534 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3535 buf, NULL, lma + total_xfered, howmuch,
3537 if (status == TARGET_XFER_OK
3538 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3540 total_xfered += xfered_len;
3549 /* Default implementation of memory verification. */
3552 default_verify_memory (struct target_ops *self,
3553 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3555 /* Start over from the top of the target stack. */
3556 return simple_verify_memory (current_top_target (),
3557 data, memaddr, size);
3561 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3563 return current_top_target ()->verify_memory (data, memaddr, size);
3566 /* The documentation for this function is in its prototype declaration in
3570 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3571 enum target_hw_bp_type rw)
3573 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3576 /* The documentation for this function is in its prototype declaration in
3580 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3581 enum target_hw_bp_type rw)
3583 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3586 /* The documentation for this function is in its prototype declaration
3590 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3592 return current_top_target ()->masked_watch_num_registers (addr, mask);
3595 /* The documentation for this function is in its prototype declaration
3599 target_ranged_break_num_registers (void)
3601 return current_top_target ()->ranged_break_num_registers ();
3606 struct btrace_target_info *
3607 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3609 return current_top_target ()->enable_btrace (ptid, conf);
3615 target_disable_btrace (struct btrace_target_info *btinfo)
3617 current_top_target ()->disable_btrace (btinfo);
3623 target_teardown_btrace (struct btrace_target_info *btinfo)
3625 current_top_target ()->teardown_btrace (btinfo);
3631 target_read_btrace (struct btrace_data *btrace,
3632 struct btrace_target_info *btinfo,
3633 enum btrace_read_type type)
3635 return current_top_target ()->read_btrace (btrace, btinfo, type);
3640 const struct btrace_config *
3641 target_btrace_conf (const struct btrace_target_info *btinfo)
3643 return current_top_target ()->btrace_conf (btinfo);
3649 target_stop_recording (void)
3651 current_top_target ()->stop_recording ();
3657 target_save_record (const char *filename)
3659 current_top_target ()->save_record (filename);
3665 target_supports_delete_record ()
3667 return current_top_target ()->supports_delete_record ();
3673 target_delete_record (void)
3675 current_top_target ()->delete_record ();
3681 target_record_method (ptid_t ptid)
3683 return current_top_target ()->record_method (ptid);
3689 target_record_is_replaying (ptid_t ptid)
3691 return current_top_target ()->record_is_replaying (ptid);
3697 target_record_will_replay (ptid_t ptid, int dir)
3699 return current_top_target ()->record_will_replay (ptid, dir);
3705 target_record_stop_replaying (void)
3707 current_top_target ()->record_stop_replaying ();
3713 target_goto_record_begin (void)
3715 current_top_target ()->goto_record_begin ();
3721 target_goto_record_end (void)
3723 current_top_target ()->goto_record_end ();
3729 target_goto_record (ULONGEST insn)
3731 current_top_target ()->goto_record (insn);
3737 target_insn_history (int size, gdb_disassembly_flags flags)
3739 current_top_target ()->insn_history (size, flags);
3745 target_insn_history_from (ULONGEST from, int size,
3746 gdb_disassembly_flags flags)
3748 current_top_target ()->insn_history_from (from, size, flags);
3754 target_insn_history_range (ULONGEST begin, ULONGEST end,
3755 gdb_disassembly_flags flags)
3757 current_top_target ()->insn_history_range (begin, end, flags);
3763 target_call_history (int size, record_print_flags flags)
3765 current_top_target ()->call_history (size, flags);
3771 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3773 current_top_target ()->call_history_from (begin, size, flags);
3779 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3781 current_top_target ()->call_history_range (begin, end, flags);
3786 const struct frame_unwind *
3787 target_get_unwinder (void)
3789 return current_top_target ()->get_unwinder ();
3794 const struct frame_unwind *
3795 target_get_tailcall_unwinder (void)
3797 return current_top_target ()->get_tailcall_unwinder ();
3803 target_prepare_to_generate_core (void)
3805 current_top_target ()->prepare_to_generate_core ();
3811 target_done_generating_core (void)
3813 current_top_target ()->done_generating_core ();
3818 static char targ_desc[] =
3819 "Names of targets and files being debugged.\nShows the entire \
3820 stack of targets currently in use (including the exec-file,\n\
3821 core-file, and process, if any), as well as the symbol file name.";
3824 default_rcmd (struct target_ops *self, const char *command,
3825 struct ui_file *output)
3827 error (_("\"monitor\" command not supported by this target."));
3831 do_monitor_command (const char *cmd, int from_tty)
3833 target_rcmd (cmd, gdb_stdtarg);
3836 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3840 flash_erase_command (const char *cmd, int from_tty)
3842 /* Used to communicate termination of flash operations to the target. */
3843 bool found_flash_region = false;
3844 struct gdbarch *gdbarch = target_gdbarch ();
3846 std::vector<mem_region> mem_regions = target_memory_map ();
3848 /* Iterate over all memory regions. */
3849 for (const mem_region &m : mem_regions)
3851 /* Is this a flash memory region? */
3852 if (m.attrib.mode == MEM_FLASH)
3854 found_flash_region = true;
3855 target_flash_erase (m.lo, m.hi - m.lo);
3857 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3859 current_uiout->message (_("Erasing flash memory region at address "));
3860 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3861 current_uiout->message (", size = ");
3862 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3863 current_uiout->message ("\n");
3867 /* Did we do any flash operations? If so, we need to finalize them. */
3868 if (found_flash_region)
3869 target_flash_done ();
3871 current_uiout->message (_("No flash memory regions found.\n"));
3874 /* Print the name of each layers of our target stack. */
3877 maintenance_print_target_stack (const char *cmd, int from_tty)
3879 printf_filtered (_("The current target stack is:\n"));
3881 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3883 if (t->to_stratum == debug_stratum)
3885 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3892 target_async (int enable)
3894 infrun_async (enable);
3895 current_top_target ()->async (enable);
3901 target_thread_events (int enable)
3903 current_top_target ()->thread_events (enable);
3906 /* Controls if targets can report that they can/are async. This is
3907 just for maintainers to use when debugging gdb. */
3908 int target_async_permitted = 1;
3910 /* The set command writes to this variable. If the inferior is
3911 executing, target_async_permitted is *not* updated. */
3912 static int target_async_permitted_1 = 1;
3915 maint_set_target_async_command (const char *args, int from_tty,
3916 struct cmd_list_element *c)
3918 if (have_live_inferiors ())
3920 target_async_permitted_1 = target_async_permitted;
3921 error (_("Cannot change this setting while the inferior is running."));
3924 target_async_permitted = target_async_permitted_1;
3928 maint_show_target_async_command (struct ui_file *file, int from_tty,
3929 struct cmd_list_element *c,
3932 fprintf_filtered (file,
3933 _("Controlling the inferior in "
3934 "asynchronous mode is %s.\n"), value);
3937 /* Return true if the target operates in non-stop mode even with "set
3941 target_always_non_stop_p (void)
3943 return current_top_target ()->always_non_stop_p ();
3949 target_is_non_stop_p (void)
3952 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3953 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3954 && target_always_non_stop_p ()));
3957 /* Controls if targets can report that they always run in non-stop
3958 mode. This is just for maintainers to use when debugging gdb. */
3959 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3961 /* The set command writes to this variable. If the inferior is
3962 executing, target_non_stop_enabled is *not* updated. */
3963 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3965 /* Implementation of "maint set target-non-stop". */
3968 maint_set_target_non_stop_command (const char *args, int from_tty,
3969 struct cmd_list_element *c)
3971 if (have_live_inferiors ())
3973 target_non_stop_enabled_1 = target_non_stop_enabled;
3974 error (_("Cannot change this setting while the inferior is running."));
3977 target_non_stop_enabled = target_non_stop_enabled_1;
3980 /* Implementation of "maint show target-non-stop". */
3983 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3984 struct cmd_list_element *c,
3987 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3988 fprintf_filtered (file,
3989 _("Whether the target is always in non-stop mode "
3990 "is %s (currently %s).\n"), value,
3991 target_always_non_stop_p () ? "on" : "off");
3993 fprintf_filtered (file,
3994 _("Whether the target is always in non-stop mode "
3995 "is %s.\n"), value);
3998 /* Temporary copies of permission settings. */
4000 static int may_write_registers_1 = 1;
4001 static int may_write_memory_1 = 1;
4002 static int may_insert_breakpoints_1 = 1;
4003 static int may_insert_tracepoints_1 = 1;
4004 static int may_insert_fast_tracepoints_1 = 1;
4005 static int may_stop_1 = 1;
4007 /* Make the user-set values match the real values again. */
4010 update_target_permissions (void)
4012 may_write_registers_1 = may_write_registers;
4013 may_write_memory_1 = may_write_memory;
4014 may_insert_breakpoints_1 = may_insert_breakpoints;
4015 may_insert_tracepoints_1 = may_insert_tracepoints;
4016 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4017 may_stop_1 = may_stop;
4020 /* The one function handles (most of) the permission flags in the same
4024 set_target_permissions (const char *args, int from_tty,
4025 struct cmd_list_element *c)
4027 if (target_has_execution)
4029 update_target_permissions ();
4030 error (_("Cannot change this setting while the inferior is running."));
4033 /* Make the real values match the user-changed values. */
4034 may_write_registers = may_write_registers_1;
4035 may_insert_breakpoints = may_insert_breakpoints_1;
4036 may_insert_tracepoints = may_insert_tracepoints_1;
4037 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4038 may_stop = may_stop_1;
4039 update_observer_mode ();
4042 /* Set memory write permission independently of observer mode. */
4045 set_write_memory_permission (const char *args, int from_tty,
4046 struct cmd_list_element *c)
4048 /* Make the real values match the user-changed values. */
4049 may_write_memory = may_write_memory_1;
4050 update_observer_mode ();
4054 initialize_targets (void)
4056 the_dummy_target = new dummy_target ();
4057 push_target (the_dummy_target);
4059 the_debug_target = new debug_target ();
4061 add_info ("target", info_target_command, targ_desc);
4062 add_info ("files", info_target_command, targ_desc);
4064 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4065 Set target debugging."), _("\
4066 Show target debugging."), _("\
4067 When non-zero, target debugging is enabled. Higher numbers are more\n\
4071 &setdebuglist, &showdebuglist);
4073 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4074 &trust_readonly, _("\
4075 Set mode for reading from readonly sections."), _("\
4076 Show mode for reading from readonly sections."), _("\
4077 When this mode is on, memory reads from readonly sections (such as .text)\n\
4078 will be read from the object file instead of from the target. This will\n\
4079 result in significant performance improvement for remote targets."),
4081 show_trust_readonly,
4082 &setlist, &showlist);
4084 add_com ("monitor", class_obscure, do_monitor_command,
4085 _("Send a command to the remote monitor (remote targets only)."));
4087 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4088 _("Print the name of each layer of the internal target stack."),
4089 &maintenanceprintlist);
4091 add_setshow_boolean_cmd ("target-async", no_class,
4092 &target_async_permitted_1, _("\
4093 Set whether gdb controls the inferior in asynchronous mode."), _("\
4094 Show whether gdb controls the inferior in asynchronous mode."), _("\
4095 Tells gdb whether to control the inferior in asynchronous mode."),
4096 maint_set_target_async_command,
4097 maint_show_target_async_command,
4098 &maintenance_set_cmdlist,
4099 &maintenance_show_cmdlist);
4101 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4102 &target_non_stop_enabled_1, _("\
4103 Set whether gdb always controls the inferior in non-stop mode."), _("\
4104 Show whether gdb always controls the inferior in non-stop mode."), _("\
4105 Tells gdb whether to control the inferior in non-stop mode."),
4106 maint_set_target_non_stop_command,
4107 maint_show_target_non_stop_command,
4108 &maintenance_set_cmdlist,
4109 &maintenance_show_cmdlist);
4111 add_setshow_boolean_cmd ("may-write-registers", class_support,
4112 &may_write_registers_1, _("\
4113 Set permission to write into registers."), _("\
4114 Show permission to write into registers."), _("\
4115 When this permission is on, GDB may write into the target's registers.\n\
4116 Otherwise, any sort of write attempt will result in an error."),
4117 set_target_permissions, NULL,
4118 &setlist, &showlist);
4120 add_setshow_boolean_cmd ("may-write-memory", class_support,
4121 &may_write_memory_1, _("\
4122 Set permission to write into target memory."), _("\
4123 Show permission to write into target memory."), _("\
4124 When this permission is on, GDB may write into the target's memory.\n\
4125 Otherwise, any sort of write attempt will result in an error."),
4126 set_write_memory_permission, NULL,
4127 &setlist, &showlist);
4129 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4130 &may_insert_breakpoints_1, _("\
4131 Set permission to insert breakpoints in the target."), _("\
4132 Show permission to insert breakpoints in the target."), _("\
4133 When this permission is on, GDB may insert breakpoints in the program.\n\
4134 Otherwise, any sort of insertion attempt will result in an error."),
4135 set_target_permissions, NULL,
4136 &setlist, &showlist);
4138 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4139 &may_insert_tracepoints_1, _("\
4140 Set permission to insert tracepoints in the target."), _("\
4141 Show permission to insert tracepoints in the target."), _("\
4142 When this permission is on, GDB may insert tracepoints in the program.\n\
4143 Otherwise, any sort of insertion attempt will result in an error."),
4144 set_target_permissions, NULL,
4145 &setlist, &showlist);
4147 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4148 &may_insert_fast_tracepoints_1, _("\
4149 Set permission to insert fast tracepoints in the target."), _("\
4150 Show permission to insert fast tracepoints in the target."), _("\
4151 When this permission is on, GDB may insert fast tracepoints.\n\
4152 Otherwise, any sort of insertion attempt will result in an error."),
4153 set_target_permissions, NULL,
4154 &setlist, &showlist);
4156 add_setshow_boolean_cmd ("may-interrupt", class_support,
4158 Set permission to interrupt or signal the target."), _("\
4159 Show permission to interrupt or signal the target."), _("\
4160 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4161 Otherwise, any attempt to interrupt or stop will be ignored."),
4162 set_target_permissions, NULL,
4163 &setlist, &showlist);
4165 add_com ("flash-erase", no_class, flash_erase_command,
4166 _("Erase all flash memory regions."));
4168 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4169 &auto_connect_native_target, _("\
4170 Set whether GDB may automatically connect to the native target."), _("\
4171 Show whether GDB may automatically connect to the native target."), _("\
4172 When on, and GDB is not connected to a target yet, GDB\n\
4173 attempts \"run\" and other commands with the native target."),
4174 NULL, show_auto_connect_native_target,
4175 &setlist, &showlist);