1 /* Select target systems and architectures at runtime for GDB.
3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
5 Contributed by Cygnus Support.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "target-dcache.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
45 #include "target-debug.h"
47 #include "event-top.h"
49 static void target_info (char *, int);
51 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
53 static void default_terminal_info (struct target_ops *, const char *, int);
55 static int default_watchpoint_addr_within_range (struct target_ops *,
56 CORE_ADDR, CORE_ADDR, int);
58 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
63 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 static int default_follow_fork (struct target_ops *self, int follow_child,
69 static void default_mourn_inferior (struct target_ops *self);
71 static int default_search_memory (struct target_ops *ops,
73 ULONGEST search_space_len,
74 const gdb_byte *pattern,
76 CORE_ADDR *found_addrp);
78 static int default_verify_memory (struct target_ops *self,
80 CORE_ADDR memaddr, ULONGEST size);
82 static struct address_space *default_thread_address_space
83 (struct target_ops *self, ptid_t ptid);
85 static void tcomplain (void) ATTRIBUTE_NORETURN;
87 static int return_zero (struct target_ops *);
89 static int return_zero_has_execution (struct target_ops *, ptid_t);
91 static void target_command (char *, int);
93 static struct target_ops *find_default_run_target (char *);
95 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
98 static int dummy_find_memory_regions (struct target_ops *self,
99 find_memory_region_ftype ignore1,
102 static char *dummy_make_corefile_notes (struct target_ops *self,
103 bfd *ignore1, int *ignore2);
105 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
107 static enum exec_direction_kind default_execution_direction
108 (struct target_ops *self);
110 static struct target_ops debug_target;
112 #include "target-delegates.c"
114 static void init_dummy_target (void);
116 static void update_current_target (void);
118 /* Vector of existing target structures. */
119 typedef struct target_ops *target_ops_p;
120 DEF_VEC_P (target_ops_p);
121 static VEC (target_ops_p) *target_structs;
123 /* The initial current target, so that there is always a semi-valid
126 static struct target_ops dummy_target;
128 /* Top of target stack. */
130 static struct target_ops *target_stack;
132 /* The target structure we are currently using to talk to a process
133 or file or whatever "inferior" we have. */
135 struct target_ops current_target;
137 /* Command list for target. */
139 static struct cmd_list_element *targetlist = NULL;
141 /* Nonzero if we should trust readonly sections from the
142 executable when reading memory. */
144 static int trust_readonly = 0;
146 /* Nonzero if we should show true memory content including
147 memory breakpoint inserted by gdb. */
149 static int show_memory_breakpoints = 0;
151 /* These globals control whether GDB attempts to perform these
152 operations; they are useful for targets that need to prevent
153 inadvertant disruption, such as in non-stop mode. */
155 int may_write_registers = 1;
157 int may_write_memory = 1;
159 int may_insert_breakpoints = 1;
161 int may_insert_tracepoints = 1;
163 int may_insert_fast_tracepoints = 1;
167 /* Non-zero if we want to see trace of target level stuff. */
169 static unsigned int targetdebug = 0;
172 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
174 update_current_target ();
178 show_targetdebug (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
181 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
184 static void setup_target_debug (void);
186 /* The user just typed 'target' without the name of a target. */
189 target_command (char *arg, int from_tty)
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
195 /* Default target_has_* methods for process_stratum targets. */
198 default_child_has_all_memory (struct target_ops *ops)
200 /* If no inferior selected, then we can't read memory here. */
201 if (ptid_equal (inferior_ptid, null_ptid))
208 default_child_has_memory (struct target_ops *ops)
210 /* If no inferior selected, then we can't read memory here. */
211 if (ptid_equal (inferior_ptid, null_ptid))
218 default_child_has_stack (struct target_ops *ops)
220 /* If no inferior selected, there's no stack. */
221 if (ptid_equal (inferior_ptid, null_ptid))
228 default_child_has_registers (struct target_ops *ops)
230 /* Can't read registers from no inferior. */
231 if (ptid_equal (inferior_ptid, null_ptid))
238 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
240 /* If there's no thread selected, then we can't make it run through
242 if (ptid_equal (the_ptid, null_ptid))
250 target_has_all_memory_1 (void)
252 struct target_ops *t;
254 for (t = current_target.beneath; t != NULL; t = t->beneath)
255 if (t->to_has_all_memory (t))
262 target_has_memory_1 (void)
264 struct target_ops *t;
266 for (t = current_target.beneath; t != NULL; t = t->beneath)
267 if (t->to_has_memory (t))
274 target_has_stack_1 (void)
276 struct target_ops *t;
278 for (t = current_target.beneath; t != NULL; t = t->beneath)
279 if (t->to_has_stack (t))
286 target_has_registers_1 (void)
288 struct target_ops *t;
290 for (t = current_target.beneath; t != NULL; t = t->beneath)
291 if (t->to_has_registers (t))
298 target_has_execution_1 (ptid_t the_ptid)
300 struct target_ops *t;
302 for (t = current_target.beneath; t != NULL; t = t->beneath)
303 if (t->to_has_execution (t, the_ptid))
310 target_has_execution_current (void)
312 return target_has_execution_1 (inferior_ptid);
315 /* Complete initialization of T. This ensures that various fields in
316 T are set, if needed by the target implementation. */
319 complete_target_initialization (struct target_ops *t)
321 /* Provide default values for all "must have" methods. */
323 if (t->to_has_all_memory == NULL)
324 t->to_has_all_memory = return_zero;
326 if (t->to_has_memory == NULL)
327 t->to_has_memory = return_zero;
329 if (t->to_has_stack == NULL)
330 t->to_has_stack = return_zero;
332 if (t->to_has_registers == NULL)
333 t->to_has_registers = return_zero;
335 if (t->to_has_execution == NULL)
336 t->to_has_execution = return_zero_has_execution;
338 /* These methods can be called on an unpushed target and so require
339 a default implementation if the target might plausibly be the
340 default run target. */
341 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
342 && t->to_supports_non_stop != NULL));
344 install_delegators (t);
347 /* This is used to implement the various target commands. */
350 open_target (char *args, int from_tty, struct cmd_list_element *command)
352 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
355 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
358 ops->to_open (args, from_tty);
361 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
362 ops->to_shortname, args, from_tty);
365 /* Add possible target architecture T to the list and add a new
366 command 'target T->to_shortname'. Set COMPLETER as the command's
367 completer if not NULL. */
370 add_target_with_completer (struct target_ops *t,
371 completer_ftype *completer)
373 struct cmd_list_element *c;
375 complete_target_initialization (t);
377 VEC_safe_push (target_ops_p, target_structs, t);
379 if (targetlist == NULL)
380 add_prefix_cmd ("target", class_run, target_command, _("\
381 Connect to a target machine or process.\n\
382 The first argument is the type or protocol of the target machine.\n\
383 Remaining arguments are interpreted by the target protocol. For more\n\
384 information on the arguments for a particular protocol, type\n\
385 `help target ' followed by the protocol name."),
386 &targetlist, "target ", 0, &cmdlist);
387 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
388 set_cmd_sfunc (c, open_target);
389 set_cmd_context (c, t);
390 if (completer != NULL)
391 set_cmd_completer (c, completer);
394 /* Add a possible target architecture to the list. */
397 add_target (struct target_ops *t)
399 add_target_with_completer (t, NULL);
405 add_deprecated_target_alias (struct target_ops *t, char *alias)
407 struct cmd_list_element *c;
410 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
412 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
413 set_cmd_sfunc (c, open_target);
414 set_cmd_context (c, t);
415 alt = xstrprintf ("target %s", t->to_shortname);
416 deprecate_cmd (c, alt);
424 current_target.to_kill (¤t_target);
428 target_load (const char *arg, int from_tty)
430 target_dcache_invalidate ();
431 (*current_target.to_load) (¤t_target, arg, from_tty);
434 /* Possible terminal states. */
438 /* The inferior's terminal settings are in effect. */
439 terminal_is_inferior = 0,
441 /* Some of our terminal settings are in effect, enough to get
443 terminal_is_ours_for_output = 1,
445 /* Our terminal settings are in effect, for output and input. */
449 static enum terminal_state terminal_state = terminal_is_ours;
454 target_terminal_init (void)
456 (*current_target.to_terminal_init) (¤t_target);
458 terminal_state = terminal_is_ours;
464 target_terminal_is_inferior (void)
466 return (terminal_state == terminal_is_inferior);
472 target_terminal_is_ours (void)
474 return (terminal_state == terminal_is_ours);
480 target_terminal_inferior (void)
482 struct ui *ui = current_ui;
484 /* A background resume (``run&'') should leave GDB in control of the
486 if (ui->prompt_state != PROMPT_BLOCKED)
489 /* Always delete the current UI's input file handler, regardless of
490 terminal_state, because terminal_state is only valid for the main
492 delete_file_handler (ui->input_fd);
494 /* Since we always run the inferior in the main console (unless "set
495 inferior-tty" is in effect), when some UI other than the main one
496 calls target_terminal_inferior/target_terminal_inferior, then we
497 only register/unregister the UI's input from the event loop, but
498 leave the main UI's terminal settings as is. */
502 if (terminal_state == terminal_is_inferior)
505 /* If GDB is resuming the inferior in the foreground, install
506 inferior's terminal modes. */
507 (*current_target.to_terminal_inferior) (¤t_target);
508 terminal_state = terminal_is_inferior;
510 /* If the user hit C-c before, pretend that it was hit right
512 if (check_quit_flag ())
513 target_pass_ctrlc ();
519 target_terminal_ours (void)
521 struct ui *ui = current_ui;
523 /* Always add the current UI's input file handler, regardless of
524 terminal_state, because terminal_state is only valid for the main
526 add_file_handler (ui->input_fd, stdin_event_handler, ui);
528 /* See target_terminal_inferior. */
532 if (terminal_state == terminal_is_ours)
535 (*current_target.to_terminal_ours) (¤t_target);
536 terminal_state = terminal_is_ours;
542 target_terminal_ours_for_output (void)
544 struct ui *ui = current_ui;
546 /* See target_terminal_inferior. */
550 if (terminal_state != terminal_is_inferior)
552 (*current_target.to_terminal_ours_for_output) (¤t_target);
553 terminal_state = terminal_is_ours_for_output;
559 target_supports_terminal_ours (void)
561 struct target_ops *t;
563 for (t = current_target.beneath; t != NULL; t = t->beneath)
565 if (t->to_terminal_ours != delegate_terminal_ours
566 && t->to_terminal_ours != tdefault_terminal_ours)
573 /* Restore the terminal to its previous state (helper for
574 make_cleanup_restore_target_terminal). */
577 cleanup_restore_target_terminal (void *arg)
579 enum terminal_state *previous_state = (enum terminal_state *) arg;
581 switch (*previous_state)
583 case terminal_is_ours:
584 target_terminal_ours ();
586 case terminal_is_ours_for_output:
587 target_terminal_ours_for_output ();
589 case terminal_is_inferior:
590 target_terminal_inferior ();
598 make_cleanup_restore_target_terminal (void)
600 enum terminal_state *ts = XNEW (enum terminal_state);
602 *ts = terminal_state;
604 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
610 error (_("You can't do that when your target is `%s'"),
611 current_target.to_shortname);
617 error (_("You can't do that without a process to debug."));
621 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
623 printf_unfiltered (_("No saved terminal information.\n"));
626 /* A default implementation for the to_get_ada_task_ptid target method.
628 This function builds the PTID by using both LWP and TID as part of
629 the PTID lwp and tid elements. The pid used is the pid of the
633 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
635 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
638 static enum exec_direction_kind
639 default_execution_direction (struct target_ops *self)
641 if (!target_can_execute_reverse)
643 else if (!target_can_async_p ())
646 gdb_assert_not_reached ("\
647 to_execution_direction must be implemented for reverse async");
650 /* Go through the target stack from top to bottom, copying over zero
651 entries in current_target, then filling in still empty entries. In
652 effect, we are doing class inheritance through the pushed target
655 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
656 is currently implemented, is that it discards any knowledge of
657 which target an inherited method originally belonged to.
658 Consequently, new new target methods should instead explicitly and
659 locally search the target stack for the target that can handle the
663 update_current_target (void)
665 struct target_ops *t;
667 /* First, reset current's contents. */
668 memset (¤t_target, 0, sizeof (current_target));
670 /* Install the delegators. */
671 install_delegators (¤t_target);
673 current_target.to_stratum = target_stack->to_stratum;
675 #define INHERIT(FIELD, TARGET) \
676 if (!current_target.FIELD) \
677 current_target.FIELD = (TARGET)->FIELD
679 /* Do not add any new INHERITs here. Instead, use the delegation
680 mechanism provided by make-target-delegates. */
681 for (t = target_stack; t; t = t->beneath)
683 INHERIT (to_shortname, t);
684 INHERIT (to_longname, t);
685 INHERIT (to_attach_no_wait, t);
686 INHERIT (to_have_steppable_watchpoint, t);
687 INHERIT (to_have_continuable_watchpoint, t);
688 INHERIT (to_has_thread_control, t);
692 /* Finally, position the target-stack beneath the squashed
693 "current_target". That way code looking for a non-inherited
694 target method can quickly and simply find it. */
695 current_target.beneath = target_stack;
698 setup_target_debug ();
701 /* Push a new target type into the stack of the existing target accessors,
702 possibly superseding some of the existing accessors.
704 Rather than allow an empty stack, we always have the dummy target at
705 the bottom stratum, so we can call the function vectors without
709 push_target (struct target_ops *t)
711 struct target_ops **cur;
713 /* Check magic number. If wrong, it probably means someone changed
714 the struct definition, but not all the places that initialize one. */
715 if (t->to_magic != OPS_MAGIC)
717 fprintf_unfiltered (gdb_stderr,
718 "Magic number of %s target struct wrong\n",
720 internal_error (__FILE__, __LINE__,
721 _("failed internal consistency check"));
724 /* Find the proper stratum to install this target in. */
725 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
727 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
731 /* If there's already targets at this stratum, remove them. */
732 /* FIXME: cagney/2003-10-15: I think this should be popping all
733 targets to CUR, and not just those at this stratum level. */
734 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
736 /* There's already something at this stratum level. Close it,
737 and un-hook it from the stack. */
738 struct target_ops *tmp = (*cur);
740 (*cur) = (*cur)->beneath;
745 /* We have removed all targets in our stratum, now add the new one. */
749 update_current_target ();
752 /* Remove a target_ops vector from the stack, wherever it may be.
753 Return how many times it was removed (0 or 1). */
756 unpush_target (struct target_ops *t)
758 struct target_ops **cur;
759 struct target_ops *tmp;
761 if (t->to_stratum == dummy_stratum)
762 internal_error (__FILE__, __LINE__,
763 _("Attempt to unpush the dummy target"));
765 /* Look for the specified target. Note that we assume that a target
766 can only occur once in the target stack. */
768 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
774 /* If we don't find target_ops, quit. Only open targets should be
779 /* Unchain the target. */
781 (*cur) = (*cur)->beneath;
784 update_current_target ();
786 /* Finally close the target. Note we do this after unchaining, so
787 any target method calls from within the target_close
788 implementation don't end up in T anymore. */
794 /* Unpush TARGET and assert that it worked. */
797 unpush_target_and_assert (struct target_ops *target)
799 if (!unpush_target (target))
801 fprintf_unfiltered (gdb_stderr,
802 "pop_all_targets couldn't find target %s\n",
803 target->to_shortname);
804 internal_error (__FILE__, __LINE__,
805 _("failed internal consistency check"));
810 pop_all_targets_above (enum strata above_stratum)
812 while ((int) (current_target.to_stratum) > (int) above_stratum)
813 unpush_target_and_assert (target_stack);
819 pop_all_targets_at_and_above (enum strata stratum)
821 while ((int) (current_target.to_stratum) >= (int) stratum)
822 unpush_target_and_assert (target_stack);
826 pop_all_targets (void)
828 pop_all_targets_above (dummy_stratum);
831 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
834 target_is_pushed (struct target_ops *t)
836 struct target_ops *cur;
838 /* Check magic number. If wrong, it probably means someone changed
839 the struct definition, but not all the places that initialize one. */
840 if (t->to_magic != OPS_MAGIC)
842 fprintf_unfiltered (gdb_stderr,
843 "Magic number of %s target struct wrong\n",
845 internal_error (__FILE__, __LINE__,
846 _("failed internal consistency check"));
849 for (cur = target_stack; cur != NULL; cur = cur->beneath)
856 /* Default implementation of to_get_thread_local_address. */
859 generic_tls_error (void)
861 throw_error (TLS_GENERIC_ERROR,
862 _("Cannot find thread-local variables on this target"));
865 /* Using the objfile specified in OBJFILE, find the address for the
866 current thread's thread-local storage with offset OFFSET. */
868 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
870 volatile CORE_ADDR addr = 0;
871 struct target_ops *target = ¤t_target;
873 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
875 ptid_t ptid = inferior_ptid;
881 /* Fetch the load module address for this objfile. */
882 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
885 addr = target->to_get_thread_local_address (target, ptid,
888 /* If an error occurred, print TLS related messages here. Otherwise,
889 throw the error to some higher catcher. */
890 CATCH (ex, RETURN_MASK_ALL)
892 int objfile_is_library = (objfile->flags & OBJF_SHARED);
896 case TLS_NO_LIBRARY_SUPPORT_ERROR:
897 error (_("Cannot find thread-local variables "
898 "in this thread library."));
900 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
901 if (objfile_is_library)
902 error (_("Cannot find shared library `%s' in dynamic"
903 " linker's load module list"), objfile_name (objfile));
905 error (_("Cannot find executable file `%s' in dynamic"
906 " linker's load module list"), objfile_name (objfile));
908 case TLS_NOT_ALLOCATED_YET_ERROR:
909 if (objfile_is_library)
910 error (_("The inferior has not yet allocated storage for"
911 " thread-local variables in\n"
912 "the shared library `%s'\n"
914 objfile_name (objfile), target_pid_to_str (ptid));
916 error (_("The inferior has not yet allocated storage for"
917 " thread-local variables in\n"
918 "the executable `%s'\n"
920 objfile_name (objfile), target_pid_to_str (ptid));
922 case TLS_GENERIC_ERROR:
923 if (objfile_is_library)
924 error (_("Cannot find thread-local storage for %s, "
925 "shared library %s:\n%s"),
926 target_pid_to_str (ptid),
927 objfile_name (objfile), ex.message);
929 error (_("Cannot find thread-local storage for %s, "
930 "executable file %s:\n%s"),
931 target_pid_to_str (ptid),
932 objfile_name (objfile), ex.message);
935 throw_exception (ex);
941 /* It wouldn't be wrong here to try a gdbarch method, too; finding
942 TLS is an ABI-specific thing. But we don't do that yet. */
944 error (_("Cannot find thread-local variables on this target"));
950 target_xfer_status_to_string (enum target_xfer_status status)
952 #define CASE(X) case X: return #X
955 CASE(TARGET_XFER_E_IO);
956 CASE(TARGET_XFER_UNAVAILABLE);
965 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
967 /* target_read_string -- read a null terminated string, up to LEN bytes,
968 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
969 Set *STRING to a pointer to malloc'd memory containing the data; the caller
970 is responsible for freeing it. Return the number of bytes successfully
974 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
980 int buffer_allocated;
982 unsigned int nbytes_read = 0;
986 /* Small for testing. */
987 buffer_allocated = 4;
988 buffer = (char *) xmalloc (buffer_allocated);
993 tlen = MIN (len, 4 - (memaddr & 3));
994 offset = memaddr & 3;
996 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
999 /* The transfer request might have crossed the boundary to an
1000 unallocated region of memory. Retry the transfer, requesting
1004 errcode = target_read_memory (memaddr, buf, 1);
1009 if (bufptr - buffer + tlen > buffer_allocated)
1013 bytes = bufptr - buffer;
1014 buffer_allocated *= 2;
1015 buffer = (char *) xrealloc (buffer, buffer_allocated);
1016 bufptr = buffer + bytes;
1019 for (i = 0; i < tlen; i++)
1021 *bufptr++ = buf[i + offset];
1022 if (buf[i + offset] == '\000')
1024 nbytes_read += i + 1;
1031 nbytes_read += tlen;
1040 struct target_section_table *
1041 target_get_section_table (struct target_ops *target)
1043 return (*target->to_get_section_table) (target);
1046 /* Find a section containing ADDR. */
1048 struct target_section *
1049 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1051 struct target_section_table *table = target_get_section_table (target);
1052 struct target_section *secp;
1057 for (secp = table->sections; secp < table->sections_end; secp++)
1059 if (addr >= secp->addr && addr < secp->endaddr)
1066 /* Helper for the memory xfer routines. Checks the attributes of the
1067 memory region of MEMADDR against the read or write being attempted.
1068 If the access is permitted returns true, otherwise returns false.
1069 REGION_P is an optional output parameter. If not-NULL, it is
1070 filled with a pointer to the memory region of MEMADDR. REG_LEN
1071 returns LEN trimmed to the end of the region. This is how much the
1072 caller can continue requesting, if the access is permitted. A
1073 single xfer request must not straddle memory region boundaries. */
1076 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1077 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1078 struct mem_region **region_p)
1080 struct mem_region *region;
1082 region = lookup_mem_region (memaddr);
1084 if (region_p != NULL)
1087 switch (region->attrib.mode)
1090 if (writebuf != NULL)
1095 if (readbuf != NULL)
1100 /* We only support writing to flash during "load" for now. */
1101 if (writebuf != NULL)
1102 error (_("Writing to flash memory forbidden in this context"));
1109 /* region->hi == 0 means there's no upper bound. */
1110 if (memaddr + len < region->hi || region->hi == 0)
1113 *reg_len = region->hi - memaddr;
1118 /* Read memory from more than one valid target. A core file, for
1119 instance, could have some of memory but delegate other bits to
1120 the target below it. So, we must manually try all targets. */
1122 enum target_xfer_status
1123 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1124 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1125 ULONGEST *xfered_len)
1127 enum target_xfer_status res;
1131 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1132 readbuf, writebuf, memaddr, len,
1134 if (res == TARGET_XFER_OK)
1137 /* Stop if the target reports that the memory is not available. */
1138 if (res == TARGET_XFER_UNAVAILABLE)
1141 /* We want to continue past core files to executables, but not
1142 past a running target's memory. */
1143 if (ops->to_has_all_memory (ops))
1148 while (ops != NULL);
1150 /* The cache works at the raw memory level. Make sure the cache
1151 gets updated with raw contents no matter what kind of memory
1152 object was originally being written. Note we do write-through
1153 first, so that if it fails, we don't write to the cache contents
1154 that never made it to the target. */
1155 if (writebuf != NULL
1156 && !ptid_equal (inferior_ptid, null_ptid)
1157 && target_dcache_init_p ()
1158 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1160 DCACHE *dcache = target_dcache_get ();
1162 /* Note that writing to an area of memory which wasn't present
1163 in the cache doesn't cause it to be loaded in. */
1164 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1170 /* Perform a partial memory transfer.
1171 For docs see target.h, to_xfer_partial. */
1173 static enum target_xfer_status
1174 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1175 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1176 ULONGEST len, ULONGEST *xfered_len)
1178 enum target_xfer_status res;
1180 struct mem_region *region;
1181 struct inferior *inf;
1183 /* For accesses to unmapped overlay sections, read directly from
1184 files. Must do this first, as MEMADDR may need adjustment. */
1185 if (readbuf != NULL && overlay_debugging)
1187 struct obj_section *section = find_pc_overlay (memaddr);
1189 if (pc_in_unmapped_range (memaddr, section))
1191 struct target_section_table *table
1192 = target_get_section_table (ops);
1193 const char *section_name = section->the_bfd_section->name;
1195 memaddr = overlay_mapped_address (memaddr, section);
1196 return section_table_xfer_memory_partial (readbuf, writebuf,
1197 memaddr, len, xfered_len,
1199 table->sections_end,
1204 /* Try the executable files, if "trust-readonly-sections" is set. */
1205 if (readbuf != NULL && trust_readonly)
1207 struct target_section *secp;
1208 struct target_section_table *table;
1210 secp = target_section_by_addr (ops, memaddr);
1212 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1213 secp->the_bfd_section)
1216 table = target_get_section_table (ops);
1217 return section_table_xfer_memory_partial (readbuf, writebuf,
1218 memaddr, len, xfered_len,
1220 table->sections_end,
1225 /* Try GDB's internal data cache. */
1227 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, ®_len,
1229 return TARGET_XFER_E_IO;
1231 if (!ptid_equal (inferior_ptid, null_ptid))
1232 inf = find_inferior_ptid (inferior_ptid);
1238 /* The dcache reads whole cache lines; that doesn't play well
1239 with reading from a trace buffer, because reading outside of
1240 the collected memory range fails. */
1241 && get_traceframe_number () == -1
1242 && (region->attrib.cache
1243 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1244 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1246 DCACHE *dcache = target_dcache_get_or_init ();
1248 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1249 reg_len, xfered_len);
1252 /* If none of those methods found the memory we wanted, fall back
1253 to a target partial transfer. Normally a single call to
1254 to_xfer_partial is enough; if it doesn't recognize an object
1255 it will call the to_xfer_partial of the next target down.
1256 But for memory this won't do. Memory is the only target
1257 object which can be read from more than one valid target.
1258 A core file, for instance, could have some of memory but
1259 delegate other bits to the target below it. So, we must
1260 manually try all targets. */
1262 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1265 /* If we still haven't got anything, return the last error. We
1270 /* Perform a partial memory transfer. For docs see target.h,
1273 static enum target_xfer_status
1274 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1275 gdb_byte *readbuf, const gdb_byte *writebuf,
1276 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1278 enum target_xfer_status res;
1280 /* Zero length requests are ok and require no work. */
1282 return TARGET_XFER_EOF;
1284 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1285 breakpoint insns, thus hiding out from higher layers whether
1286 there are software breakpoints inserted in the code stream. */
1287 if (readbuf != NULL)
1289 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1292 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1293 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1298 struct cleanup *old_chain;
1300 /* A large write request is likely to be partially satisfied
1301 by memory_xfer_partial_1. We will continually malloc
1302 and free a copy of the entire write request for breakpoint
1303 shadow handling even though we only end up writing a small
1304 subset of it. Cap writes to 4KB to mitigate this. */
1305 len = min (4096, len);
1307 buf = (gdb_byte *) xmalloc (len);
1308 old_chain = make_cleanup (xfree, buf);
1309 memcpy (buf, writebuf, len);
1311 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1312 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1315 do_cleanups (old_chain);
1322 restore_show_memory_breakpoints (void *arg)
1324 show_memory_breakpoints = (uintptr_t) arg;
1328 make_show_memory_breakpoints_cleanup (int show)
1330 int current = show_memory_breakpoints;
1332 show_memory_breakpoints = show;
1333 return make_cleanup (restore_show_memory_breakpoints,
1334 (void *) (uintptr_t) current);
1337 /* For docs see target.h, to_xfer_partial. */
1339 enum target_xfer_status
1340 target_xfer_partial (struct target_ops *ops,
1341 enum target_object object, const char *annex,
1342 gdb_byte *readbuf, const gdb_byte *writebuf,
1343 ULONGEST offset, ULONGEST len,
1344 ULONGEST *xfered_len)
1346 enum target_xfer_status retval;
1348 gdb_assert (ops->to_xfer_partial != NULL);
1350 /* Transfer is done when LEN is zero. */
1352 return TARGET_XFER_EOF;
1354 if (writebuf && !may_write_memory)
1355 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1356 core_addr_to_string_nz (offset), plongest (len));
1360 /* If this is a memory transfer, let the memory-specific code
1361 have a look at it instead. Memory transfers are more
1363 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1364 || object == TARGET_OBJECT_CODE_MEMORY)
1365 retval = memory_xfer_partial (ops, object, readbuf,
1366 writebuf, offset, len, xfered_len);
1367 else if (object == TARGET_OBJECT_RAW_MEMORY)
1369 /* Skip/avoid accessing the target if the memory region
1370 attributes block the access. Check this here instead of in
1371 raw_memory_xfer_partial as otherwise we'd end up checking
1372 this twice in the case of the memory_xfer_partial path is
1373 taken; once before checking the dcache, and another in the
1374 tail call to raw_memory_xfer_partial. */
1375 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1377 return TARGET_XFER_E_IO;
1379 /* Request the normal memory object from other layers. */
1380 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1384 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1385 writebuf, offset, len, xfered_len);
1389 const unsigned char *myaddr = NULL;
1391 fprintf_unfiltered (gdb_stdlog,
1392 "%s:target_xfer_partial "
1393 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1396 (annex ? annex : "(null)"),
1397 host_address_to_string (readbuf),
1398 host_address_to_string (writebuf),
1399 core_addr_to_string_nz (offset),
1400 pulongest (len), retval,
1401 pulongest (*xfered_len));
1407 if (retval == TARGET_XFER_OK && myaddr != NULL)
1411 fputs_unfiltered (", bytes =", gdb_stdlog);
1412 for (i = 0; i < *xfered_len; i++)
1414 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1416 if (targetdebug < 2 && i > 0)
1418 fprintf_unfiltered (gdb_stdlog, " ...");
1421 fprintf_unfiltered (gdb_stdlog, "\n");
1424 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1428 fputc_unfiltered ('\n', gdb_stdlog);
1431 /* Check implementations of to_xfer_partial update *XFERED_LEN
1432 properly. Do assertion after printing debug messages, so that we
1433 can find more clues on assertion failure from debugging messages. */
1434 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1435 gdb_assert (*xfered_len > 0);
1440 /* Read LEN bytes of target memory at address MEMADDR, placing the
1441 results in GDB's memory at MYADDR. Returns either 0 for success or
1442 -1 if any error occurs.
1444 If an error occurs, no guarantee is made about the contents of the data at
1445 MYADDR. In particular, the caller should not depend upon partial reads
1446 filling the buffer with good data. There is no way for the caller to know
1447 how much good data might have been transfered anyway. Callers that can
1448 deal with partial reads should call target_read (which will retry until
1449 it makes no progress, and then return how much was transferred). */
1452 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1454 /* Dispatch to the topmost target, not the flattened current_target.
1455 Memory accesses check target->to_has_(all_)memory, and the
1456 flattened target doesn't inherit those. */
1457 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1458 myaddr, memaddr, len) == len)
1464 /* See target/target.h. */
1467 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1472 r = target_read_memory (memaddr, buf, sizeof buf);
1475 *result = extract_unsigned_integer (buf, sizeof buf,
1476 gdbarch_byte_order (target_gdbarch ()));
1480 /* Like target_read_memory, but specify explicitly that this is a read
1481 from the target's raw memory. That is, this read bypasses the
1482 dcache, breakpoint shadowing, etc. */
1485 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1487 /* See comment in target_read_memory about why the request starts at
1488 current_target.beneath. */
1489 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1490 myaddr, memaddr, len) == len)
1496 /* Like target_read_memory, but specify explicitly that this is a read from
1497 the target's stack. This may trigger different cache behavior. */
1500 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1502 /* See comment in target_read_memory about why the request starts at
1503 current_target.beneath. */
1504 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1505 myaddr, memaddr, len) == len)
1511 /* Like target_read_memory, but specify explicitly that this is a read from
1512 the target's code. This may trigger different cache behavior. */
1515 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1517 /* See comment in target_read_memory about why the request starts at
1518 current_target.beneath. */
1519 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1520 myaddr, memaddr, len) == len)
1526 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1527 Returns either 0 for success or -1 if any error occurs. If an
1528 error occurs, no guarantee is made about how much data got written.
1529 Callers that can deal with partial writes should call
1533 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1535 /* See comment in target_read_memory about why the request starts at
1536 current_target.beneath. */
1537 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1538 myaddr, memaddr, len) == len)
1544 /* Write LEN bytes from MYADDR to target raw memory at address
1545 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1546 If an error occurs, no guarantee is made about how much data got
1547 written. Callers that can deal with partial writes should call
1551 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1553 /* See comment in target_read_memory about why the request starts at
1554 current_target.beneath. */
1555 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1556 myaddr, memaddr, len) == len)
1562 /* Fetch the target's memory map. */
1565 target_memory_map (void)
1567 VEC(mem_region_s) *result;
1568 struct mem_region *last_one, *this_one;
1570 result = current_target.to_memory_map (¤t_target);
1574 qsort (VEC_address (mem_region_s, result),
1575 VEC_length (mem_region_s, result),
1576 sizeof (struct mem_region), mem_region_cmp);
1578 /* Check that regions do not overlap. Simultaneously assign
1579 a numbering for the "mem" commands to use to refer to
1582 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1584 this_one->number = ix;
1586 if (last_one && last_one->hi > this_one->lo)
1588 warning (_("Overlapping regions in memory map: ignoring"));
1589 VEC_free (mem_region_s, result);
1592 last_one = this_one;
1599 target_flash_erase (ULONGEST address, LONGEST length)
1601 current_target.to_flash_erase (¤t_target, address, length);
1605 target_flash_done (void)
1607 current_target.to_flash_done (¤t_target);
1611 show_trust_readonly (struct ui_file *file, int from_tty,
1612 struct cmd_list_element *c, const char *value)
1614 fprintf_filtered (file,
1615 _("Mode for reading from readonly sections is %s.\n"),
1619 /* Target vector read/write partial wrapper functions. */
1621 static enum target_xfer_status
1622 target_read_partial (struct target_ops *ops,
1623 enum target_object object,
1624 const char *annex, gdb_byte *buf,
1625 ULONGEST offset, ULONGEST len,
1626 ULONGEST *xfered_len)
1628 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1632 static enum target_xfer_status
1633 target_write_partial (struct target_ops *ops,
1634 enum target_object object,
1635 const char *annex, const gdb_byte *buf,
1636 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1638 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1642 /* Wrappers to perform the full transfer. */
1644 /* For docs on target_read see target.h. */
1647 target_read (struct target_ops *ops,
1648 enum target_object object,
1649 const char *annex, gdb_byte *buf,
1650 ULONGEST offset, LONGEST len)
1652 LONGEST xfered_total = 0;
1655 /* If we are reading from a memory object, find the length of an addressable
1656 unit for that architecture. */
1657 if (object == TARGET_OBJECT_MEMORY
1658 || object == TARGET_OBJECT_STACK_MEMORY
1659 || object == TARGET_OBJECT_CODE_MEMORY
1660 || object == TARGET_OBJECT_RAW_MEMORY)
1661 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1663 while (xfered_total < len)
1665 ULONGEST xfered_partial;
1666 enum target_xfer_status status;
1668 status = target_read_partial (ops, object, annex,
1669 buf + xfered_total * unit_size,
1670 offset + xfered_total, len - xfered_total,
1673 /* Call an observer, notifying them of the xfer progress? */
1674 if (status == TARGET_XFER_EOF)
1675 return xfered_total;
1676 else if (status == TARGET_XFER_OK)
1678 xfered_total += xfered_partial;
1682 return TARGET_XFER_E_IO;
1688 /* Assuming that the entire [begin, end) range of memory cannot be
1689 read, try to read whatever subrange is possible to read.
1691 The function returns, in RESULT, either zero or one memory block.
1692 If there's a readable subrange at the beginning, it is completely
1693 read and returned. Any further readable subrange will not be read.
1694 Otherwise, if there's a readable subrange at the end, it will be
1695 completely read and returned. Any readable subranges before it
1696 (obviously, not starting at the beginning), will be ignored. In
1697 other cases -- either no readable subrange, or readable subrange(s)
1698 that is neither at the beginning, or end, nothing is returned.
1700 The purpose of this function is to handle a read across a boundary
1701 of accessible memory in a case when memory map is not available.
1702 The above restrictions are fine for this case, but will give
1703 incorrect results if the memory is 'patchy'. However, supporting
1704 'patchy' memory would require trying to read every single byte,
1705 and it seems unacceptable solution. Explicit memory map is
1706 recommended for this case -- and target_read_memory_robust will
1707 take care of reading multiple ranges then. */
1710 read_whatever_is_readable (struct target_ops *ops,
1711 const ULONGEST begin, const ULONGEST end,
1713 VEC(memory_read_result_s) **result)
1715 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
1716 ULONGEST current_begin = begin;
1717 ULONGEST current_end = end;
1719 memory_read_result_s r;
1720 ULONGEST xfered_len;
1722 /* If we previously failed to read 1 byte, nothing can be done here. */
1723 if (end - begin <= 1)
1729 /* Check that either first or the last byte is readable, and give up
1730 if not. This heuristic is meant to permit reading accessible memory
1731 at the boundary of accessible region. */
1732 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1733 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1738 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1739 buf + (end - begin) - 1, end - 1, 1,
1740 &xfered_len) == TARGET_XFER_OK)
1751 /* Loop invariant is that the [current_begin, current_end) was previously
1752 found to be not readable as a whole.
1754 Note loop condition -- if the range has 1 byte, we can't divide the range
1755 so there's no point trying further. */
1756 while (current_end - current_begin > 1)
1758 ULONGEST first_half_begin, first_half_end;
1759 ULONGEST second_half_begin, second_half_end;
1761 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1765 first_half_begin = current_begin;
1766 first_half_end = middle;
1767 second_half_begin = middle;
1768 second_half_end = current_end;
1772 first_half_begin = middle;
1773 first_half_end = current_end;
1774 second_half_begin = current_begin;
1775 second_half_end = middle;
1778 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1779 buf + (first_half_begin - begin) * unit_size,
1781 first_half_end - first_half_begin);
1783 if (xfer == first_half_end - first_half_begin)
1785 /* This half reads up fine. So, the error must be in the
1787 current_begin = second_half_begin;
1788 current_end = second_half_end;
1792 /* This half is not readable. Because we've tried one byte, we
1793 know some part of this half if actually readable. Go to the next
1794 iteration to divide again and try to read.
1796 We don't handle the other half, because this function only tries
1797 to read a single readable subrange. */
1798 current_begin = first_half_begin;
1799 current_end = first_half_end;
1805 /* The [begin, current_begin) range has been read. */
1807 r.end = current_begin;
1812 /* The [current_end, end) range has been read. */
1813 LONGEST region_len = end - current_end;
1815 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
1816 memcpy (r.data, buf + (current_end - begin) * unit_size,
1817 region_len * unit_size);
1818 r.begin = current_end;
1822 VEC_safe_push(memory_read_result_s, (*result), &r);
1826 free_memory_read_result_vector (void *x)
1828 VEC(memory_read_result_s) *v = (VEC(memory_read_result_s) *) x;
1829 memory_read_result_s *current;
1832 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1834 xfree (current->data);
1836 VEC_free (memory_read_result_s, v);
1839 VEC(memory_read_result_s) *
1840 read_memory_robust (struct target_ops *ops,
1841 const ULONGEST offset, const LONGEST len)
1843 VEC(memory_read_result_s) *result = 0;
1844 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1846 LONGEST xfered_total = 0;
1847 while (xfered_total < len)
1849 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1852 /* If there is no explicit region, a fake one should be created. */
1853 gdb_assert (region);
1855 if (region->hi == 0)
1856 region_len = len - xfered_total;
1858 region_len = region->hi - offset;
1860 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1862 /* Cannot read this region. Note that we can end up here only
1863 if the region is explicitly marked inaccessible, or
1864 'inaccessible-by-default' is in effect. */
1865 xfered_total += region_len;
1869 LONGEST to_read = min (len - xfered_total, region_len);
1870 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1872 LONGEST xfered_partial =
1873 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1874 (gdb_byte *) buffer,
1875 offset + xfered_total, to_read);
1876 /* Call an observer, notifying them of the xfer progress? */
1877 if (xfered_partial <= 0)
1879 /* Got an error reading full chunk. See if maybe we can read
1882 read_whatever_is_readable (ops, offset + xfered_total,
1883 offset + xfered_total + to_read,
1884 unit_size, &result);
1885 xfered_total += to_read;
1889 struct memory_read_result r;
1891 r.begin = offset + xfered_total;
1892 r.end = r.begin + xfered_partial;
1893 VEC_safe_push (memory_read_result_s, result, &r);
1894 xfered_total += xfered_partial;
1903 /* An alternative to target_write with progress callbacks. */
1906 target_write_with_progress (struct target_ops *ops,
1907 enum target_object object,
1908 const char *annex, const gdb_byte *buf,
1909 ULONGEST offset, LONGEST len,
1910 void (*progress) (ULONGEST, void *), void *baton)
1912 LONGEST xfered_total = 0;
1915 /* If we are writing to a memory object, find the length of an addressable
1916 unit for that architecture. */
1917 if (object == TARGET_OBJECT_MEMORY
1918 || object == TARGET_OBJECT_STACK_MEMORY
1919 || object == TARGET_OBJECT_CODE_MEMORY
1920 || object == TARGET_OBJECT_RAW_MEMORY)
1921 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1923 /* Give the progress callback a chance to set up. */
1925 (*progress) (0, baton);
1927 while (xfered_total < len)
1929 ULONGEST xfered_partial;
1930 enum target_xfer_status status;
1932 status = target_write_partial (ops, object, annex,
1933 buf + xfered_total * unit_size,
1934 offset + xfered_total, len - xfered_total,
1937 if (status != TARGET_XFER_OK)
1938 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1941 (*progress) (xfered_partial, baton);
1943 xfered_total += xfered_partial;
1949 /* For docs on target_write see target.h. */
1952 target_write (struct target_ops *ops,
1953 enum target_object object,
1954 const char *annex, const gdb_byte *buf,
1955 ULONGEST offset, LONGEST len)
1957 return target_write_with_progress (ops, object, annex, buf, offset, len,
1961 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1962 the size of the transferred data. PADDING additional bytes are
1963 available in *BUF_P. This is a helper function for
1964 target_read_alloc; see the declaration of that function for more
1968 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1969 const char *annex, gdb_byte **buf_p, int padding)
1971 size_t buf_alloc, buf_pos;
1974 /* This function does not have a length parameter; it reads the
1975 entire OBJECT). Also, it doesn't support objects fetched partly
1976 from one target and partly from another (in a different stratum,
1977 e.g. a core file and an executable). Both reasons make it
1978 unsuitable for reading memory. */
1979 gdb_assert (object != TARGET_OBJECT_MEMORY);
1981 /* Start by reading up to 4K at a time. The target will throttle
1982 this number down if necessary. */
1984 buf = (gdb_byte *) xmalloc (buf_alloc);
1988 ULONGEST xfered_len;
1989 enum target_xfer_status status;
1991 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1992 buf_pos, buf_alloc - buf_pos - padding,
1995 if (status == TARGET_XFER_EOF)
1997 /* Read all there was. */
2004 else if (status != TARGET_XFER_OK)
2006 /* An error occurred. */
2008 return TARGET_XFER_E_IO;
2011 buf_pos += xfered_len;
2013 /* If the buffer is filling up, expand it. */
2014 if (buf_alloc < buf_pos * 2)
2017 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
2024 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2025 the size of the transferred data. See the declaration in "target.h"
2026 function for more information about the return value. */
2029 target_read_alloc (struct target_ops *ops, enum target_object object,
2030 const char *annex, gdb_byte **buf_p)
2032 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2035 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2036 returned as a string, allocated using xmalloc. If an error occurs
2037 or the transfer is unsupported, NULL is returned. Empty objects
2038 are returned as allocated but empty strings. A warning is issued
2039 if the result contains any embedded NUL bytes. */
2042 target_read_stralloc (struct target_ops *ops, enum target_object object,
2047 LONGEST i, transferred;
2049 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2050 bufstr = (char *) buffer;
2052 if (transferred < 0)
2055 if (transferred == 0)
2056 return xstrdup ("");
2058 bufstr[transferred] = 0;
2060 /* Check for embedded NUL bytes; but allow trailing NULs. */
2061 for (i = strlen (bufstr); i < transferred; i++)
2064 warning (_("target object %d, annex %s, "
2065 "contained unexpected null characters"),
2066 (int) object, annex ? annex : "(none)");
2073 /* Memory transfer methods. */
2076 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2079 /* This method is used to read from an alternate, non-current
2080 target. This read must bypass the overlay support (as symbols
2081 don't match this target), and GDB's internal cache (wrong cache
2082 for this target). */
2083 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2085 memory_error (TARGET_XFER_E_IO, addr);
2089 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2090 int len, enum bfd_endian byte_order)
2092 gdb_byte buf[sizeof (ULONGEST)];
2094 gdb_assert (len <= sizeof (buf));
2095 get_target_memory (ops, addr, buf, len);
2096 return extract_unsigned_integer (buf, len, byte_order);
2102 target_insert_breakpoint (struct gdbarch *gdbarch,
2103 struct bp_target_info *bp_tgt)
2105 if (!may_insert_breakpoints)
2107 warning (_("May not insert breakpoints"));
2111 return current_target.to_insert_breakpoint (¤t_target,
2118 target_remove_breakpoint (struct gdbarch *gdbarch,
2119 struct bp_target_info *bp_tgt)
2121 /* This is kind of a weird case to handle, but the permission might
2122 have been changed after breakpoints were inserted - in which case
2123 we should just take the user literally and assume that any
2124 breakpoints should be left in place. */
2125 if (!may_insert_breakpoints)
2127 warning (_("May not remove breakpoints"));
2131 return current_target.to_remove_breakpoint (¤t_target,
2136 target_info (char *args, int from_tty)
2138 struct target_ops *t;
2139 int has_all_mem = 0;
2141 if (symfile_objfile != NULL)
2142 printf_unfiltered (_("Symbols from \"%s\".\n"),
2143 objfile_name (symfile_objfile));
2145 for (t = target_stack; t != NULL; t = t->beneath)
2147 if (!(*t->to_has_memory) (t))
2150 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2153 printf_unfiltered (_("\tWhile running this, "
2154 "GDB does not access memory from...\n"));
2155 printf_unfiltered ("%s:\n", t->to_longname);
2156 (t->to_files_info) (t);
2157 has_all_mem = (*t->to_has_all_memory) (t);
2161 /* This function is called before any new inferior is created, e.g.
2162 by running a program, attaching, or connecting to a target.
2163 It cleans up any state from previous invocations which might
2164 change between runs. This is a subset of what target_preopen
2165 resets (things which might change between targets). */
2168 target_pre_inferior (int from_tty)
2170 /* Clear out solib state. Otherwise the solib state of the previous
2171 inferior might have survived and is entirely wrong for the new
2172 target. This has been observed on GNU/Linux using glibc 2.3. How
2184 Cannot access memory at address 0xdeadbeef
2187 /* In some OSs, the shared library list is the same/global/shared
2188 across inferiors. If code is shared between processes, so are
2189 memory regions and features. */
2190 if (!gdbarch_has_global_solist (target_gdbarch ()))
2192 no_shared_libraries (NULL, from_tty);
2194 invalidate_target_mem_regions ();
2196 target_clear_description ();
2199 /* attach_flag may be set if the previous process associated with
2200 the inferior was attached to. */
2201 current_inferior ()->attach_flag = 0;
2203 current_inferior ()->highest_thread_num = 0;
2205 agent_capability_invalidate ();
2208 /* Callback for iterate_over_inferiors. Gets rid of the given
2212 dispose_inferior (struct inferior *inf, void *args)
2214 struct thread_info *thread;
2216 thread = any_thread_of_process (inf->pid);
2219 switch_to_thread (thread->ptid);
2221 /* Core inferiors actually should be detached, not killed. */
2222 if (target_has_execution)
2225 target_detach (NULL, 0);
2231 /* This is to be called by the open routine before it does
2235 target_preopen (int from_tty)
2239 if (have_inferiors ())
2242 || !have_live_inferiors ()
2243 || query (_("A program is being debugged already. Kill it? ")))
2244 iterate_over_inferiors (dispose_inferior, NULL);
2246 error (_("Program not killed."));
2249 /* Calling target_kill may remove the target from the stack. But if
2250 it doesn't (which seems like a win for UDI), remove it now. */
2251 /* Leave the exec target, though. The user may be switching from a
2252 live process to a core of the same program. */
2253 pop_all_targets_above (file_stratum);
2255 target_pre_inferior (from_tty);
2258 /* Detach a target after doing deferred register stores. */
2261 target_detach (const char *args, int from_tty)
2263 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2264 /* Don't remove global breakpoints here. They're removed on
2265 disconnection from the target. */
2268 /* If we're in breakpoints-always-inserted mode, have to remove
2269 them before detaching. */
2270 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2272 prepare_for_detach ();
2274 current_target.to_detach (¤t_target, args, from_tty);
2278 target_disconnect (const char *args, int from_tty)
2280 /* If we're in breakpoints-always-inserted mode or if breakpoints
2281 are global across processes, we have to remove them before
2283 remove_breakpoints ();
2285 current_target.to_disconnect (¤t_target, args, from_tty);
2289 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2291 return (current_target.to_wait) (¤t_target, ptid, status, options);
2297 default_target_wait (struct target_ops *ops,
2298 ptid_t ptid, struct target_waitstatus *status,
2301 status->kind = TARGET_WAITKIND_IGNORE;
2302 return minus_one_ptid;
2306 target_pid_to_str (ptid_t ptid)
2308 return (*current_target.to_pid_to_str) (¤t_target, ptid);
2312 target_thread_name (struct thread_info *info)
2314 return current_target.to_thread_name (¤t_target, info);
2318 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2320 target_dcache_invalidate ();
2322 current_target.to_resume (¤t_target, ptid, step, signal);
2324 registers_changed_ptid (ptid);
2325 /* We only set the internal executing state here. The user/frontend
2326 running state is set at a higher level. */
2327 set_executing (ptid, 1);
2328 clear_inline_frame_state (ptid);
2332 target_pass_signals (int numsigs, unsigned char *pass_signals)
2334 (*current_target.to_pass_signals) (¤t_target, numsigs, pass_signals);
2338 target_program_signals (int numsigs, unsigned char *program_signals)
2340 (*current_target.to_program_signals) (¤t_target,
2341 numsigs, program_signals);
2345 default_follow_fork (struct target_ops *self, int follow_child,
2348 /* Some target returned a fork event, but did not know how to follow it. */
2349 internal_error (__FILE__, __LINE__,
2350 _("could not find a target to follow fork"));
2353 /* Look through the list of possible targets for a target that can
2357 target_follow_fork (int follow_child, int detach_fork)
2359 return current_target.to_follow_fork (¤t_target,
2360 follow_child, detach_fork);
2363 /* Target wrapper for follow exec hook. */
2366 target_follow_exec (struct inferior *inf, char *execd_pathname)
2368 current_target.to_follow_exec (¤t_target, inf, execd_pathname);
2372 default_mourn_inferior (struct target_ops *self)
2374 internal_error (__FILE__, __LINE__,
2375 _("could not find a target to follow mourn inferior"));
2379 target_mourn_inferior (void)
2381 current_target.to_mourn_inferior (¤t_target);
2383 /* We no longer need to keep handles on any of the object files.
2384 Make sure to release them to avoid unnecessarily locking any
2385 of them while we're not actually debugging. */
2386 bfd_cache_close_all ();
2389 /* Look for a target which can describe architectural features, starting
2390 from TARGET. If we find one, return its description. */
2392 const struct target_desc *
2393 target_read_description (struct target_ops *target)
2395 return target->to_read_description (target);
2398 /* This implements a basic search of memory, reading target memory and
2399 performing the search here (as opposed to performing the search in on the
2400 target side with, for example, gdbserver). */
2403 simple_search_memory (struct target_ops *ops,
2404 CORE_ADDR start_addr, ULONGEST search_space_len,
2405 const gdb_byte *pattern, ULONGEST pattern_len,
2406 CORE_ADDR *found_addrp)
2408 /* NOTE: also defined in find.c testcase. */
2409 #define SEARCH_CHUNK_SIZE 16000
2410 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2411 /* Buffer to hold memory contents for searching. */
2412 gdb_byte *search_buf;
2413 unsigned search_buf_size;
2414 struct cleanup *old_cleanups;
2416 search_buf_size = chunk_size + pattern_len - 1;
2418 /* No point in trying to allocate a buffer larger than the search space. */
2419 if (search_space_len < search_buf_size)
2420 search_buf_size = search_space_len;
2422 search_buf = (gdb_byte *) malloc (search_buf_size);
2423 if (search_buf == NULL)
2424 error (_("Unable to allocate memory to perform the search."));
2425 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2427 /* Prime the search buffer. */
2429 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2430 search_buf, start_addr, search_buf_size) != search_buf_size)
2432 warning (_("Unable to access %s bytes of target "
2433 "memory at %s, halting search."),
2434 pulongest (search_buf_size), hex_string (start_addr));
2435 do_cleanups (old_cleanups);
2439 /* Perform the search.
2441 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2442 When we've scanned N bytes we copy the trailing bytes to the start and
2443 read in another N bytes. */
2445 while (search_space_len >= pattern_len)
2447 gdb_byte *found_ptr;
2448 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2450 found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2451 pattern, pattern_len);
2453 if (found_ptr != NULL)
2455 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2457 *found_addrp = found_addr;
2458 do_cleanups (old_cleanups);
2462 /* Not found in this chunk, skip to next chunk. */
2464 /* Don't let search_space_len wrap here, it's unsigned. */
2465 if (search_space_len >= chunk_size)
2466 search_space_len -= chunk_size;
2468 search_space_len = 0;
2470 if (search_space_len >= pattern_len)
2472 unsigned keep_len = search_buf_size - chunk_size;
2473 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2476 /* Copy the trailing part of the previous iteration to the front
2477 of the buffer for the next iteration. */
2478 gdb_assert (keep_len == pattern_len - 1);
2479 memcpy (search_buf, search_buf + chunk_size, keep_len);
2481 nr_to_read = min (search_space_len - keep_len, chunk_size);
2483 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2484 search_buf + keep_len, read_addr,
2485 nr_to_read) != nr_to_read)
2487 warning (_("Unable to access %s bytes of target "
2488 "memory at %s, halting search."),
2489 plongest (nr_to_read),
2490 hex_string (read_addr));
2491 do_cleanups (old_cleanups);
2495 start_addr += chunk_size;
2501 do_cleanups (old_cleanups);
2505 /* Default implementation of memory-searching. */
2508 default_search_memory (struct target_ops *self,
2509 CORE_ADDR start_addr, ULONGEST search_space_len,
2510 const gdb_byte *pattern, ULONGEST pattern_len,
2511 CORE_ADDR *found_addrp)
2513 /* Start over from the top of the target stack. */
2514 return simple_search_memory (current_target.beneath,
2515 start_addr, search_space_len,
2516 pattern, pattern_len, found_addrp);
2519 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2520 sequence of bytes in PATTERN with length PATTERN_LEN.
2522 The result is 1 if found, 0 if not found, and -1 if there was an error
2523 requiring halting of the search (e.g. memory read error).
2524 If the pattern is found the address is recorded in FOUND_ADDRP. */
2527 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2528 const gdb_byte *pattern, ULONGEST pattern_len,
2529 CORE_ADDR *found_addrp)
2531 return current_target.to_search_memory (¤t_target, start_addr,
2533 pattern, pattern_len, found_addrp);
2536 /* Look through the currently pushed targets. If none of them will
2537 be able to restart the currently running process, issue an error
2541 target_require_runnable (void)
2543 struct target_ops *t;
2545 for (t = target_stack; t != NULL; t = t->beneath)
2547 /* If this target knows how to create a new program, then
2548 assume we will still be able to after killing the current
2549 one. Either killing and mourning will not pop T, or else
2550 find_default_run_target will find it again. */
2551 if (t->to_create_inferior != NULL)
2554 /* Do not worry about targets at certain strata that can not
2555 create inferiors. Assume they will be pushed again if
2556 necessary, and continue to the process_stratum. */
2557 if (t->to_stratum == thread_stratum
2558 || t->to_stratum == record_stratum
2559 || t->to_stratum == arch_stratum)
2562 error (_("The \"%s\" target does not support \"run\". "
2563 "Try \"help target\" or \"continue\"."),
2567 /* This function is only called if the target is running. In that
2568 case there should have been a process_stratum target and it
2569 should either know how to create inferiors, or not... */
2570 internal_error (__FILE__, __LINE__, _("No targets found"));
2573 /* Whether GDB is allowed to fall back to the default run target for
2574 "run", "attach", etc. when no target is connected yet. */
2575 static int auto_connect_native_target = 1;
2578 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2579 struct cmd_list_element *c, const char *value)
2581 fprintf_filtered (file,
2582 _("Whether GDB may automatically connect to the "
2583 "native target is %s.\n"),
2587 /* Look through the list of possible targets for a target that can
2588 execute a run or attach command without any other data. This is
2589 used to locate the default process stratum.
2591 If DO_MESG is not NULL, the result is always valid (error() is
2592 called for errors); else, return NULL on error. */
2594 static struct target_ops *
2595 find_default_run_target (char *do_mesg)
2597 struct target_ops *runable = NULL;
2599 if (auto_connect_native_target)
2601 struct target_ops *t;
2605 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2607 if (t->to_can_run != delegate_can_run && target_can_run (t))
2618 if (runable == NULL)
2621 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2632 find_attach_target (void)
2634 struct target_ops *t;
2636 /* If a target on the current stack can attach, use it. */
2637 for (t = current_target.beneath; t != NULL; t = t->beneath)
2639 if (t->to_attach != NULL)
2643 /* Otherwise, use the default run target for attaching. */
2645 t = find_default_run_target ("attach");
2653 find_run_target (void)
2655 struct target_ops *t;
2657 /* If a target on the current stack can attach, use it. */
2658 for (t = current_target.beneath; t != NULL; t = t->beneath)
2660 if (t->to_create_inferior != NULL)
2664 /* Otherwise, use the default run target. */
2666 t = find_default_run_target ("run");
2671 /* Implement the "info proc" command. */
2674 target_info_proc (const char *args, enum info_proc_what what)
2676 struct target_ops *t;
2678 /* If we're already connected to something that can get us OS
2679 related data, use it. Otherwise, try using the native
2681 if (current_target.to_stratum >= process_stratum)
2682 t = current_target.beneath;
2684 t = find_default_run_target (NULL);
2686 for (; t != NULL; t = t->beneath)
2688 if (t->to_info_proc != NULL)
2690 t->to_info_proc (t, args, what);
2693 fprintf_unfiltered (gdb_stdlog,
2694 "target_info_proc (\"%s\", %d)\n", args, what);
2704 find_default_supports_disable_randomization (struct target_ops *self)
2706 struct target_ops *t;
2708 t = find_default_run_target (NULL);
2709 if (t && t->to_supports_disable_randomization)
2710 return (t->to_supports_disable_randomization) (t);
2715 target_supports_disable_randomization (void)
2717 struct target_ops *t;
2719 for (t = ¤t_target; t != NULL; t = t->beneath)
2720 if (t->to_supports_disable_randomization)
2721 return t->to_supports_disable_randomization (t);
2727 target_get_osdata (const char *type)
2729 struct target_ops *t;
2731 /* If we're already connected to something that can get us OS
2732 related data, use it. Otherwise, try using the native
2734 if (current_target.to_stratum >= process_stratum)
2735 t = current_target.beneath;
2737 t = find_default_run_target ("get OS data");
2742 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2745 static struct address_space *
2746 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2748 struct inferior *inf;
2750 /* Fall-back to the "main" address space of the inferior. */
2751 inf = find_inferior_ptid (ptid);
2753 if (inf == NULL || inf->aspace == NULL)
2754 internal_error (__FILE__, __LINE__,
2755 _("Can't determine the current "
2756 "address space of thread %s\n"),
2757 target_pid_to_str (ptid));
2762 /* Determine the current address space of thread PTID. */
2764 struct address_space *
2765 target_thread_address_space (ptid_t ptid)
2767 struct address_space *aspace;
2769 aspace = current_target.to_thread_address_space (¤t_target, ptid);
2770 gdb_assert (aspace != NULL);
2776 /* Target file operations. */
2778 static struct target_ops *
2779 default_fileio_target (void)
2781 /* If we're already connected to something that can perform
2782 file I/O, use it. Otherwise, try using the native target. */
2783 if (current_target.to_stratum >= process_stratum)
2784 return current_target.beneath;
2786 return find_default_run_target ("file I/O");
2789 /* File handle for target file operations. */
2793 /* The target on which this file is open. */
2794 struct target_ops *t;
2796 /* The file descriptor on the target. */
2800 DEF_VEC_O (fileio_fh_t);
2802 /* Vector of currently open file handles. The value returned by
2803 target_fileio_open and passed as the FD argument to other
2804 target_fileio_* functions is an index into this vector. This
2805 vector's entries are never freed; instead, files are marked as
2806 closed, and the handle becomes available for reuse. */
2807 static VEC (fileio_fh_t) *fileio_fhandles;
2809 /* Macro to check whether a fileio_fh_t represents a closed file. */
2810 #define is_closed_fileio_fh(fd) ((fd) < 0)
2812 /* Index into fileio_fhandles of the lowest handle that might be
2813 closed. This permits handle reuse without searching the whole
2814 list each time a new file is opened. */
2815 static int lowest_closed_fd;
2817 /* Acquire a target fileio file descriptor. */
2820 acquire_fileio_fd (struct target_ops *t, int fd)
2824 gdb_assert (!is_closed_fileio_fh (fd));
2826 /* Search for closed handles to reuse. */
2828 VEC_iterate (fileio_fh_t, fileio_fhandles,
2829 lowest_closed_fd, fh);
2831 if (is_closed_fileio_fh (fh->fd))
2834 /* Push a new handle if no closed handles were found. */
2835 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2836 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2838 /* Fill in the handle. */
2842 /* Return its index, and start the next lookup at
2844 return lowest_closed_fd++;
2847 /* Release a target fileio file descriptor. */
2850 release_fileio_fd (int fd, fileio_fh_t *fh)
2853 lowest_closed_fd = min (lowest_closed_fd, fd);
2856 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2858 #define fileio_fd_to_fh(fd) \
2859 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2861 /* Helper for target_fileio_open and
2862 target_fileio_open_warn_if_slow. */
2865 target_fileio_open_1 (struct inferior *inf, const char *filename,
2866 int flags, int mode, int warn_if_slow,
2869 struct target_ops *t;
2871 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2873 if (t->to_fileio_open != NULL)
2875 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2876 warn_if_slow, target_errno);
2881 fd = acquire_fileio_fd (t, fd);
2884 fprintf_unfiltered (gdb_stdlog,
2885 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2887 inf == NULL ? 0 : inf->num,
2888 filename, flags, mode,
2890 fd != -1 ? 0 : *target_errno);
2895 *target_errno = FILEIO_ENOSYS;
2902 target_fileio_open (struct inferior *inf, const char *filename,
2903 int flags, int mode, int *target_errno)
2905 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2912 target_fileio_open_warn_if_slow (struct inferior *inf,
2913 const char *filename,
2914 int flags, int mode, int *target_errno)
2916 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2923 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2924 ULONGEST offset, int *target_errno)
2926 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2929 if (is_closed_fileio_fh (fh->fd))
2930 *target_errno = EBADF;
2932 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2933 len, offset, target_errno);
2936 fprintf_unfiltered (gdb_stdlog,
2937 "target_fileio_pwrite (%d,...,%d,%s) "
2939 fd, len, pulongest (offset),
2940 ret, ret != -1 ? 0 : *target_errno);
2947 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2948 ULONGEST offset, int *target_errno)
2950 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2953 if (is_closed_fileio_fh (fh->fd))
2954 *target_errno = EBADF;
2956 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2957 len, offset, target_errno);
2960 fprintf_unfiltered (gdb_stdlog,
2961 "target_fileio_pread (%d,...,%d,%s) "
2963 fd, len, pulongest (offset),
2964 ret, ret != -1 ? 0 : *target_errno);
2971 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2973 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2976 if (is_closed_fileio_fh (fh->fd))
2977 *target_errno = EBADF;
2979 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2982 fprintf_unfiltered (gdb_stdlog,
2983 "target_fileio_fstat (%d) = %d (%d)\n",
2984 fd, ret, ret != -1 ? 0 : *target_errno);
2991 target_fileio_close (int fd, int *target_errno)
2993 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2996 if (is_closed_fileio_fh (fh->fd))
2997 *target_errno = EBADF;
3000 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
3001 release_fileio_fd (fd, fh);
3005 fprintf_unfiltered (gdb_stdlog,
3006 "target_fileio_close (%d) = %d (%d)\n",
3007 fd, ret, ret != -1 ? 0 : *target_errno);
3014 target_fileio_unlink (struct inferior *inf, const char *filename,
3017 struct target_ops *t;
3019 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3021 if (t->to_fileio_unlink != NULL)
3023 int ret = t->to_fileio_unlink (t, inf, filename,
3027 fprintf_unfiltered (gdb_stdlog,
3028 "target_fileio_unlink (%d,%s)"
3030 inf == NULL ? 0 : inf->num, filename,
3031 ret, ret != -1 ? 0 : *target_errno);
3036 *target_errno = FILEIO_ENOSYS;
3043 target_fileio_readlink (struct inferior *inf, const char *filename,
3046 struct target_ops *t;
3048 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3050 if (t->to_fileio_readlink != NULL)
3052 char *ret = t->to_fileio_readlink (t, inf, filename,
3056 fprintf_unfiltered (gdb_stdlog,
3057 "target_fileio_readlink (%d,%s)"
3059 inf == NULL ? 0 : inf->num,
3060 filename, ret? ret : "(nil)",
3061 ret? 0 : *target_errno);
3066 *target_errno = FILEIO_ENOSYS;
3071 target_fileio_close_cleanup (void *opaque)
3073 int fd = *(int *) opaque;
3076 target_fileio_close (fd, &target_errno);
3079 /* Read target file FILENAME, in the filesystem as seen by INF. If
3080 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3081 remote targets, the remote stub). Store the result in *BUF_P and
3082 return the size of the transferred data. PADDING additional bytes
3083 are available in *BUF_P. This is a helper function for
3084 target_fileio_read_alloc; see the declaration of that function for
3085 more information. */
3088 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3089 gdb_byte **buf_p, int padding)
3091 struct cleanup *close_cleanup;
3092 size_t buf_alloc, buf_pos;
3098 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3103 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3105 /* Start by reading up to 4K at a time. The target will throttle
3106 this number down if necessary. */
3108 buf = (gdb_byte *) xmalloc (buf_alloc);
3112 n = target_fileio_pread (fd, &buf[buf_pos],
3113 buf_alloc - buf_pos - padding, buf_pos,
3117 /* An error occurred. */
3118 do_cleanups (close_cleanup);
3124 /* Read all there was. */
3125 do_cleanups (close_cleanup);
3135 /* If the buffer is filling up, expand it. */
3136 if (buf_alloc < buf_pos * 2)
3139 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3149 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3152 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3158 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3162 LONGEST i, transferred;
3164 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3165 bufstr = (char *) buffer;
3167 if (transferred < 0)
3170 if (transferred == 0)
3171 return xstrdup ("");
3173 bufstr[transferred] = 0;
3175 /* Check for embedded NUL bytes; but allow trailing NULs. */
3176 for (i = strlen (bufstr); i < transferred; i++)
3179 warning (_("target file %s "
3180 "contained unexpected null characters"),
3190 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3191 CORE_ADDR addr, int len)
3193 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3197 default_watchpoint_addr_within_range (struct target_ops *target,
3199 CORE_ADDR start, int length)
3201 return addr >= start && addr < start + length;
3204 static struct gdbarch *
3205 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3207 return target_gdbarch ();
3211 return_zero (struct target_ops *ignore)
3217 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3223 * Find the next target down the stack from the specified target.
3227 find_target_beneath (struct target_ops *t)
3235 find_target_at (enum strata stratum)
3237 struct target_ops *t;
3239 for (t = current_target.beneath; t != NULL; t = t->beneath)
3240 if (t->to_stratum == stratum)
3247 /* The inferior process has died. Long live the inferior! */
3250 generic_mourn_inferior (void)
3254 ptid = inferior_ptid;
3255 inferior_ptid = null_ptid;
3257 /* Mark breakpoints uninserted in case something tries to delete a
3258 breakpoint while we delete the inferior's threads (which would
3259 fail, since the inferior is long gone). */
3260 mark_breakpoints_out ();
3262 if (!ptid_equal (ptid, null_ptid))
3264 int pid = ptid_get_pid (ptid);
3265 exit_inferior (pid);
3268 /* Note this wipes step-resume breakpoints, so needs to be done
3269 after exit_inferior, which ends up referencing the step-resume
3270 breakpoints through clear_thread_inferior_resources. */
3271 breakpoint_init_inferior (inf_exited);
3273 registers_changed ();
3275 reopen_exec_file ();
3276 reinit_frame_cache ();
3278 if (deprecated_detach_hook)
3279 deprecated_detach_hook ();
3282 /* Convert a normal process ID to a string. Returns the string in a
3286 normal_pid_to_str (ptid_t ptid)
3288 static char buf[32];
3290 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3295 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3297 return normal_pid_to_str (ptid);
3300 /* Error-catcher for target_find_memory_regions. */
3302 dummy_find_memory_regions (struct target_ops *self,
3303 find_memory_region_ftype ignore1, void *ignore2)
3305 error (_("Command not implemented for this target."));
3309 /* Error-catcher for target_make_corefile_notes. */
3311 dummy_make_corefile_notes (struct target_ops *self,
3312 bfd *ignore1, int *ignore2)
3314 error (_("Command not implemented for this target."));
3318 /* Set up the handful of non-empty slots needed by the dummy target
3322 init_dummy_target (void)
3324 dummy_target.to_shortname = "None";
3325 dummy_target.to_longname = "None";
3326 dummy_target.to_doc = "";
3327 dummy_target.to_supports_disable_randomization
3328 = find_default_supports_disable_randomization;
3329 dummy_target.to_stratum = dummy_stratum;
3330 dummy_target.to_has_all_memory = return_zero;
3331 dummy_target.to_has_memory = return_zero;
3332 dummy_target.to_has_stack = return_zero;
3333 dummy_target.to_has_registers = return_zero;
3334 dummy_target.to_has_execution = return_zero_has_execution;
3335 dummy_target.to_magic = OPS_MAGIC;
3337 install_dummy_methods (&dummy_target);
3342 target_close (struct target_ops *targ)
3344 gdb_assert (!target_is_pushed (targ));
3346 if (targ->to_xclose != NULL)
3347 targ->to_xclose (targ);
3348 else if (targ->to_close != NULL)
3349 targ->to_close (targ);
3352 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3356 target_thread_alive (ptid_t ptid)
3358 return current_target.to_thread_alive (¤t_target, ptid);
3362 target_update_thread_list (void)
3364 current_target.to_update_thread_list (¤t_target);
3368 target_stop (ptid_t ptid)
3372 warning (_("May not interrupt or stop the target, ignoring attempt"));
3376 (*current_target.to_stop) (¤t_target, ptid);
3380 target_interrupt (ptid_t ptid)
3384 warning (_("May not interrupt or stop the target, ignoring attempt"));
3388 (*current_target.to_interrupt) (¤t_target, ptid);
3394 target_pass_ctrlc (void)
3396 (*current_target.to_pass_ctrlc) (¤t_target);
3402 default_target_pass_ctrlc (struct target_ops *ops)
3404 target_interrupt (inferior_ptid);
3407 /* See target/target.h. */
3410 target_stop_and_wait (ptid_t ptid)
3412 struct target_waitstatus status;
3413 int was_non_stop = non_stop;
3418 memset (&status, 0, sizeof (status));
3419 target_wait (ptid, &status, 0);
3421 non_stop = was_non_stop;
3424 /* See target/target.h. */
3427 target_continue_no_signal (ptid_t ptid)
3429 target_resume (ptid, 0, GDB_SIGNAL_0);
3432 /* Concatenate ELEM to LIST, a comma separate list, and return the
3433 result. The LIST incoming argument is released. */
3436 str_comma_list_concat_elem (char *list, const char *elem)
3439 return xstrdup (elem);
3441 return reconcat (list, list, ", ", elem, (char *) NULL);
3444 /* Helper for target_options_to_string. If OPT is present in
3445 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3446 Returns the new resulting string. OPT is removed from
3450 do_option (int *target_options, char *ret,
3451 int opt, char *opt_str)
3453 if ((*target_options & opt) != 0)
3455 ret = str_comma_list_concat_elem (ret, opt_str);
3456 *target_options &= ~opt;
3463 target_options_to_string (int target_options)
3467 #define DO_TARG_OPTION(OPT) \
3468 ret = do_option (&target_options, ret, OPT, #OPT)
3470 DO_TARG_OPTION (TARGET_WNOHANG);
3472 if (target_options != 0)
3473 ret = str_comma_list_concat_elem (ret, "unknown???");
3481 debug_print_register (const char * func,
3482 struct regcache *regcache, int regno)
3484 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3486 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3487 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3488 && gdbarch_register_name (gdbarch, regno) != NULL
3489 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3490 fprintf_unfiltered (gdb_stdlog, "(%s)",
3491 gdbarch_register_name (gdbarch, regno));
3493 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3494 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3496 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3497 int i, size = register_size (gdbarch, regno);
3498 gdb_byte buf[MAX_REGISTER_SIZE];
3500 regcache_raw_collect (regcache, regno, buf);
3501 fprintf_unfiltered (gdb_stdlog, " = ");
3502 for (i = 0; i < size; i++)
3504 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3506 if (size <= sizeof (LONGEST))
3508 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3510 fprintf_unfiltered (gdb_stdlog, " %s %s",
3511 core_addr_to_string_nz (val), plongest (val));
3514 fprintf_unfiltered (gdb_stdlog, "\n");
3518 target_fetch_registers (struct regcache *regcache, int regno)
3520 current_target.to_fetch_registers (¤t_target, regcache, regno);
3522 debug_print_register ("target_fetch_registers", regcache, regno);
3526 target_store_registers (struct regcache *regcache, int regno)
3528 if (!may_write_registers)
3529 error (_("Writing to registers is not allowed (regno %d)"), regno);
3531 current_target.to_store_registers (¤t_target, regcache, regno);
3534 debug_print_register ("target_store_registers", regcache, regno);
3539 target_core_of_thread (ptid_t ptid)
3541 return current_target.to_core_of_thread (¤t_target, ptid);
3545 simple_verify_memory (struct target_ops *ops,
3546 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3548 LONGEST total_xfered = 0;
3550 while (total_xfered < size)
3552 ULONGEST xfered_len;
3553 enum target_xfer_status status;
3555 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3557 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3558 buf, NULL, lma + total_xfered, howmuch,
3560 if (status == TARGET_XFER_OK
3561 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3563 total_xfered += xfered_len;
3572 /* Default implementation of memory verification. */
3575 default_verify_memory (struct target_ops *self,
3576 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3578 /* Start over from the top of the target stack. */
3579 return simple_verify_memory (current_target.beneath,
3580 data, memaddr, size);
3584 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3586 return current_target.to_verify_memory (¤t_target,
3587 data, memaddr, size);
3590 /* The documentation for this function is in its prototype declaration in
3594 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3595 enum target_hw_bp_type rw)
3597 return current_target.to_insert_mask_watchpoint (¤t_target,
3601 /* The documentation for this function is in its prototype declaration in
3605 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3606 enum target_hw_bp_type rw)
3608 return current_target.to_remove_mask_watchpoint (¤t_target,
3612 /* The documentation for this function is in its prototype declaration
3616 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3618 return current_target.to_masked_watch_num_registers (¤t_target,
3622 /* The documentation for this function is in its prototype declaration
3626 target_ranged_break_num_registers (void)
3628 return current_target.to_ranged_break_num_registers (¤t_target);
3634 target_supports_btrace (enum btrace_format format)
3636 return current_target.to_supports_btrace (¤t_target, format);
3641 struct btrace_target_info *
3642 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3644 return current_target.to_enable_btrace (¤t_target, ptid, conf);
3650 target_disable_btrace (struct btrace_target_info *btinfo)
3652 current_target.to_disable_btrace (¤t_target, btinfo);
3658 target_teardown_btrace (struct btrace_target_info *btinfo)
3660 current_target.to_teardown_btrace (¤t_target, btinfo);
3666 target_read_btrace (struct btrace_data *btrace,
3667 struct btrace_target_info *btinfo,
3668 enum btrace_read_type type)
3670 return current_target.to_read_btrace (¤t_target, btrace, btinfo, type);
3675 const struct btrace_config *
3676 target_btrace_conf (const struct btrace_target_info *btinfo)
3678 return current_target.to_btrace_conf (¤t_target, btinfo);
3684 target_stop_recording (void)
3686 current_target.to_stop_recording (¤t_target);
3692 target_save_record (const char *filename)
3694 current_target.to_save_record (¤t_target, filename);
3700 target_supports_delete_record (void)
3702 struct target_ops *t;
3704 for (t = current_target.beneath; t != NULL; t = t->beneath)
3705 if (t->to_delete_record != delegate_delete_record
3706 && t->to_delete_record != tdefault_delete_record)
3715 target_delete_record (void)
3717 current_target.to_delete_record (¤t_target);
3723 target_record_is_replaying (ptid_t ptid)
3725 return current_target.to_record_is_replaying (¤t_target, ptid);
3731 target_record_will_replay (ptid_t ptid, int dir)
3733 return current_target.to_record_will_replay (¤t_target, ptid, dir);
3739 target_record_stop_replaying (void)
3741 current_target.to_record_stop_replaying (¤t_target);
3747 target_goto_record_begin (void)
3749 current_target.to_goto_record_begin (¤t_target);
3755 target_goto_record_end (void)
3757 current_target.to_goto_record_end (¤t_target);
3763 target_goto_record (ULONGEST insn)
3765 current_target.to_goto_record (¤t_target, insn);
3771 target_insn_history (int size, int flags)
3773 current_target.to_insn_history (¤t_target, size, flags);
3779 target_insn_history_from (ULONGEST from, int size, int flags)
3781 current_target.to_insn_history_from (¤t_target, from, size, flags);
3787 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3789 current_target.to_insn_history_range (¤t_target, begin, end, flags);
3795 target_call_history (int size, int flags)
3797 current_target.to_call_history (¤t_target, size, flags);
3803 target_call_history_from (ULONGEST begin, int size, int flags)
3805 current_target.to_call_history_from (¤t_target, begin, size, flags);
3811 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3813 current_target.to_call_history_range (¤t_target, begin, end, flags);
3818 const struct frame_unwind *
3819 target_get_unwinder (void)
3821 return current_target.to_get_unwinder (¤t_target);
3826 const struct frame_unwind *
3827 target_get_tailcall_unwinder (void)
3829 return current_target.to_get_tailcall_unwinder (¤t_target);
3835 target_prepare_to_generate_core (void)
3837 current_target.to_prepare_to_generate_core (¤t_target);
3843 target_done_generating_core (void)
3845 current_target.to_done_generating_core (¤t_target);
3849 setup_target_debug (void)
3851 memcpy (&debug_target, ¤t_target, sizeof debug_target);
3853 init_debug_target (¤t_target);
3857 static char targ_desc[] =
3858 "Names of targets and files being debugged.\nShows the entire \
3859 stack of targets currently in use (including the exec-file,\n\
3860 core-file, and process, if any), as well as the symbol file name.";
3863 default_rcmd (struct target_ops *self, const char *command,
3864 struct ui_file *output)
3866 error (_("\"monitor\" command not supported by this target."));
3870 do_monitor_command (char *cmd,
3873 target_rcmd (cmd, gdb_stdtarg);
3876 /* Print the name of each layers of our target stack. */
3879 maintenance_print_target_stack (char *cmd, int from_tty)
3881 struct target_ops *t;
3883 printf_filtered (_("The current target stack is:\n"));
3885 for (t = target_stack; t != NULL; t = t->beneath)
3887 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3894 target_async (int enable)
3896 infrun_async (enable);
3897 current_target.to_async (¤t_target, enable);
3903 target_thread_events (int enable)
3905 current_target.to_thread_events (¤t_target, enable);
3908 /* Controls if targets can report that they can/are async. This is
3909 just for maintainers to use when debugging gdb. */
3910 int target_async_permitted = 1;
3912 /* The set command writes to this variable. If the inferior is
3913 executing, target_async_permitted is *not* updated. */
3914 static int target_async_permitted_1 = 1;
3917 maint_set_target_async_command (char *args, int from_tty,
3918 struct cmd_list_element *c)
3920 if (have_live_inferiors ())
3922 target_async_permitted_1 = target_async_permitted;
3923 error (_("Cannot change this setting while the inferior is running."));
3926 target_async_permitted = target_async_permitted_1;
3930 maint_show_target_async_command (struct ui_file *file, int from_tty,
3931 struct cmd_list_element *c,
3934 fprintf_filtered (file,
3935 _("Controlling the inferior in "
3936 "asynchronous mode is %s.\n"), value);
3939 /* Return true if the target operates in non-stop mode even with "set
3943 target_always_non_stop_p (void)
3945 return current_target.to_always_non_stop_p (¤t_target);
3951 target_is_non_stop_p (void)
3954 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3955 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3956 && target_always_non_stop_p ()));
3959 /* Controls if targets can report that they always run in non-stop
3960 mode. This is just for maintainers to use when debugging gdb. */
3961 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3963 /* The set command writes to this variable. If the inferior is
3964 executing, target_non_stop_enabled is *not* updated. */
3965 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3967 /* Implementation of "maint set target-non-stop". */
3970 maint_set_target_non_stop_command (char *args, int from_tty,
3971 struct cmd_list_element *c)
3973 if (have_live_inferiors ())
3975 target_non_stop_enabled_1 = target_non_stop_enabled;
3976 error (_("Cannot change this setting while the inferior is running."));
3979 target_non_stop_enabled = target_non_stop_enabled_1;
3982 /* Implementation of "maint show target-non-stop". */
3985 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3986 struct cmd_list_element *c,
3989 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3990 fprintf_filtered (file,
3991 _("Whether the target is always in non-stop mode "
3992 "is %s (currently %s).\n"), value,
3993 target_always_non_stop_p () ? "on" : "off");
3995 fprintf_filtered (file,
3996 _("Whether the target is always in non-stop mode "
3997 "is %s.\n"), value);
4000 /* Temporary copies of permission settings. */
4002 static int may_write_registers_1 = 1;
4003 static int may_write_memory_1 = 1;
4004 static int may_insert_breakpoints_1 = 1;
4005 static int may_insert_tracepoints_1 = 1;
4006 static int may_insert_fast_tracepoints_1 = 1;
4007 static int may_stop_1 = 1;
4009 /* Make the user-set values match the real values again. */
4012 update_target_permissions (void)
4014 may_write_registers_1 = may_write_registers;
4015 may_write_memory_1 = may_write_memory;
4016 may_insert_breakpoints_1 = may_insert_breakpoints;
4017 may_insert_tracepoints_1 = may_insert_tracepoints;
4018 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4019 may_stop_1 = may_stop;
4022 /* The one function handles (most of) the permission flags in the same
4026 set_target_permissions (char *args, int from_tty,
4027 struct cmd_list_element *c)
4029 if (target_has_execution)
4031 update_target_permissions ();
4032 error (_("Cannot change this setting while the inferior is running."));
4035 /* Make the real values match the user-changed values. */
4036 may_write_registers = may_write_registers_1;
4037 may_insert_breakpoints = may_insert_breakpoints_1;
4038 may_insert_tracepoints = may_insert_tracepoints_1;
4039 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4040 may_stop = may_stop_1;
4041 update_observer_mode ();
4044 /* Set memory write permission independently of observer mode. */
4047 set_write_memory_permission (char *args, int from_tty,
4048 struct cmd_list_element *c)
4050 /* Make the real values match the user-changed values. */
4051 may_write_memory = may_write_memory_1;
4052 update_observer_mode ();
4057 initialize_targets (void)
4059 init_dummy_target ();
4060 push_target (&dummy_target);
4062 add_info ("target", target_info, targ_desc);
4063 add_info ("files", target_info, targ_desc);
4065 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4066 Set target debugging."), _("\
4067 Show target debugging."), _("\
4068 When non-zero, target debugging is enabled. Higher numbers are more\n\
4072 &setdebuglist, &showdebuglist);
4074 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4075 &trust_readonly, _("\
4076 Set mode for reading from readonly sections."), _("\
4077 Show mode for reading from readonly sections."), _("\
4078 When this mode is on, memory reads from readonly sections (such as .text)\n\
4079 will be read from the object file instead of from the target. This will\n\
4080 result in significant performance improvement for remote targets."),
4082 show_trust_readonly,
4083 &setlist, &showlist);
4085 add_com ("monitor", class_obscure, do_monitor_command,
4086 _("Send a command to the remote monitor (remote targets only)."));
4088 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4089 _("Print the name of each layer of the internal target stack."),
4090 &maintenanceprintlist);
4092 add_setshow_boolean_cmd ("target-async", no_class,
4093 &target_async_permitted_1, _("\
4094 Set whether gdb controls the inferior in asynchronous mode."), _("\
4095 Show whether gdb controls the inferior in asynchronous mode."), _("\
4096 Tells gdb whether to control the inferior in asynchronous mode."),
4097 maint_set_target_async_command,
4098 maint_show_target_async_command,
4099 &maintenance_set_cmdlist,
4100 &maintenance_show_cmdlist);
4102 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4103 &target_non_stop_enabled_1, _("\
4104 Set whether gdb always controls the inferior in non-stop mode."), _("\
4105 Show whether gdb always controls the inferior in non-stop mode."), _("\
4106 Tells gdb whether to control the inferior in non-stop mode."),
4107 maint_set_target_non_stop_command,
4108 maint_show_target_non_stop_command,
4109 &maintenance_set_cmdlist,
4110 &maintenance_show_cmdlist);
4112 add_setshow_boolean_cmd ("may-write-registers", class_support,
4113 &may_write_registers_1, _("\
4114 Set permission to write into registers."), _("\
4115 Show permission to write into registers."), _("\
4116 When this permission is on, GDB may write into the target's registers.\n\
4117 Otherwise, any sort of write attempt will result in an error."),
4118 set_target_permissions, NULL,
4119 &setlist, &showlist);
4121 add_setshow_boolean_cmd ("may-write-memory", class_support,
4122 &may_write_memory_1, _("\
4123 Set permission to write into target memory."), _("\
4124 Show permission to write into target memory."), _("\
4125 When this permission is on, GDB may write into the target's memory.\n\
4126 Otherwise, any sort of write attempt will result in an error."),
4127 set_write_memory_permission, NULL,
4128 &setlist, &showlist);
4130 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4131 &may_insert_breakpoints_1, _("\
4132 Set permission to insert breakpoints in the target."), _("\
4133 Show permission to insert breakpoints in the target."), _("\
4134 When this permission is on, GDB may insert breakpoints in the program.\n\
4135 Otherwise, any sort of insertion attempt will result in an error."),
4136 set_target_permissions, NULL,
4137 &setlist, &showlist);
4139 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4140 &may_insert_tracepoints_1, _("\
4141 Set permission to insert tracepoints in the target."), _("\
4142 Show permission to insert tracepoints in the target."), _("\
4143 When this permission is on, GDB may insert tracepoints in the program.\n\
4144 Otherwise, any sort of insertion attempt will result in an error."),
4145 set_target_permissions, NULL,
4146 &setlist, &showlist);
4148 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4149 &may_insert_fast_tracepoints_1, _("\
4150 Set permission to insert fast tracepoints in the target."), _("\
4151 Show permission to insert fast tracepoints in the target."), _("\
4152 When this permission is on, GDB may insert fast tracepoints.\n\
4153 Otherwise, any sort of insertion attempt will result in an error."),
4154 set_target_permissions, NULL,
4155 &setlist, &showlist);
4157 add_setshow_boolean_cmd ("may-interrupt", class_support,
4159 Set permission to interrupt or signal the target."), _("\
4160 Show permission to interrupt or signal the target."), _("\
4161 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4162 Otherwise, any attempt to interrupt or stop will be ignored."),
4163 set_target_permissions, NULL,
4164 &setlist, &showlist);
4166 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4167 &auto_connect_native_target, _("\
4168 Set whether GDB may automatically connect to the native target."), _("\
4169 Show whether GDB may automatically connect to the native target."), _("\
4170 When on, and GDB is not connected to a target yet, GDB\n\
4171 attempts \"run\" and other commands with the native target."),
4172 NULL, show_auto_connect_native_target,
4173 &setlist, &showlist);