1 /* Select target systems and architectures at runtime for GDB.
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
5 Contributed by Cygnus Support.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "target-dcache.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "common/agent.h"
45 #include "target-debug.h"
47 #include "event-top.h"
49 #include "common/byte-vector.h"
51 #include <unordered_map>
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
55 static void default_terminal_info (struct target_ops *, const char *, int);
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
68 static int default_follow_fork (struct target_ops *self, int follow_child,
71 static void default_mourn_inferior (struct target_ops *self);
73 static int default_search_memory (struct target_ops *ops,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
78 CORE_ADDR *found_addrp);
80 static int default_verify_memory (struct target_ops *self,
82 CORE_ADDR memaddr, ULONGEST size);
84 static void tcomplain (void) ATTRIBUTE_NORETURN;
86 static struct target_ops *find_default_run_target (const char *);
88 static int dummy_find_memory_regions (struct target_ops *self,
89 find_memory_region_ftype ignore1,
92 static char *dummy_make_corefile_notes (struct target_ops *self,
93 bfd *ignore1, int *ignore2);
95 static std::string default_pid_to_str (struct target_ops *ops, ptid_t ptid);
97 static enum exec_direction_kind default_execution_direction
98 (struct target_ops *self);
100 /* Mapping between target_info objects (which have address identity)
101 and corresponding open/factory function/callback. Each add_target
102 call adds one entry to this map, and registers a "target
103 TARGET_NAME" command that when invoked calls the factory registered
104 here. The target_info object is associated with the command via
105 the command's context. */
106 static std::unordered_map<const target_info *, target_open_ftype *>
109 /* The singleton debug target. */
111 static struct target_ops *the_debug_target;
113 /* The target stack. */
115 static target_stack g_target_stack;
117 /* Top of target stack. */
118 /* The target structure we are currently using to talk to a process
119 or file or whatever "inferior" we have. */
122 current_top_target ()
124 return g_target_stack.top ();
127 /* Command list for target. */
129 static struct cmd_list_element *targetlist = NULL;
131 /* Nonzero if we should trust readonly sections from the
132 executable when reading memory. */
134 static int trust_readonly = 0;
136 /* Nonzero if we should show true memory content including
137 memory breakpoint inserted by gdb. */
139 static int show_memory_breakpoints = 0;
141 /* These globals control whether GDB attempts to perform these
142 operations; they are useful for targets that need to prevent
143 inadvertant disruption, such as in non-stop mode. */
145 int may_write_registers = 1;
147 int may_write_memory = 1;
149 int may_insert_breakpoints = 1;
151 int may_insert_tracepoints = 1;
153 int may_insert_fast_tracepoints = 1;
157 /* Non-zero if we want to see trace of target level stuff. */
159 static unsigned int targetdebug = 0;
162 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
165 push_target (the_debug_target);
167 unpush_target (the_debug_target);
171 show_targetdebug (struct ui_file *file, int from_tty,
172 struct cmd_list_element *c, const char *value)
174 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
177 /* The user just typed 'target' without the name of a target. */
180 target_command (const char *arg, int from_tty)
182 fputs_filtered ("Argument required (target name). Try `help target'\n",
187 target_has_all_memory_1 (void)
189 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
190 if (t->has_all_memory ())
197 target_has_memory_1 (void)
199 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
200 if (t->has_memory ())
207 target_has_stack_1 (void)
209 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
217 target_has_registers_1 (void)
219 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
220 if (t->has_registers ())
227 target_has_execution_1 (ptid_t the_ptid)
229 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
230 if (t->has_execution (the_ptid))
237 target_has_execution_current (void)
239 return target_has_execution_1 (inferior_ptid);
242 /* This is used to implement the various target commands. */
245 open_target (const char *args, int from_tty, struct cmd_list_element *command)
247 auto *ti = static_cast<target_info *> (get_cmd_context (command));
248 target_open_ftype *func = target_factories[ti];
251 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
254 func (args, from_tty);
257 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
258 ti->shortname, args, from_tty);
264 add_target (const target_info &t, target_open_ftype *func,
265 completer_ftype *completer)
267 struct cmd_list_element *c;
269 auto &func_slot = target_factories[&t];
270 if (func_slot != nullptr)
271 internal_error (__FILE__, __LINE__,
272 _("target already added (\"%s\")."), t.shortname);
275 if (targetlist == NULL)
276 add_prefix_cmd ("target", class_run, target_command, _("\
277 Connect to a target machine or process.\n\
278 The first argument is the type or protocol of the target machine.\n\
279 Remaining arguments are interpreted by the target protocol. For more\n\
280 information on the arguments for a particular protocol, type\n\
281 `help target ' followed by the protocol name."),
282 &targetlist, "target ", 0, &cmdlist);
283 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
284 set_cmd_context (c, (void *) &t);
285 set_cmd_sfunc (c, open_target);
286 if (completer != NULL)
287 set_cmd_completer (c, completer);
293 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
295 struct cmd_list_element *c;
298 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
300 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
301 set_cmd_sfunc (c, open_target);
302 set_cmd_context (c, (void *) &tinfo);
303 alt = xstrprintf ("target %s", tinfo.shortname);
304 deprecate_cmd (c, alt);
312 current_top_target ()->kill ();
316 target_load (const char *arg, int from_tty)
318 target_dcache_invalidate ();
319 current_top_target ()->load (arg, from_tty);
324 target_terminal_state target_terminal::m_terminal_state
325 = target_terminal_state::is_ours;
327 /* See target/target.h. */
330 target_terminal::init (void)
332 current_top_target ()->terminal_init ();
334 m_terminal_state = target_terminal_state::is_ours;
337 /* See target/target.h. */
340 target_terminal::inferior (void)
342 struct ui *ui = current_ui;
344 /* A background resume (``run&'') should leave GDB in control of the
346 if (ui->prompt_state != PROMPT_BLOCKED)
349 /* Since we always run the inferior in the main console (unless "set
350 inferior-tty" is in effect), when some UI other than the main one
351 calls target_terminal::inferior, then we leave the main UI's
352 terminal settings as is. */
356 /* If GDB is resuming the inferior in the foreground, install
357 inferior's terminal modes. */
359 struct inferior *inf = current_inferior ();
361 if (inf->terminal_state != target_terminal_state::is_inferior)
363 current_top_target ()->terminal_inferior ();
364 inf->terminal_state = target_terminal_state::is_inferior;
367 m_terminal_state = target_terminal_state::is_inferior;
369 /* If the user hit C-c before, pretend that it was hit right
371 if (check_quit_flag ())
372 target_pass_ctrlc ();
375 /* See target/target.h. */
378 target_terminal::restore_inferior (void)
380 struct ui *ui = current_ui;
382 /* See target_terminal::inferior(). */
383 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
386 /* Restore the terminal settings of inferiors that were in the
387 foreground but are now ours_for_output due to a temporary
388 target_target::ours_for_output() call. */
391 scoped_restore_current_inferior restore_inferior;
393 for (::inferior *inf : all_inferiors ())
395 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
397 set_current_inferior (inf);
398 current_top_target ()->terminal_inferior ();
399 inf->terminal_state = target_terminal_state::is_inferior;
404 m_terminal_state = target_terminal_state::is_inferior;
406 /* If the user hit C-c before, pretend that it was hit right
408 if (check_quit_flag ())
409 target_pass_ctrlc ();
412 /* Switch terminal state to DESIRED_STATE, either is_ours, or
413 is_ours_for_output. */
416 target_terminal_is_ours_kind (target_terminal_state desired_state)
418 scoped_restore_current_inferior restore_inferior;
420 /* Must do this in two passes. First, have all inferiors save the
421 current terminal settings. Then, after all inferiors have add a
422 chance to safely save the terminal settings, restore GDB's
423 terminal settings. */
425 for (inferior *inf : all_inferiors ())
427 if (inf->terminal_state == target_terminal_state::is_inferior)
429 set_current_inferior (inf);
430 current_top_target ()->terminal_save_inferior ();
434 for (inferior *inf : all_inferiors ())
436 /* Note we don't check is_inferior here like above because we
437 need to handle 'is_ours_for_output -> is_ours' too. Careful
438 to never transition from 'is_ours' to 'is_ours_for_output',
440 if (inf->terminal_state != target_terminal_state::is_ours
441 && inf->terminal_state != desired_state)
443 set_current_inferior (inf);
444 if (desired_state == target_terminal_state::is_ours)
445 current_top_target ()->terminal_ours ();
446 else if (desired_state == target_terminal_state::is_ours_for_output)
447 current_top_target ()->terminal_ours_for_output ();
449 gdb_assert_not_reached ("unhandled desired state");
450 inf->terminal_state = desired_state;
455 /* See target/target.h. */
458 target_terminal::ours ()
460 struct ui *ui = current_ui;
462 /* See target_terminal::inferior. */
466 if (m_terminal_state == target_terminal_state::is_ours)
469 target_terminal_is_ours_kind (target_terminal_state::is_ours);
470 m_terminal_state = target_terminal_state::is_ours;
473 /* See target/target.h. */
476 target_terminal::ours_for_output ()
478 struct ui *ui = current_ui;
480 /* See target_terminal::inferior. */
484 if (!target_terminal::is_inferior ())
487 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
488 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
491 /* See target/target.h. */
494 target_terminal::info (const char *arg, int from_tty)
496 current_top_target ()->terminal_info (arg, from_tty);
502 target_supports_terminal_ours (void)
504 /* This can be called before there is any target, so we must check
506 target_ops *top = current_top_target ();
510 return top->supports_terminal_ours ();
516 error (_("You can't do that when your target is `%s'"),
517 current_top_target ()->shortname ());
523 error (_("You can't do that without a process to debug."));
527 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
529 printf_unfiltered (_("No saved terminal information.\n"));
532 /* A default implementation for the to_get_ada_task_ptid target method.
534 This function builds the PTID by using both LWP and TID as part of
535 the PTID lwp and tid elements. The pid used is the pid of the
539 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
541 return ptid_t (inferior_ptid.pid (), lwp, tid);
544 static enum exec_direction_kind
545 default_execution_direction (struct target_ops *self)
547 if (!target_can_execute_reverse)
549 else if (!target_can_async_p ())
552 gdb_assert_not_reached ("\
553 to_execution_direction must be implemented for reverse async");
559 target_stack::push (target_ops *t)
561 /* If there's already a target at this stratum, remove it. */
562 strata stratum = t->stratum ();
564 if (m_stack[stratum] != NULL)
566 target_ops *prev = m_stack[stratum];
567 m_stack[stratum] = NULL;
571 /* Now add the new one. */
572 m_stack[stratum] = t;
581 push_target (struct target_ops *t)
583 g_target_stack.push (t);
589 push_target (target_ops_up &&t)
591 g_target_stack.push (t.get ());
598 unpush_target (struct target_ops *t)
600 return g_target_stack.unpush (t);
606 target_stack::unpush (target_ops *t)
608 gdb_assert (t != NULL);
610 strata stratum = t->stratum ();
612 if (stratum == dummy_stratum)
613 internal_error (__FILE__, __LINE__,
614 _("Attempt to unpush the dummy target"));
616 /* Look for the specified target. Note that a target can only occur
617 once in the target stack. */
619 if (m_stack[stratum] != t)
621 /* If T wasn't pushed, quit. Only open targets should be
626 /* Unchain the target. */
627 m_stack[stratum] = NULL;
629 if (m_top == stratum)
630 m_top = t->beneath ()->stratum ();
632 /* Finally close the target. Note we do this after unchaining, so
633 any target method calls from within the target_close
634 implementation don't end up in T anymore. */
640 /* Unpush TARGET and assert that it worked. */
643 unpush_target_and_assert (struct target_ops *target)
645 if (!unpush_target (target))
647 fprintf_unfiltered (gdb_stderr,
648 "pop_all_targets couldn't find target %s\n",
649 target->shortname ());
650 internal_error (__FILE__, __LINE__,
651 _("failed internal consistency check"));
656 pop_all_targets_above (enum strata above_stratum)
658 while ((int) (current_top_target ()->stratum ()) > (int) above_stratum)
659 unpush_target_and_assert (current_top_target ());
665 pop_all_targets_at_and_above (enum strata stratum)
667 while ((int) (current_top_target ()->stratum ()) >= (int) stratum)
668 unpush_target_and_assert (current_top_target ());
672 pop_all_targets (void)
674 pop_all_targets_above (dummy_stratum);
677 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
680 target_is_pushed (struct target_ops *t)
682 return g_target_stack.is_pushed (t);
685 /* Default implementation of to_get_thread_local_address. */
688 generic_tls_error (void)
690 throw_error (TLS_GENERIC_ERROR,
691 _("Cannot find thread-local variables on this target"));
694 /* Using the objfile specified in OBJFILE, find the address for the
695 current thread's thread-local storage with offset OFFSET. */
697 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
699 volatile CORE_ADDR addr = 0;
700 struct target_ops *target = current_top_target ();
701 struct gdbarch *gdbarch = target_gdbarch ();
703 if (gdbarch_fetch_tls_load_module_address_p (gdbarch))
705 ptid_t ptid = inferior_ptid;
711 /* Fetch the load module address for this objfile. */
712 lm_addr = gdbarch_fetch_tls_load_module_address (gdbarch,
715 if (gdbarch_get_thread_local_address_p (gdbarch))
716 addr = gdbarch_get_thread_local_address (gdbarch, ptid, lm_addr,
719 addr = target->get_thread_local_address (ptid, lm_addr, offset);
721 /* If an error occurred, print TLS related messages here. Otherwise,
722 throw the error to some higher catcher. */
723 CATCH (ex, RETURN_MASK_ALL)
725 int objfile_is_library = (objfile->flags & OBJF_SHARED);
729 case TLS_NO_LIBRARY_SUPPORT_ERROR:
730 error (_("Cannot find thread-local variables "
731 "in this thread library."));
733 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
734 if (objfile_is_library)
735 error (_("Cannot find shared library `%s' in dynamic"
736 " linker's load module list"), objfile_name (objfile));
738 error (_("Cannot find executable file `%s' in dynamic"
739 " linker's load module list"), objfile_name (objfile));
741 case TLS_NOT_ALLOCATED_YET_ERROR:
742 if (objfile_is_library)
743 error (_("The inferior has not yet allocated storage for"
744 " thread-local variables in\n"
745 "the shared library `%s'\n"
747 objfile_name (objfile),
748 target_pid_to_str (ptid).c_str ());
750 error (_("The inferior has not yet allocated storage for"
751 " thread-local variables in\n"
752 "the executable `%s'\n"
754 objfile_name (objfile),
755 target_pid_to_str (ptid).c_str ());
757 case TLS_GENERIC_ERROR:
758 if (objfile_is_library)
759 error (_("Cannot find thread-local storage for %s, "
760 "shared library %s:\n%s"),
761 target_pid_to_str (ptid).c_str (),
762 objfile_name (objfile), ex.message);
764 error (_("Cannot find thread-local storage for %s, "
765 "executable file %s:\n%s"),
766 target_pid_to_str (ptid).c_str (),
767 objfile_name (objfile), ex.message);
770 throw_exception (ex);
777 error (_("Cannot find thread-local variables on this target"));
783 target_xfer_status_to_string (enum target_xfer_status status)
785 #define CASE(X) case X: return #X
788 CASE(TARGET_XFER_E_IO);
789 CASE(TARGET_XFER_UNAVAILABLE);
798 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
800 /* target_read_string -- read a null terminated string, up to LEN bytes,
801 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
802 Set *STRING to a pointer to malloc'd memory containing the data; the caller
803 is responsible for freeing it. Return the number of bytes successfully
807 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
808 int len, int *errnop)
814 int buffer_allocated;
816 unsigned int nbytes_read = 0;
820 /* Small for testing. */
821 buffer_allocated = 4;
822 buffer = (char *) xmalloc (buffer_allocated);
827 tlen = MIN (len, 4 - (memaddr & 3));
828 offset = memaddr & 3;
830 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
833 /* The transfer request might have crossed the boundary to an
834 unallocated region of memory. Retry the transfer, requesting
838 errcode = target_read_memory (memaddr, buf, 1);
843 if (bufptr - buffer + tlen > buffer_allocated)
847 bytes = bufptr - buffer;
848 buffer_allocated *= 2;
849 buffer = (char *) xrealloc (buffer, buffer_allocated);
850 bufptr = buffer + bytes;
853 for (i = 0; i < tlen; i++)
855 *bufptr++ = buf[i + offset];
856 if (buf[i + offset] == '\000')
858 nbytes_read += i + 1;
868 string->reset (buffer);
874 struct target_section_table *
875 target_get_section_table (struct target_ops *target)
877 return target->get_section_table ();
880 /* Find a section containing ADDR. */
882 struct target_section *
883 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
885 struct target_section_table *table = target_get_section_table (target);
886 struct target_section *secp;
891 for (secp = table->sections; secp < table->sections_end; secp++)
893 if (addr >= secp->addr && addr < secp->endaddr)
900 /* Helper for the memory xfer routines. Checks the attributes of the
901 memory region of MEMADDR against the read or write being attempted.
902 If the access is permitted returns true, otherwise returns false.
903 REGION_P is an optional output parameter. If not-NULL, it is
904 filled with a pointer to the memory region of MEMADDR. REG_LEN
905 returns LEN trimmed to the end of the region. This is how much the
906 caller can continue requesting, if the access is permitted. A
907 single xfer request must not straddle memory region boundaries. */
910 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
911 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
912 struct mem_region **region_p)
914 struct mem_region *region;
916 region = lookup_mem_region (memaddr);
918 if (region_p != NULL)
921 switch (region->attrib.mode)
924 if (writebuf != NULL)
934 /* We only support writing to flash during "load" for now. */
935 if (writebuf != NULL)
936 error (_("Writing to flash memory forbidden in this context"));
943 /* region->hi == 0 means there's no upper bound. */
944 if (memaddr + len < region->hi || region->hi == 0)
947 *reg_len = region->hi - memaddr;
952 /* Read memory from more than one valid target. A core file, for
953 instance, could have some of memory but delegate other bits to
954 the target below it. So, we must manually try all targets. */
956 enum target_xfer_status
957 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
958 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
959 ULONGEST *xfered_len)
961 enum target_xfer_status res;
965 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
966 readbuf, writebuf, memaddr, len,
968 if (res == TARGET_XFER_OK)
971 /* Stop if the target reports that the memory is not available. */
972 if (res == TARGET_XFER_UNAVAILABLE)
975 /* We want to continue past core files to executables, but not
976 past a running target's memory. */
977 if (ops->has_all_memory ())
980 ops = ops->beneath ();
984 /* The cache works at the raw memory level. Make sure the cache
985 gets updated with raw contents no matter what kind of memory
986 object was originally being written. Note we do write-through
987 first, so that if it fails, we don't write to the cache contents
988 that never made it to the target. */
990 && inferior_ptid != null_ptid
991 && target_dcache_init_p ()
992 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
994 DCACHE *dcache = target_dcache_get ();
996 /* Note that writing to an area of memory which wasn't present
997 in the cache doesn't cause it to be loaded in. */
998 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1004 /* Perform a partial memory transfer.
1005 For docs see target.h, to_xfer_partial. */
1007 static enum target_xfer_status
1008 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1009 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1010 ULONGEST len, ULONGEST *xfered_len)
1012 enum target_xfer_status res;
1014 struct mem_region *region;
1015 struct inferior *inf;
1017 /* For accesses to unmapped overlay sections, read directly from
1018 files. Must do this first, as MEMADDR may need adjustment. */
1019 if (readbuf != NULL && overlay_debugging)
1021 struct obj_section *section = find_pc_overlay (memaddr);
1023 if (pc_in_unmapped_range (memaddr, section))
1025 struct target_section_table *table
1026 = target_get_section_table (ops);
1027 const char *section_name = section->the_bfd_section->name;
1029 memaddr = overlay_mapped_address (memaddr, section);
1030 return section_table_xfer_memory_partial (readbuf, writebuf,
1031 memaddr, len, xfered_len,
1033 table->sections_end,
1038 /* Try the executable files, if "trust-readonly-sections" is set. */
1039 if (readbuf != NULL && trust_readonly)
1041 struct target_section *secp;
1042 struct target_section_table *table;
1044 secp = target_section_by_addr (ops, memaddr);
1046 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1047 secp->the_bfd_section)
1050 table = target_get_section_table (ops);
1051 return section_table_xfer_memory_partial (readbuf, writebuf,
1052 memaddr, len, xfered_len,
1054 table->sections_end,
1059 /* Try GDB's internal data cache. */
1061 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, ®_len,
1063 return TARGET_XFER_E_IO;
1065 if (inferior_ptid != null_ptid)
1066 inf = current_inferior ();
1072 /* The dcache reads whole cache lines; that doesn't play well
1073 with reading from a trace buffer, because reading outside of
1074 the collected memory range fails. */
1075 && get_traceframe_number () == -1
1076 && (region->attrib.cache
1077 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1078 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1080 DCACHE *dcache = target_dcache_get_or_init ();
1082 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1083 reg_len, xfered_len);
1086 /* If none of those methods found the memory we wanted, fall back
1087 to a target partial transfer. Normally a single call to
1088 to_xfer_partial is enough; if it doesn't recognize an object
1089 it will call the to_xfer_partial of the next target down.
1090 But for memory this won't do. Memory is the only target
1091 object which can be read from more than one valid target.
1092 A core file, for instance, could have some of memory but
1093 delegate other bits to the target below it. So, we must
1094 manually try all targets. */
1096 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1099 /* If we still haven't got anything, return the last error. We
1104 /* Perform a partial memory transfer. For docs see target.h,
1107 static enum target_xfer_status
1108 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1109 gdb_byte *readbuf, const gdb_byte *writebuf,
1110 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1112 enum target_xfer_status res;
1114 /* Zero length requests are ok and require no work. */
1116 return TARGET_XFER_EOF;
1118 memaddr = address_significant (target_gdbarch (), memaddr);
1120 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1121 breakpoint insns, thus hiding out from higher layers whether
1122 there are software breakpoints inserted in the code stream. */
1123 if (readbuf != NULL)
1125 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1128 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1129 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1133 /* A large write request is likely to be partially satisfied
1134 by memory_xfer_partial_1. We will continually malloc
1135 and free a copy of the entire write request for breakpoint
1136 shadow handling even though we only end up writing a small
1137 subset of it. Cap writes to a limit specified by the target
1138 to mitigate this. */
1139 len = std::min (ops->get_memory_xfer_limit (), len);
1141 gdb::byte_vector buf (writebuf, writebuf + len);
1142 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1143 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1150 scoped_restore_tmpl<int>
1151 make_scoped_restore_show_memory_breakpoints (int show)
1153 return make_scoped_restore (&show_memory_breakpoints, show);
1156 /* For docs see target.h, to_xfer_partial. */
1158 enum target_xfer_status
1159 target_xfer_partial (struct target_ops *ops,
1160 enum target_object object, const char *annex,
1161 gdb_byte *readbuf, const gdb_byte *writebuf,
1162 ULONGEST offset, ULONGEST len,
1163 ULONGEST *xfered_len)
1165 enum target_xfer_status retval;
1167 /* Transfer is done when LEN is zero. */
1169 return TARGET_XFER_EOF;
1171 if (writebuf && !may_write_memory)
1172 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1173 core_addr_to_string_nz (offset), plongest (len));
1177 /* If this is a memory transfer, let the memory-specific code
1178 have a look at it instead. Memory transfers are more
1180 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1181 || object == TARGET_OBJECT_CODE_MEMORY)
1182 retval = memory_xfer_partial (ops, object, readbuf,
1183 writebuf, offset, len, xfered_len);
1184 else if (object == TARGET_OBJECT_RAW_MEMORY)
1186 /* Skip/avoid accessing the target if the memory region
1187 attributes block the access. Check this here instead of in
1188 raw_memory_xfer_partial as otherwise we'd end up checking
1189 this twice in the case of the memory_xfer_partial path is
1190 taken; once before checking the dcache, and another in the
1191 tail call to raw_memory_xfer_partial. */
1192 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1194 return TARGET_XFER_E_IO;
1196 /* Request the normal memory object from other layers. */
1197 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1201 retval = ops->xfer_partial (object, annex, readbuf,
1202 writebuf, offset, len, xfered_len);
1206 const unsigned char *myaddr = NULL;
1208 fprintf_unfiltered (gdb_stdlog,
1209 "%s:target_xfer_partial "
1210 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1213 (annex ? annex : "(null)"),
1214 host_address_to_string (readbuf),
1215 host_address_to_string (writebuf),
1216 core_addr_to_string_nz (offset),
1217 pulongest (len), retval,
1218 pulongest (*xfered_len));
1224 if (retval == TARGET_XFER_OK && myaddr != NULL)
1228 fputs_unfiltered (", bytes =", gdb_stdlog);
1229 for (i = 0; i < *xfered_len; i++)
1231 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1233 if (targetdebug < 2 && i > 0)
1235 fprintf_unfiltered (gdb_stdlog, " ...");
1238 fprintf_unfiltered (gdb_stdlog, "\n");
1241 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1245 fputc_unfiltered ('\n', gdb_stdlog);
1248 /* Check implementations of to_xfer_partial update *XFERED_LEN
1249 properly. Do assertion after printing debug messages, so that we
1250 can find more clues on assertion failure from debugging messages. */
1251 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1252 gdb_assert (*xfered_len > 0);
1257 /* Read LEN bytes of target memory at address MEMADDR, placing the
1258 results in GDB's memory at MYADDR. Returns either 0 for success or
1259 -1 if any error occurs.
1261 If an error occurs, no guarantee is made about the contents of the data at
1262 MYADDR. In particular, the caller should not depend upon partial reads
1263 filling the buffer with good data. There is no way for the caller to know
1264 how much good data might have been transfered anyway. Callers that can
1265 deal with partial reads should call target_read (which will retry until
1266 it makes no progress, and then return how much was transferred). */
1269 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1271 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1272 myaddr, memaddr, len) == len)
1278 /* See target/target.h. */
1281 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1286 r = target_read_memory (memaddr, buf, sizeof buf);
1289 *result = extract_unsigned_integer (buf, sizeof buf,
1290 gdbarch_byte_order (target_gdbarch ()));
1294 /* Like target_read_memory, but specify explicitly that this is a read
1295 from the target's raw memory. That is, this read bypasses the
1296 dcache, breakpoint shadowing, etc. */
1299 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1301 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1302 myaddr, memaddr, len) == len)
1308 /* Like target_read_memory, but specify explicitly that this is a read from
1309 the target's stack. This may trigger different cache behavior. */
1312 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1314 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1315 myaddr, memaddr, len) == len)
1321 /* Like target_read_memory, but specify explicitly that this is a read from
1322 the target's code. This may trigger different cache behavior. */
1325 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1327 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1328 myaddr, memaddr, len) == len)
1334 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1335 Returns either 0 for success or -1 if any error occurs. If an
1336 error occurs, no guarantee is made about how much data got written.
1337 Callers that can deal with partial writes should call
1341 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1343 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1344 myaddr, memaddr, len) == len)
1350 /* Write LEN bytes from MYADDR to target raw memory at address
1351 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1352 If an error occurs, no guarantee is made about how much data got
1353 written. Callers that can deal with partial writes should call
1357 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1359 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1360 myaddr, memaddr, len) == len)
1366 /* Fetch the target's memory map. */
1368 std::vector<mem_region>
1369 target_memory_map (void)
1371 std::vector<mem_region> result = current_top_target ()->memory_map ();
1372 if (result.empty ())
1375 std::sort (result.begin (), result.end ());
1377 /* Check that regions do not overlap. Simultaneously assign
1378 a numbering for the "mem" commands to use to refer to
1380 mem_region *last_one = NULL;
1381 for (size_t ix = 0; ix < result.size (); ix++)
1383 mem_region *this_one = &result[ix];
1384 this_one->number = ix;
1386 if (last_one != NULL && last_one->hi > this_one->lo)
1388 warning (_("Overlapping regions in memory map: ignoring"));
1389 return std::vector<mem_region> ();
1392 last_one = this_one;
1399 target_flash_erase (ULONGEST address, LONGEST length)
1401 current_top_target ()->flash_erase (address, length);
1405 target_flash_done (void)
1407 current_top_target ()->flash_done ();
1411 show_trust_readonly (struct ui_file *file, int from_tty,
1412 struct cmd_list_element *c, const char *value)
1414 fprintf_filtered (file,
1415 _("Mode for reading from readonly sections is %s.\n"),
1419 /* Target vector read/write partial wrapper functions. */
1421 static enum target_xfer_status
1422 target_read_partial (struct target_ops *ops,
1423 enum target_object object,
1424 const char *annex, gdb_byte *buf,
1425 ULONGEST offset, ULONGEST len,
1426 ULONGEST *xfered_len)
1428 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1432 static enum target_xfer_status
1433 target_write_partial (struct target_ops *ops,
1434 enum target_object object,
1435 const char *annex, const gdb_byte *buf,
1436 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1438 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1442 /* Wrappers to perform the full transfer. */
1444 /* For docs on target_read see target.h. */
1447 target_read (struct target_ops *ops,
1448 enum target_object object,
1449 const char *annex, gdb_byte *buf,
1450 ULONGEST offset, LONGEST len)
1452 LONGEST xfered_total = 0;
1455 /* If we are reading from a memory object, find the length of an addressable
1456 unit for that architecture. */
1457 if (object == TARGET_OBJECT_MEMORY
1458 || object == TARGET_OBJECT_STACK_MEMORY
1459 || object == TARGET_OBJECT_CODE_MEMORY
1460 || object == TARGET_OBJECT_RAW_MEMORY)
1461 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1463 while (xfered_total < len)
1465 ULONGEST xfered_partial;
1466 enum target_xfer_status status;
1468 status = target_read_partial (ops, object, annex,
1469 buf + xfered_total * unit_size,
1470 offset + xfered_total, len - xfered_total,
1473 /* Call an observer, notifying them of the xfer progress? */
1474 if (status == TARGET_XFER_EOF)
1475 return xfered_total;
1476 else if (status == TARGET_XFER_OK)
1478 xfered_total += xfered_partial;
1482 return TARGET_XFER_E_IO;
1488 /* Assuming that the entire [begin, end) range of memory cannot be
1489 read, try to read whatever subrange is possible to read.
1491 The function returns, in RESULT, either zero or one memory block.
1492 If there's a readable subrange at the beginning, it is completely
1493 read and returned. Any further readable subrange will not be read.
1494 Otherwise, if there's a readable subrange at the end, it will be
1495 completely read and returned. Any readable subranges before it
1496 (obviously, not starting at the beginning), will be ignored. In
1497 other cases -- either no readable subrange, or readable subrange(s)
1498 that is neither at the beginning, or end, nothing is returned.
1500 The purpose of this function is to handle a read across a boundary
1501 of accessible memory in a case when memory map is not available.
1502 The above restrictions are fine for this case, but will give
1503 incorrect results if the memory is 'patchy'. However, supporting
1504 'patchy' memory would require trying to read every single byte,
1505 and it seems unacceptable solution. Explicit memory map is
1506 recommended for this case -- and target_read_memory_robust will
1507 take care of reading multiple ranges then. */
1510 read_whatever_is_readable (struct target_ops *ops,
1511 const ULONGEST begin, const ULONGEST end,
1513 std::vector<memory_read_result> *result)
1515 ULONGEST current_begin = begin;
1516 ULONGEST current_end = end;
1518 ULONGEST xfered_len;
1520 /* If we previously failed to read 1 byte, nothing can be done here. */
1521 if (end - begin <= 1)
1524 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1526 /* Check that either first or the last byte is readable, and give up
1527 if not. This heuristic is meant to permit reading accessible memory
1528 at the boundary of accessible region. */
1529 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1530 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1535 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1536 buf.get () + (end - begin) - 1, end - 1, 1,
1537 &xfered_len) == TARGET_XFER_OK)
1545 /* Loop invariant is that the [current_begin, current_end) was previously
1546 found to be not readable as a whole.
1548 Note loop condition -- if the range has 1 byte, we can't divide the range
1549 so there's no point trying further. */
1550 while (current_end - current_begin > 1)
1552 ULONGEST first_half_begin, first_half_end;
1553 ULONGEST second_half_begin, second_half_end;
1555 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1559 first_half_begin = current_begin;
1560 first_half_end = middle;
1561 second_half_begin = middle;
1562 second_half_end = current_end;
1566 first_half_begin = middle;
1567 first_half_end = current_end;
1568 second_half_begin = current_begin;
1569 second_half_end = middle;
1572 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1573 buf.get () + (first_half_begin - begin) * unit_size,
1575 first_half_end - first_half_begin);
1577 if (xfer == first_half_end - first_half_begin)
1579 /* This half reads up fine. So, the error must be in the
1581 current_begin = second_half_begin;
1582 current_end = second_half_end;
1586 /* This half is not readable. Because we've tried one byte, we
1587 know some part of this half if actually readable. Go to the next
1588 iteration to divide again and try to read.
1590 We don't handle the other half, because this function only tries
1591 to read a single readable subrange. */
1592 current_begin = first_half_begin;
1593 current_end = first_half_end;
1599 /* The [begin, current_begin) range has been read. */
1600 result->emplace_back (begin, current_end, std::move (buf));
1604 /* The [current_end, end) range has been read. */
1605 LONGEST region_len = end - current_end;
1607 gdb::unique_xmalloc_ptr<gdb_byte> data
1608 ((gdb_byte *) xmalloc (region_len * unit_size));
1609 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1610 region_len * unit_size);
1611 result->emplace_back (current_end, end, std::move (data));
1615 std::vector<memory_read_result>
1616 read_memory_robust (struct target_ops *ops,
1617 const ULONGEST offset, const LONGEST len)
1619 std::vector<memory_read_result> result;
1620 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1622 LONGEST xfered_total = 0;
1623 while (xfered_total < len)
1625 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1628 /* If there is no explicit region, a fake one should be created. */
1629 gdb_assert (region);
1631 if (region->hi == 0)
1632 region_len = len - xfered_total;
1634 region_len = region->hi - offset;
1636 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1638 /* Cannot read this region. Note that we can end up here only
1639 if the region is explicitly marked inaccessible, or
1640 'inaccessible-by-default' is in effect. */
1641 xfered_total += region_len;
1645 LONGEST to_read = std::min (len - xfered_total, region_len);
1646 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1647 ((gdb_byte *) xmalloc (to_read * unit_size));
1649 LONGEST xfered_partial =
1650 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1651 offset + xfered_total, to_read);
1652 /* Call an observer, notifying them of the xfer progress? */
1653 if (xfered_partial <= 0)
1655 /* Got an error reading full chunk. See if maybe we can read
1657 read_whatever_is_readable (ops, offset + xfered_total,
1658 offset + xfered_total + to_read,
1659 unit_size, &result);
1660 xfered_total += to_read;
1664 result.emplace_back (offset + xfered_total,
1665 offset + xfered_total + xfered_partial,
1666 std::move (buffer));
1667 xfered_total += xfered_partial;
1677 /* An alternative to target_write with progress callbacks. */
1680 target_write_with_progress (struct target_ops *ops,
1681 enum target_object object,
1682 const char *annex, const gdb_byte *buf,
1683 ULONGEST offset, LONGEST len,
1684 void (*progress) (ULONGEST, void *), void *baton)
1686 LONGEST xfered_total = 0;
1689 /* If we are writing to a memory object, find the length of an addressable
1690 unit for that architecture. */
1691 if (object == TARGET_OBJECT_MEMORY
1692 || object == TARGET_OBJECT_STACK_MEMORY
1693 || object == TARGET_OBJECT_CODE_MEMORY
1694 || object == TARGET_OBJECT_RAW_MEMORY)
1695 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1697 /* Give the progress callback a chance to set up. */
1699 (*progress) (0, baton);
1701 while (xfered_total < len)
1703 ULONGEST xfered_partial;
1704 enum target_xfer_status status;
1706 status = target_write_partial (ops, object, annex,
1707 buf + xfered_total * unit_size,
1708 offset + xfered_total, len - xfered_total,
1711 if (status != TARGET_XFER_OK)
1712 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1715 (*progress) (xfered_partial, baton);
1717 xfered_total += xfered_partial;
1723 /* For docs on target_write see target.h. */
1726 target_write (struct target_ops *ops,
1727 enum target_object object,
1728 const char *annex, const gdb_byte *buf,
1729 ULONGEST offset, LONGEST len)
1731 return target_write_with_progress (ops, object, annex, buf, offset, len,
1735 /* Help for target_read_alloc and target_read_stralloc. See their comments
1738 template <typename T>
1739 gdb::optional<gdb::def_vector<T>>
1740 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1743 gdb::def_vector<T> buf;
1745 const int chunk = 4096;
1747 /* This function does not have a length parameter; it reads the
1748 entire OBJECT). Also, it doesn't support objects fetched partly
1749 from one target and partly from another (in a different stratum,
1750 e.g. a core file and an executable). Both reasons make it
1751 unsuitable for reading memory. */
1752 gdb_assert (object != TARGET_OBJECT_MEMORY);
1754 /* Start by reading up to 4K at a time. The target will throttle
1755 this number down if necessary. */
1758 ULONGEST xfered_len;
1759 enum target_xfer_status status;
1761 buf.resize (buf_pos + chunk);
1763 status = target_read_partial (ops, object, annex,
1764 (gdb_byte *) &buf[buf_pos],
1768 if (status == TARGET_XFER_EOF)
1770 /* Read all there was. */
1771 buf.resize (buf_pos);
1774 else if (status != TARGET_XFER_OK)
1776 /* An error occurred. */
1780 buf_pos += xfered_len;
1788 gdb::optional<gdb::byte_vector>
1789 target_read_alloc (struct target_ops *ops, enum target_object object,
1792 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1797 gdb::optional<gdb::char_vector>
1798 target_read_stralloc (struct target_ops *ops, enum target_object object,
1801 gdb::optional<gdb::char_vector> buf
1802 = target_read_alloc_1<char> (ops, object, annex);
1807 if (buf->empty () || buf->back () != '\0')
1808 buf->push_back ('\0');
1810 /* Check for embedded NUL bytes; but allow trailing NULs. */
1811 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1812 it != buf->end (); it++)
1815 warning (_("target object %d, annex %s, "
1816 "contained unexpected null characters"),
1817 (int) object, annex ? annex : "(none)");
1824 /* Memory transfer methods. */
1827 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1830 /* This method is used to read from an alternate, non-current
1831 target. This read must bypass the overlay support (as symbols
1832 don't match this target), and GDB's internal cache (wrong cache
1833 for this target). */
1834 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1836 memory_error (TARGET_XFER_E_IO, addr);
1840 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1841 int len, enum bfd_endian byte_order)
1843 gdb_byte buf[sizeof (ULONGEST)];
1845 gdb_assert (len <= sizeof (buf));
1846 get_target_memory (ops, addr, buf, len);
1847 return extract_unsigned_integer (buf, len, byte_order);
1853 target_insert_breakpoint (struct gdbarch *gdbarch,
1854 struct bp_target_info *bp_tgt)
1856 if (!may_insert_breakpoints)
1858 warning (_("May not insert breakpoints"));
1862 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1868 target_remove_breakpoint (struct gdbarch *gdbarch,
1869 struct bp_target_info *bp_tgt,
1870 enum remove_bp_reason reason)
1872 /* This is kind of a weird case to handle, but the permission might
1873 have been changed after breakpoints were inserted - in which case
1874 we should just take the user literally and assume that any
1875 breakpoints should be left in place. */
1876 if (!may_insert_breakpoints)
1878 warning (_("May not remove breakpoints"));
1882 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1886 info_target_command (const char *args, int from_tty)
1888 int has_all_mem = 0;
1890 if (symfile_objfile != NULL)
1891 printf_unfiltered (_("Symbols from \"%s\".\n"),
1892 objfile_name (symfile_objfile));
1894 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1896 if (!t->has_memory ())
1899 if ((int) (t->stratum ()) <= (int) dummy_stratum)
1902 printf_unfiltered (_("\tWhile running this, "
1903 "GDB does not access memory from...\n"));
1904 printf_unfiltered ("%s:\n", t->longname ());
1906 has_all_mem = t->has_all_memory ();
1910 /* This function is called before any new inferior is created, e.g.
1911 by running a program, attaching, or connecting to a target.
1912 It cleans up any state from previous invocations which might
1913 change between runs. This is a subset of what target_preopen
1914 resets (things which might change between targets). */
1917 target_pre_inferior (int from_tty)
1919 /* Clear out solib state. Otherwise the solib state of the previous
1920 inferior might have survived and is entirely wrong for the new
1921 target. This has been observed on GNU/Linux using glibc 2.3. How
1933 Cannot access memory at address 0xdeadbeef
1936 /* In some OSs, the shared library list is the same/global/shared
1937 across inferiors. If code is shared between processes, so are
1938 memory regions and features. */
1939 if (!gdbarch_has_global_solist (target_gdbarch ()))
1941 no_shared_libraries (NULL, from_tty);
1943 invalidate_target_mem_regions ();
1945 target_clear_description ();
1948 /* attach_flag may be set if the previous process associated with
1949 the inferior was attached to. */
1950 current_inferior ()->attach_flag = 0;
1952 current_inferior ()->highest_thread_num = 0;
1954 agent_capability_invalidate ();
1957 /* Callback for iterate_over_inferiors. Gets rid of the given
1961 dispose_inferior (struct inferior *inf, void *args)
1963 /* Not all killed inferiors can, or will ever be, removed from the
1964 inferior list. Killed inferiors clearly don't need to be killed
1965 again, so, we're done. */
1969 thread_info *thread = any_thread_of_inferior (inf);
1972 switch_to_thread (thread);
1974 /* Core inferiors actually should be detached, not killed. */
1975 if (target_has_execution)
1978 target_detach (inf, 0);
1984 /* This is to be called by the open routine before it does
1988 target_preopen (int from_tty)
1992 if (have_inferiors ())
1995 || !have_live_inferiors ()
1996 || query (_("A program is being debugged already. Kill it? ")))
1997 iterate_over_inferiors (dispose_inferior, NULL);
1999 error (_("Program not killed."));
2002 /* Calling target_kill may remove the target from the stack. But if
2003 it doesn't (which seems like a win for UDI), remove it now. */
2004 /* Leave the exec target, though. The user may be switching from a
2005 live process to a core of the same program. */
2006 pop_all_targets_above (file_stratum);
2008 target_pre_inferior (from_tty);
2014 target_detach (inferior *inf, int from_tty)
2016 /* After we have detached, we will clear the register cache for this inferior
2017 by calling registers_changed_ptid. We must save the pid_ptid before
2018 detaching, as the target detach method will clear inf->pid. */
2019 ptid_t save_pid_ptid = ptid_t (inf->pid);
2021 /* As long as some to_detach implementations rely on the current_inferior
2022 (either directly, or indirectly, like through target_gdbarch or by
2023 reading memory), INF needs to be the current inferior. When that
2024 requirement will become no longer true, then we can remove this
2026 gdb_assert (inf == current_inferior ());
2028 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2029 /* Don't remove global breakpoints here. They're removed on
2030 disconnection from the target. */
2033 /* If we're in breakpoints-always-inserted mode, have to remove
2034 breakpoints before detaching. */
2035 remove_breakpoints_inf (current_inferior ());
2037 prepare_for_detach ();
2039 current_top_target ()->detach (inf, from_tty);
2041 registers_changed_ptid (save_pid_ptid);
2043 /* We have to ensure we have no frame cache left. Normally,
2044 registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when
2045 inferior_ptid matches save_pid_ptid, but in our case, it does not
2046 call it, as inferior_ptid has been reset. */
2047 reinit_frame_cache ();
2051 target_disconnect (const char *args, int from_tty)
2053 /* If we're in breakpoints-always-inserted mode or if breakpoints
2054 are global across processes, we have to remove them before
2056 remove_breakpoints ();
2058 current_top_target ()->disconnect (args, from_tty);
2061 /* See target/target.h. */
2064 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2066 return current_top_target ()->wait (ptid, status, options);
2072 default_target_wait (struct target_ops *ops,
2073 ptid_t ptid, struct target_waitstatus *status,
2076 status->kind = TARGET_WAITKIND_IGNORE;
2077 return minus_one_ptid;
2081 target_pid_to_str (ptid_t ptid)
2083 return current_top_target ()->pid_to_str (ptid);
2087 target_thread_name (struct thread_info *info)
2089 return current_top_target ()->thread_name (info);
2092 struct thread_info *
2093 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2095 struct inferior *inf)
2097 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2102 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2104 target_dcache_invalidate ();
2106 current_top_target ()->resume (ptid, step, signal);
2108 registers_changed_ptid (ptid);
2109 /* We only set the internal executing state here. The user/frontend
2110 running state is set at a higher level. This also clears the
2111 thread's stop_pc as side effect. */
2112 set_executing (ptid, 1);
2113 clear_inline_frame_state (ptid);
2116 /* If true, target_commit_resume is a nop. */
2117 static int defer_target_commit_resume;
2122 target_commit_resume (void)
2124 if (defer_target_commit_resume)
2127 current_top_target ()->commit_resume ();
2132 scoped_restore_tmpl<int>
2133 make_scoped_defer_target_commit_resume ()
2135 return make_scoped_restore (&defer_target_commit_resume, 1);
2139 target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
2141 current_top_target ()->pass_signals (pass_signals);
2145 target_program_signals (gdb::array_view<const unsigned char> program_signals)
2147 current_top_target ()->program_signals (program_signals);
2151 default_follow_fork (struct target_ops *self, int follow_child,
2154 /* Some target returned a fork event, but did not know how to follow it. */
2155 internal_error (__FILE__, __LINE__,
2156 _("could not find a target to follow fork"));
2159 /* Look through the list of possible targets for a target that can
2163 target_follow_fork (int follow_child, int detach_fork)
2165 return current_top_target ()->follow_fork (follow_child, detach_fork);
2168 /* Target wrapper for follow exec hook. */
2171 target_follow_exec (struct inferior *inf, char *execd_pathname)
2173 current_top_target ()->follow_exec (inf, execd_pathname);
2177 default_mourn_inferior (struct target_ops *self)
2179 internal_error (__FILE__, __LINE__,
2180 _("could not find a target to follow mourn inferior"));
2184 target_mourn_inferior (ptid_t ptid)
2186 gdb_assert (ptid == inferior_ptid);
2187 current_top_target ()->mourn_inferior ();
2189 /* We no longer need to keep handles on any of the object files.
2190 Make sure to release them to avoid unnecessarily locking any
2191 of them while we're not actually debugging. */
2192 bfd_cache_close_all ();
2195 /* Look for a target which can describe architectural features, starting
2196 from TARGET. If we find one, return its description. */
2198 const struct target_desc *
2199 target_read_description (struct target_ops *target)
2201 return target->read_description ();
2204 /* This implements a basic search of memory, reading target memory and
2205 performing the search here (as opposed to performing the search in on the
2206 target side with, for example, gdbserver). */
2209 simple_search_memory (struct target_ops *ops,
2210 CORE_ADDR start_addr, ULONGEST search_space_len,
2211 const gdb_byte *pattern, ULONGEST pattern_len,
2212 CORE_ADDR *found_addrp)
2214 /* NOTE: also defined in find.c testcase. */
2215 #define SEARCH_CHUNK_SIZE 16000
2216 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2217 /* Buffer to hold memory contents for searching. */
2218 unsigned search_buf_size;
2220 search_buf_size = chunk_size + pattern_len - 1;
2222 /* No point in trying to allocate a buffer larger than the search space. */
2223 if (search_space_len < search_buf_size)
2224 search_buf_size = search_space_len;
2226 gdb::byte_vector search_buf (search_buf_size);
2228 /* Prime the search buffer. */
2230 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2231 search_buf.data (), start_addr, search_buf_size)
2234 warning (_("Unable to access %s bytes of target "
2235 "memory at %s, halting search."),
2236 pulongest (search_buf_size), hex_string (start_addr));
2240 /* Perform the search.
2242 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2243 When we've scanned N bytes we copy the trailing bytes to the start and
2244 read in another N bytes. */
2246 while (search_space_len >= pattern_len)
2248 gdb_byte *found_ptr;
2249 unsigned nr_search_bytes
2250 = std::min (search_space_len, (ULONGEST) search_buf_size);
2252 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2253 pattern, pattern_len);
2255 if (found_ptr != NULL)
2257 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2259 *found_addrp = found_addr;
2263 /* Not found in this chunk, skip to next chunk. */
2265 /* Don't let search_space_len wrap here, it's unsigned. */
2266 if (search_space_len >= chunk_size)
2267 search_space_len -= chunk_size;
2269 search_space_len = 0;
2271 if (search_space_len >= pattern_len)
2273 unsigned keep_len = search_buf_size - chunk_size;
2274 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2277 /* Copy the trailing part of the previous iteration to the front
2278 of the buffer for the next iteration. */
2279 gdb_assert (keep_len == pattern_len - 1);
2280 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2282 nr_to_read = std::min (search_space_len - keep_len,
2283 (ULONGEST) chunk_size);
2285 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2286 &search_buf[keep_len], read_addr,
2287 nr_to_read) != nr_to_read)
2289 warning (_("Unable to access %s bytes of target "
2290 "memory at %s, halting search."),
2291 plongest (nr_to_read),
2292 hex_string (read_addr));
2296 start_addr += chunk_size;
2305 /* Default implementation of memory-searching. */
2308 default_search_memory (struct target_ops *self,
2309 CORE_ADDR start_addr, ULONGEST search_space_len,
2310 const gdb_byte *pattern, ULONGEST pattern_len,
2311 CORE_ADDR *found_addrp)
2313 /* Start over from the top of the target stack. */
2314 return simple_search_memory (current_top_target (),
2315 start_addr, search_space_len,
2316 pattern, pattern_len, found_addrp);
2319 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2320 sequence of bytes in PATTERN with length PATTERN_LEN.
2322 The result is 1 if found, 0 if not found, and -1 if there was an error
2323 requiring halting of the search (e.g. memory read error).
2324 If the pattern is found the address is recorded in FOUND_ADDRP. */
2327 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2328 const gdb_byte *pattern, ULONGEST pattern_len,
2329 CORE_ADDR *found_addrp)
2331 return current_top_target ()->search_memory (start_addr, search_space_len,
2332 pattern, pattern_len, found_addrp);
2335 /* Look through the currently pushed targets. If none of them will
2336 be able to restart the currently running process, issue an error
2340 target_require_runnable (void)
2342 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2344 /* If this target knows how to create a new program, then
2345 assume we will still be able to after killing the current
2346 one. Either killing and mourning will not pop T, or else
2347 find_default_run_target will find it again. */
2348 if (t->can_create_inferior ())
2351 /* Do not worry about targets at certain strata that can not
2352 create inferiors. Assume they will be pushed again if
2353 necessary, and continue to the process_stratum. */
2354 if (t->stratum () > process_stratum)
2357 error (_("The \"%s\" target does not support \"run\". "
2358 "Try \"help target\" or \"continue\"."),
2362 /* This function is only called if the target is running. In that
2363 case there should have been a process_stratum target and it
2364 should either know how to create inferiors, or not... */
2365 internal_error (__FILE__, __LINE__, _("No targets found"));
2368 /* Whether GDB is allowed to fall back to the default run target for
2369 "run", "attach", etc. when no target is connected yet. */
2370 static int auto_connect_native_target = 1;
2373 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2374 struct cmd_list_element *c, const char *value)
2376 fprintf_filtered (file,
2377 _("Whether GDB may automatically connect to the "
2378 "native target is %s.\n"),
2382 /* A pointer to the target that can respond to "run" or "attach".
2383 Native targets are always singletons and instantiated early at GDB
2385 static target_ops *the_native_target;
2390 set_native_target (target_ops *target)
2392 if (the_native_target != NULL)
2393 internal_error (__FILE__, __LINE__,
2394 _("native target already set (\"%s\")."),
2395 the_native_target->longname ());
2397 the_native_target = target;
2403 get_native_target ()
2405 return the_native_target;
2408 /* Look through the list of possible targets for a target that can
2409 execute a run or attach command without any other data. This is
2410 used to locate the default process stratum.
2412 If DO_MESG is not NULL, the result is always valid (error() is
2413 called for errors); else, return NULL on error. */
2415 static struct target_ops *
2416 find_default_run_target (const char *do_mesg)
2418 if (auto_connect_native_target && the_native_target != NULL)
2419 return the_native_target;
2421 if (do_mesg != NULL)
2422 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2429 find_attach_target (void)
2431 /* If a target on the current stack can attach, use it. */
2432 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2434 if (t->can_attach ())
2438 /* Otherwise, use the default run target for attaching. */
2439 return find_default_run_target ("attach");
2445 find_run_target (void)
2447 /* If a target on the current stack can run, use it. */
2448 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2450 if (t->can_create_inferior ())
2454 /* Otherwise, use the default run target. */
2455 return find_default_run_target ("run");
2459 target_ops::info_proc (const char *args, enum info_proc_what what)
2464 /* Implement the "info proc" command. */
2467 target_info_proc (const char *args, enum info_proc_what what)
2469 struct target_ops *t;
2471 /* If we're already connected to something that can get us OS
2472 related data, use it. Otherwise, try using the native
2474 t = find_target_at (process_stratum);
2476 t = find_default_run_target (NULL);
2478 for (; t != NULL; t = t->beneath ())
2480 if (t->info_proc (args, what))
2483 fprintf_unfiltered (gdb_stdlog,
2484 "target_info_proc (\"%s\", %d)\n", args, what);
2494 find_default_supports_disable_randomization (struct target_ops *self)
2496 struct target_ops *t;
2498 t = find_default_run_target (NULL);
2500 return t->supports_disable_randomization ();
2505 target_supports_disable_randomization (void)
2507 return current_top_target ()->supports_disable_randomization ();
2510 /* See target/target.h. */
2513 target_supports_multi_process (void)
2515 return current_top_target ()->supports_multi_process ();
2520 gdb::optional<gdb::char_vector>
2521 target_get_osdata (const char *type)
2523 struct target_ops *t;
2525 /* If we're already connected to something that can get us OS
2526 related data, use it. Otherwise, try using the native
2528 t = find_target_at (process_stratum);
2530 t = find_default_run_target ("get OS data");
2535 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2539 /* Determine the current address space of thread PTID. */
2541 struct address_space *
2542 target_thread_address_space (ptid_t ptid)
2544 struct address_space *aspace;
2546 aspace = current_top_target ()->thread_address_space (ptid);
2547 gdb_assert (aspace != NULL);
2555 target_ops::beneath () const
2557 return g_target_stack.find_beneath (this);
2561 target_ops::close ()
2566 target_ops::can_attach ()
2572 target_ops::attach (const char *, int)
2574 gdb_assert_not_reached ("target_ops::attach called");
2578 target_ops::can_create_inferior ()
2584 target_ops::create_inferior (const char *, const std::string &,
2587 gdb_assert_not_reached ("target_ops::create_inferior called");
2591 target_ops::can_run ()
2599 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2608 /* Target file operations. */
2610 static struct target_ops *
2611 default_fileio_target (void)
2613 struct target_ops *t;
2615 /* If we're already connected to something that can perform
2616 file I/O, use it. Otherwise, try using the native target. */
2617 t = find_target_at (process_stratum);
2620 return find_default_run_target ("file I/O");
2623 /* File handle for target file operations. */
2627 /* The target on which this file is open. NULL if the target is
2628 meanwhile closed while the handle is open. */
2631 /* The file descriptor on the target. */
2634 /* Check whether this fileio_fh_t represents a closed file. */
2637 return target_fd < 0;
2641 /* Vector of currently open file handles. The value returned by
2642 target_fileio_open and passed as the FD argument to other
2643 target_fileio_* functions is an index into this vector. This
2644 vector's entries are never freed; instead, files are marked as
2645 closed, and the handle becomes available for reuse. */
2646 static std::vector<fileio_fh_t> fileio_fhandles;
2648 /* Index into fileio_fhandles of the lowest handle that might be
2649 closed. This permits handle reuse without searching the whole
2650 list each time a new file is opened. */
2651 static int lowest_closed_fd;
2653 /* Invalidate the target associated with open handles that were open
2654 on target TARG, since we're about to close (and maybe destroy) the
2655 target. The handles remain open from the client's perspective, but
2656 trying to do anything with them other than closing them will fail
2660 fileio_handles_invalidate_target (target_ops *targ)
2662 for (fileio_fh_t &fh : fileio_fhandles)
2663 if (fh.target == targ)
2667 /* Acquire a target fileio file descriptor. */
2670 acquire_fileio_fd (target_ops *target, int target_fd)
2672 /* Search for closed handles to reuse. */
2673 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2675 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2677 if (fh.is_closed ())
2681 /* Push a new handle if no closed handles were found. */
2682 if (lowest_closed_fd == fileio_fhandles.size ())
2683 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2685 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2687 /* Should no longer be marked closed. */
2688 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2690 /* Return its index, and start the next lookup at
2692 return lowest_closed_fd++;
2695 /* Release a target fileio file descriptor. */
2698 release_fileio_fd (int fd, fileio_fh_t *fh)
2701 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2704 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2706 static fileio_fh_t *
2707 fileio_fd_to_fh (int fd)
2709 return &fileio_fhandles[fd];
2713 /* Default implementations of file i/o methods. We don't want these
2714 to delegate automatically, because we need to know which target
2715 supported the method, in order to call it directly from within
2716 pread/pwrite, etc. */
2719 target_ops::fileio_open (struct inferior *inf, const char *filename,
2720 int flags, int mode, int warn_if_slow,
2723 *target_errno = FILEIO_ENOSYS;
2728 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2729 ULONGEST offset, int *target_errno)
2731 *target_errno = FILEIO_ENOSYS;
2736 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2737 ULONGEST offset, int *target_errno)
2739 *target_errno = FILEIO_ENOSYS;
2744 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2746 *target_errno = FILEIO_ENOSYS;
2751 target_ops::fileio_close (int fd, int *target_errno)
2753 *target_errno = FILEIO_ENOSYS;
2758 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2761 *target_errno = FILEIO_ENOSYS;
2765 gdb::optional<std::string>
2766 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2769 *target_errno = FILEIO_ENOSYS;
2773 /* Helper for target_fileio_open and
2774 target_fileio_open_warn_if_slow. */
2777 target_fileio_open_1 (struct inferior *inf, const char *filename,
2778 int flags, int mode, int warn_if_slow,
2781 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2783 int fd = t->fileio_open (inf, filename, flags, mode,
2784 warn_if_slow, target_errno);
2786 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2792 fd = acquire_fileio_fd (t, fd);
2795 fprintf_unfiltered (gdb_stdlog,
2796 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2798 inf == NULL ? 0 : inf->num,
2799 filename, flags, mode,
2801 fd != -1 ? 0 : *target_errno);
2805 *target_errno = FILEIO_ENOSYS;
2812 target_fileio_open (struct inferior *inf, const char *filename,
2813 int flags, int mode, int *target_errno)
2815 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2822 target_fileio_open_warn_if_slow (struct inferior *inf,
2823 const char *filename,
2824 int flags, int mode, int *target_errno)
2826 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2833 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2834 ULONGEST offset, int *target_errno)
2836 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2839 if (fh->is_closed ())
2840 *target_errno = EBADF;
2841 else if (fh->target == NULL)
2842 *target_errno = EIO;
2844 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2845 len, offset, target_errno);
2848 fprintf_unfiltered (gdb_stdlog,
2849 "target_fileio_pwrite (%d,...,%d,%s) "
2851 fd, len, pulongest (offset),
2852 ret, ret != -1 ? 0 : *target_errno);
2859 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2860 ULONGEST offset, int *target_errno)
2862 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2865 if (fh->is_closed ())
2866 *target_errno = EBADF;
2867 else if (fh->target == NULL)
2868 *target_errno = EIO;
2870 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2871 len, offset, target_errno);
2874 fprintf_unfiltered (gdb_stdlog,
2875 "target_fileio_pread (%d,...,%d,%s) "
2877 fd, len, pulongest (offset),
2878 ret, ret != -1 ? 0 : *target_errno);
2885 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2887 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2890 if (fh->is_closed ())
2891 *target_errno = EBADF;
2892 else if (fh->target == NULL)
2893 *target_errno = EIO;
2895 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2898 fprintf_unfiltered (gdb_stdlog,
2899 "target_fileio_fstat (%d) = %d (%d)\n",
2900 fd, ret, ret != -1 ? 0 : *target_errno);
2907 target_fileio_close (int fd, int *target_errno)
2909 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2912 if (fh->is_closed ())
2913 *target_errno = EBADF;
2916 if (fh->target != NULL)
2917 ret = fh->target->fileio_close (fh->target_fd,
2921 release_fileio_fd (fd, fh);
2925 fprintf_unfiltered (gdb_stdlog,
2926 "target_fileio_close (%d) = %d (%d)\n",
2927 fd, ret, ret != -1 ? 0 : *target_errno);
2934 target_fileio_unlink (struct inferior *inf, const char *filename,
2937 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2939 int ret = t->fileio_unlink (inf, filename, target_errno);
2941 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
2945 fprintf_unfiltered (gdb_stdlog,
2946 "target_fileio_unlink (%d,%s)"
2948 inf == NULL ? 0 : inf->num, filename,
2949 ret, ret != -1 ? 0 : *target_errno);
2953 *target_errno = FILEIO_ENOSYS;
2959 gdb::optional<std::string>
2960 target_fileio_readlink (struct inferior *inf, const char *filename,
2963 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2965 gdb::optional<std::string> ret
2966 = t->fileio_readlink (inf, filename, target_errno);
2968 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
2972 fprintf_unfiltered (gdb_stdlog,
2973 "target_fileio_readlink (%d,%s)"
2975 inf == NULL ? 0 : inf->num,
2976 filename, ret ? ret->c_str () : "(nil)",
2977 ret ? 0 : *target_errno);
2981 *target_errno = FILEIO_ENOSYS;
2985 /* Like scoped_fd, but specific to target fileio. */
2987 class scoped_target_fd
2990 explicit scoped_target_fd (int fd) noexcept
2995 ~scoped_target_fd ()
3001 target_fileio_close (m_fd, &target_errno);
3005 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3007 int get () const noexcept
3016 /* Read target file FILENAME, in the filesystem as seen by INF. If
3017 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3018 remote targets, the remote stub). Store the result in *BUF_P and
3019 return the size of the transferred data. PADDING additional bytes
3020 are available in *BUF_P. This is a helper function for
3021 target_fileio_read_alloc; see the declaration of that function for
3022 more information. */
3025 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3026 gdb_byte **buf_p, int padding)
3028 size_t buf_alloc, buf_pos;
3033 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3034 0700, &target_errno));
3035 if (fd.get () == -1)
3038 /* Start by reading up to 4K at a time. The target will throttle
3039 this number down if necessary. */
3041 buf = (gdb_byte *) xmalloc (buf_alloc);
3045 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3046 buf_alloc - buf_pos - padding, buf_pos,
3050 /* An error occurred. */
3056 /* Read all there was. */
3066 /* If the buffer is filling up, expand it. */
3067 if (buf_alloc < buf_pos * 2)
3070 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3080 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3083 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3088 gdb::unique_xmalloc_ptr<char>
3089 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3093 LONGEST i, transferred;
3095 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3096 bufstr = (char *) buffer;
3098 if (transferred < 0)
3099 return gdb::unique_xmalloc_ptr<char> (nullptr);
3101 if (transferred == 0)
3102 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3104 bufstr[transferred] = 0;
3106 /* Check for embedded NUL bytes; but allow trailing NULs. */
3107 for (i = strlen (bufstr); i < transferred; i++)
3110 warning (_("target file %s "
3111 "contained unexpected null characters"),
3116 return gdb::unique_xmalloc_ptr<char> (bufstr);
3121 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3122 CORE_ADDR addr, int len)
3124 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3128 default_watchpoint_addr_within_range (struct target_ops *target,
3130 CORE_ADDR start, int length)
3132 return addr >= start && addr < start + length;
3138 target_stack::find_beneath (const target_ops *t) const
3140 /* Look for a non-empty slot at stratum levels beneath T's. */
3141 for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
3142 if (m_stack[stratum] != NULL)
3143 return m_stack[stratum];
3151 find_target_at (enum strata stratum)
3153 return g_target_stack.at (stratum);
3161 target_announce_detach (int from_tty)
3164 const char *exec_file;
3169 exec_file = get_exec_file (0);
3170 if (exec_file == NULL)
3173 pid = inferior_ptid.pid ();
3174 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3175 target_pid_to_str (ptid_t (pid)).c_str ());
3178 /* The inferior process has died. Long live the inferior! */
3181 generic_mourn_inferior (void)
3183 inferior *inf = current_inferior ();
3185 inferior_ptid = null_ptid;
3187 /* Mark breakpoints uninserted in case something tries to delete a
3188 breakpoint while we delete the inferior's threads (which would
3189 fail, since the inferior is long gone). */
3190 mark_breakpoints_out ();
3193 exit_inferior (inf);
3195 /* Note this wipes step-resume breakpoints, so needs to be done
3196 after exit_inferior, which ends up referencing the step-resume
3197 breakpoints through clear_thread_inferior_resources. */
3198 breakpoint_init_inferior (inf_exited);
3200 registers_changed ();
3202 reopen_exec_file ();
3203 reinit_frame_cache ();
3205 if (deprecated_detach_hook)
3206 deprecated_detach_hook ();
3209 /* Convert a normal process ID to a string. Returns the string in a
3213 normal_pid_to_str (ptid_t ptid)
3215 return string_printf ("process %d", ptid.pid ());
3219 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3221 return normal_pid_to_str (ptid);
3224 /* Error-catcher for target_find_memory_regions. */
3226 dummy_find_memory_regions (struct target_ops *self,
3227 find_memory_region_ftype ignore1, void *ignore2)
3229 error (_("Command not implemented for this target."));
3233 /* Error-catcher for target_make_corefile_notes. */
3235 dummy_make_corefile_notes (struct target_ops *self,
3236 bfd *ignore1, int *ignore2)
3238 error (_("Command not implemented for this target."));
3242 #include "target-delegates.c"
3244 /* The initial current target, so that there is always a semi-valid
3247 static dummy_target the_dummy_target;
3249 static const target_info dummy_target_info = {
3256 dummy_target::stratum () const
3258 return dummy_stratum;
3262 debug_target::stratum () const
3264 return debug_stratum;
3268 dummy_target::info () const
3270 return dummy_target_info;
3274 debug_target::info () const
3276 return beneath ()->info ();
3282 target_close (struct target_ops *targ)
3284 gdb_assert (!target_is_pushed (targ));
3286 fileio_handles_invalidate_target (targ);
3291 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3295 target_thread_alive (ptid_t ptid)
3297 return current_top_target ()->thread_alive (ptid);
3301 target_update_thread_list (void)
3303 current_top_target ()->update_thread_list ();
3307 target_stop (ptid_t ptid)
3311 warning (_("May not interrupt or stop the target, ignoring attempt"));
3315 current_top_target ()->stop (ptid);
3323 warning (_("May not interrupt or stop the target, ignoring attempt"));
3327 current_top_target ()->interrupt ();
3333 target_pass_ctrlc (void)
3335 current_top_target ()->pass_ctrlc ();
3341 default_target_pass_ctrlc (struct target_ops *ops)
3343 target_interrupt ();
3346 /* See target/target.h. */
3349 target_stop_and_wait (ptid_t ptid)
3351 struct target_waitstatus status;
3352 int was_non_stop = non_stop;
3357 memset (&status, 0, sizeof (status));
3358 target_wait (ptid, &status, 0);
3360 non_stop = was_non_stop;
3363 /* See target/target.h. */
3366 target_continue_no_signal (ptid_t ptid)
3368 target_resume (ptid, 0, GDB_SIGNAL_0);
3371 /* See target/target.h. */
3374 target_continue (ptid_t ptid, enum gdb_signal signal)
3376 target_resume (ptid, 0, signal);
3379 /* Concatenate ELEM to LIST, a comma-separated list. */
3382 str_comma_list_concat_elem (std::string *list, const char *elem)
3384 if (!list->empty ())
3385 list->append (", ");
3387 list->append (elem);
3390 /* Helper for target_options_to_string. If OPT is present in
3391 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3392 OPT is removed from TARGET_OPTIONS. */
3395 do_option (int *target_options, std::string *ret,
3396 int opt, const char *opt_str)
3398 if ((*target_options & opt) != 0)
3400 str_comma_list_concat_elem (ret, opt_str);
3401 *target_options &= ~opt;
3408 target_options_to_string (int target_options)
3412 #define DO_TARG_OPTION(OPT) \
3413 do_option (&target_options, &ret, OPT, #OPT)
3415 DO_TARG_OPTION (TARGET_WNOHANG);
3417 if (target_options != 0)
3418 str_comma_list_concat_elem (&ret, "unknown???");
3424 target_fetch_registers (struct regcache *regcache, int regno)
3426 current_top_target ()->fetch_registers (regcache, regno);
3428 regcache->debug_print_register ("target_fetch_registers", regno);
3432 target_store_registers (struct regcache *regcache, int regno)
3434 if (!may_write_registers)
3435 error (_("Writing to registers is not allowed (regno %d)"), regno);
3437 current_top_target ()->store_registers (regcache, regno);
3440 regcache->debug_print_register ("target_store_registers", regno);
3445 target_core_of_thread (ptid_t ptid)
3447 return current_top_target ()->core_of_thread (ptid);
3451 simple_verify_memory (struct target_ops *ops,
3452 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3454 LONGEST total_xfered = 0;
3456 while (total_xfered < size)
3458 ULONGEST xfered_len;
3459 enum target_xfer_status status;
3461 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3463 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3464 buf, NULL, lma + total_xfered, howmuch,
3466 if (status == TARGET_XFER_OK
3467 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3469 total_xfered += xfered_len;
3478 /* Default implementation of memory verification. */
3481 default_verify_memory (struct target_ops *self,
3482 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3484 /* Start over from the top of the target stack. */
3485 return simple_verify_memory (current_top_target (),
3486 data, memaddr, size);
3490 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3492 return current_top_target ()->verify_memory (data, memaddr, size);
3495 /* The documentation for this function is in its prototype declaration in
3499 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3500 enum target_hw_bp_type rw)
3502 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3505 /* The documentation for this function is in its prototype declaration in
3509 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3510 enum target_hw_bp_type rw)
3512 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3515 /* The documentation for this function is in its prototype declaration
3519 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3521 return current_top_target ()->masked_watch_num_registers (addr, mask);
3524 /* The documentation for this function is in its prototype declaration
3528 target_ranged_break_num_registers (void)
3530 return current_top_target ()->ranged_break_num_registers ();
3535 struct btrace_target_info *
3536 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3538 return current_top_target ()->enable_btrace (ptid, conf);
3544 target_disable_btrace (struct btrace_target_info *btinfo)
3546 current_top_target ()->disable_btrace (btinfo);
3552 target_teardown_btrace (struct btrace_target_info *btinfo)
3554 current_top_target ()->teardown_btrace (btinfo);
3560 target_read_btrace (struct btrace_data *btrace,
3561 struct btrace_target_info *btinfo,
3562 enum btrace_read_type type)
3564 return current_top_target ()->read_btrace (btrace, btinfo, type);
3569 const struct btrace_config *
3570 target_btrace_conf (const struct btrace_target_info *btinfo)
3572 return current_top_target ()->btrace_conf (btinfo);
3578 target_stop_recording (void)
3580 current_top_target ()->stop_recording ();
3586 target_save_record (const char *filename)
3588 current_top_target ()->save_record (filename);
3594 target_supports_delete_record ()
3596 return current_top_target ()->supports_delete_record ();
3602 target_delete_record (void)
3604 current_top_target ()->delete_record ();
3610 target_record_method (ptid_t ptid)
3612 return current_top_target ()->record_method (ptid);
3618 target_record_is_replaying (ptid_t ptid)
3620 return current_top_target ()->record_is_replaying (ptid);
3626 target_record_will_replay (ptid_t ptid, int dir)
3628 return current_top_target ()->record_will_replay (ptid, dir);
3634 target_record_stop_replaying (void)
3636 current_top_target ()->record_stop_replaying ();
3642 target_goto_record_begin (void)
3644 current_top_target ()->goto_record_begin ();
3650 target_goto_record_end (void)
3652 current_top_target ()->goto_record_end ();
3658 target_goto_record (ULONGEST insn)
3660 current_top_target ()->goto_record (insn);
3666 target_insn_history (int size, gdb_disassembly_flags flags)
3668 current_top_target ()->insn_history (size, flags);
3674 target_insn_history_from (ULONGEST from, int size,
3675 gdb_disassembly_flags flags)
3677 current_top_target ()->insn_history_from (from, size, flags);
3683 target_insn_history_range (ULONGEST begin, ULONGEST end,
3684 gdb_disassembly_flags flags)
3686 current_top_target ()->insn_history_range (begin, end, flags);
3692 target_call_history (int size, record_print_flags flags)
3694 current_top_target ()->call_history (size, flags);
3700 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3702 current_top_target ()->call_history_from (begin, size, flags);
3708 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3710 current_top_target ()->call_history_range (begin, end, flags);
3715 const struct frame_unwind *
3716 target_get_unwinder (void)
3718 return current_top_target ()->get_unwinder ();
3723 const struct frame_unwind *
3724 target_get_tailcall_unwinder (void)
3726 return current_top_target ()->get_tailcall_unwinder ();
3732 target_prepare_to_generate_core (void)
3734 current_top_target ()->prepare_to_generate_core ();
3740 target_done_generating_core (void)
3742 current_top_target ()->done_generating_core ();
3747 static char targ_desc[] =
3748 "Names of targets and files being debugged.\nShows the entire \
3749 stack of targets currently in use (including the exec-file,\n\
3750 core-file, and process, if any), as well as the symbol file name.";
3753 default_rcmd (struct target_ops *self, const char *command,
3754 struct ui_file *output)
3756 error (_("\"monitor\" command not supported by this target."));
3760 do_monitor_command (const char *cmd, int from_tty)
3762 target_rcmd (cmd, gdb_stdtarg);
3765 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3769 flash_erase_command (const char *cmd, int from_tty)
3771 /* Used to communicate termination of flash operations to the target. */
3772 bool found_flash_region = false;
3773 struct gdbarch *gdbarch = target_gdbarch ();
3775 std::vector<mem_region> mem_regions = target_memory_map ();
3777 /* Iterate over all memory regions. */
3778 for (const mem_region &m : mem_regions)
3780 /* Is this a flash memory region? */
3781 if (m.attrib.mode == MEM_FLASH)
3783 found_flash_region = true;
3784 target_flash_erase (m.lo, m.hi - m.lo);
3786 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3788 current_uiout->message (_("Erasing flash memory region at address "));
3789 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3790 current_uiout->message (", size = ");
3791 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3792 current_uiout->message ("\n");
3796 /* Did we do any flash operations? If so, we need to finalize them. */
3797 if (found_flash_region)
3798 target_flash_done ();
3800 current_uiout->message (_("No flash memory regions found.\n"));
3803 /* Print the name of each layers of our target stack. */
3806 maintenance_print_target_stack (const char *cmd, int from_tty)
3808 printf_filtered (_("The current target stack is:\n"));
3810 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3812 if (t->stratum () == debug_stratum)
3814 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3821 target_async (int enable)
3823 infrun_async (enable);
3824 current_top_target ()->async (enable);
3830 target_thread_events (int enable)
3832 current_top_target ()->thread_events (enable);
3835 /* Controls if targets can report that they can/are async. This is
3836 just for maintainers to use when debugging gdb. */
3837 int target_async_permitted = 1;
3839 /* The set command writes to this variable. If the inferior is
3840 executing, target_async_permitted is *not* updated. */
3841 static int target_async_permitted_1 = 1;
3844 maint_set_target_async_command (const char *args, int from_tty,
3845 struct cmd_list_element *c)
3847 if (have_live_inferiors ())
3849 target_async_permitted_1 = target_async_permitted;
3850 error (_("Cannot change this setting while the inferior is running."));
3853 target_async_permitted = target_async_permitted_1;
3857 maint_show_target_async_command (struct ui_file *file, int from_tty,
3858 struct cmd_list_element *c,
3861 fprintf_filtered (file,
3862 _("Controlling the inferior in "
3863 "asynchronous mode is %s.\n"), value);
3866 /* Return true if the target operates in non-stop mode even with "set
3870 target_always_non_stop_p (void)
3872 return current_top_target ()->always_non_stop_p ();
3878 target_is_non_stop_p (void)
3881 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3882 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3883 && target_always_non_stop_p ()));
3886 /* Controls if targets can report that they always run in non-stop
3887 mode. This is just for maintainers to use when debugging gdb. */
3888 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3890 /* The set command writes to this variable. If the inferior is
3891 executing, target_non_stop_enabled is *not* updated. */
3892 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3894 /* Implementation of "maint set target-non-stop". */
3897 maint_set_target_non_stop_command (const char *args, int from_tty,
3898 struct cmd_list_element *c)
3900 if (have_live_inferiors ())
3902 target_non_stop_enabled_1 = target_non_stop_enabled;
3903 error (_("Cannot change this setting while the inferior is running."));
3906 target_non_stop_enabled = target_non_stop_enabled_1;
3909 /* Implementation of "maint show target-non-stop". */
3912 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3913 struct cmd_list_element *c,
3916 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3917 fprintf_filtered (file,
3918 _("Whether the target is always in non-stop mode "
3919 "is %s (currently %s).\n"), value,
3920 target_always_non_stop_p () ? "on" : "off");
3922 fprintf_filtered (file,
3923 _("Whether the target is always in non-stop mode "
3924 "is %s.\n"), value);
3927 /* Temporary copies of permission settings. */
3929 static int may_write_registers_1 = 1;
3930 static int may_write_memory_1 = 1;
3931 static int may_insert_breakpoints_1 = 1;
3932 static int may_insert_tracepoints_1 = 1;
3933 static int may_insert_fast_tracepoints_1 = 1;
3934 static int may_stop_1 = 1;
3936 /* Make the user-set values match the real values again. */
3939 update_target_permissions (void)
3941 may_write_registers_1 = may_write_registers;
3942 may_write_memory_1 = may_write_memory;
3943 may_insert_breakpoints_1 = may_insert_breakpoints;
3944 may_insert_tracepoints_1 = may_insert_tracepoints;
3945 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3946 may_stop_1 = may_stop;
3949 /* The one function handles (most of) the permission flags in the same
3953 set_target_permissions (const char *args, int from_tty,
3954 struct cmd_list_element *c)
3956 if (target_has_execution)
3958 update_target_permissions ();
3959 error (_("Cannot change this setting while the inferior is running."));
3962 /* Make the real values match the user-changed values. */
3963 may_write_registers = may_write_registers_1;
3964 may_insert_breakpoints = may_insert_breakpoints_1;
3965 may_insert_tracepoints = may_insert_tracepoints_1;
3966 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3967 may_stop = may_stop_1;
3968 update_observer_mode ();
3971 /* Set memory write permission independently of observer mode. */
3974 set_write_memory_permission (const char *args, int from_tty,
3975 struct cmd_list_element *c)
3977 /* Make the real values match the user-changed values. */
3978 may_write_memory = may_write_memory_1;
3979 update_observer_mode ();
3983 initialize_targets (void)
3985 push_target (&the_dummy_target);
3987 the_debug_target = new debug_target ();
3989 add_info ("target", info_target_command, targ_desc);
3990 add_info ("files", info_target_command, targ_desc);
3992 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3993 Set target debugging."), _("\
3994 Show target debugging."), _("\
3995 When non-zero, target debugging is enabled. Higher numbers are more\n\
3999 &setdebuglist, &showdebuglist);
4001 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4002 &trust_readonly, _("\
4003 Set mode for reading from readonly sections."), _("\
4004 Show mode for reading from readonly sections."), _("\
4005 When this mode is on, memory reads from readonly sections (such as .text)\n\
4006 will be read from the object file instead of from the target. This will\n\
4007 result in significant performance improvement for remote targets."),
4009 show_trust_readonly,
4010 &setlist, &showlist);
4012 add_com ("monitor", class_obscure, do_monitor_command,
4013 _("Send a command to the remote monitor (remote targets only)."));
4015 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4016 _("Print the name of each layer of the internal target stack."),
4017 &maintenanceprintlist);
4019 add_setshow_boolean_cmd ("target-async", no_class,
4020 &target_async_permitted_1, _("\
4021 Set whether gdb controls the inferior in asynchronous mode."), _("\
4022 Show whether gdb controls the inferior in asynchronous mode."), _("\
4023 Tells gdb whether to control the inferior in asynchronous mode."),
4024 maint_set_target_async_command,
4025 maint_show_target_async_command,
4026 &maintenance_set_cmdlist,
4027 &maintenance_show_cmdlist);
4029 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4030 &target_non_stop_enabled_1, _("\
4031 Set whether gdb always controls the inferior in non-stop mode."), _("\
4032 Show whether gdb always controls the inferior in non-stop mode."), _("\
4033 Tells gdb whether to control the inferior in non-stop mode."),
4034 maint_set_target_non_stop_command,
4035 maint_show_target_non_stop_command,
4036 &maintenance_set_cmdlist,
4037 &maintenance_show_cmdlist);
4039 add_setshow_boolean_cmd ("may-write-registers", class_support,
4040 &may_write_registers_1, _("\
4041 Set permission to write into registers."), _("\
4042 Show permission to write into registers."), _("\
4043 When this permission is on, GDB may write into the target's registers.\n\
4044 Otherwise, any sort of write attempt will result in an error."),
4045 set_target_permissions, NULL,
4046 &setlist, &showlist);
4048 add_setshow_boolean_cmd ("may-write-memory", class_support,
4049 &may_write_memory_1, _("\
4050 Set permission to write into target memory."), _("\
4051 Show permission to write into target memory."), _("\
4052 When this permission is on, GDB may write into the target's memory.\n\
4053 Otherwise, any sort of write attempt will result in an error."),
4054 set_write_memory_permission, NULL,
4055 &setlist, &showlist);
4057 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4058 &may_insert_breakpoints_1, _("\
4059 Set permission to insert breakpoints in the target."), _("\
4060 Show permission to insert breakpoints in the target."), _("\
4061 When this permission is on, GDB may insert breakpoints in the program.\n\
4062 Otherwise, any sort of insertion attempt will result in an error."),
4063 set_target_permissions, NULL,
4064 &setlist, &showlist);
4066 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4067 &may_insert_tracepoints_1, _("\
4068 Set permission to insert tracepoints in the target."), _("\
4069 Show permission to insert tracepoints in the target."), _("\
4070 When this permission is on, GDB may insert tracepoints in the program.\n\
4071 Otherwise, any sort of insertion attempt will result in an error."),
4072 set_target_permissions, NULL,
4073 &setlist, &showlist);
4075 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4076 &may_insert_fast_tracepoints_1, _("\
4077 Set permission to insert fast tracepoints in the target."), _("\
4078 Show permission to insert fast tracepoints in the target."), _("\
4079 When this permission is on, GDB may insert fast tracepoints.\n\
4080 Otherwise, any sort of insertion attempt will result in an error."),
4081 set_target_permissions, NULL,
4082 &setlist, &showlist);
4084 add_setshow_boolean_cmd ("may-interrupt", class_support,
4086 Set permission to interrupt or signal the target."), _("\
4087 Show permission to interrupt or signal the target."), _("\
4088 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4089 Otherwise, any attempt to interrupt or stop will be ignored."),
4090 set_target_permissions, NULL,
4091 &setlist, &showlist);
4093 add_com ("flash-erase", no_class, flash_erase_command,
4094 _("Erase all flash memory regions."));
4096 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4097 &auto_connect_native_target, _("\
4098 Set whether GDB may automatically connect to the native target."), _("\
4099 Show whether GDB may automatically connect to the native target."), _("\
4100 When on, and GDB is not connected to a target yet, GDB\n\
4101 attempts \"run\" and other commands with the native target."),
4102 NULL, show_auto_connect_native_target,
4103 &setlist, &showlist);