1 /* Select target systems and architectures at runtime for GDB.
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
5 Contributed by Cygnus Support.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26 #include "target-dcache.h"
36 #include "gdb_assert.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
48 static void target_info (char *, int);
50 static void default_terminal_info (struct target_ops *, const char *, int);
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
55 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
58 static void default_rcmd (struct target_ops *, char *, struct ui_file *);
60 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
63 static int default_follow_fork (struct target_ops *self, int follow_child,
66 static void default_mourn_inferior (struct target_ops *self);
68 static void tcomplain (void) ATTRIBUTE_NORETURN;
70 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
72 static int return_zero (void);
74 void target_ignore (void);
76 static void target_command (char *, int);
78 static struct target_ops *find_default_run_target (char *);
80 static target_xfer_partial_ftype default_xfer_partial;
82 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
85 static int dummy_find_memory_regions (struct target_ops *self,
86 find_memory_region_ftype ignore1,
89 static char *dummy_make_corefile_notes (struct target_ops *self,
90 bfd *ignore1, int *ignore2);
92 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
94 static int find_default_can_async_p (struct target_ops *ignore);
96 static int find_default_is_async_p (struct target_ops *ignore);
98 static enum exec_direction_kind default_execution_direction
99 (struct target_ops *self);
101 #include "target-delegates.c"
103 static void init_dummy_target (void);
105 static struct target_ops debug_target;
107 static void debug_to_open (char *, int);
109 static void debug_to_prepare_to_store (struct target_ops *self,
112 static void debug_to_files_info (struct target_ops *);
114 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
115 struct bp_target_info *);
117 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
118 struct bp_target_info *);
120 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
123 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
125 struct bp_target_info *);
127 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
129 struct bp_target_info *);
131 static int debug_to_insert_watchpoint (struct target_ops *self,
133 struct expression *);
135 static int debug_to_remove_watchpoint (struct target_ops *self,
137 struct expression *);
139 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
141 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
142 CORE_ADDR, CORE_ADDR, int);
144 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
147 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
149 struct expression *);
151 static void debug_to_terminal_init (struct target_ops *self);
153 static void debug_to_terminal_inferior (struct target_ops *self);
155 static void debug_to_terminal_ours_for_output (struct target_ops *self);
157 static void debug_to_terminal_save_ours (struct target_ops *self);
159 static void debug_to_terminal_ours (struct target_ops *self);
161 static void debug_to_load (struct target_ops *self, char *, int);
163 static int debug_to_can_run (struct target_ops *self);
165 static void debug_to_stop (struct target_ops *self, ptid_t);
167 /* Pointer to array of target architecture structures; the size of the
168 array; the current index into the array; the allocated size of the
170 struct target_ops **target_structs;
171 unsigned target_struct_size;
172 unsigned target_struct_allocsize;
173 #define DEFAULT_ALLOCSIZE 10
175 /* The initial current target, so that there is always a semi-valid
178 static struct target_ops dummy_target;
180 /* Top of target stack. */
182 static struct target_ops *target_stack;
184 /* The target structure we are currently using to talk to a process
185 or file or whatever "inferior" we have. */
187 struct target_ops current_target;
189 /* Command list for target. */
191 static struct cmd_list_element *targetlist = NULL;
193 /* Nonzero if we should trust readonly sections from the
194 executable when reading memory. */
196 static int trust_readonly = 0;
198 /* Nonzero if we should show true memory content including
199 memory breakpoint inserted by gdb. */
201 static int show_memory_breakpoints = 0;
203 /* These globals control whether GDB attempts to perform these
204 operations; they are useful for targets that need to prevent
205 inadvertant disruption, such as in non-stop mode. */
207 int may_write_registers = 1;
209 int may_write_memory = 1;
211 int may_insert_breakpoints = 1;
213 int may_insert_tracepoints = 1;
215 int may_insert_fast_tracepoints = 1;
219 /* Non-zero if we want to see trace of target level stuff. */
221 static unsigned int targetdebug = 0;
223 show_targetdebug (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
226 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
229 static void setup_target_debug (void);
231 /* The user just typed 'target' without the name of a target. */
234 target_command (char *arg, int from_tty)
236 fputs_filtered ("Argument required (target name). Try `help target'\n",
240 /* Default target_has_* methods for process_stratum targets. */
243 default_child_has_all_memory (struct target_ops *ops)
245 /* If no inferior selected, then we can't read memory here. */
246 if (ptid_equal (inferior_ptid, null_ptid))
253 default_child_has_memory (struct target_ops *ops)
255 /* If no inferior selected, then we can't read memory here. */
256 if (ptid_equal (inferior_ptid, null_ptid))
263 default_child_has_stack (struct target_ops *ops)
265 /* If no inferior selected, there's no stack. */
266 if (ptid_equal (inferior_ptid, null_ptid))
273 default_child_has_registers (struct target_ops *ops)
275 /* Can't read registers from no inferior. */
276 if (ptid_equal (inferior_ptid, null_ptid))
283 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
285 /* If there's no thread selected, then we can't make it run through
287 if (ptid_equal (the_ptid, null_ptid))
295 target_has_all_memory_1 (void)
297 struct target_ops *t;
299 for (t = current_target.beneath; t != NULL; t = t->beneath)
300 if (t->to_has_all_memory (t))
307 target_has_memory_1 (void)
309 struct target_ops *t;
311 for (t = current_target.beneath; t != NULL; t = t->beneath)
312 if (t->to_has_memory (t))
319 target_has_stack_1 (void)
321 struct target_ops *t;
323 for (t = current_target.beneath; t != NULL; t = t->beneath)
324 if (t->to_has_stack (t))
331 target_has_registers_1 (void)
333 struct target_ops *t;
335 for (t = current_target.beneath; t != NULL; t = t->beneath)
336 if (t->to_has_registers (t))
343 target_has_execution_1 (ptid_t the_ptid)
345 struct target_ops *t;
347 for (t = current_target.beneath; t != NULL; t = t->beneath)
348 if (t->to_has_execution (t, the_ptid))
355 target_has_execution_current (void)
357 return target_has_execution_1 (inferior_ptid);
360 /* Complete initialization of T. This ensures that various fields in
361 T are set, if needed by the target implementation. */
364 complete_target_initialization (struct target_ops *t)
366 /* Provide default values for all "must have" methods. */
367 if (t->to_xfer_partial == NULL)
368 t->to_xfer_partial = default_xfer_partial;
370 if (t->to_has_all_memory == NULL)
371 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
373 if (t->to_has_memory == NULL)
374 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
376 if (t->to_has_stack == NULL)
377 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
379 if (t->to_has_registers == NULL)
380 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
382 if (t->to_has_execution == NULL)
383 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
385 install_delegators (t);
388 /* Add possible target architecture T to the list and add a new
389 command 'target T->to_shortname'. Set COMPLETER as the command's
390 completer if not NULL. */
393 add_target_with_completer (struct target_ops *t,
394 completer_ftype *completer)
396 struct cmd_list_element *c;
398 complete_target_initialization (t);
402 target_struct_allocsize = DEFAULT_ALLOCSIZE;
403 target_structs = (struct target_ops **) xmalloc
404 (target_struct_allocsize * sizeof (*target_structs));
406 if (target_struct_size >= target_struct_allocsize)
408 target_struct_allocsize *= 2;
409 target_structs = (struct target_ops **)
410 xrealloc ((char *) target_structs,
411 target_struct_allocsize * sizeof (*target_structs));
413 target_structs[target_struct_size++] = t;
415 if (targetlist == NULL)
416 add_prefix_cmd ("target", class_run, target_command, _("\
417 Connect to a target machine or process.\n\
418 The first argument is the type or protocol of the target machine.\n\
419 Remaining arguments are interpreted by the target protocol. For more\n\
420 information on the arguments for a particular protocol, type\n\
421 `help target ' followed by the protocol name."),
422 &targetlist, "target ", 0, &cmdlist);
423 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
425 if (completer != NULL)
426 set_cmd_completer (c, completer);
429 /* Add a possible target architecture to the list. */
432 add_target (struct target_ops *t)
434 add_target_with_completer (t, NULL);
440 add_deprecated_target_alias (struct target_ops *t, char *alias)
442 struct cmd_list_element *c;
445 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
447 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
448 alt = xstrprintf ("target %s", t->to_shortname);
449 deprecate_cmd (c, alt);
463 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
465 current_target.to_kill (¤t_target);
469 target_load (char *arg, int from_tty)
471 target_dcache_invalidate ();
472 (*current_target.to_load) (¤t_target, arg, from_tty);
476 target_create_inferior (char *exec_file, char *args,
477 char **env, int from_tty)
479 struct target_ops *t;
481 for (t = current_target.beneath; t != NULL; t = t->beneath)
483 if (t->to_create_inferior != NULL)
485 t->to_create_inferior (t, exec_file, args, env, from_tty);
487 fprintf_unfiltered (gdb_stdlog,
488 "target_create_inferior (%s, %s, xxx, %d)\n",
489 exec_file, args, from_tty);
494 internal_error (__FILE__, __LINE__,
495 _("could not find a target to create inferior"));
499 target_terminal_inferior (void)
501 /* A background resume (``run&'') should leave GDB in control of the
502 terminal. Use target_can_async_p, not target_is_async_p, since at
503 this point the target is not async yet. However, if sync_execution
504 is not set, we know it will become async prior to resume. */
505 if (target_can_async_p () && !sync_execution)
508 /* If GDB is resuming the inferior in the foreground, install
509 inferior's terminal modes. */
510 (*current_target.to_terminal_inferior) (¤t_target);
514 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
515 struct target_ops *t)
517 errno = EIO; /* Can't read/write this location. */
518 return 0; /* No bytes handled. */
524 error (_("You can't do that when your target is `%s'"),
525 current_target.to_shortname);
531 error (_("You can't do that without a process to debug."));
535 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
537 printf_unfiltered (_("No saved terminal information.\n"));
540 /* A default implementation for the to_get_ada_task_ptid target method.
542 This function builds the PTID by using both LWP and TID as part of
543 the PTID lwp and tid elements. The pid used is the pid of the
547 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
549 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
552 static enum exec_direction_kind
553 default_execution_direction (struct target_ops *self)
555 if (!target_can_execute_reverse)
557 else if (!target_can_async_p ())
560 gdb_assert_not_reached ("\
561 to_execution_direction must be implemented for reverse async");
564 /* Go through the target stack from top to bottom, copying over zero
565 entries in current_target, then filling in still empty entries. In
566 effect, we are doing class inheritance through the pushed target
569 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
570 is currently implemented, is that it discards any knowledge of
571 which target an inherited method originally belonged to.
572 Consequently, new new target methods should instead explicitly and
573 locally search the target stack for the target that can handle the
577 update_current_target (void)
579 struct target_ops *t;
581 /* First, reset current's contents. */
582 memset (¤t_target, 0, sizeof (current_target));
584 /* Install the delegators. */
585 install_delegators (¤t_target);
587 #define INHERIT(FIELD, TARGET) \
588 if (!current_target.FIELD) \
589 current_target.FIELD = (TARGET)->FIELD
591 for (t = target_stack; t; t = t->beneath)
593 INHERIT (to_shortname, t);
594 INHERIT (to_longname, t);
596 /* Do not inherit to_open. */
597 /* Do not inherit to_close. */
598 /* Do not inherit to_attach. */
599 /* Do not inherit to_post_attach. */
600 INHERIT (to_attach_no_wait, t);
601 /* Do not inherit to_detach. */
602 /* Do not inherit to_disconnect. */
603 /* Do not inherit to_resume. */
604 /* Do not inherit to_wait. */
605 /* Do not inherit to_fetch_registers. */
606 /* Do not inherit to_store_registers. */
607 /* Do not inherit to_prepare_to_store. */
608 INHERIT (deprecated_xfer_memory, t);
609 /* Do not inherit to_files_info. */
610 /* Do not inherit to_insert_breakpoint. */
611 /* Do not inherit to_remove_breakpoint. */
612 /* Do not inherit to_can_use_hw_breakpoint. */
613 /* Do not inherit to_insert_hw_breakpoint. */
614 /* Do not inherit to_remove_hw_breakpoint. */
615 /* Do not inherit to_ranged_break_num_registers. */
616 /* Do not inherit to_insert_watchpoint. */
617 /* Do not inherit to_remove_watchpoint. */
618 /* Do not inherit to_insert_mask_watchpoint. */
619 /* Do not inherit to_remove_mask_watchpoint. */
620 /* Do not inherit to_stopped_data_address. */
621 INHERIT (to_have_steppable_watchpoint, t);
622 INHERIT (to_have_continuable_watchpoint, t);
623 /* Do not inherit to_stopped_by_watchpoint. */
624 /* Do not inherit to_watchpoint_addr_within_range. */
625 /* Do not inherit to_region_ok_for_hw_watchpoint. */
626 /* Do not inherit to_can_accel_watchpoint_condition. */
627 /* Do not inherit to_masked_watch_num_registers. */
628 /* Do not inherit to_terminal_init. */
629 /* Do not inherit to_terminal_inferior. */
630 /* Do not inherit to_terminal_ours_for_output. */
631 /* Do not inherit to_terminal_ours. */
632 /* Do not inherit to_terminal_save_ours. */
633 /* Do not inherit to_terminal_info. */
634 /* Do not inherit to_kill. */
635 /* Do not inherit to_load. */
636 /* Do no inherit to_create_inferior. */
637 /* Do not inherit to_post_startup_inferior. */
638 /* Do not inherit to_insert_fork_catchpoint. */
639 /* Do not inherit to_remove_fork_catchpoint. */
640 /* Do not inherit to_insert_vfork_catchpoint. */
641 /* Do not inherit to_remove_vfork_catchpoint. */
642 /* Do not inherit to_follow_fork. */
643 /* Do not inherit to_insert_exec_catchpoint. */
644 /* Do not inherit to_remove_exec_catchpoint. */
645 /* Do not inherit to_set_syscall_catchpoint. */
646 /* Do not inherit to_has_exited. */
647 /* Do not inherit to_mourn_inferior. */
648 INHERIT (to_can_run, t);
649 /* Do not inherit to_pass_signals. */
650 /* Do not inherit to_program_signals. */
651 /* Do not inherit to_thread_alive. */
652 /* Do not inherit to_find_new_threads. */
653 /* Do not inherit to_pid_to_str. */
654 /* Do not inherit to_extra_thread_info. */
655 /* Do not inherit to_thread_name. */
656 /* Do not inherit to_stop. */
657 /* Do not inherit to_xfer_partial. */
658 /* Do not inherit to_rcmd. */
659 /* Do not inherit to_pid_to_exec_file. */
660 /* Do not inherit to_log_command. */
661 INHERIT (to_stratum, t);
662 /* Do not inherit to_has_all_memory. */
663 /* Do not inherit to_has_memory. */
664 /* Do not inherit to_has_stack. */
665 /* Do not inherit to_has_registers. */
666 /* Do not inherit to_has_execution. */
667 INHERIT (to_has_thread_control, t);
668 /* Do not inherit to_can_async_p. */
669 /* Do not inherit to_is_async_p. */
670 /* Do not inherit to_async. */
671 /* Do not inherit to_find_memory_regions. */
672 /* Do not inherit to_make_corefile_notes. */
673 /* Do not inherit to_get_bookmark. */
674 /* Do not inherit to_goto_bookmark. */
675 /* Do not inherit to_get_thread_local_address. */
676 /* Do not inherit to_can_execute_reverse. */
677 /* Do not inherit to_execution_direction. */
678 /* Do not inherit to_thread_architecture. */
679 /* Do not inherit to_read_description. */
680 /* Do not inherit to_get_ada_task_ptid. */
681 /* Do not inherit to_search_memory. */
682 /* Do not inherit to_supports_multi_process. */
683 /* Do not inherit to_supports_enable_disable_tracepoint. */
684 /* Do not inherit to_supports_string_tracing. */
685 /* Do not inherit to_trace_init. */
686 /* Do not inherit to_download_tracepoint. */
687 /* Do not inherit to_can_download_tracepoint. */
688 /* Do not inherit to_download_trace_state_variable. */
689 /* Do not inherit to_enable_tracepoint. */
690 /* Do not inherit to_disable_tracepoint. */
691 /* Do not inherit to_trace_set_readonly_regions. */
692 /* Do not inherit to_trace_start. */
693 /* Do not inherit to_get_trace_status. */
694 /* Do not inherit to_get_tracepoint_status. */
695 /* Do not inherit to_trace_stop. */
696 /* Do not inherit to_trace_find. */
697 /* Do not inherit to_get_trace_state_variable_value. */
698 /* Do not inherit to_save_trace_data. */
699 /* Do not inherit to_upload_tracepoints. */
700 /* Do not inherit to_upload_trace_state_variables. */
701 /* Do not inherit to_get_raw_trace_data. */
702 /* Do not inherit to_get_min_fast_tracepoint_insn_len. */
703 /* Do not inherit to_set_disconnected_tracing. */
704 /* Do not inherit to_set_circular_trace_buffer. */
705 /* Do not inherit to_set_trace_buffer_size. */
706 /* Do not inherit to_set_trace_notes. */
707 /* Do not inherit to_get_tib_address. */
708 /* Do not inherit to_set_permissions. */
709 /* Do not inherit to_static_tracepoint_marker_at. */
710 /* Do not inherit to_static_tracepoint_markers_by_strid. */
711 /* Do not inherit to_traceframe_info. */
712 /* Do not inherit to_use_agent. */
713 /* Do not inherit to_can_use_agent. */
714 /* Do not inherit to_augmented_libraries_svr4_read. */
715 INHERIT (to_magic, t);
717 to_supports_evaluation_of_breakpoint_conditions. */
718 /* Do not inherit to_can_run_breakpoint_commands. */
719 /* Do not inherit to_memory_map. */
720 /* Do not inherit to_flash_erase. */
721 /* Do not inherit to_flash_done. */
725 /* Clean up a target struct so it no longer has any zero pointers in
726 it. Some entries are defaulted to a method that print an error,
727 others are hard-wired to a standard recursive default. */
729 #define de_fault(field, value) \
730 if (!current_target.field) \
731 current_target.field = value
734 (void (*) (char *, int))
737 (void (*) (struct target_ops *))
739 de_fault (deprecated_xfer_memory,
740 (int (*) (CORE_ADDR, gdb_byte *, int, int,
741 struct mem_attrib *, struct target_ops *))
743 de_fault (to_can_run,
744 (int (*) (struct target_ops *))
746 current_target.to_read_description = NULL;
750 /* Finally, position the target-stack beneath the squashed
751 "current_target". That way code looking for a non-inherited
752 target method can quickly and simply find it. */
753 current_target.beneath = target_stack;
756 setup_target_debug ();
759 /* Push a new target type into the stack of the existing target accessors,
760 possibly superseding some of the existing accessors.
762 Rather than allow an empty stack, we always have the dummy target at
763 the bottom stratum, so we can call the function vectors without
767 push_target (struct target_ops *t)
769 struct target_ops **cur;
771 /* Check magic number. If wrong, it probably means someone changed
772 the struct definition, but not all the places that initialize one. */
773 if (t->to_magic != OPS_MAGIC)
775 fprintf_unfiltered (gdb_stderr,
776 "Magic number of %s target struct wrong\n",
778 internal_error (__FILE__, __LINE__,
779 _("failed internal consistency check"));
782 /* Find the proper stratum to install this target in. */
783 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
785 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
789 /* If there's already targets at this stratum, remove them. */
790 /* FIXME: cagney/2003-10-15: I think this should be popping all
791 targets to CUR, and not just those at this stratum level. */
792 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
794 /* There's already something at this stratum level. Close it,
795 and un-hook it from the stack. */
796 struct target_ops *tmp = (*cur);
798 (*cur) = (*cur)->beneath;
803 /* We have removed all targets in our stratum, now add the new one. */
807 update_current_target ();
810 /* Remove a target_ops vector from the stack, wherever it may be.
811 Return how many times it was removed (0 or 1). */
814 unpush_target (struct target_ops *t)
816 struct target_ops **cur;
817 struct target_ops *tmp;
819 if (t->to_stratum == dummy_stratum)
820 internal_error (__FILE__, __LINE__,
821 _("Attempt to unpush the dummy target"));
823 /* Look for the specified target. Note that we assume that a target
824 can only occur once in the target stack. */
826 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
832 /* If we don't find target_ops, quit. Only open targets should be
837 /* Unchain the target. */
839 (*cur) = (*cur)->beneath;
842 update_current_target ();
844 /* Finally close the target. Note we do this after unchaining, so
845 any target method calls from within the target_close
846 implementation don't end up in T anymore. */
853 pop_all_targets_above (enum strata above_stratum)
855 while ((int) (current_target.to_stratum) > (int) above_stratum)
857 if (!unpush_target (target_stack))
859 fprintf_unfiltered (gdb_stderr,
860 "pop_all_targets couldn't find target %s\n",
861 target_stack->to_shortname);
862 internal_error (__FILE__, __LINE__,
863 _("failed internal consistency check"));
870 pop_all_targets (void)
872 pop_all_targets_above (dummy_stratum);
875 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
878 target_is_pushed (struct target_ops *t)
880 struct target_ops **cur;
882 /* Check magic number. If wrong, it probably means someone changed
883 the struct definition, but not all the places that initialize one. */
884 if (t->to_magic != OPS_MAGIC)
886 fprintf_unfiltered (gdb_stderr,
887 "Magic number of %s target struct wrong\n",
889 internal_error (__FILE__, __LINE__,
890 _("failed internal consistency check"));
893 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
900 /* Using the objfile specified in OBJFILE, find the address for the
901 current thread's thread-local storage with offset OFFSET. */
903 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
905 volatile CORE_ADDR addr = 0;
906 struct target_ops *target;
908 for (target = current_target.beneath;
910 target = target->beneath)
912 if (target->to_get_thread_local_address != NULL)
917 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
919 ptid_t ptid = inferior_ptid;
920 volatile struct gdb_exception ex;
922 TRY_CATCH (ex, RETURN_MASK_ALL)
926 /* Fetch the load module address for this objfile. */
927 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
929 /* If it's 0, throw the appropriate exception. */
931 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
932 _("TLS load module not found"));
934 addr = target->to_get_thread_local_address (target, ptid,
937 /* If an error occurred, print TLS related messages here. Otherwise,
938 throw the error to some higher catcher. */
941 int objfile_is_library = (objfile->flags & OBJF_SHARED);
945 case TLS_NO_LIBRARY_SUPPORT_ERROR:
946 error (_("Cannot find thread-local variables "
947 "in this thread library."));
949 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
950 if (objfile_is_library)
951 error (_("Cannot find shared library `%s' in dynamic"
952 " linker's load module list"), objfile_name (objfile));
954 error (_("Cannot find executable file `%s' in dynamic"
955 " linker's load module list"), objfile_name (objfile));
957 case TLS_NOT_ALLOCATED_YET_ERROR:
958 if (objfile_is_library)
959 error (_("The inferior has not yet allocated storage for"
960 " thread-local variables in\n"
961 "the shared library `%s'\n"
963 objfile_name (objfile), target_pid_to_str (ptid));
965 error (_("The inferior has not yet allocated storage for"
966 " thread-local variables in\n"
967 "the executable `%s'\n"
969 objfile_name (objfile), target_pid_to_str (ptid));
971 case TLS_GENERIC_ERROR:
972 if (objfile_is_library)
973 error (_("Cannot find thread-local storage for %s, "
974 "shared library %s:\n%s"),
975 target_pid_to_str (ptid),
976 objfile_name (objfile), ex.message);
978 error (_("Cannot find thread-local storage for %s, "
979 "executable file %s:\n%s"),
980 target_pid_to_str (ptid),
981 objfile_name (objfile), ex.message);
984 throw_exception (ex);
989 /* It wouldn't be wrong here to try a gdbarch method, too; finding
990 TLS is an ABI-specific thing. But we don't do that yet. */
992 error (_("Cannot find thread-local variables on this target"));
998 target_xfer_status_to_string (enum target_xfer_status err)
1000 #define CASE(X) case X: return #X
1003 CASE(TARGET_XFER_E_IO);
1004 CASE(TARGET_XFER_E_UNAVAILABLE);
1013 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1015 /* target_read_string -- read a null terminated string, up to LEN bytes,
1016 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1017 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1018 is responsible for freeing it. Return the number of bytes successfully
1022 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1024 int tlen, offset, i;
1028 int buffer_allocated;
1030 unsigned int nbytes_read = 0;
1032 gdb_assert (string);
1034 /* Small for testing. */
1035 buffer_allocated = 4;
1036 buffer = xmalloc (buffer_allocated);
1041 tlen = MIN (len, 4 - (memaddr & 3));
1042 offset = memaddr & 3;
1044 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1047 /* The transfer request might have crossed the boundary to an
1048 unallocated region of memory. Retry the transfer, requesting
1052 errcode = target_read_memory (memaddr, buf, 1);
1057 if (bufptr - buffer + tlen > buffer_allocated)
1061 bytes = bufptr - buffer;
1062 buffer_allocated *= 2;
1063 buffer = xrealloc (buffer, buffer_allocated);
1064 bufptr = buffer + bytes;
1067 for (i = 0; i < tlen; i++)
1069 *bufptr++ = buf[i + offset];
1070 if (buf[i + offset] == '\000')
1072 nbytes_read += i + 1;
1079 nbytes_read += tlen;
1088 struct target_section_table *
1089 target_get_section_table (struct target_ops *target)
1091 struct target_ops *t;
1094 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1096 for (t = target; t != NULL; t = t->beneath)
1097 if (t->to_get_section_table != NULL)
1098 return (*t->to_get_section_table) (t);
1103 /* Find a section containing ADDR. */
1105 struct target_section *
1106 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1108 struct target_section_table *table = target_get_section_table (target);
1109 struct target_section *secp;
1114 for (secp = table->sections; secp < table->sections_end; secp++)
1116 if (addr >= secp->addr && addr < secp->endaddr)
1122 /* Read memory from the live target, even if currently inspecting a
1123 traceframe. The return is the same as that of target_read. */
1125 static enum target_xfer_status
1126 target_read_live_memory (enum target_object object,
1127 ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
1128 ULONGEST *xfered_len)
1130 enum target_xfer_status ret;
1131 struct cleanup *cleanup;
1133 /* Switch momentarily out of tfind mode so to access live memory.
1134 Note that this must not clear global state, such as the frame
1135 cache, which must still remain valid for the previous traceframe.
1136 We may be _building_ the frame cache at this point. */
1137 cleanup = make_cleanup_restore_traceframe_number ();
1138 set_traceframe_number (-1);
1140 ret = target_xfer_partial (current_target.beneath, object, NULL,
1141 myaddr, NULL, memaddr, len, xfered_len);
1143 do_cleanups (cleanup);
1147 /* Using the set of read-only target sections of OPS, read live
1148 read-only memory. Note that the actual reads start from the
1149 top-most target again.
1151 For interface/parameters/return description see target.h,
1154 static enum target_xfer_status
1155 memory_xfer_live_readonly_partial (struct target_ops *ops,
1156 enum target_object object,
1157 gdb_byte *readbuf, ULONGEST memaddr,
1158 ULONGEST len, ULONGEST *xfered_len)
1160 struct target_section *secp;
1161 struct target_section_table *table;
1163 secp = target_section_by_addr (ops, memaddr);
1165 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1166 secp->the_bfd_section)
1169 struct target_section *p;
1170 ULONGEST memend = memaddr + len;
1172 table = target_get_section_table (ops);
1174 for (p = table->sections; p < table->sections_end; p++)
1176 if (memaddr >= p->addr)
1178 if (memend <= p->endaddr)
1180 /* Entire transfer is within this section. */
1181 return target_read_live_memory (object, memaddr,
1182 readbuf, len, xfered_len);
1184 else if (memaddr >= p->endaddr)
1186 /* This section ends before the transfer starts. */
1191 /* This section overlaps the transfer. Just do half. */
1192 len = p->endaddr - memaddr;
1193 return target_read_live_memory (object, memaddr,
1194 readbuf, len, xfered_len);
1200 return TARGET_XFER_EOF;
1203 /* Read memory from more than one valid target. A core file, for
1204 instance, could have some of memory but delegate other bits to
1205 the target below it. So, we must manually try all targets. */
1207 static enum target_xfer_status
1208 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1209 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1210 ULONGEST *xfered_len)
1212 enum target_xfer_status res;
1216 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1217 readbuf, writebuf, memaddr, len,
1219 if (res == TARGET_XFER_OK)
1222 /* Stop if the target reports that the memory is not available. */
1223 if (res == TARGET_XFER_E_UNAVAILABLE)
1226 /* We want to continue past core files to executables, but not
1227 past a running target's memory. */
1228 if (ops->to_has_all_memory (ops))
1233 while (ops != NULL);
1238 /* Perform a partial memory transfer.
1239 For docs see target.h, to_xfer_partial. */
1241 static enum target_xfer_status
1242 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1243 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1244 ULONGEST len, ULONGEST *xfered_len)
1246 enum target_xfer_status res;
1248 struct mem_region *region;
1249 struct inferior *inf;
1251 /* For accesses to unmapped overlay sections, read directly from
1252 files. Must do this first, as MEMADDR may need adjustment. */
1253 if (readbuf != NULL && overlay_debugging)
1255 struct obj_section *section = find_pc_overlay (memaddr);
1257 if (pc_in_unmapped_range (memaddr, section))
1259 struct target_section_table *table
1260 = target_get_section_table (ops);
1261 const char *section_name = section->the_bfd_section->name;
1263 memaddr = overlay_mapped_address (memaddr, section);
1264 return section_table_xfer_memory_partial (readbuf, writebuf,
1265 memaddr, len, xfered_len,
1267 table->sections_end,
1272 /* Try the executable files, if "trust-readonly-sections" is set. */
1273 if (readbuf != NULL && trust_readonly)
1275 struct target_section *secp;
1276 struct target_section_table *table;
1278 secp = target_section_by_addr (ops, memaddr);
1280 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1281 secp->the_bfd_section)
1284 table = target_get_section_table (ops);
1285 return section_table_xfer_memory_partial (readbuf, writebuf,
1286 memaddr, len, xfered_len,
1288 table->sections_end,
1293 /* If reading unavailable memory in the context of traceframes, and
1294 this address falls within a read-only section, fallback to
1295 reading from live memory. */
1296 if (readbuf != NULL && get_traceframe_number () != -1)
1298 VEC(mem_range_s) *available;
1300 /* If we fail to get the set of available memory, then the
1301 target does not support querying traceframe info, and so we
1302 attempt reading from the traceframe anyway (assuming the
1303 target implements the old QTro packet then). */
1304 if (traceframe_available_memory (&available, memaddr, len))
1306 struct cleanup *old_chain;
1308 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1310 if (VEC_empty (mem_range_s, available)
1311 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1313 /* Don't read into the traceframe's available
1315 if (!VEC_empty (mem_range_s, available))
1317 LONGEST oldlen = len;
1319 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1320 gdb_assert (len <= oldlen);
1323 do_cleanups (old_chain);
1325 /* This goes through the topmost target again. */
1326 res = memory_xfer_live_readonly_partial (ops, object,
1329 if (res == TARGET_XFER_OK)
1330 return TARGET_XFER_OK;
1333 /* No use trying further, we know some memory starting
1334 at MEMADDR isn't available. */
1336 return TARGET_XFER_E_UNAVAILABLE;
1340 /* Don't try to read more than how much is available, in
1341 case the target implements the deprecated QTro packet to
1342 cater for older GDBs (the target's knowledge of read-only
1343 sections may be outdated by now). */
1344 len = VEC_index (mem_range_s, available, 0)->length;
1346 do_cleanups (old_chain);
1350 /* Try GDB's internal data cache. */
1351 region = lookup_mem_region (memaddr);
1352 /* region->hi == 0 means there's no upper bound. */
1353 if (memaddr + len < region->hi || region->hi == 0)
1356 reg_len = region->hi - memaddr;
1358 switch (region->attrib.mode)
1361 if (writebuf != NULL)
1362 return TARGET_XFER_E_IO;
1366 if (readbuf != NULL)
1367 return TARGET_XFER_E_IO;
1371 /* We only support writing to flash during "load" for now. */
1372 if (writebuf != NULL)
1373 error (_("Writing to flash memory forbidden in this context"));
1377 return TARGET_XFER_E_IO;
1380 if (!ptid_equal (inferior_ptid, null_ptid))
1381 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1386 /* The dcache reads whole cache lines; that doesn't play well
1387 with reading from a trace buffer, because reading outside of
1388 the collected memory range fails. */
1389 && get_traceframe_number () == -1
1390 && (region->attrib.cache
1391 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1392 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1394 DCACHE *dcache = target_dcache_get_or_init ();
1397 if (readbuf != NULL)
1398 l = dcache_xfer_memory (ops, dcache, memaddr, readbuf, reg_len, 0);
1400 /* FIXME drow/2006-08-09: If we're going to preserve const
1401 correctness dcache_xfer_memory should take readbuf and
1403 l = dcache_xfer_memory (ops, dcache, memaddr, (void *) writebuf,
1406 return TARGET_XFER_E_IO;
1409 *xfered_len = (ULONGEST) l;
1410 return TARGET_XFER_OK;
1414 /* If none of those methods found the memory we wanted, fall back
1415 to a target partial transfer. Normally a single call to
1416 to_xfer_partial is enough; if it doesn't recognize an object
1417 it will call the to_xfer_partial of the next target down.
1418 But for memory this won't do. Memory is the only target
1419 object which can be read from more than one valid target.
1420 A core file, for instance, could have some of memory but
1421 delegate other bits to the target below it. So, we must
1422 manually try all targets. */
1424 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1427 /* Make sure the cache gets updated no matter what - if we are writing
1428 to the stack. Even if this write is not tagged as such, we still need
1429 to update the cache. */
1431 if (res == TARGET_XFER_OK
1434 && target_dcache_init_p ()
1435 && !region->attrib.cache
1436 && ((stack_cache_enabled_p () && object != TARGET_OBJECT_STACK_MEMORY)
1437 || (code_cache_enabled_p () && object != TARGET_OBJECT_CODE_MEMORY)))
1439 DCACHE *dcache = target_dcache_get ();
1441 dcache_update (dcache, memaddr, (void *) writebuf, reg_len);
1444 /* If we still haven't got anything, return the last error. We
1449 /* Perform a partial memory transfer. For docs see target.h,
1452 static enum target_xfer_status
1453 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1454 gdb_byte *readbuf, const gdb_byte *writebuf,
1455 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1457 enum target_xfer_status res;
1459 /* Zero length requests are ok and require no work. */
1461 return TARGET_XFER_EOF;
1463 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1464 breakpoint insns, thus hiding out from higher layers whether
1465 there are software breakpoints inserted in the code stream. */
1466 if (readbuf != NULL)
1468 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1471 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1472 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1477 struct cleanup *old_chain;
1479 /* A large write request is likely to be partially satisfied
1480 by memory_xfer_partial_1. We will continually malloc
1481 and free a copy of the entire write request for breakpoint
1482 shadow handling even though we only end up writing a small
1483 subset of it. Cap writes to 4KB to mitigate this. */
1484 len = min (4096, len);
1486 buf = xmalloc (len);
1487 old_chain = make_cleanup (xfree, buf);
1488 memcpy (buf, writebuf, len);
1490 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1491 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1494 do_cleanups (old_chain);
1501 restore_show_memory_breakpoints (void *arg)
1503 show_memory_breakpoints = (uintptr_t) arg;
1507 make_show_memory_breakpoints_cleanup (int show)
1509 int current = show_memory_breakpoints;
1511 show_memory_breakpoints = show;
1512 return make_cleanup (restore_show_memory_breakpoints,
1513 (void *) (uintptr_t) current);
1516 /* For docs see target.h, to_xfer_partial. */
1518 enum target_xfer_status
1519 target_xfer_partial (struct target_ops *ops,
1520 enum target_object object, const char *annex,
1521 gdb_byte *readbuf, const gdb_byte *writebuf,
1522 ULONGEST offset, ULONGEST len,
1523 ULONGEST *xfered_len)
1525 enum target_xfer_status retval;
1527 gdb_assert (ops->to_xfer_partial != NULL);
1529 /* Transfer is done when LEN is zero. */
1531 return TARGET_XFER_EOF;
1533 if (writebuf && !may_write_memory)
1534 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1535 core_addr_to_string_nz (offset), plongest (len));
1539 /* If this is a memory transfer, let the memory-specific code
1540 have a look at it instead. Memory transfers are more
1542 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1543 || object == TARGET_OBJECT_CODE_MEMORY)
1544 retval = memory_xfer_partial (ops, object, readbuf,
1545 writebuf, offset, len, xfered_len);
1546 else if (object == TARGET_OBJECT_RAW_MEMORY)
1548 /* Request the normal memory object from other layers. */
1549 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1553 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1554 writebuf, offset, len, xfered_len);
1558 const unsigned char *myaddr = NULL;
1560 fprintf_unfiltered (gdb_stdlog,
1561 "%s:target_xfer_partial "
1562 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1565 (annex ? annex : "(null)"),
1566 host_address_to_string (readbuf),
1567 host_address_to_string (writebuf),
1568 core_addr_to_string_nz (offset),
1569 pulongest (len), retval,
1570 pulongest (*xfered_len));
1576 if (retval == TARGET_XFER_OK && myaddr != NULL)
1580 fputs_unfiltered (", bytes =", gdb_stdlog);
1581 for (i = 0; i < *xfered_len; i++)
1583 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1585 if (targetdebug < 2 && i > 0)
1587 fprintf_unfiltered (gdb_stdlog, " ...");
1590 fprintf_unfiltered (gdb_stdlog, "\n");
1593 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1597 fputc_unfiltered ('\n', gdb_stdlog);
1600 /* Check implementations of to_xfer_partial update *XFERED_LEN
1601 properly. Do assertion after printing debug messages, so that we
1602 can find more clues on assertion failure from debugging messages. */
1603 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_E_UNAVAILABLE)
1604 gdb_assert (*xfered_len > 0);
1609 /* Read LEN bytes of target memory at address MEMADDR, placing the
1610 results in GDB's memory at MYADDR. Returns either 0 for success or
1611 TARGET_XFER_E_IO if any error occurs.
1613 If an error occurs, no guarantee is made about the contents of the data at
1614 MYADDR. In particular, the caller should not depend upon partial reads
1615 filling the buffer with good data. There is no way for the caller to know
1616 how much good data might have been transfered anyway. Callers that can
1617 deal with partial reads should call target_read (which will retry until
1618 it makes no progress, and then return how much was transferred). */
1621 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1623 /* Dispatch to the topmost target, not the flattened current_target.
1624 Memory accesses check target->to_has_(all_)memory, and the
1625 flattened target doesn't inherit those. */
1626 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1627 myaddr, memaddr, len) == len)
1630 return TARGET_XFER_E_IO;
1633 /* Like target_read_memory, but specify explicitly that this is a read
1634 from the target's raw memory. That is, this read bypasses the
1635 dcache, breakpoint shadowing, etc. */
1638 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1640 /* See comment in target_read_memory about why the request starts at
1641 current_target.beneath. */
1642 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1643 myaddr, memaddr, len) == len)
1646 return TARGET_XFER_E_IO;
1649 /* Like target_read_memory, but specify explicitly that this is a read from
1650 the target's stack. This may trigger different cache behavior. */
1653 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1655 /* See comment in target_read_memory about why the request starts at
1656 current_target.beneath. */
1657 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1658 myaddr, memaddr, len) == len)
1661 return TARGET_XFER_E_IO;
1664 /* Like target_read_memory, but specify explicitly that this is a read from
1665 the target's code. This may trigger different cache behavior. */
1668 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1670 /* See comment in target_read_memory about why the request starts at
1671 current_target.beneath. */
1672 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1673 myaddr, memaddr, len) == len)
1676 return TARGET_XFER_E_IO;
1679 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1680 Returns either 0 for success or TARGET_XFER_E_IO if any
1681 error occurs. If an error occurs, no guarantee is made about how
1682 much data got written. Callers that can deal with partial writes
1683 should call target_write. */
1686 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1688 /* See comment in target_read_memory about why the request starts at
1689 current_target.beneath. */
1690 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1691 myaddr, memaddr, len) == len)
1694 return TARGET_XFER_E_IO;
1697 /* Write LEN bytes from MYADDR to target raw memory at address
1698 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1699 if any error occurs. If an error occurs, no guarantee is made
1700 about how much data got written. Callers that can deal with
1701 partial writes should call target_write. */
1704 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1706 /* See comment in target_read_memory about why the request starts at
1707 current_target.beneath. */
1708 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1709 myaddr, memaddr, len) == len)
1712 return TARGET_XFER_E_IO;
1715 /* Fetch the target's memory map. */
1718 target_memory_map (void)
1720 VEC(mem_region_s) *result;
1721 struct mem_region *last_one, *this_one;
1723 struct target_ops *t;
1726 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1728 for (t = current_target.beneath; t != NULL; t = t->beneath)
1729 if (t->to_memory_map != NULL)
1735 result = t->to_memory_map (t);
1739 qsort (VEC_address (mem_region_s, result),
1740 VEC_length (mem_region_s, result),
1741 sizeof (struct mem_region), mem_region_cmp);
1743 /* Check that regions do not overlap. Simultaneously assign
1744 a numbering for the "mem" commands to use to refer to
1747 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1749 this_one->number = ix;
1751 if (last_one && last_one->hi > this_one->lo)
1753 warning (_("Overlapping regions in memory map: ignoring"));
1754 VEC_free (mem_region_s, result);
1757 last_one = this_one;
1764 target_flash_erase (ULONGEST address, LONGEST length)
1766 struct target_ops *t;
1768 for (t = current_target.beneath; t != NULL; t = t->beneath)
1769 if (t->to_flash_erase != NULL)
1772 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1773 hex_string (address), phex (length, 0));
1774 t->to_flash_erase (t, address, length);
1782 target_flash_done (void)
1784 struct target_ops *t;
1786 for (t = current_target.beneath; t != NULL; t = t->beneath)
1787 if (t->to_flash_done != NULL)
1790 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1791 t->to_flash_done (t);
1799 show_trust_readonly (struct ui_file *file, int from_tty,
1800 struct cmd_list_element *c, const char *value)
1802 fprintf_filtered (file,
1803 _("Mode for reading from readonly sections is %s.\n"),
1807 /* More generic transfers. */
1809 static enum target_xfer_status
1810 default_xfer_partial (struct target_ops *ops, enum target_object object,
1811 const char *annex, gdb_byte *readbuf,
1812 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
1813 ULONGEST *xfered_len)
1815 if (object == TARGET_OBJECT_MEMORY
1816 && ops->deprecated_xfer_memory != NULL)
1817 /* If available, fall back to the target's
1818 "deprecated_xfer_memory" method. */
1823 if (writebuf != NULL)
1825 void *buffer = xmalloc (len);
1826 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1828 memcpy (buffer, writebuf, len);
1829 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1830 1/*write*/, NULL, ops);
1831 do_cleanups (cleanup);
1833 if (readbuf != NULL)
1834 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1835 0/*read*/, NULL, ops);
1838 *xfered_len = (ULONGEST) xfered;
1839 return TARGET_XFER_E_IO;
1841 else if (xfered == 0 && errno == 0)
1842 /* "deprecated_xfer_memory" uses 0, cross checked against
1843 ERRNO as one indication of an error. */
1844 return TARGET_XFER_EOF;
1846 return TARGET_XFER_E_IO;
1850 gdb_assert (ops->beneath != NULL);
1851 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1852 readbuf, writebuf, offset, len,
1857 /* Target vector read/write partial wrapper functions. */
1859 static enum target_xfer_status
1860 target_read_partial (struct target_ops *ops,
1861 enum target_object object,
1862 const char *annex, gdb_byte *buf,
1863 ULONGEST offset, ULONGEST len,
1864 ULONGEST *xfered_len)
1866 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1870 static enum target_xfer_status
1871 target_write_partial (struct target_ops *ops,
1872 enum target_object object,
1873 const char *annex, const gdb_byte *buf,
1874 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1876 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1880 /* Wrappers to perform the full transfer. */
1882 /* For docs on target_read see target.h. */
1885 target_read (struct target_ops *ops,
1886 enum target_object object,
1887 const char *annex, gdb_byte *buf,
1888 ULONGEST offset, LONGEST len)
1892 while (xfered < len)
1894 ULONGEST xfered_len;
1895 enum target_xfer_status status;
1897 status = target_read_partial (ops, object, annex,
1898 (gdb_byte *) buf + xfered,
1899 offset + xfered, len - xfered,
1902 /* Call an observer, notifying them of the xfer progress? */
1903 if (status == TARGET_XFER_EOF)
1905 else if (status == TARGET_XFER_OK)
1907 xfered += xfered_len;
1917 /* Assuming that the entire [begin, end) range of memory cannot be
1918 read, try to read whatever subrange is possible to read.
1920 The function returns, in RESULT, either zero or one memory block.
1921 If there's a readable subrange at the beginning, it is completely
1922 read and returned. Any further readable subrange will not be read.
1923 Otherwise, if there's a readable subrange at the end, it will be
1924 completely read and returned. Any readable subranges before it
1925 (obviously, not starting at the beginning), will be ignored. In
1926 other cases -- either no readable subrange, or readable subrange(s)
1927 that is neither at the beginning, or end, nothing is returned.
1929 The purpose of this function is to handle a read across a boundary
1930 of accessible memory in a case when memory map is not available.
1931 The above restrictions are fine for this case, but will give
1932 incorrect results if the memory is 'patchy'. However, supporting
1933 'patchy' memory would require trying to read every single byte,
1934 and it seems unacceptable solution. Explicit memory map is
1935 recommended for this case -- and target_read_memory_robust will
1936 take care of reading multiple ranges then. */
1939 read_whatever_is_readable (struct target_ops *ops,
1940 ULONGEST begin, ULONGEST end,
1941 VEC(memory_read_result_s) **result)
1943 gdb_byte *buf = xmalloc (end - begin);
1944 ULONGEST current_begin = begin;
1945 ULONGEST current_end = end;
1947 memory_read_result_s r;
1948 ULONGEST xfered_len;
1950 /* If we previously failed to read 1 byte, nothing can be done here. */
1951 if (end - begin <= 1)
1957 /* Check that either first or the last byte is readable, and give up
1958 if not. This heuristic is meant to permit reading accessible memory
1959 at the boundary of accessible region. */
1960 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1961 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1966 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1967 buf + (end-begin) - 1, end - 1, 1,
1968 &xfered_len) == TARGET_XFER_OK)
1979 /* Loop invariant is that the [current_begin, current_end) was previously
1980 found to be not readable as a whole.
1982 Note loop condition -- if the range has 1 byte, we can't divide the range
1983 so there's no point trying further. */
1984 while (current_end - current_begin > 1)
1986 ULONGEST first_half_begin, first_half_end;
1987 ULONGEST second_half_begin, second_half_end;
1989 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1993 first_half_begin = current_begin;
1994 first_half_end = middle;
1995 second_half_begin = middle;
1996 second_half_end = current_end;
2000 first_half_begin = middle;
2001 first_half_end = current_end;
2002 second_half_begin = current_begin;
2003 second_half_end = middle;
2006 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2007 buf + (first_half_begin - begin),
2009 first_half_end - first_half_begin);
2011 if (xfer == first_half_end - first_half_begin)
2013 /* This half reads up fine. So, the error must be in the
2015 current_begin = second_half_begin;
2016 current_end = second_half_end;
2020 /* This half is not readable. Because we've tried one byte, we
2021 know some part of this half if actually redable. Go to the next
2022 iteration to divide again and try to read.
2024 We don't handle the other half, because this function only tries
2025 to read a single readable subrange. */
2026 current_begin = first_half_begin;
2027 current_end = first_half_end;
2033 /* The [begin, current_begin) range has been read. */
2035 r.end = current_begin;
2040 /* The [current_end, end) range has been read. */
2041 LONGEST rlen = end - current_end;
2043 r.data = xmalloc (rlen);
2044 memcpy (r.data, buf + current_end - begin, rlen);
2045 r.begin = current_end;
2049 VEC_safe_push(memory_read_result_s, (*result), &r);
2053 free_memory_read_result_vector (void *x)
2055 VEC(memory_read_result_s) *v = x;
2056 memory_read_result_s *current;
2059 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2061 xfree (current->data);
2063 VEC_free (memory_read_result_s, v);
2066 VEC(memory_read_result_s) *
2067 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2069 VEC(memory_read_result_s) *result = 0;
2072 while (xfered < len)
2074 struct mem_region *region = lookup_mem_region (offset + xfered);
2077 /* If there is no explicit region, a fake one should be created. */
2078 gdb_assert (region);
2080 if (region->hi == 0)
2081 rlen = len - xfered;
2083 rlen = region->hi - offset;
2085 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2087 /* Cannot read this region. Note that we can end up here only
2088 if the region is explicitly marked inaccessible, or
2089 'inaccessible-by-default' is in effect. */
2094 LONGEST to_read = min (len - xfered, rlen);
2095 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2097 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2098 (gdb_byte *) buffer,
2099 offset + xfered, to_read);
2100 /* Call an observer, notifying them of the xfer progress? */
2103 /* Got an error reading full chunk. See if maybe we can read
2106 read_whatever_is_readable (ops, offset + xfered,
2107 offset + xfered + to_read, &result);
2112 struct memory_read_result r;
2114 r.begin = offset + xfered;
2115 r.end = r.begin + xfer;
2116 VEC_safe_push (memory_read_result_s, result, &r);
2126 /* An alternative to target_write with progress callbacks. */
2129 target_write_with_progress (struct target_ops *ops,
2130 enum target_object object,
2131 const char *annex, const gdb_byte *buf,
2132 ULONGEST offset, LONGEST len,
2133 void (*progress) (ULONGEST, void *), void *baton)
2137 /* Give the progress callback a chance to set up. */
2139 (*progress) (0, baton);
2141 while (xfered < len)
2143 ULONGEST xfered_len;
2144 enum target_xfer_status status;
2146 status = target_write_partial (ops, object, annex,
2147 (gdb_byte *) buf + xfered,
2148 offset + xfered, len - xfered,
2151 if (status == TARGET_XFER_EOF)
2153 if (TARGET_XFER_STATUS_ERROR_P (status))
2156 gdb_assert (status == TARGET_XFER_OK);
2158 (*progress) (xfered_len, baton);
2160 xfered += xfered_len;
2166 /* For docs on target_write see target.h. */
2169 target_write (struct target_ops *ops,
2170 enum target_object object,
2171 const char *annex, const gdb_byte *buf,
2172 ULONGEST offset, LONGEST len)
2174 return target_write_with_progress (ops, object, annex, buf, offset, len,
2178 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2179 the size of the transferred data. PADDING additional bytes are
2180 available in *BUF_P. This is a helper function for
2181 target_read_alloc; see the declaration of that function for more
2185 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2186 const char *annex, gdb_byte **buf_p, int padding)
2188 size_t buf_alloc, buf_pos;
2191 /* This function does not have a length parameter; it reads the
2192 entire OBJECT). Also, it doesn't support objects fetched partly
2193 from one target and partly from another (in a different stratum,
2194 e.g. a core file and an executable). Both reasons make it
2195 unsuitable for reading memory. */
2196 gdb_assert (object != TARGET_OBJECT_MEMORY);
2198 /* Start by reading up to 4K at a time. The target will throttle
2199 this number down if necessary. */
2201 buf = xmalloc (buf_alloc);
2205 ULONGEST xfered_len;
2206 enum target_xfer_status status;
2208 status = target_read_partial (ops, object, annex, &buf[buf_pos],
2209 buf_pos, buf_alloc - buf_pos - padding,
2212 if (status == TARGET_XFER_EOF)
2214 /* Read all there was. */
2221 else if (status != TARGET_XFER_OK)
2223 /* An error occurred. */
2225 return TARGET_XFER_E_IO;
2228 buf_pos += xfered_len;
2230 /* If the buffer is filling up, expand it. */
2231 if (buf_alloc < buf_pos * 2)
2234 buf = xrealloc (buf, buf_alloc);
2241 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2242 the size of the transferred data. See the declaration in "target.h"
2243 function for more information about the return value. */
2246 target_read_alloc (struct target_ops *ops, enum target_object object,
2247 const char *annex, gdb_byte **buf_p)
2249 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2252 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2253 returned as a string, allocated using xmalloc. If an error occurs
2254 or the transfer is unsupported, NULL is returned. Empty objects
2255 are returned as allocated but empty strings. A warning is issued
2256 if the result contains any embedded NUL bytes. */
2259 target_read_stralloc (struct target_ops *ops, enum target_object object,
2264 LONGEST i, transferred;
2266 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2267 bufstr = (char *) buffer;
2269 if (transferred < 0)
2272 if (transferred == 0)
2273 return xstrdup ("");
2275 bufstr[transferred] = 0;
2277 /* Check for embedded NUL bytes; but allow trailing NULs. */
2278 for (i = strlen (bufstr); i < transferred; i++)
2281 warning (_("target object %d, annex %s, "
2282 "contained unexpected null characters"),
2283 (int) object, annex ? annex : "(none)");
2290 /* Memory transfer methods. */
2293 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2296 /* This method is used to read from an alternate, non-current
2297 target. This read must bypass the overlay support (as symbols
2298 don't match this target), and GDB's internal cache (wrong cache
2299 for this target). */
2300 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2302 memory_error (TARGET_XFER_E_IO, addr);
2306 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2307 int len, enum bfd_endian byte_order)
2309 gdb_byte buf[sizeof (ULONGEST)];
2311 gdb_assert (len <= sizeof (buf));
2312 get_target_memory (ops, addr, buf, len);
2313 return extract_unsigned_integer (buf, len, byte_order);
2319 target_insert_breakpoint (struct gdbarch *gdbarch,
2320 struct bp_target_info *bp_tgt)
2322 if (!may_insert_breakpoints)
2324 warning (_("May not insert breakpoints"));
2328 return current_target.to_insert_breakpoint (¤t_target,
2335 target_remove_breakpoint (struct gdbarch *gdbarch,
2336 struct bp_target_info *bp_tgt)
2338 /* This is kind of a weird case to handle, but the permission might
2339 have been changed after breakpoints were inserted - in which case
2340 we should just take the user literally and assume that any
2341 breakpoints should be left in place. */
2342 if (!may_insert_breakpoints)
2344 warning (_("May not remove breakpoints"));
2348 return current_target.to_remove_breakpoint (¤t_target,
2353 target_info (char *args, int from_tty)
2355 struct target_ops *t;
2356 int has_all_mem = 0;
2358 if (symfile_objfile != NULL)
2359 printf_unfiltered (_("Symbols from \"%s\".\n"),
2360 objfile_name (symfile_objfile));
2362 for (t = target_stack; t != NULL; t = t->beneath)
2364 if (!(*t->to_has_memory) (t))
2367 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2370 printf_unfiltered (_("\tWhile running this, "
2371 "GDB does not access memory from...\n"));
2372 printf_unfiltered ("%s:\n", t->to_longname);
2373 (t->to_files_info) (t);
2374 has_all_mem = (*t->to_has_all_memory) (t);
2378 /* This function is called before any new inferior is created, e.g.
2379 by running a program, attaching, or connecting to a target.
2380 It cleans up any state from previous invocations which might
2381 change between runs. This is a subset of what target_preopen
2382 resets (things which might change between targets). */
2385 target_pre_inferior (int from_tty)
2387 /* Clear out solib state. Otherwise the solib state of the previous
2388 inferior might have survived and is entirely wrong for the new
2389 target. This has been observed on GNU/Linux using glibc 2.3. How
2401 Cannot access memory at address 0xdeadbeef
2404 /* In some OSs, the shared library list is the same/global/shared
2405 across inferiors. If code is shared between processes, so are
2406 memory regions and features. */
2407 if (!gdbarch_has_global_solist (target_gdbarch ()))
2409 no_shared_libraries (NULL, from_tty);
2411 invalidate_target_mem_regions ();
2413 target_clear_description ();
2416 agent_capability_invalidate ();
2419 /* Callback for iterate_over_inferiors. Gets rid of the given
2423 dispose_inferior (struct inferior *inf, void *args)
2425 struct thread_info *thread;
2427 thread = any_thread_of_process (inf->pid);
2430 switch_to_thread (thread->ptid);
2432 /* Core inferiors actually should be detached, not killed. */
2433 if (target_has_execution)
2436 target_detach (NULL, 0);
2442 /* This is to be called by the open routine before it does
2446 target_preopen (int from_tty)
2450 if (have_inferiors ())
2453 || !have_live_inferiors ()
2454 || query (_("A program is being debugged already. Kill it? ")))
2455 iterate_over_inferiors (dispose_inferior, NULL);
2457 error (_("Program not killed."));
2460 /* Calling target_kill may remove the target from the stack. But if
2461 it doesn't (which seems like a win for UDI), remove it now. */
2462 /* Leave the exec target, though. The user may be switching from a
2463 live process to a core of the same program. */
2464 pop_all_targets_above (file_stratum);
2466 target_pre_inferior (from_tty);
2469 /* Detach a target after doing deferred register stores. */
2472 target_detach (const char *args, int from_tty)
2474 struct target_ops* t;
2476 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2477 /* Don't remove global breakpoints here. They're removed on
2478 disconnection from the target. */
2481 /* If we're in breakpoints-always-inserted mode, have to remove
2482 them before detaching. */
2483 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2485 prepare_for_detach ();
2487 current_target.to_detach (¤t_target, args, from_tty);
2489 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2494 target_disconnect (char *args, int from_tty)
2496 struct target_ops *t;
2498 /* If we're in breakpoints-always-inserted mode or if breakpoints
2499 are global across processes, we have to remove them before
2501 remove_breakpoints ();
2503 for (t = current_target.beneath; t != NULL; t = t->beneath)
2504 if (t->to_disconnect != NULL)
2507 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2509 t->to_disconnect (t, args, from_tty);
2517 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2519 struct target_ops *t;
2520 ptid_t retval = (current_target.to_wait) (¤t_target, ptid,
2525 char *status_string;
2526 char *options_string;
2528 status_string = target_waitstatus_to_string (status);
2529 options_string = target_options_to_string (options);
2530 fprintf_unfiltered (gdb_stdlog,
2531 "target_wait (%d, status, options={%s})"
2533 ptid_get_pid (ptid), options_string,
2534 ptid_get_pid (retval), status_string);
2535 xfree (status_string);
2536 xfree (options_string);
2543 target_pid_to_str (ptid_t ptid)
2545 return (*current_target.to_pid_to_str) (¤t_target, ptid);
2549 target_thread_name (struct thread_info *info)
2551 return current_target.to_thread_name (¤t_target, info);
2555 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2557 struct target_ops *t;
2559 target_dcache_invalidate ();
2561 current_target.to_resume (¤t_target, ptid, step, signal);
2563 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2564 ptid_get_pid (ptid),
2565 step ? "step" : "continue",
2566 gdb_signal_to_name (signal));
2568 registers_changed_ptid (ptid);
2569 set_executing (ptid, 1);
2570 set_running (ptid, 1);
2571 clear_inline_frame_state (ptid);
2575 target_pass_signals (int numsigs, unsigned char *pass_signals)
2581 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2584 for (i = 0; i < numsigs; i++)
2585 if (pass_signals[i])
2586 fprintf_unfiltered (gdb_stdlog, " %s",
2587 gdb_signal_to_name (i));
2589 fprintf_unfiltered (gdb_stdlog, " })\n");
2592 (*current_target.to_pass_signals) (¤t_target, numsigs, pass_signals);
2596 target_program_signals (int numsigs, unsigned char *program_signals)
2602 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2605 for (i = 0; i < numsigs; i++)
2606 if (program_signals[i])
2607 fprintf_unfiltered (gdb_stdlog, " %s",
2608 gdb_signal_to_name (i));
2610 fprintf_unfiltered (gdb_stdlog, " })\n");
2613 (*current_target.to_program_signals) (¤t_target,
2614 numsigs, program_signals);
2618 default_follow_fork (struct target_ops *self, int follow_child,
2621 /* Some target returned a fork event, but did not know how to follow it. */
2622 internal_error (__FILE__, __LINE__,
2623 _("could not find a target to follow fork"));
2626 /* Look through the list of possible targets for a target that can
2630 target_follow_fork (int follow_child, int detach_fork)
2632 int retval = current_target.to_follow_fork (¤t_target,
2633 follow_child, detach_fork);
2636 fprintf_unfiltered (gdb_stdlog,
2637 "target_follow_fork (%d, %d) = %d\n",
2638 follow_child, detach_fork, retval);
2643 default_mourn_inferior (struct target_ops *self)
2645 internal_error (__FILE__, __LINE__,
2646 _("could not find a target to follow mourn inferior"));
2650 target_mourn_inferior (void)
2652 current_target.to_mourn_inferior (¤t_target);
2654 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2656 /* We no longer need to keep handles on any of the object files.
2657 Make sure to release them to avoid unnecessarily locking any
2658 of them while we're not actually debugging. */
2659 bfd_cache_close_all ();
2662 /* Look for a target which can describe architectural features, starting
2663 from TARGET. If we find one, return its description. */
2665 const struct target_desc *
2666 target_read_description (struct target_ops *target)
2668 struct target_ops *t;
2670 for (t = target; t != NULL; t = t->beneath)
2671 if (t->to_read_description != NULL)
2673 const struct target_desc *tdesc;
2675 tdesc = t->to_read_description (t);
2683 /* The default implementation of to_search_memory.
2684 This implements a basic search of memory, reading target memory and
2685 performing the search here (as opposed to performing the search in on the
2686 target side with, for example, gdbserver). */
2689 simple_search_memory (struct target_ops *ops,
2690 CORE_ADDR start_addr, ULONGEST search_space_len,
2691 const gdb_byte *pattern, ULONGEST pattern_len,
2692 CORE_ADDR *found_addrp)
2694 /* NOTE: also defined in find.c testcase. */
2695 #define SEARCH_CHUNK_SIZE 16000
2696 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2697 /* Buffer to hold memory contents for searching. */
2698 gdb_byte *search_buf;
2699 unsigned search_buf_size;
2700 struct cleanup *old_cleanups;
2702 search_buf_size = chunk_size + pattern_len - 1;
2704 /* No point in trying to allocate a buffer larger than the search space. */
2705 if (search_space_len < search_buf_size)
2706 search_buf_size = search_space_len;
2708 search_buf = malloc (search_buf_size);
2709 if (search_buf == NULL)
2710 error (_("Unable to allocate memory to perform the search."));
2711 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2713 /* Prime the search buffer. */
2715 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2716 search_buf, start_addr, search_buf_size) != search_buf_size)
2718 warning (_("Unable to access %s bytes of target "
2719 "memory at %s, halting search."),
2720 pulongest (search_buf_size), hex_string (start_addr));
2721 do_cleanups (old_cleanups);
2725 /* Perform the search.
2727 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2728 When we've scanned N bytes we copy the trailing bytes to the start and
2729 read in another N bytes. */
2731 while (search_space_len >= pattern_len)
2733 gdb_byte *found_ptr;
2734 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2736 found_ptr = memmem (search_buf, nr_search_bytes,
2737 pattern, pattern_len);
2739 if (found_ptr != NULL)
2741 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2743 *found_addrp = found_addr;
2744 do_cleanups (old_cleanups);
2748 /* Not found in this chunk, skip to next chunk. */
2750 /* Don't let search_space_len wrap here, it's unsigned. */
2751 if (search_space_len >= chunk_size)
2752 search_space_len -= chunk_size;
2754 search_space_len = 0;
2756 if (search_space_len >= pattern_len)
2758 unsigned keep_len = search_buf_size - chunk_size;
2759 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2762 /* Copy the trailing part of the previous iteration to the front
2763 of the buffer for the next iteration. */
2764 gdb_assert (keep_len == pattern_len - 1);
2765 memcpy (search_buf, search_buf + chunk_size, keep_len);
2767 nr_to_read = min (search_space_len - keep_len, chunk_size);
2769 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2770 search_buf + keep_len, read_addr,
2771 nr_to_read) != nr_to_read)
2773 warning (_("Unable to access %s bytes of target "
2774 "memory at %s, halting search."),
2775 plongest (nr_to_read),
2776 hex_string (read_addr));
2777 do_cleanups (old_cleanups);
2781 start_addr += chunk_size;
2787 do_cleanups (old_cleanups);
2791 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2792 sequence of bytes in PATTERN with length PATTERN_LEN.
2794 The result is 1 if found, 0 if not found, and -1 if there was an error
2795 requiring halting of the search (e.g. memory read error).
2796 If the pattern is found the address is recorded in FOUND_ADDRP. */
2799 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2800 const gdb_byte *pattern, ULONGEST pattern_len,
2801 CORE_ADDR *found_addrp)
2803 struct target_ops *t;
2806 /* We don't use INHERIT to set current_target.to_search_memory,
2807 so we have to scan the target stack and handle targetdebug
2811 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2812 hex_string (start_addr));
2814 for (t = current_target.beneath; t != NULL; t = t->beneath)
2815 if (t->to_search_memory != NULL)
2820 found = t->to_search_memory (t, start_addr, search_space_len,
2821 pattern, pattern_len, found_addrp);
2825 /* If a special version of to_search_memory isn't available, use the
2827 found = simple_search_memory (current_target.beneath,
2828 start_addr, search_space_len,
2829 pattern, pattern_len, found_addrp);
2833 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2838 /* Look through the currently pushed targets. If none of them will
2839 be able to restart the currently running process, issue an error
2843 target_require_runnable (void)
2845 struct target_ops *t;
2847 for (t = target_stack; t != NULL; t = t->beneath)
2849 /* If this target knows how to create a new program, then
2850 assume we will still be able to after killing the current
2851 one. Either killing and mourning will not pop T, or else
2852 find_default_run_target will find it again. */
2853 if (t->to_create_inferior != NULL)
2856 /* Do not worry about thread_stratum targets that can not
2857 create inferiors. Assume they will be pushed again if
2858 necessary, and continue to the process_stratum. */
2859 if (t->to_stratum == thread_stratum
2860 || t->to_stratum == arch_stratum)
2863 error (_("The \"%s\" target does not support \"run\". "
2864 "Try \"help target\" or \"continue\"."),
2868 /* This function is only called if the target is running. In that
2869 case there should have been a process_stratum target and it
2870 should either know how to create inferiors, or not... */
2871 internal_error (__FILE__, __LINE__, _("No targets found"));
2874 /* Look through the list of possible targets for a target that can
2875 execute a run or attach command without any other data. This is
2876 used to locate the default process stratum.
2878 If DO_MESG is not NULL, the result is always valid (error() is
2879 called for errors); else, return NULL on error. */
2881 static struct target_ops *
2882 find_default_run_target (char *do_mesg)
2884 struct target_ops **t;
2885 struct target_ops *runable = NULL;
2890 for (t = target_structs; t < target_structs + target_struct_size;
2893 if ((*t)->to_can_run && target_can_run (*t))
2903 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2912 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2914 struct target_ops *t;
2916 t = find_default_run_target ("attach");
2917 (t->to_attach) (t, args, from_tty);
2922 find_default_create_inferior (struct target_ops *ops,
2923 char *exec_file, char *allargs, char **env,
2926 struct target_ops *t;
2928 t = find_default_run_target ("run");
2929 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2934 find_default_can_async_p (struct target_ops *ignore)
2936 struct target_ops *t;
2938 /* This may be called before the target is pushed on the stack;
2939 look for the default process stratum. If there's none, gdb isn't
2940 configured with a native debugger, and target remote isn't
2942 t = find_default_run_target (NULL);
2943 if (t && t->to_can_async_p != delegate_can_async_p)
2944 return (t->to_can_async_p) (t);
2949 find_default_is_async_p (struct target_ops *ignore)
2951 struct target_ops *t;
2953 /* This may be called before the target is pushed on the stack;
2954 look for the default process stratum. If there's none, gdb isn't
2955 configured with a native debugger, and target remote isn't
2957 t = find_default_run_target (NULL);
2958 if (t && t->to_is_async_p != delegate_is_async_p)
2959 return (t->to_is_async_p) (t);
2964 find_default_supports_non_stop (struct target_ops *self)
2966 struct target_ops *t;
2968 t = find_default_run_target (NULL);
2969 if (t && t->to_supports_non_stop)
2970 return (t->to_supports_non_stop) (t);
2975 target_supports_non_stop (void)
2977 struct target_ops *t;
2979 for (t = ¤t_target; t != NULL; t = t->beneath)
2980 if (t->to_supports_non_stop)
2981 return t->to_supports_non_stop (t);
2986 /* Implement the "info proc" command. */
2989 target_info_proc (char *args, enum info_proc_what what)
2991 struct target_ops *t;
2993 /* If we're already connected to something that can get us OS
2994 related data, use it. Otherwise, try using the native
2996 if (current_target.to_stratum >= process_stratum)
2997 t = current_target.beneath;
2999 t = find_default_run_target (NULL);
3001 for (; t != NULL; t = t->beneath)
3003 if (t->to_info_proc != NULL)
3005 t->to_info_proc (t, args, what);
3008 fprintf_unfiltered (gdb_stdlog,
3009 "target_info_proc (\"%s\", %d)\n", args, what);
3019 find_default_supports_disable_randomization (struct target_ops *self)
3021 struct target_ops *t;
3023 t = find_default_run_target (NULL);
3024 if (t && t->to_supports_disable_randomization)
3025 return (t->to_supports_disable_randomization) (t);
3030 target_supports_disable_randomization (void)
3032 struct target_ops *t;
3034 for (t = ¤t_target; t != NULL; t = t->beneath)
3035 if (t->to_supports_disable_randomization)
3036 return t->to_supports_disable_randomization (t);
3042 target_get_osdata (const char *type)
3044 struct target_ops *t;
3046 /* If we're already connected to something that can get us OS
3047 related data, use it. Otherwise, try using the native
3049 if (current_target.to_stratum >= process_stratum)
3050 t = current_target.beneath;
3052 t = find_default_run_target ("get OS data");
3057 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3060 /* Determine the current address space of thread PTID. */
3062 struct address_space *
3063 target_thread_address_space (ptid_t ptid)
3065 struct address_space *aspace;
3066 struct inferior *inf;
3067 struct target_ops *t;
3069 for (t = current_target.beneath; t != NULL; t = t->beneath)
3071 if (t->to_thread_address_space != NULL)
3073 aspace = t->to_thread_address_space (t, ptid);
3074 gdb_assert (aspace);
3077 fprintf_unfiltered (gdb_stdlog,
3078 "target_thread_address_space (%s) = %d\n",
3079 target_pid_to_str (ptid),
3080 address_space_num (aspace));
3085 /* Fall-back to the "main" address space of the inferior. */
3086 inf = find_inferior_pid (ptid_get_pid (ptid));
3088 if (inf == NULL || inf->aspace == NULL)
3089 internal_error (__FILE__, __LINE__,
3090 _("Can't determine the current "
3091 "address space of thread %s\n"),
3092 target_pid_to_str (ptid));
3098 /* Target file operations. */
3100 static struct target_ops *
3101 default_fileio_target (void)
3103 /* If we're already connected to something that can perform
3104 file I/O, use it. Otherwise, try using the native target. */
3105 if (current_target.to_stratum >= process_stratum)
3106 return current_target.beneath;
3108 return find_default_run_target ("file I/O");
3111 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3112 target file descriptor, or -1 if an error occurs (and set
3115 target_fileio_open (const char *filename, int flags, int mode,
3118 struct target_ops *t;
3120 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3122 if (t->to_fileio_open != NULL)
3124 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
3127 fprintf_unfiltered (gdb_stdlog,
3128 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3129 filename, flags, mode,
3130 fd, fd != -1 ? 0 : *target_errno);
3135 *target_errno = FILEIO_ENOSYS;
3139 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3140 Return the number of bytes written, or -1 if an error occurs
3141 (and set *TARGET_ERRNO). */
3143 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3144 ULONGEST offset, int *target_errno)
3146 struct target_ops *t;
3148 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3150 if (t->to_fileio_pwrite != NULL)
3152 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
3156 fprintf_unfiltered (gdb_stdlog,
3157 "target_fileio_pwrite (%d,...,%d,%s) "
3159 fd, len, pulongest (offset),
3160 ret, ret != -1 ? 0 : *target_errno);
3165 *target_errno = FILEIO_ENOSYS;
3169 /* Read up to LEN bytes FD on the target into READ_BUF.
3170 Return the number of bytes read, or -1 if an error occurs
3171 (and set *TARGET_ERRNO). */
3173 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3174 ULONGEST offset, int *target_errno)
3176 struct target_ops *t;
3178 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3180 if (t->to_fileio_pread != NULL)
3182 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
3186 fprintf_unfiltered (gdb_stdlog,
3187 "target_fileio_pread (%d,...,%d,%s) "
3189 fd, len, pulongest (offset),
3190 ret, ret != -1 ? 0 : *target_errno);
3195 *target_errno = FILEIO_ENOSYS;
3199 /* Close FD on the target. Return 0, or -1 if an error occurs
3200 (and set *TARGET_ERRNO). */
3202 target_fileio_close (int fd, int *target_errno)
3204 struct target_ops *t;
3206 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3208 if (t->to_fileio_close != NULL)
3210 int ret = t->to_fileio_close (t, fd, target_errno);
3213 fprintf_unfiltered (gdb_stdlog,
3214 "target_fileio_close (%d) = %d (%d)\n",
3215 fd, ret, ret != -1 ? 0 : *target_errno);
3220 *target_errno = FILEIO_ENOSYS;
3224 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3225 occurs (and set *TARGET_ERRNO). */
3227 target_fileio_unlink (const char *filename, int *target_errno)
3229 struct target_ops *t;
3231 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3233 if (t->to_fileio_unlink != NULL)
3235 int ret = t->to_fileio_unlink (t, filename, target_errno);
3238 fprintf_unfiltered (gdb_stdlog,
3239 "target_fileio_unlink (%s) = %d (%d)\n",
3240 filename, ret, ret != -1 ? 0 : *target_errno);
3245 *target_errno = FILEIO_ENOSYS;
3249 /* Read value of symbolic link FILENAME on the target. Return a
3250 null-terminated string allocated via xmalloc, or NULL if an error
3251 occurs (and set *TARGET_ERRNO). */
3253 target_fileio_readlink (const char *filename, int *target_errno)
3255 struct target_ops *t;
3257 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3259 if (t->to_fileio_readlink != NULL)
3261 char *ret = t->to_fileio_readlink (t, filename, target_errno);
3264 fprintf_unfiltered (gdb_stdlog,
3265 "target_fileio_readlink (%s) = %s (%d)\n",
3266 filename, ret? ret : "(nil)",
3267 ret? 0 : *target_errno);
3272 *target_errno = FILEIO_ENOSYS;
3277 target_fileio_close_cleanup (void *opaque)
3279 int fd = *(int *) opaque;
3282 target_fileio_close (fd, &target_errno);
3285 /* Read target file FILENAME. Store the result in *BUF_P and
3286 return the size of the transferred data. PADDING additional bytes are
3287 available in *BUF_P. This is a helper function for
3288 target_fileio_read_alloc; see the declaration of that function for more
3292 target_fileio_read_alloc_1 (const char *filename,
3293 gdb_byte **buf_p, int padding)
3295 struct cleanup *close_cleanup;
3296 size_t buf_alloc, buf_pos;
3302 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3306 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3308 /* Start by reading up to 4K at a time. The target will throttle
3309 this number down if necessary. */
3311 buf = xmalloc (buf_alloc);
3315 n = target_fileio_pread (fd, &buf[buf_pos],
3316 buf_alloc - buf_pos - padding, buf_pos,
3320 /* An error occurred. */
3321 do_cleanups (close_cleanup);
3327 /* Read all there was. */
3328 do_cleanups (close_cleanup);
3338 /* If the buffer is filling up, expand it. */
3339 if (buf_alloc < buf_pos * 2)
3342 buf = xrealloc (buf, buf_alloc);
3349 /* Read target file FILENAME. Store the result in *BUF_P and return
3350 the size of the transferred data. See the declaration in "target.h"
3351 function for more information about the return value. */
3354 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3356 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3359 /* Read target file FILENAME. The result is NUL-terminated and
3360 returned as a string, allocated using xmalloc. If an error occurs
3361 or the transfer is unsupported, NULL is returned. Empty objects
3362 are returned as allocated but empty strings. A warning is issued
3363 if the result contains any embedded NUL bytes. */
3366 target_fileio_read_stralloc (const char *filename)
3370 LONGEST i, transferred;
3372 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3373 bufstr = (char *) buffer;
3375 if (transferred < 0)
3378 if (transferred == 0)
3379 return xstrdup ("");
3381 bufstr[transferred] = 0;
3383 /* Check for embedded NUL bytes; but allow trailing NULs. */
3384 for (i = strlen (bufstr); i < transferred; i++)
3387 warning (_("target file %s "
3388 "contained unexpected null characters"),
3398 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3399 CORE_ADDR addr, int len)
3401 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3405 default_watchpoint_addr_within_range (struct target_ops *target,
3407 CORE_ADDR start, int length)
3409 return addr >= start && addr < start + length;
3412 static struct gdbarch *
3413 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3415 return target_gdbarch ();
3425 * Find the next target down the stack from the specified target.
3429 find_target_beneath (struct target_ops *t)
3437 find_target_at (enum strata stratum)
3439 struct target_ops *t;
3441 for (t = current_target.beneath; t != NULL; t = t->beneath)
3442 if (t->to_stratum == stratum)
3449 /* The inferior process has died. Long live the inferior! */
3452 generic_mourn_inferior (void)
3456 ptid = inferior_ptid;
3457 inferior_ptid = null_ptid;
3459 /* Mark breakpoints uninserted in case something tries to delete a
3460 breakpoint while we delete the inferior's threads (which would
3461 fail, since the inferior is long gone). */
3462 mark_breakpoints_out ();
3464 if (!ptid_equal (ptid, null_ptid))
3466 int pid = ptid_get_pid (ptid);
3467 exit_inferior (pid);
3470 /* Note this wipes step-resume breakpoints, so needs to be done
3471 after exit_inferior, which ends up referencing the step-resume
3472 breakpoints through clear_thread_inferior_resources. */
3473 breakpoint_init_inferior (inf_exited);
3475 registers_changed ();
3477 reopen_exec_file ();
3478 reinit_frame_cache ();
3480 if (deprecated_detach_hook)
3481 deprecated_detach_hook ();
3484 /* Convert a normal process ID to a string. Returns the string in a
3488 normal_pid_to_str (ptid_t ptid)
3490 static char buf[32];
3492 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3497 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3499 return normal_pid_to_str (ptid);
3502 /* Error-catcher for target_find_memory_regions. */
3504 dummy_find_memory_regions (struct target_ops *self,
3505 find_memory_region_ftype ignore1, void *ignore2)
3507 error (_("Command not implemented for this target."));
3511 /* Error-catcher for target_make_corefile_notes. */
3513 dummy_make_corefile_notes (struct target_ops *self,
3514 bfd *ignore1, int *ignore2)
3516 error (_("Command not implemented for this target."));
3520 /* Set up the handful of non-empty slots needed by the dummy target
3524 init_dummy_target (void)
3526 dummy_target.to_shortname = "None";
3527 dummy_target.to_longname = "None";
3528 dummy_target.to_doc = "";
3529 dummy_target.to_create_inferior = find_default_create_inferior;
3530 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3531 dummy_target.to_supports_disable_randomization
3532 = find_default_supports_disable_randomization;
3533 dummy_target.to_stratum = dummy_stratum;
3534 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3535 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3536 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3537 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3538 dummy_target.to_has_execution
3539 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3540 dummy_target.to_magic = OPS_MAGIC;
3542 install_dummy_methods (&dummy_target);
3546 debug_to_open (char *args, int from_tty)
3548 debug_target.to_open (args, from_tty);
3550 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3554 target_close (struct target_ops *targ)
3556 gdb_assert (!target_is_pushed (targ));
3558 if (targ->to_xclose != NULL)
3559 targ->to_xclose (targ);
3560 else if (targ->to_close != NULL)
3561 targ->to_close (targ);
3564 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3568 target_attach (char *args, int from_tty)
3570 current_target.to_attach (¤t_target, args, from_tty);
3572 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3577 target_thread_alive (ptid_t ptid)
3579 struct target_ops *t;
3581 for (t = current_target.beneath; t != NULL; t = t->beneath)
3583 if (t->to_thread_alive != NULL)
3587 retval = t->to_thread_alive (t, ptid);
3589 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3590 ptid_get_pid (ptid), retval);
3600 target_find_new_threads (void)
3602 current_target.to_find_new_threads (¤t_target);
3604 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3608 target_stop (ptid_t ptid)
3612 warning (_("May not interrupt or stop the target, ignoring attempt"));
3616 (*current_target.to_stop) (¤t_target, ptid);
3620 debug_to_post_attach (struct target_ops *self, int pid)
3622 debug_target.to_post_attach (&debug_target, pid);
3624 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3627 /* Concatenate ELEM to LIST, a comma separate list, and return the
3628 result. The LIST incoming argument is released. */
3631 str_comma_list_concat_elem (char *list, const char *elem)
3634 return xstrdup (elem);
3636 return reconcat (list, list, ", ", elem, (char *) NULL);
3639 /* Helper for target_options_to_string. If OPT is present in
3640 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3641 Returns the new resulting string. OPT is removed from
3645 do_option (int *target_options, char *ret,
3646 int opt, char *opt_str)
3648 if ((*target_options & opt) != 0)
3650 ret = str_comma_list_concat_elem (ret, opt_str);
3651 *target_options &= ~opt;
3658 target_options_to_string (int target_options)
3662 #define DO_TARG_OPTION(OPT) \
3663 ret = do_option (&target_options, ret, OPT, #OPT)
3665 DO_TARG_OPTION (TARGET_WNOHANG);
3667 if (target_options != 0)
3668 ret = str_comma_list_concat_elem (ret, "unknown???");
3676 debug_print_register (const char * func,
3677 struct regcache *regcache, int regno)
3679 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3681 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3682 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3683 && gdbarch_register_name (gdbarch, regno) != NULL
3684 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3685 fprintf_unfiltered (gdb_stdlog, "(%s)",
3686 gdbarch_register_name (gdbarch, regno));
3688 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3689 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3691 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3692 int i, size = register_size (gdbarch, regno);
3693 gdb_byte buf[MAX_REGISTER_SIZE];
3695 regcache_raw_collect (regcache, regno, buf);
3696 fprintf_unfiltered (gdb_stdlog, " = ");
3697 for (i = 0; i < size; i++)
3699 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3701 if (size <= sizeof (LONGEST))
3703 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3705 fprintf_unfiltered (gdb_stdlog, " %s %s",
3706 core_addr_to_string_nz (val), plongest (val));
3709 fprintf_unfiltered (gdb_stdlog, "\n");
3713 target_fetch_registers (struct regcache *regcache, int regno)
3715 current_target.to_fetch_registers (¤t_target, regcache, regno);
3717 debug_print_register ("target_fetch_registers", regcache, regno);
3721 target_store_registers (struct regcache *regcache, int regno)
3723 struct target_ops *t;
3725 if (!may_write_registers)
3726 error (_("Writing to registers is not allowed (regno %d)"), regno);
3728 current_target.to_store_registers (¤t_target, regcache, regno);
3731 debug_print_register ("target_store_registers", regcache, regno);
3736 target_core_of_thread (ptid_t ptid)
3738 struct target_ops *t;
3740 for (t = current_target.beneath; t != NULL; t = t->beneath)
3742 if (t->to_core_of_thread != NULL)
3744 int retval = t->to_core_of_thread (t, ptid);
3747 fprintf_unfiltered (gdb_stdlog,
3748 "target_core_of_thread (%d) = %d\n",
3749 ptid_get_pid (ptid), retval);
3758 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3760 struct target_ops *t;
3762 for (t = current_target.beneath; t != NULL; t = t->beneath)
3764 if (t->to_verify_memory != NULL)
3766 int retval = t->to_verify_memory (t, data, memaddr, size);
3769 fprintf_unfiltered (gdb_stdlog,
3770 "target_verify_memory (%s, %s) = %d\n",
3771 paddress (target_gdbarch (), memaddr),
3781 /* The documentation for this function is in its prototype declaration in
3785 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3789 ret = current_target.to_insert_mask_watchpoint (¤t_target,
3793 fprintf_unfiltered (gdb_stdlog, "\
3794 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3795 core_addr_to_string (addr),
3796 core_addr_to_string (mask), rw, ret);
3801 /* The documentation for this function is in its prototype declaration in
3805 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3809 ret = current_target.to_remove_mask_watchpoint (¤t_target,
3813 fprintf_unfiltered (gdb_stdlog, "\
3814 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3815 core_addr_to_string (addr),
3816 core_addr_to_string (mask), rw, ret);
3821 /* The documentation for this function is in its prototype declaration
3825 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3827 return current_target.to_masked_watch_num_registers (¤t_target,
3831 /* The documentation for this function is in its prototype declaration
3835 target_ranged_break_num_registers (void)
3837 return current_target.to_ranged_break_num_registers (¤t_target);
3842 struct btrace_target_info *
3843 target_enable_btrace (ptid_t ptid)
3845 struct target_ops *t;
3847 for (t = current_target.beneath; t != NULL; t = t->beneath)
3848 if (t->to_enable_btrace != NULL)
3849 return t->to_enable_btrace (t, ptid);
3858 target_disable_btrace (struct btrace_target_info *btinfo)
3860 struct target_ops *t;
3862 for (t = current_target.beneath; t != NULL; t = t->beneath)
3863 if (t->to_disable_btrace != NULL)
3865 t->to_disable_btrace (t, btinfo);
3875 target_teardown_btrace (struct btrace_target_info *btinfo)
3877 struct target_ops *t;
3879 for (t = current_target.beneath; t != NULL; t = t->beneath)
3880 if (t->to_teardown_btrace != NULL)
3882 t->to_teardown_btrace (t, btinfo);
3892 target_read_btrace (VEC (btrace_block_s) **btrace,
3893 struct btrace_target_info *btinfo,
3894 enum btrace_read_type type)
3896 struct target_ops *t;
3898 for (t = current_target.beneath; t != NULL; t = t->beneath)
3899 if (t->to_read_btrace != NULL)
3900 return t->to_read_btrace (t, btrace, btinfo, type);
3903 return BTRACE_ERR_NOT_SUPPORTED;
3909 target_stop_recording (void)
3911 struct target_ops *t;
3913 for (t = current_target.beneath; t != NULL; t = t->beneath)
3914 if (t->to_stop_recording != NULL)
3916 t->to_stop_recording (t);
3920 /* This is optional. */
3926 target_info_record (void)
3928 struct target_ops *t;
3930 for (t = current_target.beneath; t != NULL; t = t->beneath)
3931 if (t->to_info_record != NULL)
3933 t->to_info_record (t);
3943 target_save_record (const char *filename)
3945 struct target_ops *t;
3947 for (t = current_target.beneath; t != NULL; t = t->beneath)
3948 if (t->to_save_record != NULL)
3950 t->to_save_record (t, filename);
3960 target_supports_delete_record (void)
3962 struct target_ops *t;
3964 for (t = current_target.beneath; t != NULL; t = t->beneath)
3965 if (t->to_delete_record != NULL)
3974 target_delete_record (void)
3976 struct target_ops *t;
3978 for (t = current_target.beneath; t != NULL; t = t->beneath)
3979 if (t->to_delete_record != NULL)
3981 t->to_delete_record (t);
3991 target_record_is_replaying (void)
3993 struct target_ops *t;
3995 for (t = current_target.beneath; t != NULL; t = t->beneath)
3996 if (t->to_record_is_replaying != NULL)
3997 return t->to_record_is_replaying (t);
4005 target_goto_record_begin (void)
4007 struct target_ops *t;
4009 for (t = current_target.beneath; t != NULL; t = t->beneath)
4010 if (t->to_goto_record_begin != NULL)
4012 t->to_goto_record_begin (t);
4022 target_goto_record_end (void)
4024 struct target_ops *t;
4026 for (t = current_target.beneath; t != NULL; t = t->beneath)
4027 if (t->to_goto_record_end != NULL)
4029 t->to_goto_record_end (t);
4039 target_goto_record (ULONGEST insn)
4041 struct target_ops *t;
4043 for (t = current_target.beneath; t != NULL; t = t->beneath)
4044 if (t->to_goto_record != NULL)
4046 t->to_goto_record (t, insn);
4056 target_insn_history (int size, int flags)
4058 struct target_ops *t;
4060 for (t = current_target.beneath; t != NULL; t = t->beneath)
4061 if (t->to_insn_history != NULL)
4063 t->to_insn_history (t, size, flags);
4073 target_insn_history_from (ULONGEST from, int size, int flags)
4075 struct target_ops *t;
4077 for (t = current_target.beneath; t != NULL; t = t->beneath)
4078 if (t->to_insn_history_from != NULL)
4080 t->to_insn_history_from (t, from, size, flags);
4090 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4092 struct target_ops *t;
4094 for (t = current_target.beneath; t != NULL; t = t->beneath)
4095 if (t->to_insn_history_range != NULL)
4097 t->to_insn_history_range (t, begin, end, flags);
4107 target_call_history (int size, int flags)
4109 struct target_ops *t;
4111 for (t = current_target.beneath; t != NULL; t = t->beneath)
4112 if (t->to_call_history != NULL)
4114 t->to_call_history (t, size, flags);
4124 target_call_history_from (ULONGEST begin, int size, int flags)
4126 struct target_ops *t;
4128 for (t = current_target.beneath; t != NULL; t = t->beneath)
4129 if (t->to_call_history_from != NULL)
4131 t->to_call_history_from (t, begin, size, flags);
4141 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4143 struct target_ops *t;
4145 for (t = current_target.beneath; t != NULL; t = t->beneath)
4146 if (t->to_call_history_range != NULL)
4148 t->to_call_history_range (t, begin, end, flags);
4156 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
4158 debug_target.to_prepare_to_store (&debug_target, regcache);
4160 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4165 const struct frame_unwind *
4166 target_get_unwinder (void)
4168 struct target_ops *t;
4170 for (t = current_target.beneath; t != NULL; t = t->beneath)
4171 if (t->to_get_unwinder != NULL)
4172 return t->to_get_unwinder;
4179 const struct frame_unwind *
4180 target_get_tailcall_unwinder (void)
4182 struct target_ops *t;
4184 for (t = current_target.beneath; t != NULL; t = t->beneath)
4185 if (t->to_get_tailcall_unwinder != NULL)
4186 return t->to_get_tailcall_unwinder;
4194 forward_target_decr_pc_after_break (struct target_ops *ops,
4195 struct gdbarch *gdbarch)
4197 for (; ops != NULL; ops = ops->beneath)
4198 if (ops->to_decr_pc_after_break != NULL)
4199 return ops->to_decr_pc_after_break (ops, gdbarch);
4201 return gdbarch_decr_pc_after_break (gdbarch);
4207 target_decr_pc_after_break (struct gdbarch *gdbarch)
4209 return forward_target_decr_pc_after_break (current_target.beneath, gdbarch);
4213 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4214 int write, struct mem_attrib *attrib,
4215 struct target_ops *target)
4219 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4222 fprintf_unfiltered (gdb_stdlog,
4223 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4224 paddress (target_gdbarch (), memaddr), len,
4225 write ? "write" : "read", retval);
4231 fputs_unfiltered (", bytes =", gdb_stdlog);
4232 for (i = 0; i < retval; i++)
4234 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4236 if (targetdebug < 2 && i > 0)
4238 fprintf_unfiltered (gdb_stdlog, " ...");
4241 fprintf_unfiltered (gdb_stdlog, "\n");
4244 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4248 fputc_unfiltered ('\n', gdb_stdlog);
4254 debug_to_files_info (struct target_ops *target)
4256 debug_target.to_files_info (target);
4258 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4262 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4263 struct bp_target_info *bp_tgt)
4267 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
4269 fprintf_unfiltered (gdb_stdlog,
4270 "target_insert_breakpoint (%s, xxx) = %ld\n",
4271 core_addr_to_string (bp_tgt->placed_address),
4272 (unsigned long) retval);
4277 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4278 struct bp_target_info *bp_tgt)
4282 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
4284 fprintf_unfiltered (gdb_stdlog,
4285 "target_remove_breakpoint (%s, xxx) = %ld\n",
4286 core_addr_to_string (bp_tgt->placed_address),
4287 (unsigned long) retval);
4292 debug_to_can_use_hw_breakpoint (struct target_ops *self,
4293 int type, int cnt, int from_tty)
4297 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
4298 type, cnt, from_tty);
4300 fprintf_unfiltered (gdb_stdlog,
4301 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4302 (unsigned long) type,
4303 (unsigned long) cnt,
4304 (unsigned long) from_tty,
4305 (unsigned long) retval);
4310 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
4311 CORE_ADDR addr, int len)
4315 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
4318 fprintf_unfiltered (gdb_stdlog,
4319 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4320 core_addr_to_string (addr), (unsigned long) len,
4321 core_addr_to_string (retval));
4326 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
4327 CORE_ADDR addr, int len, int rw,
4328 struct expression *cond)
4332 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
4336 fprintf_unfiltered (gdb_stdlog,
4337 "target_can_accel_watchpoint_condition "
4338 "(%s, %d, %d, %s) = %ld\n",
4339 core_addr_to_string (addr), len, rw,
4340 host_address_to_string (cond), (unsigned long) retval);
4345 debug_to_stopped_by_watchpoint (struct target_ops *ops)
4349 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
4351 fprintf_unfiltered (gdb_stdlog,
4352 "target_stopped_by_watchpoint () = %ld\n",
4353 (unsigned long) retval);
4358 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4362 retval = debug_target.to_stopped_data_address (target, addr);
4364 fprintf_unfiltered (gdb_stdlog,
4365 "target_stopped_data_address ([%s]) = %ld\n",
4366 core_addr_to_string (*addr),
4367 (unsigned long)retval);
4372 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4374 CORE_ADDR start, int length)
4378 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4381 fprintf_filtered (gdb_stdlog,
4382 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4383 core_addr_to_string (addr), core_addr_to_string (start),
4389 debug_to_insert_hw_breakpoint (struct target_ops *self,
4390 struct gdbarch *gdbarch,
4391 struct bp_target_info *bp_tgt)
4395 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
4398 fprintf_unfiltered (gdb_stdlog,
4399 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4400 core_addr_to_string (bp_tgt->placed_address),
4401 (unsigned long) retval);
4406 debug_to_remove_hw_breakpoint (struct target_ops *self,
4407 struct gdbarch *gdbarch,
4408 struct bp_target_info *bp_tgt)
4412 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
4415 fprintf_unfiltered (gdb_stdlog,
4416 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4417 core_addr_to_string (bp_tgt->placed_address),
4418 (unsigned long) retval);
4423 debug_to_insert_watchpoint (struct target_ops *self,
4424 CORE_ADDR addr, int len, int type,
4425 struct expression *cond)
4429 retval = debug_target.to_insert_watchpoint (&debug_target,
4430 addr, len, type, cond);
4432 fprintf_unfiltered (gdb_stdlog,
4433 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4434 core_addr_to_string (addr), len, type,
4435 host_address_to_string (cond), (unsigned long) retval);
4440 debug_to_remove_watchpoint (struct target_ops *self,
4441 CORE_ADDR addr, int len, int type,
4442 struct expression *cond)
4446 retval = debug_target.to_remove_watchpoint (&debug_target,
4447 addr, len, type, cond);
4449 fprintf_unfiltered (gdb_stdlog,
4450 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4451 core_addr_to_string (addr), len, type,
4452 host_address_to_string (cond), (unsigned long) retval);
4457 debug_to_terminal_init (struct target_ops *self)
4459 debug_target.to_terminal_init (&debug_target);
4461 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4465 debug_to_terminal_inferior (struct target_ops *self)
4467 debug_target.to_terminal_inferior (&debug_target);
4469 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4473 debug_to_terminal_ours_for_output (struct target_ops *self)
4475 debug_target.to_terminal_ours_for_output (&debug_target);
4477 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4481 debug_to_terminal_ours (struct target_ops *self)
4483 debug_target.to_terminal_ours (&debug_target);
4485 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4489 debug_to_terminal_save_ours (struct target_ops *self)
4491 debug_target.to_terminal_save_ours (&debug_target);
4493 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4497 debug_to_terminal_info (struct target_ops *self,
4498 const char *arg, int from_tty)
4500 debug_target.to_terminal_info (&debug_target, arg, from_tty);
4502 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4507 debug_to_load (struct target_ops *self, char *args, int from_tty)
4509 debug_target.to_load (&debug_target, args, from_tty);
4511 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4515 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
4517 debug_target.to_post_startup_inferior (&debug_target, ptid);
4519 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4520 ptid_get_pid (ptid));
4524 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
4528 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
4530 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4537 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
4541 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
4543 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4550 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
4554 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
4556 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4563 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
4567 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
4569 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4576 debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
4580 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
4582 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4589 debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
4593 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
4595 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4602 debug_to_has_exited (struct target_ops *self,
4603 int pid, int wait_status, int *exit_status)
4607 has_exited = debug_target.to_has_exited (&debug_target,
4608 pid, wait_status, exit_status);
4610 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4611 pid, wait_status, *exit_status, has_exited);
4617 debug_to_can_run (struct target_ops *self)
4621 retval = debug_target.to_can_run (&debug_target);
4623 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4628 static struct gdbarch *
4629 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4631 struct gdbarch *retval;
4633 retval = debug_target.to_thread_architecture (ops, ptid);
4635 fprintf_unfiltered (gdb_stdlog,
4636 "target_thread_architecture (%s) = %s [%s]\n",
4637 target_pid_to_str (ptid),
4638 host_address_to_string (retval),
4639 gdbarch_bfd_arch_info (retval)->printable_name);
4644 debug_to_stop (struct target_ops *self, ptid_t ptid)
4646 debug_target.to_stop (&debug_target, ptid);
4648 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4649 target_pid_to_str (ptid));
4653 debug_to_rcmd (struct target_ops *self, char *command,
4654 struct ui_file *outbuf)
4656 debug_target.to_rcmd (&debug_target, command, outbuf);
4657 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4661 debug_to_pid_to_exec_file (struct target_ops *self, int pid)
4665 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
4667 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4674 setup_target_debug (void)
4676 memcpy (&debug_target, ¤t_target, sizeof debug_target);
4678 current_target.to_open = debug_to_open;
4679 current_target.to_post_attach = debug_to_post_attach;
4680 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4681 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4682 current_target.to_files_info = debug_to_files_info;
4683 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4684 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4685 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4686 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4687 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4688 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4689 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4690 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4691 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4692 current_target.to_watchpoint_addr_within_range
4693 = debug_to_watchpoint_addr_within_range;
4694 current_target.to_region_ok_for_hw_watchpoint
4695 = debug_to_region_ok_for_hw_watchpoint;
4696 current_target.to_can_accel_watchpoint_condition
4697 = debug_to_can_accel_watchpoint_condition;
4698 current_target.to_terminal_init = debug_to_terminal_init;
4699 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4700 current_target.to_terminal_ours_for_output
4701 = debug_to_terminal_ours_for_output;
4702 current_target.to_terminal_ours = debug_to_terminal_ours;
4703 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4704 current_target.to_terminal_info = debug_to_terminal_info;
4705 current_target.to_load = debug_to_load;
4706 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4707 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4708 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4709 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4710 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4711 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4712 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4713 current_target.to_has_exited = debug_to_has_exited;
4714 current_target.to_can_run = debug_to_can_run;
4715 current_target.to_stop = debug_to_stop;
4716 current_target.to_rcmd = debug_to_rcmd;
4717 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4718 current_target.to_thread_architecture = debug_to_thread_architecture;
4722 static char targ_desc[] =
4723 "Names of targets and files being debugged.\nShows the entire \
4724 stack of targets currently in use (including the exec-file,\n\
4725 core-file, and process, if any), as well as the symbol file name.";
4728 default_rcmd (struct target_ops *self, char *command, struct ui_file *output)
4730 error (_("\"monitor\" command not supported by this target."));
4734 do_monitor_command (char *cmd,
4737 target_rcmd (cmd, gdb_stdtarg);
4740 /* Print the name of each layers of our target stack. */
4743 maintenance_print_target_stack (char *cmd, int from_tty)
4745 struct target_ops *t;
4747 printf_filtered (_("The current target stack is:\n"));
4749 for (t = target_stack; t != NULL; t = t->beneath)
4751 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4755 /* Controls if async mode is permitted. */
4756 int target_async_permitted = 0;
4758 /* The set command writes to this variable. If the inferior is
4759 executing, target_async_permitted is *not* updated. */
4760 static int target_async_permitted_1 = 0;
4763 set_target_async_command (char *args, int from_tty,
4764 struct cmd_list_element *c)
4766 if (have_live_inferiors ())
4768 target_async_permitted_1 = target_async_permitted;
4769 error (_("Cannot change this setting while the inferior is running."));
4772 target_async_permitted = target_async_permitted_1;
4776 show_target_async_command (struct ui_file *file, int from_tty,
4777 struct cmd_list_element *c,
4780 fprintf_filtered (file,
4781 _("Controlling the inferior in "
4782 "asynchronous mode is %s.\n"), value);
4785 /* Temporary copies of permission settings. */
4787 static int may_write_registers_1 = 1;
4788 static int may_write_memory_1 = 1;
4789 static int may_insert_breakpoints_1 = 1;
4790 static int may_insert_tracepoints_1 = 1;
4791 static int may_insert_fast_tracepoints_1 = 1;
4792 static int may_stop_1 = 1;
4794 /* Make the user-set values match the real values again. */
4797 update_target_permissions (void)
4799 may_write_registers_1 = may_write_registers;
4800 may_write_memory_1 = may_write_memory;
4801 may_insert_breakpoints_1 = may_insert_breakpoints;
4802 may_insert_tracepoints_1 = may_insert_tracepoints;
4803 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4804 may_stop_1 = may_stop;
4807 /* The one function handles (most of) the permission flags in the same
4811 set_target_permissions (char *args, int from_tty,
4812 struct cmd_list_element *c)
4814 if (target_has_execution)
4816 update_target_permissions ();
4817 error (_("Cannot change this setting while the inferior is running."));
4820 /* Make the real values match the user-changed values. */
4821 may_write_registers = may_write_registers_1;
4822 may_insert_breakpoints = may_insert_breakpoints_1;
4823 may_insert_tracepoints = may_insert_tracepoints_1;
4824 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4825 may_stop = may_stop_1;
4826 update_observer_mode ();
4829 /* Set memory write permission independently of observer mode. */
4832 set_write_memory_permission (char *args, int from_tty,
4833 struct cmd_list_element *c)
4835 /* Make the real values match the user-changed values. */
4836 may_write_memory = may_write_memory_1;
4837 update_observer_mode ();
4842 initialize_targets (void)
4844 init_dummy_target ();
4845 push_target (&dummy_target);
4847 add_info ("target", target_info, targ_desc);
4848 add_info ("files", target_info, targ_desc);
4850 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4851 Set target debugging."), _("\
4852 Show target debugging."), _("\
4853 When non-zero, target debugging is enabled. Higher numbers are more\n\
4854 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4858 &setdebuglist, &showdebuglist);
4860 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4861 &trust_readonly, _("\
4862 Set mode for reading from readonly sections."), _("\
4863 Show mode for reading from readonly sections."), _("\
4864 When this mode is on, memory reads from readonly sections (such as .text)\n\
4865 will be read from the object file instead of from the target. This will\n\
4866 result in significant performance improvement for remote targets."),
4868 show_trust_readonly,
4869 &setlist, &showlist);
4871 add_com ("monitor", class_obscure, do_monitor_command,
4872 _("Send a command to the remote monitor (remote targets only)."));
4874 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4875 _("Print the name of each layer of the internal target stack."),
4876 &maintenanceprintlist);
4878 add_setshow_boolean_cmd ("target-async", no_class,
4879 &target_async_permitted_1, _("\
4880 Set whether gdb controls the inferior in asynchronous mode."), _("\
4881 Show whether gdb controls the inferior in asynchronous mode."), _("\
4882 Tells gdb whether to control the inferior in asynchronous mode."),
4883 set_target_async_command,
4884 show_target_async_command,
4888 add_setshow_boolean_cmd ("may-write-registers", class_support,
4889 &may_write_registers_1, _("\
4890 Set permission to write into registers."), _("\
4891 Show permission to write into registers."), _("\
4892 When this permission is on, GDB may write into the target's registers.\n\
4893 Otherwise, any sort of write attempt will result in an error."),
4894 set_target_permissions, NULL,
4895 &setlist, &showlist);
4897 add_setshow_boolean_cmd ("may-write-memory", class_support,
4898 &may_write_memory_1, _("\
4899 Set permission to write into target memory."), _("\
4900 Show permission to write into target memory."), _("\
4901 When this permission is on, GDB may write into the target's memory.\n\
4902 Otherwise, any sort of write attempt will result in an error."),
4903 set_write_memory_permission, NULL,
4904 &setlist, &showlist);
4906 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4907 &may_insert_breakpoints_1, _("\
4908 Set permission to insert breakpoints in the target."), _("\
4909 Show permission to insert breakpoints in the target."), _("\
4910 When this permission is on, GDB may insert breakpoints in the program.\n\
4911 Otherwise, any sort of insertion attempt will result in an error."),
4912 set_target_permissions, NULL,
4913 &setlist, &showlist);
4915 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4916 &may_insert_tracepoints_1, _("\
4917 Set permission to insert tracepoints in the target."), _("\
4918 Show permission to insert tracepoints in the target."), _("\
4919 When this permission is on, GDB may insert tracepoints in the program.\n\
4920 Otherwise, any sort of insertion attempt will result in an error."),
4921 set_target_permissions, NULL,
4922 &setlist, &showlist);
4924 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4925 &may_insert_fast_tracepoints_1, _("\
4926 Set permission to insert fast tracepoints in the target."), _("\
4927 Show permission to insert fast tracepoints in the target."), _("\
4928 When this permission is on, GDB may insert fast tracepoints.\n\
4929 Otherwise, any sort of insertion attempt will result in an error."),
4930 set_target_permissions, NULL,
4931 &setlist, &showlist);
4933 add_setshow_boolean_cmd ("may-interrupt", class_support,
4935 Set permission to interrupt or signal the target."), _("\
4936 Show permission to interrupt or signal the target."), _("\
4937 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4938 Otherwise, any attempt to interrupt or stop will be ignored."),
4939 set_target_permissions, NULL,
4940 &setlist, &showlist);