1 /* Floating point routines for GDB, the GNU debugger.
3 Copyright (C) 2017-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "floatformat.h"
23 #include "target-float.h"
26 /* Target floating-point operations.
28 We provide multiple implementations of those operations, which differ
29 by the host-side intermediate format they perform computations in.
31 Those multiple implementations all derive from the following abstract
32 base class, which specifies the set of operations to be implemented. */
34 class target_float_ops
37 virtual std::string to_string (const gdb_byte *addr, const struct type *type,
38 const char *format) const = 0;
39 virtual bool from_string (gdb_byte *addr, const struct type *type,
40 const std::string &string) const = 0;
42 virtual LONGEST to_longest (const gdb_byte *addr,
43 const struct type *type) const = 0;
44 virtual void from_longest (gdb_byte *addr, const struct type *type,
45 LONGEST val) const = 0;
46 virtual void from_ulongest (gdb_byte *addr, const struct type *type,
47 ULONGEST val) const = 0;
48 virtual double to_host_double (const gdb_byte *addr,
49 const struct type *type) const = 0;
50 virtual void from_host_double (gdb_byte *addr, const struct type *type,
51 double val) const = 0;
52 virtual void convert (const gdb_byte *from, const struct type *from_type,
53 gdb_byte *to, const struct type *to_type) const = 0;
55 virtual void binop (enum exp_opcode opcode,
56 const gdb_byte *x, const struct type *type_x,
57 const gdb_byte *y, const struct type *type_y,
58 gdb_byte *res, const struct type *type_res) const = 0;
59 virtual int compare (const gdb_byte *x, const struct type *type_x,
60 const gdb_byte *y, const struct type *type_y) const = 0;
64 /* Helper routines operating on binary floating-point data. */
69 /* Different kinds of floatformat numbers recognized by
70 floatformat_classify. To avoid portability issues, we use local
71 values instead of the C99 macros (FP_NAN et cetera). */
80 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
81 going to bother with trying to muck around with whether it is defined in
82 a system header, what we do if not, etc. */
83 #define FLOATFORMAT_CHAR_BIT 8
85 /* The number of bytes that the largest floating-point type that we
86 can convert to doublest will need. */
87 #define FLOATFORMAT_LARGEST_BYTES 16
89 /* Return the floatformat's total size in host bytes. */
91 floatformat_totalsize_bytes (const struct floatformat *fmt)
93 return ((fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
94 / FLOATFORMAT_CHAR_BIT);
97 /* Return the precision of the floating point format FMT. */
99 floatformat_precision (const struct floatformat *fmt)
101 /* Assume the precision of and IBM long double is twice the precision
102 of the underlying double. This matches what GCC does. */
104 return 2 * floatformat_precision (fmt->split_half);
106 /* Otherwise, the precision is the size of mantissa in bits,
107 including the implicit bit if present. */
108 int prec = fmt->man_len;
109 if (fmt->intbit == floatformat_intbit_no)
115 /* Normalize the byte order of FROM into TO. If no normalization is
116 needed then FMT->byteorder is returned and TO is not changed;
117 otherwise the format of the normalized form in TO is returned. */
118 static enum floatformat_byteorders
119 floatformat_normalize_byteorder (const struct floatformat *fmt,
120 const void *from, void *to)
122 const unsigned char *swapin;
123 unsigned char *swapout;
126 if (fmt->byteorder == floatformat_little
127 || fmt->byteorder == floatformat_big)
128 return fmt->byteorder;
130 words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
133 swapout = (unsigned char *)to;
134 swapin = (const unsigned char *)from;
136 if (fmt->byteorder == floatformat_vax)
140 *swapout++ = swapin[1];
141 *swapout++ = swapin[0];
142 *swapout++ = swapin[3];
143 *swapout++ = swapin[2];
146 /* This may look weird, since VAX is little-endian, but it is
147 easier to translate to big-endian than to little-endian. */
148 return floatformat_big;
152 gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword);
156 *swapout++ = swapin[3];
157 *swapout++ = swapin[2];
158 *swapout++ = swapin[1];
159 *swapout++ = swapin[0];
162 return floatformat_big;
166 /* Extract a field which starts at START and is LEN bytes long. DATA and
167 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
169 get_field (const bfd_byte *data, enum floatformat_byteorders order,
170 unsigned int total_len, unsigned int start, unsigned int len)
172 unsigned long result;
173 unsigned int cur_byte;
176 /* Caller must byte-swap words before calling this routine. */
177 gdb_assert (order == floatformat_little || order == floatformat_big);
179 /* Start at the least significant part of the field. */
180 if (order == floatformat_little)
182 /* We start counting from the other end (i.e, from the high bytes
183 rather than the low bytes). As such, we need to be concerned
184 with what happens if bit 0 doesn't start on a byte boundary.
185 I.e, we need to properly handle the case where total_len is
186 not evenly divisible by 8. So we compute ``excess'' which
187 represents the number of bits from the end of our starting
188 byte needed to get to bit 0. */
189 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
191 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
192 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
193 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
194 - FLOATFORMAT_CHAR_BIT;
198 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
200 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
202 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
203 result = *(data + cur_byte) >> (-cur_bitshift);
206 cur_bitshift += FLOATFORMAT_CHAR_BIT;
207 if (order == floatformat_little)
212 /* Move towards the most significant part of the field. */
213 while (cur_bitshift < len)
215 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
216 cur_bitshift += FLOATFORMAT_CHAR_BIT;
219 case floatformat_little:
222 case floatformat_big:
227 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
228 /* Mask out bits which are not part of the field. */
229 result &= ((1UL << len) - 1);
233 /* Set a field which starts at START and is LEN bytes long. DATA and
234 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
236 put_field (unsigned char *data, enum floatformat_byteorders order,
237 unsigned int total_len, unsigned int start, unsigned int len,
238 unsigned long stuff_to_put)
240 unsigned int cur_byte;
243 /* Caller must byte-swap words before calling this routine. */
244 gdb_assert (order == floatformat_little || order == floatformat_big);
246 /* Start at the least significant part of the field. */
247 if (order == floatformat_little)
249 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
251 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
252 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
253 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
254 - FLOATFORMAT_CHAR_BIT;
258 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
260 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
262 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
264 *(data + cur_byte) &=
265 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
267 *(data + cur_byte) |=
268 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
270 cur_bitshift += FLOATFORMAT_CHAR_BIT;
271 if (order == floatformat_little)
276 /* Move towards the most significant part of the field. */
277 while (cur_bitshift < len)
279 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
281 /* This is the last byte. */
282 *(data + cur_byte) &=
283 ~((1 << (len - cur_bitshift)) - 1);
284 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
287 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
288 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
289 cur_bitshift += FLOATFORMAT_CHAR_BIT;
290 if (order == floatformat_little)
297 /* Check if VAL (which is assumed to be a floating point number whose
298 format is described by FMT) is negative. */
300 floatformat_is_negative (const struct floatformat *fmt,
301 const bfd_byte *uval)
303 enum floatformat_byteorders order;
304 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
306 gdb_assert (fmt != NULL);
307 gdb_assert (fmt->totalsize
308 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
310 /* An IBM long double (a two element array of double) always takes the
311 sign of the first double. */
313 fmt = fmt->split_half;
315 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
317 if (order != fmt->byteorder)
320 return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1);
323 /* Check if VAL is "not a number" (NaN) for FMT. */
324 static enum float_kind
325 floatformat_classify (const struct floatformat *fmt,
326 const bfd_byte *uval)
330 unsigned int mant_bits, mant_off;
332 enum floatformat_byteorders order;
333 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
336 gdb_assert (fmt != NULL);
337 gdb_assert (fmt->totalsize
338 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
340 /* An IBM long double (a two element array of double) can be classified
341 by looking at the first double. inf and nan are specified as
342 ignoring the second double. zero and subnormal will always have
343 the second double 0.0 if the long double is correctly rounded. */
345 fmt = fmt->split_half;
347 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
349 if (order != fmt->byteorder)
352 exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start,
355 mant_bits_left = fmt->man_len;
356 mant_off = fmt->man_start;
359 while (mant_bits_left > 0)
361 mant_bits = std::min (mant_bits_left, 32);
363 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
365 /* If there is an explicit integer bit, mask it off. */
366 if (mant_off == fmt->man_start
367 && fmt->intbit == floatformat_intbit_yes)
368 mant &= ~(1 << (mant_bits - 1));
376 mant_off += mant_bits;
377 mant_bits_left -= mant_bits;
380 /* If exp_nan is not set, assume that inf, NaN, and subnormals are not
395 return float_subnormal;
398 if (exponent == fmt->exp_nan)
401 return float_infinite;
409 /* Convert the mantissa of VAL (which is assumed to be a floating
410 point number whose format is described by FMT) into a hexadecimal
411 and store it in a static string. Return a pointer to that string. */
413 floatformat_mantissa (const struct floatformat *fmt,
416 unsigned char *uval = (unsigned char *) val;
418 unsigned int mant_bits, mant_off;
423 enum floatformat_byteorders order;
424 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
426 gdb_assert (fmt != NULL);
427 gdb_assert (fmt->totalsize
428 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
430 /* For IBM long double (a two element array of double), return the
431 mantissa of the first double. The problem with returning the
432 actual mantissa from both doubles is that there can be an
433 arbitrary number of implied 0's or 1's between the mantissas
434 of the first and second double. In any case, this function
435 is only used for dumping out nans, and a nan is specified to
436 ignore the value in the second double. */
438 fmt = fmt->split_half;
440 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
442 if (order != fmt->byteorder)
448 /* Make sure we have enough room to store the mantissa. */
449 gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
451 mant_off = fmt->man_start;
452 mant_bits_left = fmt->man_len;
453 mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
455 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
457 len = xsnprintf (res, sizeof res, "%lx", mant);
459 mant_off += mant_bits;
460 mant_bits_left -= mant_bits;
462 while (mant_bits_left > 0)
464 mant = get_field (uval, order, fmt->totalsize, mant_off, 32);
466 xsnprintf (buf, sizeof buf, "%08lx", mant);
467 gdb_assert (len + strlen (buf) <= sizeof res);
471 mant_bits_left -= 32;
477 /* Convert printf format string FORMAT to the otherwise equivalent string
478 which may be used to print a host floating-point number using the length
479 modifier LENGTH (which may be 0 if none is needed). If FORMAT is null,
480 return a format appropriate to print the full precision of a target
481 floating-point number of format FMT. */
483 floatformat_printf_format (const struct floatformat *fmt,
484 const char *format, char length)
486 std::string host_format;
489 if (format == nullptr)
491 /* If no format was specified, print the number using a format string
492 where the precision is set to the DECIMAL_DIG value for the given
493 floating-point format. This value is computed as
495 ceil(1 + p * log10(b)),
497 where p is the precision of the floating-point format in bits, and
498 b is the base (which is always 2 for the formats we support). */
499 const double log10_2 = .30102999566398119521;
500 double d_decimal_dig = 1 + floatformat_precision (fmt) * log10_2;
501 int decimal_dig = d_decimal_dig;
502 if (decimal_dig < d_decimal_dig)
505 host_format = string_printf ("%%.%d", decimal_dig);
510 /* Use the specified format, stripping out the conversion character
511 and length modifier, if present. */
512 size_t len = strlen (format);
513 gdb_assert (len > 1);
514 conversion = format[--len];
515 gdb_assert (conversion == 'e' || conversion == 'f' || conversion == 'g'
516 || conversion == 'E' || conversion == 'G');
517 if (format[len - 1] == 'L')
520 host_format = std::string (format, len);
523 /* Add the length modifier and conversion character appropriate for
524 handling the appropriate host floating-point type. */
526 host_format += length;
527 host_format += conversion;
532 /* Implementation of target_float_ops using the host floating-point type T
533 as intermediate type. */
535 template<typename T> class host_float_ops : public target_float_ops
538 std::string to_string (const gdb_byte *addr, const struct type *type,
539 const char *format) const override;
540 bool from_string (gdb_byte *addr, const struct type *type,
541 const std::string &string) const override;
543 LONGEST to_longest (const gdb_byte *addr,
544 const struct type *type) const override;
545 void from_longest (gdb_byte *addr, const struct type *type,
546 LONGEST val) const override;
547 void from_ulongest (gdb_byte *addr, const struct type *type,
548 ULONGEST val) const override;
549 double to_host_double (const gdb_byte *addr,
550 const struct type *type) const override;
551 void from_host_double (gdb_byte *addr, const struct type *type,
552 double val) const override;
553 void convert (const gdb_byte *from, const struct type *from_type,
554 gdb_byte *to, const struct type *to_type) const override;
556 void binop (enum exp_opcode opcode,
557 const gdb_byte *x, const struct type *type_x,
558 const gdb_byte *y, const struct type *type_y,
559 gdb_byte *res, const struct type *type_res) const override;
560 int compare (const gdb_byte *x, const struct type *type_x,
561 const gdb_byte *y, const struct type *type_y) const override;
564 void from_target (const struct floatformat *fmt,
565 const gdb_byte *from, T *to) const;
566 void from_target (const struct type *type,
567 const gdb_byte *from, T *to) const;
569 void to_target (const struct type *type,
570 const T *from, gdb_byte *to) const;
571 void to_target (const struct floatformat *fmt,
572 const T *from, gdb_byte *to) const;
576 /* Convert TO/FROM target to the host floating-point format T.
578 If the host and target formats agree, we just copy the raw data
579 into the appropriate type of variable and return, letting the host
580 increase precision as necessary. Otherwise, we call the conversion
581 routine and let it do the dirty work. Note that even if the target
582 and host floating-point formats match, the length of the types
583 might still be different, so the conversion routines must make sure
584 to not overrun any buffers. For example, on x86, long double is
585 the 80-bit extended precision type on both 32-bit and 64-bit ABIs,
586 but by default it is stored as 12 bytes on 32-bit, and 16 bytes on
587 64-bit, for alignment reasons. See comment in store_typed_floating
588 for a discussion about zeroing out remaining bytes in the target
591 static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT;
592 static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT;
593 static const struct floatformat *host_long_double_format
594 = GDB_HOST_LONG_DOUBLE_FORMAT;
596 /* Convert target floating-point value at FROM in format FMT to host
597 floating-point format of type T. */
598 template<typename T> void
599 host_float_ops<T>::from_target (const struct floatformat *fmt,
600 const gdb_byte *from, T *to) const
602 gdb_assert (fmt != NULL);
604 if (fmt == host_float_format)
608 memcpy (&val, from, floatformat_totalsize_bytes (fmt));
612 else if (fmt == host_double_format)
616 memcpy (&val, from, floatformat_totalsize_bytes (fmt));
620 else if (fmt == host_long_double_format)
624 memcpy (&val, from, floatformat_totalsize_bytes (fmt));
629 unsigned char *ufrom = (unsigned char *) from;
632 unsigned int mant_bits, mant_off;
634 int special_exponent; /* It's a NaN, denorm or zero. */
635 enum floatformat_byteorders order;
636 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
637 enum float_kind kind;
639 gdb_assert (fmt->totalsize
640 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
642 /* For non-numbers, reuse libiberty's logic to find the correct
643 format. We do not lose any precision in this case by passing
645 kind = floatformat_classify (fmt, (const bfd_byte *) from);
646 if (kind == float_infinite || kind == float_nan)
650 floatformat_to_double (fmt->split_half ? fmt->split_half : fmt,
656 order = floatformat_normalize_byteorder (fmt, ufrom, newfrom);
658 if (order != fmt->byteorder)
665 from_target (fmt->split_half, ufrom, &dtop);
666 /* Preserve the sign of 0, which is the sign of the top
673 from_target (fmt->split_half,
674 ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2, &dbot);
679 exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start,
681 /* Note that if exponent indicates a NaN, we can't really do anything useful
682 (not knowing if the host has NaN's, or how to build one). So it will
683 end up as an infinity or something close; that is OK. */
685 mant_bits_left = fmt->man_len;
686 mant_off = fmt->man_start;
689 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
691 /* Don't bias NaNs. Use minimum exponent for denorms. For
692 simplicity, we don't check for zero as the exponent doesn't matter.
693 Note the cast to int; exp_bias is unsigned, so it's important to
694 make sure the operation is done in signed arithmetic. */
695 if (!special_exponent)
696 exponent -= fmt->exp_bias;
697 else if (exponent == 0)
698 exponent = 1 - fmt->exp_bias;
700 /* Build the result algebraically. Might go infinite, underflow, etc;
703 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
704 increment the exponent by one to account for the integer bit. */
706 if (!special_exponent)
708 if (fmt->intbit == floatformat_intbit_no)
709 dto = ldexp (1.0, exponent);
714 while (mant_bits_left > 0)
716 mant_bits = std::min (mant_bits_left, 32);
718 mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits);
720 dto += ldexp ((T) mant, exponent - mant_bits);
721 exponent -= mant_bits;
722 mant_off += mant_bits;
723 mant_bits_left -= mant_bits;
726 /* Negate it if negative. */
727 if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1))
732 template<typename T> void
733 host_float_ops<T>::from_target (const struct type *type,
734 const gdb_byte *from, T *to) const
736 from_target (floatformat_from_type (type), from, to);
739 /* Convert host floating-point value of type T to target floating-point
740 value in format FMT and store at TO. */
741 template<typename T> void
742 host_float_ops<T>::to_target (const struct floatformat *fmt,
743 const T *from, gdb_byte *to) const
745 gdb_assert (fmt != NULL);
747 if (fmt == host_float_format)
751 memcpy (to, &val, floatformat_totalsize_bytes (fmt));
754 else if (fmt == host_double_format)
758 memcpy (to, &val, floatformat_totalsize_bytes (fmt));
761 else if (fmt == host_long_double_format)
763 long double val = *from;
765 memcpy (to, &val, floatformat_totalsize_bytes (fmt));
772 unsigned int mant_bits, mant_off;
774 unsigned char *uto = (unsigned char *) to;
775 enum floatformat_byteorders order = fmt->byteorder;
776 unsigned char newto[FLOATFORMAT_LARGEST_BYTES];
778 if (order != floatformat_little)
779 order = floatformat_big;
781 if (order != fmt->byteorder)
784 memcpy (&dfrom, from, sizeof (dfrom));
785 memset (uto, 0, floatformat_totalsize_bytes (fmt));
789 /* Use static volatile to ensure that any excess precision is
790 removed via storing in memory, and so the top half really is
791 the result of converting to double. */
792 static volatile double dtop, dbot;
795 dtop = (double) dfrom;
796 /* If the rounded top half is Inf, the bottom must be 0 not NaN
798 if (dtop + dtop == dtop && dtop != 0.0)
801 dbot = (double) (dfrom - (T) dtop);
804 to_target (fmt->split_half, &dtopnv, uto);
805 to_target (fmt->split_half, &dbotnv,
806 uto + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2);
811 goto finalize_byteorder; /* Result is zero */
812 if (dfrom != dfrom) /* Result is NaN */
815 put_field (uto, order, fmt->totalsize, fmt->exp_start,
816 fmt->exp_len, fmt->exp_nan);
817 /* Be sure it's not infinity, but NaN value is irrel. */
818 put_field (uto, order, fmt->totalsize, fmt->man_start,
820 goto finalize_byteorder;
823 /* If negative, set the sign bit. */
826 put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1);
830 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity. */
832 /* Infinity exponent is same as NaN's. */
833 put_field (uto, order, fmt->totalsize, fmt->exp_start,
834 fmt->exp_len, fmt->exp_nan);
835 /* Infinity mantissa is all zeroes. */
836 put_field (uto, order, fmt->totalsize, fmt->man_start,
838 goto finalize_byteorder;
841 mant = frexp (dfrom, &exponent);
843 if (exponent + fmt->exp_bias <= 0)
845 /* The value is too small to be expressed in the destination
846 type (not enough bits in the exponent. Treat as 0. */
847 put_field (uto, order, fmt->totalsize, fmt->exp_start,
849 put_field (uto, order, fmt->totalsize, fmt->man_start,
851 goto finalize_byteorder;
854 if (exponent + fmt->exp_bias >= (1 << fmt->exp_len))
856 /* The value is too large to fit into the destination.
857 Treat as infinity. */
858 put_field (uto, order, fmt->totalsize, fmt->exp_start,
859 fmt->exp_len, fmt->exp_nan);
860 put_field (uto, order, fmt->totalsize, fmt->man_start,
862 goto finalize_byteorder;
865 put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
866 exponent + fmt->exp_bias - 1);
868 mant_bits_left = fmt->man_len;
869 mant_off = fmt->man_start;
870 while (mant_bits_left > 0)
872 unsigned long mant_long;
874 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
876 mant *= 4294967296.0;
877 mant_long = ((unsigned long) mant) & 0xffffffffL;
880 /* If the integer bit is implicit, then we need to discard it.
881 If we are discarding a zero, we should be (but are not) creating
882 a denormalized number which means adjusting the exponent
884 if (mant_bits_left == fmt->man_len
885 && fmt->intbit == floatformat_intbit_no)
888 mant_long &= 0xffffffffL;
889 /* If we are processing the top 32 mantissa bits of a doublest
890 so as to convert to a float value with implied integer bit,
891 we will only be putting 31 of those 32 bits into the
892 final value due to the discarding of the top bit. In the
893 case of a small float value where the number of mantissa
894 bits is less than 32, discarding the top bit does not alter
895 the number of bits we will be adding to the result. */
902 /* The bits we want are in the most significant MANT_BITS bits of
903 mant_long. Move them to the least significant. */
904 mant_long >>= 32 - mant_bits;
907 put_field (uto, order, fmt->totalsize,
908 mant_off, mant_bits, mant_long);
909 mant_off += mant_bits;
910 mant_bits_left -= mant_bits;
914 /* Do we need to byte-swap the words in the result? */
915 if (order != fmt->byteorder)
916 floatformat_normalize_byteorder (fmt, newto, to);
919 template<typename T> void
920 host_float_ops<T>::to_target (const struct type *type,
921 const T *from, gdb_byte *to) const
923 /* Ensure possible padding bytes in the target buffer are zeroed out. */
924 memset (to, 0, TYPE_LENGTH (type));
926 to_target (floatformat_from_type (type), from, to);
929 /* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
930 to a string, optionally using the print format FORMAT. */
931 template<typename T> struct printf_length_modifier
933 static constexpr char value = 0;
935 template<> struct printf_length_modifier<long double>
937 static constexpr char value = 'L';
939 template<typename T> std::string
940 host_float_ops<T>::to_string (const gdb_byte *addr, const struct type *type,
941 const char *format) const
943 /* Determine the format string to use on the host side. */
944 constexpr char length = printf_length_modifier<T>::value;
945 const struct floatformat *fmt = floatformat_from_type (type);
946 std::string host_format = floatformat_printf_format (fmt, format, length);
949 from_target (type, addr, &host_float);
952 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
953 return string_printf (host_format.c_str (), host_float);
957 /* Parse string IN into a target floating-number of type TYPE and
958 store it as byte-stream ADDR. Return whether parsing succeeded. */
959 template<typename T> struct scanf_length_modifier
961 static constexpr char value = 0;
963 template<> struct scanf_length_modifier<double>
965 static constexpr char value = 'l';
967 template<> struct scanf_length_modifier<long double>
969 static constexpr char value = 'L';
971 template<typename T> bool
972 host_float_ops<T>::from_string (gdb_byte *addr, const struct type *type,
973 const std::string &in) const
978 std::string scan_format = "%";
979 if (scanf_length_modifier<T>::value)
980 scan_format += scanf_length_modifier<T>::value;
981 scan_format += "g%n";
984 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
985 num = sscanf (in.c_str (), scan_format.c_str(), &host_float, &n);
988 /* The sscanf man page suggests not making any assumptions on the effect
989 of %n on the result, so we don't.
990 That is why we simply test num == 0. */
994 /* We only accept the whole string. */
998 to_target (type, &host_float, addr);
1002 /* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
1003 to an integer value (rounding towards zero). */
1004 template<typename T> LONGEST
1005 host_float_ops<T>::to_longest (const gdb_byte *addr,
1006 const struct type *type) const
1009 from_target (type, addr, &host_float);
1010 /* Converting an out-of-range value is undefined behavior in C, but we
1011 prefer to return a defined value here. */
1012 if (host_float > std::numeric_limits<LONGEST>::max())
1013 return std::numeric_limits<LONGEST>::max();
1014 if (host_float < std::numeric_limits<LONGEST>::min())
1015 return std::numeric_limits<LONGEST>::min();
1016 return (LONGEST) host_float;
1019 /* Convert signed integer VAL to a target floating-number of type TYPE
1020 and store it as byte-stream ADDR. */
1021 template<typename T> void
1022 host_float_ops<T>::from_longest (gdb_byte *addr, const struct type *type,
1025 T host_float = (T) val;
1026 to_target (type, &host_float, addr);
1029 /* Convert unsigned integer VAL to a target floating-number of type TYPE
1030 and store it as byte-stream ADDR. */
1031 template<typename T> void
1032 host_float_ops<T>::from_ulongest (gdb_byte *addr, const struct type *type,
1035 T host_float = (T) val;
1036 to_target (type, &host_float, addr);
1039 /* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
1040 to a floating-point value in the host "double" format. */
1041 template<typename T> double
1042 host_float_ops<T>::to_host_double (const gdb_byte *addr,
1043 const struct type *type) const
1046 from_target (type, addr, &host_float);
1047 return (double) host_float;
1050 /* Convert floating-point value VAL in the host "double" format to a target
1051 floating-number of type TYPE and store it as byte-stream ADDR. */
1052 template<typename T> void
1053 host_float_ops<T>::from_host_double (gdb_byte *addr, const struct type *type,
1056 T host_float = (T) val;
1057 to_target (type, &host_float, addr);
1060 /* Convert a floating-point number of type FROM_TYPE from the target
1061 byte-stream FROM to a floating-point number of type TO_TYPE, and
1062 store it to the target byte-stream TO. */
1063 template<typename T> void
1064 host_float_ops<T>::convert (const gdb_byte *from,
1065 const struct type *from_type,
1067 const struct type *to_type) const
1070 from_target (from_type, from, &host_float);
1071 to_target (to_type, &host_float, to);
1074 /* Perform the binary operation indicated by OPCODE, using as operands the
1075 target byte streams X and Y, interpreted as floating-point numbers of
1076 types TYPE_X and TYPE_Y, respectively. Convert the result to format
1077 TYPE_RES and store it into the byte-stream RES. */
1078 template<typename T> void
1079 host_float_ops<T>::binop (enum exp_opcode op,
1080 const gdb_byte *x, const struct type *type_x,
1081 const gdb_byte *y, const struct type *type_y,
1082 gdb_byte *res, const struct type *type_res) const
1086 from_target (type_x, x, &v1);
1087 from_target (type_y, y, &v2);
1111 error (_("Cannot perform exponentiation: %s"),
1112 safe_strerror (errno));
1116 v = v1 < v2 ? v1 : v2;
1120 v = v1 > v2 ? v1 : v2;
1124 error (_("Integer-only operation on floating point number."));
1128 to_target (type_res, &v, res);
1131 /* Compare the two target byte streams X and Y, interpreted as floating-point
1132 numbers of types TYPE_X and TYPE_Y, respectively. Return zero if X and Y
1133 are equal, -1 if X is less than Y, and 1 otherwise. */
1134 template<typename T> int
1135 host_float_ops<T>::compare (const gdb_byte *x, const struct type *type_x,
1136 const gdb_byte *y, const struct type *type_y) const
1140 from_target (type_x, x, &v1);
1141 from_target (type_y, y, &v2);
1151 /* Implementation of target_float_ops using the MPFR library
1152 mpfr_t as intermediate type. */
1156 #define MPFR_USE_INTMAX_T
1160 class mpfr_float_ops : public target_float_ops
1163 std::string to_string (const gdb_byte *addr, const struct type *type,
1164 const char *format) const override;
1165 bool from_string (gdb_byte *addr, const struct type *type,
1166 const std::string &string) const override;
1168 LONGEST to_longest (const gdb_byte *addr,
1169 const struct type *type) const override;
1170 void from_longest (gdb_byte *addr, const struct type *type,
1171 LONGEST val) const override;
1172 void from_ulongest (gdb_byte *addr, const struct type *type,
1173 ULONGEST val) const override;
1174 double to_host_double (const gdb_byte *addr,
1175 const struct type *type) const override;
1176 void from_host_double (gdb_byte *addr, const struct type *type,
1177 double val) const override;
1178 void convert (const gdb_byte *from, const struct type *from_type,
1179 gdb_byte *to, const struct type *to_type) const override;
1181 void binop (enum exp_opcode opcode,
1182 const gdb_byte *x, const struct type *type_x,
1183 const gdb_byte *y, const struct type *type_y,
1184 gdb_byte *res, const struct type *type_res) const override;
1185 int compare (const gdb_byte *x, const struct type *type_x,
1186 const gdb_byte *y, const struct type *type_y) const override;
1189 /* Local wrapper class to handle mpfr_t initalization and cleanup. */
1195 gdb_mpfr (const struct type *type)
1197 const struct floatformat *fmt = floatformat_from_type (type);
1198 mpfr_init2 (val, floatformat_precision (fmt));
1201 gdb_mpfr (const gdb_mpfr &source)
1203 mpfr_init2 (val, mpfr_get_prec (source.val));
1212 void from_target (const struct floatformat *fmt,
1213 const gdb_byte *from, gdb_mpfr &to) const;
1214 void from_target (const struct type *type,
1215 const gdb_byte *from, gdb_mpfr &to) const;
1217 void to_target (const struct type *type,
1218 const gdb_mpfr &from, gdb_byte *to) const;
1219 void to_target (const struct floatformat *fmt,
1220 const gdb_mpfr &from, gdb_byte *to) const;
1224 /* Convert TO/FROM target floating-point format to mpfr_t. */
1227 mpfr_float_ops::from_target (const struct floatformat *fmt,
1228 const gdb_byte *orig_from, gdb_mpfr &to) const
1230 const gdb_byte *from = orig_from;
1231 mpfr_exp_t exponent;
1233 unsigned int mant_bits, mant_off;
1235 int special_exponent; /* It's a NaN, denorm or zero. */
1236 enum floatformat_byteorders order;
1237 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
1238 enum float_kind kind;
1240 gdb_assert (fmt->totalsize
1241 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
1243 /* Handle non-numbers. */
1244 kind = floatformat_classify (fmt, from);
1245 if (kind == float_infinite)
1247 mpfr_set_inf (to.val, floatformat_is_negative (fmt, from) ? -1 : 1);
1250 if (kind == float_nan)
1252 mpfr_set_nan (to.val);
1256 order = floatformat_normalize_byteorder (fmt, from, newfrom);
1258 if (order != fmt->byteorder)
1261 if (fmt->split_half)
1263 gdb_mpfr top (to), bot (to);
1265 from_target (fmt->split_half, from, top);
1266 /* Preserve the sign of 0, which is the sign of the top half. */
1267 if (mpfr_zero_p (top.val))
1269 mpfr_set (to.val, top.val, MPFR_RNDN);
1272 from_target (fmt->split_half,
1273 from + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2, bot);
1274 mpfr_add (to.val, top.val, bot.val, MPFR_RNDN);
1278 exponent = get_field (from, order, fmt->totalsize, fmt->exp_start,
1280 /* Note that if exponent indicates a NaN, we can't really do anything useful
1281 (not knowing if the host has NaN's, or how to build one). So it will
1282 end up as an infinity or something close; that is OK. */
1284 mant_bits_left = fmt->man_len;
1285 mant_off = fmt->man_start;
1286 mpfr_set_zero (to.val, 0);
1288 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
1290 /* Don't bias NaNs. Use minimum exponent for denorms. For
1291 simplicity, we don't check for zero as the exponent doesn't matter.
1292 Note the cast to int; exp_bias is unsigned, so it's important to
1293 make sure the operation is done in signed arithmetic. */
1294 if (!special_exponent)
1295 exponent -= fmt->exp_bias;
1296 else if (exponent == 0)
1297 exponent = 1 - fmt->exp_bias;
1299 /* Build the result algebraically. Might go infinite, underflow, etc;
1302 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
1303 increment the exponent by one to account for the integer bit. */
1305 if (!special_exponent)
1307 if (fmt->intbit == floatformat_intbit_no)
1308 mpfr_set_ui_2exp (to.val, 1, exponent, MPFR_RNDN);
1315 while (mant_bits_left > 0)
1317 mant_bits = std::min (mant_bits_left, 32);
1319 mant = get_field (from, order, fmt->totalsize, mant_off, mant_bits);
1321 mpfr_set_ui (tmp.val, mant, MPFR_RNDN);
1322 mpfr_mul_2si (tmp.val, tmp.val, exponent - mant_bits, MPFR_RNDN);
1323 mpfr_add (to.val, to.val, tmp.val, MPFR_RNDN);
1324 exponent -= mant_bits;
1325 mant_off += mant_bits;
1326 mant_bits_left -= mant_bits;
1329 /* Negate it if negative. */
1330 if (get_field (from, order, fmt->totalsize, fmt->sign_start, 1))
1331 mpfr_neg (to.val, to.val, MPFR_RNDN);
1335 mpfr_float_ops::from_target (const struct type *type,
1336 const gdb_byte *from, gdb_mpfr &to) const
1338 from_target (floatformat_from_type (type), from, to);
1342 mpfr_float_ops::to_target (const struct floatformat *fmt,
1343 const gdb_mpfr &from, gdb_byte *orig_to) const
1345 unsigned char *to = orig_to;
1346 mpfr_exp_t exponent;
1347 unsigned int mant_bits, mant_off;
1349 enum floatformat_byteorders order = fmt->byteorder;
1350 unsigned char newto[FLOATFORMAT_LARGEST_BYTES];
1352 if (order != floatformat_little)
1353 order = floatformat_big;
1355 if (order != fmt->byteorder)
1358 memset (to, 0, floatformat_totalsize_bytes (fmt));
1360 if (fmt->split_half)
1362 gdb_mpfr top (from), bot (from);
1364 mpfr_set (top.val, from.val, MPFR_RNDN);
1365 /* If the rounded top half is Inf, the bottom must be 0 not NaN
1367 if (mpfr_inf_p (top.val))
1368 mpfr_set_zero (bot.val, 0);
1370 mpfr_sub (bot.val, from.val, top.val, MPFR_RNDN);
1372 to_target (fmt->split_half, top, to);
1373 to_target (fmt->split_half, bot,
1374 to + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2);
1378 gdb_mpfr tmp (from);
1380 if (mpfr_zero_p (from.val))
1381 goto finalize_byteorder; /* Result is zero */
1383 mpfr_set (tmp.val, from.val, MPFR_RNDN);
1385 if (mpfr_nan_p (tmp.val)) /* Result is NaN */
1388 put_field (to, order, fmt->totalsize, fmt->exp_start,
1389 fmt->exp_len, fmt->exp_nan);
1390 /* Be sure it's not infinity, but NaN value is irrel. */
1391 put_field (to, order, fmt->totalsize, fmt->man_start,
1393 goto finalize_byteorder;
1396 /* If negative, set the sign bit. */
1397 if (mpfr_sgn (tmp.val) < 0)
1399 put_field (to, order, fmt->totalsize, fmt->sign_start, 1, 1);
1400 mpfr_neg (tmp.val, tmp.val, MPFR_RNDN);
1403 if (mpfr_inf_p (tmp.val)) /* Result is Infinity. */
1405 /* Infinity exponent is same as NaN's. */
1406 put_field (to, order, fmt->totalsize, fmt->exp_start,
1407 fmt->exp_len, fmt->exp_nan);
1408 /* Infinity mantissa is all zeroes. */
1409 put_field (to, order, fmt->totalsize, fmt->man_start,
1411 goto finalize_byteorder;
1414 mpfr_frexp (&exponent, tmp.val, tmp.val, MPFR_RNDN);
1416 if (exponent + fmt->exp_bias <= 0)
1418 /* The value is too small to be expressed in the destination
1419 type (not enough bits in the exponent. Treat as 0. */
1420 put_field (to, order, fmt->totalsize, fmt->exp_start,
1422 put_field (to, order, fmt->totalsize, fmt->man_start,
1424 goto finalize_byteorder;
1427 if (exponent + fmt->exp_bias >= (1 << fmt->exp_len))
1429 /* The value is too large to fit into the destination.
1430 Treat as infinity. */
1431 put_field (to, order, fmt->totalsize, fmt->exp_start,
1432 fmt->exp_len, fmt->exp_nan);
1433 put_field (to, order, fmt->totalsize, fmt->man_start,
1435 goto finalize_byteorder;
1438 put_field (to, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
1439 exponent + fmt->exp_bias - 1);
1441 mant_bits_left = fmt->man_len;
1442 mant_off = fmt->man_start;
1443 while (mant_bits_left > 0)
1445 unsigned long mant_long;
1447 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
1449 mpfr_mul_2ui (tmp.val, tmp.val, 32, MPFR_RNDN);
1450 mant_long = mpfr_get_ui (tmp.val, MPFR_RNDZ) & 0xffffffffL;
1451 mpfr_sub_ui (tmp.val, tmp.val, mant_long, MPFR_RNDZ);
1453 /* If the integer bit is implicit, then we need to discard it.
1454 If we are discarding a zero, we should be (but are not) creating
1455 a denormalized number which means adjusting the exponent
1457 if (mant_bits_left == fmt->man_len
1458 && fmt->intbit == floatformat_intbit_no)
1461 mant_long &= 0xffffffffL;
1462 /* If we are processing the top 32 mantissa bits of a doublest
1463 so as to convert to a float value with implied integer bit,
1464 we will only be putting 31 of those 32 bits into the
1465 final value due to the discarding of the top bit. In the
1466 case of a small float value where the number of mantissa
1467 bits is less than 32, discarding the top bit does not alter
1468 the number of bits we will be adding to the result. */
1469 if (mant_bits == 32)
1475 /* The bits we want are in the most significant MANT_BITS bits of
1476 mant_long. Move them to the least significant. */
1477 mant_long >>= 32 - mant_bits;
1480 put_field (to, order, fmt->totalsize,
1481 mant_off, mant_bits, mant_long);
1482 mant_off += mant_bits;
1483 mant_bits_left -= mant_bits;
1487 /* Do we need to byte-swap the words in the result? */
1488 if (order != fmt->byteorder)
1489 floatformat_normalize_byteorder (fmt, newto, orig_to);
1493 mpfr_float_ops::to_target (const struct type *type,
1494 const gdb_mpfr &from, gdb_byte *to) const
1496 /* Ensure possible padding bytes in the target buffer are zeroed out. */
1497 memset (to, 0, TYPE_LENGTH (type));
1499 to_target (floatformat_from_type (type), from, to);
1502 /* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
1503 to a string, optionally using the print format FORMAT. */
1505 mpfr_float_ops::to_string (const gdb_byte *addr,
1506 const struct type *type,
1507 const char *format) const
1509 const struct floatformat *fmt = floatformat_from_type (type);
1511 /* Unless we need to adhere to a specific format, provide special
1512 output for certain cases. */
1513 if (format == nullptr)
1515 /* Detect invalid representations. */
1516 if (!floatformat_is_valid (fmt, addr))
1517 return "<invalid float value>";
1519 /* Handle NaN and Inf. */
1520 enum float_kind kind = floatformat_classify (fmt, addr);
1521 if (kind == float_nan)
1523 const char *sign = floatformat_is_negative (fmt, addr)? "-" : "";
1524 const char *mantissa = floatformat_mantissa (fmt, addr);
1525 return string_printf ("%snan(0x%s)", sign, mantissa);
1527 else if (kind == float_infinite)
1529 const char *sign = floatformat_is_negative (fmt, addr)? "-" : "";
1530 return string_printf ("%sinf", sign);
1534 /* Determine the format string to use on the host side. */
1535 std::string host_format = floatformat_printf_format (fmt, format, 'R');
1537 gdb_mpfr tmp (type);
1538 from_target (type, addr, tmp);
1540 int size = mpfr_snprintf (NULL, 0, host_format.c_str (), tmp.val);
1541 std::string str (size, '\0');
1542 mpfr_sprintf (&str[0], host_format.c_str (), tmp.val);
1547 /* Parse string STRING into a target floating-number of type TYPE and
1548 store it as byte-stream ADDR. Return whether parsing succeeded. */
1550 mpfr_float_ops::from_string (gdb_byte *addr,
1551 const struct type *type,
1552 const std::string &in) const
1554 gdb_mpfr tmp (type);
1557 mpfr_strtofr (tmp.val, in.c_str (), &endptr, 0, MPFR_RNDN);
1559 /* We only accept the whole string. */
1563 to_target (type, tmp, addr);
1567 /* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
1568 to an integer value (rounding towards zero). */
1570 mpfr_float_ops::to_longest (const gdb_byte *addr,
1571 const struct type *type) const
1573 gdb_mpfr tmp (type);
1574 from_target (type, addr, tmp);
1575 return mpfr_get_sj (tmp.val, MPFR_RNDZ);
1578 /* Convert signed integer VAL to a target floating-number of type TYPE
1579 and store it as byte-stream ADDR. */
1581 mpfr_float_ops::from_longest (gdb_byte *addr,
1582 const struct type *type,
1585 gdb_mpfr tmp (type);
1586 mpfr_set_sj (tmp.val, val, MPFR_RNDN);
1587 to_target (type, tmp, addr);
1590 /* Convert unsigned integer VAL to a target floating-number of type TYPE
1591 and store it as byte-stream ADDR. */
1593 mpfr_float_ops::from_ulongest (gdb_byte *addr,
1594 const struct type *type,
1597 gdb_mpfr tmp (type);
1598 mpfr_set_uj (tmp.val, val, MPFR_RNDN);
1599 to_target (type, tmp, addr);
1602 /* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
1603 to a floating-point value in the host "double" format. */
1605 mpfr_float_ops::to_host_double (const gdb_byte *addr,
1606 const struct type *type) const
1608 gdb_mpfr tmp (type);
1609 from_target (type, addr, tmp);
1610 return mpfr_get_d (tmp.val, MPFR_RNDN);
1613 /* Convert floating-point value VAL in the host "double" format to a target
1614 floating-number of type TYPE and store it as byte-stream ADDR. */
1616 mpfr_float_ops::from_host_double (gdb_byte *addr,
1617 const struct type *type,
1620 gdb_mpfr tmp (type);
1621 mpfr_set_d (tmp.val, val, MPFR_RNDN);
1622 to_target (type, tmp, addr);
1625 /* Convert a floating-point number of type FROM_TYPE from the target
1626 byte-stream FROM to a floating-point number of type TO_TYPE, and
1627 store it to the target byte-stream TO. */
1629 mpfr_float_ops::convert (const gdb_byte *from,
1630 const struct type *from_type,
1632 const struct type *to_type) const
1634 gdb_mpfr from_tmp (from_type), to_tmp (to_type);
1635 from_target (from_type, from, from_tmp);
1636 mpfr_set (to_tmp.val, from_tmp.val, MPFR_RNDN);
1637 to_target (to_type, to_tmp, to);
1640 /* Perform the binary operation indicated by OPCODE, using as operands the
1641 target byte streams X and Y, interpreted as floating-point numbers of
1642 types TYPE_X and TYPE_Y, respectively. Convert the result to type
1643 TYPE_RES and store it into the byte-stream RES. */
1645 mpfr_float_ops::binop (enum exp_opcode op,
1646 const gdb_byte *x, const struct type *type_x,
1647 const gdb_byte *y, const struct type *type_y,
1648 gdb_byte *res, const struct type *type_res) const
1650 gdb_mpfr x_tmp (type_x), y_tmp (type_y), tmp (type_res);
1652 from_target (type_x, x, x_tmp);
1653 from_target (type_y, y, y_tmp);
1658 mpfr_add (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
1662 mpfr_sub (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
1666 mpfr_mul (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
1670 mpfr_div (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
1674 mpfr_pow (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
1678 mpfr_min (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
1682 mpfr_max (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
1686 error (_("Integer-only operation on floating point number."));
1690 to_target (type_res, tmp, res);
1693 /* Compare the two target byte streams X and Y, interpreted as floating-point
1694 numbers of types TYPE_X and TYPE_Y, respectively. Return zero if X and Y
1695 are equal, -1 if X is less than Y, and 1 otherwise. */
1697 mpfr_float_ops::compare (const gdb_byte *x, const struct type *type_x,
1698 const gdb_byte *y, const struct type *type_y) const
1700 gdb_mpfr x_tmp (type_x), y_tmp (type_y);
1702 from_target (type_x, x, x_tmp);
1703 from_target (type_y, y, y_tmp);
1705 if (mpfr_equal_p (x_tmp.val, y_tmp.val))
1707 else if (mpfr_less_p (x_tmp.val, y_tmp.val))
1716 /* Helper routines operating on decimal floating-point data. */
1718 /* Decimal floating point is one of the extension to IEEE 754, which is
1719 described in http://grouper.ieee.org/groups/754/revision.html and
1720 http://www2.hursley.ibm.com/decimal/. It completes binary floating
1721 point by representing floating point more exactly. */
1723 /* The order of the following headers is important for making sure
1724 decNumber structure is large enough to hold decimal128 digits. */
1726 #include "dpd/decimal128.h"
1727 #include "dpd/decimal64.h"
1728 #include "dpd/decimal32.h"
1730 /* When using decimal128, this is the maximum string length + 1
1731 (value comes from libdecnumber's DECIMAL128_String constant). */
1732 #define MAX_DECIMAL_STRING 43
1734 /* In GDB, we are using an array of gdb_byte to represent decimal values.
1735 They are stored in host byte order. This routine does the conversion if
1736 the target byte order is different. */
1738 match_endianness (const gdb_byte *from, const struct type *type, gdb_byte *to)
1740 gdb_assert (TYPE_CODE (type) == TYPE_CODE_DECFLOAT);
1742 int len = TYPE_LENGTH (type);
1746 #define OPPOSITE_BYTE_ORDER BFD_ENDIAN_LITTLE
1748 #define OPPOSITE_BYTE_ORDER BFD_ENDIAN_BIG
1751 if (gdbarch_byte_order (get_type_arch (type)) == OPPOSITE_BYTE_ORDER)
1752 for (i = 0; i < len; i++)
1753 to[i] = from[len - i - 1];
1755 for (i = 0; i < len; i++)
1761 /* Helper function to get the appropriate libdecnumber context for each size
1762 of decimal float. */
1764 set_decnumber_context (decContext *ctx, const struct type *type)
1766 gdb_assert (TYPE_CODE (type) == TYPE_CODE_DECFLOAT);
1768 switch (TYPE_LENGTH (type))
1771 decContextDefault (ctx, DEC_INIT_DECIMAL32);
1774 decContextDefault (ctx, DEC_INIT_DECIMAL64);
1777 decContextDefault (ctx, DEC_INIT_DECIMAL128);
1784 /* Check for errors signaled in the decimal context structure. */
1786 decimal_check_errors (decContext *ctx)
1788 /* An error here could be a division by zero, an overflow, an underflow or
1789 an invalid operation (from the DEC_Errors constant in decContext.h).
1790 Since GDB doesn't complain about division by zero, overflow or underflow
1791 errors for binary floating, we won't complain about them for decimal
1793 if (ctx->status & DEC_IEEE_854_Invalid_operation)
1795 /* Leave only the error bits in the status flags. */
1796 ctx->status &= DEC_IEEE_854_Invalid_operation;
1797 error (_("Cannot perform operation: %s"),
1798 decContextStatusToString (ctx));
1802 /* Helper function to convert from libdecnumber's appropriate representation
1803 for computation to each size of decimal float. */
1805 decimal_from_number (const decNumber *from,
1806 gdb_byte *to, const struct type *type)
1812 set_decnumber_context (&set, type);
1814 switch (TYPE_LENGTH (type))
1817 decimal32FromNumber ((decimal32 *) dec, from, &set);
1820 decimal64FromNumber ((decimal64 *) dec, from, &set);
1823 decimal128FromNumber ((decimal128 *) dec, from, &set);
1826 error (_("Unknown decimal floating point type."));
1830 match_endianness (dec, type, to);
1833 /* Helper function to convert each size of decimal float to libdecnumber's
1834 appropriate representation for computation. */
1836 decimal_to_number (const gdb_byte *addr, const struct type *type,
1840 match_endianness (addr, type, dec);
1842 switch (TYPE_LENGTH (type))
1845 decimal32ToNumber ((decimal32 *) dec, to);
1848 decimal64ToNumber ((decimal64 *) dec, to);
1851 decimal128ToNumber ((decimal128 *) dec, to);
1854 error (_("Unknown decimal floating point type."));
1859 /* Returns true if ADDR (which is of type TYPE) is the number zero. */
1861 decimal_is_zero (const gdb_byte *addr, const struct type *type)
1865 decimal_to_number (addr, type, &number);
1867 return decNumberIsZero (&number);
1871 /* Implementation of target_float_ops using the libdecnumber decNumber type
1872 as intermediate format. */
1874 class decimal_float_ops : public target_float_ops
1877 std::string to_string (const gdb_byte *addr, const struct type *type,
1878 const char *format) const override;
1879 bool from_string (gdb_byte *addr, const struct type *type,
1880 const std::string &string) const override;
1882 LONGEST to_longest (const gdb_byte *addr,
1883 const struct type *type) const override;
1884 void from_longest (gdb_byte *addr, const struct type *type,
1885 LONGEST val) const override;
1886 void from_ulongest (gdb_byte *addr, const struct type *type,
1887 ULONGEST val) const override;
1888 double to_host_double (const gdb_byte *addr,
1889 const struct type *type) const override
1891 /* We don't support conversions between target decimal floating-point
1892 types and the host double type. */
1893 gdb_assert_not_reached ("invalid operation on decimal float");
1895 void from_host_double (gdb_byte *addr, const struct type *type,
1896 double val) const override
1898 /* We don't support conversions between target decimal floating-point
1899 types and the host double type. */
1900 gdb_assert_not_reached ("invalid operation on decimal float");
1902 void convert (const gdb_byte *from, const struct type *from_type,
1903 gdb_byte *to, const struct type *to_type) const override;
1905 void binop (enum exp_opcode opcode,
1906 const gdb_byte *x, const struct type *type_x,
1907 const gdb_byte *y, const struct type *type_y,
1908 gdb_byte *res, const struct type *type_res) const override;
1909 int compare (const gdb_byte *x, const struct type *type_x,
1910 const gdb_byte *y, const struct type *type_y) const override;
1913 /* Convert decimal type to its string representation. LEN is the length
1914 of the decimal type, 4 bytes for decimal32, 8 bytes for decimal64 and
1915 16 bytes for decimal128. */
1917 decimal_float_ops::to_string (const gdb_byte *addr, const struct type *type,
1918 const char *format = nullptr) const
1922 match_endianness (addr, type, dec);
1924 if (format != nullptr)
1926 /* We don't handle format strings (yet). If the host printf supports
1927 decimal floating point types, just use this. Otherwise, fall back
1928 to printing the number while ignoring the format string. */
1929 #if defined (PRINTF_HAS_DECFLOAT)
1930 /* FIXME: This makes unwarranted assumptions about the host ABI! */
1931 return string_printf (format, dec);
1936 result.resize (MAX_DECIMAL_STRING);
1938 switch (TYPE_LENGTH (type))
1941 decimal32ToString ((decimal32 *) dec, &result[0]);
1944 decimal64ToString ((decimal64 *) dec, &result[0]);
1947 decimal128ToString ((decimal128 *) dec, &result[0]);
1950 error (_("Unknown decimal floating point type."));
1957 /* Convert the string form of a decimal value to its decimal representation.
1958 LEN is the length of the decimal type, 4 bytes for decimal32, 8 bytes for
1959 decimal64 and 16 bytes for decimal128. */
1961 decimal_float_ops::from_string (gdb_byte *addr, const struct type *type,
1962 const std::string &string) const
1967 set_decnumber_context (&set, type);
1969 switch (TYPE_LENGTH (type))
1972 decimal32FromString ((decimal32 *) dec, string.c_str (), &set);
1975 decimal64FromString ((decimal64 *) dec, string.c_str (), &set);
1978 decimal128FromString ((decimal128 *) dec, string.c_str (), &set);
1981 error (_("Unknown decimal floating point type."));
1985 match_endianness (dec, type, addr);
1987 /* Check for errors in the DFP operation. */
1988 decimal_check_errors (&set);
1993 /* Converts a LONGEST to a decimal float of specified LEN bytes. */
1995 decimal_float_ops::from_longest (gdb_byte *addr, const struct type *type,
2000 if ((int32_t) from != from)
2001 /* libdecnumber can convert only 32-bit integers. */
2002 error (_("Conversion of large integer to a "
2003 "decimal floating type is not supported."));
2005 decNumberFromInt32 (&number, (int32_t) from);
2007 decimal_from_number (&number, addr, type);
2010 /* Converts a ULONGEST to a decimal float of specified LEN bytes. */
2012 decimal_float_ops::from_ulongest (gdb_byte *addr, const struct type *type,
2013 ULONGEST from) const
2017 if ((uint32_t) from != from)
2018 /* libdecnumber can convert only 32-bit integers. */
2019 error (_("Conversion of large integer to a "
2020 "decimal floating type is not supported."));
2022 decNumberFromUInt32 (&number, (uint32_t) from);
2024 decimal_from_number (&number, addr, type);
2027 /* Converts a decimal float of LEN bytes to a LONGEST. */
2029 decimal_float_ops::to_longest (const gdb_byte *addr,
2030 const struct type *type) const
2032 /* libdecnumber has a function to convert from decimal to integer, but
2033 it doesn't work when the decimal number has a fractional part. */
2034 std::string str = to_string (addr, type);
2035 return strtoll (str.c_str (), NULL, 10);
2038 /* Perform operation OP with operands X and Y with sizes LEN_X and LEN_Y
2039 and byte orders BYTE_ORDER_X and BYTE_ORDER_Y, and store value in
2040 RESULT with size LEN_RESULT and byte order BYTE_ORDER_RESULT. */
2042 decimal_float_ops::binop (enum exp_opcode op,
2043 const gdb_byte *x, const struct type *type_x,
2044 const gdb_byte *y, const struct type *type_y,
2045 gdb_byte *res, const struct type *type_res) const
2048 decNumber number1, number2, number3;
2050 decimal_to_number (x, type_x, &number1);
2051 decimal_to_number (y, type_y, &number2);
2053 set_decnumber_context (&set, type_res);
2058 decNumberAdd (&number3, &number1, &number2, &set);
2061 decNumberSubtract (&number3, &number1, &number2, &set);
2064 decNumberMultiply (&number3, &number1, &number2, &set);
2067 decNumberDivide (&number3, &number1, &number2, &set);
2070 decNumberPower (&number3, &number1, &number2, &set);
2073 error (_("Operation not valid for decimal floating point number."));
2077 /* Check for errors in the DFP operation. */
2078 decimal_check_errors (&set);
2080 decimal_from_number (&number3, res, type_res);
2083 /* Compares two numbers numerically. If X is less than Y then the return value
2084 will be -1. If they are equal, then the return value will be 0. If X is
2085 greater than the Y then the return value will be 1. */
2087 decimal_float_ops::compare (const gdb_byte *x, const struct type *type_x,
2088 const gdb_byte *y, const struct type *type_y) const
2090 decNumber number1, number2, result;
2092 const struct type *type_result;
2094 decimal_to_number (x, type_x, &number1);
2095 decimal_to_number (y, type_y, &number2);
2097 /* Perform the comparison in the larger of the two sizes. */
2098 type_result = TYPE_LENGTH (type_x) > TYPE_LENGTH (type_y) ? type_x : type_y;
2099 set_decnumber_context (&set, type_result);
2101 decNumberCompare (&result, &number1, &number2, &set);
2103 /* Check for errors in the DFP operation. */
2104 decimal_check_errors (&set);
2106 if (decNumberIsNaN (&result))
2107 error (_("Comparison with an invalid number (NaN)."));
2108 else if (decNumberIsZero (&result))
2110 else if (decNumberIsNegative (&result))
2116 /* Convert a decimal value from a decimal type with LEN_FROM bytes to a
2117 decimal type with LEN_TO bytes. */
2119 decimal_float_ops::convert (const gdb_byte *from, const struct type *from_type,
2120 gdb_byte *to, const struct type *to_type) const
2124 decimal_to_number (from, from_type, &number);
2125 decimal_from_number (&number, to, to_type);
2129 /* Typed floating-point routines. These routines operate on floating-point
2130 values in target format, represented by a byte buffer interpreted as a
2131 "struct type", which may be either a binary or decimal floating-point
2132 type (TYPE_CODE_FLT or TYPE_CODE_DECFLOAT). */
2134 /* Return whether TYPE1 and TYPE2 are of the same category (binary or
2135 decimal floating-point). */
2137 target_float_same_category_p (const struct type *type1,
2138 const struct type *type2)
2140 return TYPE_CODE (type1) == TYPE_CODE (type2);
2143 /* Return whether TYPE1 and TYPE2 use the same floating-point format. */
2145 target_float_same_format_p (const struct type *type1,
2146 const struct type *type2)
2148 if (!target_float_same_category_p (type1, type2))
2151 switch (TYPE_CODE (type1))
2154 return floatformat_from_type (type1) == floatformat_from_type (type2);
2156 case TYPE_CODE_DECFLOAT:
2157 return (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
2158 && (gdbarch_byte_order (get_type_arch (type1))
2159 == gdbarch_byte_order (get_type_arch (type2))));
2162 gdb_assert_not_reached ("unexpected type code");
2166 /* Return the size (without padding) of the target floating-point
2167 format used by TYPE. */
2169 target_float_format_length (const struct type *type)
2171 switch (TYPE_CODE (type))
2174 return floatformat_totalsize_bytes (floatformat_from_type (type));
2176 case TYPE_CODE_DECFLOAT:
2177 return TYPE_LENGTH (type);
2180 gdb_assert_not_reached ("unexpected type code");
2184 /* Identifiers of available host-side intermediate formats. These must
2185 be sorted so the that the more "general" kinds come later. */
2186 enum target_float_ops_kind
2188 /* Target binary floating-point formats that match a host format. */
2192 /* Any other target binary floating-point format. */
2194 /* Any target decimal floating-point format. */
2198 /* Given a target type TYPE, choose the best host-side intermediate format
2199 to perform operations on TYPE in. */
2200 static enum target_float_ops_kind
2201 get_target_float_ops_kind (const struct type *type)
2203 switch (TYPE_CODE (type))
2207 const struct floatformat *fmt = floatformat_from_type (type);
2209 /* Binary floating-point formats matching a host format. */
2210 if (fmt == host_float_format)
2211 return target_float_ops_kind::host_float;
2212 if (fmt == host_double_format)
2213 return target_float_ops_kind::host_double;
2214 if (fmt == host_long_double_format)
2215 return target_float_ops_kind::host_long_double;
2217 /* Any other binary floating-point format. */
2218 return target_float_ops_kind::binary;
2221 case TYPE_CODE_DECFLOAT:
2223 /* Any decimal floating-point format. */
2224 return target_float_ops_kind::decimal;
2228 gdb_assert_not_reached ("unexpected type code");
2232 /* Return target_float_ops to peform operations for KIND. */
2233 static const target_float_ops *
2234 get_target_float_ops (enum target_float_ops_kind kind)
2238 /* If the type format matches one of the host floating-point
2239 types, use that type as intermediate format. */
2240 case target_float_ops_kind::host_float:
2242 static host_float_ops<float> host_float_ops_float;
2243 return &host_float_ops_float;
2246 case target_float_ops_kind::host_double:
2248 static host_float_ops<double> host_float_ops_double;
2249 return &host_float_ops_double;
2252 case target_float_ops_kind::host_long_double:
2254 static host_float_ops<long double> host_float_ops_long_double;
2255 return &host_float_ops_long_double;
2258 /* For binary floating-point formats that do not match any host format,
2259 use mpfr_t as intermediate format to provide precise target-floating
2260 point emulation. However, if the MPFR library is not availabe,
2261 use the largest host floating-point type as intermediate format. */
2262 case target_float_ops_kind::binary:
2265 static mpfr_float_ops binary_float_ops;
2267 static host_float_ops<long double> binary_float_ops;
2269 return &binary_float_ops;
2272 /* For decimal floating-point types, always use the libdecnumber
2273 decNumber type as intermediate format. */
2274 case target_float_ops_kind::decimal:
2276 static decimal_float_ops decimal_float_ops;
2277 return &decimal_float_ops;
2281 gdb_assert_not_reached ("unexpected target_float_ops_kind");
2285 /* Given a target type TYPE, determine the best host-side intermediate format
2286 to perform operations on TYPE in. */
2287 static const target_float_ops *
2288 get_target_float_ops (const struct type *type)
2290 enum target_float_ops_kind kind = get_target_float_ops_kind (type);
2291 return get_target_float_ops (kind);
2294 /* The same for operations involving two target types TYPE1 and TYPE2. */
2295 static const target_float_ops *
2296 get_target_float_ops (const struct type *type1, const struct type *type2)
2298 gdb_assert (TYPE_CODE (type1) == TYPE_CODE (type2));
2300 enum target_float_ops_kind kind1 = get_target_float_ops_kind (type1);
2301 enum target_float_ops_kind kind2 = get_target_float_ops_kind (type2);
2303 /* Given the way the kinds are sorted, we simply choose the larger one;
2304 this will be able to hold values of either type. */
2305 return get_target_float_ops (std::max (kind1, kind2));
2308 /* Return whether the byte-stream ADDR holds a valid value of
2309 floating-point type TYPE. */
2311 target_float_is_valid (const gdb_byte *addr, const struct type *type)
2313 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2314 return floatformat_is_valid (floatformat_from_type (type), addr);
2316 if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
2319 gdb_assert_not_reached ("unexpected type code");
2322 /* Return whether the byte-stream ADDR, interpreted as floating-point
2323 type TYPE, is numerically equal to zero (of either sign). */
2325 target_float_is_zero (const gdb_byte *addr, const struct type *type)
2327 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2328 return (floatformat_classify (floatformat_from_type (type), addr)
2331 if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
2332 return decimal_is_zero (addr, type);
2334 gdb_assert_not_reached ("unexpected type code");
2337 /* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
2338 to a string, optionally using the print format FORMAT. */
2340 target_float_to_string (const gdb_byte *addr, const struct type *type,
2343 /* Unless we need to adhere to a specific format, provide special
2344 output for special cases of binary floating-point numbers. */
2345 if (format == nullptr && TYPE_CODE (type) == TYPE_CODE_FLT)
2347 const struct floatformat *fmt = floatformat_from_type (type);
2349 /* Detect invalid representations. */
2350 if (!floatformat_is_valid (fmt, addr))
2351 return "<invalid float value>";
2353 /* Handle NaN and Inf. */
2354 enum float_kind kind = floatformat_classify (fmt, addr);
2355 if (kind == float_nan)
2357 const char *sign = floatformat_is_negative (fmt, addr)? "-" : "";
2358 const char *mantissa = floatformat_mantissa (fmt, addr);
2359 return string_printf ("%snan(0x%s)", sign, mantissa);
2361 else if (kind == float_infinite)
2363 const char *sign = floatformat_is_negative (fmt, addr)? "-" : "";
2364 return string_printf ("%sinf", sign);
2368 const target_float_ops *ops = get_target_float_ops (type);
2369 return ops->to_string (addr, type, format);
2372 /* Parse string STRING into a target floating-number of type TYPE and
2373 store it as byte-stream ADDR. Return whether parsing succeeded. */
2375 target_float_from_string (gdb_byte *addr, const struct type *type,
2376 const std::string &string)
2378 const target_float_ops *ops = get_target_float_ops (type);
2379 return ops->from_string (addr, type, string);
2382 /* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
2383 to an integer value (rounding towards zero). */
2385 target_float_to_longest (const gdb_byte *addr, const struct type *type)
2387 const target_float_ops *ops = get_target_float_ops (type);
2388 return ops->to_longest (addr, type);
2391 /* Convert signed integer VAL to a target floating-number of type TYPE
2392 and store it as byte-stream ADDR. */
2394 target_float_from_longest (gdb_byte *addr, const struct type *type,
2397 const target_float_ops *ops = get_target_float_ops (type);
2398 ops->from_longest (addr, type, val);
2401 /* Convert unsigned integer VAL to a target floating-number of type TYPE
2402 and store it as byte-stream ADDR. */
2404 target_float_from_ulongest (gdb_byte *addr, const struct type *type,
2407 const target_float_ops *ops = get_target_float_ops (type);
2408 ops->from_ulongest (addr, type, val);
2411 /* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
2412 to a floating-point value in the host "double" format. */
2414 target_float_to_host_double (const gdb_byte *addr,
2415 const struct type *type)
2417 const target_float_ops *ops = get_target_float_ops (type);
2418 return ops->to_host_double (addr, type);
2421 /* Convert floating-point value VAL in the host "double" format to a target
2422 floating-number of type TYPE and store it as byte-stream ADDR. */
2424 target_float_from_host_double (gdb_byte *addr, const struct type *type,
2427 const target_float_ops *ops = get_target_float_ops (type);
2428 ops->from_host_double (addr, type, val);
2431 /* Convert a floating-point number of type FROM_TYPE from the target
2432 byte-stream FROM to a floating-point number of type TO_TYPE, and
2433 store it to the target byte-stream TO. */
2435 target_float_convert (const gdb_byte *from, const struct type *from_type,
2436 gdb_byte *to, const struct type *to_type)
2438 /* We cannot directly convert between binary and decimal floating-point
2439 types, so go via an intermediary string. */
2440 if (!target_float_same_category_p (from_type, to_type))
2442 std::string str = target_float_to_string (from, from_type);
2443 target_float_from_string (to, to_type, str);
2447 /* Convert between two different formats in the same category. */
2448 if (!target_float_same_format_p (from_type, to_type))
2450 const target_float_ops *ops = get_target_float_ops (from_type, to_type);
2451 ops->convert (from, from_type, to, to_type);
2455 /* The floating-point formats match, so we simply copy the data, ensuring
2456 possible padding bytes in the target buffer are zeroed out. */
2457 memset (to, 0, TYPE_LENGTH (to_type));
2458 memcpy (to, from, target_float_format_length (to_type));
2461 /* Perform the binary operation indicated by OPCODE, using as operands the
2462 target byte streams X and Y, interpreted as floating-point numbers of
2463 types TYPE_X and TYPE_Y, respectively. Convert the result to type
2464 TYPE_RES and store it into the byte-stream RES.
2466 The three types must either be all binary floating-point types, or else
2467 all decimal floating-point types. Binary and decimal floating-point
2468 types cannot be mixed within a single operation. */
2470 target_float_binop (enum exp_opcode opcode,
2471 const gdb_byte *x, const struct type *type_x,
2472 const gdb_byte *y, const struct type *type_y,
2473 gdb_byte *res, const struct type *type_res)
2475 gdb_assert (target_float_same_category_p (type_x, type_res));
2476 gdb_assert (target_float_same_category_p (type_y, type_res));
2478 const target_float_ops *ops = get_target_float_ops (type_x, type_y);
2479 ops->binop (opcode, x, type_x, y, type_y, res, type_res);
2482 /* Compare the two target byte streams X and Y, interpreted as floating-point
2483 numbers of types TYPE_X and TYPE_Y, respectively. Return zero if X and Y
2484 are equal, -1 if X is less than Y, and 1 otherwise.
2486 The two types must either both be binary floating-point types, or else
2487 both be decimal floating-point types. Binary and decimal floating-point
2488 types cannot compared directly against each other. */
2490 target_float_compare (const gdb_byte *x, const struct type *type_x,
2491 const gdb_byte *y, const struct type *type_y)
2493 gdb_assert (target_float_same_category_p (type_x, type_y));
2495 const target_float_ops *ops = get_target_float_ops (type_x, type_y);
2496 return ops->compare (x, type_x, y, type_y);