1 /* Symbol table definitions for GDB.
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #if !defined (SYMTAB_H)
27 /* Opaque declarations. */
42 /* Some of the structures in this file are space critical.
43 The space-critical structures are:
45 struct general_symbol_info
49 These structures are laid out to encourage good packing.
50 They use ENUM_BITFIELD and short int fields, and they order the
51 structure members so that fields less than a word are next
52 to each other so they can be packed together. */
54 /* Rearranged: used ENUM_BITFIELD and rearranged field order in
55 all the space critical structures (plus struct minimal_symbol).
56 Memory usage dropped from 99360768 bytes to 90001408 bytes.
57 I measured this with before-and-after tests of
58 "HEAD-old-gdb -readnow HEAD-old-gdb" and
59 "HEAD-new-gdb -readnow HEAD-old-gdb" on native i686-pc-linux-gnu,
60 red hat linux 8, with LD_LIBRARY_PATH=/usr/lib/debug,
61 typing "maint space 1" at the first command prompt.
63 Here is another measurement (from andrew c):
64 # no /usr/lib/debug, just plain glibc, like a normal user
66 (gdb) break internal_error
68 (gdb) maint internal-error
72 gdb gdb_6_0_branch 2003-08-19 space used: 8896512
73 gdb HEAD 2003-08-19 space used: 8904704
74 gdb HEAD 2003-08-21 space used: 8396800 (+symtab.h)
75 gdb HEAD 2003-08-21 space used: 8265728 (+gdbtypes.h)
77 The third line shows the savings from the optimizations in symtab.h.
78 The fourth line shows the savings from the optimizations in
79 gdbtypes.h. Both optimizations are in gdb HEAD now.
81 --chastain 2003-08-21 */
83 /* Define a structure for the information that is common to all symbol types,
84 including minimal symbols, partial symbols, and full symbols. In a
85 multilanguage environment, some language specific information may need to
86 be recorded along with each symbol. */
88 /* This structure is space critical. See space comments at the top. */
90 struct general_symbol_info
92 /* Name of the symbol. This is a required field. Storage for the
93 name is allocated on the objfile_obstack for the associated
94 objfile. For languages like C++ that make a distinction between
95 the mangled name and demangled name, this is the mangled
100 /* Value of the symbol. Which member of this union to use, and what
101 it means, depends on what kind of symbol this is and its
102 SYMBOL_CLASS. See comments there for more details. All of these
103 are in host byte order (though what they point to might be in
104 target byte order, e.g. LOC_CONST_BYTES). */
110 const struct block *block;
112 const gdb_byte *bytes;
116 /* A common block. Used with LOC_COMMON_BLOCK. */
118 const struct common_block *common_block;
120 /* For opaque typedef struct chain. */
122 struct symbol *chain;
126 /* Since one and only one language can apply, wrap the language specific
127 information inside a union. */
131 /* A pointer to an obstack that can be used for storage associated
132 with this symbol. This is only used by Ada, and only when the
133 'ada_mangled' field is zero. */
134 struct obstack *obstack;
136 /* This is used by languages which wish to store a demangled name.
137 currently used by Ada, C++, Java, and Objective C. */
140 const char *demangled_name;
146 /* Record the source code language that applies to this symbol.
147 This is used to select one of the fields from the language specific
150 ENUM_BITFIELD(language) language : 8;
152 /* This is only used by Ada. If set, then the 'mangled_lang' field
153 of language_specific is valid. Otherwise, the 'obstack' field is
155 unsigned int ada_mangled : 1;
157 /* Which section is this symbol in? This is an index into
158 section_offsets for this objfile. Negative means that the symbol
159 does not get relocated relative to a section. */
164 extern void symbol_set_demangled_name (struct general_symbol_info *,
168 extern const char *symbol_get_demangled_name
169 (const struct general_symbol_info *);
171 extern CORE_ADDR symbol_overlayed_address (CORE_ADDR, struct obj_section *);
173 /* Note that all the following SYMBOL_* macros are used with the
174 SYMBOL argument being either a partial symbol or
175 a full symbol. Both types have a ginfo field. In particular
176 the SYMBOL_SET_LANGUAGE, SYMBOL_DEMANGLED_NAME, etc.
177 macros cannot be entirely substituted by
178 functions, unless the callers are changed to pass in the ginfo
179 field only, instead of the SYMBOL parameter. */
181 #define SYMBOL_VALUE(symbol) (symbol)->ginfo.value.ivalue
182 #define SYMBOL_VALUE_ADDRESS(symbol) (symbol)->ginfo.value.address
183 #define SYMBOL_VALUE_BYTES(symbol) (symbol)->ginfo.value.bytes
184 #define SYMBOL_VALUE_COMMON_BLOCK(symbol) (symbol)->ginfo.value.common_block
185 #define SYMBOL_BLOCK_VALUE(symbol) (symbol)->ginfo.value.block
186 #define SYMBOL_VALUE_CHAIN(symbol) (symbol)->ginfo.value.chain
187 #define SYMBOL_LANGUAGE(symbol) (symbol)->ginfo.language
188 #define SYMBOL_SECTION(symbol) (symbol)->ginfo.section
189 #define SYMBOL_OBJ_SECTION(objfile, symbol) \
190 (((symbol)->ginfo.section >= 0) \
191 ? (&(((objfile)->sections)[(symbol)->ginfo.section])) \
194 /* Initializes the language dependent portion of a symbol
195 depending upon the language for the symbol. */
196 #define SYMBOL_SET_LANGUAGE(symbol,language,obstack) \
197 (symbol_set_language (&(symbol)->ginfo, (language), (obstack)))
198 extern void symbol_set_language (struct general_symbol_info *symbol,
199 enum language language,
200 struct obstack *obstack);
202 /* Set just the linkage name of a symbol; do not try to demangle
203 it. Used for constructs which do not have a mangled name,
204 e.g. struct tags. Unlike SYMBOL_SET_NAMES, linkage_name must
205 be terminated and either already on the objfile's obstack or
206 permanently allocated. */
207 #define SYMBOL_SET_LINKAGE_NAME(symbol,linkage_name) \
208 (symbol)->ginfo.name = (linkage_name)
210 /* Set the linkage and natural names of a symbol, by demangling
212 #define SYMBOL_SET_NAMES(symbol,linkage_name,len,copy_name,objfile) \
213 symbol_set_names (&(symbol)->ginfo, linkage_name, len, copy_name, objfile)
214 extern void symbol_set_names (struct general_symbol_info *symbol,
215 const char *linkage_name, int len, int copy_name,
216 struct objfile *objfile);
218 /* Now come lots of name accessor macros. Short version as to when to
219 use which: Use SYMBOL_NATURAL_NAME to refer to the name of the
220 symbol in the original source code. Use SYMBOL_LINKAGE_NAME if you
221 want to know what the linker thinks the symbol's name is. Use
222 SYMBOL_PRINT_NAME for output. Use SYMBOL_DEMANGLED_NAME if you
223 specifically need to know whether SYMBOL_NATURAL_NAME and
224 SYMBOL_LINKAGE_NAME are different. */
226 /* Return SYMBOL's "natural" name, i.e. the name that it was called in
227 the original source code. In languages like C++ where symbols may
228 be mangled for ease of manipulation by the linker, this is the
231 #define SYMBOL_NATURAL_NAME(symbol) \
232 (symbol_natural_name (&(symbol)->ginfo))
233 extern const char *symbol_natural_name
234 (const struct general_symbol_info *symbol);
236 /* Return SYMBOL's name from the point of view of the linker. In
237 languages like C++ where symbols may be mangled for ease of
238 manipulation by the linker, this is the mangled name; otherwise,
239 it's the same as SYMBOL_NATURAL_NAME. */
241 #define SYMBOL_LINKAGE_NAME(symbol) (symbol)->ginfo.name
243 /* Return the demangled name for a symbol based on the language for
244 that symbol. If no demangled name exists, return NULL. */
245 #define SYMBOL_DEMANGLED_NAME(symbol) \
246 (symbol_demangled_name (&(symbol)->ginfo))
247 extern const char *symbol_demangled_name
248 (const struct general_symbol_info *symbol);
250 /* Macro that returns a version of the name of a symbol that is
251 suitable for output. In C++ this is the "demangled" form of the
252 name if demangle is on and the "mangled" form of the name if
253 demangle is off. In other languages this is just the symbol name.
254 The result should never be NULL. Don't use this for internal
255 purposes (e.g. storing in a hashtable): it's only suitable for output.
257 N.B. symbol may be anything with a ginfo member,
258 e.g., struct symbol or struct minimal_symbol. */
260 #define SYMBOL_PRINT_NAME(symbol) \
261 (demangle ? SYMBOL_NATURAL_NAME (symbol) : SYMBOL_LINKAGE_NAME (symbol))
264 /* Macro that returns the name to be used when sorting and searching symbols.
265 In C++ and Java, we search for the demangled form of a name,
266 and so sort symbols accordingly. In Ada, however, we search by mangled
267 name. If there is no distinct demangled name, then SYMBOL_SEARCH_NAME
268 returns the same value (same pointer) as SYMBOL_LINKAGE_NAME. */
269 #define SYMBOL_SEARCH_NAME(symbol) \
270 (symbol_search_name (&(symbol)->ginfo))
271 extern const char *symbol_search_name (const struct general_symbol_info *);
273 /* Return non-zero if NAME matches the "search" name of SYMBOL.
274 Whitespace and trailing parentheses are ignored.
275 See strcmp_iw for details about its behavior. */
276 #define SYMBOL_MATCHES_SEARCH_NAME(symbol, name) \
277 (strcmp_iw (SYMBOL_SEARCH_NAME (symbol), (name)) == 0)
279 /* Classification types for a minimal symbol. These should be taken as
280 "advisory only", since if gdb can't easily figure out a
281 classification it simply selects mst_unknown. It may also have to
282 guess when it can't figure out which is a better match between two
283 types (mst_data versus mst_bss) for example. Since the minimal
284 symbol info is sometimes derived from the BFD library's view of a
285 file, we need to live with what information bfd supplies. */
287 enum minimal_symbol_type
289 mst_unknown = 0, /* Unknown type, the default */
290 mst_text, /* Generally executable instructions */
291 mst_text_gnu_ifunc, /* Executable code returning address
292 of executable code */
293 mst_slot_got_plt, /* GOT entries for .plt sections */
294 mst_data, /* Generally initialized data */
295 mst_bss, /* Generally uninitialized data */
296 mst_abs, /* Generally absolute (nonrelocatable) */
297 /* GDB uses mst_solib_trampoline for the start address of a shared
298 library trampoline entry. Breakpoints for shared library functions
299 are put there if the shared library is not yet loaded.
300 After the shared library is loaded, lookup_minimal_symbol will
301 prefer the minimal symbol from the shared library (usually
302 a mst_text symbol) over the mst_solib_trampoline symbol, and the
303 breakpoints will be moved to their true address in the shared
304 library via breakpoint_re_set. */
305 mst_solib_trampoline, /* Shared library trampoline code */
306 /* For the mst_file* types, the names are only guaranteed to be unique
307 within a given .o file. */
308 mst_file_text, /* Static version of mst_text */
309 mst_file_data, /* Static version of mst_data */
310 mst_file_bss /* Static version of mst_bss */
313 /* Define a simple structure used to hold some very basic information about
314 all defined global symbols (text, data, bss, abs, etc). The only required
315 information is the general_symbol_info.
317 In many cases, even if a file was compiled with no special options for
318 debugging at all, as long as was not stripped it will contain sufficient
319 information to build a useful minimal symbol table using this structure.
320 Even when a file contains enough debugging information to build a full
321 symbol table, these minimal symbols are still useful for quickly mapping
322 between names and addresses, and vice versa. They are also sometimes
323 used to figure out what full symbol table entries need to be read in. */
325 struct minimal_symbol
328 /* The general symbol info required for all types of symbols.
330 The SYMBOL_VALUE_ADDRESS contains the address that this symbol
333 struct general_symbol_info mginfo;
335 /* Size of this symbol. end_psymtab in dbxread.c uses this
336 information to calculate the end of the partial symtab based on the
337 address of the last symbol plus the size of the last symbol. */
341 /* Which source file is this symbol in? Only relevant for mst_file_*. */
342 const char *filename;
344 /* Classification type for this minimal symbol. */
346 ENUM_BITFIELD(minimal_symbol_type) type : 8;
348 /* Non-zero if this symbol was created by gdb.
349 Such symbols do not appear in the output of "info var|fun". */
350 unsigned int created_by_gdb : 1;
352 /* Two flag bits provided for the use of the target. */
353 unsigned int target_flag_1 : 1;
354 unsigned int target_flag_2 : 1;
356 /* Nonzero iff the size of the minimal symbol has been set.
357 Symbol size information can sometimes not be determined, because
358 the object file format may not carry that piece of information. */
359 unsigned int has_size : 1;
361 /* Minimal symbols with the same hash key are kept on a linked
362 list. This is the link. */
364 struct minimal_symbol *hash_next;
366 /* Minimal symbols are stored in two different hash tables. This is
367 the `next' pointer for the demangled hash table. */
369 struct minimal_symbol *demangled_hash_next;
372 #define MSYMBOL_TARGET_FLAG_1(msymbol) (msymbol)->target_flag_1
373 #define MSYMBOL_TARGET_FLAG_2(msymbol) (msymbol)->target_flag_2
374 #define MSYMBOL_SIZE(msymbol) ((msymbol)->size + 0)
375 #define SET_MSYMBOL_SIZE(msymbol, sz) \
378 (msymbol)->size = sz; \
379 (msymbol)->has_size = 1; \
381 #define MSYMBOL_HAS_SIZE(msymbol) ((msymbol)->has_size + 0)
382 #define MSYMBOL_TYPE(msymbol) (msymbol)->type
384 #define MSYMBOL_VALUE(symbol) (symbol)->mginfo.value.ivalue
385 /* The unrelocated address of the minimal symbol. */
386 #define MSYMBOL_VALUE_RAW_ADDRESS(symbol) ((symbol)->mginfo.value.address + 0)
387 /* The relocated address of the minimal symbol, using the section
388 offsets from OBJFILE. */
389 #define MSYMBOL_VALUE_ADDRESS(objfile, symbol) \
390 ((symbol)->mginfo.value.address \
391 + ANOFFSET ((objfile)->section_offsets, ((symbol)->mginfo.section)))
392 /* For a bound minsym, we can easily compute the address directly. */
393 #define BMSYMBOL_VALUE_ADDRESS(symbol) \
394 MSYMBOL_VALUE_ADDRESS ((symbol).objfile, (symbol).minsym)
395 #define SET_MSYMBOL_VALUE_ADDRESS(symbol, new_value) \
396 ((symbol)->mginfo.value.address = (new_value))
397 #define MSYMBOL_VALUE_BYTES(symbol) (symbol)->mginfo.value.bytes
398 #define MSYMBOL_BLOCK_VALUE(symbol) (symbol)->mginfo.value.block
399 #define MSYMBOL_VALUE_CHAIN(symbol) (symbol)->mginfo.value.chain
400 #define MSYMBOL_LANGUAGE(symbol) (symbol)->mginfo.language
401 #define MSYMBOL_SECTION(symbol) (symbol)->mginfo.section
402 #define MSYMBOL_OBJ_SECTION(objfile, symbol) \
403 (((symbol)->mginfo.section >= 0) \
404 ? (&(((objfile)->sections)[(symbol)->mginfo.section])) \
407 #define MSYMBOL_NATURAL_NAME(symbol) \
408 (symbol_natural_name (&(symbol)->mginfo))
409 #define MSYMBOL_LINKAGE_NAME(symbol) (symbol)->mginfo.name
410 #define MSYMBOL_PRINT_NAME(symbol) \
411 (demangle ? MSYMBOL_NATURAL_NAME (symbol) : MSYMBOL_LINKAGE_NAME (symbol))
412 #define MSYMBOL_DEMANGLED_NAME(symbol) \
413 (symbol_demangled_name (&(symbol)->mginfo))
414 #define MSYMBOL_SET_LANGUAGE(symbol,language,obstack) \
415 (symbol_set_language (&(symbol)->mginfo, (language), (obstack)))
416 #define MSYMBOL_SEARCH_NAME(symbol) \
417 (symbol_search_name (&(symbol)->mginfo))
418 #define MSYMBOL_MATCHES_SEARCH_NAME(symbol, name) \
419 (strcmp_iw (MSYMBOL_SEARCH_NAME (symbol), (name)) == 0)
420 #define MSYMBOL_SET_NAMES(symbol,linkage_name,len,copy_name,objfile) \
421 symbol_set_names (&(symbol)->mginfo, linkage_name, len, copy_name, objfile)
427 /* Represent one symbol name; a variable, constant, function or typedef. */
429 /* Different name domains for symbols. Looking up a symbol specifies a
430 domain and ignores symbol definitions in other name domains. */
432 typedef enum domain_enum_tag
434 /* UNDEF_DOMAIN is used when a domain has not been discovered or
435 none of the following apply. This usually indicates an error either
436 in the symbol information or in gdb's handling of symbols. */
440 /* VAR_DOMAIN is the usual domain. In C, this contains variables,
441 function names, typedef names and enum type values. */
445 /* STRUCT_DOMAIN is used in C to hold struct, union and enum type names.
446 Thus, if `struct foo' is used in a C program, it produces a symbol named
447 `foo' in the STRUCT_DOMAIN. */
451 /* MODULE_DOMAIN is used in Fortran to hold module type names. */
455 /* LABEL_DOMAIN may be used for names of labels (for gotos). */
459 /* Fortran common blocks. Their naming must be separate from VAR_DOMAIN.
460 They also always use LOC_COMMON_BLOCK. */
464 extern const char *domain_name (domain_enum);
466 /* Searching domains, used for `search_symbols'. Element numbers are
467 hardcoded in GDB, check all enum uses before changing it. */
471 /* Everything in VAR_DOMAIN minus FUNCTIONS_DOMAIN and
473 VARIABLES_DOMAIN = 0,
475 /* All functions -- for some reason not methods, though. */
476 FUNCTIONS_DOMAIN = 1,
478 /* All defined types */
485 extern const char *search_domain_name (enum search_domain);
487 /* An address-class says where to find the value of a symbol. */
491 /* Not used; catches errors. */
495 /* Value is constant int SYMBOL_VALUE, host byteorder. */
499 /* Value is at fixed address SYMBOL_VALUE_ADDRESS. */
503 /* Value is in register. SYMBOL_VALUE is the register number
504 in the original debug format. SYMBOL_REGISTER_OPS holds a
505 function that can be called to transform this into the
506 actual register number this represents in a specific target
507 architecture (gdbarch).
509 For some symbol formats (stabs, for some compilers at least),
510 the compiler generates two symbols, an argument and a register.
511 In some cases we combine them to a single LOC_REGISTER in symbol
512 reading, but currently not for all cases (e.g. it's passed on the
513 stack and then loaded into a register). */
517 /* It's an argument; the value is at SYMBOL_VALUE offset in arglist. */
521 /* Value address is at SYMBOL_VALUE offset in arglist. */
525 /* Value is in specified register. Just like LOC_REGISTER except the
526 register holds the address of the argument instead of the argument
527 itself. This is currently used for the passing of structs and unions
528 on sparc and hppa. It is also used for call by reference where the
529 address is in a register, at least by mipsread.c. */
533 /* Value is a local variable at SYMBOL_VALUE offset in stack frame. */
537 /* Value not used; definition in SYMBOL_TYPE. Symbols in the domain
538 STRUCT_DOMAIN all have this class. */
542 /* Value is address SYMBOL_VALUE_ADDRESS in the code. */
546 /* In a symbol table, value is SYMBOL_BLOCK_VALUE of a `struct block'.
547 In a partial symbol table, SYMBOL_VALUE_ADDRESS is the start address
548 of the block. Function names have this class. */
552 /* Value is a constant byte-sequence pointed to by SYMBOL_VALUE_BYTES, in
553 target byte order. */
557 /* Value is at fixed address, but the address of the variable has
558 to be determined from the minimal symbol table whenever the
559 variable is referenced.
560 This happens if debugging information for a global symbol is
561 emitted and the corresponding minimal symbol is defined
562 in another object file or runtime common storage.
563 The linker might even remove the minimal symbol if the global
564 symbol is never referenced, in which case the symbol remains
567 GDB would normally find the symbol in the minimal symbol table if it will
568 not find it in the full symbol table. But a reference to an external
569 symbol in a local block shadowing other definition requires full symbol
570 without possibly having its address available for LOC_STATIC. Testcase
571 is provided as `gdb.dwarf2/dw2-unresolved.exp'. */
575 /* The variable does not actually exist in the program.
576 The value is ignored. */
580 /* The variable's address is computed by a set of location
581 functions (see "struct symbol_computed_ops" below). */
584 /* The variable uses general_symbol_info->value->common_block field.
585 It also always uses COMMON_BLOCK_DOMAIN. */
588 /* Not used, just notes the boundary of the enum. */
592 /* The methods needed to implement LOC_COMPUTED. These methods can
593 use the symbol's .aux_value for additional per-symbol information.
595 At present this is only used to implement location expressions. */
597 struct symbol_computed_ops
600 /* Return the value of the variable SYMBOL, relative to the stack
601 frame FRAME. If the variable has been optimized out, return
604 Iff `read_needs_frame (SYMBOL)' is zero, then FRAME may be zero. */
606 struct value *(*read_variable) (struct symbol * symbol,
607 struct frame_info * frame);
609 /* Read variable SYMBOL like read_variable at (callee) FRAME's function
610 entry. SYMBOL should be a function parameter, otherwise
611 NO_ENTRY_VALUE_ERROR will be thrown. */
612 struct value *(*read_variable_at_entry) (struct symbol *symbol,
613 struct frame_info *frame);
615 /* Return non-zero if we need a frame to find the value of the SYMBOL. */
616 int (*read_needs_frame) (struct symbol * symbol);
618 /* Write to STREAM a natural-language description of the location of
619 SYMBOL, in the context of ADDR. */
620 void (*describe_location) (struct symbol * symbol, CORE_ADDR addr,
621 struct ui_file * stream);
623 /* Non-zero if this symbol's address computation is dependent on PC. */
624 unsigned char location_has_loclist;
626 /* Tracepoint support. Append bytecodes to the tracepoint agent
627 expression AX that push the address of the object SYMBOL. Set
628 VALUE appropriately. Note --- for objects in registers, this
629 needn't emit any code; as long as it sets VALUE properly, then
630 the caller will generate the right code in the process of
631 treating this as an lvalue or rvalue. */
633 void (*tracepoint_var_ref) (struct symbol *symbol, struct gdbarch *gdbarch,
634 struct agent_expr *ax, struct axs_value *value);
637 /* The methods needed to implement LOC_BLOCK for inferior functions.
638 These methods can use the symbol's .aux_value for additional
639 per-symbol information. */
641 struct symbol_block_ops
643 /* Fill in *START and *LENGTH with DWARF block data of function
644 FRAMEFUNC valid for inferior context address PC. Set *LENGTH to
645 zero if such location is not valid for PC; *START is left
646 uninitialized in such case. */
647 void (*find_frame_base_location) (struct symbol *framefunc, CORE_ADDR pc,
648 const gdb_byte **start, size_t *length);
651 /* Functions used with LOC_REGISTER and LOC_REGPARM_ADDR. */
653 struct symbol_register_ops
655 int (*register_number) (struct symbol *symbol, struct gdbarch *gdbarch);
658 /* Objects of this type are used to find the address class and the
659 various computed ops vectors of a symbol. */
663 enum address_class aclass;
665 /* Used with LOC_COMPUTED. */
666 const struct symbol_computed_ops *ops_computed;
668 /* Used with LOC_BLOCK. */
669 const struct symbol_block_ops *ops_block;
671 /* Used with LOC_REGISTER and LOC_REGPARM_ADDR. */
672 const struct symbol_register_ops *ops_register;
675 /* The number of bits we reserve in a symbol for the aclass index.
676 This is a #define so that we can have a assertion elsewhere to
677 verify that we have reserved enough space for synthetic address
680 #define SYMBOL_ACLASS_BITS 6
682 /* This structure is space critical. See space comments at the top. */
687 /* The general symbol info required for all types of symbols. */
689 struct general_symbol_info ginfo;
691 /* Data type of value */
695 /* The symbol table containing this symbol. This is the file
696 associated with LINE. It can be NULL during symbols read-in but it is
697 never NULL during normal operation. */
698 struct symtab *symtab;
702 ENUM_BITFIELD(domain_enum_tag) domain : 6;
704 /* Address class. This holds an index into the 'symbol_impls'
705 table. The actual enum address_class value is stored there,
706 alongside any per-class ops vectors. */
708 unsigned int aclass_index : SYMBOL_ACLASS_BITS;
710 /* Whether this is an argument. */
712 unsigned is_argument : 1;
714 /* Whether this is an inlined function (class LOC_BLOCK only). */
715 unsigned is_inlined : 1;
717 /* True if this is a C++ function symbol with template arguments.
718 In this case the symbol is really a "struct template_symbol". */
719 unsigned is_cplus_template_function : 1;
721 /* Line number of this symbol's definition, except for inlined
722 functions. For an inlined function (class LOC_BLOCK and
723 SYMBOL_INLINED set) this is the line number of the function's call
724 site. Inlined function symbols are not definitions, and they are
725 never found by symbol table lookup.
727 FIXME: Should we really make the assumption that nobody will try
728 to debug files longer than 64K lines? What about machine
729 generated programs? */
733 /* An arbitrary data pointer, allowing symbol readers to record
734 additional information on a per-symbol basis. Note that this data
735 must be allocated using the same obstack as the symbol itself. */
736 /* So far it is only used by LOC_COMPUTED to
737 find the location information. For a LOC_BLOCK symbol
738 for a function in a compilation unit compiled with DWARF 2
739 information, this is information used internally by the DWARF 2
740 code --- specifically, the location expression for the frame
741 base for this function. */
742 /* FIXME drow/2003-02-21: For the LOC_BLOCK case, it might be better
743 to add a magic symbol to the block containing this information,
744 or to have a generic debug info annotation slot for symbols. */
748 struct symbol *hash_next;
751 extern const struct symbol_impl *symbol_impls;
753 #define SYMBOL_DOMAIN(symbol) (symbol)->domain
754 #define SYMBOL_IMPL(symbol) (symbol_impls[(symbol)->aclass_index])
755 #define SYMBOL_ACLASS_INDEX(symbol) (symbol)->aclass_index
756 #define SYMBOL_CLASS(symbol) (SYMBOL_IMPL (symbol).aclass)
757 #define SYMBOL_IS_ARGUMENT(symbol) (symbol)->is_argument
758 #define SYMBOL_INLINED(symbol) (symbol)->is_inlined
759 #define SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION(symbol) \
760 (symbol)->is_cplus_template_function
761 #define SYMBOL_TYPE(symbol) (symbol)->type
762 #define SYMBOL_LINE(symbol) (symbol)->line
763 #define SYMBOL_SYMTAB(symbol) (symbol)->symtab
764 #define SYMBOL_COMPUTED_OPS(symbol) (SYMBOL_IMPL (symbol).ops_computed)
765 #define SYMBOL_BLOCK_OPS(symbol) (SYMBOL_IMPL (symbol).ops_block)
766 #define SYMBOL_REGISTER_OPS(symbol) (SYMBOL_IMPL (symbol).ops_register)
767 #define SYMBOL_LOCATION_BATON(symbol) (symbol)->aux_value
768 #define SYMBOL_OBJFILE(symbol) SYMTAB_OBJFILE (SYMBOL_SYMTAB (symbol))
770 extern int register_symbol_computed_impl (enum address_class,
771 const struct symbol_computed_ops *);
773 extern int register_symbol_block_impl (enum address_class aclass,
774 const struct symbol_block_ops *ops);
776 extern int register_symbol_register_impl (enum address_class,
777 const struct symbol_register_ops *);
779 /* An instance of this type is used to represent a C++ template
780 function. It includes a "struct symbol" as a kind of base class;
781 users downcast to "struct template_symbol *" when needed. A symbol
782 is really of this type iff SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION is
785 struct template_symbol
787 /* The base class. */
790 /* The number of template arguments. */
791 int n_template_arguments;
793 /* The template arguments. This is an array with
794 N_TEMPLATE_ARGUMENTS elements. */
795 struct symbol **template_arguments;
799 /* Each item represents a line-->pc (or the reverse) mapping. This is
800 somewhat more wasteful of space than one might wish, but since only
801 the files which are actually debugged are read in to core, we don't
804 struct linetable_entry
810 /* The order of entries in the linetable is significant. They should
811 be sorted by increasing values of the pc field. If there is more than
812 one entry for a given pc, then I'm not sure what should happen (and
813 I not sure whether we currently handle it the best way).
815 Example: a C for statement generally looks like this
817 10 0x100 - for the init/test part of a for stmt.
820 10 0x400 - for the increment part of a for stmt.
822 If an entry has a line number of zero, it marks the start of a PC
823 range for which no line number information is available. It is
824 acceptable, though wasteful of table space, for such a range to be
831 /* Actually NITEMS elements. If you don't like this use of the
832 `struct hack', you can shove it up your ANSI (seriously, if the
833 committee tells us how to do it, we can probably go along). */
834 struct linetable_entry item[1];
837 /* How to relocate the symbols from each section in a symbol file.
838 Each struct contains an array of offsets.
839 The ordering and meaning of the offsets is file-type-dependent;
840 typically it is indexed by section numbers or symbol types or
843 To give us flexibility in changing the internal representation
844 of these offsets, the ANOFFSET macro must be used to insert and
845 extract offset values in the struct. */
847 struct section_offsets
849 CORE_ADDR offsets[1]; /* As many as needed. */
852 #define ANOFFSET(secoff, whichone) \
854 ? (internal_error (__FILE__, __LINE__, \
855 _("Section index is uninitialized")), -1) \
856 : secoff->offsets[whichone])
858 /* The size of a section_offsets table for N sections. */
859 #define SIZEOF_N_SECTION_OFFSETS(n) \
860 (sizeof (struct section_offsets) \
861 + sizeof (((struct section_offsets *) 0)->offsets) * ((n)-1))
863 /* Each source file or header is represented by a struct symtab.
864 The name "symtab" is historical, another name for it is "filetab".
865 These objects are chained through the `next' field. */
869 /* Unordered chain of all existing symtabs of this objfile. */
873 /* Backlink to containing compunit symtab. */
875 struct compunit_symtab *compunit_symtab;
877 /* Table mapping core addresses to line numbers for this file.
878 Can be NULL if none. Never shared between different symtabs. */
880 struct linetable *linetable;
882 /* Name of this source file. This pointer is never NULL. */
884 const char *filename;
886 /* Total number of lines found in source file. */
890 /* line_charpos[N] is the position of the (N-1)th line of the
891 source file. "position" means something we can lseek() to; it
892 is not guaranteed to be useful any other way. */
896 /* Language of this source file. */
898 enum language language;
900 /* Full name of file as found by searching the source path.
901 NULL if not yet known. */
906 #define SYMTAB_COMPUNIT(symtab) ((symtab)->compunit_symtab)
907 #define SYMTAB_LINETABLE(symtab) ((symtab)->linetable)
908 #define SYMTAB_LANGUAGE(symtab) ((symtab)->language)
909 #define SYMTAB_BLOCKVECTOR(symtab) \
910 COMPUNIT_BLOCKVECTOR (SYMTAB_COMPUNIT (symtab))
911 #define SYMTAB_OBJFILE(symtab) \
912 COMPUNIT_OBJFILE (SYMTAB_COMPUNIT (symtab))
913 #define SYMTAB_PSPACE(symtab) (SYMTAB_OBJFILE (symtab)->pspace)
914 #define SYMTAB_DIRNAME(symtab) \
915 COMPUNIT_DIRNAME (SYMTAB_COMPUNIT (symtab))
917 typedef struct symtab *symtab_ptr;
918 DEF_VEC_P (symtab_ptr);
920 /* Compunit symtabs contain the actual "symbol table", aka blockvector, as well
921 as the list of all source files (what gdb has historically associated with
923 Additional information is recorded here that is common to all symtabs in a
924 compilation unit (DWARF or otherwise).
927 For the case of a program built out of these files:
938 objfile -> foo.c(cu) -> bar.c(cu) -> NULL
952 where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects,
953 and the files foo.c, etc. are struct symtab objects. */
955 struct compunit_symtab
957 /* Unordered chain of all compunit symtabs of this objfile. */
958 struct compunit_symtab *next;
960 /* Object file from which this symtab information was read. */
961 struct objfile *objfile;
963 /* Name of the symtab.
964 This is *not* intended to be a usable filename, and is
965 for debugging purposes only. */
968 /* Unordered list of file symtabs, except that by convention the "main"
969 source file (e.g., .c, .cc) is guaranteed to be first.
970 Each symtab is a file, either the "main" source file (e.g., .c, .cc)
971 or header (e.g., .h). */
972 struct symtab *filetabs;
974 /* Last entry in FILETABS list.
975 Subfiles are added to the end of the list so they accumulate in order,
976 with the main source subfile living at the front.
977 The main reason is so that the main source file symtab is at the head
978 of the list, and the rest appear in order for debugging convenience. */
979 struct symtab *last_filetab;
981 /* Non-NULL string that identifies the format of the debugging information,
982 such as "stabs", "dwarf 1", "dwarf 2", "coff", etc. This is mostly useful
983 for automated testing of gdb but may also be information that is
984 useful to the user. */
985 const char *debugformat;
987 /* String of producer version information, or NULL if we don't know. */
988 const char *producer;
990 /* Directory in which it was compiled, or NULL if we don't know. */
993 /* List of all symbol scope blocks for this symtab. It is shared among
994 all symtabs in a given compilation unit. */
995 const struct blockvector *blockvector;
997 /* Section in objfile->section_offsets for the blockvector and
998 the linetable. Probably always SECT_OFF_TEXT. */
999 int block_line_section;
1001 /* Symtab has been compiled with both optimizations and debug info so that
1002 GDB may stop skipping prologues as variables locations are valid already
1003 at function entry points. */
1004 unsigned int locations_valid : 1;
1006 /* DWARF unwinder for this CU is valid even for epilogues (PC at the return
1007 instruction). This is supported by GCC since 4.5.0. */
1008 unsigned int epilogue_unwind_valid : 1;
1010 /* struct call_site entries for this compilation unit or NULL. */
1011 htab_t call_site_htab;
1013 /* The macro table for this symtab. Like the blockvector, this
1014 is shared between different symtabs in a given compilation unit.
1015 It's debatable whether it *should* be shared among all the symtabs in
1016 the given compilation unit, but it currently is. */
1017 struct macro_table *macro_table;
1019 /* If non-NULL, then this points to a NULL-terminated vector of
1020 included compunits. When searching the static or global
1021 block of this compunit, the corresponding block of all
1022 included compunits will also be searched. Note that this
1023 list must be flattened -- the symbol reader is responsible for
1024 ensuring that this vector contains the transitive closure of all
1025 included compunits. */
1026 struct compunit_symtab **includes;
1028 /* If this is an included compunit, this points to one includer
1029 of the table. This user is considered the canonical compunit
1030 containing this one. An included compunit may itself be
1031 included by another. */
1032 struct compunit_symtab *user;
1035 #define COMPUNIT_OBJFILE(cust) ((cust)->objfile)
1036 #define COMPUNIT_FILETABS(cust) ((cust)->filetabs)
1037 #define COMPUNIT_DEBUGFORMAT(cust) ((cust)->debugformat)
1038 #define COMPUNIT_PRODUCER(cust) ((cust)->producer)
1039 #define COMPUNIT_DIRNAME(cust) ((cust)->dirname)
1040 #define COMPUNIT_BLOCKVECTOR(cust) ((cust)->blockvector)
1041 #define COMPUNIT_BLOCK_LINE_SECTION(cust) ((cust)->block_line_section)
1042 #define COMPUNIT_LOCATIONS_VALID(cust) ((cust)->locations_valid)
1043 #define COMPUNIT_EPILOGUE_UNWIND_VALID(cust) ((cust)->epilogue_unwind_valid)
1044 #define COMPUNIT_CALL_SITE_HTAB(cust) ((cust)->call_site_htab)
1045 #define COMPUNIT_MACRO_TABLE(cust) ((cust)->macro_table)
1047 /* Iterate over all file tables (struct symtab) within a compunit. */
1049 #define ALL_COMPUNIT_FILETABS(cu, s) \
1050 for ((s) = (cu) -> filetabs; (s) != NULL; (s) = (s) -> next)
1052 /* Return the primary symtab of CUST. */
1054 extern struct symtab *
1055 compunit_primary_filetab (const struct compunit_symtab *cust);
1057 /* Return the language of CUST. */
1059 extern enum language compunit_language (const struct compunit_symtab *cust);
1061 typedef struct compunit_symtab *compunit_symtab_ptr;
1062 DEF_VEC_P (compunit_symtab_ptr);
1066 /* The virtual function table is now an array of structures which have the
1067 form { int16 offset, delta; void *pfn; }.
1069 In normal virtual function tables, OFFSET is unused.
1070 DELTA is the amount which is added to the apparent object's base
1071 address in order to point to the actual object to which the
1072 virtual function should be applied.
1073 PFN is a pointer to the virtual function.
1075 Note that this macro is g++ specific (FIXME). */
1077 #define VTBL_FNADDR_OFFSET 2
1079 /* External variables and functions for the objects described above. */
1081 /* True if we are nested inside psymtab_to_symtab. */
1083 extern int currently_reading_symtab;
1085 /* The block in which the most recently looked up symbol was found. */
1087 extern const struct block *block_found;
1089 /* symtab.c lookup functions */
1091 extern const char multiple_symbols_ask[];
1092 extern const char multiple_symbols_all[];
1093 extern const char multiple_symbols_cancel[];
1095 const char *multiple_symbols_select_mode (void);
1097 int symbol_matches_domain (enum language symbol_language,
1098 domain_enum symbol_domain,
1099 domain_enum domain);
1101 /* lookup a symbol table by source file name. */
1103 extern struct symtab *lookup_symtab (const char *);
1105 /* An object of this type is passed as the 'is_a_field_of_this'
1106 argument to lookup_symbol and lookup_symbol_in_language. */
1108 struct field_of_this_result
1110 /* The type in which the field was found. If this is NULL then the
1111 symbol was not found in 'this'. If non-NULL, then one of the
1112 other fields will be non-NULL as well. */
1116 /* If the symbol was found as an ordinary field of 'this', then this
1117 is non-NULL and points to the particular field. */
1119 struct field *field;
1121 /* If the symbol was found as a function field of 'this', then this
1122 is non-NULL and points to the particular field. */
1124 struct fn_fieldlist *fn_field;
1127 /* Find the definition for a specified symbol name NAME
1128 in domain DOMAIN in language LANGUAGE, visible from lexical block BLOCK
1129 if non-NULL or from global/static blocks if BLOCK is NULL.
1130 Returns the struct symbol pointer, or NULL if no symbol is found.
1131 C++: if IS_A_FIELD_OF_THIS is non-NULL on entry, check to see if
1132 NAME is a field of the current implied argument `this'. If so fill in the
1133 fields of IS_A_FIELD_OF_THIS, otherwise the fields are set to NULL.
1134 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1135 a field of `this', value_of_this sets BLOCK_FOUND to the proper value).
1136 The symbol's section is fixed up if necessary. */
1138 extern struct symbol *lookup_symbol_in_language (const char *,
1139 const struct block *,
1142 struct field_of_this_result *);
1144 /* Same as lookup_symbol_in_language, but using the current language. */
1146 extern struct symbol *lookup_symbol (const char *, const struct block *,
1148 struct field_of_this_result *);
1150 /* A default version of lookup_symbol_nonlocal for use by languages
1151 that can't think of anything better to do.
1152 This implements the C lookup rules. */
1154 extern struct symbol *basic_lookup_symbol_nonlocal (const char *,
1155 const struct block *,
1158 /* Some helper functions for languages that need to write their own
1159 lookup_symbol_nonlocal functions. */
1161 /* Lookup a symbol in the static block associated to BLOCK, if there
1162 is one; do nothing if BLOCK is NULL or a global block.
1163 Upon success sets BLOCK_FOUND and fixes up the symbol's section
1166 extern struct symbol *lookup_symbol_in_static_block (const char *name,
1167 const struct block *block,
1168 const domain_enum domain);
1170 /* Search all static file-level symbols for NAME from DOMAIN.
1171 Upon success sets BLOCK_FOUND and fixes up the symbol's section
1174 extern struct symbol *lookup_static_symbol (const char *name,
1175 const domain_enum domain);
1177 /* Lookup a symbol in all files' global blocks.
1179 If BLOCK is non-NULL then it is used for two things:
1180 1) If a target-specific lookup routine for libraries exists, then use the
1181 routine for the objfile of BLOCK, and
1182 2) The objfile of BLOCK is used to assist in determining the search order
1183 if the target requires it.
1184 See gdbarch_iterate_over_objfiles_in_search_order.
1186 Upon success sets BLOCK_FOUND and fixes up the symbol's section
1189 extern struct symbol *lookup_global_symbol (const char *name,
1190 const struct block *block,
1191 const domain_enum domain);
1193 /* Lookup a symbol in block BLOCK.
1194 Upon success sets BLOCK_FOUND and fixes up the symbol's section
1197 extern struct symbol *lookup_symbol_in_block (const char *name,
1198 const struct block *block,
1199 const domain_enum domain);
1201 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1202 found, or NULL if not found. */
1204 extern struct symbol *lookup_language_this (const struct language_defn *lang,
1205 const struct block *block);
1207 /* Lookup a [struct, union, enum] by name, within a specified block. */
1209 extern struct type *lookup_struct (const char *, const struct block *);
1211 extern struct type *lookup_union (const char *, const struct block *);
1213 extern struct type *lookup_enum (const char *, const struct block *);
1215 /* from blockframe.c: */
1217 /* lookup the function symbol corresponding to the address. */
1219 extern struct symbol *find_pc_function (CORE_ADDR);
1221 /* lookup the function corresponding to the address and section. */
1223 extern struct symbol *find_pc_sect_function (CORE_ADDR, struct obj_section *);
1225 extern int find_pc_partial_function_gnu_ifunc (CORE_ADDR pc, const char **name,
1228 int *is_gnu_ifunc_p);
1230 /* lookup function from address, return name, start addr and end addr. */
1232 extern int find_pc_partial_function (CORE_ADDR, const char **, CORE_ADDR *,
1235 extern void clear_pc_function_cache (void);
1237 /* Expand symtab containing PC, SECTION if not already expanded. */
1239 extern void expand_symtab_containing_pc (CORE_ADDR, struct obj_section *);
1241 /* lookup full symbol table by address. */
1243 extern struct compunit_symtab *find_pc_compunit_symtab (CORE_ADDR);
1245 /* lookup full symbol table by address and section. */
1247 extern struct compunit_symtab *
1248 find_pc_sect_compunit_symtab (CORE_ADDR, struct obj_section *);
1250 extern int find_pc_line_pc_range (CORE_ADDR, CORE_ADDR *, CORE_ADDR *);
1252 extern void reread_symbols (void);
1254 /* Look up a type named NAME in STRUCT_DOMAIN in the current language.
1255 The type returned must not be opaque -- i.e., must have at least one field
1258 extern struct type *lookup_transparent_type (const char *);
1260 extern struct type *basic_lookup_transparent_type (const char *);
1262 /* Macro for name of symbol to indicate a file compiled with gcc. */
1263 #ifndef GCC_COMPILED_FLAG_SYMBOL
1264 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
1267 /* Macro for name of symbol to indicate a file compiled with gcc2. */
1268 #ifndef GCC2_COMPILED_FLAG_SYMBOL
1269 #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled."
1272 extern int in_gnu_ifunc_stub (CORE_ADDR pc);
1274 /* Functions for resolving STT_GNU_IFUNC symbols which are implemented only
1275 for ELF symbol files. */
1277 struct gnu_ifunc_fns
1279 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
1280 CORE_ADDR (*gnu_ifunc_resolve_addr) (struct gdbarch *gdbarch, CORE_ADDR pc);
1282 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
1283 int (*gnu_ifunc_resolve_name) (const char *function_name,
1284 CORE_ADDR *function_address_p);
1286 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
1287 void (*gnu_ifunc_resolver_stop) (struct breakpoint *b);
1289 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
1290 void (*gnu_ifunc_resolver_return_stop) (struct breakpoint *b);
1293 #define gnu_ifunc_resolve_addr gnu_ifunc_fns_p->gnu_ifunc_resolve_addr
1294 #define gnu_ifunc_resolve_name gnu_ifunc_fns_p->gnu_ifunc_resolve_name
1295 #define gnu_ifunc_resolver_stop gnu_ifunc_fns_p->gnu_ifunc_resolver_stop
1296 #define gnu_ifunc_resolver_return_stop \
1297 gnu_ifunc_fns_p->gnu_ifunc_resolver_return_stop
1299 extern const struct gnu_ifunc_fns *gnu_ifunc_fns_p;
1301 extern CORE_ADDR find_solib_trampoline_target (struct frame_info *, CORE_ADDR);
1303 struct symtab_and_line
1305 /* The program space of this sal. */
1306 struct program_space *pspace;
1308 struct symtab *symtab;
1309 struct obj_section *section;
1310 /* Line number. Line numbers start at 1 and proceed through symtab->nlines.
1311 0 is never a valid line number; it is used to indicate that line number
1312 information is not available. */
1320 /* The probe associated with this symtab_and_line. */
1321 struct probe *probe;
1322 /* If PROBE is not NULL, then this is the objfile in which the probe
1324 struct objfile *objfile;
1327 extern void init_sal (struct symtab_and_line *sal);
1329 struct symtabs_and_lines
1331 struct symtab_and_line *sals;
1336 /* Given a pc value, return line number it is in. Second arg nonzero means
1337 if pc is on the boundary use the previous statement's line number. */
1339 extern struct symtab_and_line find_pc_line (CORE_ADDR, int);
1341 /* Same function, but specify a section as well as an address. */
1343 extern struct symtab_and_line find_pc_sect_line (CORE_ADDR,
1344 struct obj_section *, int);
1346 /* Wrapper around find_pc_line to just return the symtab. */
1348 extern struct symtab *find_pc_line_symtab (CORE_ADDR);
1350 /* Given a symtab and line number, return the pc there. */
1352 extern int find_line_pc (struct symtab *, int, CORE_ADDR *);
1354 extern int find_line_pc_range (struct symtab_and_line, CORE_ADDR *,
1357 extern void resolve_sal_pc (struct symtab_and_line *);
1359 /* Symbol-reading stuff in symfile.c and solib.c. */
1361 extern void clear_solib (void);
1365 extern int identify_source_line (struct symtab *, int, int, CORE_ADDR);
1367 /* Flags passed as 4th argument to print_source_lines. */
1369 enum print_source_lines_flags
1371 /* Do not print an error message. */
1372 PRINT_SOURCE_LINES_NOERROR = (1 << 0),
1374 /* Print the filename in front of the source lines. */
1375 PRINT_SOURCE_LINES_FILENAME = (1 << 1)
1378 extern void print_source_lines (struct symtab *, int, int,
1379 enum print_source_lines_flags);
1381 extern void forget_cached_source_info_for_objfile (struct objfile *);
1382 extern void forget_cached_source_info (void);
1384 extern void select_source_symtab (struct symtab *);
1386 extern VEC (char_ptr) *default_make_symbol_completion_list_break_on
1387 (const char *text, const char *word, const char *break_on,
1388 enum type_code code);
1389 extern VEC (char_ptr) *default_make_symbol_completion_list (const char *,
1392 extern VEC (char_ptr) *make_symbol_completion_list (const char *, const char *);
1393 extern VEC (char_ptr) *make_symbol_completion_type (const char *, const char *,
1395 extern VEC (char_ptr) *make_symbol_completion_list_fn (struct cmd_list_element *,
1399 extern VEC (char_ptr) *make_file_symbol_completion_list (const char *,
1403 extern VEC (char_ptr) *make_source_files_completion_list (const char *,
1408 int matching_obj_sections (struct obj_section *, struct obj_section *);
1410 extern struct symtab *find_line_symtab (struct symtab *, int, int *, int *);
1412 extern struct symtab_and_line find_function_start_sal (struct symbol *sym,
1415 extern void skip_prologue_sal (struct symtab_and_line *);
1419 extern void clear_symtab_users (int add_flags);
1421 extern enum language deduce_language_from_filename (const char *);
1425 extern CORE_ADDR skip_prologue_using_sal (struct gdbarch *gdbarch,
1426 CORE_ADDR func_addr);
1428 extern struct symbol *fixup_symbol_section (struct symbol *,
1431 /* Symbol searching */
1432 /* Note: struct symbol_search, search_symbols, et.al. are declared here,
1433 instead of making them local to symtab.c, for gdbtk's sake. */
1435 /* When using search_symbols, a list of the following structs is returned.
1436 Callers must free the search list using free_search_symbols! */
1437 struct symbol_search
1439 /* The block in which the match was found. Could be, for example,
1440 STATIC_BLOCK or GLOBAL_BLOCK. */
1443 /* Information describing what was found.
1445 If symtab and symbol are NOT NULL, then information was found
1447 struct symtab *symtab;
1448 struct symbol *symbol;
1450 /* If msymbol is non-null, then a match was made on something for
1451 which only minimal_symbols exist. */
1452 struct bound_minimal_symbol msymbol;
1454 /* A link to the next match, or NULL for the end. */
1455 struct symbol_search *next;
1458 extern void search_symbols (const char *, enum search_domain, int,
1459 const char **, struct symbol_search **);
1460 extern void free_search_symbols (struct symbol_search *);
1461 extern struct cleanup *make_cleanup_free_search_symbols (struct symbol_search
1464 /* The name of the ``main'' function.
1465 FIXME: cagney/2001-03-20: Can't make main_name() const since some
1466 of the calling code currently assumes that the string isn't
1468 extern /*const */ char *main_name (void);
1469 extern enum language main_language (void);
1471 /* Lookup symbol NAME from DOMAIN in MAIN_OBJFILE's global blocks.
1472 This searches MAIN_OBJFILE as well as any associated separate debug info
1473 objfiles of MAIN_OBJFILE.
1474 Upon success sets BLOCK_FOUND and fixes up the symbol's section
1477 extern struct symbol *
1478 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
1480 const domain_enum domain);
1482 /* Return 1 if the supplied producer string matches the ARM RealView
1483 compiler (armcc). */
1484 int producer_is_realview (const char *producer);
1486 void fixup_section (struct general_symbol_info *ginfo,
1487 CORE_ADDR addr, struct objfile *objfile);
1489 /* Look up objfile containing BLOCK. */
1491 struct objfile *lookup_objfile_from_block (const struct block *block);
1493 extern unsigned int symtab_create_debug;
1495 extern int basenames_may_differ;
1497 int compare_filenames_for_search (const char *filename,
1498 const char *search_name);
1500 int iterate_over_some_symtabs (const char *name,
1501 const char *real_path,
1502 int (*callback) (struct symtab *symtab,
1505 struct compunit_symtab *first,
1506 struct compunit_symtab *after_last);
1508 void iterate_over_symtabs (const char *name,
1509 int (*callback) (struct symtab *symtab,
1513 DEF_VEC_I (CORE_ADDR);
1515 VEC (CORE_ADDR) *find_pcs_for_symtab_line (struct symtab *symtab, int line,
1516 struct linetable_entry **best_entry);
1518 /* Callback for LA_ITERATE_OVER_SYMBOLS. The callback will be called
1519 once per matching symbol SYM, with DATA being the argument of the
1520 same name that was passed to LA_ITERATE_OVER_SYMBOLS. The callback
1521 should return nonzero to indicate that LA_ITERATE_OVER_SYMBOLS
1522 should continue iterating, or zero to indicate that the iteration
1525 typedef int (symbol_found_callback_ftype) (struct symbol *sym, void *data);
1527 void iterate_over_symbols (const struct block *block, const char *name,
1528 const domain_enum domain,
1529 symbol_found_callback_ftype *callback,
1532 struct cleanup *demangle_for_lookup (const char *name, enum language lang,
1533 const char **result_name);
1535 struct symbol *allocate_symbol (struct objfile *);
1537 void initialize_symbol (struct symbol *);
1539 struct template_symbol *allocate_template_symbol (struct objfile *);
1541 #endif /* !defined(SYMTAB_H) */