1 /* Symbol table definitions for GDB.
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009, 2010,
5 2011 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #if !defined (SYMTAB_H)
25 /* Opaque declarations. */
37 /* Some of the structures in this file are space critical.
38 The space-critical structures are:
40 struct general_symbol_info
44 These structures are laid out to encourage good packing.
45 They use ENUM_BITFIELD and short int fields, and they order the
46 structure members so that fields less than a word are next
47 to each other so they can be packed together. */
49 /* Rearranged: used ENUM_BITFIELD and rearranged field order in
50 all the space critical structures (plus struct minimal_symbol).
51 Memory usage dropped from 99360768 bytes to 90001408 bytes.
52 I measured this with before-and-after tests of
53 "HEAD-old-gdb -readnow HEAD-old-gdb" and
54 "HEAD-new-gdb -readnow HEAD-old-gdb" on native i686-pc-linux-gnu,
55 red hat linux 8, with LD_LIBRARY_PATH=/usr/lib/debug,
56 typing "maint space 1" at the first command prompt.
58 Here is another measurement (from andrew c):
59 # no /usr/lib/debug, just plain glibc, like a normal user
61 (gdb) break internal_error
63 (gdb) maint internal-error
67 gdb gdb_6_0_branch 2003-08-19 space used: 8896512
68 gdb HEAD 2003-08-19 space used: 8904704
69 gdb HEAD 2003-08-21 space used: 8396800 (+symtab.h)
70 gdb HEAD 2003-08-21 space used: 8265728 (+gdbtypes.h)
72 The third line shows the savings from the optimizations in symtab.h.
73 The fourth line shows the savings from the optimizations in
74 gdbtypes.h. Both optimizations are in gdb HEAD now.
76 --chastain 2003-08-21 */
78 /* Struct for storing C++ specific information. Allocated when needed. */
85 /* Define a structure for the information that is common to all symbol types,
86 including minimal symbols, partial symbols, and full symbols. In a
87 multilanguage environment, some language specific information may need to
88 be recorded along with each symbol. */
90 /* This structure is space critical. See space comments at the top. */
92 struct general_symbol_info
94 /* Name of the symbol. This is a required field. Storage for the
95 name is allocated on the objfile_obstack for the associated
96 objfile. For languages like C++ that make a distinction between
97 the mangled name and demangled name, this is the mangled
102 /* Value of the symbol. Which member of this union to use, and what
103 it means, depends on what kind of symbol this is and its
104 SYMBOL_CLASS. See comments there for more details. All of these
105 are in host byte order (though what they point to might be in
106 target byte order, e.g. LOC_CONST_BYTES). */
110 /* The fact that this is a long not a LONGEST mainly limits the
111 range of a LOC_CONST. Since LOC_CONST_BYTES exists, I'm not
112 sure that is a big deal. */
121 /* For opaque typedef struct chain. */
123 struct symbol *chain;
127 /* Since one and only one language can apply, wrap the language specific
128 information inside a union. */
132 /* This is used by languages which wish to store a demangled name.
133 currently used by Ada, Java, and Objective C. */
136 char *demangled_name;
140 struct cplus_specific *cplus_specific;
144 /* Record the source code language that applies to this symbol.
145 This is used to select one of the fields from the language specific
148 ENUM_BITFIELD(language) language : 8;
150 /* Which section is this symbol in? This is an index into
151 section_offsets for this objfile. Negative means that the symbol
152 does not get relocated relative to a section.
153 Disclaimer: currently this is just used for xcoff, so don't
154 expect all symbol-reading code to set it correctly (the ELF code
155 also tries to set it correctly). */
159 /* The section associated with this symbol. It can be NULL. */
161 struct obj_section *obj_section;
164 extern void symbol_set_demangled_name (struct general_symbol_info *, char *,
167 extern char *symbol_get_demangled_name (const struct general_symbol_info *);
169 extern CORE_ADDR symbol_overlayed_address (CORE_ADDR, struct obj_section *);
171 /* Note that all the following SYMBOL_* macros are used with the
172 SYMBOL argument being either a partial symbol, a minimal symbol or
173 a full symbol. All three types have a ginfo field. In particular
174 the SYMBOL_SET_LANGUAGE, SYMBOL_DEMANGLED_NAME, etc.
175 macros cannot be entirely substituted by
176 functions, unless the callers are changed to pass in the ginfo
177 field only, instead of the SYMBOL parameter. */
179 #define SYMBOL_VALUE(symbol) (symbol)->ginfo.value.ivalue
180 #define SYMBOL_VALUE_ADDRESS(symbol) (symbol)->ginfo.value.address
181 #define SYMBOL_VALUE_BYTES(symbol) (symbol)->ginfo.value.bytes
182 #define SYMBOL_BLOCK_VALUE(symbol) (symbol)->ginfo.value.block
183 #define SYMBOL_VALUE_CHAIN(symbol) (symbol)->ginfo.value.chain
184 #define SYMBOL_LANGUAGE(symbol) (symbol)->ginfo.language
185 #define SYMBOL_SECTION(symbol) (symbol)->ginfo.section
186 #define SYMBOL_OBJ_SECTION(symbol) (symbol)->ginfo.obj_section
188 /* Initializes the language dependent portion of a symbol
189 depending upon the language for the symbol. */
190 #define SYMBOL_SET_LANGUAGE(symbol,language) \
191 (symbol_set_language (&(symbol)->ginfo, (language)))
192 extern void symbol_set_language (struct general_symbol_info *symbol,
193 enum language language);
195 /* Set just the linkage name of a symbol; do not try to demangle
196 it. Used for constructs which do not have a mangled name,
197 e.g. struct tags. Unlike SYMBOL_SET_NAMES, linkage_name must
198 be terminated and either already on the objfile's obstack or
199 permanently allocated. */
200 #define SYMBOL_SET_LINKAGE_NAME(symbol,linkage_name) \
201 (symbol)->ginfo.name = (linkage_name)
203 /* Set the linkage and natural names of a symbol, by demangling
205 #define SYMBOL_SET_NAMES(symbol,linkage_name,len,copy_name,objfile) \
206 symbol_set_names (&(symbol)->ginfo, linkage_name, len, copy_name, objfile)
207 extern void symbol_set_names (struct general_symbol_info *symbol,
208 const char *linkage_name, int len, int copy_name,
209 struct objfile *objfile);
211 /* Now come lots of name accessor macros. Short version as to when to
212 use which: Use SYMBOL_NATURAL_NAME to refer to the name of the
213 symbol in the original source code. Use SYMBOL_LINKAGE_NAME if you
214 want to know what the linker thinks the symbol's name is. Use
215 SYMBOL_PRINT_NAME for output. Use SYMBOL_DEMANGLED_NAME if you
216 specifically need to know whether SYMBOL_NATURAL_NAME and
217 SYMBOL_LINKAGE_NAME are different. */
219 /* Return SYMBOL's "natural" name, i.e. the name that it was called in
220 the original source code. In languages like C++ where symbols may
221 be mangled for ease of manipulation by the linker, this is the
224 #define SYMBOL_NATURAL_NAME(symbol) \
225 (symbol_natural_name (&(symbol)->ginfo))
226 extern char *symbol_natural_name (const struct general_symbol_info *symbol);
228 /* Return SYMBOL's name from the point of view of the linker. In
229 languages like C++ where symbols may be mangled for ease of
230 manipulation by the linker, this is the mangled name; otherwise,
231 it's the same as SYMBOL_NATURAL_NAME. */
233 #define SYMBOL_LINKAGE_NAME(symbol) (symbol)->ginfo.name
235 /* Return the demangled name for a symbol based on the language for
236 that symbol. If no demangled name exists, return NULL. */
237 #define SYMBOL_DEMANGLED_NAME(symbol) \
238 (symbol_demangled_name (&(symbol)->ginfo))
239 extern char *symbol_demangled_name (const struct general_symbol_info *symbol);
241 /* Macro that returns a version of the name of a symbol that is
242 suitable for output. In C++ this is the "demangled" form of the
243 name if demangle is on and the "mangled" form of the name if
244 demangle is off. In other languages this is just the symbol name.
245 The result should never be NULL. Don't use this for internal
246 purposes (e.g. storing in a hashtable): it's only suitable for
249 #define SYMBOL_PRINT_NAME(symbol) \
250 (demangle ? SYMBOL_NATURAL_NAME (symbol) : SYMBOL_LINKAGE_NAME (symbol))
252 /* Macro that tests a symbol for a match against a specified name string.
253 First test the unencoded name, then looks for and test a C++ encoded
254 name if it exists. Note that whitespace is ignored while attempting to
255 match a C++ encoded name, so that "foo::bar(int,long)" is the same as
256 "foo :: bar (int, long)".
257 Evaluates to zero if the match fails, or nonzero if it succeeds. */
259 /* Macro that tests a symbol for a match against a specified name
260 string. It tests against SYMBOL_NATURAL_NAME, and it ignores
261 whitespace and trailing parentheses. (See strcmp_iw for details
262 about its behavior.) */
264 #define SYMBOL_MATCHES_NATURAL_NAME(symbol, name) \
265 (strcmp_iw (SYMBOL_NATURAL_NAME (symbol), (name)) == 0)
267 /* Macro that returns the name to be used when sorting and searching symbols.
268 In C++, Chill, and Java, we search for the demangled form of a name,
269 and so sort symbols accordingly. In Ada, however, we search by mangled
270 name. If there is no distinct demangled name, then SYMBOL_SEARCH_NAME
271 returns the same value (same pointer) as SYMBOL_LINKAGE_NAME. */
272 #define SYMBOL_SEARCH_NAME(symbol) \
273 (symbol_search_name (&(symbol)->ginfo))
274 extern char *symbol_search_name (const struct general_symbol_info *);
276 /* Analogous to SYMBOL_MATCHES_NATURAL_NAME, but uses the search
278 #define SYMBOL_MATCHES_SEARCH_NAME(symbol, name) \
279 (strcmp_iw (SYMBOL_SEARCH_NAME (symbol), (name)) == 0)
281 /* Classification types for a minimal symbol. These should be taken as
282 "advisory only", since if gdb can't easily figure out a
283 classification it simply selects mst_unknown. It may also have to
284 guess when it can't figure out which is a better match between two
285 types (mst_data versus mst_bss) for example. Since the minimal
286 symbol info is sometimes derived from the BFD library's view of a
287 file, we need to live with what information bfd supplies. */
289 enum minimal_symbol_type
291 mst_unknown = 0, /* Unknown type, the default */
292 mst_text, /* Generally executable instructions */
293 mst_text_gnu_ifunc, /* Executable code returning address
294 of executable code */
295 mst_slot_got_plt, /* GOT entries for .plt sections */
296 mst_data, /* Generally initialized data */
297 mst_bss, /* Generally uninitialized data */
298 mst_abs, /* Generally absolute (nonrelocatable) */
299 /* GDB uses mst_solib_trampoline for the start address of a shared
300 library trampoline entry. Breakpoints for shared library functions
301 are put there if the shared library is not yet loaded.
302 After the shared library is loaded, lookup_minimal_symbol will
303 prefer the minimal symbol from the shared library (usually
304 a mst_text symbol) over the mst_solib_trampoline symbol, and the
305 breakpoints will be moved to their true address in the shared
306 library via breakpoint_re_set. */
307 mst_solib_trampoline, /* Shared library trampoline code */
308 /* For the mst_file* types, the names are only guaranteed to be unique
309 within a given .o file. */
310 mst_file_text, /* Static version of mst_text */
311 mst_file_data, /* Static version of mst_data */
312 mst_file_bss /* Static version of mst_bss */
315 /* Define a simple structure used to hold some very basic information about
316 all defined global symbols (text, data, bss, abs, etc). The only required
317 information is the general_symbol_info.
319 In many cases, even if a file was compiled with no special options for
320 debugging at all, as long as was not stripped it will contain sufficient
321 information to build a useful minimal symbol table using this structure.
322 Even when a file contains enough debugging information to build a full
323 symbol table, these minimal symbols are still useful for quickly mapping
324 between names and addresses, and vice versa. They are also sometimes
325 used to figure out what full symbol table entries need to be read in. */
327 struct minimal_symbol
330 /* The general symbol info required for all types of symbols.
332 The SYMBOL_VALUE_ADDRESS contains the address that this symbol
335 struct general_symbol_info ginfo;
337 /* Size of this symbol. end_psymtab in dbxread.c uses this
338 information to calculate the end of the partial symtab based on the
339 address of the last symbol plus the size of the last symbol. */
343 /* Which source file is this symbol in? Only relevant for mst_file_*. */
346 /* Classification type for this minimal symbol. */
348 ENUM_BITFIELD(minimal_symbol_type) type : 8;
350 /* Two flag bits provided for the use of the target. */
351 unsigned int target_flag_1 : 1;
352 unsigned int target_flag_2 : 1;
354 /* Minimal symbols with the same hash key are kept on a linked
355 list. This is the link. */
357 struct minimal_symbol *hash_next;
359 /* Minimal symbols are stored in two different hash tables. This is
360 the `next' pointer for the demangled hash table. */
362 struct minimal_symbol *demangled_hash_next;
365 #define MSYMBOL_TARGET_FLAG_1(msymbol) (msymbol)->target_flag_1
366 #define MSYMBOL_TARGET_FLAG_2(msymbol) (msymbol)->target_flag_2
367 #define MSYMBOL_SIZE(msymbol) (msymbol)->size
368 #define MSYMBOL_TYPE(msymbol) (msymbol)->type
372 /* Represent one symbol name; a variable, constant, function or typedef. */
374 /* Different name domains for symbols. Looking up a symbol specifies a
375 domain and ignores symbol definitions in other name domains. */
377 typedef enum domain_enum_tag
379 /* UNDEF_DOMAIN is used when a domain has not been discovered or
380 none of the following apply. This usually indicates an error either
381 in the symbol information or in gdb's handling of symbols. */
385 /* VAR_DOMAIN is the usual domain. In C, this contains variables,
386 function names, typedef names and enum type values. */
390 /* STRUCT_DOMAIN is used in C to hold struct, union and enum type names.
391 Thus, if `struct foo' is used in a C program, it produces a symbol named
392 `foo' in the STRUCT_DOMAIN. */
396 /* LABEL_DOMAIN may be used for names of labels (for gotos). */
401 /* Searching domains, used for `search_symbols'. Element numbers are
402 hardcoded in GDB, check all enum uses before changing it. */
406 /* Everything in VAR_DOMAIN minus FUNCTIONS_DOMAIN and
408 VARIABLES_DOMAIN = 0,
410 /* All functions -- for some reason not methods, though. */
411 FUNCTIONS_DOMAIN = 1,
413 /* All defined types */
420 /* An address-class says where to find the value of a symbol. */
424 /* Not used; catches errors. */
428 /* Value is constant int SYMBOL_VALUE, host byteorder. */
432 /* Value is at fixed address SYMBOL_VALUE_ADDRESS. */
436 /* Value is in register. SYMBOL_VALUE is the register number
437 in the original debug format. SYMBOL_REGISTER_OPS holds a
438 function that can be called to transform this into the
439 actual register number this represents in a specific target
440 architecture (gdbarch).
442 For some symbol formats (stabs, for some compilers at least),
443 the compiler generates two symbols, an argument and a register.
444 In some cases we combine them to a single LOC_REGISTER in symbol
445 reading, but currently not for all cases (e.g. it's passed on the
446 stack and then loaded into a register). */
450 /* It's an argument; the value is at SYMBOL_VALUE offset in arglist. */
454 /* Value address is at SYMBOL_VALUE offset in arglist. */
458 /* Value is in specified register. Just like LOC_REGISTER except the
459 register holds the address of the argument instead of the argument
460 itself. This is currently used for the passing of structs and unions
461 on sparc and hppa. It is also used for call by reference where the
462 address is in a register, at least by mipsread.c. */
466 /* Value is a local variable at SYMBOL_VALUE offset in stack frame. */
470 /* Value not used; definition in SYMBOL_TYPE. Symbols in the domain
471 STRUCT_DOMAIN all have this class. */
475 /* Value is address SYMBOL_VALUE_ADDRESS in the code. */
479 /* In a symbol table, value is SYMBOL_BLOCK_VALUE of a `struct block'.
480 In a partial symbol table, SYMBOL_VALUE_ADDRESS is the start address
481 of the block. Function names have this class. */
485 /* Value is a constant byte-sequence pointed to by SYMBOL_VALUE_BYTES, in
486 target byte order. */
490 /* Value is at fixed address, but the address of the variable has
491 to be determined from the minimal symbol table whenever the
492 variable is referenced.
493 This happens if debugging information for a global symbol is
494 emitted and the corresponding minimal symbol is defined
495 in another object file or runtime common storage.
496 The linker might even remove the minimal symbol if the global
497 symbol is never referenced, in which case the symbol remains
500 GDB would normally find the symbol in the minimal symbol table if it will
501 not find it in the full symbol table. But a reference to an external
502 symbol in a local block shadowing other definition requires full symbol
503 without possibly having its address available for LOC_STATIC. Testcase
504 is provided as `gdb.dwarf2/dw2-unresolved.exp'. */
508 /* The variable does not actually exist in the program.
509 The value is ignored. */
513 /* The variable's address is computed by a set of location
514 functions (see "struct symbol_computed_ops" below). */
518 /* The methods needed to implement LOC_COMPUTED. These methods can
519 use the symbol's .aux_value for additional per-symbol information.
521 At present this is only used to implement location expressions. */
523 struct symbol_computed_ops
526 /* Return the value of the variable SYMBOL, relative to the stack
527 frame FRAME. If the variable has been optimized out, return
530 Iff `read_needs_frame (SYMBOL)' is zero, then FRAME may be zero. */
532 struct value *(*read_variable) (struct symbol * symbol,
533 struct frame_info * frame);
535 /* Return non-zero if we need a frame to find the value of the SYMBOL. */
536 int (*read_needs_frame) (struct symbol * symbol);
538 /* Write to STREAM a natural-language description of the location of
539 SYMBOL, in the context of ADDR. */
540 void (*describe_location) (struct symbol * symbol, CORE_ADDR addr,
541 struct ui_file * stream);
543 /* Tracepoint support. Append bytecodes to the tracepoint agent
544 expression AX that push the address of the object SYMBOL. Set
545 VALUE appropriately. Note --- for objects in registers, this
546 needn't emit any code; as long as it sets VALUE properly, then
547 the caller will generate the right code in the process of
548 treating this as an lvalue or rvalue. */
550 void (*tracepoint_var_ref) (struct symbol *symbol, struct gdbarch *gdbarch,
551 struct agent_expr *ax, struct axs_value *value);
554 /* Functions used with LOC_REGISTER and LOC_REGPARM_ADDR. */
556 struct symbol_register_ops
558 int (*register_number) (struct symbol *symbol, struct gdbarch *gdbarch);
561 /* This structure is space critical. See space comments at the top. */
566 /* The general symbol info required for all types of symbols. */
568 struct general_symbol_info ginfo;
570 /* Data type of value */
574 /* The symbol table containing this symbol. This is the file
575 associated with LINE. It can be NULL during symbols read-in but it is
576 never NULL during normal operation. */
577 struct symtab *symtab;
581 ENUM_BITFIELD(domain_enum_tag) domain : 6;
584 /* NOTE: cagney/2003-11-02: The fields "aclass" and "ops" contain
585 overlapping information. By creating a per-aclass ops vector, or
586 using the aclass as an index into an ops table, the aclass and
587 ops fields can be merged. The latter, for instance, would shave
588 32-bits from each symbol (relative to a symbol lookup, any table
589 index overhead would be in the noise). */
591 ENUM_BITFIELD(address_class) aclass : 6;
593 /* Whether this is an argument. */
595 unsigned is_argument : 1;
597 /* Whether this is an inlined function (class LOC_BLOCK only). */
598 unsigned is_inlined : 1;
600 /* True if this is a C++ function symbol with template arguments.
601 In this case the symbol is really a "struct template_symbol". */
602 unsigned is_cplus_template_function : 1;
604 /* Line number of this symbol's definition, except for inlined
605 functions. For an inlined function (class LOC_BLOCK and
606 SYMBOL_INLINED set) this is the line number of the function's call
607 site. Inlined function symbols are not definitions, and they are
608 never found by symbol table lookup.
610 FIXME: Should we really make the assumption that nobody will try
611 to debug files longer than 64K lines? What about machine
612 generated programs? */
616 /* Method's for symbol's of this class. */
617 /* NOTE: cagney/2003-11-02: See comment above attached to "aclass". */
621 /* Used with LOC_COMPUTED. */
622 const struct symbol_computed_ops *ops_computed;
624 /* Used with LOC_REGISTER and LOC_REGPARM_ADDR. */
625 const struct symbol_register_ops *ops_register;
628 /* An arbitrary data pointer, allowing symbol readers to record
629 additional information on a per-symbol basis. Note that this data
630 must be allocated using the same obstack as the symbol itself. */
631 /* So far it is only used by LOC_COMPUTED to
632 find the location information. For a LOC_BLOCK symbol
633 for a function in a compilation unit compiled with DWARF 2
634 information, this is information used internally by the DWARF 2
635 code --- specifically, the location expression for the frame
636 base for this function. */
637 /* FIXME drow/2003-02-21: For the LOC_BLOCK case, it might be better
638 to add a magic symbol to the block containing this information,
639 or to have a generic debug info annotation slot for symbols. */
643 struct symbol *hash_next;
647 #define SYMBOL_DOMAIN(symbol) (symbol)->domain
648 #define SYMBOL_CLASS(symbol) (symbol)->aclass
649 #define SYMBOL_IS_ARGUMENT(symbol) (symbol)->is_argument
650 #define SYMBOL_INLINED(symbol) (symbol)->is_inlined
651 #define SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION(symbol) \
652 (symbol)->is_cplus_template_function
653 #define SYMBOL_TYPE(symbol) (symbol)->type
654 #define SYMBOL_LINE(symbol) (symbol)->line
655 #define SYMBOL_SYMTAB(symbol) (symbol)->symtab
656 #define SYMBOL_COMPUTED_OPS(symbol) (symbol)->ops.ops_computed
657 #define SYMBOL_REGISTER_OPS(symbol) (symbol)->ops.ops_register
658 #define SYMBOL_LOCATION_BATON(symbol) (symbol)->aux_value
660 /* An instance of this type is used to represent a C++ template
661 function. It includes a "struct symbol" as a kind of base class;
662 users downcast to "struct template_symbol *" when needed. A symbol
663 is really of this type iff SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION is
666 struct template_symbol
668 /* The base class. */
671 /* The number of template arguments. */
672 int n_template_arguments;
674 /* The template arguments. This is an array with
675 N_TEMPLATE_ARGUMENTS elements. */
676 struct symbol **template_arguments;
680 /* Each item represents a line-->pc (or the reverse) mapping. This is
681 somewhat more wasteful of space than one might wish, but since only
682 the files which are actually debugged are read in to core, we don't
685 struct linetable_entry
691 /* The order of entries in the linetable is significant. They should
692 be sorted by increasing values of the pc field. If there is more than
693 one entry for a given pc, then I'm not sure what should happen (and
694 I not sure whether we currently handle it the best way).
696 Example: a C for statement generally looks like this
698 10 0x100 - for the init/test part of a for stmt.
701 10 0x400 - for the increment part of a for stmt.
703 If an entry has a line number of zero, it marks the start of a PC
704 range for which no line number information is available. It is
705 acceptable, though wasteful of table space, for such a range to be
712 /* Actually NITEMS elements. If you don't like this use of the
713 `struct hack', you can shove it up your ANSI (seriously, if the
714 committee tells us how to do it, we can probably go along). */
715 struct linetable_entry item[1];
718 /* How to relocate the symbols from each section in a symbol file.
719 Each struct contains an array of offsets.
720 The ordering and meaning of the offsets is file-type-dependent;
721 typically it is indexed by section numbers or symbol types or
724 To give us flexibility in changing the internal representation
725 of these offsets, the ANOFFSET macro must be used to insert and
726 extract offset values in the struct. */
728 struct section_offsets
730 CORE_ADDR offsets[1]; /* As many as needed. */
733 #define ANOFFSET(secoff, whichone) \
735 ? (internal_error (__FILE__, __LINE__, \
736 _("Section index is uninitialized")), -1) \
737 : secoff->offsets[whichone])
739 /* The size of a section_offsets table for N sections. */
740 #define SIZEOF_N_SECTION_OFFSETS(n) \
741 (sizeof (struct section_offsets) \
742 + sizeof (((struct section_offsets *) 0)->offsets) * ((n)-1))
744 /* Each source file or header is represented by a struct symtab.
745 These objects are chained through the `next' field. */
749 /* Unordered chain of all existing symtabs of this objfile. */
753 /* List of all symbol scope blocks for this symtab. May be shared
754 between different symtabs (and normally is for all the symtabs
755 in a given compilation unit). */
757 struct blockvector *blockvector;
759 /* Table mapping core addresses to line numbers for this file.
760 Can be NULL if none. Never shared between different symtabs. */
762 struct linetable *linetable;
764 /* Section in objfile->section_offsets for the blockvector and
765 the linetable. Probably always SECT_OFF_TEXT. */
767 int block_line_section;
769 /* If several symtabs share a blockvector, exactly one of them
770 should be designated the primary, so that the blockvector
771 is relocated exactly once by objfile_relocate. */
773 unsigned int primary : 1;
775 /* Symtab has been compiled with both optimizations and debug info so that
776 GDB may stop skipping prologues as variables locations are valid already
777 at function entry points. */
779 unsigned int locations_valid : 1;
781 /* The macro table for this symtab. Like the blockvector, this
782 may be shared between different symtabs --- and normally is for
783 all the symtabs in a given compilation unit. */
784 struct macro_table *macro_table;
786 /* Name of this source file. */
790 /* Directory in which it was compiled, or NULL if we don't know. */
794 /* Total number of lines found in source file. */
798 /* line_charpos[N] is the position of the (N-1)th line of the
799 source file. "position" means something we can lseek() to; it
800 is not guaranteed to be useful any other way. */
804 /* Language of this source file. */
806 enum language language;
808 /* String that identifies the format of the debugging information, such
809 as "stabs", "dwarf 1", "dwarf 2", "coff", etc. This is mostly useful
810 for automated testing of gdb but may also be information that is
811 useful to the user. */
813 const char *debugformat;
815 /* String of producer version information. May be zero. */
817 const char *producer;
819 /* Full name of file as found by searching the source path.
820 NULL if not yet known. */
824 /* Object file from which this symbol information was read. */
826 struct objfile *objfile;
830 #define BLOCKVECTOR(symtab) (symtab)->blockvector
831 #define LINETABLE(symtab) (symtab)->linetable
832 #define SYMTAB_PSPACE(symtab) (symtab)->objfile->pspace
835 /* The virtual function table is now an array of structures which have the
836 form { int16 offset, delta; void *pfn; }.
838 In normal virtual function tables, OFFSET is unused.
839 DELTA is the amount which is added to the apparent object's base
840 address in order to point to the actual object to which the
841 virtual function should be applied.
842 PFN is a pointer to the virtual function.
844 Note that this macro is g++ specific (FIXME). */
846 #define VTBL_FNADDR_OFFSET 2
848 /* External variables and functions for the objects described above. */
850 /* True if we are nested inside psymtab_to_symtab. */
852 extern int currently_reading_symtab;
856 extern int asm_demangle;
858 /* symtab.c lookup functions */
860 extern const char multiple_symbols_ask[];
861 extern const char multiple_symbols_all[];
862 extern const char multiple_symbols_cancel[];
864 const char *multiple_symbols_select_mode (void);
866 int symbol_matches_domain (enum language symbol_language,
867 domain_enum symbol_domain,
870 /* lookup a symbol table by source file name. */
872 extern struct symtab *lookup_symtab (const char *);
874 /* lookup a symbol by name (optional block) in language. */
876 extern struct symbol *lookup_symbol_in_language (const char *,
877 const struct block *,
882 /* lookup a symbol by name (optional block, optional symtab)
883 in the current language. */
885 extern struct symbol *lookup_symbol (const char *, const struct block *,
886 const domain_enum, int *);
888 /* A default version of lookup_symbol_nonlocal for use by languages
889 that can't think of anything better to do. */
891 extern struct symbol *basic_lookup_symbol_nonlocal (const char *,
892 const struct block *,
895 /* Some helper functions for languages that need to write their own
896 lookup_symbol_nonlocal functions. */
898 /* Lookup a symbol in the static block associated to BLOCK, if there
899 is one; do nothing if BLOCK is NULL or a global block. */
901 extern struct symbol *lookup_symbol_static (const char *name,
902 const struct block *block,
903 const domain_enum domain);
905 /* Lookup a symbol in all files' global blocks (searching psymtabs if
908 extern struct symbol *lookup_symbol_global (const char *name,
909 const struct block *block,
910 const domain_enum domain);
912 /* Lookup a symbol within the block BLOCK. This, unlike
913 lookup_symbol_block, will set SYMTAB and BLOCK_FOUND correctly, and
914 will fix up the symbol if necessary. */
916 extern struct symbol *lookup_symbol_aux_block (const char *name,
917 const struct block *block,
918 const domain_enum domain);
920 /* Lookup a symbol only in the file static scope of all the objfiles. */
922 struct symbol *lookup_static_symbol_aux (const char *name,
923 const domain_enum domain);
926 /* lookup a symbol by name, within a specified block. */
928 extern struct symbol *lookup_block_symbol (const struct block *, const char *,
931 /* lookup a [struct, union, enum] by name, within a specified block. */
933 extern struct type *lookup_struct (char *, struct block *);
935 extern struct type *lookup_union (char *, struct block *);
937 extern struct type *lookup_enum (char *, struct block *);
939 /* from blockframe.c: */
941 /* lookup the function symbol corresponding to the address. */
943 extern struct symbol *find_pc_function (CORE_ADDR);
945 /* lookup the function corresponding to the address and section. */
947 extern struct symbol *find_pc_sect_function (CORE_ADDR, struct obj_section *);
949 extern int find_pc_partial_function_gnu_ifunc (CORE_ADDR pc, char **name,
952 int *is_gnu_ifunc_p);
954 /* lookup function from address, return name, start addr and end addr. */
956 extern int find_pc_partial_function (CORE_ADDR, char **, CORE_ADDR *,
959 extern void clear_pc_function_cache (void);
961 /* lookup partial symbol table by address and section. */
963 extern struct symtab *find_pc_sect_symtab_via_partial (CORE_ADDR,
964 struct obj_section *);
966 /* lookup full symbol table by address. */
968 extern struct symtab *find_pc_symtab (CORE_ADDR);
970 /* lookup full symbol table by address and section. */
972 extern struct symtab *find_pc_sect_symtab (CORE_ADDR, struct obj_section *);
974 extern int find_pc_line_pc_range (CORE_ADDR, CORE_ADDR *, CORE_ADDR *);
976 extern void reread_symbols (void);
978 extern struct type *lookup_transparent_type (const char *);
979 extern struct type *basic_lookup_transparent_type (const char *);
982 /* Macro for name of symbol to indicate a file compiled with gcc. */
983 #ifndef GCC_COMPILED_FLAG_SYMBOL
984 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
987 /* Macro for name of symbol to indicate a file compiled with gcc2. */
988 #ifndef GCC2_COMPILED_FLAG_SYMBOL
989 #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled."
992 /* Functions for dealing with the minimal symbol table, really a misc
993 address<->symbol mapping for things we don't have debug symbols for. */
995 extern void prim_record_minimal_symbol (const char *, CORE_ADDR,
996 enum minimal_symbol_type,
999 extern struct minimal_symbol *prim_record_minimal_symbol_full
1000 (const char *, int, int, CORE_ADDR,
1001 enum minimal_symbol_type,
1002 int section, asection * bfd_section, struct objfile *);
1004 extern struct minimal_symbol *prim_record_minimal_symbol_and_info
1005 (const char *, CORE_ADDR,
1006 enum minimal_symbol_type,
1007 int section, asection * bfd_section, struct objfile *);
1009 extern unsigned int msymbol_hash_iw (const char *);
1011 extern unsigned int msymbol_hash (const char *);
1013 /* Compute the next hash value from previous HASH and the character C. This
1014 is only a GDB in-memory computed value with no external files compatibility
1017 #define SYMBOL_HASH_NEXT(hash, c) \
1018 ((hash) * 67 + tolower ((unsigned char) (c)) - 113)
1020 extern struct objfile * msymbol_objfile (struct minimal_symbol *sym);
1023 add_minsym_to_hash_table (struct minimal_symbol *sym,
1024 struct minimal_symbol **table);
1026 extern struct minimal_symbol *lookup_minimal_symbol (const char *,
1030 extern struct minimal_symbol *lookup_minimal_symbol_text (const char *,
1033 struct minimal_symbol *lookup_minimal_symbol_solib_trampoline (const char *,
1037 extern struct minimal_symbol *lookup_minimal_symbol_by_pc_name
1038 (CORE_ADDR, const char *, struct objfile *);
1040 extern struct minimal_symbol *lookup_minimal_symbol_by_pc (CORE_ADDR);
1042 extern int in_gnu_ifunc_stub (CORE_ADDR pc);
1044 /* Functions for resolving STT_GNU_IFUNC symbols which are implemented only
1045 for ELF symbol files. */
1047 struct gnu_ifunc_fns
1049 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
1050 CORE_ADDR (*gnu_ifunc_resolve_addr) (struct gdbarch *gdbarch, CORE_ADDR pc);
1052 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
1053 int (*gnu_ifunc_resolve_name) (const char *function_name,
1054 CORE_ADDR *function_address_p);
1056 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
1057 void (*gnu_ifunc_resolver_stop) (struct breakpoint *b);
1059 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
1060 void (*gnu_ifunc_resolver_return_stop) (struct breakpoint *b);
1063 #define gnu_ifunc_resolve_addr gnu_ifunc_fns_p->gnu_ifunc_resolve_addr
1064 #define gnu_ifunc_resolve_name gnu_ifunc_fns_p->gnu_ifunc_resolve_name
1065 #define gnu_ifunc_resolver_stop gnu_ifunc_fns_p->gnu_ifunc_resolver_stop
1066 #define gnu_ifunc_resolver_return_stop \
1067 gnu_ifunc_fns_p->gnu_ifunc_resolver_return_stop
1069 extern const struct gnu_ifunc_fns *gnu_ifunc_fns_p;
1071 extern struct minimal_symbol *
1072 lookup_minimal_symbol_and_objfile (const char *,
1075 extern struct minimal_symbol
1076 *lookup_minimal_symbol_by_pc_section (CORE_ADDR, struct obj_section *);
1078 extern struct minimal_symbol
1079 *lookup_solib_trampoline_symbol_by_pc (CORE_ADDR);
1081 extern CORE_ADDR find_solib_trampoline_target (struct frame_info *, CORE_ADDR);
1083 extern void init_minimal_symbol_collection (void);
1085 extern struct cleanup *make_cleanup_discard_minimal_symbols (void);
1087 extern void install_minimal_symbols (struct objfile *);
1089 /* Sort all the minimal symbols in OBJFILE. */
1091 extern void msymbols_sort (struct objfile *objfile);
1093 struct symtab_and_line
1095 /* The program space of this sal. */
1096 struct program_space *pspace;
1098 struct symtab *symtab;
1099 struct obj_section *section;
1100 /* Line number. Line numbers start at 1 and proceed through symtab->nlines.
1101 0 is never a valid line number; it is used to indicate that line number
1102 information is not available. */
1111 extern void init_sal (struct symtab_and_line *sal);
1113 struct symtabs_and_lines
1115 struct symtab_and_line *sals;
1121 /* Some types and macros needed for exception catchpoints.
1122 Can't put these in target.h because symtab_and_line isn't
1123 known there. This file will be included by breakpoint.c,
1124 hppa-tdep.c, etc. */
1126 /* Enums for exception-handling support. */
1127 enum exception_event_kind
1135 /* Given a pc value, return line number it is in. Second arg nonzero means
1136 if pc is on the boundary use the previous statement's line number. */
1138 extern struct symtab_and_line find_pc_line (CORE_ADDR, int);
1140 /* Same function, but specify a section as well as an address. */
1142 extern struct symtab_and_line find_pc_sect_line (CORE_ADDR,
1143 struct obj_section *, int);
1145 /* Given a symtab and line number, return the pc there. */
1147 extern int find_line_pc (struct symtab *, int, CORE_ADDR *);
1149 extern int find_line_pc_range (struct symtab_and_line, CORE_ADDR *,
1152 extern void resolve_sal_pc (struct symtab_and_line *);
1154 /* Given a string, return the line specified by it. For commands like "list"
1155 and "breakpoint". */
1157 extern struct symtabs_and_lines decode_line_spec (char *, int);
1159 extern struct symtabs_and_lines decode_line_spec_1 (char *, int);
1163 void maintenance_print_symbols (char *, int);
1165 void maintenance_print_psymbols (char *, int);
1167 void maintenance_print_msymbols (char *, int);
1169 void maintenance_print_objfiles (char *, int);
1171 void maintenance_info_symtabs (char *, int);
1173 void maintenance_info_psymtabs (char *, int);
1175 void maintenance_check_symtabs (char *, int);
1179 void maintenance_print_statistics (char *, int);
1181 /* Symbol-reading stuff in symfile.c and solib.c. */
1183 extern void clear_solib (void);
1187 extern int identify_source_line (struct symtab *, int, int, CORE_ADDR);
1189 extern void print_source_lines (struct symtab *, int, int, int);
1191 extern void forget_cached_source_info_for_objfile (struct objfile *);
1192 extern void forget_cached_source_info (void);
1194 extern void select_source_symtab (struct symtab *);
1196 extern char **default_make_symbol_completion_list_break_on
1197 (char *text, char *word, const char *break_on);
1198 extern char **default_make_symbol_completion_list (char *, char *);
1199 extern char **make_symbol_completion_list (char *, char *);
1200 extern char **make_symbol_completion_list_fn (struct cmd_list_element *,
1203 extern char **make_file_symbol_completion_list (char *, char *, char *);
1205 extern char **make_source_files_completion_list (char *, char *);
1209 int matching_obj_sections (struct obj_section *, struct obj_section *);
1211 extern const char *find_main_filename (void);
1213 extern struct symtab *find_line_symtab (struct symtab *, int, int *, int *);
1215 extern struct symtab_and_line find_function_start_sal (struct symbol *sym,
1218 extern void skip_prologue_sal (struct symtab_and_line *);
1222 extern void clear_symtab_users (int add_flags);
1224 extern enum language deduce_language_from_filename (const char *);
1228 extern int in_prologue (struct gdbarch *gdbarch,
1229 CORE_ADDR pc, CORE_ADDR func_start);
1231 extern CORE_ADDR skip_prologue_using_sal (struct gdbarch *gdbarch,
1232 CORE_ADDR func_addr);
1234 extern struct symbol *fixup_symbol_section (struct symbol *,
1237 /* Symbol searching */
1239 /* When using search_symbols, a list of the following structs is returned.
1240 Callers must free the search list using free_search_symbols! */
1241 struct symbol_search
1243 /* The block in which the match was found. Could be, for example,
1244 STATIC_BLOCK or GLOBAL_BLOCK. */
1247 /* Information describing what was found.
1249 If symtab abd symbol are NOT NULL, then information was found
1251 struct symtab *symtab;
1252 struct symbol *symbol;
1254 /* If msymbol is non-null, then a match was made on something for
1255 which only minimal_symbols exist. */
1256 struct minimal_symbol *msymbol;
1258 /* A link to the next match, or NULL for the end. */
1259 struct symbol_search *next;
1262 extern void search_symbols (char *, enum search_domain, int, char **,
1263 struct symbol_search **);
1264 extern void free_search_symbols (struct symbol_search *);
1265 extern struct cleanup *make_cleanup_free_search_symbols (struct symbol_search
1268 /* The name of the ``main'' function.
1269 FIXME: cagney/2001-03-20: Can't make main_name() const since some
1270 of the calling code currently assumes that the string isn't
1272 extern void set_main_name (const char *name);
1273 extern /*const */ char *main_name (void);
1274 extern enum language language_of_main;
1276 /* Check global symbols in objfile. */
1277 struct symbol *lookup_global_symbol_from_objfile (const struct objfile *,
1279 const domain_enum domain);
1281 extern struct symtabs_and_lines expand_line_sal (struct symtab_and_line sal);
1283 /* Return 1 if the supplied producer string matches the ARM RealView
1284 compiler (armcc). */
1285 int producer_is_realview (const char *producer);
1287 void fixup_section (struct general_symbol_info *ginfo,
1288 CORE_ADDR addr, struct objfile *objfile);
1290 struct objfile *lookup_objfile_from_block (const struct block *block);
1292 #endif /* !defined(SYMTAB_H) */