1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
49 #include "gdb_obstack.h"
51 #include "dictionary.h"
53 #include <sys/types.h>
55 #include "gdb_string.h"
59 #include "cp-support.h"
61 #include "gdb_assert.h"
64 #include "macroscope.h"
68 /* Prototypes for local functions */
70 static void completion_list_add_name (char *, char *, int, char *, char *);
72 static void rbreak_command (char *, int);
74 static void types_info (char *, int);
76 static void functions_info (char *, int);
78 static void variables_info (char *, int);
80 static void sources_info (char *, int);
82 static void output_source_filename (const char *, int *);
84 static int find_line_common (struct linetable *, int, int *);
86 static struct symbol *lookup_symbol_aux (const char *name,
87 const struct block *block,
88 const domain_enum domain,
89 enum language language,
90 int *is_a_field_of_this);
93 struct symbol *lookup_symbol_aux_local (const char *name,
94 const struct block *block,
95 const domain_enum domain,
96 enum language language);
99 struct symbol *lookup_symbol_aux_symtabs (int block_index,
101 const domain_enum domain);
104 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
107 const domain_enum domain);
109 static void print_msymbol_info (struct minimal_symbol *);
111 void _initialize_symtab (void);
115 /* Allow the user to configure the debugger behavior with respect
116 to multiple-choice menus when more than one symbol matches during
119 const char multiple_symbols_ask[] = "ask";
120 const char multiple_symbols_all[] = "all";
121 const char multiple_symbols_cancel[] = "cancel";
122 static const char *multiple_symbols_modes[] =
124 multiple_symbols_ask,
125 multiple_symbols_all,
126 multiple_symbols_cancel,
129 static const char *multiple_symbols_mode = multiple_symbols_all;
131 /* Read-only accessor to AUTO_SELECT_MODE. */
134 multiple_symbols_select_mode (void)
136 return multiple_symbols_mode;
139 /* Block in which the most recently searched-for symbol was found.
140 Might be better to make this a parameter to lookup_symbol and
143 const struct block *block_found;
145 /* Check for a symtab of a specific name; first in symtabs, then in
146 psymtabs. *If* there is no '/' in the name, a match after a '/'
147 in the symtab filename will also work. */
150 lookup_symtab (const char *name)
153 struct symtab *s = NULL;
154 struct objfile *objfile;
155 char *real_path = NULL;
156 char *full_path = NULL;
157 struct cleanup *cleanup;
159 cleanup = make_cleanup (null_cleanup, NULL);
161 /* Here we are interested in canonicalizing an absolute path, not
162 absolutizing a relative path. */
163 if (IS_ABSOLUTE_PATH (name))
165 full_path = xfullpath (name);
166 make_cleanup (xfree, full_path);
167 real_path = gdb_realpath (name);
168 make_cleanup (xfree, real_path);
173 /* First, search for an exact match. */
175 ALL_SYMTABS (objfile, s)
177 if (FILENAME_CMP (name, s->filename) == 0)
179 do_cleanups (cleanup);
183 /* If the user gave us an absolute path, try to find the file in
184 this symtab and use its absolute path. */
186 if (full_path != NULL)
188 const char *fp = symtab_to_fullname (s);
190 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
192 do_cleanups (cleanup);
197 if (real_path != NULL)
199 char *fullname = symtab_to_fullname (s);
201 if (fullname != NULL)
203 char *rp = gdb_realpath (fullname);
205 make_cleanup (xfree, rp);
206 if (FILENAME_CMP (real_path, rp) == 0)
208 do_cleanups (cleanup);
215 /* Now, search for a matching tail (only if name doesn't have any dirs). */
217 if (lbasename (name) == name)
218 ALL_SYMTABS (objfile, s)
220 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
222 do_cleanups (cleanup);
227 /* Same search rules as above apply here, but now we look thru the
231 ALL_OBJFILES (objfile)
234 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
244 do_cleanups (cleanup);
249 do_cleanups (cleanup);
253 /* At this point, we have located the psymtab for this file, but
254 the conversion to a symtab has failed. This usually happens
255 when we are looking up an include file. In this case,
256 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
257 been created. So, we need to run through the symtabs again in
258 order to find the file.
259 XXX - This is a crock, and should be fixed inside of the
260 symbol parsing routines. */
264 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
265 full method name, which consist of the class name (from T), the unadorned
266 method name from METHOD_ID, and the signature for the specific overload,
267 specified by SIGNATURE_ID. Note that this function is g++ specific. */
270 gdb_mangle_name (struct type *type, int method_id, int signature_id)
272 int mangled_name_len;
274 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
275 struct fn_field *method = &f[signature_id];
276 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
277 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
278 char *newname = type_name_no_tag (type);
280 /* Does the form of physname indicate that it is the full mangled name
281 of a constructor (not just the args)? */
282 int is_full_physname_constructor;
285 int is_destructor = is_destructor_name (physname);
286 /* Need a new type prefix. */
287 char *const_prefix = method->is_const ? "C" : "";
288 char *volatile_prefix = method->is_volatile ? "V" : "";
290 int len = (newname == NULL ? 0 : strlen (newname));
292 /* Nothing to do if physname already contains a fully mangled v3 abi name
293 or an operator name. */
294 if ((physname[0] == '_' && physname[1] == 'Z')
295 || is_operator_name (field_name))
296 return xstrdup (physname);
298 is_full_physname_constructor = is_constructor_name (physname);
300 is_constructor = is_full_physname_constructor
301 || (newname && strcmp (field_name, newname) == 0);
304 is_destructor = (strncmp (physname, "__dt", 4) == 0);
306 if (is_destructor || is_full_physname_constructor)
308 mangled_name = (char *) xmalloc (strlen (physname) + 1);
309 strcpy (mangled_name, physname);
315 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
317 else if (physname[0] == 't' || physname[0] == 'Q')
319 /* The physname for template and qualified methods already includes
321 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
327 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
329 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
330 + strlen (buf) + len + strlen (physname) + 1);
332 mangled_name = (char *) xmalloc (mangled_name_len);
334 mangled_name[0] = '\0';
336 strcpy (mangled_name, field_name);
338 strcat (mangled_name, buf);
339 /* If the class doesn't have a name, i.e. newname NULL, then we just
340 mangle it using 0 for the length of the class. Thus it gets mangled
341 as something starting with `::' rather than `classname::'. */
343 strcat (mangled_name, newname);
345 strcat (mangled_name, physname);
346 return (mangled_name);
349 /* Initialize the cplus_specific structure. 'cplus_specific' should
350 only be allocated for use with cplus symbols. */
353 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
354 struct objfile *objfile)
356 /* A language_specific structure should not have been previously
358 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
359 gdb_assert (objfile != NULL);
361 gsymbol->language_specific.cplus_specific =
362 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
365 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
366 correctly allocated. For C++ symbols a cplus_specific struct is
367 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
368 OBJFILE can be NULL. */
370 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
372 struct objfile *objfile)
374 if (gsymbol->language == language_cplus)
376 if (gsymbol->language_specific.cplus_specific == NULL)
377 symbol_init_cplus_specific (gsymbol, objfile);
379 gsymbol->language_specific.cplus_specific->demangled_name = name;
382 gsymbol->language_specific.mangled_lang.demangled_name = name;
385 /* Return the demangled name of GSYMBOL. */
387 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
389 if (gsymbol->language == language_cplus)
391 if (gsymbol->language_specific.cplus_specific != NULL)
392 return gsymbol->language_specific.cplus_specific->demangled_name;
397 return gsymbol->language_specific.mangled_lang.demangled_name;
401 /* Initialize the language dependent portion of a symbol
402 depending upon the language for the symbol. */
404 symbol_set_language (struct general_symbol_info *gsymbol,
405 enum language language)
407 gsymbol->language = language;
408 if (gsymbol->language == language_d
409 || gsymbol->language == language_java
410 || gsymbol->language == language_objc
411 || gsymbol->language == language_fortran)
413 symbol_set_demangled_name (gsymbol, NULL, NULL);
415 else if (gsymbol->language == language_cplus)
416 gsymbol->language_specific.cplus_specific = NULL;
419 memset (&gsymbol->language_specific, 0,
420 sizeof (gsymbol->language_specific));
424 /* Functions to initialize a symbol's mangled name. */
426 /* Objects of this type are stored in the demangled name hash table. */
427 struct demangled_name_entry
433 /* Hash function for the demangled name hash. */
435 hash_demangled_name_entry (const void *data)
437 const struct demangled_name_entry *e = data;
439 return htab_hash_string (e->mangled);
442 /* Equality function for the demangled name hash. */
444 eq_demangled_name_entry (const void *a, const void *b)
446 const struct demangled_name_entry *da = a;
447 const struct demangled_name_entry *db = b;
449 return strcmp (da->mangled, db->mangled) == 0;
452 /* Create the hash table used for demangled names. Each hash entry is
453 a pair of strings; one for the mangled name and one for the demangled
454 name. The entry is hashed via just the mangled name. */
457 create_demangled_names_hash (struct objfile *objfile)
459 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
460 The hash table code will round this up to the next prime number.
461 Choosing a much larger table size wastes memory, and saves only about
462 1% in symbol reading. */
464 objfile->demangled_names_hash = htab_create_alloc
465 (256, hash_demangled_name_entry, eq_demangled_name_entry,
466 NULL, xcalloc, xfree);
469 /* Try to determine the demangled name for a symbol, based on the
470 language of that symbol. If the language is set to language_auto,
471 it will attempt to find any demangling algorithm that works and
472 then set the language appropriately. The returned name is allocated
473 by the demangler and should be xfree'd. */
476 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
479 char *demangled = NULL;
481 if (gsymbol->language == language_unknown)
482 gsymbol->language = language_auto;
484 if (gsymbol->language == language_objc
485 || gsymbol->language == language_auto)
488 objc_demangle (mangled, 0);
489 if (demangled != NULL)
491 gsymbol->language = language_objc;
495 if (gsymbol->language == language_cplus
496 || gsymbol->language == language_auto)
499 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
500 if (demangled != NULL)
502 gsymbol->language = language_cplus;
506 if (gsymbol->language == language_java)
509 cplus_demangle (mangled,
510 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
511 if (demangled != NULL)
513 gsymbol->language = language_java;
517 if (gsymbol->language == language_d
518 || gsymbol->language == language_auto)
520 demangled = d_demangle(mangled, 0);
521 if (demangled != NULL)
523 gsymbol->language = language_d;
527 /* We could support `gsymbol->language == language_fortran' here to provide
528 module namespaces also for inferiors with only minimal symbol table (ELF
529 symbols). Just the mangling standard is not standardized across compilers
530 and there is no DW_AT_producer available for inferiors with only the ELF
531 symbols to check the mangling kind. */
535 /* Set both the mangled and demangled (if any) names for GSYMBOL based
536 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
537 objfile's obstack; but if COPY_NAME is 0 and if NAME is
538 NUL-terminated, then this function assumes that NAME is already
539 correctly saved (either permanently or with a lifetime tied to the
540 objfile), and it will not be copied.
542 The hash table corresponding to OBJFILE is used, and the memory
543 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
544 so the pointer can be discarded after calling this function. */
546 /* We have to be careful when dealing with Java names: when we run
547 into a Java minimal symbol, we don't know it's a Java symbol, so it
548 gets demangled as a C++ name. This is unfortunate, but there's not
549 much we can do about it: but when demangling partial symbols and
550 regular symbols, we'd better not reuse the wrong demangled name.
551 (See PR gdb/1039.) We solve this by putting a distinctive prefix
552 on Java names when storing them in the hash table. */
554 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
555 don't mind the Java prefix so much: different languages have
556 different demangling requirements, so it's only natural that we
557 need to keep language data around in our demangling cache. But
558 it's not good that the minimal symbol has the wrong demangled name.
559 Unfortunately, I can't think of any easy solution to that
562 #define JAVA_PREFIX "##JAVA$$"
563 #define JAVA_PREFIX_LEN 8
566 symbol_set_names (struct general_symbol_info *gsymbol,
567 const char *linkage_name, int len, int copy_name,
568 struct objfile *objfile)
570 struct demangled_name_entry **slot;
571 /* A 0-terminated copy of the linkage name. */
572 const char *linkage_name_copy;
573 /* A copy of the linkage name that might have a special Java prefix
574 added to it, for use when looking names up in the hash table. */
575 const char *lookup_name;
576 /* The length of lookup_name. */
578 struct demangled_name_entry entry;
580 if (gsymbol->language == language_ada)
582 /* In Ada, we do the symbol lookups using the mangled name, so
583 we can save some space by not storing the demangled name.
585 As a side note, we have also observed some overlap between
586 the C++ mangling and Ada mangling, similarly to what has
587 been observed with Java. Because we don't store the demangled
588 name with the symbol, we don't need to use the same trick
591 gsymbol->name = (char *) linkage_name;
594 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
595 memcpy (gsymbol->name, linkage_name, len);
596 gsymbol->name[len] = '\0';
598 symbol_set_demangled_name (gsymbol, NULL, NULL);
603 if (objfile->demangled_names_hash == NULL)
604 create_demangled_names_hash (objfile);
606 /* The stabs reader generally provides names that are not
607 NUL-terminated; most of the other readers don't do this, so we
608 can just use the given copy, unless we're in the Java case. */
609 if (gsymbol->language == language_java)
613 lookup_len = len + JAVA_PREFIX_LEN;
614 alloc_name = alloca (lookup_len + 1);
615 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
616 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
617 alloc_name[lookup_len] = '\0';
619 lookup_name = alloc_name;
620 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
622 else if (linkage_name[len] != '\0')
627 alloc_name = alloca (lookup_len + 1);
628 memcpy (alloc_name, linkage_name, len);
629 alloc_name[lookup_len] = '\0';
631 lookup_name = alloc_name;
632 linkage_name_copy = alloc_name;
637 lookup_name = linkage_name;
638 linkage_name_copy = linkage_name;
641 entry.mangled = (char *) lookup_name;
642 slot = ((struct demangled_name_entry **)
643 htab_find_slot (objfile->demangled_names_hash,
646 /* If this name is not in the hash table, add it. */
649 char *demangled_name = symbol_find_demangled_name (gsymbol,
651 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
653 /* Suppose we have demangled_name==NULL, copy_name==0, and
654 lookup_name==linkage_name. In this case, we already have the
655 mangled name saved, and we don't have a demangled name. So,
656 you might think we could save a little space by not recording
657 this in the hash table at all.
659 It turns out that it is actually important to still save such
660 an entry in the hash table, because storing this name gives
661 us better bcache hit rates for partial symbols. */
662 if (!copy_name && lookup_name == linkage_name)
664 *slot = obstack_alloc (&objfile->objfile_obstack,
665 offsetof (struct demangled_name_entry,
667 + demangled_len + 1);
668 (*slot)->mangled = (char *) lookup_name;
672 /* If we must copy the mangled name, put it directly after
673 the demangled name so we can have a single
675 *slot = obstack_alloc (&objfile->objfile_obstack,
676 offsetof (struct demangled_name_entry,
678 + lookup_len + demangled_len + 2);
679 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
680 strcpy ((*slot)->mangled, lookup_name);
683 if (demangled_name != NULL)
685 strcpy ((*slot)->demangled, demangled_name);
686 xfree (demangled_name);
689 (*slot)->demangled[0] = '\0';
692 gsymbol->name = (*slot)->mangled + lookup_len - len;
693 if ((*slot)->demangled[0] != '\0')
694 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
696 symbol_set_demangled_name (gsymbol, NULL, objfile);
699 /* Return the source code name of a symbol. In languages where
700 demangling is necessary, this is the demangled name. */
703 symbol_natural_name (const struct general_symbol_info *gsymbol)
705 switch (gsymbol->language)
711 case language_fortran:
712 if (symbol_get_demangled_name (gsymbol) != NULL)
713 return symbol_get_demangled_name (gsymbol);
716 if (symbol_get_demangled_name (gsymbol) != NULL)
717 return symbol_get_demangled_name (gsymbol);
719 return ada_decode_symbol (gsymbol);
724 return gsymbol->name;
727 /* Return the demangled name for a symbol based on the language for
728 that symbol. If no demangled name exists, return NULL. */
730 symbol_demangled_name (const struct general_symbol_info *gsymbol)
732 switch (gsymbol->language)
738 case language_fortran:
739 if (symbol_get_demangled_name (gsymbol) != NULL)
740 return symbol_get_demangled_name (gsymbol);
743 if (symbol_get_demangled_name (gsymbol) != NULL)
744 return symbol_get_demangled_name (gsymbol);
746 return ada_decode_symbol (gsymbol);
754 /* Return the search name of a symbol---generally the demangled or
755 linkage name of the symbol, depending on how it will be searched for.
756 If there is no distinct demangled name, then returns the same value
757 (same pointer) as SYMBOL_LINKAGE_NAME. */
759 symbol_search_name (const struct general_symbol_info *gsymbol)
761 if (gsymbol->language == language_ada)
762 return gsymbol->name;
764 return symbol_natural_name (gsymbol);
767 /* Initialize the structure fields to zero values. */
769 init_sal (struct symtab_and_line *sal)
777 sal->explicit_pc = 0;
778 sal->explicit_line = 0;
782 /* Return 1 if the two sections are the same, or if they could
783 plausibly be copies of each other, one in an original object
784 file and another in a separated debug file. */
787 matching_obj_sections (struct obj_section *obj_first,
788 struct obj_section *obj_second)
790 asection *first = obj_first? obj_first->the_bfd_section : NULL;
791 asection *second = obj_second? obj_second->the_bfd_section : NULL;
794 /* If they're the same section, then they match. */
798 /* If either is NULL, give up. */
799 if (first == NULL || second == NULL)
802 /* This doesn't apply to absolute symbols. */
803 if (first->owner == NULL || second->owner == NULL)
806 /* If they're in the same object file, they must be different sections. */
807 if (first->owner == second->owner)
810 /* Check whether the two sections are potentially corresponding. They must
811 have the same size, address, and name. We can't compare section indexes,
812 which would be more reliable, because some sections may have been
814 if (bfd_get_section_size (first) != bfd_get_section_size (second))
817 /* In-memory addresses may start at a different offset, relativize them. */
818 if (bfd_get_section_vma (first->owner, first)
819 - bfd_get_start_address (first->owner)
820 != bfd_get_section_vma (second->owner, second)
821 - bfd_get_start_address (second->owner))
824 if (bfd_get_section_name (first->owner, first) == NULL
825 || bfd_get_section_name (second->owner, second) == NULL
826 || strcmp (bfd_get_section_name (first->owner, first),
827 bfd_get_section_name (second->owner, second)) != 0)
830 /* Otherwise check that they are in corresponding objfiles. */
833 if (obj->obfd == first->owner)
835 gdb_assert (obj != NULL);
837 if (obj->separate_debug_objfile != NULL
838 && obj->separate_debug_objfile->obfd == second->owner)
840 if (obj->separate_debug_objfile_backlink != NULL
841 && obj->separate_debug_objfile_backlink->obfd == second->owner)
848 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
850 struct objfile *objfile;
851 struct minimal_symbol *msymbol;
853 /* If we know that this is not a text address, return failure. This is
854 necessary because we loop based on texthigh and textlow, which do
855 not include the data ranges. */
856 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
858 && (MSYMBOL_TYPE (msymbol) == mst_data
859 || MSYMBOL_TYPE (msymbol) == mst_bss
860 || MSYMBOL_TYPE (msymbol) == mst_abs
861 || MSYMBOL_TYPE (msymbol) == mst_file_data
862 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
865 ALL_OBJFILES (objfile)
867 struct symtab *result = NULL;
870 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
879 /* Debug symbols usually don't have section information. We need to dig that
880 out of the minimal symbols and stash that in the debug symbol. */
883 fixup_section (struct general_symbol_info *ginfo,
884 CORE_ADDR addr, struct objfile *objfile)
886 struct minimal_symbol *msym;
888 /* First, check whether a minimal symbol with the same name exists
889 and points to the same address. The address check is required
890 e.g. on PowerPC64, where the minimal symbol for a function will
891 point to the function descriptor, while the debug symbol will
892 point to the actual function code. */
893 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
896 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
897 ginfo->section = SYMBOL_SECTION (msym);
901 /* Static, function-local variables do appear in the linker
902 (minimal) symbols, but are frequently given names that won't
903 be found via lookup_minimal_symbol(). E.g., it has been
904 observed in frv-uclinux (ELF) executables that a static,
905 function-local variable named "foo" might appear in the
906 linker symbols as "foo.6" or "foo.3". Thus, there is no
907 point in attempting to extend the lookup-by-name mechanism to
908 handle this case due to the fact that there can be multiple
911 So, instead, search the section table when lookup by name has
912 failed. The ``addr'' and ``endaddr'' fields may have already
913 been relocated. If so, the relocation offset (i.e. the
914 ANOFFSET value) needs to be subtracted from these values when
915 performing the comparison. We unconditionally subtract it,
916 because, when no relocation has been performed, the ANOFFSET
917 value will simply be zero.
919 The address of the symbol whose section we're fixing up HAS
920 NOT BEEN adjusted (relocated) yet. It can't have been since
921 the section isn't yet known and knowing the section is
922 necessary in order to add the correct relocation value. In
923 other words, we wouldn't even be in this function (attempting
924 to compute the section) if it were already known.
926 Note that it is possible to search the minimal symbols
927 (subtracting the relocation value if necessary) to find the
928 matching minimal symbol, but this is overkill and much less
929 efficient. It is not necessary to find the matching minimal
930 symbol, only its section.
932 Note that this technique (of doing a section table search)
933 can fail when unrelocated section addresses overlap. For
934 this reason, we still attempt a lookup by name prior to doing
935 a search of the section table. */
937 struct obj_section *s;
939 ALL_OBJFILE_OSECTIONS (objfile, s)
941 int idx = s->the_bfd_section->index;
942 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
944 if (obj_section_addr (s) - offset <= addr
945 && addr < obj_section_endaddr (s) - offset)
947 ginfo->obj_section = s;
948 ginfo->section = idx;
956 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
963 if (SYMBOL_OBJ_SECTION (sym))
966 /* We either have an OBJFILE, or we can get at it from the sym's
967 symtab. Anything else is a bug. */
968 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
971 objfile = SYMBOL_SYMTAB (sym)->objfile;
973 /* We should have an objfile by now. */
974 gdb_assert (objfile);
976 switch (SYMBOL_CLASS (sym))
980 addr = SYMBOL_VALUE_ADDRESS (sym);
983 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
987 /* Nothing else will be listed in the minsyms -- no use looking
992 fixup_section (&sym->ginfo, addr, objfile);
997 /* Find the definition for a specified symbol name NAME
998 in domain DOMAIN, visible from lexical block BLOCK.
999 Returns the struct symbol pointer, or zero if no symbol is found.
1000 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1001 NAME is a field of the current implied argument `this'. If so set
1002 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1003 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1004 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1006 /* This function has a bunch of loops in it and it would seem to be
1007 attractive to put in some QUIT's (though I'm not really sure
1008 whether it can run long enough to be really important). But there
1009 are a few calls for which it would appear to be bad news to quit
1010 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1011 that there is C++ code below which can error(), but that probably
1012 doesn't affect these calls since they are looking for a known
1013 variable and thus can probably assume it will never hit the C++
1017 lookup_symbol_in_language (const char *name, const struct block *block,
1018 const domain_enum domain, enum language lang,
1019 int *is_a_field_of_this)
1021 char *demangled_name = NULL;
1022 const char *modified_name = NULL;
1023 struct symbol *returnval;
1024 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1026 modified_name = name;
1028 /* If we are using C++, D, or Java, demangle the name before doing a
1029 lookup, so we can always binary search. */
1030 if (lang == language_cplus)
1032 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1035 modified_name = demangled_name;
1036 make_cleanup (xfree, demangled_name);
1040 /* If we were given a non-mangled name, canonicalize it
1041 according to the language (so far only for C++). */
1042 demangled_name = cp_canonicalize_string (name);
1045 modified_name = demangled_name;
1046 make_cleanup (xfree, demangled_name);
1050 else if (lang == language_java)
1052 demangled_name = cplus_demangle (name,
1053 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1056 modified_name = demangled_name;
1057 make_cleanup (xfree, demangled_name);
1060 else if (lang == language_d)
1062 demangled_name = d_demangle (name, 0);
1065 modified_name = demangled_name;
1066 make_cleanup (xfree, demangled_name);
1070 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1071 is_a_field_of_this);
1072 do_cleanups (cleanup);
1077 /* Behave like lookup_symbol_in_language, but performed with the
1078 current language. */
1081 lookup_symbol (const char *name, const struct block *block,
1082 domain_enum domain, int *is_a_field_of_this)
1084 return lookup_symbol_in_language (name, block, domain,
1085 current_language->la_language,
1086 is_a_field_of_this);
1089 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1090 found, or NULL if not found. */
1093 lookup_language_this (const struct language_defn *lang,
1094 const struct block *block)
1096 if (lang->la_name_of_this == NULL || block == NULL)
1103 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1106 if (BLOCK_FUNCTION (block))
1108 block = BLOCK_SUPERBLOCK (block);
1114 /* Behave like lookup_symbol except that NAME is the natural name
1115 of the symbol that we're looking for and, if LINKAGE_NAME is
1116 non-NULL, ensure that the symbol's linkage name matches as
1119 static struct symbol *
1120 lookup_symbol_aux (const char *name, const struct block *block,
1121 const domain_enum domain, enum language language,
1122 int *is_a_field_of_this)
1125 const struct language_defn *langdef;
1127 /* Make sure we do something sensible with is_a_field_of_this, since
1128 the callers that set this parameter to some non-null value will
1129 certainly use it later and expect it to be either 0 or 1.
1130 If we don't set it, the contents of is_a_field_of_this are
1132 if (is_a_field_of_this != NULL)
1133 *is_a_field_of_this = 0;
1135 /* Search specified block and its superiors. Don't search
1136 STATIC_BLOCK or GLOBAL_BLOCK. */
1138 sym = lookup_symbol_aux_local (name, block, domain, language);
1142 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1143 check to see if NAME is a field of `this'. */
1145 langdef = language_def (language);
1147 if (is_a_field_of_this != NULL)
1149 struct symbol *sym = lookup_language_this (langdef, block);
1153 struct type *t = sym->type;
1155 /* I'm not really sure that type of this can ever
1156 be typedefed; just be safe. */
1158 if (TYPE_CODE (t) == TYPE_CODE_PTR
1159 || TYPE_CODE (t) == TYPE_CODE_REF)
1160 t = TYPE_TARGET_TYPE (t);
1162 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1163 && TYPE_CODE (t) != TYPE_CODE_UNION)
1164 error (_("Internal error: `%s' is not an aggregate"),
1165 langdef->la_name_of_this);
1167 if (check_field (t, name))
1169 *is_a_field_of_this = 1;
1175 /* Now do whatever is appropriate for LANGUAGE to look
1176 up static and global variables. */
1178 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1182 /* Now search all static file-level symbols. Not strictly correct,
1183 but more useful than an error. */
1185 return lookup_static_symbol_aux (name, domain);
1188 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1189 first, then check the psymtabs. If a psymtab indicates the existence of the
1190 desired name as a file-level static, then do psymtab-to-symtab conversion on
1191 the fly and return the found symbol. */
1194 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1196 struct objfile *objfile;
1199 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1203 ALL_OBJFILES (objfile)
1205 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1213 /* Check to see if the symbol is defined in BLOCK or its superiors.
1214 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1216 static struct symbol *
1217 lookup_symbol_aux_local (const char *name, const struct block *block,
1218 const domain_enum domain,
1219 enum language language)
1222 const struct block *static_block = block_static_block (block);
1223 const char *scope = block_scope (block);
1225 /* Check if either no block is specified or it's a global block. */
1227 if (static_block == NULL)
1230 while (block != static_block)
1232 sym = lookup_symbol_aux_block (name, block, domain);
1236 if (language == language_cplus || language == language_fortran)
1238 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1244 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1246 block = BLOCK_SUPERBLOCK (block);
1249 /* We've reached the edge of the function without finding a result. */
1254 /* Look up OBJFILE to BLOCK. */
1257 lookup_objfile_from_block (const struct block *block)
1259 struct objfile *obj;
1265 block = block_global_block (block);
1266 /* Go through SYMTABS. */
1267 ALL_SYMTABS (obj, s)
1268 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1270 if (obj->separate_debug_objfile_backlink)
1271 obj = obj->separate_debug_objfile_backlink;
1279 /* Look up a symbol in a block; if found, fixup the symbol, and set
1280 block_found appropriately. */
1283 lookup_symbol_aux_block (const char *name, const struct block *block,
1284 const domain_enum domain)
1288 sym = lookup_block_symbol (block, name, domain);
1291 block_found = block;
1292 return fixup_symbol_section (sym, NULL);
1298 /* Check all global symbols in OBJFILE in symtabs and
1302 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1304 const domain_enum domain)
1306 const struct objfile *objfile;
1308 struct blockvector *bv;
1309 const struct block *block;
1312 for (objfile = main_objfile;
1314 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1316 /* Go through symtabs. */
1317 ALL_OBJFILE_SYMTABS (objfile, s)
1319 bv = BLOCKVECTOR (s);
1320 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1321 sym = lookup_block_symbol (block, name, domain);
1324 block_found = block;
1325 return fixup_symbol_section (sym, (struct objfile *)objfile);
1329 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1338 /* Check to see if the symbol is defined in one of the symtabs.
1339 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1340 depending on whether or not we want to search global symbols or
1343 static struct symbol *
1344 lookup_symbol_aux_symtabs (int block_index, const char *name,
1345 const domain_enum domain)
1348 struct objfile *objfile;
1349 struct blockvector *bv;
1350 const struct block *block;
1353 ALL_OBJFILES (objfile)
1356 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1360 ALL_OBJFILE_SYMTABS (objfile, s)
1363 bv = BLOCKVECTOR (s);
1364 block = BLOCKVECTOR_BLOCK (bv, block_index);
1365 sym = lookup_block_symbol (block, name, domain);
1368 block_found = block;
1369 return fixup_symbol_section (sym, objfile);
1377 /* A helper function for lookup_symbol_aux that interfaces with the
1378 "quick" symbol table functions. */
1380 static struct symbol *
1381 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1382 const char *name, const domain_enum domain)
1384 struct symtab *symtab;
1385 struct blockvector *bv;
1386 const struct block *block;
1391 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1395 bv = BLOCKVECTOR (symtab);
1396 block = BLOCKVECTOR_BLOCK (bv, kind);
1397 sym = lookup_block_symbol (block, name, domain);
1400 /* This shouldn't be necessary, but as a last resort try
1401 looking in the statics even though the psymtab claimed
1402 the symbol was global, or vice-versa. It's possible
1403 that the psymtab gets it wrong in some cases. */
1405 /* FIXME: carlton/2002-09-30: Should we really do that?
1406 If that happens, isn't it likely to be a GDB error, in
1407 which case we should fix the GDB error rather than
1408 silently dealing with it here? So I'd vote for
1409 removing the check for the symbol in the other
1411 block = BLOCKVECTOR_BLOCK (bv,
1412 kind == GLOBAL_BLOCK ?
1413 STATIC_BLOCK : GLOBAL_BLOCK);
1414 sym = lookup_block_symbol (block, name, domain);
1417 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1418 %s may be an inlined function, or may be a template function\n\
1419 (if a template, try specifying an instantiation: %s<type>)."),
1420 kind == GLOBAL_BLOCK ? "global" : "static",
1421 name, symtab->filename, name, name);
1423 return fixup_symbol_section (sym, objfile);
1426 /* A default version of lookup_symbol_nonlocal for use by languages
1427 that can't think of anything better to do. This implements the C
1431 basic_lookup_symbol_nonlocal (const char *name,
1432 const struct block *block,
1433 const domain_enum domain)
1437 /* NOTE: carlton/2003-05-19: The comments below were written when
1438 this (or what turned into this) was part of lookup_symbol_aux;
1439 I'm much less worried about these questions now, since these
1440 decisions have turned out well, but I leave these comments here
1443 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1444 not it would be appropriate to search the current global block
1445 here as well. (That's what this code used to do before the
1446 is_a_field_of_this check was moved up.) On the one hand, it's
1447 redundant with the lookup_symbol_aux_symtabs search that happens
1448 next. On the other hand, if decode_line_1 is passed an argument
1449 like filename:var, then the user presumably wants 'var' to be
1450 searched for in filename. On the third hand, there shouldn't be
1451 multiple global variables all of which are named 'var', and it's
1452 not like decode_line_1 has ever restricted its search to only
1453 global variables in a single filename. All in all, only
1454 searching the static block here seems best: it's correct and it's
1457 /* NOTE: carlton/2002-12-05: There's also a possible performance
1458 issue here: if you usually search for global symbols in the
1459 current file, then it would be slightly better to search the
1460 current global block before searching all the symtabs. But there
1461 are other factors that have a much greater effect on performance
1462 than that one, so I don't think we should worry about that for
1465 sym = lookup_symbol_static (name, block, domain);
1469 return lookup_symbol_global (name, block, domain);
1472 /* Lookup a symbol in the static block associated to BLOCK, if there
1473 is one; do nothing if BLOCK is NULL or a global block. */
1476 lookup_symbol_static (const char *name,
1477 const struct block *block,
1478 const domain_enum domain)
1480 const struct block *static_block = block_static_block (block);
1482 if (static_block != NULL)
1483 return lookup_symbol_aux_block (name, static_block, domain);
1488 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1492 lookup_symbol_global (const char *name,
1493 const struct block *block,
1494 const domain_enum domain)
1496 struct symbol *sym = NULL;
1497 struct objfile *objfile = NULL;
1499 /* Call library-specific lookup procedure. */
1500 objfile = lookup_objfile_from_block (block);
1501 if (objfile != NULL)
1502 sym = solib_global_lookup (objfile, name, domain);
1506 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1510 ALL_OBJFILES (objfile)
1512 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1521 symbol_matches_domain (enum language symbol_language,
1522 domain_enum symbol_domain,
1525 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1526 A Java class declaration also defines a typedef for the class.
1527 Similarly, any Ada type declaration implicitly defines a typedef. */
1528 if (symbol_language == language_cplus
1529 || symbol_language == language_d
1530 || symbol_language == language_java
1531 || symbol_language == language_ada)
1533 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1534 && symbol_domain == STRUCT_DOMAIN)
1537 /* For all other languages, strict match is required. */
1538 return (symbol_domain == domain);
1541 /* Look up a type named NAME in the struct_domain. The type returned
1542 must not be opaque -- i.e., must have at least one field
1546 lookup_transparent_type (const char *name)
1548 return current_language->la_lookup_transparent_type (name);
1551 /* A helper for basic_lookup_transparent_type that interfaces with the
1552 "quick" symbol table functions. */
1554 static struct type *
1555 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1558 struct symtab *symtab;
1559 struct blockvector *bv;
1560 struct block *block;
1565 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1569 bv = BLOCKVECTOR (symtab);
1570 block = BLOCKVECTOR_BLOCK (bv, kind);
1571 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1574 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1576 /* This shouldn't be necessary, but as a last resort
1577 * try looking in the 'other kind' even though the psymtab
1578 * claimed the symbol was one thing. It's possible that
1579 * the psymtab gets it wrong in some cases.
1581 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1582 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1584 /* FIXME; error is wrong in one case. */
1586 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1587 %s may be an inlined function, or may be a template function\n\
1588 (if a template, try specifying an instantiation: %s<type>)."),
1589 name, symtab->filename, name, name);
1591 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1592 return SYMBOL_TYPE (sym);
1597 /* The standard implementation of lookup_transparent_type. This code
1598 was modeled on lookup_symbol -- the parts not relevant to looking
1599 up types were just left out. In particular it's assumed here that
1600 types are available in struct_domain and only at file-static or
1604 basic_lookup_transparent_type (const char *name)
1607 struct symtab *s = NULL;
1608 struct blockvector *bv;
1609 struct objfile *objfile;
1610 struct block *block;
1613 /* Now search all the global symbols. Do the symtab's first, then
1614 check the psymtab's. If a psymtab indicates the existence
1615 of the desired name as a global, then do psymtab-to-symtab
1616 conversion on the fly and return the found symbol. */
1618 ALL_OBJFILES (objfile)
1621 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1623 name, STRUCT_DOMAIN);
1625 ALL_OBJFILE_SYMTABS (objfile, s)
1628 bv = BLOCKVECTOR (s);
1629 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1630 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1631 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1633 return SYMBOL_TYPE (sym);
1638 ALL_OBJFILES (objfile)
1640 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1645 /* Now search the static file-level symbols.
1646 Not strictly correct, but more useful than an error.
1647 Do the symtab's first, then
1648 check the psymtab's. If a psymtab indicates the existence
1649 of the desired name as a file-level static, then do psymtab-to-symtab
1650 conversion on the fly and return the found symbol. */
1652 ALL_OBJFILES (objfile)
1655 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1656 name, STRUCT_DOMAIN);
1658 ALL_OBJFILE_SYMTABS (objfile, s)
1660 bv = BLOCKVECTOR (s);
1661 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1662 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1663 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1665 return SYMBOL_TYPE (sym);
1670 ALL_OBJFILES (objfile)
1672 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1677 return (struct type *) 0;
1681 /* Find the name of the file containing main(). */
1682 /* FIXME: What about languages without main() or specially linked
1683 executables that have no main() ? */
1686 find_main_filename (void)
1688 struct objfile *objfile;
1689 char *name = main_name ();
1691 ALL_OBJFILES (objfile)
1697 result = objfile->sf->qf->find_symbol_file (objfile, name);
1704 /* Search BLOCK for symbol NAME in DOMAIN.
1706 Note that if NAME is the demangled form of a C++ symbol, we will fail
1707 to find a match during the binary search of the non-encoded names, but
1708 for now we don't worry about the slight inefficiency of looking for
1709 a match we'll never find, since it will go pretty quick. Once the
1710 binary search terminates, we drop through and do a straight linear
1711 search on the symbols. Each symbol which is marked as being a ObjC/C++
1712 symbol (language_cplus or language_objc set) has both the encoded and
1713 non-encoded names tested for a match. */
1716 lookup_block_symbol (const struct block *block, const char *name,
1717 const domain_enum domain)
1719 struct dict_iterator iter;
1722 if (!BLOCK_FUNCTION (block))
1724 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1726 sym = dict_iter_name_next (name, &iter))
1728 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1729 SYMBOL_DOMAIN (sym), domain))
1736 /* Note that parameter symbols do not always show up last in the
1737 list; this loop makes sure to take anything else other than
1738 parameter symbols first; it only uses parameter symbols as a
1739 last resort. Note that this only takes up extra computation
1742 struct symbol *sym_found = NULL;
1744 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1746 sym = dict_iter_name_next (name, &iter))
1748 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1749 SYMBOL_DOMAIN (sym), domain))
1752 if (!SYMBOL_IS_ARGUMENT (sym))
1758 return (sym_found); /* Will be NULL if not found. */
1762 /* Find the symtab associated with PC and SECTION. Look through the
1763 psymtabs and read in another symtab if necessary. */
1766 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1769 struct blockvector *bv;
1770 struct symtab *s = NULL;
1771 struct symtab *best_s = NULL;
1772 struct objfile *objfile;
1773 struct program_space *pspace;
1774 CORE_ADDR distance = 0;
1775 struct minimal_symbol *msymbol;
1777 pspace = current_program_space;
1779 /* If we know that this is not a text address, return failure. This is
1780 necessary because we loop based on the block's high and low code
1781 addresses, which do not include the data ranges, and because
1782 we call find_pc_sect_psymtab which has a similar restriction based
1783 on the partial_symtab's texthigh and textlow. */
1784 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1786 && (MSYMBOL_TYPE (msymbol) == mst_data
1787 || MSYMBOL_TYPE (msymbol) == mst_bss
1788 || MSYMBOL_TYPE (msymbol) == mst_abs
1789 || MSYMBOL_TYPE (msymbol) == mst_file_data
1790 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1793 /* Search all symtabs for the one whose file contains our address, and which
1794 is the smallest of all the ones containing the address. This is designed
1795 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1796 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1797 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1799 This happens for native ecoff format, where code from included files
1800 gets its own symtab. The symtab for the included file should have
1801 been read in already via the dependency mechanism.
1802 It might be swifter to create several symtabs with the same name
1803 like xcoff does (I'm not sure).
1805 It also happens for objfiles that have their functions reordered.
1806 For these, the symtab we are looking for is not necessarily read in. */
1808 ALL_PRIMARY_SYMTABS (objfile, s)
1810 bv = BLOCKVECTOR (s);
1811 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1813 if (BLOCK_START (b) <= pc
1814 && BLOCK_END (b) > pc
1816 || BLOCK_END (b) - BLOCK_START (b) < distance))
1818 /* For an objfile that has its functions reordered,
1819 find_pc_psymtab will find the proper partial symbol table
1820 and we simply return its corresponding symtab. */
1821 /* In order to better support objfiles that contain both
1822 stabs and coff debugging info, we continue on if a psymtab
1824 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1826 struct symtab *result;
1829 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1838 struct dict_iterator iter;
1839 struct symbol *sym = NULL;
1841 ALL_BLOCK_SYMBOLS (b, iter, sym)
1843 fixup_symbol_section (sym, objfile);
1844 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1848 continue; /* No symbol in this symtab matches
1851 distance = BLOCK_END (b) - BLOCK_START (b);
1859 ALL_OBJFILES (objfile)
1861 struct symtab *result;
1865 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1876 /* Find the symtab associated with PC. Look through the psymtabs and read
1877 in another symtab if necessary. Backward compatibility, no section. */
1880 find_pc_symtab (CORE_ADDR pc)
1882 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1886 /* Find the source file and line number for a given PC value and SECTION.
1887 Return a structure containing a symtab pointer, a line number,
1888 and a pc range for the entire source line.
1889 The value's .pc field is NOT the specified pc.
1890 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1891 use the line that ends there. Otherwise, in that case, the line
1892 that begins there is used. */
1894 /* The big complication here is that a line may start in one file, and end just
1895 before the start of another file. This usually occurs when you #include
1896 code in the middle of a subroutine. To properly find the end of a line's PC
1897 range, we must search all symtabs associated with this compilation unit, and
1898 find the one whose first PC is closer than that of the next line in this
1901 /* If it's worth the effort, we could be using a binary search. */
1903 struct symtab_and_line
1904 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1907 struct linetable *l;
1910 struct linetable_entry *item;
1911 struct symtab_and_line val;
1912 struct blockvector *bv;
1913 struct minimal_symbol *msymbol;
1914 struct minimal_symbol *mfunsym;
1915 struct objfile *objfile;
1917 /* Info on best line seen so far, and where it starts, and its file. */
1919 struct linetable_entry *best = NULL;
1920 CORE_ADDR best_end = 0;
1921 struct symtab *best_symtab = 0;
1923 /* Store here the first line number
1924 of a file which contains the line at the smallest pc after PC.
1925 If we don't find a line whose range contains PC,
1926 we will use a line one less than this,
1927 with a range from the start of that file to the first line's pc. */
1928 struct linetable_entry *alt = NULL;
1929 struct symtab *alt_symtab = 0;
1931 /* Info on best line seen in this file. */
1933 struct linetable_entry *prev;
1935 /* If this pc is not from the current frame,
1936 it is the address of the end of a call instruction.
1937 Quite likely that is the start of the following statement.
1938 But what we want is the statement containing the instruction.
1939 Fudge the pc to make sure we get that. */
1941 init_sal (&val); /* initialize to zeroes */
1943 val.pspace = current_program_space;
1945 /* It's tempting to assume that, if we can't find debugging info for
1946 any function enclosing PC, that we shouldn't search for line
1947 number info, either. However, GAS can emit line number info for
1948 assembly files --- very helpful when debugging hand-written
1949 assembly code. In such a case, we'd have no debug info for the
1950 function, but we would have line info. */
1955 /* elz: added this because this function returned the wrong
1956 information if the pc belongs to a stub (import/export)
1957 to call a shlib function. This stub would be anywhere between
1958 two functions in the target, and the line info was erroneously
1959 taken to be the one of the line before the pc. */
1961 /* RT: Further explanation:
1963 * We have stubs (trampolines) inserted between procedures.
1965 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1966 * exists in the main image.
1968 * In the minimal symbol table, we have a bunch of symbols
1969 * sorted by start address. The stubs are marked as "trampoline",
1970 * the others appear as text. E.g.:
1972 * Minimal symbol table for main image
1973 * main: code for main (text symbol)
1974 * shr1: stub (trampoline symbol)
1975 * foo: code for foo (text symbol)
1977 * Minimal symbol table for "shr1" image:
1979 * shr1: code for shr1 (text symbol)
1982 * So the code below is trying to detect if we are in the stub
1983 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1984 * and if found, do the symbolization from the real-code address
1985 * rather than the stub address.
1987 * Assumptions being made about the minimal symbol table:
1988 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1989 * if we're really in the trampoline.s If we're beyond it (say
1990 * we're in "foo" in the above example), it'll have a closer
1991 * symbol (the "foo" text symbol for example) and will not
1992 * return the trampoline.
1993 * 2. lookup_minimal_symbol_text() will find a real text symbol
1994 * corresponding to the trampoline, and whose address will
1995 * be different than the trampoline address. I put in a sanity
1996 * check for the address being the same, to avoid an
1997 * infinite recursion.
1999 msymbol = lookup_minimal_symbol_by_pc (pc);
2000 if (msymbol != NULL)
2001 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2003 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2005 if (mfunsym == NULL)
2006 /* I eliminated this warning since it is coming out
2007 * in the following situation:
2008 * gdb shmain // test program with shared libraries
2009 * (gdb) break shr1 // function in shared lib
2010 * Warning: In stub for ...
2011 * In the above situation, the shared lib is not loaded yet,
2012 * so of course we can't find the real func/line info,
2013 * but the "break" still works, and the warning is annoying.
2014 * So I commented out the warning. RT */
2015 /* warning ("In stub for %s; unable to find real function/line info",
2016 SYMBOL_LINKAGE_NAME (msymbol)); */
2019 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2020 == SYMBOL_VALUE_ADDRESS (msymbol))
2021 /* Avoid infinite recursion */
2022 /* See above comment about why warning is commented out. */
2023 /* warning ("In stub for %s; unable to find real function/line info",
2024 SYMBOL_LINKAGE_NAME (msymbol)); */
2028 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2032 s = find_pc_sect_symtab (pc, section);
2035 /* If no symbol information, return previous pc. */
2042 bv = BLOCKVECTOR (s);
2043 objfile = s->objfile;
2045 /* Look at all the symtabs that share this blockvector.
2046 They all have the same apriori range, that we found was right;
2047 but they have different line tables. */
2049 ALL_OBJFILE_SYMTABS (objfile, s)
2051 if (BLOCKVECTOR (s) != bv)
2054 /* Find the best line in this symtab. */
2061 /* I think len can be zero if the symtab lacks line numbers
2062 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2063 I'm not sure which, and maybe it depends on the symbol
2069 item = l->item; /* Get first line info. */
2071 /* Is this file's first line closer than the first lines of other files?
2072 If so, record this file, and its first line, as best alternate. */
2073 if (item->pc > pc && (!alt || item->pc < alt->pc))
2079 for (i = 0; i < len; i++, item++)
2081 /* Leave prev pointing to the linetable entry for the last line
2082 that started at or before PC. */
2089 /* At this point, prev points at the line whose start addr is <= pc, and
2090 item points at the next line. If we ran off the end of the linetable
2091 (pc >= start of the last line), then prev == item. If pc < start of
2092 the first line, prev will not be set. */
2094 /* Is this file's best line closer than the best in the other files?
2095 If so, record this file, and its best line, as best so far. Don't
2096 save prev if it represents the end of a function (i.e. line number
2097 0) instead of a real line. */
2099 if (prev && prev->line && (!best || prev->pc > best->pc))
2104 /* Discard BEST_END if it's before the PC of the current BEST. */
2105 if (best_end <= best->pc)
2109 /* If another line (denoted by ITEM) is in the linetable and its
2110 PC is after BEST's PC, but before the current BEST_END, then
2111 use ITEM's PC as the new best_end. */
2112 if (best && i < len && item->pc > best->pc
2113 && (best_end == 0 || best_end > item->pc))
2114 best_end = item->pc;
2119 /* If we didn't find any line number info, just return zeros.
2120 We used to return alt->line - 1 here, but that could be
2121 anywhere; if we don't have line number info for this PC,
2122 don't make some up. */
2125 else if (best->line == 0)
2127 /* If our best fit is in a range of PC's for which no line
2128 number info is available (line number is zero) then we didn't
2129 find any valid line information. */
2134 val.symtab = best_symtab;
2135 val.line = best->line;
2137 if (best_end && (!alt || best_end < alt->pc))
2142 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2144 val.section = section;
2148 /* Backward compatibility (no section). */
2150 struct symtab_and_line
2151 find_pc_line (CORE_ADDR pc, int notcurrent)
2153 struct obj_section *section;
2155 section = find_pc_overlay (pc);
2156 if (pc_in_unmapped_range (pc, section))
2157 pc = overlay_mapped_address (pc, section);
2158 return find_pc_sect_line (pc, section, notcurrent);
2161 /* Find line number LINE in any symtab whose name is the same as
2164 If found, return the symtab that contains the linetable in which it was
2165 found, set *INDEX to the index in the linetable of the best entry
2166 found, and set *EXACT_MATCH nonzero if the value returned is an
2169 If not found, return NULL. */
2172 find_line_symtab (struct symtab *symtab, int line,
2173 int *index, int *exact_match)
2175 int exact = 0; /* Initialized here to avoid a compiler warning. */
2177 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2181 struct linetable *best_linetable;
2182 struct symtab *best_symtab;
2184 /* First try looking it up in the given symtab. */
2185 best_linetable = LINETABLE (symtab);
2186 best_symtab = symtab;
2187 best_index = find_line_common (best_linetable, line, &exact);
2188 if (best_index < 0 || !exact)
2190 /* Didn't find an exact match. So we better keep looking for
2191 another symtab with the same name. In the case of xcoff,
2192 multiple csects for one source file (produced by IBM's FORTRAN
2193 compiler) produce multiple symtabs (this is unavoidable
2194 assuming csects can be at arbitrary places in memory and that
2195 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2197 /* BEST is the smallest linenumber > LINE so far seen,
2198 or 0 if none has been seen so far.
2199 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2202 struct objfile *objfile;
2205 if (best_index >= 0)
2206 best = best_linetable->item[best_index].line;
2210 ALL_OBJFILES (objfile)
2213 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2217 /* Get symbol full file name if possible. */
2218 symtab_to_fullname (symtab);
2220 ALL_SYMTABS (objfile, s)
2222 struct linetable *l;
2225 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2227 if (symtab->fullname != NULL
2228 && symtab_to_fullname (s) != NULL
2229 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2232 ind = find_line_common (l, line, &exact);
2242 if (best == 0 || l->item[ind].line < best)
2244 best = l->item[ind].line;
2257 *index = best_index;
2259 *exact_match = exact;
2264 /* Set the PC value for a given source file and line number and return true.
2265 Returns zero for invalid line number (and sets the PC to 0).
2266 The source file is specified with a struct symtab. */
2269 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2271 struct linetable *l;
2278 symtab = find_line_symtab (symtab, line, &ind, NULL);
2281 l = LINETABLE (symtab);
2282 *pc = l->item[ind].pc;
2289 /* Find the range of pc values in a line.
2290 Store the starting pc of the line into *STARTPTR
2291 and the ending pc (start of next line) into *ENDPTR.
2292 Returns 1 to indicate success.
2293 Returns 0 if could not find the specified line. */
2296 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2299 CORE_ADDR startaddr;
2300 struct symtab_and_line found_sal;
2303 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2306 /* This whole function is based on address. For example, if line 10 has
2307 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2308 "info line *0x123" should say the line goes from 0x100 to 0x200
2309 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2310 This also insures that we never give a range like "starts at 0x134
2311 and ends at 0x12c". */
2313 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2314 if (found_sal.line != sal.line)
2316 /* The specified line (sal) has zero bytes. */
2317 *startptr = found_sal.pc;
2318 *endptr = found_sal.pc;
2322 *startptr = found_sal.pc;
2323 *endptr = found_sal.end;
2328 /* Given a line table and a line number, return the index into the line
2329 table for the pc of the nearest line whose number is >= the specified one.
2330 Return -1 if none is found. The value is >= 0 if it is an index.
2332 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2335 find_line_common (struct linetable *l, int lineno,
2341 /* BEST is the smallest linenumber > LINENO so far seen,
2342 or 0 if none has been seen so far.
2343 BEST_INDEX identifies the item for it. */
2345 int best_index = -1;
2356 for (i = 0; i < len; i++)
2358 struct linetable_entry *item = &(l->item[i]);
2360 if (item->line == lineno)
2362 /* Return the first (lowest address) entry which matches. */
2367 if (item->line > lineno && (best == 0 || item->line < best))
2374 /* If we got here, we didn't get an exact match. */
2379 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2381 struct symtab_and_line sal;
2383 sal = find_pc_line (pc, 0);
2386 return sal.symtab != 0;
2389 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2390 address for that function that has an entry in SYMTAB's line info
2391 table. If such an entry cannot be found, return FUNC_ADDR
2394 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2396 CORE_ADDR func_start, func_end;
2397 struct linetable *l;
2400 /* Give up if this symbol has no lineinfo table. */
2401 l = LINETABLE (symtab);
2405 /* Get the range for the function's PC values, or give up if we
2406 cannot, for some reason. */
2407 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2410 /* Linetable entries are ordered by PC values, see the commentary in
2411 symtab.h where `struct linetable' is defined. Thus, the first
2412 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2413 address we are looking for. */
2414 for (i = 0; i < l->nitems; i++)
2416 struct linetable_entry *item = &(l->item[i]);
2418 /* Don't use line numbers of zero, they mark special entries in
2419 the table. See the commentary on symtab.h before the
2420 definition of struct linetable. */
2421 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2428 /* Given a function symbol SYM, find the symtab and line for the start
2430 If the argument FUNFIRSTLINE is nonzero, we want the first line
2431 of real code inside the function. */
2433 struct symtab_and_line
2434 find_function_start_sal (struct symbol *sym, int funfirstline)
2436 struct symtab_and_line sal;
2438 fixup_symbol_section (sym, NULL);
2439 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2440 SYMBOL_OBJ_SECTION (sym), 0);
2442 /* We always should have a line for the function start address.
2443 If we don't, something is odd. Create a plain SAL refering
2444 just the PC and hope that skip_prologue_sal (if requested)
2445 can find a line number for after the prologue. */
2446 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2449 sal.pspace = current_program_space;
2450 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2451 sal.section = SYMBOL_OBJ_SECTION (sym);
2455 skip_prologue_sal (&sal);
2460 /* Adjust SAL to the first instruction past the function prologue.
2461 If the PC was explicitly specified, the SAL is not changed.
2462 If the line number was explicitly specified, at most the SAL's PC
2463 is updated. If SAL is already past the prologue, then do nothing. */
2465 skip_prologue_sal (struct symtab_and_line *sal)
2468 struct symtab_and_line start_sal;
2469 struct cleanup *old_chain;
2470 CORE_ADDR pc, saved_pc;
2471 struct obj_section *section;
2473 struct objfile *objfile;
2474 struct gdbarch *gdbarch;
2475 struct block *b, *function_block;
2476 int force_skip, skip;
2478 /* Do not change the SAL is PC was specified explicitly. */
2479 if (sal->explicit_pc)
2482 old_chain = save_current_space_and_thread ();
2483 switch_to_program_space_and_thread (sal->pspace);
2485 sym = find_pc_sect_function (sal->pc, sal->section);
2488 fixup_symbol_section (sym, NULL);
2490 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2491 section = SYMBOL_OBJ_SECTION (sym);
2492 name = SYMBOL_LINKAGE_NAME (sym);
2493 objfile = SYMBOL_SYMTAB (sym)->objfile;
2497 struct minimal_symbol *msymbol
2498 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2500 if (msymbol == NULL)
2502 do_cleanups (old_chain);
2506 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2507 section = SYMBOL_OBJ_SECTION (msymbol);
2508 name = SYMBOL_LINKAGE_NAME (msymbol);
2509 objfile = msymbol_objfile (msymbol);
2512 gdbarch = get_objfile_arch (objfile);
2514 /* Process the prologue in two passes. In the first pass try to skip the
2515 prologue (SKIP is true) and verify there is a real need for it (indicated
2516 by FORCE_SKIP). If no such reason was found run a second pass where the
2517 prologue is not skipped (SKIP is false). */
2522 /* Be conservative - allow direct PC (without skipping prologue) only if we
2523 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2524 have to be set by the caller so we use SYM instead. */
2525 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2533 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2534 so that gdbarch_skip_prologue has something unique to work on. */
2535 if (section_is_overlay (section) && !section_is_mapped (section))
2536 pc = overlay_unmapped_address (pc, section);
2538 /* Skip "first line" of function (which is actually its prologue). */
2539 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2541 pc = gdbarch_skip_prologue (gdbarch, pc);
2543 /* For overlays, map pc back into its mapped VMA range. */
2544 pc = overlay_mapped_address (pc, section);
2546 /* Calculate line number. */
2547 start_sal = find_pc_sect_line (pc, section, 0);
2549 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2550 line is still part of the same function. */
2551 if (skip && start_sal.pc != pc
2552 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2553 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2554 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2555 == lookup_minimal_symbol_by_pc_section (pc, section))))
2557 /* First pc of next line */
2559 /* Recalculate the line number (might not be N+1). */
2560 start_sal = find_pc_sect_line (pc, section, 0);
2563 /* On targets with executable formats that don't have a concept of
2564 constructors (ELF with .init has, PE doesn't), gcc emits a call
2565 to `__main' in `main' between the prologue and before user
2567 if (gdbarch_skip_main_prologue_p (gdbarch)
2568 && name && strcmp (name, "main") == 0)
2570 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2571 /* Recalculate the line number (might not be N+1). */
2572 start_sal = find_pc_sect_line (pc, section, 0);
2576 while (!force_skip && skip--);
2578 /* If we still don't have a valid source line, try to find the first
2579 PC in the lineinfo table that belongs to the same function. This
2580 happens with COFF debug info, which does not seem to have an
2581 entry in lineinfo table for the code after the prologue which has
2582 no direct relation to source. For example, this was found to be
2583 the case with the DJGPP target using "gcc -gcoff" when the
2584 compiler inserted code after the prologue to make sure the stack
2586 if (!force_skip && sym && start_sal.symtab == NULL)
2588 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2589 /* Recalculate the line number. */
2590 start_sal = find_pc_sect_line (pc, section, 0);
2593 do_cleanups (old_chain);
2595 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2596 forward SAL to the end of the prologue. */
2601 sal->section = section;
2603 /* Unless the explicit_line flag was set, update the SAL line
2604 and symtab to correspond to the modified PC location. */
2605 if (sal->explicit_line)
2608 sal->symtab = start_sal.symtab;
2609 sal->line = start_sal.line;
2610 sal->end = start_sal.end;
2612 /* Check if we are now inside an inlined function. If we can,
2613 use the call site of the function instead. */
2614 b = block_for_pc_sect (sal->pc, sal->section);
2615 function_block = NULL;
2618 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2620 else if (BLOCK_FUNCTION (b) != NULL)
2622 b = BLOCK_SUPERBLOCK (b);
2624 if (function_block != NULL
2625 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2627 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2628 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2632 /* If P is of the form "operator[ \t]+..." where `...' is
2633 some legitimate operator text, return a pointer to the
2634 beginning of the substring of the operator text.
2635 Otherwise, return "". */
2637 operator_chars (char *p, char **end)
2640 if (strncmp (p, "operator", 8))
2644 /* Don't get faked out by `operator' being part of a longer
2646 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2649 /* Allow some whitespace between `operator' and the operator symbol. */
2650 while (*p == ' ' || *p == '\t')
2653 /* Recognize 'operator TYPENAME'. */
2655 if (isalpha (*p) || *p == '_' || *p == '$')
2659 while (isalnum (*q) || *q == '_' || *q == '$')
2668 case '\\': /* regexp quoting */
2671 if (p[2] == '=') /* 'operator\*=' */
2673 else /* 'operator\*' */
2677 else if (p[1] == '[')
2680 error (_("mismatched quoting on brackets, "
2681 "try 'operator\\[\\]'"));
2682 else if (p[2] == '\\' && p[3] == ']')
2684 *end = p + 4; /* 'operator\[\]' */
2688 error (_("nothing is allowed between '[' and ']'"));
2692 /* Gratuitous qoute: skip it and move on. */
2714 if (p[0] == '-' && p[1] == '>')
2716 /* Struct pointer member operator 'operator->'. */
2719 *end = p + 3; /* 'operator->*' */
2722 else if (p[2] == '\\')
2724 *end = p + 4; /* Hopefully 'operator->\*' */
2729 *end = p + 2; /* 'operator->' */
2733 if (p[1] == '=' || p[1] == p[0])
2744 error (_("`operator ()' must be specified "
2745 "without whitespace in `()'"));
2750 error (_("`operator ?:' must be specified "
2751 "without whitespace in `?:'"));
2756 error (_("`operator []' must be specified "
2757 "without whitespace in `[]'"));
2761 error (_("`operator %s' not supported"), p);
2770 /* If FILE is not already in the table of files, return zero;
2771 otherwise return non-zero. Optionally add FILE to the table if ADD
2772 is non-zero. If *FIRST is non-zero, forget the old table
2775 filename_seen (const char *file, int add, int *first)
2777 /* Table of files seen so far. */
2778 static const char **tab = NULL;
2779 /* Allocated size of tab in elements.
2780 Start with one 256-byte block (when using GNU malloc.c).
2781 24 is the malloc overhead when range checking is in effect. */
2782 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2783 /* Current size of tab in elements. */
2784 static int tab_cur_size;
2790 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2794 /* Is FILE in tab? */
2795 for (p = tab; p < tab + tab_cur_size; p++)
2796 if (filename_cmp (*p, file) == 0)
2799 /* No; maybe add it to tab. */
2802 if (tab_cur_size == tab_alloc_size)
2804 tab_alloc_size *= 2;
2805 tab = (const char **) xrealloc ((char *) tab,
2806 tab_alloc_size * sizeof (*tab));
2808 tab[tab_cur_size++] = file;
2814 /* Slave routine for sources_info. Force line breaks at ,'s.
2815 NAME is the name to print and *FIRST is nonzero if this is the first
2816 name printed. Set *FIRST to zero. */
2818 output_source_filename (const char *name, int *first)
2820 /* Since a single source file can result in several partial symbol
2821 tables, we need to avoid printing it more than once. Note: if
2822 some of the psymtabs are read in and some are not, it gets
2823 printed both under "Source files for which symbols have been
2824 read" and "Source files for which symbols will be read in on
2825 demand". I consider this a reasonable way to deal with the
2826 situation. I'm not sure whether this can also happen for
2827 symtabs; it doesn't hurt to check. */
2829 /* Was NAME already seen? */
2830 if (filename_seen (name, 1, first))
2832 /* Yes; don't print it again. */
2835 /* No; print it and reset *FIRST. */
2842 printf_filtered (", ");
2846 fputs_filtered (name, gdb_stdout);
2849 /* A callback for map_partial_symbol_filenames. */
2851 output_partial_symbol_filename (const char *filename, const char *fullname,
2854 output_source_filename (fullname ? fullname : filename, data);
2858 sources_info (char *ignore, int from_tty)
2861 struct objfile *objfile;
2864 if (!have_full_symbols () && !have_partial_symbols ())
2866 error (_("No symbol table is loaded. Use the \"file\" command."));
2869 printf_filtered ("Source files for which symbols have been read in:\n\n");
2872 ALL_SYMTABS (objfile, s)
2874 const char *fullname = symtab_to_fullname (s);
2876 output_source_filename (fullname ? fullname : s->filename, &first);
2878 printf_filtered ("\n\n");
2880 printf_filtered ("Source files for which symbols "
2881 "will be read in on demand:\n\n");
2884 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2885 printf_filtered ("\n");
2889 file_matches (const char *file, char *files[], int nfiles)
2893 if (file != NULL && nfiles != 0)
2895 for (i = 0; i < nfiles; i++)
2897 if (filename_cmp (files[i], lbasename (file)) == 0)
2901 else if (nfiles == 0)
2906 /* Free any memory associated with a search. */
2908 free_search_symbols (struct symbol_search *symbols)
2910 struct symbol_search *p;
2911 struct symbol_search *next;
2913 for (p = symbols; p != NULL; p = next)
2921 do_free_search_symbols_cleanup (void *symbols)
2923 free_search_symbols (symbols);
2927 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2929 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2932 /* Helper function for sort_search_symbols and qsort. Can only
2933 sort symbols, not minimal symbols. */
2935 compare_search_syms (const void *sa, const void *sb)
2937 struct symbol_search **sym_a = (struct symbol_search **) sa;
2938 struct symbol_search **sym_b = (struct symbol_search **) sb;
2940 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2941 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2944 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2945 prevtail where it is, but update its next pointer to point to
2946 the first of the sorted symbols. */
2947 static struct symbol_search *
2948 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2950 struct symbol_search **symbols, *symp, *old_next;
2953 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2955 symp = prevtail->next;
2956 for (i = 0; i < nfound; i++)
2961 /* Generally NULL. */
2964 qsort (symbols, nfound, sizeof (struct symbol_search *),
2965 compare_search_syms);
2968 for (i = 0; i < nfound; i++)
2970 symp->next = symbols[i];
2973 symp->next = old_next;
2979 /* An object of this type is passed as the user_data to the
2980 expand_symtabs_matching method. */
2981 struct search_symbols_data
2986 /* It is true if PREG contains valid data, false otherwise. */
2987 unsigned preg_p : 1;
2991 /* A callback for expand_symtabs_matching. */
2993 search_symbols_file_matches (const char *filename, void *user_data)
2995 struct search_symbols_data *data = user_data;
2997 return file_matches (filename, data->files, data->nfiles);
3000 /* A callback for expand_symtabs_matching. */
3002 search_symbols_name_matches (const char *symname, void *user_data)
3004 struct search_symbols_data *data = user_data;
3006 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3009 /* Search the symbol table for matches to the regular expression REGEXP,
3010 returning the results in *MATCHES.
3012 Only symbols of KIND are searched:
3013 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3014 and constants (enums)
3015 FUNCTIONS_DOMAIN - search all functions
3016 TYPES_DOMAIN - search all type names
3017 ALL_DOMAIN - an internal error for this function
3019 free_search_symbols should be called when *MATCHES is no longer needed.
3021 The results are sorted locally; each symtab's global and static blocks are
3022 separately alphabetized. */
3025 search_symbols (char *regexp, enum search_domain kind,
3026 int nfiles, char *files[],
3027 struct symbol_search **matches)
3030 struct blockvector *bv;
3033 struct dict_iterator iter;
3035 struct objfile *objfile;
3036 struct minimal_symbol *msymbol;
3039 static const enum minimal_symbol_type types[]
3040 = {mst_data, mst_text, mst_abs};
3041 static const enum minimal_symbol_type types2[]
3042 = {mst_bss, mst_file_text, mst_abs};
3043 static const enum minimal_symbol_type types3[]
3044 = {mst_file_data, mst_solib_trampoline, mst_abs};
3045 static const enum minimal_symbol_type types4[]
3046 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3047 enum minimal_symbol_type ourtype;
3048 enum minimal_symbol_type ourtype2;
3049 enum minimal_symbol_type ourtype3;
3050 enum minimal_symbol_type ourtype4;
3051 struct symbol_search *sr;
3052 struct symbol_search *psr;
3053 struct symbol_search *tail;
3054 struct search_symbols_data datum;
3056 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3057 CLEANUP_CHAIN is freed only in the case of an error. */
3058 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3059 struct cleanup *retval_chain;
3061 gdb_assert (kind <= TYPES_DOMAIN);
3063 ourtype = types[kind];
3064 ourtype2 = types2[kind];
3065 ourtype3 = types3[kind];
3066 ourtype4 = types4[kind];
3068 sr = *matches = NULL;
3074 /* Make sure spacing is right for C++ operators.
3075 This is just a courtesy to make the matching less sensitive
3076 to how many spaces the user leaves between 'operator'
3077 and <TYPENAME> or <OPERATOR>. */
3079 char *opname = operator_chars (regexp, &opend);
3084 int fix = -1; /* -1 means ok; otherwise number of
3087 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3089 /* There should 1 space between 'operator' and 'TYPENAME'. */
3090 if (opname[-1] != ' ' || opname[-2] == ' ')
3095 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3096 if (opname[-1] == ' ')
3099 /* If wrong number of spaces, fix it. */
3102 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3104 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3109 errcode = regcomp (&datum.preg, regexp,
3110 REG_NOSUB | (case_sensitivity == case_sensitive_off
3114 char *err = get_regcomp_error (errcode, &datum.preg);
3116 make_cleanup (xfree, err);
3117 error (_("Invalid regexp (%s): %s"), err, regexp);
3120 make_regfree_cleanup (&datum.preg);
3123 /* Search through the partial symtabs *first* for all symbols
3124 matching the regexp. That way we don't have to reproduce all of
3125 the machinery below. */
3127 datum.nfiles = nfiles;
3128 datum.files = files;
3129 ALL_OBJFILES (objfile)
3132 objfile->sf->qf->expand_symtabs_matching (objfile,
3133 search_symbols_file_matches,
3134 search_symbols_name_matches,
3139 retval_chain = old_chain;
3141 /* Here, we search through the minimal symbol tables for functions
3142 and variables that match, and force their symbols to be read.
3143 This is in particular necessary for demangled variable names,
3144 which are no longer put into the partial symbol tables.
3145 The symbol will then be found during the scan of symtabs below.
3147 For functions, find_pc_symtab should succeed if we have debug info
3148 for the function, for variables we have to call lookup_symbol
3149 to determine if the variable has debug info.
3150 If the lookup fails, set found_misc so that we will rescan to print
3151 any matching symbols without debug info. */
3153 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3155 ALL_MSYMBOLS (objfile, msymbol)
3159 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3160 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3161 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3162 MSYMBOL_TYPE (msymbol) == ourtype4)
3165 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3168 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3170 /* FIXME: carlton/2003-02-04: Given that the
3171 semantics of lookup_symbol keeps on changing
3172 slightly, it would be a nice idea if we had a
3173 function lookup_symbol_minsym that found the
3174 symbol associated to a given minimal symbol (if
3176 if (kind == FUNCTIONS_DOMAIN
3177 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3178 (struct block *) NULL,
3188 ALL_PRIMARY_SYMTABS (objfile, s)
3190 bv = BLOCKVECTOR (s);
3191 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3193 struct symbol_search *prevtail = tail;
3196 b = BLOCKVECTOR_BLOCK (bv, i);
3197 ALL_BLOCK_SYMBOLS (b, iter, sym)
3199 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3203 if (file_matches (real_symtab->filename, files, nfiles)
3205 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3207 && ((kind == VARIABLES_DOMAIN
3208 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3209 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3210 && SYMBOL_CLASS (sym) != LOC_BLOCK
3211 /* LOC_CONST can be used for more than just enums,
3212 e.g., c++ static const members.
3213 We only want to skip enums here. */
3214 && !(SYMBOL_CLASS (sym) == LOC_CONST
3215 && TYPE_CODE (SYMBOL_TYPE (sym))
3217 || (kind == FUNCTIONS_DOMAIN
3218 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3219 || (kind == TYPES_DOMAIN
3220 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3223 psr = (struct symbol_search *)
3224 xmalloc (sizeof (struct symbol_search));
3226 psr->symtab = real_symtab;
3228 psr->msymbol = NULL;
3240 if (prevtail == NULL)
3242 struct symbol_search dummy;
3245 tail = sort_search_symbols (&dummy, nfound);
3248 make_cleanup_free_search_symbols (sr);
3251 tail = sort_search_symbols (prevtail, nfound);
3256 /* If there are no eyes, avoid all contact. I mean, if there are
3257 no debug symbols, then print directly from the msymbol_vector. */
3259 if (found_misc || kind != FUNCTIONS_DOMAIN)
3261 ALL_MSYMBOLS (objfile, msymbol)
3265 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3266 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3267 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3268 MSYMBOL_TYPE (msymbol) == ourtype4)
3271 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3274 /* Functions: Look up by address. */
3275 if (kind != FUNCTIONS_DOMAIN ||
3276 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3278 /* Variables/Absolutes: Look up by name. */
3279 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3280 (struct block *) NULL, VAR_DOMAIN, 0)
3284 psr = (struct symbol_search *)
3285 xmalloc (sizeof (struct symbol_search));
3287 psr->msymbol = msymbol;
3294 make_cleanup_free_search_symbols (sr);
3306 discard_cleanups (retval_chain);
3307 do_cleanups (old_chain);
3311 /* Helper function for symtab_symbol_info, this function uses
3312 the data returned from search_symbols() to print information
3313 regarding the match to gdb_stdout. */
3316 print_symbol_info (enum search_domain kind,
3317 struct symtab *s, struct symbol *sym,
3318 int block, char *last)
3320 if (last == NULL || filename_cmp (last, s->filename) != 0)
3322 fputs_filtered ("\nFile ", gdb_stdout);
3323 fputs_filtered (s->filename, gdb_stdout);
3324 fputs_filtered (":\n", gdb_stdout);
3327 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3328 printf_filtered ("static ");
3330 /* Typedef that is not a C++ class. */
3331 if (kind == TYPES_DOMAIN
3332 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3333 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3334 /* variable, func, or typedef-that-is-c++-class. */
3335 else if (kind < TYPES_DOMAIN ||
3336 (kind == TYPES_DOMAIN &&
3337 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3339 type_print (SYMBOL_TYPE (sym),
3340 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3341 ? "" : SYMBOL_PRINT_NAME (sym)),
3344 printf_filtered (";\n");
3348 /* This help function for symtab_symbol_info() prints information
3349 for non-debugging symbols to gdb_stdout. */
3352 print_msymbol_info (struct minimal_symbol *msymbol)
3354 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3357 if (gdbarch_addr_bit (gdbarch) <= 32)
3358 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3359 & (CORE_ADDR) 0xffffffff,
3362 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3364 printf_filtered ("%s %s\n",
3365 tmp, SYMBOL_PRINT_NAME (msymbol));
3368 /* This is the guts of the commands "info functions", "info types", and
3369 "info variables". It calls search_symbols to find all matches and then
3370 print_[m]symbol_info to print out some useful information about the
3374 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3376 static const char * const classnames[] =
3377 {"variable", "function", "type"};
3378 struct symbol_search *symbols;
3379 struct symbol_search *p;
3380 struct cleanup *old_chain;
3381 char *last_filename = NULL;
3384 gdb_assert (kind <= TYPES_DOMAIN);
3386 /* Must make sure that if we're interrupted, symbols gets freed. */
3387 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3388 old_chain = make_cleanup_free_search_symbols (symbols);
3390 printf_filtered (regexp
3391 ? "All %ss matching regular expression \"%s\":\n"
3392 : "All defined %ss:\n",
3393 classnames[kind], regexp);
3395 for (p = symbols; p != NULL; p = p->next)
3399 if (p->msymbol != NULL)
3403 printf_filtered ("\nNon-debugging symbols:\n");
3406 print_msymbol_info (p->msymbol);
3410 print_symbol_info (kind,
3415 last_filename = p->symtab->filename;
3419 do_cleanups (old_chain);
3423 variables_info (char *regexp, int from_tty)
3425 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3429 functions_info (char *regexp, int from_tty)
3431 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3436 types_info (char *regexp, int from_tty)
3438 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3441 /* Breakpoint all functions matching regular expression. */
3444 rbreak_command_wrapper (char *regexp, int from_tty)
3446 rbreak_command (regexp, from_tty);
3449 /* A cleanup function that calls end_rbreak_breakpoints. */
3452 do_end_rbreak_breakpoints (void *ignore)
3454 end_rbreak_breakpoints ();
3458 rbreak_command (char *regexp, int from_tty)
3460 struct symbol_search *ss;
3461 struct symbol_search *p;
3462 struct cleanup *old_chain;
3463 char *string = NULL;
3465 char **files = NULL, *file_name;
3470 char *colon = strchr (regexp, ':');
3472 if (colon && *(colon + 1) != ':')
3476 colon_index = colon - regexp;
3477 file_name = alloca (colon_index + 1);
3478 memcpy (file_name, regexp, colon_index);
3479 file_name[colon_index--] = 0;
3480 while (isspace (file_name[colon_index]))
3481 file_name[colon_index--] = 0;
3485 while (isspace (*regexp)) regexp++;
3489 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3490 old_chain = make_cleanup_free_search_symbols (ss);
3491 make_cleanup (free_current_contents, &string);
3493 start_rbreak_breakpoints ();
3494 make_cleanup (do_end_rbreak_breakpoints, NULL);
3495 for (p = ss; p != NULL; p = p->next)
3497 if (p->msymbol == NULL)
3499 int newlen = (strlen (p->symtab->filename)
3500 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3505 string = xrealloc (string, newlen);
3508 strcpy (string, p->symtab->filename);
3509 strcat (string, ":'");
3510 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3511 strcat (string, "'");
3512 break_command (string, from_tty);
3513 print_symbol_info (FUNCTIONS_DOMAIN,
3517 p->symtab->filename);
3521 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3525 string = xrealloc (string, newlen);
3528 strcpy (string, "'");
3529 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3530 strcat (string, "'");
3532 break_command (string, from_tty);
3533 printf_filtered ("<function, no debug info> %s;\n",
3534 SYMBOL_PRINT_NAME (p->msymbol));
3538 do_cleanups (old_chain);
3542 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3544 Either sym_text[sym_text_len] != '(' and then we search for any
3545 symbol starting with SYM_TEXT text.
3547 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3548 be terminated at that point. Partial symbol tables do not have parameters
3552 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3554 int (*ncmp) (const char *, const char *, size_t);
3556 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3558 if (ncmp (name, sym_text, sym_text_len) != 0)
3561 if (sym_text[sym_text_len] == '(')
3563 /* User searches for `name(someth...'. Require NAME to be terminated.
3564 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3565 present but accept even parameters presence. In this case this
3566 function is in fact strcmp_iw but whitespace skipping is not supported
3567 for tab completion. */
3569 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3576 /* Helper routine for make_symbol_completion_list. */
3578 static int return_val_size;
3579 static int return_val_index;
3580 static char **return_val;
3582 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3583 completion_list_add_name \
3584 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3586 /* Test to see if the symbol specified by SYMNAME (which is already
3587 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3588 characters. If so, add it to the current completion list. */
3591 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3592 char *text, char *word)
3596 /* Clip symbols that cannot match. */
3597 if (!compare_symbol_name (symname, sym_text, sym_text_len))
3600 /* We have a match for a completion, so add SYMNAME to the current list
3601 of matches. Note that the name is moved to freshly malloc'd space. */
3606 if (word == sym_text)
3608 new = xmalloc (strlen (symname) + 5);
3609 strcpy (new, symname);
3611 else if (word > sym_text)
3613 /* Return some portion of symname. */
3614 new = xmalloc (strlen (symname) + 5);
3615 strcpy (new, symname + (word - sym_text));
3619 /* Return some of SYM_TEXT plus symname. */
3620 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3621 strncpy (new, word, sym_text - word);
3622 new[sym_text - word] = '\0';
3623 strcat (new, symname);
3626 if (return_val_index + 3 > return_val_size)
3628 newsize = (return_val_size *= 2) * sizeof (char *);
3629 return_val = (char **) xrealloc ((char *) return_val, newsize);
3631 return_val[return_val_index++] = new;
3632 return_val[return_val_index] = NULL;
3636 /* ObjC: In case we are completing on a selector, look as the msymbol
3637 again and feed all the selectors into the mill. */
3640 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3641 int sym_text_len, char *text, char *word)
3643 static char *tmp = NULL;
3644 static unsigned int tmplen = 0;
3646 char *method, *category, *selector;
3649 method = SYMBOL_NATURAL_NAME (msymbol);
3651 /* Is it a method? */
3652 if ((method[0] != '-') && (method[0] != '+'))
3655 if (sym_text[0] == '[')
3656 /* Complete on shortened method method. */
3657 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3659 while ((strlen (method) + 1) >= tmplen)
3665 tmp = xrealloc (tmp, tmplen);
3667 selector = strchr (method, ' ');
3668 if (selector != NULL)
3671 category = strchr (method, '(');
3673 if ((category != NULL) && (selector != NULL))
3675 memcpy (tmp, method, (category - method));
3676 tmp[category - method] = ' ';
3677 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3678 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3679 if (sym_text[0] == '[')
3680 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3683 if (selector != NULL)
3685 /* Complete on selector only. */
3686 strcpy (tmp, selector);
3687 tmp2 = strchr (tmp, ']');
3691 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3695 /* Break the non-quoted text based on the characters which are in
3696 symbols. FIXME: This should probably be language-specific. */
3699 language_search_unquoted_string (char *text, char *p)
3701 for (; p > text; --p)
3703 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3707 if ((current_language->la_language == language_objc))
3709 if (p[-1] == ':') /* Might be part of a method name. */
3711 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3712 p -= 2; /* Beginning of a method name. */
3713 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3714 { /* Might be part of a method name. */
3717 /* Seeing a ' ' or a '(' is not conclusive evidence
3718 that we are in the middle of a method name. However,
3719 finding "-[" or "+[" should be pretty un-ambiguous.
3720 Unfortunately we have to find it now to decide. */
3723 if (isalnum (t[-1]) || t[-1] == '_' ||
3724 t[-1] == ' ' || t[-1] == ':' ||
3725 t[-1] == '(' || t[-1] == ')')
3730 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3731 p = t - 2; /* Method name detected. */
3732 /* Else we leave with p unchanged. */
3742 completion_list_add_fields (struct symbol *sym, char *sym_text,
3743 int sym_text_len, char *text, char *word)
3745 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3747 struct type *t = SYMBOL_TYPE (sym);
3748 enum type_code c = TYPE_CODE (t);
3751 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3752 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3753 if (TYPE_FIELD_NAME (t, j))
3754 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3755 sym_text, sym_text_len, text, word);
3759 /* Type of the user_data argument passed to add_macro_name or
3760 expand_partial_symbol_name. The contents are simply whatever is
3761 needed by completion_list_add_name. */
3762 struct add_name_data
3770 /* A callback used with macro_for_each and macro_for_each_in_scope.
3771 This adds a macro's name to the current completion list. */
3773 add_macro_name (const char *name, const struct macro_definition *ignore,
3776 struct add_name_data *datum = (struct add_name_data *) user_data;
3778 completion_list_add_name ((char *) name,
3779 datum->sym_text, datum->sym_text_len,
3780 datum->text, datum->word);
3783 /* A callback for expand_partial_symbol_names. */
3785 expand_partial_symbol_name (const char *name, void *user_data)
3787 struct add_name_data *datum = (struct add_name_data *) user_data;
3789 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
3793 default_make_symbol_completion_list_break_on (char *text, char *word,
3794 const char *break_on)
3796 /* Problem: All of the symbols have to be copied because readline
3797 frees them. I'm not going to worry about this; hopefully there
3798 won't be that many. */
3802 struct minimal_symbol *msymbol;
3803 struct objfile *objfile;
3805 const struct block *surrounding_static_block, *surrounding_global_block;
3806 struct dict_iterator iter;
3807 /* The symbol we are completing on. Points in same buffer as text. */
3809 /* Length of sym_text. */
3811 struct add_name_data datum;
3813 /* Now look for the symbol we are supposed to complete on. */
3817 char *quote_pos = NULL;
3819 /* First see if this is a quoted string. */
3821 for (p = text; *p != '\0'; ++p)
3823 if (quote_found != '\0')
3825 if (*p == quote_found)
3826 /* Found close quote. */
3828 else if (*p == '\\' && p[1] == quote_found)
3829 /* A backslash followed by the quote character
3830 doesn't end the string. */
3833 else if (*p == '\'' || *p == '"')
3839 if (quote_found == '\'')
3840 /* A string within single quotes can be a symbol, so complete on it. */
3841 sym_text = quote_pos + 1;
3842 else if (quote_found == '"')
3843 /* A double-quoted string is never a symbol, nor does it make sense
3844 to complete it any other way. */
3846 return_val = (char **) xmalloc (sizeof (char *));
3847 return_val[0] = NULL;
3852 /* It is not a quoted string. Break it based on the characters
3853 which are in symbols. */
3856 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3857 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
3866 sym_text_len = strlen (sym_text);
3868 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
3870 if (current_language->la_language == language_cplus
3871 || current_language->la_language == language_java
3872 || current_language->la_language == language_fortran)
3874 /* These languages may have parameters entered by user but they are never
3875 present in the partial symbol tables. */
3877 const char *cs = memchr (sym_text, '(', sym_text_len);
3880 sym_text_len = cs - sym_text;
3882 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
3884 return_val_size = 100;
3885 return_val_index = 0;
3886 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3887 return_val[0] = NULL;
3889 datum.sym_text = sym_text;
3890 datum.sym_text_len = sym_text_len;
3894 /* Look through the partial symtabs for all symbols which begin
3895 by matching SYM_TEXT. Expand all CUs that you find to the list.
3896 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
3897 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
3899 /* At this point scan through the misc symbol vectors and add each
3900 symbol you find to the list. Eventually we want to ignore
3901 anything that isn't a text symbol (everything else will be
3902 handled by the psymtab code above). */
3904 ALL_MSYMBOLS (objfile, msymbol)
3907 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3909 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3912 /* Search upwards from currently selected frame (so that we can
3913 complete on local vars). Also catch fields of types defined in
3914 this places which match our text string. Only complete on types
3915 visible from current context. */
3917 b = get_selected_block (0);
3918 surrounding_static_block = block_static_block (b);
3919 surrounding_global_block = block_global_block (b);
3920 if (surrounding_static_block != NULL)
3921 while (b != surrounding_static_block)
3925 ALL_BLOCK_SYMBOLS (b, iter, sym)
3927 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3929 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3933 /* Stop when we encounter an enclosing function. Do not stop for
3934 non-inlined functions - the locals of the enclosing function
3935 are in scope for a nested function. */
3936 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3938 b = BLOCK_SUPERBLOCK (b);
3941 /* Add fields from the file's types; symbols will be added below. */
3943 if (surrounding_static_block != NULL)
3944 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3945 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3947 if (surrounding_global_block != NULL)
3948 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3949 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3951 /* Go through the symtabs and check the externs and statics for
3952 symbols which match. */
3954 ALL_PRIMARY_SYMTABS (objfile, s)
3957 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3958 ALL_BLOCK_SYMBOLS (b, iter, sym)
3960 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3964 ALL_PRIMARY_SYMTABS (objfile, s)
3967 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3968 ALL_BLOCK_SYMBOLS (b, iter, sym)
3970 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3974 if (current_language->la_macro_expansion == macro_expansion_c)
3976 struct macro_scope *scope;
3978 /* Add any macros visible in the default scope. Note that this
3979 may yield the occasional wrong result, because an expression
3980 might be evaluated in a scope other than the default. For
3981 example, if the user types "break file:line if <TAB>", the
3982 resulting expression will be evaluated at "file:line" -- but
3983 at there does not seem to be a way to detect this at
3985 scope = default_macro_scope ();
3988 macro_for_each_in_scope (scope->file, scope->line,
3989 add_macro_name, &datum);
3993 /* User-defined macros are always visible. */
3994 macro_for_each (macro_user_macros, add_macro_name, &datum);
3997 return (return_val);
4001 default_make_symbol_completion_list (char *text, char *word)
4003 return default_make_symbol_completion_list_break_on (text, word, "");
4006 /* Return a NULL terminated array of all symbols (regardless of class)
4007 which begin by matching TEXT. If the answer is no symbols, then
4008 the return value is an array which contains only a NULL pointer. */
4011 make_symbol_completion_list (char *text, char *word)
4013 return current_language->la_make_symbol_completion_list (text, word);
4016 /* Like make_symbol_completion_list, but suitable for use as a
4017 completion function. */
4020 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4021 char *text, char *word)
4023 return make_symbol_completion_list (text, word);
4026 /* Like make_symbol_completion_list, but returns a list of symbols
4027 defined in a source file FILE. */
4030 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4035 struct dict_iterator iter;
4036 /* The symbol we are completing on. Points in same buffer as text. */
4038 /* Length of sym_text. */
4041 /* Now look for the symbol we are supposed to complete on.
4042 FIXME: This should be language-specific. */
4046 char *quote_pos = NULL;
4048 /* First see if this is a quoted string. */
4050 for (p = text; *p != '\0'; ++p)
4052 if (quote_found != '\0')
4054 if (*p == quote_found)
4055 /* Found close quote. */
4057 else if (*p == '\\' && p[1] == quote_found)
4058 /* A backslash followed by the quote character
4059 doesn't end the string. */
4062 else if (*p == '\'' || *p == '"')
4068 if (quote_found == '\'')
4069 /* A string within single quotes can be a symbol, so complete on it. */
4070 sym_text = quote_pos + 1;
4071 else if (quote_found == '"')
4072 /* A double-quoted string is never a symbol, nor does it make sense
4073 to complete it any other way. */
4075 return_val = (char **) xmalloc (sizeof (char *));
4076 return_val[0] = NULL;
4081 /* Not a quoted string. */
4082 sym_text = language_search_unquoted_string (text, p);
4086 sym_text_len = strlen (sym_text);
4088 return_val_size = 10;
4089 return_val_index = 0;
4090 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4091 return_val[0] = NULL;
4093 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4095 s = lookup_symtab (srcfile);
4098 /* Maybe they typed the file with leading directories, while the
4099 symbol tables record only its basename. */
4100 const char *tail = lbasename (srcfile);
4103 s = lookup_symtab (tail);
4106 /* If we have no symtab for that file, return an empty list. */
4108 return (return_val);
4110 /* Go through this symtab and check the externs and statics for
4111 symbols which match. */
4113 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4114 ALL_BLOCK_SYMBOLS (b, iter, sym)
4116 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4119 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4120 ALL_BLOCK_SYMBOLS (b, iter, sym)
4122 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4125 return (return_val);
4128 /* A helper function for make_source_files_completion_list. It adds
4129 another file name to a list of possible completions, growing the
4130 list as necessary. */
4133 add_filename_to_list (const char *fname, char *text, char *word,
4134 char ***list, int *list_used, int *list_alloced)
4137 size_t fnlen = strlen (fname);
4139 if (*list_used + 1 >= *list_alloced)
4142 *list = (char **) xrealloc ((char *) *list,
4143 *list_alloced * sizeof (char *));
4148 /* Return exactly fname. */
4149 new = xmalloc (fnlen + 5);
4150 strcpy (new, fname);
4152 else if (word > text)
4154 /* Return some portion of fname. */
4155 new = xmalloc (fnlen + 5);
4156 strcpy (new, fname + (word - text));
4160 /* Return some of TEXT plus fname. */
4161 new = xmalloc (fnlen + (text - word) + 5);
4162 strncpy (new, word, text - word);
4163 new[text - word] = '\0';
4164 strcat (new, fname);
4166 (*list)[*list_used] = new;
4167 (*list)[++*list_used] = NULL;
4171 not_interesting_fname (const char *fname)
4173 static const char *illegal_aliens[] = {
4174 "_globals_", /* inserted by coff_symtab_read */
4179 for (i = 0; illegal_aliens[i]; i++)
4181 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4187 /* An object of this type is passed as the user_data argument to
4188 map_partial_symbol_filenames. */
4189 struct add_partial_filename_data
4200 /* A callback for map_partial_symbol_filenames. */
4202 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4205 struct add_partial_filename_data *data = user_data;
4207 if (not_interesting_fname (filename))
4209 if (!filename_seen (filename, 1, data->first)
4210 && filename_ncmp (filename, data->text, data->text_len) == 0)
4212 /* This file matches for a completion; add it to the
4213 current list of matches. */
4214 add_filename_to_list (filename, data->text, data->word,
4215 data->list, data->list_used, data->list_alloced);
4219 const char *base_name = lbasename (filename);
4221 if (base_name != filename
4222 && !filename_seen (base_name, 1, data->first)
4223 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4224 add_filename_to_list (base_name, data->text, data->word,
4225 data->list, data->list_used, data->list_alloced);
4229 /* Return a NULL terminated array of all source files whose names
4230 begin with matching TEXT. The file names are looked up in the
4231 symbol tables of this program. If the answer is no matchess, then
4232 the return value is an array which contains only a NULL pointer. */
4235 make_source_files_completion_list (char *text, char *word)
4238 struct objfile *objfile;
4240 int list_alloced = 1;
4242 size_t text_len = strlen (text);
4243 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4244 const char *base_name;
4245 struct add_partial_filename_data datum;
4249 if (!have_full_symbols () && !have_partial_symbols ())
4252 ALL_SYMTABS (objfile, s)
4254 if (not_interesting_fname (s->filename))
4256 if (!filename_seen (s->filename, 1, &first)
4257 && filename_ncmp (s->filename, text, text_len) == 0)
4259 /* This file matches for a completion; add it to the current
4261 add_filename_to_list (s->filename, text, word,
4262 &list, &list_used, &list_alloced);
4266 /* NOTE: We allow the user to type a base name when the
4267 debug info records leading directories, but not the other
4268 way around. This is what subroutines of breakpoint
4269 command do when they parse file names. */
4270 base_name = lbasename (s->filename);
4271 if (base_name != s->filename
4272 && !filename_seen (base_name, 1, &first)
4273 && filename_ncmp (base_name, text, text_len) == 0)
4274 add_filename_to_list (base_name, text, word,
4275 &list, &list_used, &list_alloced);
4279 datum.first = &first;
4282 datum.text_len = text_len;
4284 datum.list_used = &list_used;
4285 datum.list_alloced = &list_alloced;
4286 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4291 /* Determine if PC is in the prologue of a function. The prologue is the area
4292 between the first instruction of a function, and the first executable line.
4293 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4295 If non-zero, func_start is where we think the prologue starts, possibly
4296 by previous examination of symbol table information. */
4299 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4301 struct symtab_and_line sal;
4302 CORE_ADDR func_addr, func_end;
4304 /* We have several sources of information we can consult to figure
4306 - Compilers usually emit line number info that marks the prologue
4307 as its own "source line". So the ending address of that "line"
4308 is the end of the prologue. If available, this is the most
4310 - The minimal symbols and partial symbols, which can usually tell
4311 us the starting and ending addresses of a function.
4312 - If we know the function's start address, we can call the
4313 architecture-defined gdbarch_skip_prologue function to analyze the
4314 instruction stream and guess where the prologue ends.
4315 - Our `func_start' argument; if non-zero, this is the caller's
4316 best guess as to the function's entry point. At the time of
4317 this writing, handle_inferior_event doesn't get this right, so
4318 it should be our last resort. */
4320 /* Consult the partial symbol table, to find which function
4322 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4324 CORE_ADDR prologue_end;
4326 /* We don't even have minsym information, so fall back to using
4327 func_start, if given. */
4329 return 1; /* We *might* be in a prologue. */
4331 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4333 return func_start <= pc && pc < prologue_end;
4336 /* If we have line number information for the function, that's
4337 usually pretty reliable. */
4338 sal = find_pc_line (func_addr, 0);
4340 /* Now sal describes the source line at the function's entry point,
4341 which (by convention) is the prologue. The end of that "line",
4342 sal.end, is the end of the prologue.
4344 Note that, for functions whose source code is all on a single
4345 line, the line number information doesn't always end up this way.
4346 So we must verify that our purported end-of-prologue address is
4347 *within* the function, not at its start or end. */
4349 || sal.end <= func_addr
4350 || func_end <= sal.end)
4352 /* We don't have any good line number info, so use the minsym
4353 information, together with the architecture-specific prologue
4355 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4357 return func_addr <= pc && pc < prologue_end;
4360 /* We have line number info, and it looks good. */
4361 return func_addr <= pc && pc < sal.end;
4364 /* Given PC at the function's start address, attempt to find the
4365 prologue end using SAL information. Return zero if the skip fails.
4367 A non-optimized prologue traditionally has one SAL for the function
4368 and a second for the function body. A single line function has
4369 them both pointing at the same line.
4371 An optimized prologue is similar but the prologue may contain
4372 instructions (SALs) from the instruction body. Need to skip those
4373 while not getting into the function body.
4375 The functions end point and an increasing SAL line are used as
4376 indicators of the prologue's endpoint.
4378 This code is based on the function refine_prologue_limit
4382 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4384 struct symtab_and_line prologue_sal;
4389 /* Get an initial range for the function. */
4390 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4391 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4393 prologue_sal = find_pc_line (start_pc, 0);
4394 if (prologue_sal.line != 0)
4396 /* For languages other than assembly, treat two consecutive line
4397 entries at the same address as a zero-instruction prologue.
4398 The GNU assembler emits separate line notes for each instruction
4399 in a multi-instruction macro, but compilers generally will not
4401 if (prologue_sal.symtab->language != language_asm)
4403 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4406 /* Skip any earlier lines, and any end-of-sequence marker
4407 from a previous function. */
4408 while (linetable->item[idx].pc != prologue_sal.pc
4409 || linetable->item[idx].line == 0)
4412 if (idx+1 < linetable->nitems
4413 && linetable->item[idx+1].line != 0
4414 && linetable->item[idx+1].pc == start_pc)
4418 /* If there is only one sal that covers the entire function,
4419 then it is probably a single line function, like
4421 if (prologue_sal.end >= end_pc)
4424 while (prologue_sal.end < end_pc)
4426 struct symtab_and_line sal;
4428 sal = find_pc_line (prologue_sal.end, 0);
4431 /* Assume that a consecutive SAL for the same (or larger)
4432 line mark the prologue -> body transition. */
4433 if (sal.line >= prologue_sal.line)
4436 /* The line number is smaller. Check that it's from the
4437 same function, not something inlined. If it's inlined,
4438 then there is no point comparing the line numbers. */
4439 bl = block_for_pc (prologue_sal.end);
4442 if (block_inlined_p (bl))
4444 if (BLOCK_FUNCTION (bl))
4449 bl = BLOCK_SUPERBLOCK (bl);
4454 /* The case in which compiler's optimizer/scheduler has
4455 moved instructions into the prologue. We look ahead in
4456 the function looking for address ranges whose
4457 corresponding line number is less the first one that we
4458 found for the function. This is more conservative then
4459 refine_prologue_limit which scans a large number of SALs
4460 looking for any in the prologue. */
4465 if (prologue_sal.end < end_pc)
4466 /* Return the end of this line, or zero if we could not find a
4468 return prologue_sal.end;
4470 /* Don't return END_PC, which is past the end of the function. */
4471 return prologue_sal.pc;
4474 struct symtabs_and_lines
4475 decode_line_spec (char *string, int funfirstline)
4477 struct symtabs_and_lines sals;
4478 struct symtab_and_line cursal;
4481 error (_("Empty line specification."));
4483 /* We use whatever is set as the current source line. We do not try
4484 and get a default or it will recursively call us! */
4485 cursal = get_current_source_symtab_and_line ();
4487 sals = decode_line_1 (&string, funfirstline,
4488 cursal.symtab, cursal.line,
4492 error (_("Junk at end of line specification: %s"), string);
4497 static char *name_of_main;
4498 enum language language_of_main = language_unknown;
4501 set_main_name (const char *name)
4503 if (name_of_main != NULL)
4505 xfree (name_of_main);
4506 name_of_main = NULL;
4507 language_of_main = language_unknown;
4511 name_of_main = xstrdup (name);
4512 language_of_main = language_unknown;
4516 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4520 find_main_name (void)
4522 const char *new_main_name;
4524 /* Try to see if the main procedure is in Ada. */
4525 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4526 be to add a new method in the language vector, and call this
4527 method for each language until one of them returns a non-empty
4528 name. This would allow us to remove this hard-coded call to
4529 an Ada function. It is not clear that this is a better approach
4530 at this point, because all methods need to be written in a way
4531 such that false positives never be returned. For instance, it is
4532 important that a method does not return a wrong name for the main
4533 procedure if the main procedure is actually written in a different
4534 language. It is easy to guaranty this with Ada, since we use a
4535 special symbol generated only when the main in Ada to find the name
4536 of the main procedure. It is difficult however to see how this can
4537 be guarantied for languages such as C, for instance. This suggests
4538 that order of call for these methods becomes important, which means
4539 a more complicated approach. */
4540 new_main_name = ada_main_name ();
4541 if (new_main_name != NULL)
4543 set_main_name (new_main_name);
4547 new_main_name = pascal_main_name ();
4548 if (new_main_name != NULL)
4550 set_main_name (new_main_name);
4554 /* The languages above didn't identify the name of the main procedure.
4555 Fallback to "main". */
4556 set_main_name ("main");
4562 if (name_of_main == NULL)
4565 return name_of_main;
4568 /* Handle ``executable_changed'' events for the symtab module. */
4571 symtab_observer_executable_changed (void)
4573 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4574 set_main_name (NULL);
4577 /* Helper to expand_line_sal below. Appends new sal to SAL,
4578 initializing it from SYMTAB, LINENO and PC. */
4580 append_expanded_sal (struct symtabs_and_lines *sal,
4581 struct program_space *pspace,
4582 struct symtab *symtab,
4583 int lineno, CORE_ADDR pc)
4585 sal->sals = xrealloc (sal->sals,
4586 sizeof (sal->sals[0])
4587 * (sal->nelts + 1));
4588 init_sal (sal->sals + sal->nelts);
4589 sal->sals[sal->nelts].pspace = pspace;
4590 sal->sals[sal->nelts].symtab = symtab;
4591 sal->sals[sal->nelts].section = NULL;
4592 sal->sals[sal->nelts].end = 0;
4593 sal->sals[sal->nelts].line = lineno;
4594 sal->sals[sal->nelts].pc = pc;
4598 /* Helper to expand_line_sal below. Search in the symtabs for any
4599 linetable entry that exactly matches FULLNAME and LINENO and append
4600 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4601 use FILENAME and LINENO instead. If there is at least one match,
4602 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4606 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4607 struct symtabs_and_lines *ret,
4608 struct linetable_entry **best_item,
4609 struct symtab **best_symtab)
4611 struct program_space *pspace;
4612 struct objfile *objfile;
4613 struct symtab *symtab;
4619 ALL_PSPACES (pspace)
4620 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4622 if (FILENAME_CMP (filename, symtab->filename) == 0)
4624 struct linetable *l;
4627 if (fullname != NULL
4628 && symtab_to_fullname (symtab) != NULL
4629 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4631 l = LINETABLE (symtab);
4636 for (j = 0; j < len; j++)
4638 struct linetable_entry *item = &(l->item[j]);
4640 if (item->line == lineno)
4643 append_expanded_sal (ret, objfile->pspace,
4644 symtab, lineno, item->pc);
4646 else if (!exact && item->line > lineno
4647 && (*best_item == NULL
4648 || item->line < (*best_item)->line))
4651 *best_symtab = symtab;
4659 /* Compute a set of all sals in all program spaces that correspond to
4660 same file and line as SAL and return those. If there are several
4661 sals that belong to the same block, only one sal for the block is
4662 included in results. */
4664 struct symtabs_and_lines
4665 expand_line_sal (struct symtab_and_line sal)
4667 struct symtabs_and_lines ret;
4669 struct objfile *objfile;
4672 struct block **blocks = NULL;
4674 struct cleanup *old_chain;
4679 /* Only expand sals that represent file.c:line. */
4680 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4682 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4689 struct program_space *pspace;
4690 struct linetable_entry *best_item = 0;
4691 struct symtab *best_symtab = 0;
4693 char *match_filename;
4696 match_filename = sal.symtab->filename;
4698 /* We need to find all symtabs for a file which name
4699 is described by sal. We cannot just directly
4700 iterate over symtabs, since a symtab might not be
4701 yet created. We also cannot iterate over psymtabs,
4702 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4703 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4704 corresponding to an included file. Therefore, we do
4705 first pass over psymtabs, reading in those with
4706 the right name. Then, we iterate over symtabs, knowing
4707 that all symtabs we're interested in are loaded. */
4709 old_chain = save_current_program_space ();
4710 ALL_PSPACES (pspace)
4712 set_current_program_space (pspace);
4713 ALL_PSPACE_OBJFILES (pspace, objfile)
4716 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4717 sal.symtab->filename);
4720 do_cleanups (old_chain);
4722 /* Now search the symtab for exact matches and append them. If
4723 none is found, append the best_item and all its exact
4725 symtab_to_fullname (sal.symtab);
4726 exact = append_exact_match_to_sals (sal.symtab->filename,
4727 sal.symtab->fullname, lineno,
4728 &ret, &best_item, &best_symtab);
4729 if (!exact && best_item)
4730 append_exact_match_to_sals (best_symtab->filename,
4731 best_symtab->fullname, best_item->line,
4732 &ret, &best_item, &best_symtab);
4735 /* For optimized code, compiler can scatter one source line accross
4736 disjoint ranges of PC values, even when no duplicate functions
4737 or inline functions are involved. For example, 'for (;;)' inside
4738 non-template non-inline non-ctor-or-dtor function can result
4739 in two PC ranges. In this case, we don't want to set breakpoint
4740 on first PC of each range. To filter such cases, we use containing
4741 blocks -- for each PC found above we see if there are other PCs
4742 that are in the same block. If yes, the other PCs are filtered out. */
4744 old_chain = save_current_program_space ();
4745 filter = alloca (ret.nelts * sizeof (int));
4746 blocks = alloca (ret.nelts * sizeof (struct block *));
4747 for (i = 0; i < ret.nelts; ++i)
4749 set_current_program_space (ret.sals[i].pspace);
4752 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4754 do_cleanups (old_chain);
4756 for (i = 0; i < ret.nelts; ++i)
4757 if (blocks[i] != NULL)
4758 for (j = i+1; j < ret.nelts; ++j)
4759 if (blocks[j] == blocks[i])
4767 struct symtab_and_line *final =
4768 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4770 for (i = 0, j = 0; i < ret.nelts; ++i)
4772 final[j++] = ret.sals[i];
4774 ret.nelts -= deleted;
4782 /* Return 1 if the supplied producer string matches the ARM RealView
4783 compiler (armcc). */
4786 producer_is_realview (const char *producer)
4788 static const char *const arm_idents[] = {
4789 "ARM C Compiler, ADS",
4790 "Thumb C Compiler, ADS",
4791 "ARM C++ Compiler, ADS",
4792 "Thumb C++ Compiler, ADS",
4793 "ARM/Thumb C/C++ Compiler, RVCT",
4794 "ARM C/C++ Compiler, RVCT"
4798 if (producer == NULL)
4801 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4802 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4809 _initialize_symtab (void)
4811 add_info ("variables", variables_info, _("\
4812 All global and static variable names, or those matching REGEXP."));
4814 add_com ("whereis", class_info, variables_info, _("\
4815 All global and static variable names, or those matching REGEXP."));
4817 add_info ("functions", functions_info,
4818 _("All function names, or those matching REGEXP."));
4820 /* FIXME: This command has at least the following problems:
4821 1. It prints builtin types (in a very strange and confusing fashion).
4822 2. It doesn't print right, e.g. with
4823 typedef struct foo *FOO
4824 type_print prints "FOO" when we want to make it (in this situation)
4825 print "struct foo *".
4826 I also think "ptype" or "whatis" is more likely to be useful (but if
4827 there is much disagreement "info types" can be fixed). */
4828 add_info ("types", types_info,
4829 _("All type names, or those matching REGEXP."));
4831 add_info ("sources", sources_info,
4832 _("Source files in the program."));
4834 add_com ("rbreak", class_breakpoint, rbreak_command,
4835 _("Set a breakpoint for all functions matching REGEXP."));
4839 add_com ("lf", class_info, sources_info,
4840 _("Source files in the program"));
4841 add_com ("lg", class_info, variables_info, _("\
4842 All global and static variable names, or those matching REGEXP."));
4845 add_setshow_enum_cmd ("multiple-symbols", no_class,
4846 multiple_symbols_modes, &multiple_symbols_mode,
4848 Set the debugger behavior when more than one symbol are possible matches\n\
4849 in an expression."), _("\
4850 Show how the debugger handles ambiguities in expressions."), _("\
4851 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4852 NULL, NULL, &setlist, &showlist);
4854 observer_attach_executable_changed (symtab_observer_executable_changed);