1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
30 #include "gdb_regex.h"
31 #include "expression.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
47 #include "typeprint.h"
49 #include "gdb_obstack.h"
51 #include "dictionary.h"
53 #include <sys/types.h>
58 #include "cp-support.h"
59 #include "observable.h"
62 #include "macroscope.h"
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "common/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
71 #include "common/pathstuff.h"
73 /* Forward declarations for local functions. */
75 static void rbreak_command (const char *, int);
77 static int find_line_common (struct linetable *, int, int *, int);
79 static struct block_symbol
80 lookup_symbol_aux (const char *name,
81 symbol_name_match_type match_type,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *);
88 struct block_symbol lookup_local_symbol (const char *name,
89 symbol_name_match_type match_type,
90 const struct block *block,
91 const domain_enum domain,
92 enum language language);
94 static struct block_symbol
95 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
96 const char *name, const domain_enum domain);
98 /* Type of the data stored on the program space. */
102 main_info () = default;
106 xfree (name_of_main);
109 /* Name of "main". */
111 char *name_of_main = nullptr;
113 /* Language of "main". */
115 enum language language_of_main = language_unknown;
118 /* Program space key for finding name and language of "main". */
120 static const program_space_key<main_info> main_progspace_key;
122 /* The default symbol cache size.
123 There is no extra cpu cost for large N (except when flushing the cache,
124 which is rare). The value here is just a first attempt. A better default
125 value may be higher or lower. A prime number can make up for a bad hash
126 computation, so that's why the number is what it is. */
127 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
129 /* The maximum symbol cache size.
130 There's no method to the decision of what value to use here, other than
131 there's no point in allowing a user typo to make gdb consume all memory. */
132 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
134 /* symbol_cache_lookup returns this if a previous lookup failed to find the
135 symbol in any objfile. */
136 #define SYMBOL_LOOKUP_FAILED \
137 ((struct block_symbol) {(struct symbol *) 1, NULL})
138 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
140 /* Recording lookups that don't find the symbol is just as important, if not
141 more so, than recording found symbols. */
143 enum symbol_cache_slot_state
146 SYMBOL_SLOT_NOT_FOUND,
150 struct symbol_cache_slot
152 enum symbol_cache_slot_state state;
154 /* The objfile that was current when the symbol was looked up.
155 This is only needed for global blocks, but for simplicity's sake
156 we allocate the space for both. If data shows the extra space used
157 for static blocks is a problem, we can split things up then.
159 Global blocks need cache lookup to include the objfile context because
160 we need to account for gdbarch_iterate_over_objfiles_in_search_order
161 which can traverse objfiles in, effectively, any order, depending on
162 the current objfile, thus affecting which symbol is found. Normally,
163 only the current objfile is searched first, and then the rest are
164 searched in recorded order; but putting cache lookup inside
165 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
166 Instead we just make the current objfile part of the context of
167 cache lookup. This means we can record the same symbol multiple times,
168 each with a different "current objfile" that was in effect when the
169 lookup was saved in the cache, but cache space is pretty cheap. */
170 const struct objfile *objfile_context;
174 struct block_symbol found;
183 /* Symbols don't specify global vs static block.
184 So keep them in separate caches. */
186 struct block_symbol_cache
190 unsigned int collisions;
192 /* SYMBOLS is a variable length array of this size.
193 One can imagine that in general one cache (global/static) should be a
194 fraction of the size of the other, but there's no data at the moment
195 on which to decide. */
198 struct symbol_cache_slot symbols[1];
203 Searching for symbols in the static and global blocks over multiple objfiles
204 again and again can be slow, as can searching very big objfiles. This is a
205 simple cache to improve symbol lookup performance, which is critical to
206 overall gdb performance.
208 Symbols are hashed on the name, its domain, and block.
209 They are also hashed on their objfile for objfile-specific lookups. */
213 symbol_cache () = default;
217 xfree (global_symbols);
218 xfree (static_symbols);
221 struct block_symbol_cache *global_symbols = nullptr;
222 struct block_symbol_cache *static_symbols = nullptr;
225 /* Program space key for finding its symbol cache. */
227 static const program_space_key<symbol_cache> symbol_cache_key;
229 /* When non-zero, print debugging messages related to symtab creation. */
230 unsigned int symtab_create_debug = 0;
232 /* When non-zero, print debugging messages related to symbol lookup. */
233 unsigned int symbol_lookup_debug = 0;
235 /* The size of the cache is staged here. */
236 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
238 /* The current value of the symbol cache size.
239 This is saved so that if the user enters a value too big we can restore
240 the original value from here. */
241 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
243 /* Non-zero if a file may be known by two different basenames.
244 This is the uncommon case, and significantly slows down gdb.
245 Default set to "off" to not slow down the common case. */
246 int basenames_may_differ = 0;
248 /* Allow the user to configure the debugger behavior with respect
249 to multiple-choice menus when more than one symbol matches during
252 const char multiple_symbols_ask[] = "ask";
253 const char multiple_symbols_all[] = "all";
254 const char multiple_symbols_cancel[] = "cancel";
255 static const char *const multiple_symbols_modes[] =
257 multiple_symbols_ask,
258 multiple_symbols_all,
259 multiple_symbols_cancel,
262 static const char *multiple_symbols_mode = multiple_symbols_all;
264 /* Read-only accessor to AUTO_SELECT_MODE. */
267 multiple_symbols_select_mode (void)
269 return multiple_symbols_mode;
272 /* Return the name of a domain_enum. */
275 domain_name (domain_enum e)
279 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
280 case VAR_DOMAIN: return "VAR_DOMAIN";
281 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
282 case MODULE_DOMAIN: return "MODULE_DOMAIN";
283 case LABEL_DOMAIN: return "LABEL_DOMAIN";
284 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
285 default: gdb_assert_not_reached ("bad domain_enum");
289 /* Return the name of a search_domain . */
292 search_domain_name (enum search_domain e)
296 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
297 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
298 case TYPES_DOMAIN: return "TYPES_DOMAIN";
299 case ALL_DOMAIN: return "ALL_DOMAIN";
300 default: gdb_assert_not_reached ("bad search_domain");
307 compunit_primary_filetab (const struct compunit_symtab *cust)
309 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
311 /* The primary file symtab is the first one in the list. */
312 return COMPUNIT_FILETABS (cust);
318 compunit_language (const struct compunit_symtab *cust)
320 struct symtab *symtab = compunit_primary_filetab (cust);
322 /* The language of the compunit symtab is the language of its primary
324 return SYMTAB_LANGUAGE (symtab);
330 minimal_symbol::data_p () const
332 return type == mst_data
335 || type == mst_file_data
336 || type == mst_file_bss;
342 minimal_symbol::text_p () const
344 return type == mst_text
345 || type == mst_text_gnu_ifunc
346 || type == mst_data_gnu_ifunc
347 || type == mst_slot_got_plt
348 || type == mst_solib_trampoline
349 || type == mst_file_text;
352 /* See whether FILENAME matches SEARCH_NAME using the rule that we
353 advertise to the user. (The manual's description of linespecs
354 describes what we advertise). Returns true if they match, false
358 compare_filenames_for_search (const char *filename, const char *search_name)
360 int len = strlen (filename);
361 size_t search_len = strlen (search_name);
363 if (len < search_len)
366 /* The tail of FILENAME must match. */
367 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
370 /* Either the names must completely match, or the character
371 preceding the trailing SEARCH_NAME segment of FILENAME must be a
374 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
375 cannot match FILENAME "/path//dir/file.c" - as user has requested
376 absolute path. The sama applies for "c:\file.c" possibly
377 incorrectly hypothetically matching "d:\dir\c:\file.c".
379 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
380 compatible with SEARCH_NAME "file.c". In such case a compiler had
381 to put the "c:file.c" name into debug info. Such compatibility
382 works only on GDB built for DOS host. */
383 return (len == search_len
384 || (!IS_ABSOLUTE_PATH (search_name)
385 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
386 || (HAS_DRIVE_SPEC (filename)
387 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
390 /* Same as compare_filenames_for_search, but for glob-style patterns.
391 Heads up on the order of the arguments. They match the order of
392 compare_filenames_for_search, but it's the opposite of the order of
393 arguments to gdb_filename_fnmatch. */
396 compare_glob_filenames_for_search (const char *filename,
397 const char *search_name)
399 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
400 all /s have to be explicitly specified. */
401 int file_path_elements = count_path_elements (filename);
402 int search_path_elements = count_path_elements (search_name);
404 if (search_path_elements > file_path_elements)
407 if (IS_ABSOLUTE_PATH (search_name))
409 return (search_path_elements == file_path_elements
410 && gdb_filename_fnmatch (search_name, filename,
411 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
415 const char *file_to_compare
416 = strip_leading_path_elements (filename,
417 file_path_elements - search_path_elements);
419 return gdb_filename_fnmatch (search_name, file_to_compare,
420 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
424 /* Check for a symtab of a specific name by searching some symtabs.
425 This is a helper function for callbacks of iterate_over_symtabs.
427 If NAME is not absolute, then REAL_PATH is NULL
428 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
430 The return value, NAME, REAL_PATH and CALLBACK are identical to the
431 `map_symtabs_matching_filename' method of quick_symbol_functions.
433 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
434 Each symtab within the specified compunit symtab is also searched.
435 AFTER_LAST is one past the last compunit symtab to search; NULL means to
436 search until the end of the list. */
439 iterate_over_some_symtabs (const char *name,
440 const char *real_path,
441 struct compunit_symtab *first,
442 struct compunit_symtab *after_last,
443 gdb::function_view<bool (symtab *)> callback)
445 struct compunit_symtab *cust;
446 const char* base_name = lbasename (name);
448 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
450 for (symtab *s : compunit_filetabs (cust))
452 if (compare_filenames_for_search (s->filename, name))
459 /* Before we invoke realpath, which can get expensive when many
460 files are involved, do a quick comparison of the basenames. */
461 if (! basenames_may_differ
462 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
465 if (compare_filenames_for_search (symtab_to_fullname (s), name))
472 /* If the user gave us an absolute path, try to find the file in
473 this symtab and use its absolute path. */
474 if (real_path != NULL)
476 const char *fullname = symtab_to_fullname (s);
478 gdb_assert (IS_ABSOLUTE_PATH (real_path));
479 gdb_assert (IS_ABSOLUTE_PATH (name));
480 if (FILENAME_CMP (real_path, fullname) == 0)
493 /* Check for a symtab of a specific name; first in symtabs, then in
494 psymtabs. *If* there is no '/' in the name, a match after a '/'
495 in the symtab filename will also work.
497 Calls CALLBACK with each symtab that is found. If CALLBACK returns
498 true, the search stops. */
501 iterate_over_symtabs (const char *name,
502 gdb::function_view<bool (symtab *)> callback)
504 gdb::unique_xmalloc_ptr<char> real_path;
506 /* Here we are interested in canonicalizing an absolute path, not
507 absolutizing a relative path. */
508 if (IS_ABSOLUTE_PATH (name))
510 real_path = gdb_realpath (name);
511 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
514 for (objfile *objfile : current_program_space->objfiles ())
516 if (iterate_over_some_symtabs (name, real_path.get (),
517 objfile->compunit_symtabs, NULL,
522 /* Same search rules as above apply here, but now we look thru the
525 for (objfile *objfile : current_program_space->objfiles ())
528 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
536 /* A wrapper for iterate_over_symtabs that returns the first matching
540 lookup_symtab (const char *name)
542 struct symtab *result = NULL;
544 iterate_over_symtabs (name, [&] (symtab *symtab)
554 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
555 full method name, which consist of the class name (from T), the unadorned
556 method name from METHOD_ID, and the signature for the specific overload,
557 specified by SIGNATURE_ID. Note that this function is g++ specific. */
560 gdb_mangle_name (struct type *type, int method_id, int signature_id)
562 int mangled_name_len;
564 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
565 struct fn_field *method = &f[signature_id];
566 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
567 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
568 const char *newname = TYPE_NAME (type);
570 /* Does the form of physname indicate that it is the full mangled name
571 of a constructor (not just the args)? */
572 int is_full_physname_constructor;
575 int is_destructor = is_destructor_name (physname);
576 /* Need a new type prefix. */
577 const char *const_prefix = method->is_const ? "C" : "";
578 const char *volatile_prefix = method->is_volatile ? "V" : "";
580 int len = (newname == NULL ? 0 : strlen (newname));
582 /* Nothing to do if physname already contains a fully mangled v3 abi name
583 or an operator name. */
584 if ((physname[0] == '_' && physname[1] == 'Z')
585 || is_operator_name (field_name))
586 return xstrdup (physname);
588 is_full_physname_constructor = is_constructor_name (physname);
590 is_constructor = is_full_physname_constructor
591 || (newname && strcmp (field_name, newname) == 0);
594 is_destructor = (startswith (physname, "__dt"));
596 if (is_destructor || is_full_physname_constructor)
598 mangled_name = (char *) xmalloc (strlen (physname) + 1);
599 strcpy (mangled_name, physname);
605 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
607 else if (physname[0] == 't' || physname[0] == 'Q')
609 /* The physname for template and qualified methods already includes
611 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
617 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
618 volatile_prefix, len);
620 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
621 + strlen (buf) + len + strlen (physname) + 1);
623 mangled_name = (char *) xmalloc (mangled_name_len);
625 mangled_name[0] = '\0';
627 strcpy (mangled_name, field_name);
629 strcat (mangled_name, buf);
630 /* If the class doesn't have a name, i.e. newname NULL, then we just
631 mangle it using 0 for the length of the class. Thus it gets mangled
632 as something starting with `::' rather than `classname::'. */
634 strcat (mangled_name, newname);
636 strcat (mangled_name, physname);
637 return (mangled_name);
640 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
641 correctly allocated. */
644 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
646 struct obstack *obstack)
648 if (gsymbol->language == language_ada)
652 gsymbol->ada_mangled = 0;
653 gsymbol->language_specific.obstack = obstack;
657 gsymbol->ada_mangled = 1;
658 gsymbol->language_specific.demangled_name = name;
662 gsymbol->language_specific.demangled_name = name;
665 /* Return the demangled name of GSYMBOL. */
668 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
670 if (gsymbol->language == language_ada)
672 if (!gsymbol->ada_mangled)
677 return gsymbol->language_specific.demangled_name;
681 /* Initialize the language dependent portion of a symbol
682 depending upon the language for the symbol. */
685 symbol_set_language (struct general_symbol_info *gsymbol,
686 enum language language,
687 struct obstack *obstack)
689 gsymbol->language = language;
690 if (gsymbol->language == language_cplus
691 || gsymbol->language == language_d
692 || gsymbol->language == language_go
693 || gsymbol->language == language_objc
694 || gsymbol->language == language_fortran)
696 symbol_set_demangled_name (gsymbol, NULL, obstack);
698 else if (gsymbol->language == language_ada)
700 gdb_assert (gsymbol->ada_mangled == 0);
701 gsymbol->language_specific.obstack = obstack;
705 memset (&gsymbol->language_specific, 0,
706 sizeof (gsymbol->language_specific));
710 /* Functions to initialize a symbol's mangled name. */
712 /* Objects of this type are stored in the demangled name hash table. */
713 struct demangled_name_entry
716 ENUM_BITFIELD(language) language : LANGUAGE_BITS;
720 /* Hash function for the demangled name hash. */
723 hash_demangled_name_entry (const void *data)
725 const struct demangled_name_entry *e
726 = (const struct demangled_name_entry *) data;
728 return htab_hash_string (e->mangled);
731 /* Equality function for the demangled name hash. */
734 eq_demangled_name_entry (const void *a, const void *b)
736 const struct demangled_name_entry *da
737 = (const struct demangled_name_entry *) a;
738 const struct demangled_name_entry *db
739 = (const struct demangled_name_entry *) b;
741 return strcmp (da->mangled, db->mangled) == 0;
744 /* Create the hash table used for demangled names. Each hash entry is
745 a pair of strings; one for the mangled name and one for the demangled
746 name. The entry is hashed via just the mangled name. */
749 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
751 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
752 The hash table code will round this up to the next prime number.
753 Choosing a much larger table size wastes memory, and saves only about
754 1% in symbol reading. */
756 per_bfd->demangled_names_hash.reset (htab_create_alloc
757 (256, hash_demangled_name_entry, eq_demangled_name_entry,
758 NULL, xcalloc, xfree));
761 /* Try to determine the demangled name for a symbol, based on the
762 language of that symbol. If the language is set to language_auto,
763 it will attempt to find any demangling algorithm that works and
764 then set the language appropriately. The returned name is allocated
765 by the demangler and should be xfree'd. */
768 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
771 char *demangled = NULL;
774 if (gsymbol->language == language_unknown)
775 gsymbol->language = language_auto;
777 if (gsymbol->language != language_auto)
779 const struct language_defn *lang = language_def (gsymbol->language);
781 language_sniff_from_mangled_name (lang, mangled, &demangled);
785 for (i = language_unknown; i < nr_languages; ++i)
787 enum language l = (enum language) i;
788 const struct language_defn *lang = language_def (l);
790 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
792 gsymbol->language = l;
800 /* Set both the mangled and demangled (if any) names for GSYMBOL based
801 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
802 objfile's obstack; but if COPY_NAME is 0 and if NAME is
803 NUL-terminated, then this function assumes that NAME is already
804 correctly saved (either permanently or with a lifetime tied to the
805 objfile), and it will not be copied.
807 The hash table corresponding to OBJFILE is used, and the memory
808 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
809 so the pointer can be discarded after calling this function. */
812 symbol_set_names (struct general_symbol_info *gsymbol,
813 const char *linkage_name, int len, int copy_name,
814 struct objfile_per_bfd_storage *per_bfd)
816 struct demangled_name_entry **slot;
817 /* A 0-terminated copy of the linkage name. */
818 const char *linkage_name_copy;
819 struct demangled_name_entry entry;
821 if (gsymbol->language == language_ada)
823 /* In Ada, we do the symbol lookups using the mangled name, so
824 we can save some space by not storing the demangled name. */
826 gsymbol->name = linkage_name;
829 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
832 memcpy (name, linkage_name, len);
834 gsymbol->name = name;
836 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
841 if (per_bfd->demangled_names_hash == NULL)
842 create_demangled_names_hash (per_bfd);
844 if (linkage_name[len] != '\0')
848 alloc_name = (char *) alloca (len + 1);
849 memcpy (alloc_name, linkage_name, len);
850 alloc_name[len] = '\0';
852 linkage_name_copy = alloc_name;
855 linkage_name_copy = linkage_name;
857 entry.mangled = linkage_name_copy;
858 slot = ((struct demangled_name_entry **)
859 htab_find_slot (per_bfd->demangled_names_hash.get (),
862 /* If this name is not in the hash table, add it. */
864 /* A C version of the symbol may have already snuck into the table.
865 This happens to, e.g., main.init (__go_init_main). Cope. */
866 || (gsymbol->language == language_go
867 && (*slot)->demangled[0] == '\0'))
869 char *demangled_name_ptr
870 = symbol_find_demangled_name (gsymbol, linkage_name_copy);
871 gdb::unique_xmalloc_ptr<char> demangled_name (demangled_name_ptr);
872 int demangled_len = demangled_name ? strlen (demangled_name.get ()) : 0;
874 /* Suppose we have demangled_name==NULL, copy_name==0, and
875 linkage_name_copy==linkage_name. In this case, we already have the
876 mangled name saved, and we don't have a demangled name. So,
877 you might think we could save a little space by not recording
878 this in the hash table at all.
880 It turns out that it is actually important to still save such
881 an entry in the hash table, because storing this name gives
882 us better bcache hit rates for partial symbols. */
883 if (!copy_name && linkage_name_copy == linkage_name)
886 = ((struct demangled_name_entry *)
887 obstack_alloc (&per_bfd->storage_obstack,
888 offsetof (struct demangled_name_entry, demangled)
889 + demangled_len + 1));
890 (*slot)->mangled = linkage_name;
896 /* If we must copy the mangled name, put it directly after
897 the demangled name so we can have a single
900 = ((struct demangled_name_entry *)
901 obstack_alloc (&per_bfd->storage_obstack,
902 offsetof (struct demangled_name_entry, demangled)
903 + len + demangled_len + 2));
904 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
905 strcpy (mangled_ptr, linkage_name_copy);
906 (*slot)->mangled = mangled_ptr;
908 (*slot)->language = gsymbol->language;
910 if (demangled_name != NULL)
911 strcpy ((*slot)->demangled, demangled_name.get ());
913 (*slot)->demangled[0] = '\0';
915 else if (gsymbol->language == language_unknown
916 || gsymbol->language == language_auto)
917 gsymbol->language = (*slot)->language;
919 gsymbol->name = (*slot)->mangled;
920 if ((*slot)->demangled[0] != '\0')
921 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
922 &per_bfd->storage_obstack);
924 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
927 /* Return the source code name of a symbol. In languages where
928 demangling is necessary, this is the demangled name. */
931 symbol_natural_name (const struct general_symbol_info *gsymbol)
933 switch (gsymbol->language)
939 case language_fortran:
940 if (symbol_get_demangled_name (gsymbol) != NULL)
941 return symbol_get_demangled_name (gsymbol);
944 return ada_decode_symbol (gsymbol);
948 return gsymbol->name;
951 /* Return the demangled name for a symbol based on the language for
952 that symbol. If no demangled name exists, return NULL. */
955 symbol_demangled_name (const struct general_symbol_info *gsymbol)
957 const char *dem_name = NULL;
959 switch (gsymbol->language)
965 case language_fortran:
966 dem_name = symbol_get_demangled_name (gsymbol);
969 dem_name = ada_decode_symbol (gsymbol);
977 /* Return the search name of a symbol---generally the demangled or
978 linkage name of the symbol, depending on how it will be searched for.
979 If there is no distinct demangled name, then returns the same value
980 (same pointer) as SYMBOL_LINKAGE_NAME. */
983 symbol_search_name (const struct general_symbol_info *gsymbol)
985 if (gsymbol->language == language_ada)
986 return gsymbol->name;
988 return symbol_natural_name (gsymbol);
994 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
995 const lookup_name_info &name)
997 symbol_name_matcher_ftype *name_match
998 = get_symbol_name_matcher (language_def (gsymbol->language), name);
999 return name_match (symbol_search_name (gsymbol), name, NULL);
1004 /* Return 1 if the two sections are the same, or if they could
1005 plausibly be copies of each other, one in an original object
1006 file and another in a separated debug file. */
1009 matching_obj_sections (struct obj_section *obj_first,
1010 struct obj_section *obj_second)
1012 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1013 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1015 /* If they're the same section, then they match. */
1016 if (first == second)
1019 /* If either is NULL, give up. */
1020 if (first == NULL || second == NULL)
1023 /* This doesn't apply to absolute symbols. */
1024 if (first->owner == NULL || second->owner == NULL)
1027 /* If they're in the same object file, they must be different sections. */
1028 if (first->owner == second->owner)
1031 /* Check whether the two sections are potentially corresponding. They must
1032 have the same size, address, and name. We can't compare section indexes,
1033 which would be more reliable, because some sections may have been
1035 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1038 /* In-memory addresses may start at a different offset, relativize them. */
1039 if (bfd_get_section_vma (first->owner, first)
1040 - bfd_get_start_address (first->owner)
1041 != bfd_get_section_vma (second->owner, second)
1042 - bfd_get_start_address (second->owner))
1045 if (bfd_get_section_name (first->owner, first) == NULL
1046 || bfd_get_section_name (second->owner, second) == NULL
1047 || strcmp (bfd_get_section_name (first->owner, first),
1048 bfd_get_section_name (second->owner, second)) != 0)
1051 /* Otherwise check that they are in corresponding objfiles. */
1053 struct objfile *obj = NULL;
1054 for (objfile *objfile : current_program_space->objfiles ())
1055 if (objfile->obfd == first->owner)
1060 gdb_assert (obj != NULL);
1062 if (obj->separate_debug_objfile != NULL
1063 && obj->separate_debug_objfile->obfd == second->owner)
1065 if (obj->separate_debug_objfile_backlink != NULL
1066 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1075 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1077 struct bound_minimal_symbol msymbol;
1079 /* If we know that this is not a text address, return failure. This is
1080 necessary because we loop based on texthigh and textlow, which do
1081 not include the data ranges. */
1082 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1083 if (msymbol.minsym && msymbol.minsym->data_p ())
1086 for (objfile *objfile : current_program_space->objfiles ())
1088 struct compunit_symtab *cust = NULL;
1091 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1098 /* Hash function for the symbol cache. */
1101 hash_symbol_entry (const struct objfile *objfile_context,
1102 const char *name, domain_enum domain)
1104 unsigned int hash = (uintptr_t) objfile_context;
1107 hash += htab_hash_string (name);
1109 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1110 to map to the same slot. */
1111 if (domain == STRUCT_DOMAIN)
1112 hash += VAR_DOMAIN * 7;
1119 /* Equality function for the symbol cache. */
1122 eq_symbol_entry (const struct symbol_cache_slot *slot,
1123 const struct objfile *objfile_context,
1124 const char *name, domain_enum domain)
1126 const char *slot_name;
1127 domain_enum slot_domain;
1129 if (slot->state == SYMBOL_SLOT_UNUSED)
1132 if (slot->objfile_context != objfile_context)
1135 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1137 slot_name = slot->value.not_found.name;
1138 slot_domain = slot->value.not_found.domain;
1142 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1143 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1146 /* NULL names match. */
1147 if (slot_name == NULL && name == NULL)
1149 /* But there's no point in calling symbol_matches_domain in the
1150 SYMBOL_SLOT_FOUND case. */
1151 if (slot_domain != domain)
1154 else if (slot_name != NULL && name != NULL)
1156 /* It's important that we use the same comparison that was done
1157 the first time through. If the slot records a found symbol,
1158 then this means using the symbol name comparison function of
1159 the symbol's language with SYMBOL_SEARCH_NAME. See
1160 dictionary.c. It also means using symbol_matches_domain for
1161 found symbols. See block.c.
1163 If the slot records a not-found symbol, then require a precise match.
1164 We could still be lax with whitespace like strcmp_iw though. */
1166 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1168 if (strcmp (slot_name, name) != 0)
1170 if (slot_domain != domain)
1175 struct symbol *sym = slot->value.found.symbol;
1176 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1178 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1181 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1182 slot_domain, domain))
1188 /* Only one name is NULL. */
1195 /* Given a cache of size SIZE, return the size of the struct (with variable
1196 length array) in bytes. */
1199 symbol_cache_byte_size (unsigned int size)
1201 return (sizeof (struct block_symbol_cache)
1202 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1208 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1210 /* If there's no change in size, don't do anything.
1211 All caches have the same size, so we can just compare with the size
1212 of the global symbols cache. */
1213 if ((cache->global_symbols != NULL
1214 && cache->global_symbols->size == new_size)
1215 || (cache->global_symbols == NULL
1219 xfree (cache->global_symbols);
1220 xfree (cache->static_symbols);
1224 cache->global_symbols = NULL;
1225 cache->static_symbols = NULL;
1229 size_t total_size = symbol_cache_byte_size (new_size);
1231 cache->global_symbols
1232 = (struct block_symbol_cache *) xcalloc (1, total_size);
1233 cache->static_symbols
1234 = (struct block_symbol_cache *) xcalloc (1, total_size);
1235 cache->global_symbols->size = new_size;
1236 cache->static_symbols->size = new_size;
1240 /* Return the symbol cache of PSPACE.
1241 Create one if it doesn't exist yet. */
1243 static struct symbol_cache *
1244 get_symbol_cache (struct program_space *pspace)
1246 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1250 cache = symbol_cache_key.emplace (pspace);
1251 resize_symbol_cache (cache, symbol_cache_size);
1257 /* Set the size of the symbol cache in all program spaces. */
1260 set_symbol_cache_size (unsigned int new_size)
1262 struct program_space *pspace;
1264 ALL_PSPACES (pspace)
1266 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1268 /* The pspace could have been created but not have a cache yet. */
1270 resize_symbol_cache (cache, new_size);
1274 /* Called when symbol-cache-size is set. */
1277 set_symbol_cache_size_handler (const char *args, int from_tty,
1278 struct cmd_list_element *c)
1280 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1282 /* Restore the previous value.
1283 This is the value the "show" command prints. */
1284 new_symbol_cache_size = symbol_cache_size;
1286 error (_("Symbol cache size is too large, max is %u."),
1287 MAX_SYMBOL_CACHE_SIZE);
1289 symbol_cache_size = new_symbol_cache_size;
1291 set_symbol_cache_size (symbol_cache_size);
1294 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1295 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1296 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1297 failed (and thus this one will too), or NULL if the symbol is not present
1299 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1300 set to the cache and slot of the symbol to save the result of a full lookup
1303 static struct block_symbol
1304 symbol_cache_lookup (struct symbol_cache *cache,
1305 struct objfile *objfile_context, int block,
1306 const char *name, domain_enum domain,
1307 struct block_symbol_cache **bsc_ptr,
1308 struct symbol_cache_slot **slot_ptr)
1310 struct block_symbol_cache *bsc;
1312 struct symbol_cache_slot *slot;
1314 if (block == GLOBAL_BLOCK)
1315 bsc = cache->global_symbols;
1317 bsc = cache->static_symbols;
1325 hash = hash_symbol_entry (objfile_context, name, domain);
1326 slot = bsc->symbols + hash % bsc->size;
1328 if (eq_symbol_entry (slot, objfile_context, name, domain))
1330 if (symbol_lookup_debug)
1331 fprintf_unfiltered (gdb_stdlog,
1332 "%s block symbol cache hit%s for %s, %s\n",
1333 block == GLOBAL_BLOCK ? "Global" : "Static",
1334 slot->state == SYMBOL_SLOT_NOT_FOUND
1335 ? " (not found)" : "",
1336 name, domain_name (domain));
1338 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1339 return SYMBOL_LOOKUP_FAILED;
1340 return slot->value.found;
1343 /* Symbol is not present in the cache. */
1348 if (symbol_lookup_debug)
1350 fprintf_unfiltered (gdb_stdlog,
1351 "%s block symbol cache miss for %s, %s\n",
1352 block == GLOBAL_BLOCK ? "Global" : "Static",
1353 name, domain_name (domain));
1359 /* Clear out SLOT. */
1362 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1364 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1365 xfree (slot->value.not_found.name);
1366 slot->state = SYMBOL_SLOT_UNUSED;
1369 /* Mark SYMBOL as found in SLOT.
1370 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1371 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1372 necessarily the objfile the symbol was found in. */
1375 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1376 struct symbol_cache_slot *slot,
1377 struct objfile *objfile_context,
1378 struct symbol *symbol,
1379 const struct block *block)
1383 if (slot->state != SYMBOL_SLOT_UNUSED)
1386 symbol_cache_clear_slot (slot);
1388 slot->state = SYMBOL_SLOT_FOUND;
1389 slot->objfile_context = objfile_context;
1390 slot->value.found.symbol = symbol;
1391 slot->value.found.block = block;
1394 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1395 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1396 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1399 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1400 struct symbol_cache_slot *slot,
1401 struct objfile *objfile_context,
1402 const char *name, domain_enum domain)
1406 if (slot->state != SYMBOL_SLOT_UNUSED)
1409 symbol_cache_clear_slot (slot);
1411 slot->state = SYMBOL_SLOT_NOT_FOUND;
1412 slot->objfile_context = objfile_context;
1413 slot->value.not_found.name = xstrdup (name);
1414 slot->value.not_found.domain = domain;
1417 /* Flush the symbol cache of PSPACE. */
1420 symbol_cache_flush (struct program_space *pspace)
1422 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1427 if (cache->global_symbols == NULL)
1429 gdb_assert (symbol_cache_size == 0);
1430 gdb_assert (cache->static_symbols == NULL);
1434 /* If the cache is untouched since the last flush, early exit.
1435 This is important for performance during the startup of a program linked
1436 with 100s (or 1000s) of shared libraries. */
1437 if (cache->global_symbols->misses == 0
1438 && cache->static_symbols->misses == 0)
1441 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1442 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1444 for (pass = 0; pass < 2; ++pass)
1446 struct block_symbol_cache *bsc
1447 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1450 for (i = 0; i < bsc->size; ++i)
1451 symbol_cache_clear_slot (&bsc->symbols[i]);
1454 cache->global_symbols->hits = 0;
1455 cache->global_symbols->misses = 0;
1456 cache->global_symbols->collisions = 0;
1457 cache->static_symbols->hits = 0;
1458 cache->static_symbols->misses = 0;
1459 cache->static_symbols->collisions = 0;
1465 symbol_cache_dump (const struct symbol_cache *cache)
1469 if (cache->global_symbols == NULL)
1471 printf_filtered (" <disabled>\n");
1475 for (pass = 0; pass < 2; ++pass)
1477 const struct block_symbol_cache *bsc
1478 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1482 printf_filtered ("Global symbols:\n");
1484 printf_filtered ("Static symbols:\n");
1486 for (i = 0; i < bsc->size; ++i)
1488 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1492 switch (slot->state)
1494 case SYMBOL_SLOT_UNUSED:
1496 case SYMBOL_SLOT_NOT_FOUND:
1497 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1498 host_address_to_string (slot->objfile_context),
1499 slot->value.not_found.name,
1500 domain_name (slot->value.not_found.domain));
1502 case SYMBOL_SLOT_FOUND:
1504 struct symbol *found = slot->value.found.symbol;
1505 const struct objfile *context = slot->objfile_context;
1507 printf_filtered (" [%4u] = %s, %s %s\n", i,
1508 host_address_to_string (context),
1509 SYMBOL_PRINT_NAME (found),
1510 domain_name (SYMBOL_DOMAIN (found)));
1518 /* The "mt print symbol-cache" command. */
1521 maintenance_print_symbol_cache (const char *args, int from_tty)
1523 struct program_space *pspace;
1525 ALL_PSPACES (pspace)
1527 struct symbol_cache *cache;
1529 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1531 pspace->symfile_object_file != NULL
1532 ? objfile_name (pspace->symfile_object_file)
1533 : "(no object file)");
1535 /* If the cache hasn't been created yet, avoid creating one. */
1536 cache = symbol_cache_key.get (pspace);
1538 printf_filtered (" <empty>\n");
1540 symbol_cache_dump (cache);
1544 /* The "mt flush-symbol-cache" command. */
1547 maintenance_flush_symbol_cache (const char *args, int from_tty)
1549 struct program_space *pspace;
1551 ALL_PSPACES (pspace)
1553 symbol_cache_flush (pspace);
1557 /* Print usage statistics of CACHE. */
1560 symbol_cache_stats (struct symbol_cache *cache)
1564 if (cache->global_symbols == NULL)
1566 printf_filtered (" <disabled>\n");
1570 for (pass = 0; pass < 2; ++pass)
1572 const struct block_symbol_cache *bsc
1573 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1578 printf_filtered ("Global block cache stats:\n");
1580 printf_filtered ("Static block cache stats:\n");
1582 printf_filtered (" size: %u\n", bsc->size);
1583 printf_filtered (" hits: %u\n", bsc->hits);
1584 printf_filtered (" misses: %u\n", bsc->misses);
1585 printf_filtered (" collisions: %u\n", bsc->collisions);
1589 /* The "mt print symbol-cache-statistics" command. */
1592 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1594 struct program_space *pspace;
1596 ALL_PSPACES (pspace)
1598 struct symbol_cache *cache;
1600 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1602 pspace->symfile_object_file != NULL
1603 ? objfile_name (pspace->symfile_object_file)
1604 : "(no object file)");
1606 /* If the cache hasn't been created yet, avoid creating one. */
1607 cache = symbol_cache_key.get (pspace);
1609 printf_filtered (" empty, no stats available\n");
1611 symbol_cache_stats (cache);
1615 /* This module's 'new_objfile' observer. */
1618 symtab_new_objfile_observer (struct objfile *objfile)
1620 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1621 symbol_cache_flush (current_program_space);
1624 /* This module's 'free_objfile' observer. */
1627 symtab_free_objfile_observer (struct objfile *objfile)
1629 symbol_cache_flush (objfile->pspace);
1632 /* Debug symbols usually don't have section information. We need to dig that
1633 out of the minimal symbols and stash that in the debug symbol. */
1636 fixup_section (struct general_symbol_info *ginfo,
1637 CORE_ADDR addr, struct objfile *objfile)
1639 struct minimal_symbol *msym;
1641 /* First, check whether a minimal symbol with the same name exists
1642 and points to the same address. The address check is required
1643 e.g. on PowerPC64, where the minimal symbol for a function will
1644 point to the function descriptor, while the debug symbol will
1645 point to the actual function code. */
1646 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1648 ginfo->section = MSYMBOL_SECTION (msym);
1651 /* Static, function-local variables do appear in the linker
1652 (minimal) symbols, but are frequently given names that won't
1653 be found via lookup_minimal_symbol(). E.g., it has been
1654 observed in frv-uclinux (ELF) executables that a static,
1655 function-local variable named "foo" might appear in the
1656 linker symbols as "foo.6" or "foo.3". Thus, there is no
1657 point in attempting to extend the lookup-by-name mechanism to
1658 handle this case due to the fact that there can be multiple
1661 So, instead, search the section table when lookup by name has
1662 failed. The ``addr'' and ``endaddr'' fields may have already
1663 been relocated. If so, the relocation offset (i.e. the
1664 ANOFFSET value) needs to be subtracted from these values when
1665 performing the comparison. We unconditionally subtract it,
1666 because, when no relocation has been performed, the ANOFFSET
1667 value will simply be zero.
1669 The address of the symbol whose section we're fixing up HAS
1670 NOT BEEN adjusted (relocated) yet. It can't have been since
1671 the section isn't yet known and knowing the section is
1672 necessary in order to add the correct relocation value. In
1673 other words, we wouldn't even be in this function (attempting
1674 to compute the section) if it were already known.
1676 Note that it is possible to search the minimal symbols
1677 (subtracting the relocation value if necessary) to find the
1678 matching minimal symbol, but this is overkill and much less
1679 efficient. It is not necessary to find the matching minimal
1680 symbol, only its section.
1682 Note that this technique (of doing a section table search)
1683 can fail when unrelocated section addresses overlap. For
1684 this reason, we still attempt a lookup by name prior to doing
1685 a search of the section table. */
1687 struct obj_section *s;
1690 ALL_OBJFILE_OSECTIONS (objfile, s)
1692 int idx = s - objfile->sections;
1693 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1698 if (obj_section_addr (s) - offset <= addr
1699 && addr < obj_section_endaddr (s) - offset)
1701 ginfo->section = idx;
1706 /* If we didn't find the section, assume it is in the first
1707 section. If there is no allocated section, then it hardly
1708 matters what we pick, so just pick zero. */
1712 ginfo->section = fallback;
1717 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1724 if (!SYMBOL_OBJFILE_OWNED (sym))
1727 /* We either have an OBJFILE, or we can get at it from the sym's
1728 symtab. Anything else is a bug. */
1729 gdb_assert (objfile || symbol_symtab (sym));
1731 if (objfile == NULL)
1732 objfile = symbol_objfile (sym);
1734 if (SYMBOL_OBJ_SECTION (objfile, sym))
1737 /* We should have an objfile by now. */
1738 gdb_assert (objfile);
1740 switch (SYMBOL_CLASS (sym))
1744 addr = SYMBOL_VALUE_ADDRESS (sym);
1747 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1751 /* Nothing else will be listed in the minsyms -- no use looking
1756 fixup_section (&sym->ginfo, addr, objfile);
1763 demangle_for_lookup_info::demangle_for_lookup_info
1764 (const lookup_name_info &lookup_name, language lang)
1766 demangle_result_storage storage;
1768 if (lookup_name.ignore_parameters () && lang == language_cplus)
1770 gdb::unique_xmalloc_ptr<char> without_params
1771 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1772 lookup_name.completion_mode ());
1774 if (without_params != NULL)
1776 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1777 m_demangled_name = demangle_for_lookup (without_params.get (),
1783 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1784 m_demangled_name = lookup_name.name ();
1786 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1792 const lookup_name_info &
1793 lookup_name_info::match_any ()
1795 /* Lookup any symbol that "" would complete. I.e., this matches all
1797 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1803 /* Compute the demangled form of NAME as used by the various symbol
1804 lookup functions. The result can either be the input NAME
1805 directly, or a pointer to a buffer owned by the STORAGE object.
1807 For Ada, this function just returns NAME, unmodified.
1808 Normally, Ada symbol lookups are performed using the encoded name
1809 rather than the demangled name, and so it might seem to make sense
1810 for this function to return an encoded version of NAME.
1811 Unfortunately, we cannot do this, because this function is used in
1812 circumstances where it is not appropriate to try to encode NAME.
1813 For instance, when displaying the frame info, we demangle the name
1814 of each parameter, and then perform a symbol lookup inside our
1815 function using that demangled name. In Ada, certain functions
1816 have internally-generated parameters whose name contain uppercase
1817 characters. Encoding those name would result in those uppercase
1818 characters to become lowercase, and thus cause the symbol lookup
1822 demangle_for_lookup (const char *name, enum language lang,
1823 demangle_result_storage &storage)
1825 /* If we are using C++, D, or Go, demangle the name before doing a
1826 lookup, so we can always binary search. */
1827 if (lang == language_cplus)
1829 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1830 if (demangled_name != NULL)
1831 return storage.set_malloc_ptr (demangled_name);
1833 /* If we were given a non-mangled name, canonicalize it
1834 according to the language (so far only for C++). */
1835 std::string canon = cp_canonicalize_string (name);
1836 if (!canon.empty ())
1837 return storage.swap_string (canon);
1839 else if (lang == language_d)
1841 char *demangled_name = d_demangle (name, 0);
1842 if (demangled_name != NULL)
1843 return storage.set_malloc_ptr (demangled_name);
1845 else if (lang == language_go)
1847 char *demangled_name = go_demangle (name, 0);
1848 if (demangled_name != NULL)
1849 return storage.set_malloc_ptr (demangled_name);
1858 search_name_hash (enum language language, const char *search_name)
1860 return language_def (language)->la_search_name_hash (search_name);
1865 This function (or rather its subordinates) have a bunch of loops and
1866 it would seem to be attractive to put in some QUIT's (though I'm not really
1867 sure whether it can run long enough to be really important). But there
1868 are a few calls for which it would appear to be bad news to quit
1869 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1870 that there is C++ code below which can error(), but that probably
1871 doesn't affect these calls since they are looking for a known
1872 variable and thus can probably assume it will never hit the C++
1876 lookup_symbol_in_language (const char *name, const struct block *block,
1877 const domain_enum domain, enum language lang,
1878 struct field_of_this_result *is_a_field_of_this)
1880 demangle_result_storage storage;
1881 const char *modified_name = demangle_for_lookup (name, lang, storage);
1883 return lookup_symbol_aux (modified_name,
1884 symbol_name_match_type::FULL,
1885 block, domain, lang,
1886 is_a_field_of_this);
1892 lookup_symbol (const char *name, const struct block *block,
1894 struct field_of_this_result *is_a_field_of_this)
1896 return lookup_symbol_in_language (name, block, domain,
1897 current_language->la_language,
1898 is_a_field_of_this);
1904 lookup_symbol_search_name (const char *search_name, const struct block *block,
1907 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1908 block, domain, language_asm, NULL);
1914 lookup_language_this (const struct language_defn *lang,
1915 const struct block *block)
1917 if (lang->la_name_of_this == NULL || block == NULL)
1920 if (symbol_lookup_debug > 1)
1922 struct objfile *objfile = lookup_objfile_from_block (block);
1924 fprintf_unfiltered (gdb_stdlog,
1925 "lookup_language_this (%s, %s (objfile %s))",
1926 lang->la_name, host_address_to_string (block),
1927 objfile_debug_name (objfile));
1934 sym = block_lookup_symbol (block, lang->la_name_of_this,
1935 symbol_name_match_type::SEARCH_NAME,
1939 if (symbol_lookup_debug > 1)
1941 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1942 SYMBOL_PRINT_NAME (sym),
1943 host_address_to_string (sym),
1944 host_address_to_string (block));
1946 return (struct block_symbol) {sym, block};
1948 if (BLOCK_FUNCTION (block))
1950 block = BLOCK_SUPERBLOCK (block);
1953 if (symbol_lookup_debug > 1)
1954 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1958 /* Given TYPE, a structure/union,
1959 return 1 if the component named NAME from the ultimate target
1960 structure/union is defined, otherwise, return 0. */
1963 check_field (struct type *type, const char *name,
1964 struct field_of_this_result *is_a_field_of_this)
1968 /* The type may be a stub. */
1969 type = check_typedef (type);
1971 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1973 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1975 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1977 is_a_field_of_this->type = type;
1978 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1983 /* C++: If it was not found as a data field, then try to return it
1984 as a pointer to a method. */
1986 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1988 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1990 is_a_field_of_this->type = type;
1991 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1996 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1997 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2003 /* Behave like lookup_symbol except that NAME is the natural name
2004 (e.g., demangled name) of the symbol that we're looking for. */
2006 static struct block_symbol
2007 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2008 const struct block *block,
2009 const domain_enum domain, enum language language,
2010 struct field_of_this_result *is_a_field_of_this)
2012 struct block_symbol result;
2013 const struct language_defn *langdef;
2015 if (symbol_lookup_debug)
2017 struct objfile *objfile = lookup_objfile_from_block (block);
2019 fprintf_unfiltered (gdb_stdlog,
2020 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2021 name, host_address_to_string (block),
2023 ? objfile_debug_name (objfile) : "NULL",
2024 domain_name (domain), language_str (language));
2027 /* Make sure we do something sensible with is_a_field_of_this, since
2028 the callers that set this parameter to some non-null value will
2029 certainly use it later. If we don't set it, the contents of
2030 is_a_field_of_this are undefined. */
2031 if (is_a_field_of_this != NULL)
2032 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2034 /* Search specified block and its superiors. Don't search
2035 STATIC_BLOCK or GLOBAL_BLOCK. */
2037 result = lookup_local_symbol (name, match_type, block, domain, language);
2038 if (result.symbol != NULL)
2040 if (symbol_lookup_debug)
2042 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2043 host_address_to_string (result.symbol));
2048 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2049 check to see if NAME is a field of `this'. */
2051 langdef = language_def (language);
2053 /* Don't do this check if we are searching for a struct. It will
2054 not be found by check_field, but will be found by other
2056 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2058 result = lookup_language_this (langdef, block);
2062 struct type *t = result.symbol->type;
2064 /* I'm not really sure that type of this can ever
2065 be typedefed; just be safe. */
2066 t = check_typedef (t);
2067 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2068 t = TYPE_TARGET_TYPE (t);
2070 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2071 && TYPE_CODE (t) != TYPE_CODE_UNION)
2072 error (_("Internal error: `%s' is not an aggregate"),
2073 langdef->la_name_of_this);
2075 if (check_field (t, name, is_a_field_of_this))
2077 if (symbol_lookup_debug)
2079 fprintf_unfiltered (gdb_stdlog,
2080 "lookup_symbol_aux (...) = NULL\n");
2087 /* Now do whatever is appropriate for LANGUAGE to look
2088 up static and global variables. */
2090 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2091 if (result.symbol != NULL)
2093 if (symbol_lookup_debug)
2095 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2096 host_address_to_string (result.symbol));
2101 /* Now search all static file-level symbols. Not strictly correct,
2102 but more useful than an error. */
2104 result = lookup_static_symbol (name, domain);
2105 if (symbol_lookup_debug)
2107 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2108 result.symbol != NULL
2109 ? host_address_to_string (result.symbol)
2115 /* Check to see if the symbol is defined in BLOCK or its superiors.
2116 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2118 static struct block_symbol
2119 lookup_local_symbol (const char *name,
2120 symbol_name_match_type match_type,
2121 const struct block *block,
2122 const domain_enum domain,
2123 enum language language)
2126 const struct block *static_block = block_static_block (block);
2127 const char *scope = block_scope (block);
2129 /* Check if either no block is specified or it's a global block. */
2131 if (static_block == NULL)
2134 while (block != static_block)
2136 sym = lookup_symbol_in_block (name, match_type, block, domain);
2138 return (struct block_symbol) {sym, block};
2140 if (language == language_cplus || language == language_fortran)
2142 struct block_symbol blocksym
2143 = cp_lookup_symbol_imports_or_template (scope, name, block,
2146 if (blocksym.symbol != NULL)
2150 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2152 block = BLOCK_SUPERBLOCK (block);
2155 /* We've reached the end of the function without finding a result. */
2163 lookup_objfile_from_block (const struct block *block)
2168 block = block_global_block (block);
2169 /* Look through all blockvectors. */
2170 for (objfile *obj : current_program_space->objfiles ())
2172 for (compunit_symtab *cust : obj->compunits ())
2173 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2176 if (obj->separate_debug_objfile_backlink)
2177 obj = obj->separate_debug_objfile_backlink;
2189 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2190 const struct block *block,
2191 const domain_enum domain)
2195 if (symbol_lookup_debug > 1)
2197 struct objfile *objfile = lookup_objfile_from_block (block);
2199 fprintf_unfiltered (gdb_stdlog,
2200 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2201 name, host_address_to_string (block),
2202 objfile_debug_name (objfile),
2203 domain_name (domain));
2206 sym = block_lookup_symbol (block, name, match_type, domain);
2209 if (symbol_lookup_debug > 1)
2211 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2212 host_address_to_string (sym));
2214 return fixup_symbol_section (sym, NULL);
2217 if (symbol_lookup_debug > 1)
2218 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2225 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2227 const domain_enum domain)
2229 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2231 struct block_symbol result
2232 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2234 if (result.symbol != NULL)
2241 /* Check to see if the symbol is defined in one of the OBJFILE's
2242 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2243 depending on whether or not we want to search global symbols or
2246 static struct block_symbol
2247 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2248 const char *name, const domain_enum domain)
2250 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2252 if (symbol_lookup_debug > 1)
2254 fprintf_unfiltered (gdb_stdlog,
2255 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2256 objfile_debug_name (objfile),
2257 block_index == GLOBAL_BLOCK
2258 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2259 name, domain_name (domain));
2262 for (compunit_symtab *cust : objfile->compunits ())
2264 const struct blockvector *bv;
2265 const struct block *block;
2266 struct block_symbol result;
2268 bv = COMPUNIT_BLOCKVECTOR (cust);
2269 block = BLOCKVECTOR_BLOCK (bv, block_index);
2270 result.symbol = block_lookup_symbol_primary (block, name, domain);
2271 result.block = block;
2272 if (result.symbol != NULL)
2274 if (symbol_lookup_debug > 1)
2276 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2277 host_address_to_string (result.symbol),
2278 host_address_to_string (block));
2280 result.symbol = fixup_symbol_section (result.symbol, objfile);
2286 if (symbol_lookup_debug > 1)
2287 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2291 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2292 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2293 and all associated separate debug objfiles.
2295 Normally we only look in OBJFILE, and not any separate debug objfiles
2296 because the outer loop will cause them to be searched too. This case is
2297 different. Here we're called from search_symbols where it will only
2298 call us for the objfile that contains a matching minsym. */
2300 static struct block_symbol
2301 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2302 const char *linkage_name,
2305 enum language lang = current_language->la_language;
2306 struct objfile *main_objfile;
2308 demangle_result_storage storage;
2309 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2311 if (objfile->separate_debug_objfile_backlink)
2312 main_objfile = objfile->separate_debug_objfile_backlink;
2314 main_objfile = objfile;
2316 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2318 struct block_symbol result;
2320 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2321 modified_name, domain);
2322 if (result.symbol == NULL)
2323 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2324 modified_name, domain);
2325 if (result.symbol != NULL)
2332 /* A helper function that throws an exception when a symbol was found
2333 in a psymtab but not in a symtab. */
2335 static void ATTRIBUTE_NORETURN
2336 error_in_psymtab_expansion (int block_index, const char *name,
2337 struct compunit_symtab *cust)
2340 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2341 %s may be an inlined function, or may be a template function\n \
2342 (if a template, try specifying an instantiation: %s<type>)."),
2343 block_index == GLOBAL_BLOCK ? "global" : "static",
2345 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2349 /* A helper function for various lookup routines that interfaces with
2350 the "quick" symbol table functions. */
2352 static struct block_symbol
2353 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2354 const char *name, const domain_enum domain)
2356 struct compunit_symtab *cust;
2357 const struct blockvector *bv;
2358 const struct block *block;
2359 struct block_symbol result;
2364 if (symbol_lookup_debug > 1)
2366 fprintf_unfiltered (gdb_stdlog,
2367 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2368 objfile_debug_name (objfile),
2369 block_index == GLOBAL_BLOCK
2370 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2371 name, domain_name (domain));
2374 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2377 if (symbol_lookup_debug > 1)
2379 fprintf_unfiltered (gdb_stdlog,
2380 "lookup_symbol_via_quick_fns (...) = NULL\n");
2385 bv = COMPUNIT_BLOCKVECTOR (cust);
2386 block = BLOCKVECTOR_BLOCK (bv, block_index);
2387 result.symbol = block_lookup_symbol (block, name,
2388 symbol_name_match_type::FULL, domain);
2389 if (result.symbol == NULL)
2390 error_in_psymtab_expansion (block_index, name, cust);
2392 if (symbol_lookup_debug > 1)
2394 fprintf_unfiltered (gdb_stdlog,
2395 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2396 host_address_to_string (result.symbol),
2397 host_address_to_string (block));
2400 result.symbol = fixup_symbol_section (result.symbol, objfile);
2401 result.block = block;
2408 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2410 const struct block *block,
2411 const domain_enum domain)
2413 struct block_symbol result;
2415 /* NOTE: carlton/2003-05-19: The comments below were written when
2416 this (or what turned into this) was part of lookup_symbol_aux;
2417 I'm much less worried about these questions now, since these
2418 decisions have turned out well, but I leave these comments here
2421 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2422 not it would be appropriate to search the current global block
2423 here as well. (That's what this code used to do before the
2424 is_a_field_of_this check was moved up.) On the one hand, it's
2425 redundant with the lookup in all objfiles search that happens
2426 next. On the other hand, if decode_line_1 is passed an argument
2427 like filename:var, then the user presumably wants 'var' to be
2428 searched for in filename. On the third hand, there shouldn't be
2429 multiple global variables all of which are named 'var', and it's
2430 not like decode_line_1 has ever restricted its search to only
2431 global variables in a single filename. All in all, only
2432 searching the static block here seems best: it's correct and it's
2435 /* NOTE: carlton/2002-12-05: There's also a possible performance
2436 issue here: if you usually search for global symbols in the
2437 current file, then it would be slightly better to search the
2438 current global block before searching all the symtabs. But there
2439 are other factors that have a much greater effect on performance
2440 than that one, so I don't think we should worry about that for
2443 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2444 the current objfile. Searching the current objfile first is useful
2445 for both matching user expectations as well as performance. */
2447 result = lookup_symbol_in_static_block (name, block, domain);
2448 if (result.symbol != NULL)
2451 /* If we didn't find a definition for a builtin type in the static block,
2452 search for it now. This is actually the right thing to do and can be
2453 a massive performance win. E.g., when debugging a program with lots of
2454 shared libraries we could search all of them only to find out the
2455 builtin type isn't defined in any of them. This is common for types
2457 if (domain == VAR_DOMAIN)
2459 struct gdbarch *gdbarch;
2462 gdbarch = target_gdbarch ();
2464 gdbarch = block_gdbarch (block);
2465 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2467 result.block = NULL;
2468 if (result.symbol != NULL)
2472 return lookup_global_symbol (name, block, domain);
2478 lookup_symbol_in_static_block (const char *name,
2479 const struct block *block,
2480 const domain_enum domain)
2482 const struct block *static_block = block_static_block (block);
2485 if (static_block == NULL)
2488 if (symbol_lookup_debug)
2490 struct objfile *objfile = lookup_objfile_from_block (static_block);
2492 fprintf_unfiltered (gdb_stdlog,
2493 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2496 host_address_to_string (block),
2497 objfile_debug_name (objfile),
2498 domain_name (domain));
2501 sym = lookup_symbol_in_block (name,
2502 symbol_name_match_type::FULL,
2503 static_block, domain);
2504 if (symbol_lookup_debug)
2506 fprintf_unfiltered (gdb_stdlog,
2507 "lookup_symbol_in_static_block (...) = %s\n",
2508 sym != NULL ? host_address_to_string (sym) : "NULL");
2510 return (struct block_symbol) {sym, static_block};
2513 /* Perform the standard symbol lookup of NAME in OBJFILE:
2514 1) First search expanded symtabs, and if not found
2515 2) Search the "quick" symtabs (partial or .gdb_index).
2516 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2518 static struct block_symbol
2519 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2520 const char *name, const domain_enum domain)
2522 struct block_symbol result;
2524 if (symbol_lookup_debug)
2526 fprintf_unfiltered (gdb_stdlog,
2527 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2528 objfile_debug_name (objfile),
2529 block_index == GLOBAL_BLOCK
2530 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2531 name, domain_name (domain));
2534 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2536 if (result.symbol != NULL)
2538 if (symbol_lookup_debug)
2540 fprintf_unfiltered (gdb_stdlog,
2541 "lookup_symbol_in_objfile (...) = %s"
2543 host_address_to_string (result.symbol));
2548 result = lookup_symbol_via_quick_fns (objfile, block_index,
2550 if (symbol_lookup_debug)
2552 fprintf_unfiltered (gdb_stdlog,
2553 "lookup_symbol_in_objfile (...) = %s%s\n",
2554 result.symbol != NULL
2555 ? host_address_to_string (result.symbol)
2557 result.symbol != NULL ? " (via quick fns)" : "");
2565 lookup_static_symbol (const char *name, const domain_enum domain)
2567 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2568 struct block_symbol result;
2569 struct block_symbol_cache *bsc;
2570 struct symbol_cache_slot *slot;
2572 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2573 NULL for OBJFILE_CONTEXT. */
2574 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2576 if (result.symbol != NULL)
2578 if (SYMBOL_LOOKUP_FAILED_P (result))
2583 for (objfile *objfile : current_program_space->objfiles ())
2585 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2586 if (result.symbol != NULL)
2588 /* Still pass NULL for OBJFILE_CONTEXT here. */
2589 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2595 /* Still pass NULL for OBJFILE_CONTEXT here. */
2596 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2600 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2602 struct global_sym_lookup_data
2604 /* The name of the symbol we are searching for. */
2607 /* The domain to use for our search. */
2610 /* The field where the callback should store the symbol if found.
2611 It should be initialized to {NULL, NULL} before the search is started. */
2612 struct block_symbol result;
2615 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2616 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2617 OBJFILE. The arguments for the search are passed via CB_DATA,
2618 which in reality is a pointer to struct global_sym_lookup_data. */
2621 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2624 struct global_sym_lookup_data *data =
2625 (struct global_sym_lookup_data *) cb_data;
2627 gdb_assert (data->result.symbol == NULL
2628 && data->result.block == NULL);
2630 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2631 data->name, data->domain);
2633 /* If we found a match, tell the iterator to stop. Otherwise,
2635 return (data->result.symbol != NULL);
2641 lookup_global_symbol (const char *name,
2642 const struct block *block,
2643 const domain_enum domain)
2645 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2646 struct block_symbol result;
2647 struct objfile *objfile;
2648 struct global_sym_lookup_data lookup_data;
2649 struct block_symbol_cache *bsc;
2650 struct symbol_cache_slot *slot;
2652 objfile = lookup_objfile_from_block (block);
2654 /* First see if we can find the symbol in the cache.
2655 This works because we use the current objfile to qualify the lookup. */
2656 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2658 if (result.symbol != NULL)
2660 if (SYMBOL_LOOKUP_FAILED_P (result))
2665 /* Call library-specific lookup procedure. */
2666 if (objfile != NULL)
2667 result = solib_global_lookup (objfile, name, domain);
2669 /* If that didn't work go a global search (of global blocks, heh). */
2670 if (result.symbol == NULL)
2672 memset (&lookup_data, 0, sizeof (lookup_data));
2673 lookup_data.name = name;
2674 lookup_data.domain = domain;
2675 gdbarch_iterate_over_objfiles_in_search_order
2676 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2677 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2678 result = lookup_data.result;
2681 if (result.symbol != NULL)
2682 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2684 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2690 symbol_matches_domain (enum language symbol_language,
2691 domain_enum symbol_domain,
2694 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2695 Similarly, any Ada type declaration implicitly defines a typedef. */
2696 if (symbol_language == language_cplus
2697 || symbol_language == language_d
2698 || symbol_language == language_ada
2699 || symbol_language == language_rust)
2701 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2702 && symbol_domain == STRUCT_DOMAIN)
2705 /* For all other languages, strict match is required. */
2706 return (symbol_domain == domain);
2712 lookup_transparent_type (const char *name)
2714 return current_language->la_lookup_transparent_type (name);
2717 /* A helper for basic_lookup_transparent_type that interfaces with the
2718 "quick" symbol table functions. */
2720 static struct type *
2721 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2724 struct compunit_symtab *cust;
2725 const struct blockvector *bv;
2726 const struct block *block;
2731 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2736 bv = COMPUNIT_BLOCKVECTOR (cust);
2737 block = BLOCKVECTOR_BLOCK (bv, block_index);
2738 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2739 block_find_non_opaque_type, NULL);
2741 error_in_psymtab_expansion (block_index, name, cust);
2742 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2743 return SYMBOL_TYPE (sym);
2746 /* Subroutine of basic_lookup_transparent_type to simplify it.
2747 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2748 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2750 static struct type *
2751 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2754 const struct blockvector *bv;
2755 const struct block *block;
2756 const struct symbol *sym;
2758 for (compunit_symtab *cust : objfile->compunits ())
2760 bv = COMPUNIT_BLOCKVECTOR (cust);
2761 block = BLOCKVECTOR_BLOCK (bv, block_index);
2762 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2763 block_find_non_opaque_type, NULL);
2766 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2767 return SYMBOL_TYPE (sym);
2774 /* The standard implementation of lookup_transparent_type. This code
2775 was modeled on lookup_symbol -- the parts not relevant to looking
2776 up types were just left out. In particular it's assumed here that
2777 types are available in STRUCT_DOMAIN and only in file-static or
2781 basic_lookup_transparent_type (const char *name)
2785 /* Now search all the global symbols. Do the symtab's first, then
2786 check the psymtab's. If a psymtab indicates the existence
2787 of the desired name as a global, then do psymtab-to-symtab
2788 conversion on the fly and return the found symbol. */
2790 for (objfile *objfile : current_program_space->objfiles ())
2792 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2797 for (objfile *objfile : current_program_space->objfiles ())
2799 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2804 /* Now search the static file-level symbols.
2805 Not strictly correct, but more useful than an error.
2806 Do the symtab's first, then
2807 check the psymtab's. If a psymtab indicates the existence
2808 of the desired name as a file-level static, then do psymtab-to-symtab
2809 conversion on the fly and return the found symbol. */
2811 for (objfile *objfile : current_program_space->objfiles ())
2813 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2818 for (objfile *objfile : current_program_space->objfiles ())
2820 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2825 return (struct type *) 0;
2828 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2830 For each symbol that matches, CALLBACK is called. The symbol is
2831 passed to the callback.
2833 If CALLBACK returns false, the iteration ends. Otherwise, the
2834 search continues. */
2837 iterate_over_symbols (const struct block *block,
2838 const lookup_name_info &name,
2839 const domain_enum domain,
2840 gdb::function_view<symbol_found_callback_ftype> callback)
2842 struct block_iterator iter;
2845 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2847 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2848 SYMBOL_DOMAIN (sym), domain))
2850 struct block_symbol block_sym = {sym, block};
2852 if (!callback (&block_sym))
2858 /* Find the compunit symtab associated with PC and SECTION.
2859 This will read in debug info as necessary. */
2861 struct compunit_symtab *
2862 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2864 struct compunit_symtab *best_cust = NULL;
2865 CORE_ADDR distance = 0;
2866 struct bound_minimal_symbol msymbol;
2868 /* If we know that this is not a text address, return failure. This is
2869 necessary because we loop based on the block's high and low code
2870 addresses, which do not include the data ranges, and because
2871 we call find_pc_sect_psymtab which has a similar restriction based
2872 on the partial_symtab's texthigh and textlow. */
2873 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2874 if (msymbol.minsym && msymbol.minsym->data_p ())
2877 /* Search all symtabs for the one whose file contains our address, and which
2878 is the smallest of all the ones containing the address. This is designed
2879 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2880 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2881 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2883 This happens for native ecoff format, where code from included files
2884 gets its own symtab. The symtab for the included file should have
2885 been read in already via the dependency mechanism.
2886 It might be swifter to create several symtabs with the same name
2887 like xcoff does (I'm not sure).
2889 It also happens for objfiles that have their functions reordered.
2890 For these, the symtab we are looking for is not necessarily read in. */
2892 for (objfile *obj_file : current_program_space->objfiles ())
2894 for (compunit_symtab *cust : obj_file->compunits ())
2896 const struct block *b;
2897 const struct blockvector *bv;
2899 bv = COMPUNIT_BLOCKVECTOR (cust);
2900 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2902 if (BLOCK_START (b) <= pc
2903 && BLOCK_END (b) > pc
2905 || BLOCK_END (b) - BLOCK_START (b) < distance))
2907 /* For an objfile that has its functions reordered,
2908 find_pc_psymtab will find the proper partial symbol table
2909 and we simply return its corresponding symtab. */
2910 /* In order to better support objfiles that contain both
2911 stabs and coff debugging info, we continue on if a psymtab
2913 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2915 struct compunit_symtab *result;
2918 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2928 struct block_iterator iter;
2929 struct symbol *sym = NULL;
2931 ALL_BLOCK_SYMBOLS (b, iter, sym)
2933 fixup_symbol_section (sym, obj_file);
2934 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2940 continue; /* No symbol in this symtab matches
2943 distance = BLOCK_END (b) - BLOCK_START (b);
2949 if (best_cust != NULL)
2952 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2954 for (objfile *objf : current_program_space->objfiles ())
2956 struct compunit_symtab *result;
2960 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2971 /* Find the compunit symtab associated with PC.
2972 This will read in debug info as necessary.
2973 Backward compatibility, no section. */
2975 struct compunit_symtab *
2976 find_pc_compunit_symtab (CORE_ADDR pc)
2978 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2984 find_symbol_at_address (CORE_ADDR address)
2986 for (objfile *objfile : current_program_space->objfiles ())
2988 if (objfile->sf == NULL
2989 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
2992 struct compunit_symtab *symtab
2993 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
2996 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
2998 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3000 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3001 struct block_iterator iter;
3004 ALL_BLOCK_SYMBOLS (b, iter, sym)
3006 if (SYMBOL_CLASS (sym) == LOC_STATIC
3007 && SYMBOL_VALUE_ADDRESS (sym) == address)
3019 /* Find the source file and line number for a given PC value and SECTION.
3020 Return a structure containing a symtab pointer, a line number,
3021 and a pc range for the entire source line.
3022 The value's .pc field is NOT the specified pc.
3023 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3024 use the line that ends there. Otherwise, in that case, the line
3025 that begins there is used. */
3027 /* The big complication here is that a line may start in one file, and end just
3028 before the start of another file. This usually occurs when you #include
3029 code in the middle of a subroutine. To properly find the end of a line's PC
3030 range, we must search all symtabs associated with this compilation unit, and
3031 find the one whose first PC is closer than that of the next line in this
3034 struct symtab_and_line
3035 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3037 struct compunit_symtab *cust;
3038 struct linetable *l;
3040 struct linetable_entry *item;
3041 const struct blockvector *bv;
3042 struct bound_minimal_symbol msymbol;
3044 /* Info on best line seen so far, and where it starts, and its file. */
3046 struct linetable_entry *best = NULL;
3047 CORE_ADDR best_end = 0;
3048 struct symtab *best_symtab = 0;
3050 /* Store here the first line number
3051 of a file which contains the line at the smallest pc after PC.
3052 If we don't find a line whose range contains PC,
3053 we will use a line one less than this,
3054 with a range from the start of that file to the first line's pc. */
3055 struct linetable_entry *alt = NULL;
3057 /* Info on best line seen in this file. */
3059 struct linetable_entry *prev;
3061 /* If this pc is not from the current frame,
3062 it is the address of the end of a call instruction.
3063 Quite likely that is the start of the following statement.
3064 But what we want is the statement containing the instruction.
3065 Fudge the pc to make sure we get that. */
3067 /* It's tempting to assume that, if we can't find debugging info for
3068 any function enclosing PC, that we shouldn't search for line
3069 number info, either. However, GAS can emit line number info for
3070 assembly files --- very helpful when debugging hand-written
3071 assembly code. In such a case, we'd have no debug info for the
3072 function, but we would have line info. */
3077 /* elz: added this because this function returned the wrong
3078 information if the pc belongs to a stub (import/export)
3079 to call a shlib function. This stub would be anywhere between
3080 two functions in the target, and the line info was erroneously
3081 taken to be the one of the line before the pc. */
3083 /* RT: Further explanation:
3085 * We have stubs (trampolines) inserted between procedures.
3087 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3088 * exists in the main image.
3090 * In the minimal symbol table, we have a bunch of symbols
3091 * sorted by start address. The stubs are marked as "trampoline",
3092 * the others appear as text. E.g.:
3094 * Minimal symbol table for main image
3095 * main: code for main (text symbol)
3096 * shr1: stub (trampoline symbol)
3097 * foo: code for foo (text symbol)
3099 * Minimal symbol table for "shr1" image:
3101 * shr1: code for shr1 (text symbol)
3104 * So the code below is trying to detect if we are in the stub
3105 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3106 * and if found, do the symbolization from the real-code address
3107 * rather than the stub address.
3109 * Assumptions being made about the minimal symbol table:
3110 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3111 * if we're really in the trampoline.s If we're beyond it (say
3112 * we're in "foo" in the above example), it'll have a closer
3113 * symbol (the "foo" text symbol for example) and will not
3114 * return the trampoline.
3115 * 2. lookup_minimal_symbol_text() will find a real text symbol
3116 * corresponding to the trampoline, and whose address will
3117 * be different than the trampoline address. I put in a sanity
3118 * check for the address being the same, to avoid an
3119 * infinite recursion.
3121 msymbol = lookup_minimal_symbol_by_pc (pc);
3122 if (msymbol.minsym != NULL)
3123 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3125 struct bound_minimal_symbol mfunsym
3126 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3129 if (mfunsym.minsym == NULL)
3130 /* I eliminated this warning since it is coming out
3131 * in the following situation:
3132 * gdb shmain // test program with shared libraries
3133 * (gdb) break shr1 // function in shared lib
3134 * Warning: In stub for ...
3135 * In the above situation, the shared lib is not loaded yet,
3136 * so of course we can't find the real func/line info,
3137 * but the "break" still works, and the warning is annoying.
3138 * So I commented out the warning. RT */
3139 /* warning ("In stub for %s; unable to find real function/line info",
3140 SYMBOL_LINKAGE_NAME (msymbol)); */
3143 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3144 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3145 /* Avoid infinite recursion */
3146 /* See above comment about why warning is commented out. */
3147 /* warning ("In stub for %s; unable to find real function/line info",
3148 SYMBOL_LINKAGE_NAME (msymbol)); */
3152 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3155 symtab_and_line val;
3156 val.pspace = current_program_space;
3158 cust = find_pc_sect_compunit_symtab (pc, section);
3161 /* If no symbol information, return previous pc. */
3168 bv = COMPUNIT_BLOCKVECTOR (cust);
3170 /* Look at all the symtabs that share this blockvector.
3171 They all have the same apriori range, that we found was right;
3172 but they have different line tables. */
3174 for (symtab *iter_s : compunit_filetabs (cust))
3176 /* Find the best line in this symtab. */
3177 l = SYMTAB_LINETABLE (iter_s);
3183 /* I think len can be zero if the symtab lacks line numbers
3184 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3185 I'm not sure which, and maybe it depends on the symbol
3191 item = l->item; /* Get first line info. */
3193 /* Is this file's first line closer than the first lines of other files?
3194 If so, record this file, and its first line, as best alternate. */
3195 if (item->pc > pc && (!alt || item->pc < alt->pc))
3198 auto pc_compare = [](const CORE_ADDR & comp_pc,
3199 const struct linetable_entry & lhs)->bool
3201 return comp_pc < lhs.pc;
3204 struct linetable_entry *first = item;
3205 struct linetable_entry *last = item + len;
3206 item = std::upper_bound (first, last, pc, pc_compare);
3208 prev = item - 1; /* Found a matching item. */
3210 /* At this point, prev points at the line whose start addr is <= pc, and
3211 item points at the next line. If we ran off the end of the linetable
3212 (pc >= start of the last line), then prev == item. If pc < start of
3213 the first line, prev will not be set. */
3215 /* Is this file's best line closer than the best in the other files?
3216 If so, record this file, and its best line, as best so far. Don't
3217 save prev if it represents the end of a function (i.e. line number
3218 0) instead of a real line. */
3220 if (prev && prev->line && (!best || prev->pc > best->pc))
3223 best_symtab = iter_s;
3225 /* Discard BEST_END if it's before the PC of the current BEST. */
3226 if (best_end <= best->pc)
3230 /* If another line (denoted by ITEM) is in the linetable and its
3231 PC is after BEST's PC, but before the current BEST_END, then
3232 use ITEM's PC as the new best_end. */
3233 if (best && item < last && item->pc > best->pc
3234 && (best_end == 0 || best_end > item->pc))
3235 best_end = item->pc;
3240 /* If we didn't find any line number info, just return zeros.
3241 We used to return alt->line - 1 here, but that could be
3242 anywhere; if we don't have line number info for this PC,
3243 don't make some up. */
3246 else if (best->line == 0)
3248 /* If our best fit is in a range of PC's for which no line
3249 number info is available (line number is zero) then we didn't
3250 find any valid line information. */
3255 val.symtab = best_symtab;
3256 val.line = best->line;
3258 if (best_end && (!alt || best_end < alt->pc))
3263 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3265 val.section = section;
3269 /* Backward compatibility (no section). */
3271 struct symtab_and_line
3272 find_pc_line (CORE_ADDR pc, int notcurrent)
3274 struct obj_section *section;
3276 section = find_pc_overlay (pc);
3277 if (pc_in_unmapped_range (pc, section))
3278 pc = overlay_mapped_address (pc, section);
3279 return find_pc_sect_line (pc, section, notcurrent);
3285 find_pc_line_symtab (CORE_ADDR pc)
3287 struct symtab_and_line sal;
3289 /* This always passes zero for NOTCURRENT to find_pc_line.
3290 There are currently no callers that ever pass non-zero. */
3291 sal = find_pc_line (pc, 0);
3295 /* Find line number LINE in any symtab whose name is the same as
3298 If found, return the symtab that contains the linetable in which it was
3299 found, set *INDEX to the index in the linetable of the best entry
3300 found, and set *EXACT_MATCH nonzero if the value returned is an
3303 If not found, return NULL. */
3306 find_line_symtab (struct symtab *sym_tab, int line,
3307 int *index, int *exact_match)
3309 int exact = 0; /* Initialized here to avoid a compiler warning. */
3311 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3315 struct linetable *best_linetable;
3316 struct symtab *best_symtab;
3318 /* First try looking it up in the given symtab. */
3319 best_linetable = SYMTAB_LINETABLE (sym_tab);
3320 best_symtab = sym_tab;
3321 best_index = find_line_common (best_linetable, line, &exact, 0);
3322 if (best_index < 0 || !exact)
3324 /* Didn't find an exact match. So we better keep looking for
3325 another symtab with the same name. In the case of xcoff,
3326 multiple csects for one source file (produced by IBM's FORTRAN
3327 compiler) produce multiple symtabs (this is unavoidable
3328 assuming csects can be at arbitrary places in memory and that
3329 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3331 /* BEST is the smallest linenumber > LINE so far seen,
3332 or 0 if none has been seen so far.
3333 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3336 if (best_index >= 0)
3337 best = best_linetable->item[best_index].line;
3341 for (objfile *objfile : current_program_space->objfiles ())
3344 objfile->sf->qf->expand_symtabs_with_fullname
3345 (objfile, symtab_to_fullname (sym_tab));
3348 for (objfile *objfile : current_program_space->objfiles ())
3350 for (compunit_symtab *cu : objfile->compunits ())
3352 for (symtab *s : compunit_filetabs (cu))
3354 struct linetable *l;
3357 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3359 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3360 symtab_to_fullname (s)) != 0)
3362 l = SYMTAB_LINETABLE (s);
3363 ind = find_line_common (l, line, &exact, 0);
3373 if (best == 0 || l->item[ind].line < best)
3375 best = l->item[ind].line;
3390 *index = best_index;
3392 *exact_match = exact;
3397 /* Given SYMTAB, returns all the PCs function in the symtab that
3398 exactly match LINE. Returns an empty vector if there are no exact
3399 matches, but updates BEST_ITEM in this case. */
3401 std::vector<CORE_ADDR>
3402 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3403 struct linetable_entry **best_item)
3406 std::vector<CORE_ADDR> result;
3408 /* First, collect all the PCs that are at this line. */
3414 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3421 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3423 if (*best_item == NULL || item->line < (*best_item)->line)
3429 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3437 /* Set the PC value for a given source file and line number and return true.
3438 Returns zero for invalid line number (and sets the PC to 0).
3439 The source file is specified with a struct symtab. */
3442 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3444 struct linetable *l;
3451 symtab = find_line_symtab (symtab, line, &ind, NULL);
3454 l = SYMTAB_LINETABLE (symtab);
3455 *pc = l->item[ind].pc;
3462 /* Find the range of pc values in a line.
3463 Store the starting pc of the line into *STARTPTR
3464 and the ending pc (start of next line) into *ENDPTR.
3465 Returns 1 to indicate success.
3466 Returns 0 if could not find the specified line. */
3469 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3472 CORE_ADDR startaddr;
3473 struct symtab_and_line found_sal;
3476 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3479 /* This whole function is based on address. For example, if line 10 has
3480 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3481 "info line *0x123" should say the line goes from 0x100 to 0x200
3482 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3483 This also insures that we never give a range like "starts at 0x134
3484 and ends at 0x12c". */
3486 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3487 if (found_sal.line != sal.line)
3489 /* The specified line (sal) has zero bytes. */
3490 *startptr = found_sal.pc;
3491 *endptr = found_sal.pc;
3495 *startptr = found_sal.pc;
3496 *endptr = found_sal.end;
3501 /* Given a line table and a line number, return the index into the line
3502 table for the pc of the nearest line whose number is >= the specified one.
3503 Return -1 if none is found. The value is >= 0 if it is an index.
3504 START is the index at which to start searching the line table.
3506 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3509 find_line_common (struct linetable *l, int lineno,
3510 int *exact_match, int start)
3515 /* BEST is the smallest linenumber > LINENO so far seen,
3516 or 0 if none has been seen so far.
3517 BEST_INDEX identifies the item for it. */
3519 int best_index = -1;
3530 for (i = start; i < len; i++)
3532 struct linetable_entry *item = &(l->item[i]);
3534 if (item->line == lineno)
3536 /* Return the first (lowest address) entry which matches. */
3541 if (item->line > lineno && (best == 0 || item->line < best))
3548 /* If we got here, we didn't get an exact match. */
3553 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3555 struct symtab_and_line sal;
3557 sal = find_pc_line (pc, 0);
3560 return sal.symtab != 0;
3563 /* Helper for find_function_start_sal. Does most of the work, except
3564 setting the sal's symbol. */
3566 static symtab_and_line
3567 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3570 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3572 if (funfirstline && sal.symtab != NULL
3573 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3574 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3576 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3579 if (gdbarch_skip_entrypoint_p (gdbarch))
3580 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3584 /* We always should have a line for the function start address.
3585 If we don't, something is odd. Create a plain SAL referring
3586 just the PC and hope that skip_prologue_sal (if requested)
3587 can find a line number for after the prologue. */
3588 if (sal.pc < func_addr)
3591 sal.pspace = current_program_space;
3593 sal.section = section;
3597 skip_prologue_sal (&sal);
3605 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3609 = find_function_start_sal_1 (func_addr, section, funfirstline);
3611 /* find_function_start_sal_1 does a linetable search, so it finds
3612 the symtab and linenumber, but not a symbol. Fill in the
3613 function symbol too. */
3614 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3622 find_function_start_sal (symbol *sym, bool funfirstline)
3624 fixup_symbol_section (sym, NULL);
3626 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3627 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3634 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3635 address for that function that has an entry in SYMTAB's line info
3636 table. If such an entry cannot be found, return FUNC_ADDR
3640 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3642 CORE_ADDR func_start, func_end;
3643 struct linetable *l;
3646 /* Give up if this symbol has no lineinfo table. */
3647 l = SYMTAB_LINETABLE (symtab);
3651 /* Get the range for the function's PC values, or give up if we
3652 cannot, for some reason. */
3653 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3656 /* Linetable entries are ordered by PC values, see the commentary in
3657 symtab.h where `struct linetable' is defined. Thus, the first
3658 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3659 address we are looking for. */
3660 for (i = 0; i < l->nitems; i++)
3662 struct linetable_entry *item = &(l->item[i]);
3664 /* Don't use line numbers of zero, they mark special entries in
3665 the table. See the commentary on symtab.h before the
3666 definition of struct linetable. */
3667 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3674 /* Adjust SAL to the first instruction past the function prologue.
3675 If the PC was explicitly specified, the SAL is not changed.
3676 If the line number was explicitly specified, at most the SAL's PC
3677 is updated. If SAL is already past the prologue, then do nothing. */
3680 skip_prologue_sal (struct symtab_and_line *sal)
3683 struct symtab_and_line start_sal;
3684 CORE_ADDR pc, saved_pc;
3685 struct obj_section *section;
3687 struct objfile *objfile;
3688 struct gdbarch *gdbarch;
3689 const struct block *b, *function_block;
3690 int force_skip, skip;
3692 /* Do not change the SAL if PC was specified explicitly. */
3693 if (sal->explicit_pc)
3696 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3698 switch_to_program_space_and_thread (sal->pspace);
3700 sym = find_pc_sect_function (sal->pc, sal->section);
3703 fixup_symbol_section (sym, NULL);
3705 objfile = symbol_objfile (sym);
3706 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3707 section = SYMBOL_OBJ_SECTION (objfile, sym);
3708 name = SYMBOL_LINKAGE_NAME (sym);
3712 struct bound_minimal_symbol msymbol
3713 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3715 if (msymbol.minsym == NULL)
3718 objfile = msymbol.objfile;
3719 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3720 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3721 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3724 gdbarch = get_objfile_arch (objfile);
3726 /* Process the prologue in two passes. In the first pass try to skip the
3727 prologue (SKIP is true) and verify there is a real need for it (indicated
3728 by FORCE_SKIP). If no such reason was found run a second pass where the
3729 prologue is not skipped (SKIP is false). */
3734 /* Be conservative - allow direct PC (without skipping prologue) only if we
3735 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3736 have to be set by the caller so we use SYM instead. */
3738 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3746 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3747 so that gdbarch_skip_prologue has something unique to work on. */
3748 if (section_is_overlay (section) && !section_is_mapped (section))
3749 pc = overlay_unmapped_address (pc, section);
3751 /* Skip "first line" of function (which is actually its prologue). */
3752 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3753 if (gdbarch_skip_entrypoint_p (gdbarch))
3754 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3756 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3758 /* For overlays, map pc back into its mapped VMA range. */
3759 pc = overlay_mapped_address (pc, section);
3761 /* Calculate line number. */
3762 start_sal = find_pc_sect_line (pc, section, 0);
3764 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3765 line is still part of the same function. */
3766 if (skip && start_sal.pc != pc
3767 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3768 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3769 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3770 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3772 /* First pc of next line */
3774 /* Recalculate the line number (might not be N+1). */
3775 start_sal = find_pc_sect_line (pc, section, 0);
3778 /* On targets with executable formats that don't have a concept of
3779 constructors (ELF with .init has, PE doesn't), gcc emits a call
3780 to `__main' in `main' between the prologue and before user
3782 if (gdbarch_skip_main_prologue_p (gdbarch)
3783 && name && strcmp_iw (name, "main") == 0)
3785 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3786 /* Recalculate the line number (might not be N+1). */
3787 start_sal = find_pc_sect_line (pc, section, 0);
3791 while (!force_skip && skip--);
3793 /* If we still don't have a valid source line, try to find the first
3794 PC in the lineinfo table that belongs to the same function. This
3795 happens with COFF debug info, which does not seem to have an
3796 entry in lineinfo table for the code after the prologue which has
3797 no direct relation to source. For example, this was found to be
3798 the case with the DJGPP target using "gcc -gcoff" when the
3799 compiler inserted code after the prologue to make sure the stack
3801 if (!force_skip && sym && start_sal.symtab == NULL)
3803 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3804 /* Recalculate the line number. */
3805 start_sal = find_pc_sect_line (pc, section, 0);
3808 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3809 forward SAL to the end of the prologue. */
3814 sal->section = section;
3816 /* Unless the explicit_line flag was set, update the SAL line
3817 and symtab to correspond to the modified PC location. */
3818 if (sal->explicit_line)
3821 sal->symtab = start_sal.symtab;
3822 sal->line = start_sal.line;
3823 sal->end = start_sal.end;
3825 /* Check if we are now inside an inlined function. If we can,
3826 use the call site of the function instead. */
3827 b = block_for_pc_sect (sal->pc, sal->section);
3828 function_block = NULL;
3831 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3833 else if (BLOCK_FUNCTION (b) != NULL)
3835 b = BLOCK_SUPERBLOCK (b);
3837 if (function_block != NULL
3838 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3840 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3841 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3845 /* Given PC at the function's start address, attempt to find the
3846 prologue end using SAL information. Return zero if the skip fails.
3848 A non-optimized prologue traditionally has one SAL for the function
3849 and a second for the function body. A single line function has
3850 them both pointing at the same line.
3852 An optimized prologue is similar but the prologue may contain
3853 instructions (SALs) from the instruction body. Need to skip those
3854 while not getting into the function body.
3856 The functions end point and an increasing SAL line are used as
3857 indicators of the prologue's endpoint.
3859 This code is based on the function refine_prologue_limit
3863 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3865 struct symtab_and_line prologue_sal;
3868 const struct block *bl;
3870 /* Get an initial range for the function. */
3871 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3872 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3874 prologue_sal = find_pc_line (start_pc, 0);
3875 if (prologue_sal.line != 0)
3877 /* For languages other than assembly, treat two consecutive line
3878 entries at the same address as a zero-instruction prologue.
3879 The GNU assembler emits separate line notes for each instruction
3880 in a multi-instruction macro, but compilers generally will not
3882 if (prologue_sal.symtab->language != language_asm)
3884 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3887 /* Skip any earlier lines, and any end-of-sequence marker
3888 from a previous function. */
3889 while (linetable->item[idx].pc != prologue_sal.pc
3890 || linetable->item[idx].line == 0)
3893 if (idx+1 < linetable->nitems
3894 && linetable->item[idx+1].line != 0
3895 && linetable->item[idx+1].pc == start_pc)
3899 /* If there is only one sal that covers the entire function,
3900 then it is probably a single line function, like
3902 if (prologue_sal.end >= end_pc)
3905 while (prologue_sal.end < end_pc)
3907 struct symtab_and_line sal;
3909 sal = find_pc_line (prologue_sal.end, 0);
3912 /* Assume that a consecutive SAL for the same (or larger)
3913 line mark the prologue -> body transition. */
3914 if (sal.line >= prologue_sal.line)
3916 /* Likewise if we are in a different symtab altogether
3917 (e.g. within a file included via #include). */
3918 if (sal.symtab != prologue_sal.symtab)
3921 /* The line number is smaller. Check that it's from the
3922 same function, not something inlined. If it's inlined,
3923 then there is no point comparing the line numbers. */
3924 bl = block_for_pc (prologue_sal.end);
3927 if (block_inlined_p (bl))
3929 if (BLOCK_FUNCTION (bl))
3934 bl = BLOCK_SUPERBLOCK (bl);
3939 /* The case in which compiler's optimizer/scheduler has
3940 moved instructions into the prologue. We look ahead in
3941 the function looking for address ranges whose
3942 corresponding line number is less the first one that we
3943 found for the function. This is more conservative then
3944 refine_prologue_limit which scans a large number of SALs
3945 looking for any in the prologue. */
3950 if (prologue_sal.end < end_pc)
3951 /* Return the end of this line, or zero if we could not find a
3953 return prologue_sal.end;
3955 /* Don't return END_PC, which is past the end of the function. */
3956 return prologue_sal.pc;
3962 find_function_alias_target (bound_minimal_symbol msymbol)
3964 CORE_ADDR func_addr;
3965 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3968 symbol *sym = find_pc_function (func_addr);
3970 && SYMBOL_CLASS (sym) == LOC_BLOCK
3971 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3978 /* If P is of the form "operator[ \t]+..." where `...' is
3979 some legitimate operator text, return a pointer to the
3980 beginning of the substring of the operator text.
3981 Otherwise, return "". */
3984 operator_chars (const char *p, const char **end)
3987 if (!startswith (p, CP_OPERATOR_STR))
3989 p += CP_OPERATOR_LEN;
3991 /* Don't get faked out by `operator' being part of a longer
3993 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3996 /* Allow some whitespace between `operator' and the operator symbol. */
3997 while (*p == ' ' || *p == '\t')
4000 /* Recognize 'operator TYPENAME'. */
4002 if (isalpha (*p) || *p == '_' || *p == '$')
4004 const char *q = p + 1;
4006 while (isalnum (*q) || *q == '_' || *q == '$')
4015 case '\\': /* regexp quoting */
4018 if (p[2] == '=') /* 'operator\*=' */
4020 else /* 'operator\*' */
4024 else if (p[1] == '[')
4027 error (_("mismatched quoting on brackets, "
4028 "try 'operator\\[\\]'"));
4029 else if (p[2] == '\\' && p[3] == ']')
4031 *end = p + 4; /* 'operator\[\]' */
4035 error (_("nothing is allowed between '[' and ']'"));
4039 /* Gratuitous qoute: skip it and move on. */
4061 if (p[0] == '-' && p[1] == '>')
4063 /* Struct pointer member operator 'operator->'. */
4066 *end = p + 3; /* 'operator->*' */
4069 else if (p[2] == '\\')
4071 *end = p + 4; /* Hopefully 'operator->\*' */
4076 *end = p + 2; /* 'operator->' */
4080 if (p[1] == '=' || p[1] == p[0])
4091 error (_("`operator ()' must be specified "
4092 "without whitespace in `()'"));
4097 error (_("`operator ?:' must be specified "
4098 "without whitespace in `?:'"));
4103 error (_("`operator []' must be specified "
4104 "without whitespace in `[]'"));
4108 error (_("`operator %s' not supported"), p);
4117 /* Data structure to maintain printing state for output_source_filename. */
4119 struct output_source_filename_data
4121 /* Cache of what we've seen so far. */
4122 struct filename_seen_cache *filename_seen_cache;
4124 /* Flag of whether we're printing the first one. */
4128 /* Slave routine for sources_info. Force line breaks at ,'s.
4129 NAME is the name to print.
4130 DATA contains the state for printing and watching for duplicates. */
4133 output_source_filename (const char *name,
4134 struct output_source_filename_data *data)
4136 /* Since a single source file can result in several partial symbol
4137 tables, we need to avoid printing it more than once. Note: if
4138 some of the psymtabs are read in and some are not, it gets
4139 printed both under "Source files for which symbols have been
4140 read" and "Source files for which symbols will be read in on
4141 demand". I consider this a reasonable way to deal with the
4142 situation. I'm not sure whether this can also happen for
4143 symtabs; it doesn't hurt to check. */
4145 /* Was NAME already seen? */
4146 if (data->filename_seen_cache->seen (name))
4148 /* Yes; don't print it again. */
4152 /* No; print it and reset *FIRST. */
4154 printf_filtered (", ");
4158 fputs_styled (name, file_name_style.style (), gdb_stdout);
4161 /* A callback for map_partial_symbol_filenames. */
4164 output_partial_symbol_filename (const char *filename, const char *fullname,
4167 output_source_filename (fullname ? fullname : filename,
4168 (struct output_source_filename_data *) data);
4172 info_sources_command (const char *ignore, int from_tty)
4174 struct output_source_filename_data data;
4176 if (!have_full_symbols () && !have_partial_symbols ())
4178 error (_("No symbol table is loaded. Use the \"file\" command."));
4181 filename_seen_cache filenames_seen;
4183 data.filename_seen_cache = &filenames_seen;
4185 printf_filtered ("Source files for which symbols have been read in:\n\n");
4188 for (objfile *objfile : current_program_space->objfiles ())
4190 for (compunit_symtab *cu : objfile->compunits ())
4192 for (symtab *s : compunit_filetabs (cu))
4194 const char *fullname = symtab_to_fullname (s);
4196 output_source_filename (fullname, &data);
4200 printf_filtered ("\n\n");
4202 printf_filtered ("Source files for which symbols "
4203 "will be read in on demand:\n\n");
4205 filenames_seen.clear ();
4207 map_symbol_filenames (output_partial_symbol_filename, &data,
4208 1 /*need_fullname*/);
4209 printf_filtered ("\n");
4212 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4213 non-zero compare only lbasename of FILES. */
4216 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4220 if (file != NULL && nfiles != 0)
4222 for (i = 0; i < nfiles; i++)
4224 if (compare_filenames_for_search (file, (basenames
4225 ? lbasename (files[i])
4230 else if (nfiles == 0)
4235 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4236 sort symbols, not minimal symbols. */
4239 symbol_search::compare_search_syms (const symbol_search &sym_a,
4240 const symbol_search &sym_b)
4244 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4245 symbol_symtab (sym_b.symbol)->filename);
4249 if (sym_a.block != sym_b.block)
4250 return sym_a.block - sym_b.block;
4252 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4253 SYMBOL_PRINT_NAME (sym_b.symbol));
4256 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4257 If SYM has no symbol_type or symbol_name, returns false. */
4260 treg_matches_sym_type_name (const compiled_regex &treg,
4261 const struct symbol *sym)
4263 struct type *sym_type;
4264 std::string printed_sym_type_name;
4266 if (symbol_lookup_debug > 1)
4268 fprintf_unfiltered (gdb_stdlog,
4269 "treg_matches_sym_type_name\n sym %s\n",
4270 SYMBOL_NATURAL_NAME (sym));
4273 sym_type = SYMBOL_TYPE (sym);
4274 if (sym_type == NULL)
4278 scoped_switch_to_sym_language_if_auto l (sym);
4280 printed_sym_type_name = type_to_string (sym_type);
4284 if (symbol_lookup_debug > 1)
4286 fprintf_unfiltered (gdb_stdlog,
4287 " sym_type_name %s\n",
4288 printed_sym_type_name.c_str ());
4292 if (printed_sym_type_name.empty ())
4295 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4299 /* Sort the symbols in RESULT and remove duplicates. */
4302 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4304 std::sort (result->begin (), result->end ());
4305 result->erase (std::unique (result->begin (), result->end ()),
4309 /* Search the symbol table for matches to the regular expression REGEXP,
4310 returning the results.
4312 Only symbols of KIND are searched:
4313 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4314 and constants (enums).
4315 if T_REGEXP is not NULL, only returns var that have
4316 a type matching regular expression T_REGEXP.
4317 FUNCTIONS_DOMAIN - search all functions
4318 TYPES_DOMAIN - search all type names
4319 ALL_DOMAIN - an internal error for this function
4321 Within each file the results are sorted locally; each symtab's global and
4322 static blocks are separately alphabetized.
4323 Duplicate entries are removed. */
4325 std::vector<symbol_search>
4326 search_symbols (const char *regexp, enum search_domain kind,
4327 const char *t_regexp,
4328 int nfiles, const char *files[])
4330 const struct blockvector *bv;
4331 const struct block *b;
4333 struct block_iterator iter;
4336 static const enum minimal_symbol_type types[]
4337 = {mst_data, mst_text, mst_abs};
4338 static const enum minimal_symbol_type types2[]
4339 = {mst_bss, mst_file_text, mst_abs};
4340 static const enum minimal_symbol_type types3[]
4341 = {mst_file_data, mst_solib_trampoline, mst_abs};
4342 static const enum minimal_symbol_type types4[]
4343 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4344 enum minimal_symbol_type ourtype;
4345 enum minimal_symbol_type ourtype2;
4346 enum minimal_symbol_type ourtype3;
4347 enum minimal_symbol_type ourtype4;
4348 std::vector<symbol_search> result;
4349 gdb::optional<compiled_regex> preg;
4350 gdb::optional<compiled_regex> treg;
4352 gdb_assert (kind <= TYPES_DOMAIN);
4354 ourtype = types[kind];
4355 ourtype2 = types2[kind];
4356 ourtype3 = types3[kind];
4357 ourtype4 = types4[kind];
4361 /* Make sure spacing is right for C++ operators.
4362 This is just a courtesy to make the matching less sensitive
4363 to how many spaces the user leaves between 'operator'
4364 and <TYPENAME> or <OPERATOR>. */
4366 const char *opname = operator_chars (regexp, &opend);
4370 int fix = -1; /* -1 means ok; otherwise number of
4373 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4375 /* There should 1 space between 'operator' and 'TYPENAME'. */
4376 if (opname[-1] != ' ' || opname[-2] == ' ')
4381 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4382 if (opname[-1] == ' ')
4385 /* If wrong number of spaces, fix it. */
4388 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4390 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4395 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4397 preg.emplace (regexp, cflags, _("Invalid regexp"));
4400 if (t_regexp != NULL)
4402 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4404 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4407 /* Search through the partial symtabs *first* for all symbols
4408 matching the regexp. That way we don't have to reproduce all of
4409 the machinery below. */
4410 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4412 return file_matches (filename, files, nfiles,
4415 lookup_name_info::match_any (),
4416 [&] (const char *symname)
4418 return (!preg.has_value ()
4419 || preg->exec (symname,
4425 /* Here, we search through the minimal symbol tables for functions
4426 and variables that match, and force their symbols to be read.
4427 This is in particular necessary for demangled variable names,
4428 which are no longer put into the partial symbol tables.
4429 The symbol will then be found during the scan of symtabs below.
4431 For functions, find_pc_symtab should succeed if we have debug info
4432 for the function, for variables we have to call
4433 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4435 If the lookup fails, set found_misc so that we will rescan to print
4436 any matching symbols without debug info.
4437 We only search the objfile the msymbol came from, we no longer search
4438 all objfiles. In large programs (1000s of shared libs) searching all
4439 objfiles is not worth the pain. */
4441 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4443 for (objfile *objfile : current_program_space->objfiles ())
4445 for (minimal_symbol *msymbol : objfile->msymbols ())
4449 if (msymbol->created_by_gdb)
4452 if (MSYMBOL_TYPE (msymbol) == ourtype
4453 || MSYMBOL_TYPE (msymbol) == ourtype2
4454 || MSYMBOL_TYPE (msymbol) == ourtype3
4455 || MSYMBOL_TYPE (msymbol) == ourtype4)
4457 if (!preg.has_value ()
4458 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4461 /* Note: An important side-effect of these
4462 lookup functions is to expand the symbol
4463 table if msymbol is found, for the benefit of
4464 the next loop on compunits. */
4465 if (kind == FUNCTIONS_DOMAIN
4466 ? (find_pc_compunit_symtab
4467 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4469 : (lookup_symbol_in_objfile_from_linkage_name
4470 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4480 for (objfile *objfile : current_program_space->objfiles ())
4482 for (compunit_symtab *cust : objfile->compunits ())
4484 bv = COMPUNIT_BLOCKVECTOR (cust);
4485 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4487 b = BLOCKVECTOR_BLOCK (bv, i);
4488 ALL_BLOCK_SYMBOLS (b, iter, sym)
4490 struct symtab *real_symtab = symbol_symtab (sym);
4494 /* Check first sole REAL_SYMTAB->FILENAME. It does
4495 not need to be a substring of symtab_to_fullname as
4496 it may contain "./" etc. */
4497 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4498 || ((basenames_may_differ
4499 || file_matches (lbasename (real_symtab->filename),
4501 && file_matches (symtab_to_fullname (real_symtab),
4503 && ((!preg.has_value ()
4504 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4506 && ((kind == VARIABLES_DOMAIN
4507 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4508 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4509 && SYMBOL_CLASS (sym) != LOC_BLOCK
4510 /* LOC_CONST can be used for more than
4511 just enums, e.g., c++ static const
4512 members. We only want to skip enums
4514 && !(SYMBOL_CLASS (sym) == LOC_CONST
4515 && (TYPE_CODE (SYMBOL_TYPE (sym))
4517 && (!treg.has_value ()
4518 || treg_matches_sym_type_name (*treg, sym)))
4519 || (kind == FUNCTIONS_DOMAIN
4520 && SYMBOL_CLASS (sym) == LOC_BLOCK
4521 && (!treg.has_value ()
4522 || treg_matches_sym_type_name (*treg,
4524 || (kind == TYPES_DOMAIN
4525 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4528 result.emplace_back (i, sym);
4535 if (!result.empty ())
4536 sort_search_symbols_remove_dups (&result);
4538 /* If there are no eyes, avoid all contact. I mean, if there are
4539 no debug symbols, then add matching minsyms. But if the user wants
4540 to see symbols matching a type regexp, then never give a minimal symbol,
4541 as we assume that a minimal symbol does not have a type. */
4543 if ((found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4544 && !treg.has_value ())
4546 for (objfile *objfile : current_program_space->objfiles ())
4548 for (minimal_symbol *msymbol : objfile->msymbols ())
4552 if (msymbol->created_by_gdb)
4555 if (MSYMBOL_TYPE (msymbol) == ourtype
4556 || MSYMBOL_TYPE (msymbol) == ourtype2
4557 || MSYMBOL_TYPE (msymbol) == ourtype3
4558 || MSYMBOL_TYPE (msymbol) == ourtype4)
4560 if (!preg.has_value ()
4561 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4564 /* For functions we can do a quick check of whether the
4565 symbol might be found via find_pc_symtab. */
4566 if (kind != FUNCTIONS_DOMAIN
4567 || (find_pc_compunit_symtab
4568 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4571 if (lookup_symbol_in_objfile_from_linkage_name
4572 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4577 result.emplace_back (i, msymbol, objfile);
4589 /* Helper function for symtab_symbol_info, this function uses
4590 the data returned from search_symbols() to print information
4591 regarding the match to gdb_stdout. If LAST is not NULL,
4592 print file and line number information for the symbol as
4593 well. Skip printing the filename if it matches LAST. */
4596 print_symbol_info (enum search_domain kind,
4598 int block, const char *last)
4600 scoped_switch_to_sym_language_if_auto l (sym);
4601 struct symtab *s = symbol_symtab (sym);
4605 const char *s_filename = symtab_to_filename_for_display (s);
4607 if (filename_cmp (last, s_filename) != 0)
4609 fputs_filtered ("\nFile ", gdb_stdout);
4610 fputs_styled (s_filename, file_name_style.style (), gdb_stdout);
4611 fputs_filtered (":\n", gdb_stdout);
4614 if (SYMBOL_LINE (sym) != 0)
4615 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4617 puts_filtered ("\t");
4620 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4621 printf_filtered ("static ");
4623 /* Typedef that is not a C++ class. */
4624 if (kind == TYPES_DOMAIN
4625 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4626 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4627 /* variable, func, or typedef-that-is-c++-class. */
4628 else if (kind < TYPES_DOMAIN
4629 || (kind == TYPES_DOMAIN
4630 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4632 type_print (SYMBOL_TYPE (sym),
4633 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4634 ? "" : SYMBOL_PRINT_NAME (sym)),
4637 printf_filtered (";\n");
4641 /* This help function for symtab_symbol_info() prints information
4642 for non-debugging symbols to gdb_stdout. */
4645 print_msymbol_info (struct bound_minimal_symbol msymbol)
4647 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4650 if (gdbarch_addr_bit (gdbarch) <= 32)
4651 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4652 & (CORE_ADDR) 0xffffffff,
4655 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4657 fputs_styled (tmp, address_style.style (), gdb_stdout);
4658 fputs_filtered (" ", gdb_stdout);
4659 if (msymbol.minsym->text_p ())
4660 fputs_styled (MSYMBOL_PRINT_NAME (msymbol.minsym),
4661 function_name_style.style (),
4664 fputs_filtered (MSYMBOL_PRINT_NAME (msymbol.minsym), gdb_stdout);
4665 fputs_filtered ("\n", gdb_stdout);
4668 /* This is the guts of the commands "info functions", "info types", and
4669 "info variables". It calls search_symbols to find all matches and then
4670 print_[m]symbol_info to print out some useful information about the
4674 symtab_symbol_info (bool quiet,
4675 const char *regexp, enum search_domain kind,
4676 const char *t_regexp, int from_tty)
4678 static const char * const classnames[] =
4679 {"variable", "function", "type"};
4680 const char *last_filename = "";
4683 gdb_assert (kind <= TYPES_DOMAIN);
4685 /* Must make sure that if we're interrupted, symbols gets freed. */
4686 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4693 if (t_regexp != NULL)
4695 (_("All %ss matching regular expression \"%s\""
4696 " with type matching regular expression \"%s\":\n"),
4697 classnames[kind], regexp, t_regexp);
4699 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4700 classnames[kind], regexp);
4704 if (t_regexp != NULL)
4706 (_("All defined %ss"
4707 " with type matching regular expression \"%s\" :\n"),
4708 classnames[kind], t_regexp);
4710 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4714 for (const symbol_search &p : symbols)
4718 if (p.msymbol.minsym != NULL)
4723 printf_filtered (_("\nNon-debugging symbols:\n"));
4726 print_msymbol_info (p.msymbol);
4730 print_symbol_info (kind,
4735 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4741 info_variables_command (const char *args, int from_tty)
4744 std::string t_regexp;
4748 && extract_info_print_args (&args, &quiet, ®exp, &t_regexp))
4752 report_unrecognized_option_error ("info variables", args);
4754 symtab_symbol_info (quiet,
4755 regexp.empty () ? NULL : regexp.c_str (),
4757 t_regexp.empty () ? NULL : t_regexp.c_str (),
4763 info_functions_command (const char *args, int from_tty)
4766 std::string t_regexp;
4770 && extract_info_print_args (&args, &quiet, ®exp, &t_regexp))
4774 report_unrecognized_option_error ("info functions", args);
4776 symtab_symbol_info (quiet,
4777 regexp.empty () ? NULL : regexp.c_str (),
4779 t_regexp.empty () ? NULL : t_regexp.c_str (),
4785 info_types_command (const char *regexp, int from_tty)
4787 symtab_symbol_info (false, regexp, TYPES_DOMAIN, NULL, from_tty);
4790 /* Breakpoint all functions matching regular expression. */
4793 rbreak_command_wrapper (char *regexp, int from_tty)
4795 rbreak_command (regexp, from_tty);
4799 rbreak_command (const char *regexp, int from_tty)
4802 const char **files = NULL;
4803 const char *file_name;
4808 const char *colon = strchr (regexp, ':');
4810 if (colon && *(colon + 1) != ':')
4815 colon_index = colon - regexp;
4816 local_name = (char *) alloca (colon_index + 1);
4817 memcpy (local_name, regexp, colon_index);
4818 local_name[colon_index--] = 0;
4819 while (isspace (local_name[colon_index]))
4820 local_name[colon_index--] = 0;
4821 file_name = local_name;
4824 regexp = skip_spaces (colon + 1);
4828 std::vector<symbol_search> symbols = search_symbols (regexp,
4833 scoped_rbreak_breakpoints finalize;
4834 for (const symbol_search &p : symbols)
4836 if (p.msymbol.minsym == NULL)
4838 struct symtab *symtab = symbol_symtab (p.symbol);
4839 const char *fullname = symtab_to_fullname (symtab);
4841 string = string_printf ("%s:'%s'", fullname,
4842 SYMBOL_LINKAGE_NAME (p.symbol));
4843 break_command (&string[0], from_tty);
4844 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
4848 string = string_printf ("'%s'",
4849 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
4851 break_command (&string[0], from_tty);
4852 printf_filtered ("<function, no debug info> %s;\n",
4853 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
4859 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
4862 compare_symbol_name (const char *symbol_name, language symbol_language,
4863 const lookup_name_info &lookup_name,
4864 completion_match_result &match_res)
4866 const language_defn *lang = language_def (symbol_language);
4868 symbol_name_matcher_ftype *name_match
4869 = get_symbol_name_matcher (lang, lookup_name);
4871 return name_match (symbol_name, lookup_name, &match_res);
4877 completion_list_add_name (completion_tracker &tracker,
4878 language symbol_language,
4879 const char *symname,
4880 const lookup_name_info &lookup_name,
4881 const char *text, const char *word)
4883 completion_match_result &match_res
4884 = tracker.reset_completion_match_result ();
4886 /* Clip symbols that cannot match. */
4887 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
4890 /* Refresh SYMNAME from the match string. It's potentially
4891 different depending on language. (E.g., on Ada, the match may be
4892 the encoded symbol name wrapped in "<>"). */
4893 symname = match_res.match.match ();
4894 gdb_assert (symname != NULL);
4896 /* We have a match for a completion, so add SYMNAME to the current list
4897 of matches. Note that the name is moved to freshly malloc'd space. */
4900 gdb::unique_xmalloc_ptr<char> completion
4901 = make_completion_match_str (symname, text, word);
4903 /* Here we pass the match-for-lcd object to add_completion. Some
4904 languages match the user text against substrings of symbol
4905 names in some cases. E.g., in C++, "b push_ba" completes to
4906 "std::vector::push_back", "std::string::push_back", etc., and
4907 in this case we want the completion lowest common denominator
4908 to be "push_back" instead of "std::". */
4909 tracker.add_completion (std::move (completion),
4910 &match_res.match_for_lcd, text, word);
4914 /* completion_list_add_name wrapper for struct symbol. */
4917 completion_list_add_symbol (completion_tracker &tracker,
4919 const lookup_name_info &lookup_name,
4920 const char *text, const char *word)
4922 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4923 SYMBOL_NATURAL_NAME (sym),
4924 lookup_name, text, word);
4927 /* completion_list_add_name wrapper for struct minimal_symbol. */
4930 completion_list_add_msymbol (completion_tracker &tracker,
4931 minimal_symbol *sym,
4932 const lookup_name_info &lookup_name,
4933 const char *text, const char *word)
4935 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
4936 MSYMBOL_NATURAL_NAME (sym),
4937 lookup_name, text, word);
4941 /* ObjC: In case we are completing on a selector, look as the msymbol
4942 again and feed all the selectors into the mill. */
4945 completion_list_objc_symbol (completion_tracker &tracker,
4946 struct minimal_symbol *msymbol,
4947 const lookup_name_info &lookup_name,
4948 const char *text, const char *word)
4950 static char *tmp = NULL;
4951 static unsigned int tmplen = 0;
4953 const char *method, *category, *selector;
4956 method = MSYMBOL_NATURAL_NAME (msymbol);
4958 /* Is it a method? */
4959 if ((method[0] != '-') && (method[0] != '+'))
4963 /* Complete on shortened method method. */
4964 completion_list_add_name (tracker, language_objc,
4969 while ((strlen (method) + 1) >= tmplen)
4975 tmp = (char *) xrealloc (tmp, tmplen);
4977 selector = strchr (method, ' ');
4978 if (selector != NULL)
4981 category = strchr (method, '(');
4983 if ((category != NULL) && (selector != NULL))
4985 memcpy (tmp, method, (category - method));
4986 tmp[category - method] = ' ';
4987 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4988 completion_list_add_name (tracker, language_objc, tmp,
4989 lookup_name, text, word);
4991 completion_list_add_name (tracker, language_objc, tmp + 1,
4992 lookup_name, text, word);
4995 if (selector != NULL)
4997 /* Complete on selector only. */
4998 strcpy (tmp, selector);
4999 tmp2 = strchr (tmp, ']');
5003 completion_list_add_name (tracker, language_objc, tmp,
5004 lookup_name, text, word);
5008 /* Break the non-quoted text based on the characters which are in
5009 symbols. FIXME: This should probably be language-specific. */
5012 language_search_unquoted_string (const char *text, const char *p)
5014 for (; p > text; --p)
5016 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5020 if ((current_language->la_language == language_objc))
5022 if (p[-1] == ':') /* Might be part of a method name. */
5024 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5025 p -= 2; /* Beginning of a method name. */
5026 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5027 { /* Might be part of a method name. */
5030 /* Seeing a ' ' or a '(' is not conclusive evidence
5031 that we are in the middle of a method name. However,
5032 finding "-[" or "+[" should be pretty un-ambiguous.
5033 Unfortunately we have to find it now to decide. */
5036 if (isalnum (t[-1]) || t[-1] == '_' ||
5037 t[-1] == ' ' || t[-1] == ':' ||
5038 t[-1] == '(' || t[-1] == ')')
5043 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5044 p = t - 2; /* Method name detected. */
5045 /* Else we leave with p unchanged. */
5055 completion_list_add_fields (completion_tracker &tracker,
5057 const lookup_name_info &lookup_name,
5058 const char *text, const char *word)
5060 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5062 struct type *t = SYMBOL_TYPE (sym);
5063 enum type_code c = TYPE_CODE (t);
5066 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5067 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5068 if (TYPE_FIELD_NAME (t, j))
5069 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5070 TYPE_FIELD_NAME (t, j),
5071 lookup_name, text, word);
5078 symbol_is_function_or_method (symbol *sym)
5080 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5082 case TYPE_CODE_FUNC:
5083 case TYPE_CODE_METHOD:
5093 symbol_is_function_or_method (minimal_symbol *msymbol)
5095 switch (MSYMBOL_TYPE (msymbol))
5098 case mst_text_gnu_ifunc:
5099 case mst_solib_trampoline:
5109 bound_minimal_symbol
5110 find_gnu_ifunc (const symbol *sym)
5112 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5115 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5116 symbol_name_match_type::SEARCH_NAME);
5117 struct objfile *objfile = symbol_objfile (sym);
5119 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5120 minimal_symbol *ifunc = NULL;
5122 iterate_over_minimal_symbols (objfile, lookup_name,
5123 [&] (minimal_symbol *minsym)
5125 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5126 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5128 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5129 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5131 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5133 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5135 current_top_target ());
5137 if (msym_addr == address)
5147 return {ifunc, objfile};
5151 /* Add matching symbols from SYMTAB to the current completion list. */
5154 add_symtab_completions (struct compunit_symtab *cust,
5155 completion_tracker &tracker,
5156 complete_symbol_mode mode,
5157 const lookup_name_info &lookup_name,
5158 const char *text, const char *word,
5159 enum type_code code)
5162 const struct block *b;
5163 struct block_iterator iter;
5169 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5172 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5173 ALL_BLOCK_SYMBOLS (b, iter, sym)
5175 if (completion_skip_symbol (mode, sym))
5178 if (code == TYPE_CODE_UNDEF
5179 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5180 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5181 completion_list_add_symbol (tracker, sym,
5189 default_collect_symbol_completion_matches_break_on
5190 (completion_tracker &tracker, complete_symbol_mode mode,
5191 symbol_name_match_type name_match_type,
5192 const char *text, const char *word,
5193 const char *break_on, enum type_code code)
5195 /* Problem: All of the symbols have to be copied because readline
5196 frees them. I'm not going to worry about this; hopefully there
5197 won't be that many. */
5200 const struct block *b;
5201 const struct block *surrounding_static_block, *surrounding_global_block;
5202 struct block_iterator iter;
5203 /* The symbol we are completing on. Points in same buffer as text. */
5204 const char *sym_text;
5206 /* Now look for the symbol we are supposed to complete on. */
5207 if (mode == complete_symbol_mode::LINESPEC)
5213 const char *quote_pos = NULL;
5215 /* First see if this is a quoted string. */
5217 for (p = text; *p != '\0'; ++p)
5219 if (quote_found != '\0')
5221 if (*p == quote_found)
5222 /* Found close quote. */
5224 else if (*p == '\\' && p[1] == quote_found)
5225 /* A backslash followed by the quote character
5226 doesn't end the string. */
5229 else if (*p == '\'' || *p == '"')
5235 if (quote_found == '\'')
5236 /* A string within single quotes can be a symbol, so complete on it. */
5237 sym_text = quote_pos + 1;
5238 else if (quote_found == '"')
5239 /* A double-quoted string is never a symbol, nor does it make sense
5240 to complete it any other way. */
5246 /* It is not a quoted string. Break it based on the characters
5247 which are in symbols. */
5250 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5251 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5260 lookup_name_info lookup_name (sym_text, name_match_type, true);
5262 /* At this point scan through the misc symbol vectors and add each
5263 symbol you find to the list. Eventually we want to ignore
5264 anything that isn't a text symbol (everything else will be
5265 handled by the psymtab code below). */
5267 if (code == TYPE_CODE_UNDEF)
5269 for (objfile *objfile : current_program_space->objfiles ())
5271 for (minimal_symbol *msymbol : objfile->msymbols ())
5275 if (completion_skip_symbol (mode, msymbol))
5278 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5281 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5287 /* Add completions for all currently loaded symbol tables. */
5288 for (objfile *objfile : current_program_space->objfiles ())
5290 for (compunit_symtab *cust : objfile->compunits ())
5291 add_symtab_completions (cust, tracker, mode, lookup_name,
5292 sym_text, word, code);
5295 /* Look through the partial symtabs for all symbols which begin by
5296 matching SYM_TEXT. Expand all CUs that you find to the list. */
5297 expand_symtabs_matching (NULL,
5300 [&] (compunit_symtab *symtab) /* expansion notify */
5302 add_symtab_completions (symtab,
5303 tracker, mode, lookup_name,
5304 sym_text, word, code);
5308 /* Search upwards from currently selected frame (so that we can
5309 complete on local vars). Also catch fields of types defined in
5310 this places which match our text string. Only complete on types
5311 visible from current context. */
5313 b = get_selected_block (0);
5314 surrounding_static_block = block_static_block (b);
5315 surrounding_global_block = block_global_block (b);
5316 if (surrounding_static_block != NULL)
5317 while (b != surrounding_static_block)
5321 ALL_BLOCK_SYMBOLS (b, iter, sym)
5323 if (code == TYPE_CODE_UNDEF)
5325 completion_list_add_symbol (tracker, sym, lookup_name,
5327 completion_list_add_fields (tracker, sym, lookup_name,
5330 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5331 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5332 completion_list_add_symbol (tracker, sym, lookup_name,
5336 /* Stop when we encounter an enclosing function. Do not stop for
5337 non-inlined functions - the locals of the enclosing function
5338 are in scope for a nested function. */
5339 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5341 b = BLOCK_SUPERBLOCK (b);
5344 /* Add fields from the file's types; symbols will be added below. */
5346 if (code == TYPE_CODE_UNDEF)
5348 if (surrounding_static_block != NULL)
5349 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5350 completion_list_add_fields (tracker, sym, lookup_name,
5353 if (surrounding_global_block != NULL)
5354 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5355 completion_list_add_fields (tracker, sym, lookup_name,
5359 /* Skip macros if we are completing a struct tag -- arguable but
5360 usually what is expected. */
5361 if (current_language->la_macro_expansion == macro_expansion_c
5362 && code == TYPE_CODE_UNDEF)
5364 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5366 /* This adds a macro's name to the current completion list. */
5367 auto add_macro_name = [&] (const char *macro_name,
5368 const macro_definition *,
5369 macro_source_file *,
5372 completion_list_add_name (tracker, language_c, macro_name,
5373 lookup_name, sym_text, word);
5376 /* Add any macros visible in the default scope. Note that this
5377 may yield the occasional wrong result, because an expression
5378 might be evaluated in a scope other than the default. For
5379 example, if the user types "break file:line if <TAB>", the
5380 resulting expression will be evaluated at "file:line" -- but
5381 at there does not seem to be a way to detect this at
5383 scope = default_macro_scope ();
5385 macro_for_each_in_scope (scope->file, scope->line,
5388 /* User-defined macros are always visible. */
5389 macro_for_each (macro_user_macros, add_macro_name);
5394 default_collect_symbol_completion_matches (completion_tracker &tracker,
5395 complete_symbol_mode mode,
5396 symbol_name_match_type name_match_type,
5397 const char *text, const char *word,
5398 enum type_code code)
5400 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5406 /* Collect all symbols (regardless of class) which begin by matching
5410 collect_symbol_completion_matches (completion_tracker &tracker,
5411 complete_symbol_mode mode,
5412 symbol_name_match_type name_match_type,
5413 const char *text, const char *word)
5415 current_language->la_collect_symbol_completion_matches (tracker, mode,
5421 /* Like collect_symbol_completion_matches, but only collect
5422 STRUCT_DOMAIN symbols whose type code is CODE. */
5425 collect_symbol_completion_matches_type (completion_tracker &tracker,
5426 const char *text, const char *word,
5427 enum type_code code)
5429 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5430 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5432 gdb_assert (code == TYPE_CODE_UNION
5433 || code == TYPE_CODE_STRUCT
5434 || code == TYPE_CODE_ENUM);
5435 current_language->la_collect_symbol_completion_matches (tracker, mode,
5440 /* Like collect_symbol_completion_matches, but collects a list of
5441 symbols defined in all source files named SRCFILE. */
5444 collect_file_symbol_completion_matches (completion_tracker &tracker,
5445 complete_symbol_mode mode,
5446 symbol_name_match_type name_match_type,
5447 const char *text, const char *word,
5448 const char *srcfile)
5450 /* The symbol we are completing on. Points in same buffer as text. */
5451 const char *sym_text;
5453 /* Now look for the symbol we are supposed to complete on.
5454 FIXME: This should be language-specific. */
5455 if (mode == complete_symbol_mode::LINESPEC)
5461 const char *quote_pos = NULL;
5463 /* First see if this is a quoted string. */
5465 for (p = text; *p != '\0'; ++p)
5467 if (quote_found != '\0')
5469 if (*p == quote_found)
5470 /* Found close quote. */
5472 else if (*p == '\\' && p[1] == quote_found)
5473 /* A backslash followed by the quote character
5474 doesn't end the string. */
5477 else if (*p == '\'' || *p == '"')
5483 if (quote_found == '\'')
5484 /* A string within single quotes can be a symbol, so complete on it. */
5485 sym_text = quote_pos + 1;
5486 else if (quote_found == '"')
5487 /* A double-quoted string is never a symbol, nor does it make sense
5488 to complete it any other way. */
5494 /* Not a quoted string. */
5495 sym_text = language_search_unquoted_string (text, p);
5499 lookup_name_info lookup_name (sym_text, name_match_type, true);
5501 /* Go through symtabs for SRCFILE and check the externs and statics
5502 for symbols which match. */
5503 iterate_over_symtabs (srcfile, [&] (symtab *s)
5505 add_symtab_completions (SYMTAB_COMPUNIT (s),
5506 tracker, mode, lookup_name,
5507 sym_text, word, TYPE_CODE_UNDEF);
5512 /* A helper function for make_source_files_completion_list. It adds
5513 another file name to a list of possible completions, growing the
5514 list as necessary. */
5517 add_filename_to_list (const char *fname, const char *text, const char *word,
5518 completion_list *list)
5520 list->emplace_back (make_completion_match_str (fname, text, word));
5524 not_interesting_fname (const char *fname)
5526 static const char *illegal_aliens[] = {
5527 "_globals_", /* inserted by coff_symtab_read */
5532 for (i = 0; illegal_aliens[i]; i++)
5534 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5540 /* An object of this type is passed as the user_data argument to
5541 map_partial_symbol_filenames. */
5542 struct add_partial_filename_data
5544 struct filename_seen_cache *filename_seen_cache;
5548 completion_list *list;
5551 /* A callback for map_partial_symbol_filenames. */
5554 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5557 struct add_partial_filename_data *data
5558 = (struct add_partial_filename_data *) user_data;
5560 if (not_interesting_fname (filename))
5562 if (!data->filename_seen_cache->seen (filename)
5563 && filename_ncmp (filename, data->text, data->text_len) == 0)
5565 /* This file matches for a completion; add it to the
5566 current list of matches. */
5567 add_filename_to_list (filename, data->text, data->word, data->list);
5571 const char *base_name = lbasename (filename);
5573 if (base_name != filename
5574 && !data->filename_seen_cache->seen (base_name)
5575 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5576 add_filename_to_list (base_name, data->text, data->word, data->list);
5580 /* Return a list of all source files whose names begin with matching
5581 TEXT. The file names are looked up in the symbol tables of this
5585 make_source_files_completion_list (const char *text, const char *word)
5587 size_t text_len = strlen (text);
5588 completion_list list;
5589 const char *base_name;
5590 struct add_partial_filename_data datum;
5592 if (!have_full_symbols () && !have_partial_symbols ())
5595 filename_seen_cache filenames_seen;
5597 for (objfile *objfile : current_program_space->objfiles ())
5599 for (compunit_symtab *cu : objfile->compunits ())
5601 for (symtab *s : compunit_filetabs (cu))
5603 if (not_interesting_fname (s->filename))
5605 if (!filenames_seen.seen (s->filename)
5606 && filename_ncmp (s->filename, text, text_len) == 0)
5608 /* This file matches for a completion; add it to the current
5610 add_filename_to_list (s->filename, text, word, &list);
5614 /* NOTE: We allow the user to type a base name when the
5615 debug info records leading directories, but not the other
5616 way around. This is what subroutines of breakpoint
5617 command do when they parse file names. */
5618 base_name = lbasename (s->filename);
5619 if (base_name != s->filename
5620 && !filenames_seen.seen (base_name)
5621 && filename_ncmp (base_name, text, text_len) == 0)
5622 add_filename_to_list (base_name, text, word, &list);
5628 datum.filename_seen_cache = &filenames_seen;
5631 datum.text_len = text_len;
5633 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5634 0 /*need_fullname*/);
5641 /* Return the "main_info" object for the current program space. If
5642 the object has not yet been created, create it and fill in some
5645 static struct main_info *
5646 get_main_info (void)
5648 struct main_info *info = main_progspace_key.get (current_program_space);
5652 /* It may seem strange to store the main name in the progspace
5653 and also in whatever objfile happens to see a main name in
5654 its debug info. The reason for this is mainly historical:
5655 gdb returned "main" as the name even if no function named
5656 "main" was defined the program; and this approach lets us
5657 keep compatibility. */
5658 info = main_progspace_key.emplace (current_program_space);
5665 set_main_name (const char *name, enum language lang)
5667 struct main_info *info = get_main_info ();
5669 if (info->name_of_main != NULL)
5671 xfree (info->name_of_main);
5672 info->name_of_main = NULL;
5673 info->language_of_main = language_unknown;
5677 info->name_of_main = xstrdup (name);
5678 info->language_of_main = lang;
5682 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5686 find_main_name (void)
5688 const char *new_main_name;
5690 /* First check the objfiles to see whether a debuginfo reader has
5691 picked up the appropriate main name. Historically the main name
5692 was found in a more or less random way; this approach instead
5693 relies on the order of objfile creation -- which still isn't
5694 guaranteed to get the correct answer, but is just probably more
5696 for (objfile *objfile : current_program_space->objfiles ())
5698 if (objfile->per_bfd->name_of_main != NULL)
5700 set_main_name (objfile->per_bfd->name_of_main,
5701 objfile->per_bfd->language_of_main);
5706 /* Try to see if the main procedure is in Ada. */
5707 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5708 be to add a new method in the language vector, and call this
5709 method for each language until one of them returns a non-empty
5710 name. This would allow us to remove this hard-coded call to
5711 an Ada function. It is not clear that this is a better approach
5712 at this point, because all methods need to be written in a way
5713 such that false positives never be returned. For instance, it is
5714 important that a method does not return a wrong name for the main
5715 procedure if the main procedure is actually written in a different
5716 language. It is easy to guaranty this with Ada, since we use a
5717 special symbol generated only when the main in Ada to find the name
5718 of the main procedure. It is difficult however to see how this can
5719 be guarantied for languages such as C, for instance. This suggests
5720 that order of call for these methods becomes important, which means
5721 a more complicated approach. */
5722 new_main_name = ada_main_name ();
5723 if (new_main_name != NULL)
5725 set_main_name (new_main_name, language_ada);
5729 new_main_name = d_main_name ();
5730 if (new_main_name != NULL)
5732 set_main_name (new_main_name, language_d);
5736 new_main_name = go_main_name ();
5737 if (new_main_name != NULL)
5739 set_main_name (new_main_name, language_go);
5743 new_main_name = pascal_main_name ();
5744 if (new_main_name != NULL)
5746 set_main_name (new_main_name, language_pascal);
5750 /* The languages above didn't identify the name of the main procedure.
5751 Fallback to "main". */
5752 set_main_name ("main", language_unknown);
5758 struct main_info *info = get_main_info ();
5760 if (info->name_of_main == NULL)
5763 return info->name_of_main;
5766 /* Return the language of the main function. If it is not known,
5767 return language_unknown. */
5770 main_language (void)
5772 struct main_info *info = get_main_info ();
5774 if (info->name_of_main == NULL)
5777 return info->language_of_main;
5780 /* Handle ``executable_changed'' events for the symtab module. */
5783 symtab_observer_executable_changed (void)
5785 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5786 set_main_name (NULL, language_unknown);
5789 /* Return 1 if the supplied producer string matches the ARM RealView
5790 compiler (armcc). */
5793 producer_is_realview (const char *producer)
5795 static const char *const arm_idents[] = {
5796 "ARM C Compiler, ADS",
5797 "Thumb C Compiler, ADS",
5798 "ARM C++ Compiler, ADS",
5799 "Thumb C++ Compiler, ADS",
5800 "ARM/Thumb C/C++ Compiler, RVCT",
5801 "ARM C/C++ Compiler, RVCT"
5805 if (producer == NULL)
5808 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5809 if (startswith (producer, arm_idents[i]))
5817 /* The next index to hand out in response to a registration request. */
5819 static int next_aclass_value = LOC_FINAL_VALUE;
5821 /* The maximum number of "aclass" registrations we support. This is
5822 constant for convenience. */
5823 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5825 /* The objects representing the various "aclass" values. The elements
5826 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5827 elements are those registered at gdb initialization time. */
5829 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5831 /* The globally visible pointer. This is separate from 'symbol_impl'
5832 so that it can be const. */
5834 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5836 /* Make sure we saved enough room in struct symbol. */
5838 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5840 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5841 is the ops vector associated with this index. This returns the new
5842 index, which should be used as the aclass_index field for symbols
5846 register_symbol_computed_impl (enum address_class aclass,
5847 const struct symbol_computed_ops *ops)
5849 int result = next_aclass_value++;
5851 gdb_assert (aclass == LOC_COMPUTED);
5852 gdb_assert (result < MAX_SYMBOL_IMPLS);
5853 symbol_impl[result].aclass = aclass;
5854 symbol_impl[result].ops_computed = ops;
5856 /* Sanity check OPS. */
5857 gdb_assert (ops != NULL);
5858 gdb_assert (ops->tracepoint_var_ref != NULL);
5859 gdb_assert (ops->describe_location != NULL);
5860 gdb_assert (ops->get_symbol_read_needs != NULL);
5861 gdb_assert (ops->read_variable != NULL);
5866 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5867 OPS is the ops vector associated with this index. This returns the
5868 new index, which should be used as the aclass_index field for symbols
5872 register_symbol_block_impl (enum address_class aclass,
5873 const struct symbol_block_ops *ops)
5875 int result = next_aclass_value++;
5877 gdb_assert (aclass == LOC_BLOCK);
5878 gdb_assert (result < MAX_SYMBOL_IMPLS);
5879 symbol_impl[result].aclass = aclass;
5880 symbol_impl[result].ops_block = ops;
5882 /* Sanity check OPS. */
5883 gdb_assert (ops != NULL);
5884 gdb_assert (ops->find_frame_base_location != NULL);
5889 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5890 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5891 this index. This returns the new index, which should be used as
5892 the aclass_index field for symbols of this type. */
5895 register_symbol_register_impl (enum address_class aclass,
5896 const struct symbol_register_ops *ops)
5898 int result = next_aclass_value++;
5900 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5901 gdb_assert (result < MAX_SYMBOL_IMPLS);
5902 symbol_impl[result].aclass = aclass;
5903 symbol_impl[result].ops_register = ops;
5908 /* Initialize elements of 'symbol_impl' for the constants in enum
5912 initialize_ordinary_address_classes (void)
5916 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5917 symbol_impl[i].aclass = (enum address_class) i;
5922 /* Helper function to initialize the fields of an objfile-owned symbol.
5923 It assumed that *SYM is already all zeroes. */
5926 initialize_objfile_symbol_1 (struct symbol *sym)
5928 SYMBOL_OBJFILE_OWNED (sym) = 1;
5929 SYMBOL_SECTION (sym) = -1;
5932 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5935 initialize_objfile_symbol (struct symbol *sym)
5937 memset (sym, 0, sizeof (*sym));
5938 initialize_objfile_symbol_1 (sym);
5941 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5945 allocate_symbol (struct objfile *objfile)
5947 struct symbol *result;
5949 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5950 initialize_objfile_symbol_1 (result);
5955 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5958 struct template_symbol *
5959 allocate_template_symbol (struct objfile *objfile)
5961 struct template_symbol *result;
5963 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5964 initialize_objfile_symbol_1 (result);
5972 symbol_objfile (const struct symbol *symbol)
5974 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5975 return SYMTAB_OBJFILE (symbol->owner.symtab);
5981 symbol_arch (const struct symbol *symbol)
5983 if (!SYMBOL_OBJFILE_OWNED (symbol))
5984 return symbol->owner.arch;
5985 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
5991 symbol_symtab (const struct symbol *symbol)
5993 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5994 return symbol->owner.symtab;
6000 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6002 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6003 symbol->owner.symtab = symtab;
6009 _initialize_symtab (void)
6011 initialize_ordinary_address_classes ();
6013 add_info ("variables", info_variables_command,
6014 info_print_args_help (_("\
6015 All global and static variable names or those matching REGEXPs.\n\
6016 Usage: info variables [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6017 Prints the global and static variables.\n"),
6018 _("global and static variables")));
6020 add_com ("whereis", class_info, info_variables_command,
6021 info_print_args_help (_("\
6022 All global and static variable names, or those matching REGEXPs.\n\
6023 Usage: whereis [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6024 Prints the global and static variables.\n"),
6025 _("global and static variables")));
6027 add_info ("functions", info_functions_command,
6028 info_print_args_help (_("\
6029 All function names or those matching REGEXPs.\n\
6030 Usage: info functions [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6031 Prints the functions.\n"),
6034 /* FIXME: This command has at least the following problems:
6035 1. It prints builtin types (in a very strange and confusing fashion).
6036 2. It doesn't print right, e.g. with
6037 typedef struct foo *FOO
6038 type_print prints "FOO" when we want to make it (in this situation)
6039 print "struct foo *".
6040 I also think "ptype" or "whatis" is more likely to be useful (but if
6041 there is much disagreement "info types" can be fixed). */
6042 add_info ("types", info_types_command,
6043 _("All type names, or those matching REGEXP."));
6045 add_info ("sources", info_sources_command,
6046 _("Source files in the program."));
6048 add_com ("rbreak", class_breakpoint, rbreak_command,
6049 _("Set a breakpoint for all functions matching REGEXP."));
6051 add_setshow_enum_cmd ("multiple-symbols", no_class,
6052 multiple_symbols_modes, &multiple_symbols_mode,
6054 Set the debugger behavior when more than one symbol are possible matches\n\
6055 in an expression."), _("\
6056 Show how the debugger handles ambiguities in expressions."), _("\
6057 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6058 NULL, NULL, &setlist, &showlist);
6060 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6061 &basenames_may_differ, _("\
6062 Set whether a source file may have multiple base names."), _("\
6063 Show whether a source file may have multiple base names."), _("\
6064 (A \"base name\" is the name of a file with the directory part removed.\n\
6065 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6066 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6067 before comparing them. Canonicalization is an expensive operation,\n\
6068 but it allows the same file be known by more than one base name.\n\
6069 If not set (the default), all source files are assumed to have just\n\
6070 one base name, and gdb will do file name comparisons more efficiently."),
6072 &setlist, &showlist);
6074 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6075 _("Set debugging of symbol table creation."),
6076 _("Show debugging of symbol table creation."), _("\
6077 When enabled (non-zero), debugging messages are printed when building\n\
6078 symbol tables. A value of 1 (one) normally provides enough information.\n\
6079 A value greater than 1 provides more verbose information."),
6082 &setdebuglist, &showdebuglist);
6084 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6086 Set debugging of symbol lookup."), _("\
6087 Show debugging of symbol lookup."), _("\
6088 When enabled (non-zero), symbol lookups are logged."),
6090 &setdebuglist, &showdebuglist);
6092 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6093 &new_symbol_cache_size,
6094 _("Set the size of the symbol cache."),
6095 _("Show the size of the symbol cache."), _("\
6096 The size of the symbol cache.\n\
6097 If zero then the symbol cache is disabled."),
6098 set_symbol_cache_size_handler, NULL,
6099 &maintenance_set_cmdlist,
6100 &maintenance_show_cmdlist);
6102 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6103 _("Dump the symbol cache for each program space."),
6104 &maintenanceprintlist);
6106 add_cmd ("symbol-cache-statistics", class_maintenance,
6107 maintenance_print_symbol_cache_statistics,
6108 _("Print symbol cache statistics for each program space."),
6109 &maintenanceprintlist);
6111 add_cmd ("flush-symbol-cache", class_maintenance,
6112 maintenance_flush_symbol_cache,
6113 _("Flush the symbol cache for each program space."),
6116 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6117 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6118 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);