1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
30 #include "gdb_regex.h"
31 #include "expression.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
43 #include "cli/cli-utils.h"
47 #include "gdb_obstack.h"
49 #include "dictionary.h"
51 #include <sys/types.h>
57 #include "cp-support.h"
59 #include "gdb_assert.h"
62 #include "macroscope.h"
65 #include "parser-defs.h"
67 /* Prototypes for local functions */
69 static void rbreak_command (char *, int);
71 static void types_info (char *, int);
73 static void functions_info (char *, int);
75 static void variables_info (char *, int);
77 static void sources_info (char *, int);
79 static int find_line_common (struct linetable *, int, int *, int);
81 static struct symbol *lookup_symbol_aux (const char *name,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *is_a_field_of_this);
88 struct symbol *lookup_symbol_aux_local (const char *name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
94 struct symbol *lookup_symbol_aux_symtabs (int block_index,
96 const domain_enum domain);
99 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
102 const domain_enum domain);
104 void _initialize_symtab (void);
108 /* When non-zero, print debugging messages related to symtab creation. */
109 unsigned int symtab_create_debug = 0;
111 /* Non-zero if a file may be known by two different basenames.
112 This is the uncommon case, and significantly slows down gdb.
113 Default set to "off" to not slow down the common case. */
114 int basenames_may_differ = 0;
116 /* Allow the user to configure the debugger behavior with respect
117 to multiple-choice menus when more than one symbol matches during
120 const char multiple_symbols_ask[] = "ask";
121 const char multiple_symbols_all[] = "all";
122 const char multiple_symbols_cancel[] = "cancel";
123 static const char *const multiple_symbols_modes[] =
125 multiple_symbols_ask,
126 multiple_symbols_all,
127 multiple_symbols_cancel,
130 static const char *multiple_symbols_mode = multiple_symbols_all;
132 /* Read-only accessor to AUTO_SELECT_MODE. */
135 multiple_symbols_select_mode (void)
137 return multiple_symbols_mode;
140 /* Block in which the most recently searched-for symbol was found.
141 Might be better to make this a parameter to lookup_symbol and
144 const struct block *block_found;
146 /* Return the name of a domain_enum. */
149 domain_name (domain_enum e)
153 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
154 case VAR_DOMAIN: return "VAR_DOMAIN";
155 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
156 case LABEL_DOMAIN: return "LABEL_DOMAIN";
157 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
158 default: gdb_assert_not_reached ("bad domain_enum");
162 /* Return the name of a search_domain . */
165 search_domain_name (enum search_domain e)
169 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
170 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
171 case TYPES_DOMAIN: return "TYPES_DOMAIN";
172 case ALL_DOMAIN: return "ALL_DOMAIN";
173 default: gdb_assert_not_reached ("bad search_domain");
177 /* Set the primary field in SYMTAB. */
180 set_symtab_primary (struct symtab *symtab, int primary)
182 symtab->primary = primary;
184 if (symtab_create_debug && primary)
186 fprintf_unfiltered (gdb_stdlog,
187 "Created primary symtab %s for %s.\n",
188 host_address_to_string (symtab),
189 symtab_to_filename_for_display (symtab));
193 /* See whether FILENAME matches SEARCH_NAME using the rule that we
194 advertise to the user. (The manual's description of linespecs
195 describes what we advertise). Returns true if they match, false
199 compare_filenames_for_search (const char *filename, const char *search_name)
201 int len = strlen (filename);
202 size_t search_len = strlen (search_name);
204 if (len < search_len)
207 /* The tail of FILENAME must match. */
208 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
211 /* Either the names must completely match, or the character
212 preceding the trailing SEARCH_NAME segment of FILENAME must be a
215 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
216 cannot match FILENAME "/path//dir/file.c" - as user has requested
217 absolute path. The sama applies for "c:\file.c" possibly
218 incorrectly hypothetically matching "d:\dir\c:\file.c".
220 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
221 compatible with SEARCH_NAME "file.c". In such case a compiler had
222 to put the "c:file.c" name into debug info. Such compatibility
223 works only on GDB built for DOS host. */
224 return (len == search_len
225 || (!IS_ABSOLUTE_PATH (search_name)
226 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
227 || (HAS_DRIVE_SPEC (filename)
228 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
231 /* Check for a symtab of a specific name by searching some symtabs.
232 This is a helper function for callbacks of iterate_over_symtabs.
234 If NAME is not absolute, then REAL_PATH is NULL
235 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
237 The return value, NAME, REAL_PATH, CALLBACK, and DATA
238 are identical to the `map_symtabs_matching_filename' method of
239 quick_symbol_functions.
241 FIRST and AFTER_LAST indicate the range of symtabs to search.
242 AFTER_LAST is one past the last symtab to search; NULL means to
243 search until the end of the list. */
246 iterate_over_some_symtabs (const char *name,
247 const char *real_path,
248 int (*callback) (struct symtab *symtab,
251 struct symtab *first,
252 struct symtab *after_last)
254 struct symtab *s = NULL;
255 const char* base_name = lbasename (name);
257 for (s = first; s != NULL && s != after_last; s = s->next)
259 if (compare_filenames_for_search (s->filename, name))
261 if (callback (s, data))
266 /* Before we invoke realpath, which can get expensive when many
267 files are involved, do a quick comparison of the basenames. */
268 if (! basenames_may_differ
269 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
272 if (compare_filenames_for_search (symtab_to_fullname (s), name))
274 if (callback (s, data))
279 /* If the user gave us an absolute path, try to find the file in
280 this symtab and use its absolute path. */
281 if (real_path != NULL)
283 const char *fullname = symtab_to_fullname (s);
285 gdb_assert (IS_ABSOLUTE_PATH (real_path));
286 gdb_assert (IS_ABSOLUTE_PATH (name));
287 if (FILENAME_CMP (real_path, fullname) == 0)
289 if (callback (s, data))
299 /* Check for a symtab of a specific name; first in symtabs, then in
300 psymtabs. *If* there is no '/' in the name, a match after a '/'
301 in the symtab filename will also work.
303 Calls CALLBACK with each symtab that is found and with the supplied
304 DATA. If CALLBACK returns true, the search stops. */
307 iterate_over_symtabs (const char *name,
308 int (*callback) (struct symtab *symtab,
312 struct objfile *objfile;
313 char *real_path = NULL;
314 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
316 /* Here we are interested in canonicalizing an absolute path, not
317 absolutizing a relative path. */
318 if (IS_ABSOLUTE_PATH (name))
320 real_path = gdb_realpath (name);
321 make_cleanup (xfree, real_path);
322 gdb_assert (IS_ABSOLUTE_PATH (real_path));
325 ALL_OBJFILES (objfile)
327 if (iterate_over_some_symtabs (name, real_path, callback, data,
328 objfile->symtabs, NULL))
330 do_cleanups (cleanups);
335 /* Same search rules as above apply here, but now we look thru the
338 ALL_OBJFILES (objfile)
341 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
347 do_cleanups (cleanups);
352 do_cleanups (cleanups);
355 /* The callback function used by lookup_symtab. */
358 lookup_symtab_callback (struct symtab *symtab, void *data)
360 struct symtab **result_ptr = data;
362 *result_ptr = symtab;
366 /* A wrapper for iterate_over_symtabs that returns the first matching
370 lookup_symtab (const char *name)
372 struct symtab *result = NULL;
374 iterate_over_symtabs (name, lookup_symtab_callback, &result);
379 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
380 full method name, which consist of the class name (from T), the unadorned
381 method name from METHOD_ID, and the signature for the specific overload,
382 specified by SIGNATURE_ID. Note that this function is g++ specific. */
385 gdb_mangle_name (struct type *type, int method_id, int signature_id)
387 int mangled_name_len;
389 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
390 struct fn_field *method = &f[signature_id];
391 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
392 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
393 const char *newname = type_name_no_tag (type);
395 /* Does the form of physname indicate that it is the full mangled name
396 of a constructor (not just the args)? */
397 int is_full_physname_constructor;
400 int is_destructor = is_destructor_name (physname);
401 /* Need a new type prefix. */
402 char *const_prefix = method->is_const ? "C" : "";
403 char *volatile_prefix = method->is_volatile ? "V" : "";
405 int len = (newname == NULL ? 0 : strlen (newname));
407 /* Nothing to do if physname already contains a fully mangled v3 abi name
408 or an operator name. */
409 if ((physname[0] == '_' && physname[1] == 'Z')
410 || is_operator_name (field_name))
411 return xstrdup (physname);
413 is_full_physname_constructor = is_constructor_name (physname);
415 is_constructor = is_full_physname_constructor
416 || (newname && strcmp (field_name, newname) == 0);
419 is_destructor = (strncmp (physname, "__dt", 4) == 0);
421 if (is_destructor || is_full_physname_constructor)
423 mangled_name = (char *) xmalloc (strlen (physname) + 1);
424 strcpy (mangled_name, physname);
430 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
432 else if (physname[0] == 't' || physname[0] == 'Q')
434 /* The physname for template and qualified methods already includes
436 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
442 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
443 volatile_prefix, len);
445 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
446 + strlen (buf) + len + strlen (physname) + 1);
448 mangled_name = (char *) xmalloc (mangled_name_len);
450 mangled_name[0] = '\0';
452 strcpy (mangled_name, field_name);
454 strcat (mangled_name, buf);
455 /* If the class doesn't have a name, i.e. newname NULL, then we just
456 mangle it using 0 for the length of the class. Thus it gets mangled
457 as something starting with `::' rather than `classname::'. */
459 strcat (mangled_name, newname);
461 strcat (mangled_name, physname);
462 return (mangled_name);
465 /* Initialize the cplus_specific structure. 'cplus_specific' should
466 only be allocated for use with cplus symbols. */
469 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
470 struct obstack *obstack)
472 /* A language_specific structure should not have been previously
474 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
475 gdb_assert (obstack != NULL);
477 gsymbol->language_specific.cplus_specific =
478 OBSTACK_ZALLOC (obstack, struct cplus_specific);
481 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
482 correctly allocated. For C++ symbols a cplus_specific struct is
483 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
484 OBJFILE can be NULL. */
487 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
489 struct obstack *obstack)
491 if (gsymbol->language == language_cplus)
493 if (gsymbol->language_specific.cplus_specific == NULL)
494 symbol_init_cplus_specific (gsymbol, obstack);
496 gsymbol->language_specific.cplus_specific->demangled_name = name;
498 else if (gsymbol->language == language_ada)
502 gsymbol->ada_mangled = 0;
503 gsymbol->language_specific.obstack = obstack;
507 gsymbol->ada_mangled = 1;
508 gsymbol->language_specific.mangled_lang.demangled_name = name;
512 gsymbol->language_specific.mangled_lang.demangled_name = name;
515 /* Return the demangled name of GSYMBOL. */
518 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
520 if (gsymbol->language == language_cplus)
522 if (gsymbol->language_specific.cplus_specific != NULL)
523 return gsymbol->language_specific.cplus_specific->demangled_name;
527 else if (gsymbol->language == language_ada)
529 if (!gsymbol->ada_mangled)
534 return gsymbol->language_specific.mangled_lang.demangled_name;
538 /* Initialize the language dependent portion of a symbol
539 depending upon the language for the symbol. */
542 symbol_set_language (struct general_symbol_info *gsymbol,
543 enum language language,
544 struct obstack *obstack)
546 gsymbol->language = language;
547 if (gsymbol->language == language_d
548 || gsymbol->language == language_go
549 || gsymbol->language == language_java
550 || gsymbol->language == language_objc
551 || gsymbol->language == language_fortran)
553 symbol_set_demangled_name (gsymbol, NULL, obstack);
555 else if (gsymbol->language == language_ada)
557 gdb_assert (gsymbol->ada_mangled == 0);
558 gsymbol->language_specific.obstack = obstack;
560 else if (gsymbol->language == language_cplus)
561 gsymbol->language_specific.cplus_specific = NULL;
564 memset (&gsymbol->language_specific, 0,
565 sizeof (gsymbol->language_specific));
569 /* Functions to initialize a symbol's mangled name. */
571 /* Objects of this type are stored in the demangled name hash table. */
572 struct demangled_name_entry
578 /* Hash function for the demangled name hash. */
581 hash_demangled_name_entry (const void *data)
583 const struct demangled_name_entry *e = data;
585 return htab_hash_string (e->mangled);
588 /* Equality function for the demangled name hash. */
591 eq_demangled_name_entry (const void *a, const void *b)
593 const struct demangled_name_entry *da = a;
594 const struct demangled_name_entry *db = b;
596 return strcmp (da->mangled, db->mangled) == 0;
599 /* Create the hash table used for demangled names. Each hash entry is
600 a pair of strings; one for the mangled name and one for the demangled
601 name. The entry is hashed via just the mangled name. */
604 create_demangled_names_hash (struct objfile *objfile)
606 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
607 The hash table code will round this up to the next prime number.
608 Choosing a much larger table size wastes memory, and saves only about
609 1% in symbol reading. */
611 objfile->per_bfd->demangled_names_hash = htab_create_alloc
612 (256, hash_demangled_name_entry, eq_demangled_name_entry,
613 NULL, xcalloc, xfree);
616 /* Try to determine the demangled name for a symbol, based on the
617 language of that symbol. If the language is set to language_auto,
618 it will attempt to find any demangling algorithm that works and
619 then set the language appropriately. The returned name is allocated
620 by the demangler and should be xfree'd. */
623 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
626 char *demangled = NULL;
628 if (gsymbol->language == language_unknown)
629 gsymbol->language = language_auto;
631 if (gsymbol->language == language_objc
632 || gsymbol->language == language_auto)
635 objc_demangle (mangled, 0);
636 if (demangled != NULL)
638 gsymbol->language = language_objc;
642 if (gsymbol->language == language_cplus
643 || gsymbol->language == language_auto)
646 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
647 if (demangled != NULL)
649 gsymbol->language = language_cplus;
653 if (gsymbol->language == language_java)
656 gdb_demangle (mangled,
657 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
658 if (demangled != NULL)
660 gsymbol->language = language_java;
664 if (gsymbol->language == language_d
665 || gsymbol->language == language_auto)
667 demangled = d_demangle(mangled, 0);
668 if (demangled != NULL)
670 gsymbol->language = language_d;
674 /* FIXME(dje): Continually adding languages here is clumsy.
675 Better to just call la_demangle if !auto, and if auto then call
676 a utility routine that tries successive languages in turn and reports
677 which one it finds. I realize the la_demangle options may be different
678 for different languages but there's already a FIXME for that. */
679 if (gsymbol->language == language_go
680 || gsymbol->language == language_auto)
682 demangled = go_demangle (mangled, 0);
683 if (demangled != NULL)
685 gsymbol->language = language_go;
690 /* We could support `gsymbol->language == language_fortran' here to provide
691 module namespaces also for inferiors with only minimal symbol table (ELF
692 symbols). Just the mangling standard is not standardized across compilers
693 and there is no DW_AT_producer available for inferiors with only the ELF
694 symbols to check the mangling kind. */
696 /* Check for Ada symbols last. See comment below explaining why. */
698 if (gsymbol->language == language_auto)
700 const char *demangled = ada_decode (mangled);
702 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
704 /* Set the gsymbol language to Ada, but still return NULL.
705 Two reasons for that:
707 1. For Ada, we prefer computing the symbol's decoded name
708 on the fly rather than pre-compute it, in order to save
709 memory (Ada projects are typically very large).
711 2. There are some areas in the definition of the GNAT
712 encoding where, with a bit of bad luck, we might be able
713 to decode a non-Ada symbol, generating an incorrect
714 demangled name (Eg: names ending with "TB" for instance
715 are identified as task bodies and so stripped from
716 the decoded name returned).
718 Returning NULL, here, helps us get a little bit of
719 the best of both worlds. Because we're last, we should
720 not affect any of the other languages that were able to
721 demangle the symbol before us; we get to correctly tag
722 Ada symbols as such; and even if we incorrectly tagged
723 a non-Ada symbol, which should be rare, any routing
724 through the Ada language should be transparent (Ada
725 tries to behave much like C/C++ with non-Ada symbols). */
726 gsymbol->language = language_ada;
734 /* Set both the mangled and demangled (if any) names for GSYMBOL based
735 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
736 objfile's obstack; but if COPY_NAME is 0 and if NAME is
737 NUL-terminated, then this function assumes that NAME is already
738 correctly saved (either permanently or with a lifetime tied to the
739 objfile), and it will not be copied.
741 The hash table corresponding to OBJFILE is used, and the memory
742 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
743 so the pointer can be discarded after calling this function. */
745 /* We have to be careful when dealing with Java names: when we run
746 into a Java minimal symbol, we don't know it's a Java symbol, so it
747 gets demangled as a C++ name. This is unfortunate, but there's not
748 much we can do about it: but when demangling partial symbols and
749 regular symbols, we'd better not reuse the wrong demangled name.
750 (See PR gdb/1039.) We solve this by putting a distinctive prefix
751 on Java names when storing them in the hash table. */
753 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
754 don't mind the Java prefix so much: different languages have
755 different demangling requirements, so it's only natural that we
756 need to keep language data around in our demangling cache. But
757 it's not good that the minimal symbol has the wrong demangled name.
758 Unfortunately, I can't think of any easy solution to that
761 #define JAVA_PREFIX "##JAVA$$"
762 #define JAVA_PREFIX_LEN 8
765 symbol_set_names (struct general_symbol_info *gsymbol,
766 const char *linkage_name, int len, int copy_name,
767 struct objfile *objfile)
769 struct demangled_name_entry **slot;
770 /* A 0-terminated copy of the linkage name. */
771 const char *linkage_name_copy;
772 /* A copy of the linkage name that might have a special Java prefix
773 added to it, for use when looking names up in the hash table. */
774 const char *lookup_name;
775 /* The length of lookup_name. */
777 struct demangled_name_entry entry;
778 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
780 if (gsymbol->language == language_ada)
782 /* In Ada, we do the symbol lookups using the mangled name, so
783 we can save some space by not storing the demangled name.
785 As a side note, we have also observed some overlap between
786 the C++ mangling and Ada mangling, similarly to what has
787 been observed with Java. Because we don't store the demangled
788 name with the symbol, we don't need to use the same trick
791 gsymbol->name = linkage_name;
794 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
796 memcpy (name, linkage_name, len);
798 gsymbol->name = name;
800 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
805 if (per_bfd->demangled_names_hash == NULL)
806 create_demangled_names_hash (objfile);
808 /* The stabs reader generally provides names that are not
809 NUL-terminated; most of the other readers don't do this, so we
810 can just use the given copy, unless we're in the Java case. */
811 if (gsymbol->language == language_java)
815 lookup_len = len + JAVA_PREFIX_LEN;
816 alloc_name = alloca (lookup_len + 1);
817 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
818 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
819 alloc_name[lookup_len] = '\0';
821 lookup_name = alloc_name;
822 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
824 else if (linkage_name[len] != '\0')
829 alloc_name = alloca (lookup_len + 1);
830 memcpy (alloc_name, linkage_name, len);
831 alloc_name[lookup_len] = '\0';
833 lookup_name = alloc_name;
834 linkage_name_copy = alloc_name;
839 lookup_name = linkage_name;
840 linkage_name_copy = linkage_name;
843 entry.mangled = lookup_name;
844 slot = ((struct demangled_name_entry **)
845 htab_find_slot (per_bfd->demangled_names_hash,
848 /* If this name is not in the hash table, add it. */
850 /* A C version of the symbol may have already snuck into the table.
851 This happens to, e.g., main.init (__go_init_main). Cope. */
852 || (gsymbol->language == language_go
853 && (*slot)->demangled[0] == '\0'))
855 char *demangled_name = symbol_find_demangled_name (gsymbol,
857 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
859 /* Suppose we have demangled_name==NULL, copy_name==0, and
860 lookup_name==linkage_name. In this case, we already have the
861 mangled name saved, and we don't have a demangled name. So,
862 you might think we could save a little space by not recording
863 this in the hash table at all.
865 It turns out that it is actually important to still save such
866 an entry in the hash table, because storing this name gives
867 us better bcache hit rates for partial symbols. */
868 if (!copy_name && lookup_name == linkage_name)
870 *slot = obstack_alloc (&per_bfd->storage_obstack,
871 offsetof (struct demangled_name_entry,
873 + demangled_len + 1);
874 (*slot)->mangled = lookup_name;
880 /* If we must copy the mangled name, put it directly after
881 the demangled name so we can have a single
883 *slot = obstack_alloc (&per_bfd->storage_obstack,
884 offsetof (struct demangled_name_entry,
886 + lookup_len + demangled_len + 2);
887 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
888 strcpy (mangled_ptr, lookup_name);
889 (*slot)->mangled = mangled_ptr;
892 if (demangled_name != NULL)
894 strcpy ((*slot)->demangled, demangled_name);
895 xfree (demangled_name);
898 (*slot)->demangled[0] = '\0';
901 gsymbol->name = (*slot)->mangled + lookup_len - len;
902 if ((*slot)->demangled[0] != '\0')
903 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
904 &per_bfd->storage_obstack);
906 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
909 /* Return the source code name of a symbol. In languages where
910 demangling is necessary, this is the demangled name. */
913 symbol_natural_name (const struct general_symbol_info *gsymbol)
915 switch (gsymbol->language)
922 case language_fortran:
923 if (symbol_get_demangled_name (gsymbol) != NULL)
924 return symbol_get_demangled_name (gsymbol);
927 return ada_decode_symbol (gsymbol);
931 return gsymbol->name;
934 /* Return the demangled name for a symbol based on the language for
935 that symbol. If no demangled name exists, return NULL. */
938 symbol_demangled_name (const struct general_symbol_info *gsymbol)
940 const char *dem_name = NULL;
942 switch (gsymbol->language)
949 case language_fortran:
950 dem_name = symbol_get_demangled_name (gsymbol);
953 dem_name = ada_decode_symbol (gsymbol);
961 /* Return the search name of a symbol---generally the demangled or
962 linkage name of the symbol, depending on how it will be searched for.
963 If there is no distinct demangled name, then returns the same value
964 (same pointer) as SYMBOL_LINKAGE_NAME. */
967 symbol_search_name (const struct general_symbol_info *gsymbol)
969 if (gsymbol->language == language_ada)
970 return gsymbol->name;
972 return symbol_natural_name (gsymbol);
975 /* Initialize the structure fields to zero values. */
978 init_sal (struct symtab_and_line *sal)
986 sal->explicit_pc = 0;
987 sal->explicit_line = 0;
992 /* Return 1 if the two sections are the same, or if they could
993 plausibly be copies of each other, one in an original object
994 file and another in a separated debug file. */
997 matching_obj_sections (struct obj_section *obj_first,
998 struct obj_section *obj_second)
1000 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1001 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1002 struct objfile *obj;
1004 /* If they're the same section, then they match. */
1005 if (first == second)
1008 /* If either is NULL, give up. */
1009 if (first == NULL || second == NULL)
1012 /* This doesn't apply to absolute symbols. */
1013 if (first->owner == NULL || second->owner == NULL)
1016 /* If they're in the same object file, they must be different sections. */
1017 if (first->owner == second->owner)
1020 /* Check whether the two sections are potentially corresponding. They must
1021 have the same size, address, and name. We can't compare section indexes,
1022 which would be more reliable, because some sections may have been
1024 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1027 /* In-memory addresses may start at a different offset, relativize them. */
1028 if (bfd_get_section_vma (first->owner, first)
1029 - bfd_get_start_address (first->owner)
1030 != bfd_get_section_vma (second->owner, second)
1031 - bfd_get_start_address (second->owner))
1034 if (bfd_get_section_name (first->owner, first) == NULL
1035 || bfd_get_section_name (second->owner, second) == NULL
1036 || strcmp (bfd_get_section_name (first->owner, first),
1037 bfd_get_section_name (second->owner, second)) != 0)
1040 /* Otherwise check that they are in corresponding objfiles. */
1043 if (obj->obfd == first->owner)
1045 gdb_assert (obj != NULL);
1047 if (obj->separate_debug_objfile != NULL
1048 && obj->separate_debug_objfile->obfd == second->owner)
1050 if (obj->separate_debug_objfile_backlink != NULL
1051 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1058 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
1060 struct objfile *objfile;
1061 struct minimal_symbol *msymbol;
1063 /* If we know that this is not a text address, return failure. This is
1064 necessary because we loop based on texthigh and textlow, which do
1065 not include the data ranges. */
1066 msymbol = lookup_minimal_symbol_by_pc_section (pc, section).minsym;
1068 && (MSYMBOL_TYPE (msymbol) == mst_data
1069 || MSYMBOL_TYPE (msymbol) == mst_bss
1070 || MSYMBOL_TYPE (msymbol) == mst_abs
1071 || MSYMBOL_TYPE (msymbol) == mst_file_data
1072 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1075 ALL_OBJFILES (objfile)
1077 struct symtab *result = NULL;
1080 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1089 /* Debug symbols usually don't have section information. We need to dig that
1090 out of the minimal symbols and stash that in the debug symbol. */
1093 fixup_section (struct general_symbol_info *ginfo,
1094 CORE_ADDR addr, struct objfile *objfile)
1096 struct minimal_symbol *msym;
1098 /* First, check whether a minimal symbol with the same name exists
1099 and points to the same address. The address check is required
1100 e.g. on PowerPC64, where the minimal symbol for a function will
1101 point to the function descriptor, while the debug symbol will
1102 point to the actual function code. */
1103 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1105 ginfo->section = SYMBOL_SECTION (msym);
1108 /* Static, function-local variables do appear in the linker
1109 (minimal) symbols, but are frequently given names that won't
1110 be found via lookup_minimal_symbol(). E.g., it has been
1111 observed in frv-uclinux (ELF) executables that a static,
1112 function-local variable named "foo" might appear in the
1113 linker symbols as "foo.6" or "foo.3". Thus, there is no
1114 point in attempting to extend the lookup-by-name mechanism to
1115 handle this case due to the fact that there can be multiple
1118 So, instead, search the section table when lookup by name has
1119 failed. The ``addr'' and ``endaddr'' fields may have already
1120 been relocated. If so, the relocation offset (i.e. the
1121 ANOFFSET value) needs to be subtracted from these values when
1122 performing the comparison. We unconditionally subtract it,
1123 because, when no relocation has been performed, the ANOFFSET
1124 value will simply be zero.
1126 The address of the symbol whose section we're fixing up HAS
1127 NOT BEEN adjusted (relocated) yet. It can't have been since
1128 the section isn't yet known and knowing the section is
1129 necessary in order to add the correct relocation value. In
1130 other words, we wouldn't even be in this function (attempting
1131 to compute the section) if it were already known.
1133 Note that it is possible to search the minimal symbols
1134 (subtracting the relocation value if necessary) to find the
1135 matching minimal symbol, but this is overkill and much less
1136 efficient. It is not necessary to find the matching minimal
1137 symbol, only its section.
1139 Note that this technique (of doing a section table search)
1140 can fail when unrelocated section addresses overlap. For
1141 this reason, we still attempt a lookup by name prior to doing
1142 a search of the section table. */
1144 struct obj_section *s;
1147 ALL_OBJFILE_OSECTIONS (objfile, s)
1149 int idx = s - objfile->sections;
1150 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1155 if (obj_section_addr (s) - offset <= addr
1156 && addr < obj_section_endaddr (s) - offset)
1158 ginfo->section = idx;
1163 /* If we didn't find the section, assume it is in the first
1164 section. If there is no allocated section, then it hardly
1165 matters what we pick, so just pick zero. */
1169 ginfo->section = fallback;
1174 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1181 /* We either have an OBJFILE, or we can get at it from the sym's
1182 symtab. Anything else is a bug. */
1183 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1185 if (objfile == NULL)
1186 objfile = SYMBOL_SYMTAB (sym)->objfile;
1188 if (SYMBOL_OBJ_SECTION (objfile, sym))
1191 /* We should have an objfile by now. */
1192 gdb_assert (objfile);
1194 switch (SYMBOL_CLASS (sym))
1198 addr = SYMBOL_VALUE_ADDRESS (sym);
1201 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1205 /* Nothing else will be listed in the minsyms -- no use looking
1210 fixup_section (&sym->ginfo, addr, objfile);
1215 /* Compute the demangled form of NAME as used by the various symbol
1216 lookup functions. The result is stored in *RESULT_NAME. Returns a
1217 cleanup which can be used to clean up the result.
1219 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1220 Normally, Ada symbol lookups are performed using the encoded name
1221 rather than the demangled name, and so it might seem to make sense
1222 for this function to return an encoded version of NAME.
1223 Unfortunately, we cannot do this, because this function is used in
1224 circumstances where it is not appropriate to try to encode NAME.
1225 For instance, when displaying the frame info, we demangle the name
1226 of each parameter, and then perform a symbol lookup inside our
1227 function using that demangled name. In Ada, certain functions
1228 have internally-generated parameters whose name contain uppercase
1229 characters. Encoding those name would result in those uppercase
1230 characters to become lowercase, and thus cause the symbol lookup
1234 demangle_for_lookup (const char *name, enum language lang,
1235 const char **result_name)
1237 char *demangled_name = NULL;
1238 const char *modified_name = NULL;
1239 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1241 modified_name = name;
1243 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1244 lookup, so we can always binary search. */
1245 if (lang == language_cplus)
1247 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1250 modified_name = demangled_name;
1251 make_cleanup (xfree, demangled_name);
1255 /* If we were given a non-mangled name, canonicalize it
1256 according to the language (so far only for C++). */
1257 demangled_name = cp_canonicalize_string (name);
1260 modified_name = demangled_name;
1261 make_cleanup (xfree, demangled_name);
1265 else if (lang == language_java)
1267 demangled_name = gdb_demangle (name,
1268 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1271 modified_name = demangled_name;
1272 make_cleanup (xfree, demangled_name);
1275 else if (lang == language_d)
1277 demangled_name = d_demangle (name, 0);
1280 modified_name = demangled_name;
1281 make_cleanup (xfree, demangled_name);
1284 else if (lang == language_go)
1286 demangled_name = go_demangle (name, 0);
1289 modified_name = demangled_name;
1290 make_cleanup (xfree, demangled_name);
1294 *result_name = modified_name;
1298 /* Find the definition for a specified symbol name NAME
1299 in domain DOMAIN, visible from lexical block BLOCK.
1300 Returns the struct symbol pointer, or zero if no symbol is found.
1301 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1302 NAME is a field of the current implied argument `this'. If so set
1303 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1304 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1305 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1307 /* This function (or rather its subordinates) have a bunch of loops and
1308 it would seem to be attractive to put in some QUIT's (though I'm not really
1309 sure whether it can run long enough to be really important). But there
1310 are a few calls for which it would appear to be bad news to quit
1311 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1312 that there is C++ code below which can error(), but that probably
1313 doesn't affect these calls since they are looking for a known
1314 variable and thus can probably assume it will never hit the C++
1318 lookup_symbol_in_language (const char *name, const struct block *block,
1319 const domain_enum domain, enum language lang,
1320 struct field_of_this_result *is_a_field_of_this)
1322 const char *modified_name;
1323 struct symbol *returnval;
1324 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1326 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1327 is_a_field_of_this);
1328 do_cleanups (cleanup);
1333 /* Behave like lookup_symbol_in_language, but performed with the
1334 current language. */
1337 lookup_symbol (const char *name, const struct block *block,
1339 struct field_of_this_result *is_a_field_of_this)
1341 return lookup_symbol_in_language (name, block, domain,
1342 current_language->la_language,
1343 is_a_field_of_this);
1346 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1347 found, or NULL if not found. */
1350 lookup_language_this (const struct language_defn *lang,
1351 const struct block *block)
1353 if (lang->la_name_of_this == NULL || block == NULL)
1360 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1363 block_found = block;
1366 if (BLOCK_FUNCTION (block))
1368 block = BLOCK_SUPERBLOCK (block);
1374 /* Given TYPE, a structure/union,
1375 return 1 if the component named NAME from the ultimate target
1376 structure/union is defined, otherwise, return 0. */
1379 check_field (struct type *type, const char *name,
1380 struct field_of_this_result *is_a_field_of_this)
1384 /* The type may be a stub. */
1385 CHECK_TYPEDEF (type);
1387 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1389 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1391 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1393 is_a_field_of_this->type = type;
1394 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1399 /* C++: If it was not found as a data field, then try to return it
1400 as a pointer to a method. */
1402 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1404 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1406 is_a_field_of_this->type = type;
1407 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1412 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1413 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1419 /* Behave like lookup_symbol except that NAME is the natural name
1420 (e.g., demangled name) of the symbol that we're looking for. */
1422 static struct symbol *
1423 lookup_symbol_aux (const char *name, const struct block *block,
1424 const domain_enum domain, enum language language,
1425 struct field_of_this_result *is_a_field_of_this)
1428 const struct language_defn *langdef;
1430 /* Make sure we do something sensible with is_a_field_of_this, since
1431 the callers that set this parameter to some non-null value will
1432 certainly use it later. If we don't set it, the contents of
1433 is_a_field_of_this are undefined. */
1434 if (is_a_field_of_this != NULL)
1435 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1437 /* Search specified block and its superiors. Don't search
1438 STATIC_BLOCK or GLOBAL_BLOCK. */
1440 sym = lookup_symbol_aux_local (name, block, domain, language);
1444 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1445 check to see if NAME is a field of `this'. */
1447 langdef = language_def (language);
1449 /* Don't do this check if we are searching for a struct. It will
1450 not be found by check_field, but will be found by other
1452 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1454 struct symbol *sym = lookup_language_this (langdef, block);
1458 struct type *t = sym->type;
1460 /* I'm not really sure that type of this can ever
1461 be typedefed; just be safe. */
1463 if (TYPE_CODE (t) == TYPE_CODE_PTR
1464 || TYPE_CODE (t) == TYPE_CODE_REF)
1465 t = TYPE_TARGET_TYPE (t);
1467 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1468 && TYPE_CODE (t) != TYPE_CODE_UNION)
1469 error (_("Internal error: `%s' is not an aggregate"),
1470 langdef->la_name_of_this);
1472 if (check_field (t, name, is_a_field_of_this))
1477 /* Now do whatever is appropriate for LANGUAGE to look
1478 up static and global variables. */
1480 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1484 /* Now search all static file-level symbols. Not strictly correct,
1485 but more useful than an error. */
1487 return lookup_static_symbol_aux (name, domain);
1490 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1491 first, then check the psymtabs. If a psymtab indicates the existence of the
1492 desired name as a file-level static, then do psymtab-to-symtab conversion on
1493 the fly and return the found symbol. */
1496 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1498 struct objfile *objfile;
1501 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1505 ALL_OBJFILES (objfile)
1507 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1515 /* Check to see if the symbol is defined in BLOCK or its superiors.
1516 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1518 static struct symbol *
1519 lookup_symbol_aux_local (const char *name, const struct block *block,
1520 const domain_enum domain,
1521 enum language language)
1524 const struct block *static_block = block_static_block (block);
1525 const char *scope = block_scope (block);
1527 /* Check if either no block is specified or it's a global block. */
1529 if (static_block == NULL)
1532 while (block != static_block)
1534 sym = lookup_symbol_aux_block (name, block, domain);
1538 if (language == language_cplus || language == language_fortran)
1540 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1546 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1548 block = BLOCK_SUPERBLOCK (block);
1551 /* We've reached the edge of the function without finding a result. */
1556 /* Look up OBJFILE to BLOCK. */
1559 lookup_objfile_from_block (const struct block *block)
1561 struct objfile *obj;
1567 block = block_global_block (block);
1568 /* Go through SYMTABS. */
1569 ALL_SYMTABS (obj, s)
1570 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1572 if (obj->separate_debug_objfile_backlink)
1573 obj = obj->separate_debug_objfile_backlink;
1581 /* Look up a symbol in a block; if found, fixup the symbol, and set
1582 block_found appropriately. */
1585 lookup_symbol_aux_block (const char *name, const struct block *block,
1586 const domain_enum domain)
1590 sym = lookup_block_symbol (block, name, domain);
1593 block_found = block;
1594 return fixup_symbol_section (sym, NULL);
1600 /* Check all global symbols in OBJFILE in symtabs and
1604 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1606 const domain_enum domain)
1608 const struct objfile *objfile;
1610 struct blockvector *bv;
1611 const struct block *block;
1614 for (objfile = main_objfile;
1616 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1618 /* Go through symtabs. */
1619 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1621 bv = BLOCKVECTOR (s);
1622 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1623 sym = lookup_block_symbol (block, name, domain);
1626 block_found = block;
1627 return fixup_symbol_section (sym, (struct objfile *)objfile);
1631 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1640 /* Check to see if the symbol is defined in one of the OBJFILE's
1641 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1642 depending on whether or not we want to search global symbols or
1645 static struct symbol *
1646 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1647 const char *name, const domain_enum domain)
1649 struct symbol *sym = NULL;
1650 struct blockvector *bv;
1651 const struct block *block;
1654 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1656 bv = BLOCKVECTOR (s);
1657 block = BLOCKVECTOR_BLOCK (bv, block_index);
1658 sym = lookup_block_symbol (block, name, domain);
1661 block_found = block;
1662 return fixup_symbol_section (sym, objfile);
1669 /* Same as lookup_symbol_aux_objfile, except that it searches all
1670 objfiles. Return the first match found. */
1672 static struct symbol *
1673 lookup_symbol_aux_symtabs (int block_index, const char *name,
1674 const domain_enum domain)
1677 struct objfile *objfile;
1679 ALL_OBJFILES (objfile)
1681 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1689 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1690 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1691 and all related objfiles. */
1693 static struct symbol *
1694 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1695 const char *linkage_name,
1698 enum language lang = current_language->la_language;
1699 const char *modified_name;
1700 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1702 struct objfile *main_objfile, *cur_objfile;
1704 if (objfile->separate_debug_objfile_backlink)
1705 main_objfile = objfile->separate_debug_objfile_backlink;
1707 main_objfile = objfile;
1709 for (cur_objfile = main_objfile;
1711 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1715 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1716 modified_name, domain);
1718 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1719 modified_name, domain);
1722 do_cleanups (cleanup);
1727 do_cleanups (cleanup);
1731 /* A helper function that throws an exception when a symbol was found
1732 in a psymtab but not in a symtab. */
1734 static void ATTRIBUTE_NORETURN
1735 error_in_psymtab_expansion (int kind, const char *name, struct symtab *symtab)
1738 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1739 %s may be an inlined function, or may be a template function\n \
1740 (if a template, try specifying an instantiation: %s<type>)."),
1741 kind == GLOBAL_BLOCK ? "global" : "static",
1742 name, symtab_to_filename_for_display (symtab), name, name);
1745 /* A helper function for lookup_symbol_aux that interfaces with the
1746 "quick" symbol table functions. */
1748 static struct symbol *
1749 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1750 const char *name, const domain_enum domain)
1752 struct symtab *symtab;
1753 struct blockvector *bv;
1754 const struct block *block;
1759 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1763 bv = BLOCKVECTOR (symtab);
1764 block = BLOCKVECTOR_BLOCK (bv, kind);
1765 sym = lookup_block_symbol (block, name, domain);
1767 error_in_psymtab_expansion (kind, name, symtab);
1768 return fixup_symbol_section (sym, objfile);
1771 /* A default version of lookup_symbol_nonlocal for use by languages
1772 that can't think of anything better to do. This implements the C
1776 basic_lookup_symbol_nonlocal (const char *name,
1777 const struct block *block,
1778 const domain_enum domain)
1782 /* NOTE: carlton/2003-05-19: The comments below were written when
1783 this (or what turned into this) was part of lookup_symbol_aux;
1784 I'm much less worried about these questions now, since these
1785 decisions have turned out well, but I leave these comments here
1788 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1789 not it would be appropriate to search the current global block
1790 here as well. (That's what this code used to do before the
1791 is_a_field_of_this check was moved up.) On the one hand, it's
1792 redundant with the lookup_symbol_aux_symtabs search that happens
1793 next. On the other hand, if decode_line_1 is passed an argument
1794 like filename:var, then the user presumably wants 'var' to be
1795 searched for in filename. On the third hand, there shouldn't be
1796 multiple global variables all of which are named 'var', and it's
1797 not like decode_line_1 has ever restricted its search to only
1798 global variables in a single filename. All in all, only
1799 searching the static block here seems best: it's correct and it's
1802 /* NOTE: carlton/2002-12-05: There's also a possible performance
1803 issue here: if you usually search for global symbols in the
1804 current file, then it would be slightly better to search the
1805 current global block before searching all the symtabs. But there
1806 are other factors that have a much greater effect on performance
1807 than that one, so I don't think we should worry about that for
1810 sym = lookup_symbol_static (name, block, domain);
1814 return lookup_symbol_global (name, block, domain);
1817 /* Lookup a symbol in the static block associated to BLOCK, if there
1818 is one; do nothing if BLOCK is NULL or a global block. */
1821 lookup_symbol_static (const char *name,
1822 const struct block *block,
1823 const domain_enum domain)
1825 const struct block *static_block = block_static_block (block);
1827 if (static_block != NULL)
1828 return lookup_symbol_aux_block (name, static_block, domain);
1833 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1835 struct global_sym_lookup_data
1837 /* The name of the symbol we are searching for. */
1840 /* The domain to use for our search. */
1843 /* The field where the callback should store the symbol if found.
1844 It should be initialized to NULL before the search is started. */
1845 struct symbol *result;
1848 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1849 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1850 OBJFILE. The arguments for the search are passed via CB_DATA,
1851 which in reality is a pointer to struct global_sym_lookup_data. */
1854 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1857 struct global_sym_lookup_data *data =
1858 (struct global_sym_lookup_data *) cb_data;
1860 gdb_assert (data->result == NULL);
1862 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1863 data->name, data->domain);
1864 if (data->result == NULL)
1865 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1866 data->name, data->domain);
1868 /* If we found a match, tell the iterator to stop. Otherwise,
1870 return (data->result != NULL);
1873 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1877 lookup_symbol_global (const char *name,
1878 const struct block *block,
1879 const domain_enum domain)
1881 struct symbol *sym = NULL;
1882 struct objfile *objfile = NULL;
1883 struct global_sym_lookup_data lookup_data;
1885 /* Call library-specific lookup procedure. */
1886 objfile = lookup_objfile_from_block (block);
1887 if (objfile != NULL)
1888 sym = solib_global_lookup (objfile, name, domain);
1892 memset (&lookup_data, 0, sizeof (lookup_data));
1893 lookup_data.name = name;
1894 lookup_data.domain = domain;
1895 gdbarch_iterate_over_objfiles_in_search_order
1896 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1897 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1899 return lookup_data.result;
1903 symbol_matches_domain (enum language symbol_language,
1904 domain_enum symbol_domain,
1907 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1908 A Java class declaration also defines a typedef for the class.
1909 Similarly, any Ada type declaration implicitly defines a typedef. */
1910 if (symbol_language == language_cplus
1911 || symbol_language == language_d
1912 || symbol_language == language_java
1913 || symbol_language == language_ada)
1915 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1916 && symbol_domain == STRUCT_DOMAIN)
1919 /* For all other languages, strict match is required. */
1920 return (symbol_domain == domain);
1923 /* Look up a type named NAME in the struct_domain. The type returned
1924 must not be opaque -- i.e., must have at least one field
1928 lookup_transparent_type (const char *name)
1930 return current_language->la_lookup_transparent_type (name);
1933 /* A helper for basic_lookup_transparent_type that interfaces with the
1934 "quick" symbol table functions. */
1936 static struct type *
1937 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1940 struct symtab *symtab;
1941 struct blockvector *bv;
1942 struct block *block;
1947 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1951 bv = BLOCKVECTOR (symtab);
1952 block = BLOCKVECTOR_BLOCK (bv, kind);
1953 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1955 error_in_psymtab_expansion (kind, name, symtab);
1957 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1958 return SYMBOL_TYPE (sym);
1963 /* The standard implementation of lookup_transparent_type. This code
1964 was modeled on lookup_symbol -- the parts not relevant to looking
1965 up types were just left out. In particular it's assumed here that
1966 types are available in struct_domain and only at file-static or
1970 basic_lookup_transparent_type (const char *name)
1973 struct symtab *s = NULL;
1974 struct blockvector *bv;
1975 struct objfile *objfile;
1976 struct block *block;
1979 /* Now search all the global symbols. Do the symtab's first, then
1980 check the psymtab's. If a psymtab indicates the existence
1981 of the desired name as a global, then do psymtab-to-symtab
1982 conversion on the fly and return the found symbol. */
1984 ALL_OBJFILES (objfile)
1986 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1988 bv = BLOCKVECTOR (s);
1989 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1990 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1991 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1993 return SYMBOL_TYPE (sym);
1998 ALL_OBJFILES (objfile)
2000 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2005 /* Now search the static file-level symbols.
2006 Not strictly correct, but more useful than an error.
2007 Do the symtab's first, then
2008 check the psymtab's. If a psymtab indicates the existence
2009 of the desired name as a file-level static, then do psymtab-to-symtab
2010 conversion on the fly and return the found symbol. */
2012 ALL_OBJFILES (objfile)
2014 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
2016 bv = BLOCKVECTOR (s);
2017 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
2018 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
2019 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2021 return SYMBOL_TYPE (sym);
2026 ALL_OBJFILES (objfile)
2028 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2033 return (struct type *) 0;
2036 /* Search BLOCK for symbol NAME in DOMAIN.
2038 Note that if NAME is the demangled form of a C++ symbol, we will fail
2039 to find a match during the binary search of the non-encoded names, but
2040 for now we don't worry about the slight inefficiency of looking for
2041 a match we'll never find, since it will go pretty quick. Once the
2042 binary search terminates, we drop through and do a straight linear
2043 search on the symbols. Each symbol which is marked as being a ObjC/C++
2044 symbol (language_cplus or language_objc set) has both the encoded and
2045 non-encoded names tested for a match. */
2048 lookup_block_symbol (const struct block *block, const char *name,
2049 const domain_enum domain)
2051 struct block_iterator iter;
2054 if (!BLOCK_FUNCTION (block))
2056 for (sym = block_iter_name_first (block, name, &iter);
2058 sym = block_iter_name_next (name, &iter))
2060 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2061 SYMBOL_DOMAIN (sym), domain))
2068 /* Note that parameter symbols do not always show up last in the
2069 list; this loop makes sure to take anything else other than
2070 parameter symbols first; it only uses parameter symbols as a
2071 last resort. Note that this only takes up extra computation
2074 struct symbol *sym_found = NULL;
2076 for (sym = block_iter_name_first (block, name, &iter);
2078 sym = block_iter_name_next (name, &iter))
2080 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2081 SYMBOL_DOMAIN (sym), domain))
2084 if (!SYMBOL_IS_ARGUMENT (sym))
2090 return (sym_found); /* Will be NULL if not found. */
2094 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2096 For each symbol that matches, CALLBACK is called. The symbol and
2097 DATA are passed to the callback.
2099 If CALLBACK returns zero, the iteration ends. Otherwise, the
2100 search continues. */
2103 iterate_over_symbols (const struct block *block, const char *name,
2104 const domain_enum domain,
2105 symbol_found_callback_ftype *callback,
2108 struct block_iterator iter;
2111 for (sym = block_iter_name_first (block, name, &iter);
2113 sym = block_iter_name_next (name, &iter))
2115 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2116 SYMBOL_DOMAIN (sym), domain))
2118 if (!callback (sym, data))
2124 /* Find the symtab associated with PC and SECTION. Look through the
2125 psymtabs and read in another symtab if necessary. */
2128 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2131 struct blockvector *bv;
2132 struct symtab *s = NULL;
2133 struct symtab *best_s = NULL;
2134 struct objfile *objfile;
2135 CORE_ADDR distance = 0;
2136 struct minimal_symbol *msymbol;
2138 /* If we know that this is not a text address, return failure. This is
2139 necessary because we loop based on the block's high and low code
2140 addresses, which do not include the data ranges, and because
2141 we call find_pc_sect_psymtab which has a similar restriction based
2142 on the partial_symtab's texthigh and textlow. */
2143 msymbol = lookup_minimal_symbol_by_pc_section (pc, section).minsym;
2145 && (MSYMBOL_TYPE (msymbol) == mst_data
2146 || MSYMBOL_TYPE (msymbol) == mst_bss
2147 || MSYMBOL_TYPE (msymbol) == mst_abs
2148 || MSYMBOL_TYPE (msymbol) == mst_file_data
2149 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2152 /* Search all symtabs for the one whose file contains our address, and which
2153 is the smallest of all the ones containing the address. This is designed
2154 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2155 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2156 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2158 This happens for native ecoff format, where code from included files
2159 gets its own symtab. The symtab for the included file should have
2160 been read in already via the dependency mechanism.
2161 It might be swifter to create several symtabs with the same name
2162 like xcoff does (I'm not sure).
2164 It also happens for objfiles that have their functions reordered.
2165 For these, the symtab we are looking for is not necessarily read in. */
2167 ALL_PRIMARY_SYMTABS (objfile, s)
2169 bv = BLOCKVECTOR (s);
2170 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2172 if (BLOCK_START (b) <= pc
2173 && BLOCK_END (b) > pc
2175 || BLOCK_END (b) - BLOCK_START (b) < distance))
2177 /* For an objfile that has its functions reordered,
2178 find_pc_psymtab will find the proper partial symbol table
2179 and we simply return its corresponding symtab. */
2180 /* In order to better support objfiles that contain both
2181 stabs and coff debugging info, we continue on if a psymtab
2183 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2185 struct symtab *result;
2188 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2197 struct block_iterator iter;
2198 struct symbol *sym = NULL;
2200 ALL_BLOCK_SYMBOLS (b, iter, sym)
2202 fixup_symbol_section (sym, objfile);
2203 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2208 continue; /* No symbol in this symtab matches
2211 distance = BLOCK_END (b) - BLOCK_START (b);
2219 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2221 ALL_OBJFILES (objfile)
2223 struct symtab *result;
2227 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2238 /* Find the symtab associated with PC. Look through the psymtabs and read
2239 in another symtab if necessary. Backward compatibility, no section. */
2242 find_pc_symtab (CORE_ADDR pc)
2244 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2248 /* Find the source file and line number for a given PC value and SECTION.
2249 Return a structure containing a symtab pointer, a line number,
2250 and a pc range for the entire source line.
2251 The value's .pc field is NOT the specified pc.
2252 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2253 use the line that ends there. Otherwise, in that case, the line
2254 that begins there is used. */
2256 /* The big complication here is that a line may start in one file, and end just
2257 before the start of another file. This usually occurs when you #include
2258 code in the middle of a subroutine. To properly find the end of a line's PC
2259 range, we must search all symtabs associated with this compilation unit, and
2260 find the one whose first PC is closer than that of the next line in this
2263 /* If it's worth the effort, we could be using a binary search. */
2265 struct symtab_and_line
2266 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2269 struct linetable *l;
2272 struct linetable_entry *item;
2273 struct symtab_and_line val;
2274 struct blockvector *bv;
2275 struct bound_minimal_symbol msymbol;
2276 struct minimal_symbol *mfunsym;
2277 struct objfile *objfile;
2279 /* Info on best line seen so far, and where it starts, and its file. */
2281 struct linetable_entry *best = NULL;
2282 CORE_ADDR best_end = 0;
2283 struct symtab *best_symtab = 0;
2285 /* Store here the first line number
2286 of a file which contains the line at the smallest pc after PC.
2287 If we don't find a line whose range contains PC,
2288 we will use a line one less than this,
2289 with a range from the start of that file to the first line's pc. */
2290 struct linetable_entry *alt = NULL;
2292 /* Info on best line seen in this file. */
2294 struct linetable_entry *prev;
2296 /* If this pc is not from the current frame,
2297 it is the address of the end of a call instruction.
2298 Quite likely that is the start of the following statement.
2299 But what we want is the statement containing the instruction.
2300 Fudge the pc to make sure we get that. */
2302 init_sal (&val); /* initialize to zeroes */
2304 val.pspace = current_program_space;
2306 /* It's tempting to assume that, if we can't find debugging info for
2307 any function enclosing PC, that we shouldn't search for line
2308 number info, either. However, GAS can emit line number info for
2309 assembly files --- very helpful when debugging hand-written
2310 assembly code. In such a case, we'd have no debug info for the
2311 function, but we would have line info. */
2316 /* elz: added this because this function returned the wrong
2317 information if the pc belongs to a stub (import/export)
2318 to call a shlib function. This stub would be anywhere between
2319 two functions in the target, and the line info was erroneously
2320 taken to be the one of the line before the pc. */
2322 /* RT: Further explanation:
2324 * We have stubs (trampolines) inserted between procedures.
2326 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2327 * exists in the main image.
2329 * In the minimal symbol table, we have a bunch of symbols
2330 * sorted by start address. The stubs are marked as "trampoline",
2331 * the others appear as text. E.g.:
2333 * Minimal symbol table for main image
2334 * main: code for main (text symbol)
2335 * shr1: stub (trampoline symbol)
2336 * foo: code for foo (text symbol)
2338 * Minimal symbol table for "shr1" image:
2340 * shr1: code for shr1 (text symbol)
2343 * So the code below is trying to detect if we are in the stub
2344 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2345 * and if found, do the symbolization from the real-code address
2346 * rather than the stub address.
2348 * Assumptions being made about the minimal symbol table:
2349 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2350 * if we're really in the trampoline.s If we're beyond it (say
2351 * we're in "foo" in the above example), it'll have a closer
2352 * symbol (the "foo" text symbol for example) and will not
2353 * return the trampoline.
2354 * 2. lookup_minimal_symbol_text() will find a real text symbol
2355 * corresponding to the trampoline, and whose address will
2356 * be different than the trampoline address. I put in a sanity
2357 * check for the address being the same, to avoid an
2358 * infinite recursion.
2360 msymbol = lookup_minimal_symbol_by_pc (pc);
2361 if (msymbol.minsym != NULL)
2362 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2365 = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol.minsym),
2367 if (mfunsym == NULL)
2368 /* I eliminated this warning since it is coming out
2369 * in the following situation:
2370 * gdb shmain // test program with shared libraries
2371 * (gdb) break shr1 // function in shared lib
2372 * Warning: In stub for ...
2373 * In the above situation, the shared lib is not loaded yet,
2374 * so of course we can't find the real func/line info,
2375 * but the "break" still works, and the warning is annoying.
2376 * So I commented out the warning. RT */
2377 /* warning ("In stub for %s; unable to find real function/line info",
2378 SYMBOL_LINKAGE_NAME (msymbol)); */
2381 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2382 == SYMBOL_VALUE_ADDRESS (msymbol.minsym))
2383 /* Avoid infinite recursion */
2384 /* See above comment about why warning is commented out. */
2385 /* warning ("In stub for %s; unable to find real function/line info",
2386 SYMBOL_LINKAGE_NAME (msymbol)); */
2390 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2394 s = find_pc_sect_symtab (pc, section);
2397 /* If no symbol information, return previous pc. */
2404 bv = BLOCKVECTOR (s);
2405 objfile = s->objfile;
2407 /* Look at all the symtabs that share this blockvector.
2408 They all have the same apriori range, that we found was right;
2409 but they have different line tables. */
2411 ALL_OBJFILE_SYMTABS (objfile, s)
2413 if (BLOCKVECTOR (s) != bv)
2416 /* Find the best line in this symtab. */
2423 /* I think len can be zero if the symtab lacks line numbers
2424 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2425 I'm not sure which, and maybe it depends on the symbol
2431 item = l->item; /* Get first line info. */
2433 /* Is this file's first line closer than the first lines of other files?
2434 If so, record this file, and its first line, as best alternate. */
2435 if (item->pc > pc && (!alt || item->pc < alt->pc))
2438 for (i = 0; i < len; i++, item++)
2440 /* Leave prev pointing to the linetable entry for the last line
2441 that started at or before PC. */
2448 /* At this point, prev points at the line whose start addr is <= pc, and
2449 item points at the next line. If we ran off the end of the linetable
2450 (pc >= start of the last line), then prev == item. If pc < start of
2451 the first line, prev will not be set. */
2453 /* Is this file's best line closer than the best in the other files?
2454 If so, record this file, and its best line, as best so far. Don't
2455 save prev if it represents the end of a function (i.e. line number
2456 0) instead of a real line. */
2458 if (prev && prev->line && (!best || prev->pc > best->pc))
2463 /* Discard BEST_END if it's before the PC of the current BEST. */
2464 if (best_end <= best->pc)
2468 /* If another line (denoted by ITEM) is in the linetable and its
2469 PC is after BEST's PC, but before the current BEST_END, then
2470 use ITEM's PC as the new best_end. */
2471 if (best && i < len && item->pc > best->pc
2472 && (best_end == 0 || best_end > item->pc))
2473 best_end = item->pc;
2478 /* If we didn't find any line number info, just return zeros.
2479 We used to return alt->line - 1 here, but that could be
2480 anywhere; if we don't have line number info for this PC,
2481 don't make some up. */
2484 else if (best->line == 0)
2486 /* If our best fit is in a range of PC's for which no line
2487 number info is available (line number is zero) then we didn't
2488 find any valid line information. */
2493 val.symtab = best_symtab;
2494 val.line = best->line;
2496 if (best_end && (!alt || best_end < alt->pc))
2501 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2503 val.section = section;
2507 /* Backward compatibility (no section). */
2509 struct symtab_and_line
2510 find_pc_line (CORE_ADDR pc, int notcurrent)
2512 struct obj_section *section;
2514 section = find_pc_overlay (pc);
2515 if (pc_in_unmapped_range (pc, section))
2516 pc = overlay_mapped_address (pc, section);
2517 return find_pc_sect_line (pc, section, notcurrent);
2520 /* Find line number LINE in any symtab whose name is the same as
2523 If found, return the symtab that contains the linetable in which it was
2524 found, set *INDEX to the index in the linetable of the best entry
2525 found, and set *EXACT_MATCH nonzero if the value returned is an
2528 If not found, return NULL. */
2531 find_line_symtab (struct symtab *symtab, int line,
2532 int *index, int *exact_match)
2534 int exact = 0; /* Initialized here to avoid a compiler warning. */
2536 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2540 struct linetable *best_linetable;
2541 struct symtab *best_symtab;
2543 /* First try looking it up in the given symtab. */
2544 best_linetable = LINETABLE (symtab);
2545 best_symtab = symtab;
2546 best_index = find_line_common (best_linetable, line, &exact, 0);
2547 if (best_index < 0 || !exact)
2549 /* Didn't find an exact match. So we better keep looking for
2550 another symtab with the same name. In the case of xcoff,
2551 multiple csects for one source file (produced by IBM's FORTRAN
2552 compiler) produce multiple symtabs (this is unavoidable
2553 assuming csects can be at arbitrary places in memory and that
2554 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2556 /* BEST is the smallest linenumber > LINE so far seen,
2557 or 0 if none has been seen so far.
2558 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2561 struct objfile *objfile;
2564 if (best_index >= 0)
2565 best = best_linetable->item[best_index].line;
2569 ALL_OBJFILES (objfile)
2572 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2573 symtab_to_fullname (symtab));
2576 ALL_SYMTABS (objfile, s)
2578 struct linetable *l;
2581 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2583 if (FILENAME_CMP (symtab_to_fullname (symtab),
2584 symtab_to_fullname (s)) != 0)
2587 ind = find_line_common (l, line, &exact, 0);
2597 if (best == 0 || l->item[ind].line < best)
2599 best = l->item[ind].line;
2612 *index = best_index;
2614 *exact_match = exact;
2619 /* Given SYMTAB, returns all the PCs function in the symtab that
2620 exactly match LINE. Returns NULL if there are no exact matches,
2621 but updates BEST_ITEM in this case. */
2624 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2625 struct linetable_entry **best_item)
2628 VEC (CORE_ADDR) *result = NULL;
2630 /* First, collect all the PCs that are at this line. */
2636 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2642 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2644 if (*best_item == NULL || item->line < (*best_item)->line)
2650 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2658 /* Set the PC value for a given source file and line number and return true.
2659 Returns zero for invalid line number (and sets the PC to 0).
2660 The source file is specified with a struct symtab. */
2663 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2665 struct linetable *l;
2672 symtab = find_line_symtab (symtab, line, &ind, NULL);
2675 l = LINETABLE (symtab);
2676 *pc = l->item[ind].pc;
2683 /* Find the range of pc values in a line.
2684 Store the starting pc of the line into *STARTPTR
2685 and the ending pc (start of next line) into *ENDPTR.
2686 Returns 1 to indicate success.
2687 Returns 0 if could not find the specified line. */
2690 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2693 CORE_ADDR startaddr;
2694 struct symtab_and_line found_sal;
2697 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2700 /* This whole function is based on address. For example, if line 10 has
2701 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2702 "info line *0x123" should say the line goes from 0x100 to 0x200
2703 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2704 This also insures that we never give a range like "starts at 0x134
2705 and ends at 0x12c". */
2707 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2708 if (found_sal.line != sal.line)
2710 /* The specified line (sal) has zero bytes. */
2711 *startptr = found_sal.pc;
2712 *endptr = found_sal.pc;
2716 *startptr = found_sal.pc;
2717 *endptr = found_sal.end;
2722 /* Given a line table and a line number, return the index into the line
2723 table for the pc of the nearest line whose number is >= the specified one.
2724 Return -1 if none is found. The value is >= 0 if it is an index.
2725 START is the index at which to start searching the line table.
2727 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2730 find_line_common (struct linetable *l, int lineno,
2731 int *exact_match, int start)
2736 /* BEST is the smallest linenumber > LINENO so far seen,
2737 or 0 if none has been seen so far.
2738 BEST_INDEX identifies the item for it. */
2740 int best_index = -1;
2751 for (i = start; i < len; i++)
2753 struct linetable_entry *item = &(l->item[i]);
2755 if (item->line == lineno)
2757 /* Return the first (lowest address) entry which matches. */
2762 if (item->line > lineno && (best == 0 || item->line < best))
2769 /* If we got here, we didn't get an exact match. */
2774 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2776 struct symtab_and_line sal;
2778 sal = find_pc_line (pc, 0);
2781 return sal.symtab != 0;
2784 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2785 address for that function that has an entry in SYMTAB's line info
2786 table. If such an entry cannot be found, return FUNC_ADDR
2790 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2792 CORE_ADDR func_start, func_end;
2793 struct linetable *l;
2796 /* Give up if this symbol has no lineinfo table. */
2797 l = LINETABLE (symtab);
2801 /* Get the range for the function's PC values, or give up if we
2802 cannot, for some reason. */
2803 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2806 /* Linetable entries are ordered by PC values, see the commentary in
2807 symtab.h where `struct linetable' is defined. Thus, the first
2808 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2809 address we are looking for. */
2810 for (i = 0; i < l->nitems; i++)
2812 struct linetable_entry *item = &(l->item[i]);
2814 /* Don't use line numbers of zero, they mark special entries in
2815 the table. See the commentary on symtab.h before the
2816 definition of struct linetable. */
2817 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2824 /* Given a function symbol SYM, find the symtab and line for the start
2826 If the argument FUNFIRSTLINE is nonzero, we want the first line
2827 of real code inside the function. */
2829 struct symtab_and_line
2830 find_function_start_sal (struct symbol *sym, int funfirstline)
2832 struct symtab_and_line sal;
2834 fixup_symbol_section (sym, NULL);
2835 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2836 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2838 /* We always should have a line for the function start address.
2839 If we don't, something is odd. Create a plain SAL refering
2840 just the PC and hope that skip_prologue_sal (if requested)
2841 can find a line number for after the prologue. */
2842 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2845 sal.pspace = current_program_space;
2846 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2847 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2851 skip_prologue_sal (&sal);
2856 /* Adjust SAL to the first instruction past the function prologue.
2857 If the PC was explicitly specified, the SAL is not changed.
2858 If the line number was explicitly specified, at most the SAL's PC
2859 is updated. If SAL is already past the prologue, then do nothing. */
2862 skip_prologue_sal (struct symtab_and_line *sal)
2865 struct symtab_and_line start_sal;
2866 struct cleanup *old_chain;
2867 CORE_ADDR pc, saved_pc;
2868 struct obj_section *section;
2870 struct objfile *objfile;
2871 struct gdbarch *gdbarch;
2872 struct block *b, *function_block;
2873 int force_skip, skip;
2875 /* Do not change the SAL if PC was specified explicitly. */
2876 if (sal->explicit_pc)
2879 old_chain = save_current_space_and_thread ();
2880 switch_to_program_space_and_thread (sal->pspace);
2882 sym = find_pc_sect_function (sal->pc, sal->section);
2885 fixup_symbol_section (sym, NULL);
2887 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2888 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2889 name = SYMBOL_LINKAGE_NAME (sym);
2890 objfile = SYMBOL_SYMTAB (sym)->objfile;
2894 struct bound_minimal_symbol msymbol
2895 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2897 if (msymbol.minsym == NULL)
2899 do_cleanups (old_chain);
2903 objfile = msymbol.objfile;
2904 pc = SYMBOL_VALUE_ADDRESS (msymbol.minsym);
2905 section = SYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2906 name = SYMBOL_LINKAGE_NAME (msymbol.minsym);
2909 gdbarch = get_objfile_arch (objfile);
2911 /* Process the prologue in two passes. In the first pass try to skip the
2912 prologue (SKIP is true) and verify there is a real need for it (indicated
2913 by FORCE_SKIP). If no such reason was found run a second pass where the
2914 prologue is not skipped (SKIP is false). */
2919 /* Be conservative - allow direct PC (without skipping prologue) only if we
2920 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2921 have to be set by the caller so we use SYM instead. */
2922 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2930 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2931 so that gdbarch_skip_prologue has something unique to work on. */
2932 if (section_is_overlay (section) && !section_is_mapped (section))
2933 pc = overlay_unmapped_address (pc, section);
2935 /* Skip "first line" of function (which is actually its prologue). */
2936 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2938 pc = gdbarch_skip_prologue (gdbarch, pc);
2940 /* For overlays, map pc back into its mapped VMA range. */
2941 pc = overlay_mapped_address (pc, section);
2943 /* Calculate line number. */
2944 start_sal = find_pc_sect_line (pc, section, 0);
2946 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2947 line is still part of the same function. */
2948 if (skip && start_sal.pc != pc
2949 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2950 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2951 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2952 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2954 /* First pc of next line */
2956 /* Recalculate the line number (might not be N+1). */
2957 start_sal = find_pc_sect_line (pc, section, 0);
2960 /* On targets with executable formats that don't have a concept of
2961 constructors (ELF with .init has, PE doesn't), gcc emits a call
2962 to `__main' in `main' between the prologue and before user
2964 if (gdbarch_skip_main_prologue_p (gdbarch)
2965 && name && strcmp_iw (name, "main") == 0)
2967 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2968 /* Recalculate the line number (might not be N+1). */
2969 start_sal = find_pc_sect_line (pc, section, 0);
2973 while (!force_skip && skip--);
2975 /* If we still don't have a valid source line, try to find the first
2976 PC in the lineinfo table that belongs to the same function. This
2977 happens with COFF debug info, which does not seem to have an
2978 entry in lineinfo table for the code after the prologue which has
2979 no direct relation to source. For example, this was found to be
2980 the case with the DJGPP target using "gcc -gcoff" when the
2981 compiler inserted code after the prologue to make sure the stack
2983 if (!force_skip && sym && start_sal.symtab == NULL)
2985 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2986 /* Recalculate the line number. */
2987 start_sal = find_pc_sect_line (pc, section, 0);
2990 do_cleanups (old_chain);
2992 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2993 forward SAL to the end of the prologue. */
2998 sal->section = section;
3000 /* Unless the explicit_line flag was set, update the SAL line
3001 and symtab to correspond to the modified PC location. */
3002 if (sal->explicit_line)
3005 sal->symtab = start_sal.symtab;
3006 sal->line = start_sal.line;
3007 sal->end = start_sal.end;
3009 /* Check if we are now inside an inlined function. If we can,
3010 use the call site of the function instead. */
3011 b = block_for_pc_sect (sal->pc, sal->section);
3012 function_block = NULL;
3015 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3017 else if (BLOCK_FUNCTION (b) != NULL)
3019 b = BLOCK_SUPERBLOCK (b);
3021 if (function_block != NULL
3022 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3024 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3025 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
3029 /* If P is of the form "operator[ \t]+..." where `...' is
3030 some legitimate operator text, return a pointer to the
3031 beginning of the substring of the operator text.
3032 Otherwise, return "". */
3035 operator_chars (char *p, char **end)
3038 if (strncmp (p, "operator", 8))
3042 /* Don't get faked out by `operator' being part of a longer
3044 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3047 /* Allow some whitespace between `operator' and the operator symbol. */
3048 while (*p == ' ' || *p == '\t')
3051 /* Recognize 'operator TYPENAME'. */
3053 if (isalpha (*p) || *p == '_' || *p == '$')
3057 while (isalnum (*q) || *q == '_' || *q == '$')
3066 case '\\': /* regexp quoting */
3069 if (p[2] == '=') /* 'operator\*=' */
3071 else /* 'operator\*' */
3075 else if (p[1] == '[')
3078 error (_("mismatched quoting on brackets, "
3079 "try 'operator\\[\\]'"));
3080 else if (p[2] == '\\' && p[3] == ']')
3082 *end = p + 4; /* 'operator\[\]' */
3086 error (_("nothing is allowed between '[' and ']'"));
3090 /* Gratuitous qoute: skip it and move on. */
3112 if (p[0] == '-' && p[1] == '>')
3114 /* Struct pointer member operator 'operator->'. */
3117 *end = p + 3; /* 'operator->*' */
3120 else if (p[2] == '\\')
3122 *end = p + 4; /* Hopefully 'operator->\*' */
3127 *end = p + 2; /* 'operator->' */
3131 if (p[1] == '=' || p[1] == p[0])
3142 error (_("`operator ()' must be specified "
3143 "without whitespace in `()'"));
3148 error (_("`operator ?:' must be specified "
3149 "without whitespace in `?:'"));
3154 error (_("`operator []' must be specified "
3155 "without whitespace in `[]'"));
3159 error (_("`operator %s' not supported"), p);
3168 /* Cache to watch for file names already seen by filename_seen. */
3170 struct filename_seen_cache
3172 /* Table of files seen so far. */
3174 /* Initial size of the table. It automagically grows from here. */
3175 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3178 /* filename_seen_cache constructor. */
3180 static struct filename_seen_cache *
3181 create_filename_seen_cache (void)
3183 struct filename_seen_cache *cache;
3185 cache = XNEW (struct filename_seen_cache);
3186 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3187 filename_hash, filename_eq,
3188 NULL, xcalloc, xfree);
3193 /* Empty the cache, but do not delete it. */
3196 clear_filename_seen_cache (struct filename_seen_cache *cache)
3198 htab_empty (cache->tab);
3201 /* filename_seen_cache destructor.
3202 This takes a void * argument as it is generally used as a cleanup. */
3205 delete_filename_seen_cache (void *ptr)
3207 struct filename_seen_cache *cache = ptr;
3209 htab_delete (cache->tab);
3213 /* If FILE is not already in the table of files in CACHE, return zero;
3214 otherwise return non-zero. Optionally add FILE to the table if ADD
3217 NOTE: We don't manage space for FILE, we assume FILE lives as long
3218 as the caller needs. */
3221 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3225 /* Is FILE in tab? */
3226 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3230 /* No; maybe add it to tab. */
3232 *slot = (char *) file;
3237 /* Data structure to maintain printing state for output_source_filename. */
3239 struct output_source_filename_data
3241 /* Cache of what we've seen so far. */
3242 struct filename_seen_cache *filename_seen_cache;
3244 /* Flag of whether we're printing the first one. */
3248 /* Slave routine for sources_info. Force line breaks at ,'s.
3249 NAME is the name to print.
3250 DATA contains the state for printing and watching for duplicates. */
3253 output_source_filename (const char *name,
3254 struct output_source_filename_data *data)
3256 /* Since a single source file can result in several partial symbol
3257 tables, we need to avoid printing it more than once. Note: if
3258 some of the psymtabs are read in and some are not, it gets
3259 printed both under "Source files for which symbols have been
3260 read" and "Source files for which symbols will be read in on
3261 demand". I consider this a reasonable way to deal with the
3262 situation. I'm not sure whether this can also happen for
3263 symtabs; it doesn't hurt to check. */
3265 /* Was NAME already seen? */
3266 if (filename_seen (data->filename_seen_cache, name, 1))
3268 /* Yes; don't print it again. */
3272 /* No; print it and reset *FIRST. */
3274 printf_filtered (", ");
3278 fputs_filtered (name, gdb_stdout);
3281 /* A callback for map_partial_symbol_filenames. */
3284 output_partial_symbol_filename (const char *filename, const char *fullname,
3287 output_source_filename (fullname ? fullname : filename, data);
3291 sources_info (char *ignore, int from_tty)
3294 struct objfile *objfile;
3295 struct output_source_filename_data data;
3296 struct cleanup *cleanups;
3298 if (!have_full_symbols () && !have_partial_symbols ())
3300 error (_("No symbol table is loaded. Use the \"file\" command."));
3303 data.filename_seen_cache = create_filename_seen_cache ();
3304 cleanups = make_cleanup (delete_filename_seen_cache,
3305 data.filename_seen_cache);
3307 printf_filtered ("Source files for which symbols have been read in:\n\n");
3310 ALL_SYMTABS (objfile, s)
3312 const char *fullname = symtab_to_fullname (s);
3314 output_source_filename (fullname, &data);
3316 printf_filtered ("\n\n");
3318 printf_filtered ("Source files for which symbols "
3319 "will be read in on demand:\n\n");
3321 clear_filename_seen_cache (data.filename_seen_cache);
3323 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3324 1 /*need_fullname*/);
3325 printf_filtered ("\n");
3327 do_cleanups (cleanups);
3330 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3331 non-zero compare only lbasename of FILES. */
3334 file_matches (const char *file, char *files[], int nfiles, int basenames)
3338 if (file != NULL && nfiles != 0)
3340 for (i = 0; i < nfiles; i++)
3342 if (compare_filenames_for_search (file, (basenames
3343 ? lbasename (files[i])
3348 else if (nfiles == 0)
3353 /* Free any memory associated with a search. */
3356 free_search_symbols (struct symbol_search *symbols)
3358 struct symbol_search *p;
3359 struct symbol_search *next;
3361 for (p = symbols; p != NULL; p = next)
3369 do_free_search_symbols_cleanup (void *symbolsp)
3371 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3373 free_search_symbols (symbols);
3377 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3379 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3382 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3383 sort symbols, not minimal symbols. */
3386 compare_search_syms (const void *sa, const void *sb)
3388 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3389 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3392 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3396 if (sym_a->block != sym_b->block)
3397 return sym_a->block - sym_b->block;
3399 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3400 SYMBOL_PRINT_NAME (sym_b->symbol));
3403 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3404 The duplicates are freed, and the new list is returned in
3405 *NEW_HEAD, *NEW_TAIL. */
3408 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3409 struct symbol_search **new_head,
3410 struct symbol_search **new_tail)
3412 struct symbol_search **symbols, *symp, *old_next;
3415 gdb_assert (found != NULL && nfound > 0);
3417 /* Build an array out of the list so we can easily sort them. */
3418 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3421 for (i = 0; i < nfound; i++)
3423 gdb_assert (symp != NULL);
3424 gdb_assert (symp->block >= 0 && symp->block <= 1);
3428 gdb_assert (symp == NULL);
3430 qsort (symbols, nfound, sizeof (struct symbol_search *),
3431 compare_search_syms);
3433 /* Collapse out the dups. */
3434 for (i = 1, j = 1; i < nfound; ++i)
3436 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3437 symbols[j++] = symbols[i];
3442 symbols[j - 1]->next = NULL;
3444 /* Rebuild the linked list. */
3445 for (i = 0; i < nunique - 1; i++)
3446 symbols[i]->next = symbols[i + 1];
3447 symbols[nunique - 1]->next = NULL;
3449 *new_head = symbols[0];
3450 *new_tail = symbols[nunique - 1];
3454 /* An object of this type is passed as the user_data to the
3455 expand_symtabs_matching method. */
3456 struct search_symbols_data
3461 /* It is true if PREG contains valid data, false otherwise. */
3462 unsigned preg_p : 1;
3466 /* A callback for expand_symtabs_matching. */
3469 search_symbols_file_matches (const char *filename, void *user_data,
3472 struct search_symbols_data *data = user_data;
3474 return file_matches (filename, data->files, data->nfiles, basenames);
3477 /* A callback for expand_symtabs_matching. */
3480 search_symbols_name_matches (const char *symname, void *user_data)
3482 struct search_symbols_data *data = user_data;
3484 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3487 /* Search the symbol table for matches to the regular expression REGEXP,
3488 returning the results in *MATCHES.
3490 Only symbols of KIND are searched:
3491 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3492 and constants (enums)
3493 FUNCTIONS_DOMAIN - search all functions
3494 TYPES_DOMAIN - search all type names
3495 ALL_DOMAIN - an internal error for this function
3497 free_search_symbols should be called when *MATCHES is no longer needed.
3499 Within each file the results are sorted locally; each symtab's global and
3500 static blocks are separately alphabetized.
3501 Duplicate entries are removed. */
3504 search_symbols (char *regexp, enum search_domain kind,
3505 int nfiles, char *files[],
3506 struct symbol_search **matches)
3509 struct blockvector *bv;
3512 struct block_iterator iter;
3514 struct objfile *objfile;
3515 struct minimal_symbol *msymbol;
3517 static const enum minimal_symbol_type types[]
3518 = {mst_data, mst_text, mst_abs};
3519 static const enum minimal_symbol_type types2[]
3520 = {mst_bss, mst_file_text, mst_abs};
3521 static const enum minimal_symbol_type types3[]
3522 = {mst_file_data, mst_solib_trampoline, mst_abs};
3523 static const enum minimal_symbol_type types4[]
3524 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3525 enum minimal_symbol_type ourtype;
3526 enum minimal_symbol_type ourtype2;
3527 enum minimal_symbol_type ourtype3;
3528 enum minimal_symbol_type ourtype4;
3529 struct symbol_search *found;
3530 struct symbol_search *tail;
3531 struct search_symbols_data datum;
3534 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3535 CLEANUP_CHAIN is freed only in the case of an error. */
3536 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3537 struct cleanup *retval_chain;
3539 gdb_assert (kind <= TYPES_DOMAIN);
3541 ourtype = types[kind];
3542 ourtype2 = types2[kind];
3543 ourtype3 = types3[kind];
3544 ourtype4 = types4[kind];
3551 /* Make sure spacing is right for C++ operators.
3552 This is just a courtesy to make the matching less sensitive
3553 to how many spaces the user leaves between 'operator'
3554 and <TYPENAME> or <OPERATOR>. */
3556 char *opname = operator_chars (regexp, &opend);
3561 int fix = -1; /* -1 means ok; otherwise number of
3564 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3566 /* There should 1 space between 'operator' and 'TYPENAME'. */
3567 if (opname[-1] != ' ' || opname[-2] == ' ')
3572 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3573 if (opname[-1] == ' ')
3576 /* If wrong number of spaces, fix it. */
3579 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3581 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3586 errcode = regcomp (&datum.preg, regexp,
3587 REG_NOSUB | (case_sensitivity == case_sensitive_off
3591 char *err = get_regcomp_error (errcode, &datum.preg);
3593 make_cleanup (xfree, err);
3594 error (_("Invalid regexp (%s): %s"), err, regexp);
3597 make_regfree_cleanup (&datum.preg);
3600 /* Search through the partial symtabs *first* for all symbols
3601 matching the regexp. That way we don't have to reproduce all of
3602 the machinery below. */
3604 datum.nfiles = nfiles;
3605 datum.files = files;
3606 ALL_OBJFILES (objfile)
3609 objfile->sf->qf->expand_symtabs_matching (objfile,
3612 : search_symbols_file_matches),
3613 search_symbols_name_matches,
3618 /* Here, we search through the minimal symbol tables for functions
3619 and variables that match, and force their symbols to be read.
3620 This is in particular necessary for demangled variable names,
3621 which are no longer put into the partial symbol tables.
3622 The symbol will then be found during the scan of symtabs below.
3624 For functions, find_pc_symtab should succeed if we have debug info
3625 for the function, for variables we have to call
3626 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3628 If the lookup fails, set found_misc so that we will rescan to print
3629 any matching symbols without debug info.
3630 We only search the objfile the msymbol came from, we no longer search
3631 all objfiles. In large programs (1000s of shared libs) searching all
3632 objfiles is not worth the pain. */
3634 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3636 ALL_MSYMBOLS (objfile, msymbol)
3640 if (msymbol->created_by_gdb)
3643 if (MSYMBOL_TYPE (msymbol) == ourtype
3644 || MSYMBOL_TYPE (msymbol) == ourtype2
3645 || MSYMBOL_TYPE (msymbol) == ourtype3
3646 || MSYMBOL_TYPE (msymbol) == ourtype4)
3649 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3652 /* Note: An important side-effect of these lookup functions
3653 is to expand the symbol table if msymbol is found, for the
3654 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3655 if (kind == FUNCTIONS_DOMAIN
3656 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3657 : (lookup_symbol_in_objfile_from_linkage_name
3658 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3669 retval_chain = make_cleanup_free_search_symbols (&found);
3671 ALL_PRIMARY_SYMTABS (objfile, s)
3673 bv = BLOCKVECTOR (s);
3674 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3676 b = BLOCKVECTOR_BLOCK (bv, i);
3677 ALL_BLOCK_SYMBOLS (b, iter, sym)
3679 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3683 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3684 a substring of symtab_to_fullname as it may contain "./" etc. */
3685 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3686 || ((basenames_may_differ
3687 || file_matches (lbasename (real_symtab->filename),
3689 && file_matches (symtab_to_fullname (real_symtab),
3692 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3694 && ((kind == VARIABLES_DOMAIN
3695 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3696 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3697 && SYMBOL_CLASS (sym) != LOC_BLOCK
3698 /* LOC_CONST can be used for more than just enums,
3699 e.g., c++ static const members.
3700 We only want to skip enums here. */
3701 && !(SYMBOL_CLASS (sym) == LOC_CONST
3702 && TYPE_CODE (SYMBOL_TYPE (sym))
3704 || (kind == FUNCTIONS_DOMAIN
3705 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3706 || (kind == TYPES_DOMAIN
3707 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3710 struct symbol_search *psr = (struct symbol_search *)
3711 xmalloc (sizeof (struct symbol_search));
3713 psr->symtab = real_symtab;
3715 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3730 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3731 /* Note: nfound is no longer useful beyond this point. */
3734 /* If there are no eyes, avoid all contact. I mean, if there are
3735 no debug symbols, then print directly from the msymbol_vector. */
3737 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3739 ALL_MSYMBOLS (objfile, msymbol)
3743 if (msymbol->created_by_gdb)
3746 if (MSYMBOL_TYPE (msymbol) == ourtype
3747 || MSYMBOL_TYPE (msymbol) == ourtype2
3748 || MSYMBOL_TYPE (msymbol) == ourtype3
3749 || MSYMBOL_TYPE (msymbol) == ourtype4)
3752 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3755 /* For functions we can do a quick check of whether the
3756 symbol might be found via find_pc_symtab. */
3757 if (kind != FUNCTIONS_DOMAIN
3758 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3760 if (lookup_symbol_in_objfile_from_linkage_name
3761 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3765 struct symbol_search *psr = (struct symbol_search *)
3766 xmalloc (sizeof (struct symbol_search));
3768 psr->msymbol.minsym = msymbol;
3769 psr->msymbol.objfile = objfile;
3785 discard_cleanups (retval_chain);
3786 do_cleanups (old_chain);
3790 /* Helper function for symtab_symbol_info, this function uses
3791 the data returned from search_symbols() to print information
3792 regarding the match to gdb_stdout. */
3795 print_symbol_info (enum search_domain kind,
3796 struct symtab *s, struct symbol *sym,
3797 int block, const char *last)
3799 const char *s_filename = symtab_to_filename_for_display (s);
3801 if (last == NULL || filename_cmp (last, s_filename) != 0)
3803 fputs_filtered ("\nFile ", gdb_stdout);
3804 fputs_filtered (s_filename, gdb_stdout);
3805 fputs_filtered (":\n", gdb_stdout);
3808 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3809 printf_filtered ("static ");
3811 /* Typedef that is not a C++ class. */
3812 if (kind == TYPES_DOMAIN
3813 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3814 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3815 /* variable, func, or typedef-that-is-c++-class. */
3816 else if (kind < TYPES_DOMAIN
3817 || (kind == TYPES_DOMAIN
3818 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3820 type_print (SYMBOL_TYPE (sym),
3821 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3822 ? "" : SYMBOL_PRINT_NAME (sym)),
3825 printf_filtered (";\n");
3829 /* This help function for symtab_symbol_info() prints information
3830 for non-debugging symbols to gdb_stdout. */
3833 print_msymbol_info (struct bound_minimal_symbol msymbol)
3835 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3838 if (gdbarch_addr_bit (gdbarch) <= 32)
3839 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol.minsym)
3840 & (CORE_ADDR) 0xffffffff,
3843 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol.minsym),
3845 printf_filtered ("%s %s\n",
3846 tmp, SYMBOL_PRINT_NAME (msymbol.minsym));
3849 /* This is the guts of the commands "info functions", "info types", and
3850 "info variables". It calls search_symbols to find all matches and then
3851 print_[m]symbol_info to print out some useful information about the
3855 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3857 static const char * const classnames[] =
3858 {"variable", "function", "type"};
3859 struct symbol_search *symbols;
3860 struct symbol_search *p;
3861 struct cleanup *old_chain;
3862 const char *last_filename = NULL;
3865 gdb_assert (kind <= TYPES_DOMAIN);
3867 /* Must make sure that if we're interrupted, symbols gets freed. */
3868 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3869 old_chain = make_cleanup_free_search_symbols (&symbols);
3872 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3873 classnames[kind], regexp);
3875 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3877 for (p = symbols; p != NULL; p = p->next)
3881 if (p->msymbol.minsym != NULL)
3885 printf_filtered (_("\nNon-debugging symbols:\n"));
3888 print_msymbol_info (p->msymbol);
3892 print_symbol_info (kind,
3897 last_filename = symtab_to_filename_for_display (p->symtab);
3901 do_cleanups (old_chain);
3905 variables_info (char *regexp, int from_tty)
3907 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3911 functions_info (char *regexp, int from_tty)
3913 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3918 types_info (char *regexp, int from_tty)
3920 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3923 /* Breakpoint all functions matching regular expression. */
3926 rbreak_command_wrapper (char *regexp, int from_tty)
3928 rbreak_command (regexp, from_tty);
3931 /* A cleanup function that calls end_rbreak_breakpoints. */
3934 do_end_rbreak_breakpoints (void *ignore)
3936 end_rbreak_breakpoints ();
3940 rbreak_command (char *regexp, int from_tty)
3942 struct symbol_search *ss;
3943 struct symbol_search *p;
3944 struct cleanup *old_chain;
3945 char *string = NULL;
3947 char **files = NULL, *file_name;
3952 char *colon = strchr (regexp, ':');
3954 if (colon && *(colon + 1) != ':')
3958 colon_index = colon - regexp;
3959 file_name = alloca (colon_index + 1);
3960 memcpy (file_name, regexp, colon_index);
3961 file_name[colon_index--] = 0;
3962 while (isspace (file_name[colon_index]))
3963 file_name[colon_index--] = 0;
3966 regexp = skip_spaces (colon + 1);
3970 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3971 old_chain = make_cleanup_free_search_symbols (&ss);
3972 make_cleanup (free_current_contents, &string);
3974 start_rbreak_breakpoints ();
3975 make_cleanup (do_end_rbreak_breakpoints, NULL);
3976 for (p = ss; p != NULL; p = p->next)
3978 if (p->msymbol.minsym == NULL)
3980 const char *fullname = symtab_to_fullname (p->symtab);
3982 int newlen = (strlen (fullname)
3983 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3988 string = xrealloc (string, newlen);
3991 strcpy (string, fullname);
3992 strcat (string, ":'");
3993 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3994 strcat (string, "'");
3995 break_command (string, from_tty);
3996 print_symbol_info (FUNCTIONS_DOMAIN,
4000 symtab_to_filename_for_display (p->symtab));
4004 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4008 string = xrealloc (string, newlen);
4011 strcpy (string, "'");
4012 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4013 strcat (string, "'");
4015 break_command (string, from_tty);
4016 printf_filtered ("<function, no debug info> %s;\n",
4017 SYMBOL_PRINT_NAME (p->msymbol.minsym));
4021 do_cleanups (old_chain);
4025 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4027 Either sym_text[sym_text_len] != '(' and then we search for any
4028 symbol starting with SYM_TEXT text.
4030 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4031 be terminated at that point. Partial symbol tables do not have parameters
4035 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4037 int (*ncmp) (const char *, const char *, size_t);
4039 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4041 if (ncmp (name, sym_text, sym_text_len) != 0)
4044 if (sym_text[sym_text_len] == '(')
4046 /* User searches for `name(someth...'. Require NAME to be terminated.
4047 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4048 present but accept even parameters presence. In this case this
4049 function is in fact strcmp_iw but whitespace skipping is not supported
4050 for tab completion. */
4052 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4059 /* Free any memory associated with a completion list. */
4062 free_completion_list (VEC (char_ptr) **list_ptr)
4067 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4069 VEC_free (char_ptr, *list_ptr);
4072 /* Callback for make_cleanup. */
4075 do_free_completion_list (void *list)
4077 free_completion_list (list);
4080 /* Helper routine for make_symbol_completion_list. */
4082 static VEC (char_ptr) *return_val;
4084 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4085 completion_list_add_name \
4086 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4088 /* Test to see if the symbol specified by SYMNAME (which is already
4089 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4090 characters. If so, add it to the current completion list. */
4093 completion_list_add_name (const char *symname,
4094 const char *sym_text, int sym_text_len,
4095 const char *text, const char *word)
4097 /* Clip symbols that cannot match. */
4098 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4101 /* We have a match for a completion, so add SYMNAME to the current list
4102 of matches. Note that the name is moved to freshly malloc'd space. */
4107 if (word == sym_text)
4109 new = xmalloc (strlen (symname) + 5);
4110 strcpy (new, symname);
4112 else if (word > sym_text)
4114 /* Return some portion of symname. */
4115 new = xmalloc (strlen (symname) + 5);
4116 strcpy (new, symname + (word - sym_text));
4120 /* Return some of SYM_TEXT plus symname. */
4121 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4122 strncpy (new, word, sym_text - word);
4123 new[sym_text - word] = '\0';
4124 strcat (new, symname);
4127 VEC_safe_push (char_ptr, return_val, new);
4131 /* ObjC: In case we are completing on a selector, look as the msymbol
4132 again and feed all the selectors into the mill. */
4135 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4136 const char *sym_text, int sym_text_len,
4137 const char *text, const char *word)
4139 static char *tmp = NULL;
4140 static unsigned int tmplen = 0;
4142 const char *method, *category, *selector;
4145 method = SYMBOL_NATURAL_NAME (msymbol);
4147 /* Is it a method? */
4148 if ((method[0] != '-') && (method[0] != '+'))
4151 if (sym_text[0] == '[')
4152 /* Complete on shortened method method. */
4153 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4155 while ((strlen (method) + 1) >= tmplen)
4161 tmp = xrealloc (tmp, tmplen);
4163 selector = strchr (method, ' ');
4164 if (selector != NULL)
4167 category = strchr (method, '(');
4169 if ((category != NULL) && (selector != NULL))
4171 memcpy (tmp, method, (category - method));
4172 tmp[category - method] = ' ';
4173 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4174 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4175 if (sym_text[0] == '[')
4176 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4179 if (selector != NULL)
4181 /* Complete on selector only. */
4182 strcpy (tmp, selector);
4183 tmp2 = strchr (tmp, ']');
4187 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4191 /* Break the non-quoted text based on the characters which are in
4192 symbols. FIXME: This should probably be language-specific. */
4195 language_search_unquoted_string (const char *text, const char *p)
4197 for (; p > text; --p)
4199 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4203 if ((current_language->la_language == language_objc))
4205 if (p[-1] == ':') /* Might be part of a method name. */
4207 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4208 p -= 2; /* Beginning of a method name. */
4209 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4210 { /* Might be part of a method name. */
4213 /* Seeing a ' ' or a '(' is not conclusive evidence
4214 that we are in the middle of a method name. However,
4215 finding "-[" or "+[" should be pretty un-ambiguous.
4216 Unfortunately we have to find it now to decide. */
4219 if (isalnum (t[-1]) || t[-1] == '_' ||
4220 t[-1] == ' ' || t[-1] == ':' ||
4221 t[-1] == '(' || t[-1] == ')')
4226 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4227 p = t - 2; /* Method name detected. */
4228 /* Else we leave with p unchanged. */
4238 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4239 int sym_text_len, const char *text,
4242 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4244 struct type *t = SYMBOL_TYPE (sym);
4245 enum type_code c = TYPE_CODE (t);
4248 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4249 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4250 if (TYPE_FIELD_NAME (t, j))
4251 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4252 sym_text, sym_text_len, text, word);
4256 /* Type of the user_data argument passed to add_macro_name or
4257 expand_partial_symbol_name. The contents are simply whatever is
4258 needed by completion_list_add_name. */
4259 struct add_name_data
4261 const char *sym_text;
4267 /* A callback used with macro_for_each and macro_for_each_in_scope.
4268 This adds a macro's name to the current completion list. */
4271 add_macro_name (const char *name, const struct macro_definition *ignore,
4272 struct macro_source_file *ignore2, int ignore3,
4275 struct add_name_data *datum = (struct add_name_data *) user_data;
4277 completion_list_add_name ((char *) name,
4278 datum->sym_text, datum->sym_text_len,
4279 datum->text, datum->word);
4282 /* A callback for expand_partial_symbol_names. */
4285 expand_partial_symbol_name (const char *name, void *user_data)
4287 struct add_name_data *datum = (struct add_name_data *) user_data;
4289 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4293 default_make_symbol_completion_list_break_on (const char *text,
4295 const char *break_on,
4296 enum type_code code)
4298 /* Problem: All of the symbols have to be copied because readline
4299 frees them. I'm not going to worry about this; hopefully there
4300 won't be that many. */
4304 struct minimal_symbol *msymbol;
4305 struct objfile *objfile;
4307 const struct block *surrounding_static_block, *surrounding_global_block;
4308 struct block_iterator iter;
4309 /* The symbol we are completing on. Points in same buffer as text. */
4310 const char *sym_text;
4311 /* Length of sym_text. */
4313 struct add_name_data datum;
4314 struct cleanup *back_to;
4316 /* Now look for the symbol we are supposed to complete on. */
4320 const char *quote_pos = NULL;
4322 /* First see if this is a quoted string. */
4324 for (p = text; *p != '\0'; ++p)
4326 if (quote_found != '\0')
4328 if (*p == quote_found)
4329 /* Found close quote. */
4331 else if (*p == '\\' && p[1] == quote_found)
4332 /* A backslash followed by the quote character
4333 doesn't end the string. */
4336 else if (*p == '\'' || *p == '"')
4342 if (quote_found == '\'')
4343 /* A string within single quotes can be a symbol, so complete on it. */
4344 sym_text = quote_pos + 1;
4345 else if (quote_found == '"')
4346 /* A double-quoted string is never a symbol, nor does it make sense
4347 to complete it any other way. */
4353 /* It is not a quoted string. Break it based on the characters
4354 which are in symbols. */
4357 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4358 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4367 sym_text_len = strlen (sym_text);
4369 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4371 if (current_language->la_language == language_cplus
4372 || current_language->la_language == language_java
4373 || current_language->la_language == language_fortran)
4375 /* These languages may have parameters entered by user but they are never
4376 present in the partial symbol tables. */
4378 const char *cs = memchr (sym_text, '(', sym_text_len);
4381 sym_text_len = cs - sym_text;
4383 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4386 back_to = make_cleanup (do_free_completion_list, &return_val);
4388 datum.sym_text = sym_text;
4389 datum.sym_text_len = sym_text_len;
4393 /* Look through the partial symtabs for all symbols which begin
4394 by matching SYM_TEXT. Expand all CUs that you find to the list.
4395 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4396 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4398 /* At this point scan through the misc symbol vectors and add each
4399 symbol you find to the list. Eventually we want to ignore
4400 anything that isn't a text symbol (everything else will be
4401 handled by the psymtab code above). */
4403 if (code == TYPE_CODE_UNDEF)
4405 ALL_MSYMBOLS (objfile, msymbol)
4408 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4411 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4416 /* Search upwards from currently selected frame (so that we can
4417 complete on local vars). Also catch fields of types defined in
4418 this places which match our text string. Only complete on types
4419 visible from current context. */
4421 b = get_selected_block (0);
4422 surrounding_static_block = block_static_block (b);
4423 surrounding_global_block = block_global_block (b);
4424 if (surrounding_static_block != NULL)
4425 while (b != surrounding_static_block)
4429 ALL_BLOCK_SYMBOLS (b, iter, sym)
4431 if (code == TYPE_CODE_UNDEF)
4433 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4435 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4438 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4439 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4440 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4444 /* Stop when we encounter an enclosing function. Do not stop for
4445 non-inlined functions - the locals of the enclosing function
4446 are in scope for a nested function. */
4447 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4449 b = BLOCK_SUPERBLOCK (b);
4452 /* Add fields from the file's types; symbols will be added below. */
4454 if (code == TYPE_CODE_UNDEF)
4456 if (surrounding_static_block != NULL)
4457 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4458 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4460 if (surrounding_global_block != NULL)
4461 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4462 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4465 /* Go through the symtabs and check the externs and statics for
4466 symbols which match. */
4468 ALL_PRIMARY_SYMTABS (objfile, s)
4471 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4472 ALL_BLOCK_SYMBOLS (b, iter, sym)
4474 if (code == TYPE_CODE_UNDEF
4475 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4476 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4477 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4481 ALL_PRIMARY_SYMTABS (objfile, s)
4484 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4485 ALL_BLOCK_SYMBOLS (b, iter, sym)
4487 if (code == TYPE_CODE_UNDEF
4488 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4489 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4490 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4494 /* Skip macros if we are completing a struct tag -- arguable but
4495 usually what is expected. */
4496 if (current_language->la_macro_expansion == macro_expansion_c
4497 && code == TYPE_CODE_UNDEF)
4499 struct macro_scope *scope;
4501 /* Add any macros visible in the default scope. Note that this
4502 may yield the occasional wrong result, because an expression
4503 might be evaluated in a scope other than the default. For
4504 example, if the user types "break file:line if <TAB>", the
4505 resulting expression will be evaluated at "file:line" -- but
4506 at there does not seem to be a way to detect this at
4508 scope = default_macro_scope ();
4511 macro_for_each_in_scope (scope->file, scope->line,
4512 add_macro_name, &datum);
4516 /* User-defined macros are always visible. */
4517 macro_for_each (macro_user_macros, add_macro_name, &datum);
4520 discard_cleanups (back_to);
4521 return (return_val);
4525 default_make_symbol_completion_list (const char *text, const char *word,
4526 enum type_code code)
4528 return default_make_symbol_completion_list_break_on (text, word, "", code);
4531 /* Return a vector of all symbols (regardless of class) which begin by
4532 matching TEXT. If the answer is no symbols, then the return value
4536 make_symbol_completion_list (const char *text, const char *word)
4538 return current_language->la_make_symbol_completion_list (text, word,
4542 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4543 symbols whose type code is CODE. */
4546 make_symbol_completion_type (const char *text, const char *word,
4547 enum type_code code)
4549 gdb_assert (code == TYPE_CODE_UNION
4550 || code == TYPE_CODE_STRUCT
4551 || code == TYPE_CODE_CLASS
4552 || code == TYPE_CODE_ENUM);
4553 return current_language->la_make_symbol_completion_list (text, word, code);
4556 /* Like make_symbol_completion_list, but suitable for use as a
4557 completion function. */
4560 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4561 const char *text, const char *word)
4563 return make_symbol_completion_list (text, word);
4566 /* Like make_symbol_completion_list, but returns a list of symbols
4567 defined in a source file FILE. */
4570 make_file_symbol_completion_list (const char *text, const char *word,
4571 const char *srcfile)
4576 struct block_iterator iter;
4577 /* The symbol we are completing on. Points in same buffer as text. */
4578 const char *sym_text;
4579 /* Length of sym_text. */
4582 /* Now look for the symbol we are supposed to complete on.
4583 FIXME: This should be language-specific. */
4587 const char *quote_pos = NULL;
4589 /* First see if this is a quoted string. */
4591 for (p = text; *p != '\0'; ++p)
4593 if (quote_found != '\0')
4595 if (*p == quote_found)
4596 /* Found close quote. */
4598 else if (*p == '\\' && p[1] == quote_found)
4599 /* A backslash followed by the quote character
4600 doesn't end the string. */
4603 else if (*p == '\'' || *p == '"')
4609 if (quote_found == '\'')
4610 /* A string within single quotes can be a symbol, so complete on it. */
4611 sym_text = quote_pos + 1;
4612 else if (quote_found == '"')
4613 /* A double-quoted string is never a symbol, nor does it make sense
4614 to complete it any other way. */
4620 /* Not a quoted string. */
4621 sym_text = language_search_unquoted_string (text, p);
4625 sym_text_len = strlen (sym_text);
4629 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4631 s = lookup_symtab (srcfile);
4634 /* Maybe they typed the file with leading directories, while the
4635 symbol tables record only its basename. */
4636 const char *tail = lbasename (srcfile);
4639 s = lookup_symtab (tail);
4642 /* If we have no symtab for that file, return an empty list. */
4644 return (return_val);
4646 /* Go through this symtab and check the externs and statics for
4647 symbols which match. */
4649 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4650 ALL_BLOCK_SYMBOLS (b, iter, sym)
4652 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4655 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4656 ALL_BLOCK_SYMBOLS (b, iter, sym)
4658 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4661 return (return_val);
4664 /* A helper function for make_source_files_completion_list. It adds
4665 another file name to a list of possible completions, growing the
4666 list as necessary. */
4669 add_filename_to_list (const char *fname, const char *text, const char *word,
4670 VEC (char_ptr) **list)
4673 size_t fnlen = strlen (fname);
4677 /* Return exactly fname. */
4678 new = xmalloc (fnlen + 5);
4679 strcpy (new, fname);
4681 else if (word > text)
4683 /* Return some portion of fname. */
4684 new = xmalloc (fnlen + 5);
4685 strcpy (new, fname + (word - text));
4689 /* Return some of TEXT plus fname. */
4690 new = xmalloc (fnlen + (text - word) + 5);
4691 strncpy (new, word, text - word);
4692 new[text - word] = '\0';
4693 strcat (new, fname);
4695 VEC_safe_push (char_ptr, *list, new);
4699 not_interesting_fname (const char *fname)
4701 static const char *illegal_aliens[] = {
4702 "_globals_", /* inserted by coff_symtab_read */
4707 for (i = 0; illegal_aliens[i]; i++)
4709 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4715 /* An object of this type is passed as the user_data argument to
4716 map_partial_symbol_filenames. */
4717 struct add_partial_filename_data
4719 struct filename_seen_cache *filename_seen_cache;
4723 VEC (char_ptr) **list;
4726 /* A callback for map_partial_symbol_filenames. */
4729 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4732 struct add_partial_filename_data *data = user_data;
4734 if (not_interesting_fname (filename))
4736 if (!filename_seen (data->filename_seen_cache, filename, 1)
4737 && filename_ncmp (filename, data->text, data->text_len) == 0)
4739 /* This file matches for a completion; add it to the
4740 current list of matches. */
4741 add_filename_to_list (filename, data->text, data->word, data->list);
4745 const char *base_name = lbasename (filename);
4747 if (base_name != filename
4748 && !filename_seen (data->filename_seen_cache, base_name, 1)
4749 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4750 add_filename_to_list (base_name, data->text, data->word, data->list);
4754 /* Return a vector of all source files whose names begin with matching
4755 TEXT. The file names are looked up in the symbol tables of this
4756 program. If the answer is no matchess, then the return value is
4760 make_source_files_completion_list (const char *text, const char *word)
4763 struct objfile *objfile;
4764 size_t text_len = strlen (text);
4765 VEC (char_ptr) *list = NULL;
4766 const char *base_name;
4767 struct add_partial_filename_data datum;
4768 struct filename_seen_cache *filename_seen_cache;
4769 struct cleanup *back_to, *cache_cleanup;
4771 if (!have_full_symbols () && !have_partial_symbols ())
4774 back_to = make_cleanup (do_free_completion_list, &list);
4776 filename_seen_cache = create_filename_seen_cache ();
4777 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4778 filename_seen_cache);
4780 ALL_SYMTABS (objfile, s)
4782 if (not_interesting_fname (s->filename))
4784 if (!filename_seen (filename_seen_cache, s->filename, 1)
4785 && filename_ncmp (s->filename, text, text_len) == 0)
4787 /* This file matches for a completion; add it to the current
4789 add_filename_to_list (s->filename, text, word, &list);
4793 /* NOTE: We allow the user to type a base name when the
4794 debug info records leading directories, but not the other
4795 way around. This is what subroutines of breakpoint
4796 command do when they parse file names. */
4797 base_name = lbasename (s->filename);
4798 if (base_name != s->filename
4799 && !filename_seen (filename_seen_cache, base_name, 1)
4800 && filename_ncmp (base_name, text, text_len) == 0)
4801 add_filename_to_list (base_name, text, word, &list);
4805 datum.filename_seen_cache = filename_seen_cache;
4808 datum.text_len = text_len;
4810 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4811 0 /*need_fullname*/);
4813 do_cleanups (cache_cleanup);
4814 discard_cleanups (back_to);
4819 /* Determine if PC is in the prologue of a function. The prologue is the area
4820 between the first instruction of a function, and the first executable line.
4821 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4823 If non-zero, func_start is where we think the prologue starts, possibly
4824 by previous examination of symbol table information. */
4827 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4829 struct symtab_and_line sal;
4830 CORE_ADDR func_addr, func_end;
4832 /* We have several sources of information we can consult to figure
4834 - Compilers usually emit line number info that marks the prologue
4835 as its own "source line". So the ending address of that "line"
4836 is the end of the prologue. If available, this is the most
4838 - The minimal symbols and partial symbols, which can usually tell
4839 us the starting and ending addresses of a function.
4840 - If we know the function's start address, we can call the
4841 architecture-defined gdbarch_skip_prologue function to analyze the
4842 instruction stream and guess where the prologue ends.
4843 - Our `func_start' argument; if non-zero, this is the caller's
4844 best guess as to the function's entry point. At the time of
4845 this writing, handle_inferior_event doesn't get this right, so
4846 it should be our last resort. */
4848 /* Consult the partial symbol table, to find which function
4850 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4852 CORE_ADDR prologue_end;
4854 /* We don't even have minsym information, so fall back to using
4855 func_start, if given. */
4857 return 1; /* We *might* be in a prologue. */
4859 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4861 return func_start <= pc && pc < prologue_end;
4864 /* If we have line number information for the function, that's
4865 usually pretty reliable. */
4866 sal = find_pc_line (func_addr, 0);
4868 /* Now sal describes the source line at the function's entry point,
4869 which (by convention) is the prologue. The end of that "line",
4870 sal.end, is the end of the prologue.
4872 Note that, for functions whose source code is all on a single
4873 line, the line number information doesn't always end up this way.
4874 So we must verify that our purported end-of-prologue address is
4875 *within* the function, not at its start or end. */
4877 || sal.end <= func_addr
4878 || func_end <= sal.end)
4880 /* We don't have any good line number info, so use the minsym
4881 information, together with the architecture-specific prologue
4883 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4885 return func_addr <= pc && pc < prologue_end;
4888 /* We have line number info, and it looks good. */
4889 return func_addr <= pc && pc < sal.end;
4892 /* Given PC at the function's start address, attempt to find the
4893 prologue end using SAL information. Return zero if the skip fails.
4895 A non-optimized prologue traditionally has one SAL for the function
4896 and a second for the function body. A single line function has
4897 them both pointing at the same line.
4899 An optimized prologue is similar but the prologue may contain
4900 instructions (SALs) from the instruction body. Need to skip those
4901 while not getting into the function body.
4903 The functions end point and an increasing SAL line are used as
4904 indicators of the prologue's endpoint.
4906 This code is based on the function refine_prologue_limit
4910 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4912 struct symtab_and_line prologue_sal;
4917 /* Get an initial range for the function. */
4918 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4919 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4921 prologue_sal = find_pc_line (start_pc, 0);
4922 if (prologue_sal.line != 0)
4924 /* For languages other than assembly, treat two consecutive line
4925 entries at the same address as a zero-instruction prologue.
4926 The GNU assembler emits separate line notes for each instruction
4927 in a multi-instruction macro, but compilers generally will not
4929 if (prologue_sal.symtab->language != language_asm)
4931 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4934 /* Skip any earlier lines, and any end-of-sequence marker
4935 from a previous function. */
4936 while (linetable->item[idx].pc != prologue_sal.pc
4937 || linetable->item[idx].line == 0)
4940 if (idx+1 < linetable->nitems
4941 && linetable->item[idx+1].line != 0
4942 && linetable->item[idx+1].pc == start_pc)
4946 /* If there is only one sal that covers the entire function,
4947 then it is probably a single line function, like
4949 if (prologue_sal.end >= end_pc)
4952 while (prologue_sal.end < end_pc)
4954 struct symtab_and_line sal;
4956 sal = find_pc_line (prologue_sal.end, 0);
4959 /* Assume that a consecutive SAL for the same (or larger)
4960 line mark the prologue -> body transition. */
4961 if (sal.line >= prologue_sal.line)
4963 /* Likewise if we are in a different symtab altogether
4964 (e.g. within a file included via #include). */
4965 if (sal.symtab != prologue_sal.symtab)
4968 /* The line number is smaller. Check that it's from the
4969 same function, not something inlined. If it's inlined,
4970 then there is no point comparing the line numbers. */
4971 bl = block_for_pc (prologue_sal.end);
4974 if (block_inlined_p (bl))
4976 if (BLOCK_FUNCTION (bl))
4981 bl = BLOCK_SUPERBLOCK (bl);
4986 /* The case in which compiler's optimizer/scheduler has
4987 moved instructions into the prologue. We look ahead in
4988 the function looking for address ranges whose
4989 corresponding line number is less the first one that we
4990 found for the function. This is more conservative then
4991 refine_prologue_limit which scans a large number of SALs
4992 looking for any in the prologue. */
4997 if (prologue_sal.end < end_pc)
4998 /* Return the end of this line, or zero if we could not find a
5000 return prologue_sal.end;
5002 /* Don't return END_PC, which is past the end of the function. */
5003 return prologue_sal.pc;
5007 static char *name_of_main;
5008 enum language language_of_main = language_unknown;
5011 set_main_name (const char *name)
5013 if (name_of_main != NULL)
5015 xfree (name_of_main);
5016 name_of_main = NULL;
5017 language_of_main = language_unknown;
5021 name_of_main = xstrdup (name);
5022 language_of_main = language_unknown;
5026 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5030 find_main_name (void)
5032 const char *new_main_name;
5034 /* Try to see if the main procedure is in Ada. */
5035 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5036 be to add a new method in the language vector, and call this
5037 method for each language until one of them returns a non-empty
5038 name. This would allow us to remove this hard-coded call to
5039 an Ada function. It is not clear that this is a better approach
5040 at this point, because all methods need to be written in a way
5041 such that false positives never be returned. For instance, it is
5042 important that a method does not return a wrong name for the main
5043 procedure if the main procedure is actually written in a different
5044 language. It is easy to guaranty this with Ada, since we use a
5045 special symbol generated only when the main in Ada to find the name
5046 of the main procedure. It is difficult however to see how this can
5047 be guarantied for languages such as C, for instance. This suggests
5048 that order of call for these methods becomes important, which means
5049 a more complicated approach. */
5050 new_main_name = ada_main_name ();
5051 if (new_main_name != NULL)
5053 set_main_name (new_main_name);
5057 new_main_name = go_main_name ();
5058 if (new_main_name != NULL)
5060 set_main_name (new_main_name);
5064 new_main_name = pascal_main_name ();
5065 if (new_main_name != NULL)
5067 set_main_name (new_main_name);
5071 /* The languages above didn't identify the name of the main procedure.
5072 Fallback to "main". */
5073 set_main_name ("main");
5079 if (name_of_main == NULL)
5082 return name_of_main;
5085 /* Handle ``executable_changed'' events for the symtab module. */
5088 symtab_observer_executable_changed (void)
5090 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5091 set_main_name (NULL);
5094 /* Return 1 if the supplied producer string matches the ARM RealView
5095 compiler (armcc). */
5098 producer_is_realview (const char *producer)
5100 static const char *const arm_idents[] = {
5101 "ARM C Compiler, ADS",
5102 "Thumb C Compiler, ADS",
5103 "ARM C++ Compiler, ADS",
5104 "Thumb C++ Compiler, ADS",
5105 "ARM/Thumb C/C++ Compiler, RVCT",
5106 "ARM C/C++ Compiler, RVCT"
5110 if (producer == NULL)
5113 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5114 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5122 /* The next index to hand out in response to a registration request. */
5124 static int next_aclass_value = LOC_FINAL_VALUE;
5126 /* The maximum number of "aclass" registrations we support. This is
5127 constant for convenience. */
5128 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5130 /* The objects representing the various "aclass" values. The elements
5131 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5132 elements are those registered at gdb initialization time. */
5134 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5136 /* The globally visible pointer. This is separate from 'symbol_impl'
5137 so that it can be const. */
5139 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5141 /* Make sure we saved enough room in struct symbol. */
5143 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5145 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5146 is the ops vector associated with this index. This returns the new
5147 index, which should be used as the aclass_index field for symbols
5151 register_symbol_computed_impl (enum address_class aclass,
5152 const struct symbol_computed_ops *ops)
5154 int result = next_aclass_value++;
5156 gdb_assert (aclass == LOC_COMPUTED);
5157 gdb_assert (result < MAX_SYMBOL_IMPLS);
5158 symbol_impl[result].aclass = aclass;
5159 symbol_impl[result].ops_computed = ops;
5161 /* Sanity check OPS. */
5162 gdb_assert (ops != NULL);
5163 gdb_assert (ops->tracepoint_var_ref != NULL);
5164 gdb_assert (ops->describe_location != NULL);
5165 gdb_assert (ops->read_needs_frame != NULL);
5166 gdb_assert (ops->read_variable != NULL);
5171 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5172 OPS is the ops vector associated with this index. This returns the
5173 new index, which should be used as the aclass_index field for symbols
5177 register_symbol_block_impl (enum address_class aclass,
5178 const struct symbol_block_ops *ops)
5180 int result = next_aclass_value++;
5182 gdb_assert (aclass == LOC_BLOCK);
5183 gdb_assert (result < MAX_SYMBOL_IMPLS);
5184 symbol_impl[result].aclass = aclass;
5185 symbol_impl[result].ops_block = ops;
5187 /* Sanity check OPS. */
5188 gdb_assert (ops != NULL);
5189 gdb_assert (ops->find_frame_base_location != NULL);
5194 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5195 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5196 this index. This returns the new index, which should be used as
5197 the aclass_index field for symbols of this type. */
5200 register_symbol_register_impl (enum address_class aclass,
5201 const struct symbol_register_ops *ops)
5203 int result = next_aclass_value++;
5205 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5206 gdb_assert (result < MAX_SYMBOL_IMPLS);
5207 symbol_impl[result].aclass = aclass;
5208 symbol_impl[result].ops_register = ops;
5213 /* Initialize elements of 'symbol_impl' for the constants in enum
5217 initialize_ordinary_address_classes (void)
5221 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5222 symbol_impl[i].aclass = i;
5227 /* Initialize the symbol SYM. */
5230 initialize_symbol (struct symbol *sym)
5232 memset (sym, 0, sizeof (*sym));
5233 SYMBOL_SECTION (sym) = -1;
5236 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5240 allocate_symbol (struct objfile *objfile)
5242 struct symbol *result;
5244 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5245 SYMBOL_SECTION (result) = -1;
5250 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5253 struct template_symbol *
5254 allocate_template_symbol (struct objfile *objfile)
5256 struct template_symbol *result;
5258 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5259 SYMBOL_SECTION (&result->base) = -1;
5267 _initialize_symtab (void)
5269 initialize_ordinary_address_classes ();
5271 add_info ("variables", variables_info, _("\
5272 All global and static variable names, or those matching REGEXP."));
5274 add_com ("whereis", class_info, variables_info, _("\
5275 All global and static variable names, or those matching REGEXP."));
5277 add_info ("functions", functions_info,
5278 _("All function names, or those matching REGEXP."));
5280 /* FIXME: This command has at least the following problems:
5281 1. It prints builtin types (in a very strange and confusing fashion).
5282 2. It doesn't print right, e.g. with
5283 typedef struct foo *FOO
5284 type_print prints "FOO" when we want to make it (in this situation)
5285 print "struct foo *".
5286 I also think "ptype" or "whatis" is more likely to be useful (but if
5287 there is much disagreement "info types" can be fixed). */
5288 add_info ("types", types_info,
5289 _("All type names, or those matching REGEXP."));
5291 add_info ("sources", sources_info,
5292 _("Source files in the program."));
5294 add_com ("rbreak", class_breakpoint, rbreak_command,
5295 _("Set a breakpoint for all functions matching REGEXP."));
5299 add_com ("lf", class_info, sources_info,
5300 _("Source files in the program"));
5301 add_com ("lg", class_info, variables_info, _("\
5302 All global and static variable names, or those matching REGEXP."));
5305 add_setshow_enum_cmd ("multiple-symbols", no_class,
5306 multiple_symbols_modes, &multiple_symbols_mode,
5308 Set the debugger behavior when more than one symbol are possible matches\n\
5309 in an expression."), _("\
5310 Show how the debugger handles ambiguities in expressions."), _("\
5311 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5312 NULL, NULL, &setlist, &showlist);
5314 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5315 &basenames_may_differ, _("\
5316 Set whether a source file may have multiple base names."), _("\
5317 Show whether a source file may have multiple base names."), _("\
5318 (A \"base name\" is the name of a file with the directory part removed.\n\
5319 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5320 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5321 before comparing them. Canonicalization is an expensive operation,\n\
5322 but it allows the same file be known by more than one base name.\n\
5323 If not set (the default), all source files are assumed to have just\n\
5324 one base name, and gdb will do file name comparisons more efficiently."),
5326 &setlist, &showlist);
5328 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5329 _("Set debugging of symbol table creation."),
5330 _("Show debugging of symbol table creation."), _("\
5331 When enabled (non-zero), debugging messages are printed when building\n\
5332 symbol tables. A value of 1 (one) normally provides enough information.\n\
5333 A value greater than 1 provides more verbose information."),
5336 &setdebuglist, &showdebuglist);
5338 observer_attach_executable_changed (symtab_observer_executable_changed);