1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
5 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
34 #include "call-cmds.h"
35 #include "gdb_regex.h"
36 #include "expression.h"
42 #include "filenames.h" /* for FILENAME_CMP */
43 #include "objc-lang.h"
47 #include "gdb_obstack.h"
49 #include "dictionary.h"
51 #include <sys/types.h>
53 #include "gdb_string.h"
58 /* Prototypes for local functions */
60 static void completion_list_add_name (char *, char *, int, char *, char *);
62 static void rbreak_command (char *, int);
64 static void types_info (char *, int);
66 static void functions_info (char *, int);
68 static void variables_info (char *, int);
70 static void sources_info (char *, int);
72 static void output_source_filename (char *, int *);
74 static int find_line_common (struct linetable *, int, int *);
76 /* This one is used by linespec.c */
78 char *operator_chars (char *p, char **end);
80 static struct symbol *lookup_symbol_aux (const char *name,
81 const char *linkage_name,
82 const struct block *block,
83 const domain_enum domain,
84 int *is_a_field_of_this,
85 struct symtab **symtab);
88 struct symbol *lookup_symbol_aux_local (const char *name,
89 const char *linkage_name,
90 const struct block *block,
91 const domain_enum domain,
92 struct symtab **symtab);
95 struct symbol *lookup_symbol_aux_symtabs (int block_index,
97 const char *linkage_name,
98 const domain_enum domain,
99 struct symtab **symtab);
102 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
104 const char *linkage_name,
105 const domain_enum domain,
106 struct symtab **symtab);
110 struct symbol *lookup_symbol_aux_minsyms (const char *name,
111 const char *linkage_name,
112 const domain_enum domain,
113 int *is_a_field_of_this,
114 struct symtab **symtab);
117 /* This flag is used in hppa-tdep.c, and set in hp-symtab-read.c */
118 /* Signals the presence of objects compiled by HP compilers */
119 int hp_som_som_object_present = 0;
121 static void fixup_section (struct general_symbol_info *, struct objfile *);
123 static int file_matches (char *, char **, int);
125 static void print_symbol_info (domain_enum,
126 struct symtab *, struct symbol *, int, char *);
128 static void print_msymbol_info (struct minimal_symbol *);
130 static void symtab_symbol_info (char *, domain_enum, int);
132 void _initialize_symtab (void);
136 /* The single non-language-specific builtin type */
137 struct type *builtin_type_error;
139 /* Block in which the most recently searched-for symbol was found.
140 Might be better to make this a parameter to lookup_symbol and
143 const struct block *block_found;
145 /* Check for a symtab of a specific name; first in symtabs, then in
146 psymtabs. *If* there is no '/' in the name, a match after a '/'
147 in the symtab filename will also work. */
150 lookup_symtab (const char *name)
153 struct partial_symtab *ps;
154 struct objfile *objfile;
155 char *real_path = NULL;
156 char *full_path = NULL;
158 /* Here we are interested in canonicalizing an absolute path, not
159 absolutizing a relative path. */
160 if (IS_ABSOLUTE_PATH (name))
162 full_path = xfullpath (name);
163 make_cleanup (xfree, full_path);
164 real_path = gdb_realpath (name);
165 make_cleanup (xfree, real_path);
170 /* First, search for an exact match */
172 ALL_SYMTABS (objfile, s)
174 if (FILENAME_CMP (name, s->filename) == 0)
179 /* If the user gave us an absolute path, try to find the file in
180 this symtab and use its absolute path. */
182 if (full_path != NULL)
184 const char *fp = symtab_to_filename (s);
185 if (FILENAME_CMP (full_path, fp) == 0)
191 if (real_path != NULL)
193 char *rp = gdb_realpath (symtab_to_filename (s));
194 make_cleanup (xfree, rp);
195 if (FILENAME_CMP (real_path, rp) == 0)
202 /* Now, search for a matching tail (only if name doesn't have any dirs) */
204 if (lbasename (name) == name)
205 ALL_SYMTABS (objfile, s)
207 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
211 /* Same search rules as above apply here, but now we look thru the
214 ps = lookup_partial_symtab (name);
219 error ("Internal: readin %s pst for `%s' found when no symtab found.",
222 s = PSYMTAB_TO_SYMTAB (ps);
227 /* At this point, we have located the psymtab for this file, but
228 the conversion to a symtab has failed. This usually happens
229 when we are looking up an include file. In this case,
230 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
231 been created. So, we need to run through the symtabs again in
232 order to find the file.
233 XXX - This is a crock, and should be fixed inside of the the
234 symbol parsing routines. */
238 /* Lookup the partial symbol table of a source file named NAME.
239 *If* there is no '/' in the name, a match after a '/'
240 in the psymtab filename will also work. */
242 struct partial_symtab *
243 lookup_partial_symtab (const char *name)
245 struct partial_symtab *pst;
246 struct objfile *objfile;
247 char *full_path = NULL;
248 char *real_path = NULL;
250 /* Here we are interested in canonicalizing an absolute path, not
251 absolutizing a relative path. */
252 if (IS_ABSOLUTE_PATH (name))
254 full_path = xfullpath (name);
255 make_cleanup (xfree, full_path);
256 real_path = gdb_realpath (name);
257 make_cleanup (xfree, real_path);
260 ALL_PSYMTABS (objfile, pst)
262 if (FILENAME_CMP (name, pst->filename) == 0)
267 /* If the user gave us an absolute path, try to find the file in
268 this symtab and use its absolute path. */
269 if (full_path != NULL)
271 if (pst->fullname == NULL)
272 source_full_path_of (pst->filename, &pst->fullname);
273 if (pst->fullname != NULL
274 && FILENAME_CMP (full_path, pst->fullname) == 0)
280 if (real_path != NULL)
283 if (pst->fullname == NULL)
284 source_full_path_of (pst->filename, &pst->fullname);
285 if (pst->fullname != NULL)
287 rp = gdb_realpath (pst->fullname);
288 make_cleanup (xfree, rp);
290 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
297 /* Now, search for a matching tail (only if name doesn't have any dirs) */
299 if (lbasename (name) == name)
300 ALL_PSYMTABS (objfile, pst)
302 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
309 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
310 full method name, which consist of the class name (from T), the unadorned
311 method name from METHOD_ID, and the signature for the specific overload,
312 specified by SIGNATURE_ID. Note that this function is g++ specific. */
315 gdb_mangle_name (struct type *type, int method_id, int signature_id)
317 int mangled_name_len;
319 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
320 struct fn_field *method = &f[signature_id];
321 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
322 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
323 char *newname = type_name_no_tag (type);
325 /* Does the form of physname indicate that it is the full mangled name
326 of a constructor (not just the args)? */
327 int is_full_physname_constructor;
330 int is_destructor = is_destructor_name (physname);
331 /* Need a new type prefix. */
332 char *const_prefix = method->is_const ? "C" : "";
333 char *volatile_prefix = method->is_volatile ? "V" : "";
335 int len = (newname == NULL ? 0 : strlen (newname));
337 /* Nothing to do if physname already contains a fully mangled v3 abi name
338 or an operator name. */
339 if ((physname[0] == '_' && physname[1] == 'Z')
340 || is_operator_name (field_name))
341 return xstrdup (physname);
343 is_full_physname_constructor = is_constructor_name (physname);
346 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
349 is_destructor = (strncmp (physname, "__dt", 4) == 0);
351 if (is_destructor || is_full_physname_constructor)
353 mangled_name = (char *) xmalloc (strlen (physname) + 1);
354 strcpy (mangled_name, physname);
360 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
362 else if (physname[0] == 't' || physname[0] == 'Q')
364 /* The physname for template and qualified methods already includes
366 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
372 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
374 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
375 + strlen (buf) + len + strlen (physname) + 1);
378 mangled_name = (char *) xmalloc (mangled_name_len);
380 mangled_name[0] = '\0';
382 strcpy (mangled_name, field_name);
384 strcat (mangled_name, buf);
385 /* If the class doesn't have a name, i.e. newname NULL, then we just
386 mangle it using 0 for the length of the class. Thus it gets mangled
387 as something starting with `::' rather than `classname::'. */
389 strcat (mangled_name, newname);
391 strcat (mangled_name, physname);
392 return (mangled_name);
396 /* Initialize the language dependent portion of a symbol
397 depending upon the language for the symbol. */
399 symbol_init_language_specific (struct general_symbol_info *gsymbol,
400 enum language language)
402 gsymbol->language = language;
403 if (gsymbol->language == language_cplus
404 || gsymbol->language == language_java
405 || gsymbol->language == language_objc)
407 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
411 memset (&gsymbol->language_specific, 0,
412 sizeof (gsymbol->language_specific));
416 /* Functions to initialize a symbol's mangled name. */
418 /* Create the hash table used for demangled names. Each hash entry is
419 a pair of strings; one for the mangled name and one for the demangled
420 name. The entry is hashed via just the mangled name. */
423 create_demangled_names_hash (struct objfile *objfile)
425 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
426 The hash table code will round this up to the next prime number.
427 Choosing a much larger table size wastes memory, and saves only about
428 1% in symbol reading. */
430 objfile->demangled_names_hash = htab_create_alloc_ex
431 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
432 NULL, objfile->md, xmcalloc, xmfree);
435 /* Try to determine the demangled name for a symbol, based on the
436 language of that symbol. If the language is set to language_auto,
437 it will attempt to find any demangling algorithm that works and
438 then set the language appropriately. The returned name is allocated
439 by the demangler and should be xfree'd. */
442 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
445 char *demangled = NULL;
447 if (gsymbol->language == language_unknown)
448 gsymbol->language = language_auto;
450 if (gsymbol->language == language_objc
451 || gsymbol->language == language_auto)
454 objc_demangle (mangled, 0);
455 if (demangled != NULL)
457 gsymbol->language = language_objc;
461 if (gsymbol->language == language_cplus
462 || gsymbol->language == language_auto)
465 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
466 if (demangled != NULL)
468 gsymbol->language = language_cplus;
472 if (gsymbol->language == language_java)
475 cplus_demangle (mangled,
476 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
477 if (demangled != NULL)
479 gsymbol->language = language_java;
486 /* Set both the mangled and demangled (if any) names for GSYMBOL based
487 on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE
488 is used, and the memory comes from that objfile's objfile_obstack.
489 LINKAGE_NAME is copied, so the pointer can be discarded after
490 calling this function. */
492 /* We have to be careful when dealing with Java names: when we run
493 into a Java minimal symbol, we don't know it's a Java symbol, so it
494 gets demangled as a C++ name. This is unfortunate, but there's not
495 much we can do about it: but when demangling partial symbols and
496 regular symbols, we'd better not reuse the wrong demangled name.
497 (See PR gdb/1039.) We solve this by putting a distinctive prefix
498 on Java names when storing them in the hash table. */
500 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
501 don't mind the Java prefix so much: different languages have
502 different demangling requirements, so it's only natural that we
503 need to keep language data around in our demangling cache. But
504 it's not good that the minimal symbol has the wrong demangled name.
505 Unfortunately, I can't think of any easy solution to that
508 #define JAVA_PREFIX "##JAVA$$"
509 #define JAVA_PREFIX_LEN 8
512 symbol_set_names (struct general_symbol_info *gsymbol,
513 const char *linkage_name, int len, struct objfile *objfile)
516 /* A 0-terminated copy of the linkage name. */
517 const char *linkage_name_copy;
518 /* A copy of the linkage name that might have a special Java prefix
519 added to it, for use when looking names up in the hash table. */
520 const char *lookup_name;
521 /* The length of lookup_name. */
524 if (objfile->demangled_names_hash == NULL)
525 create_demangled_names_hash (objfile);
527 /* The stabs reader generally provides names that are not
528 NUL-terminated; most of the other readers don't do this, so we
529 can just use the given copy, unless we're in the Java case. */
530 if (gsymbol->language == language_java)
533 lookup_len = len + JAVA_PREFIX_LEN;
535 alloc_name = alloca (lookup_len + 1);
536 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
537 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
538 alloc_name[lookup_len] = '\0';
540 lookup_name = alloc_name;
541 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
543 else if (linkage_name[len] != '\0')
548 alloc_name = alloca (lookup_len + 1);
549 memcpy (alloc_name, linkage_name, len);
550 alloc_name[lookup_len] = '\0';
552 lookup_name = alloc_name;
553 linkage_name_copy = alloc_name;
558 lookup_name = linkage_name;
559 linkage_name_copy = linkage_name;
562 slot = (char **) htab_find_slot (objfile->demangled_names_hash,
563 lookup_name, INSERT);
565 /* If this name is not in the hash table, add it. */
568 char *demangled_name = symbol_find_demangled_name (gsymbol,
570 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
572 /* If there is a demangled name, place it right after the mangled name.
573 Otherwise, just place a second zero byte after the end of the mangled
575 *slot = obstack_alloc (&objfile->objfile_obstack,
576 lookup_len + demangled_len + 2);
577 memcpy (*slot, lookup_name, lookup_len + 1);
578 if (demangled_name != NULL)
580 memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
581 xfree (demangled_name);
584 (*slot)[lookup_len + 1] = '\0';
587 gsymbol->name = *slot + lookup_len - len;
588 if ((*slot)[lookup_len + 1] != '\0')
589 gsymbol->language_specific.cplus_specific.demangled_name
590 = &(*slot)[lookup_len + 1];
592 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
595 /* Initialize the demangled name of GSYMBOL if possible. Any required space
596 to store the name is obtained from the specified obstack. The function
597 symbol_set_names, above, should be used instead where possible for more
598 efficient memory usage. */
601 symbol_init_demangled_name (struct general_symbol_info *gsymbol,
602 struct obstack *obstack)
604 char *mangled = gsymbol->name;
605 char *demangled = NULL;
607 demangled = symbol_find_demangled_name (gsymbol, mangled);
608 if (gsymbol->language == language_cplus
609 || gsymbol->language == language_java
610 || gsymbol->language == language_objc)
614 gsymbol->language_specific.cplus_specific.demangled_name
615 = obsavestring (demangled, strlen (demangled), obstack);
619 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
623 /* Unknown language; just clean up quietly. */
629 /* Return the source code name of a symbol. In languages where
630 demangling is necessary, this is the demangled name. */
633 symbol_natural_name (const struct general_symbol_info *gsymbol)
635 if ((gsymbol->language == language_cplus
636 || gsymbol->language == language_java
637 || gsymbol->language == language_objc)
638 && (gsymbol->language_specific.cplus_specific.demangled_name != NULL))
640 return gsymbol->language_specific.cplus_specific.demangled_name;
644 return gsymbol->name;
648 /* Return the demangled name for a symbol based on the language for
649 that symbol. If no demangled name exists, return NULL. */
651 symbol_demangled_name (struct general_symbol_info *gsymbol)
653 if (gsymbol->language == language_cplus
654 || gsymbol->language == language_java
655 || gsymbol->language == language_objc)
656 return gsymbol->language_specific.cplus_specific.demangled_name;
662 /* Initialize the structure fields to zero values. */
664 init_sal (struct symtab_and_line *sal)
675 /* Find which partial symtab contains PC and SECTION. Return 0 if
676 none. We return the psymtab that contains a symbol whose address
677 exactly matches PC, or, if we cannot find an exact match, the
678 psymtab that contains a symbol whose address is closest to PC. */
679 struct partial_symtab *
680 find_pc_sect_psymtab (CORE_ADDR pc, asection *section)
682 struct partial_symtab *pst;
683 struct objfile *objfile;
684 struct minimal_symbol *msymbol;
686 /* If we know that this is not a text address, return failure. This is
687 necessary because we loop based on texthigh and textlow, which do
688 not include the data ranges. */
689 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
691 && (msymbol->type == mst_data
692 || msymbol->type == mst_bss
693 || msymbol->type == mst_abs
694 || msymbol->type == mst_file_data
695 || msymbol->type == mst_file_bss))
698 ALL_PSYMTABS (objfile, pst)
700 if (pc >= pst->textlow && pc < pst->texthigh)
702 struct partial_symtab *tpst;
703 struct partial_symtab *best_pst = pst;
704 struct partial_symbol *best_psym = NULL;
706 /* An objfile that has its functions reordered might have
707 many partial symbol tables containing the PC, but
708 we want the partial symbol table that contains the
709 function containing the PC. */
710 if (!(objfile->flags & OBJF_REORDERED) &&
711 section == 0) /* can't validate section this way */
717 /* The code range of partial symtabs sometimes overlap, so, in
718 the loop below, we need to check all partial symtabs and
719 find the one that fits better for the given PC address. We
720 select the partial symtab that contains a symbol whose
721 address is closest to the PC address. By closest we mean
722 that find_pc_sect_symbol returns the symbol with address
723 that is closest and still less than the given PC. */
724 for (tpst = pst; tpst != NULL; tpst = tpst->next)
726 if (pc >= tpst->textlow && pc < tpst->texthigh)
728 struct partial_symbol *p;
730 p = find_pc_sect_psymbol (tpst, pc, section);
732 && SYMBOL_VALUE_ADDRESS (p)
733 == SYMBOL_VALUE_ADDRESS (msymbol))
737 /* We found a symbol in this partial symtab which
738 matches (or is closest to) PC, check whether it
739 is closer than our current BEST_PSYM. Since
740 this symbol address is necessarily lower or
741 equal to PC, the symbol closer to PC is the
742 symbol which address is the highest. */
743 /* This way we return the psymtab which contains
744 such best match symbol. This can help in cases
745 where the symbol information/debuginfo is not
746 complete, like for instance on IRIX6 with gcc,
747 where no debug info is emitted for
748 statics. (See also the nodebug.exp
750 if (best_psym == NULL
751 || SYMBOL_VALUE_ADDRESS (p)
752 > SYMBOL_VALUE_ADDRESS (best_psym))
767 /* Find which partial symtab contains PC. Return 0 if none.
768 Backward compatibility, no section */
770 struct partial_symtab *
771 find_pc_psymtab (CORE_ADDR pc)
773 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
776 /* Find which partial symbol within a psymtab matches PC and SECTION.
777 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
779 struct partial_symbol *
780 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
783 struct partial_symbol *best = NULL, *p, **pp;
787 psymtab = find_pc_sect_psymtab (pc, section);
791 /* Cope with programs that start at address 0 */
792 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
794 /* Search the global symbols as well as the static symbols, so that
795 find_pc_partial_function doesn't use a minimal symbol and thus
796 cache a bad endaddr. */
797 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
798 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
799 < psymtab->n_global_syms);
803 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
804 && SYMBOL_CLASS (p) == LOC_BLOCK
805 && pc >= SYMBOL_VALUE_ADDRESS (p)
806 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
807 || (psymtab->textlow == 0
808 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
810 if (section) /* match on a specific section */
812 fixup_psymbol_section (p, psymtab->objfile);
813 if (SYMBOL_BFD_SECTION (p) != section)
816 best_pc = SYMBOL_VALUE_ADDRESS (p);
821 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
822 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
823 < psymtab->n_static_syms);
827 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
828 && SYMBOL_CLASS (p) == LOC_BLOCK
829 && pc >= SYMBOL_VALUE_ADDRESS (p)
830 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
831 || (psymtab->textlow == 0
832 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
834 if (section) /* match on a specific section */
836 fixup_psymbol_section (p, psymtab->objfile);
837 if (SYMBOL_BFD_SECTION (p) != section)
840 best_pc = SYMBOL_VALUE_ADDRESS (p);
848 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
849 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
851 struct partial_symbol *
852 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
854 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
857 /* Debug symbols usually don't have section information. We need to dig that
858 out of the minimal symbols and stash that in the debug symbol. */
861 fixup_section (struct general_symbol_info *ginfo, struct objfile *objfile)
863 struct minimal_symbol *msym;
864 msym = lookup_minimal_symbol (ginfo->name, NULL, objfile);
868 ginfo->bfd_section = SYMBOL_BFD_SECTION (msym);
869 ginfo->section = SYMBOL_SECTION (msym);
874 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
879 if (SYMBOL_BFD_SECTION (sym))
882 fixup_section (&sym->ginfo, objfile);
887 struct partial_symbol *
888 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
893 if (SYMBOL_BFD_SECTION (psym))
896 fixup_section (&psym->ginfo, objfile);
901 /* Find the definition for a specified symbol name NAME
902 in domain DOMAIN, visible from lexical block BLOCK.
903 Returns the struct symbol pointer, or zero if no symbol is found.
904 If SYMTAB is non-NULL, store the symbol table in which the
905 symbol was found there, or NULL if not found.
906 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
907 NAME is a field of the current implied argument `this'. If so set
908 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
909 BLOCK_FOUND is set to the block in which NAME is found (in the case of
910 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
912 /* This function has a bunch of loops in it and it would seem to be
913 attractive to put in some QUIT's (though I'm not really sure
914 whether it can run long enough to be really important). But there
915 are a few calls for which it would appear to be bad news to quit
916 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
917 that there is C++ code below which can error(), but that probably
918 doesn't affect these calls since they are looking for a known
919 variable and thus can probably assume it will never hit the C++
923 lookup_symbol (const char *name, const struct block *block,
924 const domain_enum domain, int *is_a_field_of_this,
925 struct symtab **symtab)
927 char *demangled_name = NULL;
928 const char *modified_name = NULL;
929 const char *mangled_name = NULL;
930 int needtofreename = 0;
931 struct symbol *returnval;
933 modified_name = name;
935 /* If we are using C++ language, demangle the name before doing a lookup, so
936 we can always binary search. */
937 if (current_language->la_language == language_cplus)
939 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
943 modified_name = demangled_name;
948 if (case_sensitivity == case_sensitive_off)
954 copy = (char *) alloca (len + 1);
955 for (i= 0; i < len; i++)
956 copy[i] = tolower (name[i]);
958 modified_name = copy;
961 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
962 domain, is_a_field_of_this, symtab);
964 xfree (demangled_name);
969 /* Behave like lookup_symbol_aux except that NAME is the natural name
970 of the symbol that we're looking for and, if LINKAGE_NAME is
971 non-NULL, ensure that the symbol's linkage name matches as
974 static struct symbol *
975 lookup_symbol_aux (const char *name, const char *linkage_name,
976 const struct block *block, const domain_enum domain,
977 int *is_a_field_of_this, struct symtab **symtab)
981 /* Make sure we do something sensible with is_a_field_of_this, since
982 the callers that set this parameter to some non-null value will
983 certainly use it later and expect it to be either 0 or 1.
984 If we don't set it, the contents of is_a_field_of_this are
986 if (is_a_field_of_this != NULL)
987 *is_a_field_of_this = 0;
989 /* Search specified block and its superiors. Don't search
990 STATIC_BLOCK or GLOBAL_BLOCK. */
992 sym = lookup_symbol_aux_local (name, linkage_name, block, domain,
997 /* If requested to do so by the caller and if appropriate for the
998 current language, check to see if NAME is a field of `this'. */
1000 if (current_language->la_value_of_this != NULL
1001 && is_a_field_of_this != NULL)
1003 struct value *v = current_language->la_value_of_this (0);
1005 if (v && check_field (v, name))
1007 *is_a_field_of_this = 1;
1014 /* Now do whatever is appropriate for the current language to look
1015 up static and global variables. */
1017 sym = current_language->la_lookup_symbol_nonlocal (name, linkage_name,
1023 /* Now search all static file-level symbols. Not strictly correct,
1024 but more useful than an error. Do the symtabs first, then check
1025 the psymtabs. If a psymtab indicates the existence of the
1026 desired name as a file-level static, then do psymtab-to-symtab
1027 conversion on the fly and return the found symbol. */
1029 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name,
1034 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name,
1044 /* Check to see if the symbol is defined in BLOCK or its superiors.
1045 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1047 static struct symbol *
1048 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1049 const struct block *block,
1050 const domain_enum domain,
1051 struct symtab **symtab)
1054 const struct block *static_block = block_static_block (block);
1056 /* Check if either no block is specified or it's a global block. */
1058 if (static_block == NULL)
1061 while (block != static_block)
1063 sym = lookup_symbol_aux_block (name, linkage_name, block, domain,
1067 block = BLOCK_SUPERBLOCK (block);
1070 /* We've reached the static block without finding a result. */
1075 /* Look up a symbol in a block; if found, locate its symtab, fixup the
1076 symbol, and set block_found appropriately. */
1079 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1080 const struct block *block,
1081 const domain_enum domain,
1082 struct symtab **symtab)
1085 struct objfile *objfile = NULL;
1086 struct blockvector *bv;
1088 struct symtab *s = NULL;
1090 sym = lookup_block_symbol (block, name, linkage_name, domain);
1093 block_found = block;
1096 /* Search the list of symtabs for one which contains the
1097 address of the start of this block. */
1098 ALL_SYMTABS (objfile, s)
1100 bv = BLOCKVECTOR (s);
1101 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1102 if (BLOCK_START (b) <= BLOCK_START (block)
1103 && BLOCK_END (b) > BLOCK_START (block))
1110 return fixup_symbol_section (sym, objfile);
1116 /* Check to see if the symbol is defined in one of the symtabs.
1117 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1118 depending on whether or not we want to search global symbols or
1121 static struct symbol *
1122 lookup_symbol_aux_symtabs (int block_index,
1123 const char *name, const char *linkage_name,
1124 const domain_enum domain,
1125 struct symtab **symtab)
1128 struct objfile *objfile;
1129 struct blockvector *bv;
1130 const struct block *block;
1133 ALL_SYMTABS (objfile, s)
1135 bv = BLOCKVECTOR (s);
1136 block = BLOCKVECTOR_BLOCK (bv, block_index);
1137 sym = lookup_block_symbol (block, name, linkage_name, domain);
1140 block_found = block;
1143 return fixup_symbol_section (sym, objfile);
1150 /* Check to see if the symbol is defined in one of the partial
1151 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1152 STATIC_BLOCK, depending on whether or not we want to search global
1153 symbols or static symbols. */
1155 static struct symbol *
1156 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1157 const char *linkage_name,
1158 const domain_enum domain,
1159 struct symtab **symtab)
1162 struct objfile *objfile;
1163 struct blockvector *bv;
1164 const struct block *block;
1165 struct partial_symtab *ps;
1167 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1169 ALL_PSYMTABS (objfile, ps)
1172 && lookup_partial_symbol (ps, name, linkage_name,
1173 psymtab_index, domain))
1175 s = PSYMTAB_TO_SYMTAB (ps);
1176 bv = BLOCKVECTOR (s);
1177 block = BLOCKVECTOR_BLOCK (bv, block_index);
1178 sym = lookup_block_symbol (block, name, linkage_name, domain);
1181 /* This shouldn't be necessary, but as a last resort try
1182 looking in the statics even though the psymtab claimed
1183 the symbol was global, or vice-versa. It's possible
1184 that the psymtab gets it wrong in some cases. */
1186 /* FIXME: carlton/2002-09-30: Should we really do that?
1187 If that happens, isn't it likely to be a GDB error, in
1188 which case we should fix the GDB error rather than
1189 silently dealing with it here? So I'd vote for
1190 removing the check for the symbol in the other
1192 block = BLOCKVECTOR_BLOCK (bv,
1193 block_index == GLOBAL_BLOCK ?
1194 STATIC_BLOCK : GLOBAL_BLOCK);
1195 sym = lookup_block_symbol (block, name, linkage_name, domain);
1197 error ("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>).",
1198 block_index == GLOBAL_BLOCK ? "global" : "static",
1199 name, ps->filename, name, name);
1203 return fixup_symbol_section (sym, objfile);
1211 /* Check for the possibility of the symbol being a function or a
1212 mangled variable that is stored in one of the minimal symbol
1213 tables. Eventually, all global symbols might be resolved in this
1216 /* NOTE: carlton/2002-12-05: At one point, this function was part of
1217 lookup_symbol_aux, and what are now 'return' statements within
1218 lookup_symbol_aux_minsyms returned from lookup_symbol_aux, even if
1219 sym was NULL. As far as I can tell, this was basically accidental;
1220 it didn't happen every time that msymbol was non-NULL, but only if
1221 some additional conditions held as well, and it caused problems
1222 with HP-generated symbol tables. */
1224 /* NOTE: carlton/2003-05-14: This function was once used as part of
1225 lookup_symbol. It is currently unnecessary for correctness
1226 reasons, however, and using it doesn't seem to be any faster than
1227 using lookup_symbol_aux_psymtabs, so I'm commenting it out. */
1229 static struct symbol *
1230 lookup_symbol_aux_minsyms (const char *name,
1231 const char *linkage_name,
1232 const domain_enum domain,
1233 int *is_a_field_of_this,
1234 struct symtab **symtab)
1237 struct blockvector *bv;
1238 const struct block *block;
1239 struct minimal_symbol *msymbol;
1242 if (domain == VAR_DOMAIN)
1244 msymbol = lookup_minimal_symbol (name, NULL, NULL);
1246 if (msymbol != NULL)
1248 /* OK, we found a minimal symbol in spite of not finding any
1249 symbol. There are various possible explanations for
1250 this. One possibility is the symbol exists in code not
1251 compiled -g. Another possibility is that the 'psymtab'
1252 isn't doing its job. A third possibility, related to #2,
1253 is that we were confused by name-mangling. For instance,
1254 maybe the psymtab isn't doing its job because it only
1255 know about demangled names, but we were given a mangled
1258 /* We first use the address in the msymbol to try to locate
1259 the appropriate symtab. Note that find_pc_sect_symtab()
1260 has a side-effect of doing psymtab-to-symtab expansion,
1261 for the found symtab. */
1262 s = find_pc_sect_symtab (SYMBOL_VALUE_ADDRESS (msymbol),
1263 SYMBOL_BFD_SECTION (msymbol));
1266 /* This is a function which has a symtab for its address. */
1267 bv = BLOCKVECTOR (s);
1268 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1270 /* This call used to pass `SYMBOL_LINKAGE_NAME (msymbol)' as the
1271 `name' argument to lookup_block_symbol. But the name
1272 of a minimal symbol is always mangled, so that seems
1273 to be clearly the wrong thing to pass as the
1276 lookup_block_symbol (block, name, linkage_name, domain);
1277 /* We kept static functions in minimal symbol table as well as
1278 in static scope. We want to find them in the symbol table. */
1281 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1282 sym = lookup_block_symbol (block, name,
1283 linkage_name, domain);
1286 /* NOTE: carlton/2002-12-04: The following comment was
1287 taken from a time when two versions of this function
1288 were part of the body of lookup_symbol_aux: this
1289 comment was taken from the version of the function
1290 that was #ifdef HPUXHPPA, and the comment was right
1291 before the 'return NULL' part of lookup_symbol_aux.
1292 (Hence the "Fall through and return 0" comment.)
1293 Elena did some digging into the situation for
1294 Fortran, and she reports:
1296 "I asked around (thanks to Jeff Knaggs), and I think
1297 the story for Fortran goes like this:
1299 "Apparently, in older Fortrans, '_' was not part of
1300 the user namespace. g77 attached a final '_' to
1301 procedure names as the exported symbols for linkage
1302 (foo_) , but the symbols went in the debug info just
1303 like 'foo'. The rationale behind this is not
1304 completely clear, and maybe it was done to other
1305 symbols as well, not just procedures." */
1307 /* If we get here with sym == 0, the symbol was
1308 found in the minimal symbol table
1309 but not in the symtab.
1310 Fall through and return 0 to use the msymbol
1311 definition of "foo_".
1312 (Note that outer code generally follows up a call
1313 to this routine with a call to lookup_minimal_symbol(),
1314 so a 0 return means we'll just flow into that other routine).
1316 This happens for Fortran "foo_" symbols,
1317 which are "foo" in the symtab.
1319 This can also happen if "asm" is used to make a
1320 regular symbol but not a debugging symbol, e.g.
1321 asm(".globl _main");
1325 if (symtab != NULL && sym != NULL)
1327 return fixup_symbol_section (sym, s->objfile);
1336 /* A default version of lookup_symbol_nonlocal for use by languages
1337 that can't think of anything better to do. This implements the C
1341 basic_lookup_symbol_nonlocal (const char *name,
1342 const char *linkage_name,
1343 const struct block *block,
1344 const domain_enum domain,
1345 struct symtab **symtab)
1349 /* NOTE: carlton/2003-05-19: The comments below were written when
1350 this (or what turned into this) was part of lookup_symbol_aux;
1351 I'm much less worried about these questions now, since these
1352 decisions have turned out well, but I leave these comments here
1355 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1356 not it would be appropriate to search the current global block
1357 here as well. (That's what this code used to do before the
1358 is_a_field_of_this check was moved up.) On the one hand, it's
1359 redundant with the lookup_symbol_aux_symtabs search that happens
1360 next. On the other hand, if decode_line_1 is passed an argument
1361 like filename:var, then the user presumably wants 'var' to be
1362 searched for in filename. On the third hand, there shouldn't be
1363 multiple global variables all of which are named 'var', and it's
1364 not like decode_line_1 has ever restricted its search to only
1365 global variables in a single filename. All in all, only
1366 searching the static block here seems best: it's correct and it's
1369 /* NOTE: carlton/2002-12-05: There's also a possible performance
1370 issue here: if you usually search for global symbols in the
1371 current file, then it would be slightly better to search the
1372 current global block before searching all the symtabs. But there
1373 are other factors that have a much greater effect on performance
1374 than that one, so I don't think we should worry about that for
1377 sym = lookup_symbol_static (name, linkage_name, block, domain, symtab);
1381 return lookup_symbol_global (name, linkage_name, domain, symtab);
1384 /* Lookup a symbol in the static block associated to BLOCK, if there
1385 is one; do nothing if BLOCK is NULL or a global block. */
1388 lookup_symbol_static (const char *name,
1389 const char *linkage_name,
1390 const struct block *block,
1391 const domain_enum domain,
1392 struct symtab **symtab)
1394 const struct block *static_block = block_static_block (block);
1396 if (static_block != NULL)
1397 return lookup_symbol_aux_block (name, linkage_name, static_block,
1403 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1407 lookup_symbol_global (const char *name,
1408 const char *linkage_name,
1409 const domain_enum domain,
1410 struct symtab **symtab)
1414 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name,
1419 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name,
1423 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1424 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1425 linkage name matches it. Check the global symbols if GLOBAL, the
1426 static symbols if not */
1428 struct partial_symbol *
1429 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1430 const char *linkage_name, int global,
1433 struct partial_symbol *temp;
1434 struct partial_symbol **start, **psym;
1435 struct partial_symbol **top, **real_top, **bottom, **center;
1436 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1437 int do_linear_search = 1;
1444 pst->objfile->global_psymbols.list + pst->globals_offset :
1445 pst->objfile->static_psymbols.list + pst->statics_offset);
1447 if (global) /* This means we can use a binary search. */
1449 do_linear_search = 0;
1451 /* Binary search. This search is guaranteed to end with center
1452 pointing at the earliest partial symbol whose name might be
1453 correct. At that point *all* partial symbols with an
1454 appropriate name will be checked against the correct
1458 top = start + length - 1;
1460 while (top > bottom)
1462 center = bottom + (top - bottom) / 2;
1463 if (!(center < top))
1464 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1465 if (!do_linear_search
1466 && (SYMBOL_LANGUAGE (*center) == language_java))
1468 do_linear_search = 1;
1470 if (strcmp_iw_ordered (SYMBOL_NATURAL_NAME (*center), name) >= 0)
1476 bottom = center + 1;
1479 if (!(top == bottom))
1480 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1482 while (top <= real_top
1483 && (linkage_name != NULL
1484 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1485 : SYMBOL_MATCHES_NATURAL_NAME (*top,name)))
1487 if (SYMBOL_DOMAIN (*top) == domain)
1495 /* Can't use a binary search or else we found during the binary search that
1496 we should also do a linear search. */
1498 if (do_linear_search)
1500 for (psym = start; psym < start + length; psym++)
1502 if (domain == SYMBOL_DOMAIN (*psym))
1504 if (linkage_name != NULL
1505 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1506 : SYMBOL_MATCHES_NATURAL_NAME (*psym, name))
1517 /* Look up a type named NAME in the struct_domain. The type returned
1518 must not be opaque -- i.e., must have at least one field
1522 lookup_transparent_type (const char *name)
1524 return current_language->la_lookup_transparent_type (name);
1527 /* The standard implementation of lookup_transparent_type. This code
1528 was modeled on lookup_symbol -- the parts not relevant to looking
1529 up types were just left out. In particular it's assumed here that
1530 types are available in struct_domain and only at file-static or
1534 basic_lookup_transparent_type (const char *name)
1537 struct symtab *s = NULL;
1538 struct partial_symtab *ps;
1539 struct blockvector *bv;
1540 struct objfile *objfile;
1541 struct block *block;
1543 /* Now search all the global symbols. Do the symtab's first, then
1544 check the psymtab's. If a psymtab indicates the existence
1545 of the desired name as a global, then do psymtab-to-symtab
1546 conversion on the fly and return the found symbol. */
1548 ALL_SYMTABS (objfile, s)
1550 bv = BLOCKVECTOR (s);
1551 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1552 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1553 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1555 return SYMBOL_TYPE (sym);
1559 ALL_PSYMTABS (objfile, ps)
1561 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1564 s = PSYMTAB_TO_SYMTAB (ps);
1565 bv = BLOCKVECTOR (s);
1566 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1567 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1570 /* This shouldn't be necessary, but as a last resort
1571 * try looking in the statics even though the psymtab
1572 * claimed the symbol was global. It's possible that
1573 * the psymtab gets it wrong in some cases.
1575 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1576 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1578 error ("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1579 %s may be an inlined function, or may be a template function\n\
1580 (if a template, try specifying an instantiation: %s<type>).",
1581 name, ps->filename, name, name);
1583 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1584 return SYMBOL_TYPE (sym);
1588 /* Now search the static file-level symbols.
1589 Not strictly correct, but more useful than an error.
1590 Do the symtab's first, then
1591 check the psymtab's. If a psymtab indicates the existence
1592 of the desired name as a file-level static, then do psymtab-to-symtab
1593 conversion on the fly and return the found symbol.
1596 ALL_SYMTABS (objfile, s)
1598 bv = BLOCKVECTOR (s);
1599 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1600 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1601 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1603 return SYMBOL_TYPE (sym);
1607 ALL_PSYMTABS (objfile, ps)
1609 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1611 s = PSYMTAB_TO_SYMTAB (ps);
1612 bv = BLOCKVECTOR (s);
1613 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1614 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1617 /* This shouldn't be necessary, but as a last resort
1618 * try looking in the globals even though the psymtab
1619 * claimed the symbol was static. It's possible that
1620 * the psymtab gets it wrong in some cases.
1622 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1623 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1625 error ("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1626 %s may be an inlined function, or may be a template function\n\
1627 (if a template, try specifying an instantiation: %s<type>).",
1628 name, ps->filename, name, name);
1630 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1631 return SYMBOL_TYPE (sym);
1634 return (struct type *) 0;
1638 /* Find the psymtab containing main(). */
1639 /* FIXME: What about languages without main() or specially linked
1640 executables that have no main() ? */
1642 struct partial_symtab *
1643 find_main_psymtab (void)
1645 struct partial_symtab *pst;
1646 struct objfile *objfile;
1648 ALL_PSYMTABS (objfile, pst)
1650 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1658 /* Search BLOCK for symbol NAME in DOMAIN.
1660 Note that if NAME is the demangled form of a C++ symbol, we will fail
1661 to find a match during the binary search of the non-encoded names, but
1662 for now we don't worry about the slight inefficiency of looking for
1663 a match we'll never find, since it will go pretty quick. Once the
1664 binary search terminates, we drop through and do a straight linear
1665 search on the symbols. Each symbol which is marked as being a ObjC/C++
1666 symbol (language_cplus or language_objc set) has both the encoded and
1667 non-encoded names tested for a match.
1669 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1670 particular mangled name.
1674 lookup_block_symbol (const struct block *block, const char *name,
1675 const char *linkage_name,
1676 const domain_enum domain)
1678 struct dict_iterator iter;
1681 if (!BLOCK_FUNCTION (block))
1683 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1685 sym = dict_iter_name_next (name, &iter))
1687 if (SYMBOL_DOMAIN (sym) == domain
1688 && (linkage_name != NULL
1689 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1696 /* Note that parameter symbols do not always show up last in the
1697 list; this loop makes sure to take anything else other than
1698 parameter symbols first; it only uses parameter symbols as a
1699 last resort. Note that this only takes up extra computation
1702 struct symbol *sym_found = NULL;
1704 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1706 sym = dict_iter_name_next (name, &iter))
1708 if (SYMBOL_DOMAIN (sym) == domain
1709 && (linkage_name != NULL
1710 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1713 if (SYMBOL_CLASS (sym) != LOC_ARG &&
1714 SYMBOL_CLASS (sym) != LOC_LOCAL_ARG &&
1715 SYMBOL_CLASS (sym) != LOC_REF_ARG &&
1716 SYMBOL_CLASS (sym) != LOC_REGPARM &&
1717 SYMBOL_CLASS (sym) != LOC_REGPARM_ADDR &&
1718 SYMBOL_CLASS (sym) != LOC_BASEREG_ARG &&
1719 SYMBOL_CLASS (sym) != LOC_COMPUTED_ARG)
1725 return (sym_found); /* Will be NULL if not found. */
1729 /* Find the symtab associated with PC and SECTION. Look through the
1730 psymtabs and read in another symtab if necessary. */
1733 find_pc_sect_symtab (CORE_ADDR pc, asection *section)
1736 struct blockvector *bv;
1737 struct symtab *s = NULL;
1738 struct symtab *best_s = NULL;
1739 struct partial_symtab *ps;
1740 struct objfile *objfile;
1741 CORE_ADDR distance = 0;
1742 struct minimal_symbol *msymbol;
1744 /* If we know that this is not a text address, return failure. This is
1745 necessary because we loop based on the block's high and low code
1746 addresses, which do not include the data ranges, and because
1747 we call find_pc_sect_psymtab which has a similar restriction based
1748 on the partial_symtab's texthigh and textlow. */
1749 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1751 && (msymbol->type == mst_data
1752 || msymbol->type == mst_bss
1753 || msymbol->type == mst_abs
1754 || msymbol->type == mst_file_data
1755 || msymbol->type == mst_file_bss))
1758 /* Search all symtabs for the one whose file contains our address, and which
1759 is the smallest of all the ones containing the address. This is designed
1760 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1761 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1762 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1764 This happens for native ecoff format, where code from included files
1765 gets its own symtab. The symtab for the included file should have
1766 been read in already via the dependency mechanism.
1767 It might be swifter to create several symtabs with the same name
1768 like xcoff does (I'm not sure).
1770 It also happens for objfiles that have their functions reordered.
1771 For these, the symtab we are looking for is not necessarily read in. */
1773 ALL_SYMTABS (objfile, s)
1775 bv = BLOCKVECTOR (s);
1776 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1778 if (BLOCK_START (b) <= pc
1779 && BLOCK_END (b) > pc
1781 || BLOCK_END (b) - BLOCK_START (b) < distance))
1783 /* For an objfile that has its functions reordered,
1784 find_pc_psymtab will find the proper partial symbol table
1785 and we simply return its corresponding symtab. */
1786 /* In order to better support objfiles that contain both
1787 stabs and coff debugging info, we continue on if a psymtab
1789 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
1791 ps = find_pc_sect_psymtab (pc, section);
1793 return PSYMTAB_TO_SYMTAB (ps);
1797 struct dict_iterator iter;
1798 struct symbol *sym = NULL;
1800 ALL_BLOCK_SYMBOLS (b, iter, sym)
1802 fixup_symbol_section (sym, objfile);
1803 if (section == SYMBOL_BFD_SECTION (sym))
1807 continue; /* no symbol in this symtab matches section */
1809 distance = BLOCK_END (b) - BLOCK_START (b);
1818 ps = find_pc_sect_psymtab (pc, section);
1822 /* Might want to error() here (in case symtab is corrupt and
1823 will cause a core dump), but maybe we can successfully
1824 continue, so let's not. */
1826 (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n",
1828 s = PSYMTAB_TO_SYMTAB (ps);
1833 /* Find the symtab associated with PC. Look through the psymtabs and
1834 read in another symtab if necessary. Backward compatibility, no section */
1837 find_pc_symtab (CORE_ADDR pc)
1839 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1843 /* Find the source file and line number for a given PC value and SECTION.
1844 Return a structure containing a symtab pointer, a line number,
1845 and a pc range for the entire source line.
1846 The value's .pc field is NOT the specified pc.
1847 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1848 use the line that ends there. Otherwise, in that case, the line
1849 that begins there is used. */
1851 /* The big complication here is that a line may start in one file, and end just
1852 before the start of another file. This usually occurs when you #include
1853 code in the middle of a subroutine. To properly find the end of a line's PC
1854 range, we must search all symtabs associated with this compilation unit, and
1855 find the one whose first PC is closer than that of the next line in this
1858 /* If it's worth the effort, we could be using a binary search. */
1860 struct symtab_and_line
1861 find_pc_sect_line (CORE_ADDR pc, struct bfd_section *section, int notcurrent)
1864 struct linetable *l;
1867 struct linetable_entry *item;
1868 struct symtab_and_line val;
1869 struct blockvector *bv;
1870 struct minimal_symbol *msymbol;
1871 struct minimal_symbol *mfunsym;
1873 /* Info on best line seen so far, and where it starts, and its file. */
1875 struct linetable_entry *best = NULL;
1876 CORE_ADDR best_end = 0;
1877 struct symtab *best_symtab = 0;
1879 /* Store here the first line number
1880 of a file which contains the line at the smallest pc after PC.
1881 If we don't find a line whose range contains PC,
1882 we will use a line one less than this,
1883 with a range from the start of that file to the first line's pc. */
1884 struct linetable_entry *alt = NULL;
1885 struct symtab *alt_symtab = 0;
1887 /* Info on best line seen in this file. */
1889 struct linetable_entry *prev;
1891 /* If this pc is not from the current frame,
1892 it is the address of the end of a call instruction.
1893 Quite likely that is the start of the following statement.
1894 But what we want is the statement containing the instruction.
1895 Fudge the pc to make sure we get that. */
1897 init_sal (&val); /* initialize to zeroes */
1899 /* It's tempting to assume that, if we can't find debugging info for
1900 any function enclosing PC, that we shouldn't search for line
1901 number info, either. However, GAS can emit line number info for
1902 assembly files --- very helpful when debugging hand-written
1903 assembly code. In such a case, we'd have no debug info for the
1904 function, but we would have line info. */
1909 /* elz: added this because this function returned the wrong
1910 information if the pc belongs to a stub (import/export)
1911 to call a shlib function. This stub would be anywhere between
1912 two functions in the target, and the line info was erroneously
1913 taken to be the one of the line before the pc.
1915 /* RT: Further explanation:
1917 * We have stubs (trampolines) inserted between procedures.
1919 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1920 * exists in the main image.
1922 * In the minimal symbol table, we have a bunch of symbols
1923 * sorted by start address. The stubs are marked as "trampoline",
1924 * the others appear as text. E.g.:
1926 * Minimal symbol table for main image
1927 * main: code for main (text symbol)
1928 * shr1: stub (trampoline symbol)
1929 * foo: code for foo (text symbol)
1931 * Minimal symbol table for "shr1" image:
1933 * shr1: code for shr1 (text symbol)
1936 * So the code below is trying to detect if we are in the stub
1937 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1938 * and if found, do the symbolization from the real-code address
1939 * rather than the stub address.
1941 * Assumptions being made about the minimal symbol table:
1942 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1943 * if we're really in the trampoline. If we're beyond it (say
1944 * we're in "foo" in the above example), it'll have a closer
1945 * symbol (the "foo" text symbol for example) and will not
1946 * return the trampoline.
1947 * 2. lookup_minimal_symbol_text() will find a real text symbol
1948 * corresponding to the trampoline, and whose address will
1949 * be different than the trampoline address. I put in a sanity
1950 * check for the address being the same, to avoid an
1951 * infinite recursion.
1953 msymbol = lookup_minimal_symbol_by_pc (pc);
1954 if (msymbol != NULL)
1955 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1957 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
1959 if (mfunsym == NULL)
1960 /* I eliminated this warning since it is coming out
1961 * in the following situation:
1962 * gdb shmain // test program with shared libraries
1963 * (gdb) break shr1 // function in shared lib
1964 * Warning: In stub for ...
1965 * In the above situation, the shared lib is not loaded yet,
1966 * so of course we can't find the real func/line info,
1967 * but the "break" still works, and the warning is annoying.
1968 * So I commented out the warning. RT */
1969 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
1971 else if (SYMBOL_VALUE (mfunsym) == SYMBOL_VALUE (msymbol))
1972 /* Avoid infinite recursion */
1973 /* See above comment about why warning is commented out */
1974 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
1977 return find_pc_line (SYMBOL_VALUE (mfunsym), 0);
1981 s = find_pc_sect_symtab (pc, section);
1984 /* if no symbol information, return previous pc */
1991 bv = BLOCKVECTOR (s);
1993 /* Look at all the symtabs that share this blockvector.
1994 They all have the same apriori range, that we found was right;
1995 but they have different line tables. */
1997 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
1999 /* Find the best line in this symtab. */
2006 /* I think len can be zero if the symtab lacks line numbers
2007 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2008 I'm not sure which, and maybe it depends on the symbol
2014 item = l->item; /* Get first line info */
2016 /* Is this file's first line closer than the first lines of other files?
2017 If so, record this file, and its first line, as best alternate. */
2018 if (item->pc > pc && (!alt || item->pc < alt->pc))
2024 for (i = 0; i < len; i++, item++)
2026 /* Leave prev pointing to the linetable entry for the last line
2027 that started at or before PC. */
2034 /* At this point, prev points at the line whose start addr is <= pc, and
2035 item points at the next line. If we ran off the end of the linetable
2036 (pc >= start of the last line), then prev == item. If pc < start of
2037 the first line, prev will not be set. */
2039 /* Is this file's best line closer than the best in the other files?
2040 If so, record this file, and its best line, as best so far. Don't
2041 save prev if it represents the end of a function (i.e. line number
2042 0) instead of a real line. */
2044 if (prev && prev->line && (!best || prev->pc > best->pc))
2049 /* Discard BEST_END if it's before the PC of the current BEST. */
2050 if (best_end <= best->pc)
2054 /* If another line (denoted by ITEM) is in the linetable and its
2055 PC is after BEST's PC, but before the current BEST_END, then
2056 use ITEM's PC as the new best_end. */
2057 if (best && i < len && item->pc > best->pc
2058 && (best_end == 0 || best_end > item->pc))
2059 best_end = item->pc;
2065 { /* If we didn't find any line # info, just
2071 val.symtab = alt_symtab;
2072 val.line = alt->line - 1;
2074 /* Don't return line 0, that means that we didn't find the line. */
2078 val.pc = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2082 else if (best->line == 0)
2084 /* If our best fit is in a range of PC's for which no line
2085 number info is available (line number is zero) then we didn't
2086 find any valid line information. */
2091 val.symtab = best_symtab;
2092 val.line = best->line;
2094 if (best_end && (!alt || best_end < alt->pc))
2099 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2101 val.section = section;
2105 /* Backward compatibility (no section) */
2107 struct symtab_and_line
2108 find_pc_line (CORE_ADDR pc, int notcurrent)
2112 section = find_pc_overlay (pc);
2113 if (pc_in_unmapped_range (pc, section))
2114 pc = overlay_mapped_address (pc, section);
2115 return find_pc_sect_line (pc, section, notcurrent);
2118 /* Find line number LINE in any symtab whose name is the same as
2121 If found, return the symtab that contains the linetable in which it was
2122 found, set *INDEX to the index in the linetable of the best entry
2123 found, and set *EXACT_MATCH nonzero if the value returned is an
2126 If not found, return NULL. */
2129 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2133 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2137 struct linetable *best_linetable;
2138 struct symtab *best_symtab;
2140 /* First try looking it up in the given symtab. */
2141 best_linetable = LINETABLE (symtab);
2142 best_symtab = symtab;
2143 best_index = find_line_common (best_linetable, line, &exact);
2144 if (best_index < 0 || !exact)
2146 /* Didn't find an exact match. So we better keep looking for
2147 another symtab with the same name. In the case of xcoff,
2148 multiple csects for one source file (produced by IBM's FORTRAN
2149 compiler) produce multiple symtabs (this is unavoidable
2150 assuming csects can be at arbitrary places in memory and that
2151 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2153 /* BEST is the smallest linenumber > LINE so far seen,
2154 or 0 if none has been seen so far.
2155 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2158 struct objfile *objfile;
2161 if (best_index >= 0)
2162 best = best_linetable->item[best_index].line;
2166 ALL_SYMTABS (objfile, s)
2168 struct linetable *l;
2171 if (strcmp (symtab->filename, s->filename) != 0)
2174 ind = find_line_common (l, line, &exact);
2184 if (best == 0 || l->item[ind].line < best)
2186 best = l->item[ind].line;
2199 *index = best_index;
2201 *exact_match = exact;
2206 /* Set the PC value for a given source file and line number and return true.
2207 Returns zero for invalid line number (and sets the PC to 0).
2208 The source file is specified with a struct symtab. */
2211 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2213 struct linetable *l;
2220 symtab = find_line_symtab (symtab, line, &ind, NULL);
2223 l = LINETABLE (symtab);
2224 *pc = l->item[ind].pc;
2231 /* Find the range of pc values in a line.
2232 Store the starting pc of the line into *STARTPTR
2233 and the ending pc (start of next line) into *ENDPTR.
2234 Returns 1 to indicate success.
2235 Returns 0 if could not find the specified line. */
2238 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2241 CORE_ADDR startaddr;
2242 struct symtab_and_line found_sal;
2245 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2248 /* This whole function is based on address. For example, if line 10 has
2249 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2250 "info line *0x123" should say the line goes from 0x100 to 0x200
2251 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2252 This also insures that we never give a range like "starts at 0x134
2253 and ends at 0x12c". */
2255 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2256 if (found_sal.line != sal.line)
2258 /* The specified line (sal) has zero bytes. */
2259 *startptr = found_sal.pc;
2260 *endptr = found_sal.pc;
2264 *startptr = found_sal.pc;
2265 *endptr = found_sal.end;
2270 /* Given a line table and a line number, return the index into the line
2271 table for the pc of the nearest line whose number is >= the specified one.
2272 Return -1 if none is found. The value is >= 0 if it is an index.
2274 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2277 find_line_common (struct linetable *l, int lineno,
2283 /* BEST is the smallest linenumber > LINENO so far seen,
2284 or 0 if none has been seen so far.
2285 BEST_INDEX identifies the item for it. */
2287 int best_index = -1;
2296 for (i = 0; i < len; i++)
2298 struct linetable_entry *item = &(l->item[i]);
2300 if (item->line == lineno)
2302 /* Return the first (lowest address) entry which matches. */
2307 if (item->line > lineno && (best == 0 || item->line < best))
2314 /* If we got here, we didn't get an exact match. */
2321 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2323 struct symtab_and_line sal;
2324 sal = find_pc_line (pc, 0);
2327 return sal.symtab != 0;
2330 /* Given a function symbol SYM, find the symtab and line for the start
2332 If the argument FUNFIRSTLINE is nonzero, we want the first line
2333 of real code inside the function. */
2335 struct symtab_and_line
2336 find_function_start_sal (struct symbol *sym, int funfirstline)
2339 struct symtab_and_line sal;
2341 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2342 fixup_symbol_section (sym, NULL);
2344 { /* skip "first line" of function (which is actually its prologue) */
2345 asection *section = SYMBOL_BFD_SECTION (sym);
2346 /* If function is in an unmapped overlay, use its unmapped LMA
2347 address, so that SKIP_PROLOGUE has something unique to work on */
2348 if (section_is_overlay (section) &&
2349 !section_is_mapped (section))
2350 pc = overlay_unmapped_address (pc, section);
2352 pc += FUNCTION_START_OFFSET;
2353 pc = SKIP_PROLOGUE (pc);
2355 /* For overlays, map pc back into its mapped VMA range */
2356 pc = overlay_mapped_address (pc, section);
2358 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2360 /* Check if SKIP_PROLOGUE left us in mid-line, and the next
2361 line is still part of the same function. */
2363 && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= sal.end
2364 && sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2366 /* First pc of next line */
2368 /* Recalculate the line number (might not be N+1). */
2369 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2376 /* If P is of the form "operator[ \t]+..." where `...' is
2377 some legitimate operator text, return a pointer to the
2378 beginning of the substring of the operator text.
2379 Otherwise, return "". */
2381 operator_chars (char *p, char **end)
2384 if (strncmp (p, "operator", 8))
2388 /* Don't get faked out by `operator' being part of a longer
2390 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2393 /* Allow some whitespace between `operator' and the operator symbol. */
2394 while (*p == ' ' || *p == '\t')
2397 /* Recognize 'operator TYPENAME'. */
2399 if (isalpha (*p) || *p == '_' || *p == '$')
2402 while (isalnum (*q) || *q == '_' || *q == '$')
2411 case '\\': /* regexp quoting */
2414 if (p[2] == '=') /* 'operator\*=' */
2416 else /* 'operator\*' */
2420 else if (p[1] == '[')
2423 error ("mismatched quoting on brackets, try 'operator\\[\\]'");
2424 else if (p[2] == '\\' && p[3] == ']')
2426 *end = p + 4; /* 'operator\[\]' */
2430 error ("nothing is allowed between '[' and ']'");
2434 /* Gratuitous qoute: skip it and move on. */
2456 if (p[0] == '-' && p[1] == '>')
2458 /* Struct pointer member operator 'operator->'. */
2461 *end = p + 3; /* 'operator->*' */
2464 else if (p[2] == '\\')
2466 *end = p + 4; /* Hopefully 'operator->\*' */
2471 *end = p + 2; /* 'operator->' */
2475 if (p[1] == '=' || p[1] == p[0])
2486 error ("`operator ()' must be specified without whitespace in `()'");
2491 error ("`operator ?:' must be specified without whitespace in `?:'");
2496 error ("`operator []' must be specified without whitespace in `[]'");
2500 error ("`operator %s' not supported", p);
2509 /* If FILE is not already in the table of files, return zero;
2510 otherwise return non-zero. Optionally add FILE to the table if ADD
2511 is non-zero. If *FIRST is non-zero, forget the old table
2514 filename_seen (const char *file, int add, int *first)
2516 /* Table of files seen so far. */
2517 static const char **tab = NULL;
2518 /* Allocated size of tab in elements.
2519 Start with one 256-byte block (when using GNU malloc.c).
2520 24 is the malloc overhead when range checking is in effect. */
2521 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2522 /* Current size of tab in elements. */
2523 static int tab_cur_size;
2529 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2533 /* Is FILE in tab? */
2534 for (p = tab; p < tab + tab_cur_size; p++)
2535 if (strcmp (*p, file) == 0)
2538 /* No; maybe add it to tab. */
2541 if (tab_cur_size == tab_alloc_size)
2543 tab_alloc_size *= 2;
2544 tab = (const char **) xrealloc ((char *) tab,
2545 tab_alloc_size * sizeof (*tab));
2547 tab[tab_cur_size++] = file;
2553 /* Slave routine for sources_info. Force line breaks at ,'s.
2554 NAME is the name to print and *FIRST is nonzero if this is the first
2555 name printed. Set *FIRST to zero. */
2557 output_source_filename (char *name, int *first)
2559 /* Since a single source file can result in several partial symbol
2560 tables, we need to avoid printing it more than once. Note: if
2561 some of the psymtabs are read in and some are not, it gets
2562 printed both under "Source files for which symbols have been
2563 read" and "Source files for which symbols will be read in on
2564 demand". I consider this a reasonable way to deal with the
2565 situation. I'm not sure whether this can also happen for
2566 symtabs; it doesn't hurt to check. */
2568 /* Was NAME already seen? */
2569 if (filename_seen (name, 1, first))
2571 /* Yes; don't print it again. */
2574 /* No; print it and reset *FIRST. */
2581 printf_filtered (", ");
2585 fputs_filtered (name, gdb_stdout);
2589 sources_info (char *ignore, int from_tty)
2592 struct partial_symtab *ps;
2593 struct objfile *objfile;
2596 if (!have_full_symbols () && !have_partial_symbols ())
2598 error ("No symbol table is loaded. Use the \"file\" command.");
2601 printf_filtered ("Source files for which symbols have been read in:\n\n");
2604 ALL_SYMTABS (objfile, s)
2606 output_source_filename (s->filename, &first);
2608 printf_filtered ("\n\n");
2610 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2613 ALL_PSYMTABS (objfile, ps)
2617 output_source_filename (ps->filename, &first);
2620 printf_filtered ("\n");
2624 file_matches (char *file, char *files[], int nfiles)
2628 if (file != NULL && nfiles != 0)
2630 for (i = 0; i < nfiles; i++)
2632 if (strcmp (files[i], lbasename (file)) == 0)
2636 else if (nfiles == 0)
2641 /* Free any memory associated with a search. */
2643 free_search_symbols (struct symbol_search *symbols)
2645 struct symbol_search *p;
2646 struct symbol_search *next;
2648 for (p = symbols; p != NULL; p = next)
2656 do_free_search_symbols_cleanup (void *symbols)
2658 free_search_symbols (symbols);
2662 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2664 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2667 /* Helper function for sort_search_symbols and qsort. Can only
2668 sort symbols, not minimal symbols. */
2670 compare_search_syms (const void *sa, const void *sb)
2672 struct symbol_search **sym_a = (struct symbol_search **) sa;
2673 struct symbol_search **sym_b = (struct symbol_search **) sb;
2675 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2676 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2679 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2680 prevtail where it is, but update its next pointer to point to
2681 the first of the sorted symbols. */
2682 static struct symbol_search *
2683 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2685 struct symbol_search **symbols, *symp, *old_next;
2688 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2690 symp = prevtail->next;
2691 for (i = 0; i < nfound; i++)
2696 /* Generally NULL. */
2699 qsort (symbols, nfound, sizeof (struct symbol_search *),
2700 compare_search_syms);
2703 for (i = 0; i < nfound; i++)
2705 symp->next = symbols[i];
2708 symp->next = old_next;
2714 /* Search the symbol table for matches to the regular expression REGEXP,
2715 returning the results in *MATCHES.
2717 Only symbols of KIND are searched:
2718 FUNCTIONS_DOMAIN - search all functions
2719 TYPES_DOMAIN - search all type names
2720 METHODS_DOMAIN - search all methods NOT IMPLEMENTED
2721 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2722 and constants (enums)
2724 free_search_symbols should be called when *MATCHES is no longer needed.
2726 The results are sorted locally; each symtab's global and static blocks are
2727 separately alphabetized.
2730 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2731 struct symbol_search **matches)
2734 struct partial_symtab *ps;
2735 struct blockvector *bv;
2736 struct blockvector *prev_bv = 0;
2739 struct dict_iterator iter;
2741 struct partial_symbol **psym;
2742 struct objfile *objfile;
2743 struct minimal_symbol *msymbol;
2746 static enum minimal_symbol_type types[]
2748 {mst_data, mst_text, mst_abs, mst_unknown};
2749 static enum minimal_symbol_type types2[]
2751 {mst_bss, mst_file_text, mst_abs, mst_unknown};
2752 static enum minimal_symbol_type types3[]
2754 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
2755 static enum minimal_symbol_type types4[]
2757 {mst_file_bss, mst_text, mst_abs, mst_unknown};
2758 enum minimal_symbol_type ourtype;
2759 enum minimal_symbol_type ourtype2;
2760 enum minimal_symbol_type ourtype3;
2761 enum minimal_symbol_type ourtype4;
2762 struct symbol_search *sr;
2763 struct symbol_search *psr;
2764 struct symbol_search *tail;
2765 struct cleanup *old_chain = NULL;
2767 if (kind < VARIABLES_DOMAIN)
2768 error ("must search on specific domain");
2770 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
2771 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
2772 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
2773 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
2775 sr = *matches = NULL;
2780 /* Make sure spacing is right for C++ operators.
2781 This is just a courtesy to make the matching less sensitive
2782 to how many spaces the user leaves between 'operator'
2783 and <TYPENAME> or <OPERATOR>. */
2785 char *opname = operator_chars (regexp, &opend);
2788 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
2789 if (isalpha (*opname) || *opname == '_' || *opname == '$')
2791 /* There should 1 space between 'operator' and 'TYPENAME'. */
2792 if (opname[-1] != ' ' || opname[-2] == ' ')
2797 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
2798 if (opname[-1] == ' ')
2801 /* If wrong number of spaces, fix it. */
2804 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
2805 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
2810 if (0 != (val = re_comp (regexp)))
2811 error ("Invalid regexp (%s): %s", val, regexp);
2814 /* Search through the partial symtabs *first* for all symbols
2815 matching the regexp. That way we don't have to reproduce all of
2816 the machinery below. */
2818 ALL_PSYMTABS (objfile, ps)
2820 struct partial_symbol **bound, **gbound, **sbound;
2826 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
2827 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
2830 /* Go through all of the symbols stored in a partial
2831 symtab in one loop. */
2832 psym = objfile->global_psymbols.list + ps->globals_offset;
2837 if (bound == gbound && ps->n_static_syms != 0)
2839 psym = objfile->static_psymbols.list + ps->statics_offset;
2850 /* If it would match (logic taken from loop below)
2851 load the file and go on to the next one */
2852 if (file_matches (ps->filename, files, nfiles)
2854 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
2855 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
2856 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
2857 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
2858 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF)
2859 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK))))
2861 PSYMTAB_TO_SYMTAB (ps);
2869 /* Here, we search through the minimal symbol tables for functions
2870 and variables that match, and force their symbols to be read.
2871 This is in particular necessary for demangled variable names,
2872 which are no longer put into the partial symbol tables.
2873 The symbol will then be found during the scan of symtabs below.
2875 For functions, find_pc_symtab should succeed if we have debug info
2876 for the function, for variables we have to call lookup_symbol
2877 to determine if the variable has debug info.
2878 If the lookup fails, set found_misc so that we will rescan to print
2879 any matching symbols without debug info.
2882 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
2884 ALL_MSYMBOLS (objfile, msymbol)
2886 if (MSYMBOL_TYPE (msymbol) == ourtype ||
2887 MSYMBOL_TYPE (msymbol) == ourtype2 ||
2888 MSYMBOL_TYPE (msymbol) == ourtype3 ||
2889 MSYMBOL_TYPE (msymbol) == ourtype4)
2892 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
2894 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
2896 /* FIXME: carlton/2003-02-04: Given that the
2897 semantics of lookup_symbol keeps on changing
2898 slightly, it would be a nice idea if we had a
2899 function lookup_symbol_minsym that found the
2900 symbol associated to a given minimal symbol (if
2902 if (kind == FUNCTIONS_DOMAIN
2903 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
2904 (struct block *) NULL,
2906 0, (struct symtab **) NULL) == NULL)
2914 ALL_SYMTABS (objfile, s)
2916 bv = BLOCKVECTOR (s);
2917 /* Often many files share a blockvector.
2918 Scan each blockvector only once so that
2919 we don't get every symbol many times.
2920 It happens that the first symtab in the list
2921 for any given blockvector is the main file. */
2923 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
2925 struct symbol_search *prevtail = tail;
2927 b = BLOCKVECTOR_BLOCK (bv, i);
2928 ALL_BLOCK_SYMBOLS (b, iter, sym)
2931 if (file_matches (s->filename, files, nfiles)
2933 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
2934 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
2935 && SYMBOL_CLASS (sym) != LOC_BLOCK
2936 && SYMBOL_CLASS (sym) != LOC_CONST)
2937 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
2938 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
2939 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK))))
2942 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
2946 psr->msymbol = NULL;
2958 if (prevtail == NULL)
2960 struct symbol_search dummy;
2963 tail = sort_search_symbols (&dummy, nfound);
2966 old_chain = make_cleanup_free_search_symbols (sr);
2969 tail = sort_search_symbols (prevtail, nfound);
2975 /* If there are no eyes, avoid all contact. I mean, if there are
2976 no debug symbols, then print directly from the msymbol_vector. */
2978 if (found_misc || kind != FUNCTIONS_DOMAIN)
2980 ALL_MSYMBOLS (objfile, msymbol)
2982 if (MSYMBOL_TYPE (msymbol) == ourtype ||
2983 MSYMBOL_TYPE (msymbol) == ourtype2 ||
2984 MSYMBOL_TYPE (msymbol) == ourtype3 ||
2985 MSYMBOL_TYPE (msymbol) == ourtype4)
2988 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
2990 /* Functions: Look up by address. */
2991 if (kind != FUNCTIONS_DOMAIN ||
2992 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
2994 /* Variables/Absolutes: Look up by name */
2995 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
2996 (struct block *) NULL, VAR_DOMAIN,
2997 0, (struct symtab **) NULL) == NULL)
3000 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3002 psr->msymbol = msymbol;
3009 old_chain = make_cleanup_free_search_symbols (sr);
3023 discard_cleanups (old_chain);
3026 /* Helper function for symtab_symbol_info, this function uses
3027 the data returned from search_symbols() to print information
3028 regarding the match to gdb_stdout.
3031 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3032 int block, char *last)
3034 if (last == NULL || strcmp (last, s->filename) != 0)
3036 fputs_filtered ("\nFile ", gdb_stdout);
3037 fputs_filtered (s->filename, gdb_stdout);
3038 fputs_filtered (":\n", gdb_stdout);
3041 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3042 printf_filtered ("static ");
3044 /* Typedef that is not a C++ class */
3045 if (kind == TYPES_DOMAIN
3046 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3047 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3048 /* variable, func, or typedef-that-is-c++-class */
3049 else if (kind < TYPES_DOMAIN ||
3050 (kind == TYPES_DOMAIN &&
3051 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3053 type_print (SYMBOL_TYPE (sym),
3054 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3055 ? "" : SYMBOL_PRINT_NAME (sym)),
3058 printf_filtered (";\n");
3062 /* This help function for symtab_symbol_info() prints information
3063 for non-debugging symbols to gdb_stdout.
3066 print_msymbol_info (struct minimal_symbol *msymbol)
3070 if (TARGET_ADDR_BIT <= 32)
3071 tmp = local_hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3072 & (CORE_ADDR) 0xffffffff,
3075 tmp = local_hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3077 printf_filtered ("%s %s\n",
3078 tmp, SYMBOL_PRINT_NAME (msymbol));
3081 /* This is the guts of the commands "info functions", "info types", and
3082 "info variables". It calls search_symbols to find all matches and then
3083 print_[m]symbol_info to print out some useful information about the
3087 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3089 static char *classnames[]
3091 {"variable", "function", "type", "method"};
3092 struct symbol_search *symbols;
3093 struct symbol_search *p;
3094 struct cleanup *old_chain;
3095 char *last_filename = NULL;
3098 /* must make sure that if we're interrupted, symbols gets freed */
3099 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3100 old_chain = make_cleanup_free_search_symbols (symbols);
3102 printf_filtered (regexp
3103 ? "All %ss matching regular expression \"%s\":\n"
3104 : "All defined %ss:\n",
3105 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3107 for (p = symbols; p != NULL; p = p->next)
3111 if (p->msymbol != NULL)
3115 printf_filtered ("\nNon-debugging symbols:\n");
3118 print_msymbol_info (p->msymbol);
3122 print_symbol_info (kind,
3127 last_filename = p->symtab->filename;
3131 do_cleanups (old_chain);
3135 variables_info (char *regexp, int from_tty)
3137 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3141 functions_info (char *regexp, int from_tty)
3143 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3148 types_info (char *regexp, int from_tty)
3150 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3153 /* Breakpoint all functions matching regular expression. */
3156 rbreak_command_wrapper (char *regexp, int from_tty)
3158 rbreak_command (regexp, from_tty);
3162 rbreak_command (char *regexp, int from_tty)
3164 struct symbol_search *ss;
3165 struct symbol_search *p;
3166 struct cleanup *old_chain;
3168 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3169 old_chain = make_cleanup_free_search_symbols (ss);
3171 for (p = ss; p != NULL; p = p->next)
3173 if (p->msymbol == NULL)
3175 char *string = alloca (strlen (p->symtab->filename)
3176 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3178 strcpy (string, p->symtab->filename);
3179 strcat (string, ":'");
3180 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3181 strcat (string, "'");
3182 break_command (string, from_tty);
3183 print_symbol_info (FUNCTIONS_DOMAIN,
3187 p->symtab->filename);
3191 break_command (SYMBOL_LINKAGE_NAME (p->msymbol), from_tty);
3192 printf_filtered ("<function, no debug info> %s;\n",
3193 SYMBOL_PRINT_NAME (p->msymbol));
3197 do_cleanups (old_chain);
3201 /* Helper routine for make_symbol_completion_list. */
3203 static int return_val_size;
3204 static int return_val_index;
3205 static char **return_val;
3207 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3208 completion_list_add_name \
3209 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3211 /* Test to see if the symbol specified by SYMNAME (which is already
3212 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3213 characters. If so, add it to the current completion list. */
3216 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3217 char *text, char *word)
3222 /* clip symbols that cannot match */
3224 if (strncmp (symname, sym_text, sym_text_len) != 0)
3229 /* We have a match for a completion, so add SYMNAME to the current list
3230 of matches. Note that the name is moved to freshly malloc'd space. */
3234 if (word == sym_text)
3236 new = xmalloc (strlen (symname) + 5);
3237 strcpy (new, symname);
3239 else if (word > sym_text)
3241 /* Return some portion of symname. */
3242 new = xmalloc (strlen (symname) + 5);
3243 strcpy (new, symname + (word - sym_text));
3247 /* Return some of SYM_TEXT plus symname. */
3248 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3249 strncpy (new, word, sym_text - word);
3250 new[sym_text - word] = '\0';
3251 strcat (new, symname);
3254 if (return_val_index + 3 > return_val_size)
3256 newsize = (return_val_size *= 2) * sizeof (char *);
3257 return_val = (char **) xrealloc ((char *) return_val, newsize);
3259 return_val[return_val_index++] = new;
3260 return_val[return_val_index] = NULL;
3264 /* ObjC: In case we are completing on a selector, look as the msymbol
3265 again and feed all the selectors into the mill. */
3268 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3269 int sym_text_len, char *text, char *word)
3271 static char *tmp = NULL;
3272 static unsigned int tmplen = 0;
3274 char *method, *category, *selector;
3277 method = SYMBOL_NATURAL_NAME (msymbol);
3279 /* Is it a method? */
3280 if ((method[0] != '-') && (method[0] != '+'))
3283 if (sym_text[0] == '[')
3284 /* Complete on shortened method method. */
3285 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3287 while ((strlen (method) + 1) >= tmplen)
3293 tmp = xrealloc (tmp, tmplen);
3295 selector = strchr (method, ' ');
3296 if (selector != NULL)
3299 category = strchr (method, '(');
3301 if ((category != NULL) && (selector != NULL))
3303 memcpy (tmp, method, (category - method));
3304 tmp[category - method] = ' ';
3305 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3306 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3307 if (sym_text[0] == '[')
3308 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3311 if (selector != NULL)
3313 /* Complete on selector only. */
3314 strcpy (tmp, selector);
3315 tmp2 = strchr (tmp, ']');
3319 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3323 /* Break the non-quoted text based on the characters which are in
3324 symbols. FIXME: This should probably be language-specific. */
3327 language_search_unquoted_string (char *text, char *p)
3329 for (; p > text; --p)
3331 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3335 if ((current_language->la_language == language_objc))
3337 if (p[-1] == ':') /* might be part of a method name */
3339 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3340 p -= 2; /* beginning of a method name */
3341 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3342 { /* might be part of a method name */
3345 /* Seeing a ' ' or a '(' is not conclusive evidence
3346 that we are in the middle of a method name. However,
3347 finding "-[" or "+[" should be pretty un-ambiguous.
3348 Unfortunately we have to find it now to decide. */
3351 if (isalnum (t[-1]) || t[-1] == '_' ||
3352 t[-1] == ' ' || t[-1] == ':' ||
3353 t[-1] == '(' || t[-1] == ')')
3358 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3359 p = t - 2; /* method name detected */
3360 /* else we leave with p unchanged */
3370 /* Return a NULL terminated array of all symbols (regardless of class)
3371 which begin by matching TEXT. If the answer is no symbols, then
3372 the return value is an array which contains only a NULL pointer.
3374 Problem: All of the symbols have to be copied because readline frees them.
3375 I'm not going to worry about this; hopefully there won't be that many. */
3378 make_symbol_completion_list (char *text, char *word)
3382 struct partial_symtab *ps;
3383 struct minimal_symbol *msymbol;
3384 struct objfile *objfile;
3385 struct block *b, *surrounding_static_block = 0;
3386 struct dict_iterator iter;
3388 struct partial_symbol **psym;
3389 /* The symbol we are completing on. Points in same buffer as text. */
3391 /* Length of sym_text. */
3394 /* Now look for the symbol we are supposed to complete on.
3395 FIXME: This should be language-specific. */
3399 char *quote_pos = NULL;
3401 /* First see if this is a quoted string. */
3403 for (p = text; *p != '\0'; ++p)
3405 if (quote_found != '\0')
3407 if (*p == quote_found)
3408 /* Found close quote. */
3410 else if (*p == '\\' && p[1] == quote_found)
3411 /* A backslash followed by the quote character
3412 doesn't end the string. */
3415 else if (*p == '\'' || *p == '"')
3421 if (quote_found == '\'')
3422 /* A string within single quotes can be a symbol, so complete on it. */
3423 sym_text = quote_pos + 1;
3424 else if (quote_found == '"')
3425 /* A double-quoted string is never a symbol, nor does it make sense
3426 to complete it any other way. */
3428 return_val = (char **) xmalloc (sizeof (char *));
3429 return_val[0] = NULL;
3434 /* It is not a quoted string. Break it based on the characters
3435 which are in symbols. */
3438 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3447 sym_text_len = strlen (sym_text);
3449 return_val_size = 100;
3450 return_val_index = 0;
3451 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3452 return_val[0] = NULL;
3454 /* Look through the partial symtabs for all symbols which begin
3455 by matching SYM_TEXT. Add each one that you find to the list. */
3457 ALL_PSYMTABS (objfile, ps)
3459 /* If the psymtab's been read in we'll get it when we search
3460 through the blockvector. */
3464 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3465 psym < (objfile->global_psymbols.list + ps->globals_offset
3466 + ps->n_global_syms);
3469 /* If interrupted, then quit. */
3471 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3474 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3475 psym < (objfile->static_psymbols.list + ps->statics_offset
3476 + ps->n_static_syms);
3480 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3484 /* At this point scan through the misc symbol vectors and add each
3485 symbol you find to the list. Eventually we want to ignore
3486 anything that isn't a text symbol (everything else will be
3487 handled by the psymtab code above). */
3489 ALL_MSYMBOLS (objfile, msymbol)
3492 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3494 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3497 /* Search upwards from currently selected frame (so that we can
3498 complete on local vars. */
3500 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
3502 if (!BLOCK_SUPERBLOCK (b))
3504 surrounding_static_block = b; /* For elmin of dups */
3507 /* Also catch fields of types defined in this places which match our
3508 text string. Only complete on types visible from current context. */
3510 ALL_BLOCK_SYMBOLS (b, iter, sym)
3513 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3514 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3516 struct type *t = SYMBOL_TYPE (sym);
3517 enum type_code c = TYPE_CODE (t);
3519 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3521 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3523 if (TYPE_FIELD_NAME (t, j))
3525 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3526 sym_text, sym_text_len, text, word);
3534 /* Go through the symtabs and check the externs and statics for
3535 symbols which match. */
3537 ALL_SYMTABS (objfile, s)
3540 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3541 ALL_BLOCK_SYMBOLS (b, iter, sym)
3543 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3547 ALL_SYMTABS (objfile, s)
3550 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3551 /* Don't do this block twice. */
3552 if (b == surrounding_static_block)
3554 ALL_BLOCK_SYMBOLS (b, iter, sym)
3556 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3560 return (return_val);
3563 /* Like make_symbol_completion_list, but returns a list of symbols
3564 defined in a source file FILE. */
3567 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3572 struct dict_iterator iter;
3573 /* The symbol we are completing on. Points in same buffer as text. */
3575 /* Length of sym_text. */
3578 /* Now look for the symbol we are supposed to complete on.
3579 FIXME: This should be language-specific. */
3583 char *quote_pos = NULL;
3585 /* First see if this is a quoted string. */
3587 for (p = text; *p != '\0'; ++p)
3589 if (quote_found != '\0')
3591 if (*p == quote_found)
3592 /* Found close quote. */
3594 else if (*p == '\\' && p[1] == quote_found)
3595 /* A backslash followed by the quote character
3596 doesn't end the string. */
3599 else if (*p == '\'' || *p == '"')
3605 if (quote_found == '\'')
3606 /* A string within single quotes can be a symbol, so complete on it. */
3607 sym_text = quote_pos + 1;
3608 else if (quote_found == '"')
3609 /* A double-quoted string is never a symbol, nor does it make sense
3610 to complete it any other way. */
3612 return_val = (char **) xmalloc (sizeof (char *));
3613 return_val[0] = NULL;
3618 /* Not a quoted string. */
3619 sym_text = language_search_unquoted_string (text, p);
3623 sym_text_len = strlen (sym_text);
3625 return_val_size = 10;
3626 return_val_index = 0;
3627 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3628 return_val[0] = NULL;
3630 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3632 s = lookup_symtab (srcfile);
3635 /* Maybe they typed the file with leading directories, while the
3636 symbol tables record only its basename. */
3637 const char *tail = lbasename (srcfile);
3640 s = lookup_symtab (tail);
3643 /* If we have no symtab for that file, return an empty list. */
3645 return (return_val);
3647 /* Go through this symtab and check the externs and statics for
3648 symbols which match. */
3650 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3651 ALL_BLOCK_SYMBOLS (b, iter, sym)
3653 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3656 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3657 ALL_BLOCK_SYMBOLS (b, iter, sym)
3659 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3662 return (return_val);
3665 /* A helper function for make_source_files_completion_list. It adds
3666 another file name to a list of possible completions, growing the
3667 list as necessary. */
3670 add_filename_to_list (const char *fname, char *text, char *word,
3671 char ***list, int *list_used, int *list_alloced)
3674 size_t fnlen = strlen (fname);
3676 if (*list_used + 1 >= *list_alloced)
3679 *list = (char **) xrealloc ((char *) *list,
3680 *list_alloced * sizeof (char *));
3685 /* Return exactly fname. */
3686 new = xmalloc (fnlen + 5);
3687 strcpy (new, fname);
3689 else if (word > text)
3691 /* Return some portion of fname. */
3692 new = xmalloc (fnlen + 5);
3693 strcpy (new, fname + (word - text));
3697 /* Return some of TEXT plus fname. */
3698 new = xmalloc (fnlen + (text - word) + 5);
3699 strncpy (new, word, text - word);
3700 new[text - word] = '\0';
3701 strcat (new, fname);
3703 (*list)[*list_used] = new;
3704 (*list)[++*list_used] = NULL;
3708 not_interesting_fname (const char *fname)
3710 static const char *illegal_aliens[] = {
3711 "_globals_", /* inserted by coff_symtab_read */
3716 for (i = 0; illegal_aliens[i]; i++)
3718 if (strcmp (fname, illegal_aliens[i]) == 0)
3724 /* Return a NULL terminated array of all source files whose names
3725 begin with matching TEXT. The file names are looked up in the
3726 symbol tables of this program. If the answer is no matchess, then
3727 the return value is an array which contains only a NULL pointer. */
3730 make_source_files_completion_list (char *text, char *word)
3733 struct partial_symtab *ps;
3734 struct objfile *objfile;
3736 int list_alloced = 1;
3738 size_t text_len = strlen (text);
3739 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
3740 const char *base_name;
3744 if (!have_full_symbols () && !have_partial_symbols ())
3747 ALL_SYMTABS (objfile, s)
3749 if (not_interesting_fname (s->filename))
3751 if (!filename_seen (s->filename, 1, &first)
3752 #if HAVE_DOS_BASED_FILE_SYSTEM
3753 && strncasecmp (s->filename, text, text_len) == 0
3755 && strncmp (s->filename, text, text_len) == 0
3759 /* This file matches for a completion; add it to the current
3761 add_filename_to_list (s->filename, text, word,
3762 &list, &list_used, &list_alloced);
3766 /* NOTE: We allow the user to type a base name when the
3767 debug info records leading directories, but not the other
3768 way around. This is what subroutines of breakpoint
3769 command do when they parse file names. */
3770 base_name = lbasename (s->filename);
3771 if (base_name != s->filename
3772 && !filename_seen (base_name, 1, &first)
3773 #if HAVE_DOS_BASED_FILE_SYSTEM
3774 && strncasecmp (base_name, text, text_len) == 0
3776 && strncmp (base_name, text, text_len) == 0
3779 add_filename_to_list (base_name, text, word,
3780 &list, &list_used, &list_alloced);
3784 ALL_PSYMTABS (objfile, ps)
3786 if (not_interesting_fname (ps->filename))
3790 if (!filename_seen (ps->filename, 1, &first)
3791 #if HAVE_DOS_BASED_FILE_SYSTEM
3792 && strncasecmp (ps->filename, text, text_len) == 0
3794 && strncmp (ps->filename, text, text_len) == 0
3798 /* This file matches for a completion; add it to the
3799 current list of matches. */
3800 add_filename_to_list (ps->filename, text, word,
3801 &list, &list_used, &list_alloced);
3806 base_name = lbasename (ps->filename);
3807 if (base_name != ps->filename
3808 && !filename_seen (base_name, 1, &first)
3809 #if HAVE_DOS_BASED_FILE_SYSTEM
3810 && strncasecmp (base_name, text, text_len) == 0
3812 && strncmp (base_name, text, text_len) == 0
3815 add_filename_to_list (base_name, text, word,
3816 &list, &list_used, &list_alloced);
3824 /* Determine if PC is in the prologue of a function. The prologue is the area
3825 between the first instruction of a function, and the first executable line.
3826 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
3828 If non-zero, func_start is where we think the prologue starts, possibly
3829 by previous examination of symbol table information.
3833 in_prologue (CORE_ADDR pc, CORE_ADDR func_start)
3835 struct symtab_and_line sal;
3836 CORE_ADDR func_addr, func_end;
3838 /* We have several sources of information we can consult to figure
3840 - Compilers usually emit line number info that marks the prologue
3841 as its own "source line". So the ending address of that "line"
3842 is the end of the prologue. If available, this is the most
3844 - The minimal symbols and partial symbols, which can usually tell
3845 us the starting and ending addresses of a function.
3846 - If we know the function's start address, we can call the
3847 architecture-defined SKIP_PROLOGUE function to analyze the
3848 instruction stream and guess where the prologue ends.
3849 - Our `func_start' argument; if non-zero, this is the caller's
3850 best guess as to the function's entry point. At the time of
3851 this writing, handle_inferior_event doesn't get this right, so
3852 it should be our last resort. */
3854 /* Consult the partial symbol table, to find which function
3856 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3858 CORE_ADDR prologue_end;
3860 /* We don't even have minsym information, so fall back to using
3861 func_start, if given. */
3863 return 1; /* We *might* be in a prologue. */
3865 prologue_end = SKIP_PROLOGUE (func_start);
3867 return func_start <= pc && pc < prologue_end;
3870 /* If we have line number information for the function, that's
3871 usually pretty reliable. */
3872 sal = find_pc_line (func_addr, 0);
3874 /* Now sal describes the source line at the function's entry point,
3875 which (by convention) is the prologue. The end of that "line",
3876 sal.end, is the end of the prologue.
3878 Note that, for functions whose source code is all on a single
3879 line, the line number information doesn't always end up this way.
3880 So we must verify that our purported end-of-prologue address is
3881 *within* the function, not at its start or end. */
3883 || sal.end <= func_addr
3884 || func_end <= sal.end)
3886 /* We don't have any good line number info, so use the minsym
3887 information, together with the architecture-specific prologue
3889 CORE_ADDR prologue_end = SKIP_PROLOGUE (func_addr);
3891 return func_addr <= pc && pc < prologue_end;
3894 /* We have line number info, and it looks good. */
3895 return func_addr <= pc && pc < sal.end;
3898 /* Given PC at the function's start address, attempt to find the
3899 prologue end using SAL information. Return zero if the skip fails.
3901 A non-optimized prologue traditionally has one SAL for the function
3902 and a second for the function body. A single line function has
3903 them both pointing at the same line.
3905 An optimized prologue is similar but the prologue may contain
3906 instructions (SALs) from the instruction body. Need to skip those
3907 while not getting into the function body.
3909 The functions end point and an increasing SAL line are used as
3910 indicators of the prologue's endpoint.
3912 This code is based on the function refine_prologue_limit (versions
3913 found in both ia64 and ppc). */
3916 skip_prologue_using_sal (CORE_ADDR func_addr)
3918 struct symtab_and_line prologue_sal;
3922 /* Get an initial range for the function. */
3923 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3924 start_pc += FUNCTION_START_OFFSET;
3926 prologue_sal = find_pc_line (start_pc, 0);
3927 if (prologue_sal.line != 0)
3929 while (prologue_sal.end < end_pc)
3931 struct symtab_and_line sal;
3933 sal = find_pc_line (prologue_sal.end, 0);
3936 /* Assume that a consecutive SAL for the same (or larger)
3937 line mark the prologue -> body transition. */
3938 if (sal.line >= prologue_sal.line)
3940 /* The case in which compiler's optimizer/scheduler has
3941 moved instructions into the prologue. We look ahead in
3942 the function looking for address ranges whose
3943 corresponding line number is less the first one that we
3944 found for the function. This is more conservative then
3945 refine_prologue_limit which scans a large number of SALs
3946 looking for any in the prologue */
3950 return prologue_sal.end;
3953 struct symtabs_and_lines
3954 decode_line_spec (char *string, int funfirstline)
3956 struct symtabs_and_lines sals;
3957 struct symtab_and_line cursal;
3960 error ("Empty line specification.");
3962 /* We use whatever is set as the current source line. We do not try
3963 and get a default or it will recursively call us! */
3964 cursal = get_current_source_symtab_and_line ();
3966 sals = decode_line_1 (&string, funfirstline,
3967 cursal.symtab, cursal.line,
3968 (char ***) NULL, NULL);
3971 error ("Junk at end of line specification: %s", string);
3976 static char *name_of_main;
3979 set_main_name (const char *name)
3981 if (name_of_main != NULL)
3983 xfree (name_of_main);
3984 name_of_main = NULL;
3988 name_of_main = xstrdup (name);
3995 if (name_of_main != NULL)
3996 return name_of_main;
4003 _initialize_symtab (void)
4005 add_info ("variables", variables_info,
4006 "All global and static variable names, or those matching REGEXP.");
4008 add_com ("whereis", class_info, variables_info,
4009 "All global and static variable names, or those matching REGEXP.");
4011 add_info ("functions", functions_info,
4012 "All function names, or those matching REGEXP.");
4015 /* FIXME: This command has at least the following problems:
4016 1. It prints builtin types (in a very strange and confusing fashion).
4017 2. It doesn't print right, e.g. with
4018 typedef struct foo *FOO
4019 type_print prints "FOO" when we want to make it (in this situation)
4020 print "struct foo *".
4021 I also think "ptype" or "whatis" is more likely to be useful (but if
4022 there is much disagreement "info types" can be fixed). */
4023 add_info ("types", types_info,
4024 "All type names, or those matching REGEXP.");
4026 add_info ("sources", sources_info,
4027 "Source files in the program.");
4029 add_com ("rbreak", class_breakpoint, rbreak_command,
4030 "Set a breakpoint for all functions matching REGEXP.");
4034 add_com ("lf", class_info, sources_info, "Source files in the program");
4035 add_com ("lg", class_info, variables_info,
4036 "All global and static variable names, or those matching REGEXP.");
4039 /* Initialize the one built-in type that isn't language dependent... */
4040 builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
4041 "<unknown type>", (struct objfile *) NULL);