1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
30 #include "gdb_regex.h"
31 #include "expression.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
43 #include "cli/cli-utils.h"
47 #include "gdb_obstack.h"
49 #include "dictionary.h"
51 #include <sys/types.h>
56 #include "cp-support.h"
60 #include "macroscope.h"
62 #include "parser-defs.h"
63 #include "completer.h"
64 #include "progspace-and-thread.h"
65 #include "common/gdb_optional.h"
66 #include "filename-seen-cache.h"
67 #include "arch-utils.h"
70 /* Forward declarations for local functions. */
72 static void rbreak_command (char *, int);
74 static int find_line_common (struct linetable *, int, int *, int);
76 static struct block_symbol
77 lookup_symbol_aux (const char *name,
78 const struct block *block,
79 const domain_enum domain,
80 enum language language,
81 struct field_of_this_result *);
84 struct block_symbol lookup_local_symbol (const char *name,
85 const struct block *block,
86 const domain_enum domain,
87 enum language language);
89 static struct block_symbol
90 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
91 const char *name, const domain_enum domain);
94 const struct block_symbol null_block_symbol = { NULL, NULL };
96 /* Program space key for finding name and language of "main". */
98 static const struct program_space_data *main_progspace_key;
100 /* Type of the data stored on the program space. */
104 /* Name of "main". */
108 /* Language of "main". */
110 enum language language_of_main;
113 /* Program space key for finding its symbol cache. */
115 static const struct program_space_data *symbol_cache_key;
117 /* The default symbol cache size.
118 There is no extra cpu cost for large N (except when flushing the cache,
119 which is rare). The value here is just a first attempt. A better default
120 value may be higher or lower. A prime number can make up for a bad hash
121 computation, so that's why the number is what it is. */
122 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
124 /* The maximum symbol cache size.
125 There's no method to the decision of what value to use here, other than
126 there's no point in allowing a user typo to make gdb consume all memory. */
127 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
129 /* symbol_cache_lookup returns this if a previous lookup failed to find the
130 symbol in any objfile. */
131 #define SYMBOL_LOOKUP_FAILED \
132 ((struct block_symbol) {(struct symbol *) 1, NULL})
133 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
135 /* Recording lookups that don't find the symbol is just as important, if not
136 more so, than recording found symbols. */
138 enum symbol_cache_slot_state
141 SYMBOL_SLOT_NOT_FOUND,
145 struct symbol_cache_slot
147 enum symbol_cache_slot_state state;
149 /* The objfile that was current when the symbol was looked up.
150 This is only needed for global blocks, but for simplicity's sake
151 we allocate the space for both. If data shows the extra space used
152 for static blocks is a problem, we can split things up then.
154 Global blocks need cache lookup to include the objfile context because
155 we need to account for gdbarch_iterate_over_objfiles_in_search_order
156 which can traverse objfiles in, effectively, any order, depending on
157 the current objfile, thus affecting which symbol is found. Normally,
158 only the current objfile is searched first, and then the rest are
159 searched in recorded order; but putting cache lookup inside
160 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
161 Instead we just make the current objfile part of the context of
162 cache lookup. This means we can record the same symbol multiple times,
163 each with a different "current objfile" that was in effect when the
164 lookup was saved in the cache, but cache space is pretty cheap. */
165 const struct objfile *objfile_context;
169 struct block_symbol found;
178 /* Symbols don't specify global vs static block.
179 So keep them in separate caches. */
181 struct block_symbol_cache
185 unsigned int collisions;
187 /* SYMBOLS is a variable length array of this size.
188 One can imagine that in general one cache (global/static) should be a
189 fraction of the size of the other, but there's no data at the moment
190 on which to decide. */
193 struct symbol_cache_slot symbols[1];
198 Searching for symbols in the static and global blocks over multiple objfiles
199 again and again can be slow, as can searching very big objfiles. This is a
200 simple cache to improve symbol lookup performance, which is critical to
201 overall gdb performance.
203 Symbols are hashed on the name, its domain, and block.
204 They are also hashed on their objfile for objfile-specific lookups. */
208 struct block_symbol_cache *global_symbols;
209 struct block_symbol_cache *static_symbols;
212 /* When non-zero, print debugging messages related to symtab creation. */
213 unsigned int symtab_create_debug = 0;
215 /* When non-zero, print debugging messages related to symbol lookup. */
216 unsigned int symbol_lookup_debug = 0;
218 /* The size of the cache is staged here. */
219 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
221 /* The current value of the symbol cache size.
222 This is saved so that if the user enters a value too big we can restore
223 the original value from here. */
224 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
226 /* Non-zero if a file may be known by two different basenames.
227 This is the uncommon case, and significantly slows down gdb.
228 Default set to "off" to not slow down the common case. */
229 int basenames_may_differ = 0;
231 /* Allow the user to configure the debugger behavior with respect
232 to multiple-choice menus when more than one symbol matches during
235 const char multiple_symbols_ask[] = "ask";
236 const char multiple_symbols_all[] = "all";
237 const char multiple_symbols_cancel[] = "cancel";
238 static const char *const multiple_symbols_modes[] =
240 multiple_symbols_ask,
241 multiple_symbols_all,
242 multiple_symbols_cancel,
245 static const char *multiple_symbols_mode = multiple_symbols_all;
247 /* Read-only accessor to AUTO_SELECT_MODE. */
250 multiple_symbols_select_mode (void)
252 return multiple_symbols_mode;
255 /* Return the name of a domain_enum. */
258 domain_name (domain_enum e)
262 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
263 case VAR_DOMAIN: return "VAR_DOMAIN";
264 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
265 case MODULE_DOMAIN: return "MODULE_DOMAIN";
266 case LABEL_DOMAIN: return "LABEL_DOMAIN";
267 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
268 default: gdb_assert_not_reached ("bad domain_enum");
272 /* Return the name of a search_domain . */
275 search_domain_name (enum search_domain e)
279 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
280 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
281 case TYPES_DOMAIN: return "TYPES_DOMAIN";
282 case ALL_DOMAIN: return "ALL_DOMAIN";
283 default: gdb_assert_not_reached ("bad search_domain");
290 compunit_primary_filetab (const struct compunit_symtab *cust)
292 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
294 /* The primary file symtab is the first one in the list. */
295 return COMPUNIT_FILETABS (cust);
301 compunit_language (const struct compunit_symtab *cust)
303 struct symtab *symtab = compunit_primary_filetab (cust);
305 /* The language of the compunit symtab is the language of its primary
307 return SYMTAB_LANGUAGE (symtab);
310 /* See whether FILENAME matches SEARCH_NAME using the rule that we
311 advertise to the user. (The manual's description of linespecs
312 describes what we advertise). Returns true if they match, false
316 compare_filenames_for_search (const char *filename, const char *search_name)
318 int len = strlen (filename);
319 size_t search_len = strlen (search_name);
321 if (len < search_len)
324 /* The tail of FILENAME must match. */
325 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
328 /* Either the names must completely match, or the character
329 preceding the trailing SEARCH_NAME segment of FILENAME must be a
332 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
333 cannot match FILENAME "/path//dir/file.c" - as user has requested
334 absolute path. The sama applies for "c:\file.c" possibly
335 incorrectly hypothetically matching "d:\dir\c:\file.c".
337 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
338 compatible with SEARCH_NAME "file.c". In such case a compiler had
339 to put the "c:file.c" name into debug info. Such compatibility
340 works only on GDB built for DOS host. */
341 return (len == search_len
342 || (!IS_ABSOLUTE_PATH (search_name)
343 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
344 || (HAS_DRIVE_SPEC (filename)
345 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
348 /* Same as compare_filenames_for_search, but for glob-style patterns.
349 Heads up on the order of the arguments. They match the order of
350 compare_filenames_for_search, but it's the opposite of the order of
351 arguments to gdb_filename_fnmatch. */
354 compare_glob_filenames_for_search (const char *filename,
355 const char *search_name)
357 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
358 all /s have to be explicitly specified. */
359 int file_path_elements = count_path_elements (filename);
360 int search_path_elements = count_path_elements (search_name);
362 if (search_path_elements > file_path_elements)
365 if (IS_ABSOLUTE_PATH (search_name))
367 return (search_path_elements == file_path_elements
368 && gdb_filename_fnmatch (search_name, filename,
369 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
373 const char *file_to_compare
374 = strip_leading_path_elements (filename,
375 file_path_elements - search_path_elements);
377 return gdb_filename_fnmatch (search_name, file_to_compare,
378 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
382 /* Check for a symtab of a specific name by searching some symtabs.
383 This is a helper function for callbacks of iterate_over_symtabs.
385 If NAME is not absolute, then REAL_PATH is NULL
386 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
388 The return value, NAME, REAL_PATH and CALLBACK are identical to the
389 `map_symtabs_matching_filename' method of quick_symbol_functions.
391 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
392 Each symtab within the specified compunit symtab is also searched.
393 AFTER_LAST is one past the last compunit symtab to search; NULL means to
394 search until the end of the list. */
397 iterate_over_some_symtabs (const char *name,
398 const char *real_path,
399 struct compunit_symtab *first,
400 struct compunit_symtab *after_last,
401 gdb::function_view<bool (symtab *)> callback)
403 struct compunit_symtab *cust;
405 const char* base_name = lbasename (name);
407 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
409 ALL_COMPUNIT_FILETABS (cust, s)
411 if (compare_filenames_for_search (s->filename, name))
418 /* Before we invoke realpath, which can get expensive when many
419 files are involved, do a quick comparison of the basenames. */
420 if (! basenames_may_differ
421 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
424 if (compare_filenames_for_search (symtab_to_fullname (s), name))
431 /* If the user gave us an absolute path, try to find the file in
432 this symtab and use its absolute path. */
433 if (real_path != NULL)
435 const char *fullname = symtab_to_fullname (s);
437 gdb_assert (IS_ABSOLUTE_PATH (real_path));
438 gdb_assert (IS_ABSOLUTE_PATH (name));
439 if (FILENAME_CMP (real_path, fullname) == 0)
452 /* Check for a symtab of a specific name; first in symtabs, then in
453 psymtabs. *If* there is no '/' in the name, a match after a '/'
454 in the symtab filename will also work.
456 Calls CALLBACK with each symtab that is found. If CALLBACK returns
457 true, the search stops. */
460 iterate_over_symtabs (const char *name,
461 gdb::function_view<bool (symtab *)> callback)
463 struct objfile *objfile;
464 gdb::unique_xmalloc_ptr<char> real_path;
466 /* Here we are interested in canonicalizing an absolute path, not
467 absolutizing a relative path. */
468 if (IS_ABSOLUTE_PATH (name))
470 real_path = gdb_realpath (name);
471 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
474 ALL_OBJFILES (objfile)
476 if (iterate_over_some_symtabs (name, real_path.get (),
477 objfile->compunit_symtabs, NULL,
482 /* Same search rules as above apply here, but now we look thru the
485 ALL_OBJFILES (objfile)
488 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
496 /* A wrapper for iterate_over_symtabs that returns the first matching
500 lookup_symtab (const char *name)
502 struct symtab *result = NULL;
504 iterate_over_symtabs (name, [&] (symtab *symtab)
514 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
515 full method name, which consist of the class name (from T), the unadorned
516 method name from METHOD_ID, and the signature for the specific overload,
517 specified by SIGNATURE_ID. Note that this function is g++ specific. */
520 gdb_mangle_name (struct type *type, int method_id, int signature_id)
522 int mangled_name_len;
524 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
525 struct fn_field *method = &f[signature_id];
526 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
527 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
528 const char *newname = type_name_no_tag (type);
530 /* Does the form of physname indicate that it is the full mangled name
531 of a constructor (not just the args)? */
532 int is_full_physname_constructor;
535 int is_destructor = is_destructor_name (physname);
536 /* Need a new type prefix. */
537 const char *const_prefix = method->is_const ? "C" : "";
538 const char *volatile_prefix = method->is_volatile ? "V" : "";
540 int len = (newname == NULL ? 0 : strlen (newname));
542 /* Nothing to do if physname already contains a fully mangled v3 abi name
543 or an operator name. */
544 if ((physname[0] == '_' && physname[1] == 'Z')
545 || is_operator_name (field_name))
546 return xstrdup (physname);
548 is_full_physname_constructor = is_constructor_name (physname);
550 is_constructor = is_full_physname_constructor
551 || (newname && strcmp (field_name, newname) == 0);
554 is_destructor = (startswith (physname, "__dt"));
556 if (is_destructor || is_full_physname_constructor)
558 mangled_name = (char *) xmalloc (strlen (physname) + 1);
559 strcpy (mangled_name, physname);
565 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
567 else if (physname[0] == 't' || physname[0] == 'Q')
569 /* The physname for template and qualified methods already includes
571 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
577 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
578 volatile_prefix, len);
580 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
581 + strlen (buf) + len + strlen (physname) + 1);
583 mangled_name = (char *) xmalloc (mangled_name_len);
585 mangled_name[0] = '\0';
587 strcpy (mangled_name, field_name);
589 strcat (mangled_name, buf);
590 /* If the class doesn't have a name, i.e. newname NULL, then we just
591 mangle it using 0 for the length of the class. Thus it gets mangled
592 as something starting with `::' rather than `classname::'. */
594 strcat (mangled_name, newname);
596 strcat (mangled_name, physname);
597 return (mangled_name);
600 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
601 correctly allocated. */
604 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
606 struct obstack *obstack)
608 if (gsymbol->language == language_ada)
612 gsymbol->ada_mangled = 0;
613 gsymbol->language_specific.obstack = obstack;
617 gsymbol->ada_mangled = 1;
618 gsymbol->language_specific.demangled_name = name;
622 gsymbol->language_specific.demangled_name = name;
625 /* Return the demangled name of GSYMBOL. */
628 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
630 if (gsymbol->language == language_ada)
632 if (!gsymbol->ada_mangled)
637 return gsymbol->language_specific.demangled_name;
641 /* Initialize the language dependent portion of a symbol
642 depending upon the language for the symbol. */
645 symbol_set_language (struct general_symbol_info *gsymbol,
646 enum language language,
647 struct obstack *obstack)
649 gsymbol->language = language;
650 if (gsymbol->language == language_cplus
651 || gsymbol->language == language_d
652 || gsymbol->language == language_go
653 || gsymbol->language == language_objc
654 || gsymbol->language == language_fortran)
656 symbol_set_demangled_name (gsymbol, NULL, obstack);
658 else if (gsymbol->language == language_ada)
660 gdb_assert (gsymbol->ada_mangled == 0);
661 gsymbol->language_specific.obstack = obstack;
665 memset (&gsymbol->language_specific, 0,
666 sizeof (gsymbol->language_specific));
670 /* Functions to initialize a symbol's mangled name. */
672 /* Objects of this type are stored in the demangled name hash table. */
673 struct demangled_name_entry
679 /* Hash function for the demangled name hash. */
682 hash_demangled_name_entry (const void *data)
684 const struct demangled_name_entry *e
685 = (const struct demangled_name_entry *) data;
687 return htab_hash_string (e->mangled);
690 /* Equality function for the demangled name hash. */
693 eq_demangled_name_entry (const void *a, const void *b)
695 const struct demangled_name_entry *da
696 = (const struct demangled_name_entry *) a;
697 const struct demangled_name_entry *db
698 = (const struct demangled_name_entry *) b;
700 return strcmp (da->mangled, db->mangled) == 0;
703 /* Create the hash table used for demangled names. Each hash entry is
704 a pair of strings; one for the mangled name and one for the demangled
705 name. The entry is hashed via just the mangled name. */
708 create_demangled_names_hash (struct objfile *objfile)
710 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
711 The hash table code will round this up to the next prime number.
712 Choosing a much larger table size wastes memory, and saves only about
713 1% in symbol reading. */
715 objfile->per_bfd->demangled_names_hash = htab_create_alloc
716 (256, hash_demangled_name_entry, eq_demangled_name_entry,
717 NULL, xcalloc, xfree);
720 /* Try to determine the demangled name for a symbol, based on the
721 language of that symbol. If the language is set to language_auto,
722 it will attempt to find any demangling algorithm that works and
723 then set the language appropriately. The returned name is allocated
724 by the demangler and should be xfree'd. */
727 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
730 char *demangled = NULL;
734 if (gsymbol->language == language_unknown)
735 gsymbol->language = language_auto;
737 if (gsymbol->language != language_auto)
739 const struct language_defn *lang = language_def (gsymbol->language);
741 language_sniff_from_mangled_name (lang, mangled, &demangled);
745 for (i = language_unknown; i < nr_languages; ++i)
747 enum language l = (enum language) i;
748 const struct language_defn *lang = language_def (l);
750 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
752 gsymbol->language = l;
760 /* Set both the mangled and demangled (if any) names for GSYMBOL based
761 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
762 objfile's obstack; but if COPY_NAME is 0 and if NAME is
763 NUL-terminated, then this function assumes that NAME is already
764 correctly saved (either permanently or with a lifetime tied to the
765 objfile), and it will not be copied.
767 The hash table corresponding to OBJFILE is used, and the memory
768 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
769 so the pointer can be discarded after calling this function. */
772 symbol_set_names (struct general_symbol_info *gsymbol,
773 const char *linkage_name, int len, int copy_name,
774 struct objfile *objfile)
776 struct demangled_name_entry **slot;
777 /* A 0-terminated copy of the linkage name. */
778 const char *linkage_name_copy;
779 struct demangled_name_entry entry;
780 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
782 if (gsymbol->language == language_ada)
784 /* In Ada, we do the symbol lookups using the mangled name, so
785 we can save some space by not storing the demangled name. */
787 gsymbol->name = linkage_name;
790 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
793 memcpy (name, linkage_name, len);
795 gsymbol->name = name;
797 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
802 if (per_bfd->demangled_names_hash == NULL)
803 create_demangled_names_hash (objfile);
805 if (linkage_name[len] != '\0')
809 alloc_name = (char *) alloca (len + 1);
810 memcpy (alloc_name, linkage_name, len);
811 alloc_name[len] = '\0';
813 linkage_name_copy = alloc_name;
816 linkage_name_copy = linkage_name;
818 entry.mangled = linkage_name_copy;
819 slot = ((struct demangled_name_entry **)
820 htab_find_slot (per_bfd->demangled_names_hash,
823 /* If this name is not in the hash table, add it. */
825 /* A C version of the symbol may have already snuck into the table.
826 This happens to, e.g., main.init (__go_init_main). Cope. */
827 || (gsymbol->language == language_go
828 && (*slot)->demangled[0] == '\0'))
830 char *demangled_name = symbol_find_demangled_name (gsymbol,
832 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
834 /* Suppose we have demangled_name==NULL, copy_name==0, and
835 linkage_name_copy==linkage_name. In this case, we already have the
836 mangled name saved, and we don't have a demangled name. So,
837 you might think we could save a little space by not recording
838 this in the hash table at all.
840 It turns out that it is actually important to still save such
841 an entry in the hash table, because storing this name gives
842 us better bcache hit rates for partial symbols. */
843 if (!copy_name && linkage_name_copy == linkage_name)
846 = ((struct demangled_name_entry *)
847 obstack_alloc (&per_bfd->storage_obstack,
848 offsetof (struct demangled_name_entry, demangled)
849 + demangled_len + 1));
850 (*slot)->mangled = linkage_name;
856 /* If we must copy the mangled name, put it directly after
857 the demangled name so we can have a single
860 = ((struct demangled_name_entry *)
861 obstack_alloc (&per_bfd->storage_obstack,
862 offsetof (struct demangled_name_entry, demangled)
863 + len + demangled_len + 2));
864 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
865 strcpy (mangled_ptr, linkage_name_copy);
866 (*slot)->mangled = mangled_ptr;
869 if (demangled_name != NULL)
871 strcpy ((*slot)->demangled, demangled_name);
872 xfree (demangled_name);
875 (*slot)->demangled[0] = '\0';
878 gsymbol->name = (*slot)->mangled;
879 if ((*slot)->demangled[0] != '\0')
880 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
881 &per_bfd->storage_obstack);
883 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
886 /* Return the source code name of a symbol. In languages where
887 demangling is necessary, this is the demangled name. */
890 symbol_natural_name (const struct general_symbol_info *gsymbol)
892 switch (gsymbol->language)
898 case language_fortran:
899 if (symbol_get_demangled_name (gsymbol) != NULL)
900 return symbol_get_demangled_name (gsymbol);
903 return ada_decode_symbol (gsymbol);
907 return gsymbol->name;
910 /* Return the demangled name for a symbol based on the language for
911 that symbol. If no demangled name exists, return NULL. */
914 symbol_demangled_name (const struct general_symbol_info *gsymbol)
916 const char *dem_name = NULL;
918 switch (gsymbol->language)
924 case language_fortran:
925 dem_name = symbol_get_demangled_name (gsymbol);
928 dem_name = ada_decode_symbol (gsymbol);
936 /* Return the search name of a symbol---generally the demangled or
937 linkage name of the symbol, depending on how it will be searched for.
938 If there is no distinct demangled name, then returns the same value
939 (same pointer) as SYMBOL_LINKAGE_NAME. */
942 symbol_search_name (const struct general_symbol_info *gsymbol)
944 if (gsymbol->language == language_ada)
945 return gsymbol->name;
947 return symbol_natural_name (gsymbol);
951 /* Return 1 if the two sections are the same, or if they could
952 plausibly be copies of each other, one in an original object
953 file and another in a separated debug file. */
956 matching_obj_sections (struct obj_section *obj_first,
957 struct obj_section *obj_second)
959 asection *first = obj_first? obj_first->the_bfd_section : NULL;
960 asection *second = obj_second? obj_second->the_bfd_section : NULL;
963 /* If they're the same section, then they match. */
967 /* If either is NULL, give up. */
968 if (first == NULL || second == NULL)
971 /* This doesn't apply to absolute symbols. */
972 if (first->owner == NULL || second->owner == NULL)
975 /* If they're in the same object file, they must be different sections. */
976 if (first->owner == second->owner)
979 /* Check whether the two sections are potentially corresponding. They must
980 have the same size, address, and name. We can't compare section indexes,
981 which would be more reliable, because some sections may have been
983 if (bfd_get_section_size (first) != bfd_get_section_size (second))
986 /* In-memory addresses may start at a different offset, relativize them. */
987 if (bfd_get_section_vma (first->owner, first)
988 - bfd_get_start_address (first->owner)
989 != bfd_get_section_vma (second->owner, second)
990 - bfd_get_start_address (second->owner))
993 if (bfd_get_section_name (first->owner, first) == NULL
994 || bfd_get_section_name (second->owner, second) == NULL
995 || strcmp (bfd_get_section_name (first->owner, first),
996 bfd_get_section_name (second->owner, second)) != 0)
999 /* Otherwise check that they are in corresponding objfiles. */
1002 if (obj->obfd == first->owner)
1004 gdb_assert (obj != NULL);
1006 if (obj->separate_debug_objfile != NULL
1007 && obj->separate_debug_objfile->obfd == second->owner)
1009 if (obj->separate_debug_objfile_backlink != NULL
1010 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1019 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1021 struct objfile *objfile;
1022 struct bound_minimal_symbol msymbol;
1024 /* If we know that this is not a text address, return failure. This is
1025 necessary because we loop based on texthigh and textlow, which do
1026 not include the data ranges. */
1027 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1029 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1030 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1031 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1032 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1033 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1036 ALL_OBJFILES (objfile)
1038 struct compunit_symtab *cust = NULL;
1041 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1048 /* Hash function for the symbol cache. */
1051 hash_symbol_entry (const struct objfile *objfile_context,
1052 const char *name, domain_enum domain)
1054 unsigned int hash = (uintptr_t) objfile_context;
1057 hash += htab_hash_string (name);
1059 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1060 to map to the same slot. */
1061 if (domain == STRUCT_DOMAIN)
1062 hash += VAR_DOMAIN * 7;
1069 /* Equality function for the symbol cache. */
1072 eq_symbol_entry (const struct symbol_cache_slot *slot,
1073 const struct objfile *objfile_context,
1074 const char *name, domain_enum domain)
1076 const char *slot_name;
1077 domain_enum slot_domain;
1079 if (slot->state == SYMBOL_SLOT_UNUSED)
1082 if (slot->objfile_context != objfile_context)
1085 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1087 slot_name = slot->value.not_found.name;
1088 slot_domain = slot->value.not_found.domain;
1092 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1093 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1096 /* NULL names match. */
1097 if (slot_name == NULL && name == NULL)
1099 /* But there's no point in calling symbol_matches_domain in the
1100 SYMBOL_SLOT_FOUND case. */
1101 if (slot_domain != domain)
1104 else if (slot_name != NULL && name != NULL)
1106 /* It's important that we use the same comparison that was done the
1107 first time through. If the slot records a found symbol, then this
1108 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1109 It also means using symbol_matches_domain for found symbols.
1112 If the slot records a not-found symbol, then require a precise match.
1113 We could still be lax with whitespace like strcmp_iw though. */
1115 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1117 if (strcmp (slot_name, name) != 0)
1119 if (slot_domain != domain)
1124 struct symbol *sym = slot->value.found.symbol;
1126 if (strcmp_iw (slot_name, name) != 0)
1128 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1129 slot_domain, domain))
1135 /* Only one name is NULL. */
1142 /* Given a cache of size SIZE, return the size of the struct (with variable
1143 length array) in bytes. */
1146 symbol_cache_byte_size (unsigned int size)
1148 return (sizeof (struct block_symbol_cache)
1149 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1155 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1157 /* If there's no change in size, don't do anything.
1158 All caches have the same size, so we can just compare with the size
1159 of the global symbols cache. */
1160 if ((cache->global_symbols != NULL
1161 && cache->global_symbols->size == new_size)
1162 || (cache->global_symbols == NULL
1166 xfree (cache->global_symbols);
1167 xfree (cache->static_symbols);
1171 cache->global_symbols = NULL;
1172 cache->static_symbols = NULL;
1176 size_t total_size = symbol_cache_byte_size (new_size);
1178 cache->global_symbols
1179 = (struct block_symbol_cache *) xcalloc (1, total_size);
1180 cache->static_symbols
1181 = (struct block_symbol_cache *) xcalloc (1, total_size);
1182 cache->global_symbols->size = new_size;
1183 cache->static_symbols->size = new_size;
1187 /* Make a symbol cache of size SIZE. */
1189 static struct symbol_cache *
1190 make_symbol_cache (unsigned int size)
1192 struct symbol_cache *cache;
1194 cache = XCNEW (struct symbol_cache);
1195 resize_symbol_cache (cache, symbol_cache_size);
1199 /* Free the space used by CACHE. */
1202 free_symbol_cache (struct symbol_cache *cache)
1204 xfree (cache->global_symbols);
1205 xfree (cache->static_symbols);
1209 /* Return the symbol cache of PSPACE.
1210 Create one if it doesn't exist yet. */
1212 static struct symbol_cache *
1213 get_symbol_cache (struct program_space *pspace)
1215 struct symbol_cache *cache
1216 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1220 cache = make_symbol_cache (symbol_cache_size);
1221 set_program_space_data (pspace, symbol_cache_key, cache);
1227 /* Delete the symbol cache of PSPACE.
1228 Called when PSPACE is destroyed. */
1231 symbol_cache_cleanup (struct program_space *pspace, void *data)
1233 struct symbol_cache *cache = (struct symbol_cache *) data;
1235 free_symbol_cache (cache);
1238 /* Set the size of the symbol cache in all program spaces. */
1241 set_symbol_cache_size (unsigned int new_size)
1243 struct program_space *pspace;
1245 ALL_PSPACES (pspace)
1247 struct symbol_cache *cache
1248 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1250 /* The pspace could have been created but not have a cache yet. */
1252 resize_symbol_cache (cache, new_size);
1256 /* Called when symbol-cache-size is set. */
1259 set_symbol_cache_size_handler (char *args, int from_tty,
1260 struct cmd_list_element *c)
1262 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1264 /* Restore the previous value.
1265 This is the value the "show" command prints. */
1266 new_symbol_cache_size = symbol_cache_size;
1268 error (_("Symbol cache size is too large, max is %u."),
1269 MAX_SYMBOL_CACHE_SIZE);
1271 symbol_cache_size = new_symbol_cache_size;
1273 set_symbol_cache_size (symbol_cache_size);
1276 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1277 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1278 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1279 failed (and thus this one will too), or NULL if the symbol is not present
1281 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1282 set to the cache and slot of the symbol to save the result of a full lookup
1285 static struct block_symbol
1286 symbol_cache_lookup (struct symbol_cache *cache,
1287 struct objfile *objfile_context, int block,
1288 const char *name, domain_enum domain,
1289 struct block_symbol_cache **bsc_ptr,
1290 struct symbol_cache_slot **slot_ptr)
1292 struct block_symbol_cache *bsc;
1294 struct symbol_cache_slot *slot;
1296 if (block == GLOBAL_BLOCK)
1297 bsc = cache->global_symbols;
1299 bsc = cache->static_symbols;
1304 return (struct block_symbol) {NULL, NULL};
1307 hash = hash_symbol_entry (objfile_context, name, domain);
1308 slot = bsc->symbols + hash % bsc->size;
1310 if (eq_symbol_entry (slot, objfile_context, name, domain))
1312 if (symbol_lookup_debug)
1313 fprintf_unfiltered (gdb_stdlog,
1314 "%s block symbol cache hit%s for %s, %s\n",
1315 block == GLOBAL_BLOCK ? "Global" : "Static",
1316 slot->state == SYMBOL_SLOT_NOT_FOUND
1317 ? " (not found)" : "",
1318 name, domain_name (domain));
1320 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1321 return SYMBOL_LOOKUP_FAILED;
1322 return slot->value.found;
1325 /* Symbol is not present in the cache. */
1330 if (symbol_lookup_debug)
1332 fprintf_unfiltered (gdb_stdlog,
1333 "%s block symbol cache miss for %s, %s\n",
1334 block == GLOBAL_BLOCK ? "Global" : "Static",
1335 name, domain_name (domain));
1338 return (struct block_symbol) {NULL, NULL};
1341 /* Clear out SLOT. */
1344 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1346 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1347 xfree (slot->value.not_found.name);
1348 slot->state = SYMBOL_SLOT_UNUSED;
1351 /* Mark SYMBOL as found in SLOT.
1352 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1353 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1354 necessarily the objfile the symbol was found in. */
1357 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1358 struct symbol_cache_slot *slot,
1359 struct objfile *objfile_context,
1360 struct symbol *symbol,
1361 const struct block *block)
1365 if (slot->state != SYMBOL_SLOT_UNUSED)
1368 symbol_cache_clear_slot (slot);
1370 slot->state = SYMBOL_SLOT_FOUND;
1371 slot->objfile_context = objfile_context;
1372 slot->value.found.symbol = symbol;
1373 slot->value.found.block = block;
1376 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1377 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1378 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1381 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1382 struct symbol_cache_slot *slot,
1383 struct objfile *objfile_context,
1384 const char *name, domain_enum domain)
1388 if (slot->state != SYMBOL_SLOT_UNUSED)
1391 symbol_cache_clear_slot (slot);
1393 slot->state = SYMBOL_SLOT_NOT_FOUND;
1394 slot->objfile_context = objfile_context;
1395 slot->value.not_found.name = xstrdup (name);
1396 slot->value.not_found.domain = domain;
1399 /* Flush the symbol cache of PSPACE. */
1402 symbol_cache_flush (struct program_space *pspace)
1404 struct symbol_cache *cache
1405 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1410 if (cache->global_symbols == NULL)
1412 gdb_assert (symbol_cache_size == 0);
1413 gdb_assert (cache->static_symbols == NULL);
1417 /* If the cache is untouched since the last flush, early exit.
1418 This is important for performance during the startup of a program linked
1419 with 100s (or 1000s) of shared libraries. */
1420 if (cache->global_symbols->misses == 0
1421 && cache->static_symbols->misses == 0)
1424 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1425 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1427 for (pass = 0; pass < 2; ++pass)
1429 struct block_symbol_cache *bsc
1430 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1433 for (i = 0; i < bsc->size; ++i)
1434 symbol_cache_clear_slot (&bsc->symbols[i]);
1437 cache->global_symbols->hits = 0;
1438 cache->global_symbols->misses = 0;
1439 cache->global_symbols->collisions = 0;
1440 cache->static_symbols->hits = 0;
1441 cache->static_symbols->misses = 0;
1442 cache->static_symbols->collisions = 0;
1448 symbol_cache_dump (const struct symbol_cache *cache)
1452 if (cache->global_symbols == NULL)
1454 printf_filtered (" <disabled>\n");
1458 for (pass = 0; pass < 2; ++pass)
1460 const struct block_symbol_cache *bsc
1461 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1465 printf_filtered ("Global symbols:\n");
1467 printf_filtered ("Static symbols:\n");
1469 for (i = 0; i < bsc->size; ++i)
1471 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1475 switch (slot->state)
1477 case SYMBOL_SLOT_UNUSED:
1479 case SYMBOL_SLOT_NOT_FOUND:
1480 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1481 host_address_to_string (slot->objfile_context),
1482 slot->value.not_found.name,
1483 domain_name (slot->value.not_found.domain));
1485 case SYMBOL_SLOT_FOUND:
1487 struct symbol *found = slot->value.found.symbol;
1488 const struct objfile *context = slot->objfile_context;
1490 printf_filtered (" [%4u] = %s, %s %s\n", i,
1491 host_address_to_string (context),
1492 SYMBOL_PRINT_NAME (found),
1493 domain_name (SYMBOL_DOMAIN (found)));
1501 /* The "mt print symbol-cache" command. */
1504 maintenance_print_symbol_cache (const char *args, int from_tty)
1506 struct program_space *pspace;
1508 ALL_PSPACES (pspace)
1510 struct symbol_cache *cache;
1512 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1514 pspace->symfile_object_file != NULL
1515 ? objfile_name (pspace->symfile_object_file)
1516 : "(no object file)");
1518 /* If the cache hasn't been created yet, avoid creating one. */
1520 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1522 printf_filtered (" <empty>\n");
1524 symbol_cache_dump (cache);
1528 /* The "mt flush-symbol-cache" command. */
1531 maintenance_flush_symbol_cache (const char *args, int from_tty)
1533 struct program_space *pspace;
1535 ALL_PSPACES (pspace)
1537 symbol_cache_flush (pspace);
1541 /* Print usage statistics of CACHE. */
1544 symbol_cache_stats (struct symbol_cache *cache)
1548 if (cache->global_symbols == NULL)
1550 printf_filtered (" <disabled>\n");
1554 for (pass = 0; pass < 2; ++pass)
1556 const struct block_symbol_cache *bsc
1557 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1562 printf_filtered ("Global block cache stats:\n");
1564 printf_filtered ("Static block cache stats:\n");
1566 printf_filtered (" size: %u\n", bsc->size);
1567 printf_filtered (" hits: %u\n", bsc->hits);
1568 printf_filtered (" misses: %u\n", bsc->misses);
1569 printf_filtered (" collisions: %u\n", bsc->collisions);
1573 /* The "mt print symbol-cache-statistics" command. */
1576 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1578 struct program_space *pspace;
1580 ALL_PSPACES (pspace)
1582 struct symbol_cache *cache;
1584 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1586 pspace->symfile_object_file != NULL
1587 ? objfile_name (pspace->symfile_object_file)
1588 : "(no object file)");
1590 /* If the cache hasn't been created yet, avoid creating one. */
1592 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1594 printf_filtered (" empty, no stats available\n");
1596 symbol_cache_stats (cache);
1600 /* This module's 'new_objfile' observer. */
1603 symtab_new_objfile_observer (struct objfile *objfile)
1605 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1606 symbol_cache_flush (current_program_space);
1609 /* This module's 'free_objfile' observer. */
1612 symtab_free_objfile_observer (struct objfile *objfile)
1614 symbol_cache_flush (objfile->pspace);
1617 /* Debug symbols usually don't have section information. We need to dig that
1618 out of the minimal symbols and stash that in the debug symbol. */
1621 fixup_section (struct general_symbol_info *ginfo,
1622 CORE_ADDR addr, struct objfile *objfile)
1624 struct minimal_symbol *msym;
1626 /* First, check whether a minimal symbol with the same name exists
1627 and points to the same address. The address check is required
1628 e.g. on PowerPC64, where the minimal symbol for a function will
1629 point to the function descriptor, while the debug symbol will
1630 point to the actual function code. */
1631 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1633 ginfo->section = MSYMBOL_SECTION (msym);
1636 /* Static, function-local variables do appear in the linker
1637 (minimal) symbols, but are frequently given names that won't
1638 be found via lookup_minimal_symbol(). E.g., it has been
1639 observed in frv-uclinux (ELF) executables that a static,
1640 function-local variable named "foo" might appear in the
1641 linker symbols as "foo.6" or "foo.3". Thus, there is no
1642 point in attempting to extend the lookup-by-name mechanism to
1643 handle this case due to the fact that there can be multiple
1646 So, instead, search the section table when lookup by name has
1647 failed. The ``addr'' and ``endaddr'' fields may have already
1648 been relocated. If so, the relocation offset (i.e. the
1649 ANOFFSET value) needs to be subtracted from these values when
1650 performing the comparison. We unconditionally subtract it,
1651 because, when no relocation has been performed, the ANOFFSET
1652 value will simply be zero.
1654 The address of the symbol whose section we're fixing up HAS
1655 NOT BEEN adjusted (relocated) yet. It can't have been since
1656 the section isn't yet known and knowing the section is
1657 necessary in order to add the correct relocation value. In
1658 other words, we wouldn't even be in this function (attempting
1659 to compute the section) if it were already known.
1661 Note that it is possible to search the minimal symbols
1662 (subtracting the relocation value if necessary) to find the
1663 matching minimal symbol, but this is overkill and much less
1664 efficient. It is not necessary to find the matching minimal
1665 symbol, only its section.
1667 Note that this technique (of doing a section table search)
1668 can fail when unrelocated section addresses overlap. For
1669 this reason, we still attempt a lookup by name prior to doing
1670 a search of the section table. */
1672 struct obj_section *s;
1675 ALL_OBJFILE_OSECTIONS (objfile, s)
1677 int idx = s - objfile->sections;
1678 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1683 if (obj_section_addr (s) - offset <= addr
1684 && addr < obj_section_endaddr (s) - offset)
1686 ginfo->section = idx;
1691 /* If we didn't find the section, assume it is in the first
1692 section. If there is no allocated section, then it hardly
1693 matters what we pick, so just pick zero. */
1697 ginfo->section = fallback;
1702 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1709 if (!SYMBOL_OBJFILE_OWNED (sym))
1712 /* We either have an OBJFILE, or we can get at it from the sym's
1713 symtab. Anything else is a bug. */
1714 gdb_assert (objfile || symbol_symtab (sym));
1716 if (objfile == NULL)
1717 objfile = symbol_objfile (sym);
1719 if (SYMBOL_OBJ_SECTION (objfile, sym))
1722 /* We should have an objfile by now. */
1723 gdb_assert (objfile);
1725 switch (SYMBOL_CLASS (sym))
1729 addr = SYMBOL_VALUE_ADDRESS (sym);
1732 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1736 /* Nothing else will be listed in the minsyms -- no use looking
1741 fixup_section (&sym->ginfo, addr, objfile);
1746 /* Compute the demangled form of NAME as used by the various symbol
1747 lookup functions. The result can either be the input NAME
1748 directly, or a pointer to a buffer owned by the STORAGE object.
1750 For Ada, this function just returns NAME, unmodified.
1751 Normally, Ada symbol lookups are performed using the encoded name
1752 rather than the demangled name, and so it might seem to make sense
1753 for this function to return an encoded version of NAME.
1754 Unfortunately, we cannot do this, because this function is used in
1755 circumstances where it is not appropriate to try to encode NAME.
1756 For instance, when displaying the frame info, we demangle the name
1757 of each parameter, and then perform a symbol lookup inside our
1758 function using that demangled name. In Ada, certain functions
1759 have internally-generated parameters whose name contain uppercase
1760 characters. Encoding those name would result in those uppercase
1761 characters to become lowercase, and thus cause the symbol lookup
1765 demangle_for_lookup (const char *name, enum language lang,
1766 demangle_result_storage &storage)
1768 /* If we are using C++, D, or Go, demangle the name before doing a
1769 lookup, so we can always binary search. */
1770 if (lang == language_cplus)
1772 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1773 if (demangled_name != NULL)
1774 return storage.set_malloc_ptr (demangled_name);
1776 /* If we were given a non-mangled name, canonicalize it
1777 according to the language (so far only for C++). */
1778 std::string canon = cp_canonicalize_string (name);
1779 if (!canon.empty ())
1780 return storage.swap_string (canon);
1782 else if (lang == language_d)
1784 char *demangled_name = d_demangle (name, 0);
1785 if (demangled_name != NULL)
1786 return storage.set_malloc_ptr (demangled_name);
1788 else if (lang == language_go)
1790 char *demangled_name = go_demangle (name, 0);
1791 if (demangled_name != NULL)
1792 return storage.set_malloc_ptr (demangled_name);
1800 This function (or rather its subordinates) have a bunch of loops and
1801 it would seem to be attractive to put in some QUIT's (though I'm not really
1802 sure whether it can run long enough to be really important). But there
1803 are a few calls for which it would appear to be bad news to quit
1804 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1805 that there is C++ code below which can error(), but that probably
1806 doesn't affect these calls since they are looking for a known
1807 variable and thus can probably assume it will never hit the C++
1811 lookup_symbol_in_language (const char *name, const struct block *block,
1812 const domain_enum domain, enum language lang,
1813 struct field_of_this_result *is_a_field_of_this)
1815 demangle_result_storage storage;
1816 const char *modified_name = demangle_for_lookup (name, lang, storage);
1818 return lookup_symbol_aux (modified_name, block, domain, lang,
1819 is_a_field_of_this);
1825 lookup_symbol (const char *name, const struct block *block,
1827 struct field_of_this_result *is_a_field_of_this)
1829 return lookup_symbol_in_language (name, block, domain,
1830 current_language->la_language,
1831 is_a_field_of_this);
1837 lookup_language_this (const struct language_defn *lang,
1838 const struct block *block)
1840 if (lang->la_name_of_this == NULL || block == NULL)
1841 return (struct block_symbol) {NULL, NULL};
1843 if (symbol_lookup_debug > 1)
1845 struct objfile *objfile = lookup_objfile_from_block (block);
1847 fprintf_unfiltered (gdb_stdlog,
1848 "lookup_language_this (%s, %s (objfile %s))",
1849 lang->la_name, host_address_to_string (block),
1850 objfile_debug_name (objfile));
1857 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1860 if (symbol_lookup_debug > 1)
1862 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1863 SYMBOL_PRINT_NAME (sym),
1864 host_address_to_string (sym),
1865 host_address_to_string (block));
1867 return (struct block_symbol) {sym, block};
1869 if (BLOCK_FUNCTION (block))
1871 block = BLOCK_SUPERBLOCK (block);
1874 if (symbol_lookup_debug > 1)
1875 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1876 return (struct block_symbol) {NULL, NULL};
1879 /* Given TYPE, a structure/union,
1880 return 1 if the component named NAME from the ultimate target
1881 structure/union is defined, otherwise, return 0. */
1884 check_field (struct type *type, const char *name,
1885 struct field_of_this_result *is_a_field_of_this)
1889 /* The type may be a stub. */
1890 type = check_typedef (type);
1892 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1894 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1896 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1898 is_a_field_of_this->type = type;
1899 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1904 /* C++: If it was not found as a data field, then try to return it
1905 as a pointer to a method. */
1907 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1909 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1911 is_a_field_of_this->type = type;
1912 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1917 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1918 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1924 /* Behave like lookup_symbol except that NAME is the natural name
1925 (e.g., demangled name) of the symbol that we're looking for. */
1927 static struct block_symbol
1928 lookup_symbol_aux (const char *name, const struct block *block,
1929 const domain_enum domain, enum language language,
1930 struct field_of_this_result *is_a_field_of_this)
1932 struct block_symbol result;
1933 const struct language_defn *langdef;
1935 if (symbol_lookup_debug)
1937 struct objfile *objfile = lookup_objfile_from_block (block);
1939 fprintf_unfiltered (gdb_stdlog,
1940 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
1941 name, host_address_to_string (block),
1943 ? objfile_debug_name (objfile) : "NULL",
1944 domain_name (domain), language_str (language));
1947 /* Make sure we do something sensible with is_a_field_of_this, since
1948 the callers that set this parameter to some non-null value will
1949 certainly use it later. If we don't set it, the contents of
1950 is_a_field_of_this are undefined. */
1951 if (is_a_field_of_this != NULL)
1952 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1954 /* Search specified block and its superiors. Don't search
1955 STATIC_BLOCK or GLOBAL_BLOCK. */
1957 result = lookup_local_symbol (name, block, domain, language);
1958 if (result.symbol != NULL)
1960 if (symbol_lookup_debug)
1962 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
1963 host_address_to_string (result.symbol));
1968 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1969 check to see if NAME is a field of `this'. */
1971 langdef = language_def (language);
1973 /* Don't do this check if we are searching for a struct. It will
1974 not be found by check_field, but will be found by other
1976 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1978 result = lookup_language_this (langdef, block);
1982 struct type *t = result.symbol->type;
1984 /* I'm not really sure that type of this can ever
1985 be typedefed; just be safe. */
1986 t = check_typedef (t);
1987 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
1988 t = TYPE_TARGET_TYPE (t);
1990 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1991 && TYPE_CODE (t) != TYPE_CODE_UNION)
1992 error (_("Internal error: `%s' is not an aggregate"),
1993 langdef->la_name_of_this);
1995 if (check_field (t, name, is_a_field_of_this))
1997 if (symbol_lookup_debug)
1999 fprintf_unfiltered (gdb_stdlog,
2000 "lookup_symbol_aux (...) = NULL\n");
2002 return (struct block_symbol) {NULL, NULL};
2007 /* Now do whatever is appropriate for LANGUAGE to look
2008 up static and global variables. */
2010 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2011 if (result.symbol != NULL)
2013 if (symbol_lookup_debug)
2015 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2016 host_address_to_string (result.symbol));
2021 /* Now search all static file-level symbols. Not strictly correct,
2022 but more useful than an error. */
2024 result = lookup_static_symbol (name, domain);
2025 if (symbol_lookup_debug)
2027 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2028 result.symbol != NULL
2029 ? host_address_to_string (result.symbol)
2035 /* Check to see if the symbol is defined in BLOCK or its superiors.
2036 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2038 static struct block_symbol
2039 lookup_local_symbol (const char *name, const struct block *block,
2040 const domain_enum domain,
2041 enum language language)
2044 const struct block *static_block = block_static_block (block);
2045 const char *scope = block_scope (block);
2047 /* Check if either no block is specified or it's a global block. */
2049 if (static_block == NULL)
2050 return (struct block_symbol) {NULL, NULL};
2052 while (block != static_block)
2054 sym = lookup_symbol_in_block (name, block, domain);
2056 return (struct block_symbol) {sym, block};
2058 if (language == language_cplus || language == language_fortran)
2060 struct block_symbol sym
2061 = cp_lookup_symbol_imports_or_template (scope, name, block,
2064 if (sym.symbol != NULL)
2068 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2070 block = BLOCK_SUPERBLOCK (block);
2073 /* We've reached the end of the function without finding a result. */
2075 return (struct block_symbol) {NULL, NULL};
2081 lookup_objfile_from_block (const struct block *block)
2083 struct objfile *obj;
2084 struct compunit_symtab *cust;
2089 block = block_global_block (block);
2090 /* Look through all blockvectors. */
2091 ALL_COMPUNITS (obj, cust)
2092 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2095 if (obj->separate_debug_objfile_backlink)
2096 obj = obj->separate_debug_objfile_backlink;
2107 lookup_symbol_in_block (const char *name, const struct block *block,
2108 const domain_enum domain)
2112 if (symbol_lookup_debug > 1)
2114 struct objfile *objfile = lookup_objfile_from_block (block);
2116 fprintf_unfiltered (gdb_stdlog,
2117 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2118 name, host_address_to_string (block),
2119 objfile_debug_name (objfile),
2120 domain_name (domain));
2123 sym = block_lookup_symbol (block, name, domain);
2126 if (symbol_lookup_debug > 1)
2128 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2129 host_address_to_string (sym));
2131 return fixup_symbol_section (sym, NULL);
2134 if (symbol_lookup_debug > 1)
2135 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2142 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2144 const domain_enum domain)
2146 struct objfile *objfile;
2148 for (objfile = main_objfile;
2150 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2152 struct block_symbol result
2153 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2155 if (result.symbol != NULL)
2159 return (struct block_symbol) {NULL, NULL};
2162 /* Check to see if the symbol is defined in one of the OBJFILE's
2163 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2164 depending on whether or not we want to search global symbols or
2167 static struct block_symbol
2168 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2169 const char *name, const domain_enum domain)
2171 struct compunit_symtab *cust;
2173 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2175 if (symbol_lookup_debug > 1)
2177 fprintf_unfiltered (gdb_stdlog,
2178 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2179 objfile_debug_name (objfile),
2180 block_index == GLOBAL_BLOCK
2181 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2182 name, domain_name (domain));
2185 ALL_OBJFILE_COMPUNITS (objfile, cust)
2187 const struct blockvector *bv;
2188 const struct block *block;
2189 struct block_symbol result;
2191 bv = COMPUNIT_BLOCKVECTOR (cust);
2192 block = BLOCKVECTOR_BLOCK (bv, block_index);
2193 result.symbol = block_lookup_symbol_primary (block, name, domain);
2194 result.block = block;
2195 if (result.symbol != NULL)
2197 if (symbol_lookup_debug > 1)
2199 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2200 host_address_to_string (result.symbol),
2201 host_address_to_string (block));
2203 result.symbol = fixup_symbol_section (result.symbol, objfile);
2209 if (symbol_lookup_debug > 1)
2210 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2211 return (struct block_symbol) {NULL, NULL};
2214 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2215 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2216 and all associated separate debug objfiles.
2218 Normally we only look in OBJFILE, and not any separate debug objfiles
2219 because the outer loop will cause them to be searched too. This case is
2220 different. Here we're called from search_symbols where it will only
2221 call us for the the objfile that contains a matching minsym. */
2223 static struct block_symbol
2224 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2225 const char *linkage_name,
2228 enum language lang = current_language->la_language;
2229 struct objfile *main_objfile, *cur_objfile;
2231 demangle_result_storage storage;
2232 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2234 if (objfile->separate_debug_objfile_backlink)
2235 main_objfile = objfile->separate_debug_objfile_backlink;
2237 main_objfile = objfile;
2239 for (cur_objfile = main_objfile;
2241 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2243 struct block_symbol result;
2245 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2246 modified_name, domain);
2247 if (result.symbol == NULL)
2248 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2249 modified_name, domain);
2250 if (result.symbol != NULL)
2254 return (struct block_symbol) {NULL, NULL};
2257 /* A helper function that throws an exception when a symbol was found
2258 in a psymtab but not in a symtab. */
2260 static void ATTRIBUTE_NORETURN
2261 error_in_psymtab_expansion (int block_index, const char *name,
2262 struct compunit_symtab *cust)
2265 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2266 %s may be an inlined function, or may be a template function\n \
2267 (if a template, try specifying an instantiation: %s<type>)."),
2268 block_index == GLOBAL_BLOCK ? "global" : "static",
2270 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2274 /* A helper function for various lookup routines that interfaces with
2275 the "quick" symbol table functions. */
2277 static struct block_symbol
2278 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2279 const char *name, const domain_enum domain)
2281 struct compunit_symtab *cust;
2282 const struct blockvector *bv;
2283 const struct block *block;
2284 struct block_symbol result;
2287 return (struct block_symbol) {NULL, NULL};
2289 if (symbol_lookup_debug > 1)
2291 fprintf_unfiltered (gdb_stdlog,
2292 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2293 objfile_debug_name (objfile),
2294 block_index == GLOBAL_BLOCK
2295 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2296 name, domain_name (domain));
2299 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2302 if (symbol_lookup_debug > 1)
2304 fprintf_unfiltered (gdb_stdlog,
2305 "lookup_symbol_via_quick_fns (...) = NULL\n");
2307 return (struct block_symbol) {NULL, NULL};
2310 bv = COMPUNIT_BLOCKVECTOR (cust);
2311 block = BLOCKVECTOR_BLOCK (bv, block_index);
2312 result.symbol = block_lookup_symbol (block, name, domain);
2313 if (result.symbol == NULL)
2314 error_in_psymtab_expansion (block_index, name, cust);
2316 if (symbol_lookup_debug > 1)
2318 fprintf_unfiltered (gdb_stdlog,
2319 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2320 host_address_to_string (result.symbol),
2321 host_address_to_string (block));
2324 result.symbol = fixup_symbol_section (result.symbol, objfile);
2325 result.block = block;
2332 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2334 const struct block *block,
2335 const domain_enum domain)
2337 struct block_symbol result;
2339 /* NOTE: carlton/2003-05-19: The comments below were written when
2340 this (or what turned into this) was part of lookup_symbol_aux;
2341 I'm much less worried about these questions now, since these
2342 decisions have turned out well, but I leave these comments here
2345 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2346 not it would be appropriate to search the current global block
2347 here as well. (That's what this code used to do before the
2348 is_a_field_of_this check was moved up.) On the one hand, it's
2349 redundant with the lookup in all objfiles search that happens
2350 next. On the other hand, if decode_line_1 is passed an argument
2351 like filename:var, then the user presumably wants 'var' to be
2352 searched for in filename. On the third hand, there shouldn't be
2353 multiple global variables all of which are named 'var', and it's
2354 not like decode_line_1 has ever restricted its search to only
2355 global variables in a single filename. All in all, only
2356 searching the static block here seems best: it's correct and it's
2359 /* NOTE: carlton/2002-12-05: There's also a possible performance
2360 issue here: if you usually search for global symbols in the
2361 current file, then it would be slightly better to search the
2362 current global block before searching all the symtabs. But there
2363 are other factors that have a much greater effect on performance
2364 than that one, so I don't think we should worry about that for
2367 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2368 the current objfile. Searching the current objfile first is useful
2369 for both matching user expectations as well as performance. */
2371 result = lookup_symbol_in_static_block (name, block, domain);
2372 if (result.symbol != NULL)
2375 /* If we didn't find a definition for a builtin type in the static block,
2376 search for it now. This is actually the right thing to do and can be
2377 a massive performance win. E.g., when debugging a program with lots of
2378 shared libraries we could search all of them only to find out the
2379 builtin type isn't defined in any of them. This is common for types
2381 if (domain == VAR_DOMAIN)
2383 struct gdbarch *gdbarch;
2386 gdbarch = target_gdbarch ();
2388 gdbarch = block_gdbarch (block);
2389 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2391 result.block = NULL;
2392 if (result.symbol != NULL)
2396 return lookup_global_symbol (name, block, domain);
2402 lookup_symbol_in_static_block (const char *name,
2403 const struct block *block,
2404 const domain_enum domain)
2406 const struct block *static_block = block_static_block (block);
2409 if (static_block == NULL)
2410 return (struct block_symbol) {NULL, NULL};
2412 if (symbol_lookup_debug)
2414 struct objfile *objfile = lookup_objfile_from_block (static_block);
2416 fprintf_unfiltered (gdb_stdlog,
2417 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2420 host_address_to_string (block),
2421 objfile_debug_name (objfile),
2422 domain_name (domain));
2425 sym = lookup_symbol_in_block (name, static_block, domain);
2426 if (symbol_lookup_debug)
2428 fprintf_unfiltered (gdb_stdlog,
2429 "lookup_symbol_in_static_block (...) = %s\n",
2430 sym != NULL ? host_address_to_string (sym) : "NULL");
2432 return (struct block_symbol) {sym, static_block};
2435 /* Perform the standard symbol lookup of NAME in OBJFILE:
2436 1) First search expanded symtabs, and if not found
2437 2) Search the "quick" symtabs (partial or .gdb_index).
2438 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2440 static struct block_symbol
2441 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2442 const char *name, const domain_enum domain)
2444 struct block_symbol result;
2446 if (symbol_lookup_debug)
2448 fprintf_unfiltered (gdb_stdlog,
2449 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2450 objfile_debug_name (objfile),
2451 block_index == GLOBAL_BLOCK
2452 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2453 name, domain_name (domain));
2456 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2458 if (result.symbol != NULL)
2460 if (symbol_lookup_debug)
2462 fprintf_unfiltered (gdb_stdlog,
2463 "lookup_symbol_in_objfile (...) = %s"
2465 host_address_to_string (result.symbol));
2470 result = lookup_symbol_via_quick_fns (objfile, block_index,
2472 if (symbol_lookup_debug)
2474 fprintf_unfiltered (gdb_stdlog,
2475 "lookup_symbol_in_objfile (...) = %s%s\n",
2476 result.symbol != NULL
2477 ? host_address_to_string (result.symbol)
2479 result.symbol != NULL ? " (via quick fns)" : "");
2487 lookup_static_symbol (const char *name, const domain_enum domain)
2489 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2490 struct objfile *objfile;
2491 struct block_symbol result;
2492 struct block_symbol_cache *bsc;
2493 struct symbol_cache_slot *slot;
2495 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2496 NULL for OBJFILE_CONTEXT. */
2497 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2499 if (result.symbol != NULL)
2501 if (SYMBOL_LOOKUP_FAILED_P (result))
2502 return (struct block_symbol) {NULL, NULL};
2506 ALL_OBJFILES (objfile)
2508 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2509 if (result.symbol != NULL)
2511 /* Still pass NULL for OBJFILE_CONTEXT here. */
2512 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2518 /* Still pass NULL for OBJFILE_CONTEXT here. */
2519 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2520 return (struct block_symbol) {NULL, NULL};
2523 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2525 struct global_sym_lookup_data
2527 /* The name of the symbol we are searching for. */
2530 /* The domain to use for our search. */
2533 /* The field where the callback should store the symbol if found.
2534 It should be initialized to {NULL, NULL} before the search is started. */
2535 struct block_symbol result;
2538 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2539 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2540 OBJFILE. The arguments for the search are passed via CB_DATA,
2541 which in reality is a pointer to struct global_sym_lookup_data. */
2544 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2547 struct global_sym_lookup_data *data =
2548 (struct global_sym_lookup_data *) cb_data;
2550 gdb_assert (data->result.symbol == NULL
2551 && data->result.block == NULL);
2553 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2554 data->name, data->domain);
2556 /* If we found a match, tell the iterator to stop. Otherwise,
2558 return (data->result.symbol != NULL);
2564 lookup_global_symbol (const char *name,
2565 const struct block *block,
2566 const domain_enum domain)
2568 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2569 struct block_symbol result;
2570 struct objfile *objfile;
2571 struct global_sym_lookup_data lookup_data;
2572 struct block_symbol_cache *bsc;
2573 struct symbol_cache_slot *slot;
2575 objfile = lookup_objfile_from_block (block);
2577 /* First see if we can find the symbol in the cache.
2578 This works because we use the current objfile to qualify the lookup. */
2579 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2581 if (result.symbol != NULL)
2583 if (SYMBOL_LOOKUP_FAILED_P (result))
2584 return (struct block_symbol) {NULL, NULL};
2588 /* Call library-specific lookup procedure. */
2589 if (objfile != NULL)
2590 result = solib_global_lookup (objfile, name, domain);
2592 /* If that didn't work go a global search (of global blocks, heh). */
2593 if (result.symbol == NULL)
2595 memset (&lookup_data, 0, sizeof (lookup_data));
2596 lookup_data.name = name;
2597 lookup_data.domain = domain;
2598 gdbarch_iterate_over_objfiles_in_search_order
2599 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2600 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2601 result = lookup_data.result;
2604 if (result.symbol != NULL)
2605 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2607 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2613 symbol_matches_domain (enum language symbol_language,
2614 domain_enum symbol_domain,
2617 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2618 Similarly, any Ada type declaration implicitly defines a typedef. */
2619 if (symbol_language == language_cplus
2620 || symbol_language == language_d
2621 || symbol_language == language_ada
2622 || symbol_language == language_rust)
2624 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2625 && symbol_domain == STRUCT_DOMAIN)
2628 /* For all other languages, strict match is required. */
2629 return (symbol_domain == domain);
2635 lookup_transparent_type (const char *name)
2637 return current_language->la_lookup_transparent_type (name);
2640 /* A helper for basic_lookup_transparent_type that interfaces with the
2641 "quick" symbol table functions. */
2643 static struct type *
2644 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2647 struct compunit_symtab *cust;
2648 const struct blockvector *bv;
2649 struct block *block;
2654 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2659 bv = COMPUNIT_BLOCKVECTOR (cust);
2660 block = BLOCKVECTOR_BLOCK (bv, block_index);
2661 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2662 block_find_non_opaque_type, NULL);
2664 error_in_psymtab_expansion (block_index, name, cust);
2665 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2666 return SYMBOL_TYPE (sym);
2669 /* Subroutine of basic_lookup_transparent_type to simplify it.
2670 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2671 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2673 static struct type *
2674 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2677 const struct compunit_symtab *cust;
2678 const struct blockvector *bv;
2679 const struct block *block;
2680 const struct symbol *sym;
2682 ALL_OBJFILE_COMPUNITS (objfile, cust)
2684 bv = COMPUNIT_BLOCKVECTOR (cust);
2685 block = BLOCKVECTOR_BLOCK (bv, block_index);
2686 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2687 block_find_non_opaque_type, NULL);
2690 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2691 return SYMBOL_TYPE (sym);
2698 /* The standard implementation of lookup_transparent_type. This code
2699 was modeled on lookup_symbol -- the parts not relevant to looking
2700 up types were just left out. In particular it's assumed here that
2701 types are available in STRUCT_DOMAIN and only in file-static or
2705 basic_lookup_transparent_type (const char *name)
2707 struct objfile *objfile;
2710 /* Now search all the global symbols. Do the symtab's first, then
2711 check the psymtab's. If a psymtab indicates the existence
2712 of the desired name as a global, then do psymtab-to-symtab
2713 conversion on the fly and return the found symbol. */
2715 ALL_OBJFILES (objfile)
2717 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2722 ALL_OBJFILES (objfile)
2724 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2729 /* Now search the static file-level symbols.
2730 Not strictly correct, but more useful than an error.
2731 Do the symtab's first, then
2732 check the psymtab's. If a psymtab indicates the existence
2733 of the desired name as a file-level static, then do psymtab-to-symtab
2734 conversion on the fly and return the found symbol. */
2736 ALL_OBJFILES (objfile)
2738 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2743 ALL_OBJFILES (objfile)
2745 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2750 return (struct type *) 0;
2753 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2755 For each symbol that matches, CALLBACK is called. The symbol is
2756 passed to the callback.
2758 If CALLBACK returns false, the iteration ends. Otherwise, the
2759 search continues. */
2762 iterate_over_symbols (const struct block *block, const char *name,
2763 const domain_enum domain,
2764 gdb::function_view<symbol_found_callback_ftype> callback)
2766 struct block_iterator iter;
2769 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2771 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2772 SYMBOL_DOMAIN (sym), domain))
2774 if (!callback (sym))
2780 /* Find the compunit symtab associated with PC and SECTION.
2781 This will read in debug info as necessary. */
2783 struct compunit_symtab *
2784 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2786 struct compunit_symtab *cust;
2787 struct compunit_symtab *best_cust = NULL;
2788 struct objfile *objfile;
2789 CORE_ADDR distance = 0;
2790 struct bound_minimal_symbol msymbol;
2792 /* If we know that this is not a text address, return failure. This is
2793 necessary because we loop based on the block's high and low code
2794 addresses, which do not include the data ranges, and because
2795 we call find_pc_sect_psymtab which has a similar restriction based
2796 on the partial_symtab's texthigh and textlow. */
2797 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2799 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2800 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2801 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2802 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2803 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2806 /* Search all symtabs for the one whose file contains our address, and which
2807 is the smallest of all the ones containing the address. This is designed
2808 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2809 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2810 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2812 This happens for native ecoff format, where code from included files
2813 gets its own symtab. The symtab for the included file should have
2814 been read in already via the dependency mechanism.
2815 It might be swifter to create several symtabs with the same name
2816 like xcoff does (I'm not sure).
2818 It also happens for objfiles that have their functions reordered.
2819 For these, the symtab we are looking for is not necessarily read in. */
2821 ALL_COMPUNITS (objfile, cust)
2824 const struct blockvector *bv;
2826 bv = COMPUNIT_BLOCKVECTOR (cust);
2827 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2829 if (BLOCK_START (b) <= pc
2830 && BLOCK_END (b) > pc
2832 || BLOCK_END (b) - BLOCK_START (b) < distance))
2834 /* For an objfile that has its functions reordered,
2835 find_pc_psymtab will find the proper partial symbol table
2836 and we simply return its corresponding symtab. */
2837 /* In order to better support objfiles that contain both
2838 stabs and coff debugging info, we continue on if a psymtab
2840 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2842 struct compunit_symtab *result;
2845 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2854 struct block_iterator iter;
2855 struct symbol *sym = NULL;
2857 ALL_BLOCK_SYMBOLS (b, iter, sym)
2859 fixup_symbol_section (sym, objfile);
2860 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2865 continue; /* No symbol in this symtab matches
2868 distance = BLOCK_END (b) - BLOCK_START (b);
2873 if (best_cust != NULL)
2876 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2878 ALL_OBJFILES (objfile)
2880 struct compunit_symtab *result;
2884 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2895 /* Find the compunit symtab associated with PC.
2896 This will read in debug info as necessary.
2897 Backward compatibility, no section. */
2899 struct compunit_symtab *
2900 find_pc_compunit_symtab (CORE_ADDR pc)
2902 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2906 /* Find the source file and line number for a given PC value and SECTION.
2907 Return a structure containing a symtab pointer, a line number,
2908 and a pc range for the entire source line.
2909 The value's .pc field is NOT the specified pc.
2910 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2911 use the line that ends there. Otherwise, in that case, the line
2912 that begins there is used. */
2914 /* The big complication here is that a line may start in one file, and end just
2915 before the start of another file. This usually occurs when you #include
2916 code in the middle of a subroutine. To properly find the end of a line's PC
2917 range, we must search all symtabs associated with this compilation unit, and
2918 find the one whose first PC is closer than that of the next line in this
2921 /* If it's worth the effort, we could be using a binary search. */
2923 struct symtab_and_line
2924 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2926 struct compunit_symtab *cust;
2927 struct symtab *iter_s;
2928 struct linetable *l;
2931 struct linetable_entry *item;
2932 const struct blockvector *bv;
2933 struct bound_minimal_symbol msymbol;
2935 /* Info on best line seen so far, and where it starts, and its file. */
2937 struct linetable_entry *best = NULL;
2938 CORE_ADDR best_end = 0;
2939 struct symtab *best_symtab = 0;
2941 /* Store here the first line number
2942 of a file which contains the line at the smallest pc after PC.
2943 If we don't find a line whose range contains PC,
2944 we will use a line one less than this,
2945 with a range from the start of that file to the first line's pc. */
2946 struct linetable_entry *alt = NULL;
2948 /* Info on best line seen in this file. */
2950 struct linetable_entry *prev;
2952 /* If this pc is not from the current frame,
2953 it is the address of the end of a call instruction.
2954 Quite likely that is the start of the following statement.
2955 But what we want is the statement containing the instruction.
2956 Fudge the pc to make sure we get that. */
2958 /* It's tempting to assume that, if we can't find debugging info for
2959 any function enclosing PC, that we shouldn't search for line
2960 number info, either. However, GAS can emit line number info for
2961 assembly files --- very helpful when debugging hand-written
2962 assembly code. In such a case, we'd have no debug info for the
2963 function, but we would have line info. */
2968 /* elz: added this because this function returned the wrong
2969 information if the pc belongs to a stub (import/export)
2970 to call a shlib function. This stub would be anywhere between
2971 two functions in the target, and the line info was erroneously
2972 taken to be the one of the line before the pc. */
2974 /* RT: Further explanation:
2976 * We have stubs (trampolines) inserted between procedures.
2978 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2979 * exists in the main image.
2981 * In the minimal symbol table, we have a bunch of symbols
2982 * sorted by start address. The stubs are marked as "trampoline",
2983 * the others appear as text. E.g.:
2985 * Minimal symbol table for main image
2986 * main: code for main (text symbol)
2987 * shr1: stub (trampoline symbol)
2988 * foo: code for foo (text symbol)
2990 * Minimal symbol table for "shr1" image:
2992 * shr1: code for shr1 (text symbol)
2995 * So the code below is trying to detect if we are in the stub
2996 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2997 * and if found, do the symbolization from the real-code address
2998 * rather than the stub address.
3000 * Assumptions being made about the minimal symbol table:
3001 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3002 * if we're really in the trampoline.s If we're beyond it (say
3003 * we're in "foo" in the above example), it'll have a closer
3004 * symbol (the "foo" text symbol for example) and will not
3005 * return the trampoline.
3006 * 2. lookup_minimal_symbol_text() will find a real text symbol
3007 * corresponding to the trampoline, and whose address will
3008 * be different than the trampoline address. I put in a sanity
3009 * check for the address being the same, to avoid an
3010 * infinite recursion.
3012 msymbol = lookup_minimal_symbol_by_pc (pc);
3013 if (msymbol.minsym != NULL)
3014 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3016 struct bound_minimal_symbol mfunsym
3017 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3020 if (mfunsym.minsym == NULL)
3021 /* I eliminated this warning since it is coming out
3022 * in the following situation:
3023 * gdb shmain // test program with shared libraries
3024 * (gdb) break shr1 // function in shared lib
3025 * Warning: In stub for ...
3026 * In the above situation, the shared lib is not loaded yet,
3027 * so of course we can't find the real func/line info,
3028 * but the "break" still works, and the warning is annoying.
3029 * So I commented out the warning. RT */
3030 /* warning ("In stub for %s; unable to find real function/line info",
3031 SYMBOL_LINKAGE_NAME (msymbol)); */
3034 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3035 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3036 /* Avoid infinite recursion */
3037 /* See above comment about why warning is commented out. */
3038 /* warning ("In stub for %s; unable to find real function/line info",
3039 SYMBOL_LINKAGE_NAME (msymbol)); */
3043 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3046 symtab_and_line val;
3047 val.pspace = current_program_space;
3049 cust = find_pc_sect_compunit_symtab (pc, section);
3052 /* If no symbol information, return previous pc. */
3059 bv = COMPUNIT_BLOCKVECTOR (cust);
3061 /* Look at all the symtabs that share this blockvector.
3062 They all have the same apriori range, that we found was right;
3063 but they have different line tables. */
3065 ALL_COMPUNIT_FILETABS (cust, iter_s)
3067 /* Find the best line in this symtab. */
3068 l = SYMTAB_LINETABLE (iter_s);
3074 /* I think len can be zero if the symtab lacks line numbers
3075 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3076 I'm not sure which, and maybe it depends on the symbol
3082 item = l->item; /* Get first line info. */
3084 /* Is this file's first line closer than the first lines of other files?
3085 If so, record this file, and its first line, as best alternate. */
3086 if (item->pc > pc && (!alt || item->pc < alt->pc))
3089 for (i = 0; i < len; i++, item++)
3091 /* Leave prev pointing to the linetable entry for the last line
3092 that started at or before PC. */
3099 /* At this point, prev points at the line whose start addr is <= pc, and
3100 item points at the next line. If we ran off the end of the linetable
3101 (pc >= start of the last line), then prev == item. If pc < start of
3102 the first line, prev will not be set. */
3104 /* Is this file's best line closer than the best in the other files?
3105 If so, record this file, and its best line, as best so far. Don't
3106 save prev if it represents the end of a function (i.e. line number
3107 0) instead of a real line. */
3109 if (prev && prev->line && (!best || prev->pc > best->pc))
3112 best_symtab = iter_s;
3114 /* Discard BEST_END if it's before the PC of the current BEST. */
3115 if (best_end <= best->pc)
3119 /* If another line (denoted by ITEM) is in the linetable and its
3120 PC is after BEST's PC, but before the current BEST_END, then
3121 use ITEM's PC as the new best_end. */
3122 if (best && i < len && item->pc > best->pc
3123 && (best_end == 0 || best_end > item->pc))
3124 best_end = item->pc;
3129 /* If we didn't find any line number info, just return zeros.
3130 We used to return alt->line - 1 here, but that could be
3131 anywhere; if we don't have line number info for this PC,
3132 don't make some up. */
3135 else if (best->line == 0)
3137 /* If our best fit is in a range of PC's for which no line
3138 number info is available (line number is zero) then we didn't
3139 find any valid line information. */
3144 val.symtab = best_symtab;
3145 val.line = best->line;
3147 if (best_end && (!alt || best_end < alt->pc))
3152 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3154 val.section = section;
3158 /* Backward compatibility (no section). */
3160 struct symtab_and_line
3161 find_pc_line (CORE_ADDR pc, int notcurrent)
3163 struct obj_section *section;
3165 section = find_pc_overlay (pc);
3166 if (pc_in_unmapped_range (pc, section))
3167 pc = overlay_mapped_address (pc, section);
3168 return find_pc_sect_line (pc, section, notcurrent);
3174 find_pc_line_symtab (CORE_ADDR pc)
3176 struct symtab_and_line sal;
3178 /* This always passes zero for NOTCURRENT to find_pc_line.
3179 There are currently no callers that ever pass non-zero. */
3180 sal = find_pc_line (pc, 0);
3184 /* Find line number LINE in any symtab whose name is the same as
3187 If found, return the symtab that contains the linetable in which it was
3188 found, set *INDEX to the index in the linetable of the best entry
3189 found, and set *EXACT_MATCH nonzero if the value returned is an
3192 If not found, return NULL. */
3195 find_line_symtab (struct symtab *symtab, int line,
3196 int *index, int *exact_match)
3198 int exact = 0; /* Initialized here to avoid a compiler warning. */
3200 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3204 struct linetable *best_linetable;
3205 struct symtab *best_symtab;
3207 /* First try looking it up in the given symtab. */
3208 best_linetable = SYMTAB_LINETABLE (symtab);
3209 best_symtab = symtab;
3210 best_index = find_line_common (best_linetable, line, &exact, 0);
3211 if (best_index < 0 || !exact)
3213 /* Didn't find an exact match. So we better keep looking for
3214 another symtab with the same name. In the case of xcoff,
3215 multiple csects for one source file (produced by IBM's FORTRAN
3216 compiler) produce multiple symtabs (this is unavoidable
3217 assuming csects can be at arbitrary places in memory and that
3218 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3220 /* BEST is the smallest linenumber > LINE so far seen,
3221 or 0 if none has been seen so far.
3222 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3225 struct objfile *objfile;
3226 struct compunit_symtab *cu;
3229 if (best_index >= 0)
3230 best = best_linetable->item[best_index].line;
3234 ALL_OBJFILES (objfile)
3237 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3238 symtab_to_fullname (symtab));
3241 ALL_FILETABS (objfile, cu, s)
3243 struct linetable *l;
3246 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3248 if (FILENAME_CMP (symtab_to_fullname (symtab),
3249 symtab_to_fullname (s)) != 0)
3251 l = SYMTAB_LINETABLE (s);
3252 ind = find_line_common (l, line, &exact, 0);
3262 if (best == 0 || l->item[ind].line < best)
3264 best = l->item[ind].line;
3277 *index = best_index;
3279 *exact_match = exact;
3284 /* Given SYMTAB, returns all the PCs function in the symtab that
3285 exactly match LINE. Returns an empty vector if there are no exact
3286 matches, but updates BEST_ITEM in this case. */
3288 std::vector<CORE_ADDR>
3289 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3290 struct linetable_entry **best_item)
3293 std::vector<CORE_ADDR> result;
3295 /* First, collect all the PCs that are at this line. */
3301 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3308 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3310 if (*best_item == NULL || item->line < (*best_item)->line)
3316 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3324 /* Set the PC value for a given source file and line number and return true.
3325 Returns zero for invalid line number (and sets the PC to 0).
3326 The source file is specified with a struct symtab. */
3329 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3331 struct linetable *l;
3338 symtab = find_line_symtab (symtab, line, &ind, NULL);
3341 l = SYMTAB_LINETABLE (symtab);
3342 *pc = l->item[ind].pc;
3349 /* Find the range of pc values in a line.
3350 Store the starting pc of the line into *STARTPTR
3351 and the ending pc (start of next line) into *ENDPTR.
3352 Returns 1 to indicate success.
3353 Returns 0 if could not find the specified line. */
3356 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3359 CORE_ADDR startaddr;
3360 struct symtab_and_line found_sal;
3363 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3366 /* This whole function is based on address. For example, if line 10 has
3367 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3368 "info line *0x123" should say the line goes from 0x100 to 0x200
3369 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3370 This also insures that we never give a range like "starts at 0x134
3371 and ends at 0x12c". */
3373 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3374 if (found_sal.line != sal.line)
3376 /* The specified line (sal) has zero bytes. */
3377 *startptr = found_sal.pc;
3378 *endptr = found_sal.pc;
3382 *startptr = found_sal.pc;
3383 *endptr = found_sal.end;
3388 /* Given a line table and a line number, return the index into the line
3389 table for the pc of the nearest line whose number is >= the specified one.
3390 Return -1 if none is found. The value is >= 0 if it is an index.
3391 START is the index at which to start searching the line table.
3393 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3396 find_line_common (struct linetable *l, int lineno,
3397 int *exact_match, int start)
3402 /* BEST is the smallest linenumber > LINENO so far seen,
3403 or 0 if none has been seen so far.
3404 BEST_INDEX identifies the item for it. */
3406 int best_index = -1;
3417 for (i = start; i < len; i++)
3419 struct linetable_entry *item = &(l->item[i]);
3421 if (item->line == lineno)
3423 /* Return the first (lowest address) entry which matches. */
3428 if (item->line > lineno && (best == 0 || item->line < best))
3435 /* If we got here, we didn't get an exact match. */
3440 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3442 struct symtab_and_line sal;
3444 sal = find_pc_line (pc, 0);
3447 return sal.symtab != 0;
3450 /* Given a function symbol SYM, find the symtab and line for the start
3452 If the argument FUNFIRSTLINE is nonzero, we want the first line
3453 of real code inside the function.
3454 This function should return SALs matching those from minsym_found,
3455 otherwise false multiple-locations breakpoints could be placed. */
3457 struct symtab_and_line
3458 find_function_start_sal (struct symbol *sym, int funfirstline)
3460 fixup_symbol_section (sym, NULL);
3462 obj_section *section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3464 = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3467 if (funfirstline && sal.symtab != NULL
3468 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3469 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3471 struct gdbarch *gdbarch = symbol_arch (sym);
3473 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3474 if (gdbarch_skip_entrypoint_p (gdbarch))
3475 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3479 /* We always should have a line for the function start address.
3480 If we don't, something is odd. Create a plain SAL refering
3481 just the PC and hope that skip_prologue_sal (if requested)
3482 can find a line number for after the prologue. */
3483 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3486 sal.pspace = current_program_space;
3487 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3488 sal.section = section;
3493 skip_prologue_sal (&sal);
3498 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3499 address for that function that has an entry in SYMTAB's line info
3500 table. If such an entry cannot be found, return FUNC_ADDR
3504 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3506 CORE_ADDR func_start, func_end;
3507 struct linetable *l;
3510 /* Give up if this symbol has no lineinfo table. */
3511 l = SYMTAB_LINETABLE (symtab);
3515 /* Get the range for the function's PC values, or give up if we
3516 cannot, for some reason. */
3517 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3520 /* Linetable entries are ordered by PC values, see the commentary in
3521 symtab.h where `struct linetable' is defined. Thus, the first
3522 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3523 address we are looking for. */
3524 for (i = 0; i < l->nitems; i++)
3526 struct linetable_entry *item = &(l->item[i]);
3528 /* Don't use line numbers of zero, they mark special entries in
3529 the table. See the commentary on symtab.h before the
3530 definition of struct linetable. */
3531 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3538 /* Adjust SAL to the first instruction past the function prologue.
3539 If the PC was explicitly specified, the SAL is not changed.
3540 If the line number was explicitly specified, at most the SAL's PC
3541 is updated. If SAL is already past the prologue, then do nothing. */
3544 skip_prologue_sal (struct symtab_and_line *sal)
3547 struct symtab_and_line start_sal;
3548 CORE_ADDR pc, saved_pc;
3549 struct obj_section *section;
3551 struct objfile *objfile;
3552 struct gdbarch *gdbarch;
3553 const struct block *b, *function_block;
3554 int force_skip, skip;
3556 /* Do not change the SAL if PC was specified explicitly. */
3557 if (sal->explicit_pc)
3560 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3562 switch_to_program_space_and_thread (sal->pspace);
3564 sym = find_pc_sect_function (sal->pc, sal->section);
3567 fixup_symbol_section (sym, NULL);
3569 objfile = symbol_objfile (sym);
3570 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3571 section = SYMBOL_OBJ_SECTION (objfile, sym);
3572 name = SYMBOL_LINKAGE_NAME (sym);
3576 struct bound_minimal_symbol msymbol
3577 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3579 if (msymbol.minsym == NULL)
3582 objfile = msymbol.objfile;
3583 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3584 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3585 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3588 gdbarch = get_objfile_arch (objfile);
3590 /* Process the prologue in two passes. In the first pass try to skip the
3591 prologue (SKIP is true) and verify there is a real need for it (indicated
3592 by FORCE_SKIP). If no such reason was found run a second pass where the
3593 prologue is not skipped (SKIP is false). */
3598 /* Be conservative - allow direct PC (without skipping prologue) only if we
3599 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3600 have to be set by the caller so we use SYM instead. */
3602 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3610 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3611 so that gdbarch_skip_prologue has something unique to work on. */
3612 if (section_is_overlay (section) && !section_is_mapped (section))
3613 pc = overlay_unmapped_address (pc, section);
3615 /* Skip "first line" of function (which is actually its prologue). */
3616 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3617 if (gdbarch_skip_entrypoint_p (gdbarch))
3618 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3620 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3622 /* For overlays, map pc back into its mapped VMA range. */
3623 pc = overlay_mapped_address (pc, section);
3625 /* Calculate line number. */
3626 start_sal = find_pc_sect_line (pc, section, 0);
3628 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3629 line is still part of the same function. */
3630 if (skip && start_sal.pc != pc
3631 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3632 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3633 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3634 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3636 /* First pc of next line */
3638 /* Recalculate the line number (might not be N+1). */
3639 start_sal = find_pc_sect_line (pc, section, 0);
3642 /* On targets with executable formats that don't have a concept of
3643 constructors (ELF with .init has, PE doesn't), gcc emits a call
3644 to `__main' in `main' between the prologue and before user
3646 if (gdbarch_skip_main_prologue_p (gdbarch)
3647 && name && strcmp_iw (name, "main") == 0)
3649 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3650 /* Recalculate the line number (might not be N+1). */
3651 start_sal = find_pc_sect_line (pc, section, 0);
3655 while (!force_skip && skip--);
3657 /* If we still don't have a valid source line, try to find the first
3658 PC in the lineinfo table that belongs to the same function. This
3659 happens with COFF debug info, which does not seem to have an
3660 entry in lineinfo table for the code after the prologue which has
3661 no direct relation to source. For example, this was found to be
3662 the case with the DJGPP target using "gcc -gcoff" when the
3663 compiler inserted code after the prologue to make sure the stack
3665 if (!force_skip && sym && start_sal.symtab == NULL)
3667 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3668 /* Recalculate the line number. */
3669 start_sal = find_pc_sect_line (pc, section, 0);
3672 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3673 forward SAL to the end of the prologue. */
3678 sal->section = section;
3680 /* Unless the explicit_line flag was set, update the SAL line
3681 and symtab to correspond to the modified PC location. */
3682 if (sal->explicit_line)
3685 sal->symtab = start_sal.symtab;
3686 sal->line = start_sal.line;
3687 sal->end = start_sal.end;
3689 /* Check if we are now inside an inlined function. If we can,
3690 use the call site of the function instead. */
3691 b = block_for_pc_sect (sal->pc, sal->section);
3692 function_block = NULL;
3695 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3697 else if (BLOCK_FUNCTION (b) != NULL)
3699 b = BLOCK_SUPERBLOCK (b);
3701 if (function_block != NULL
3702 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3704 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3705 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3709 /* Given PC at the function's start address, attempt to find the
3710 prologue end using SAL information. Return zero if the skip fails.
3712 A non-optimized prologue traditionally has one SAL for the function
3713 and a second for the function body. A single line function has
3714 them both pointing at the same line.
3716 An optimized prologue is similar but the prologue may contain
3717 instructions (SALs) from the instruction body. Need to skip those
3718 while not getting into the function body.
3720 The functions end point and an increasing SAL line are used as
3721 indicators of the prologue's endpoint.
3723 This code is based on the function refine_prologue_limit
3727 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3729 struct symtab_and_line prologue_sal;
3732 const struct block *bl;
3734 /* Get an initial range for the function. */
3735 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3736 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3738 prologue_sal = find_pc_line (start_pc, 0);
3739 if (prologue_sal.line != 0)
3741 /* For languages other than assembly, treat two consecutive line
3742 entries at the same address as a zero-instruction prologue.
3743 The GNU assembler emits separate line notes for each instruction
3744 in a multi-instruction macro, but compilers generally will not
3746 if (prologue_sal.symtab->language != language_asm)
3748 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3751 /* Skip any earlier lines, and any end-of-sequence marker
3752 from a previous function. */
3753 while (linetable->item[idx].pc != prologue_sal.pc
3754 || linetable->item[idx].line == 0)
3757 if (idx+1 < linetable->nitems
3758 && linetable->item[idx+1].line != 0
3759 && linetable->item[idx+1].pc == start_pc)
3763 /* If there is only one sal that covers the entire function,
3764 then it is probably a single line function, like
3766 if (prologue_sal.end >= end_pc)
3769 while (prologue_sal.end < end_pc)
3771 struct symtab_and_line sal;
3773 sal = find_pc_line (prologue_sal.end, 0);
3776 /* Assume that a consecutive SAL for the same (or larger)
3777 line mark the prologue -> body transition. */
3778 if (sal.line >= prologue_sal.line)
3780 /* Likewise if we are in a different symtab altogether
3781 (e.g. within a file included via #include). */
3782 if (sal.symtab != prologue_sal.symtab)
3785 /* The line number is smaller. Check that it's from the
3786 same function, not something inlined. If it's inlined,
3787 then there is no point comparing the line numbers. */
3788 bl = block_for_pc (prologue_sal.end);
3791 if (block_inlined_p (bl))
3793 if (BLOCK_FUNCTION (bl))
3798 bl = BLOCK_SUPERBLOCK (bl);
3803 /* The case in which compiler's optimizer/scheduler has
3804 moved instructions into the prologue. We look ahead in
3805 the function looking for address ranges whose
3806 corresponding line number is less the first one that we
3807 found for the function. This is more conservative then
3808 refine_prologue_limit which scans a large number of SALs
3809 looking for any in the prologue. */
3814 if (prologue_sal.end < end_pc)
3815 /* Return the end of this line, or zero if we could not find a
3817 return prologue_sal.end;
3819 /* Don't return END_PC, which is past the end of the function. */
3820 return prologue_sal.pc;
3826 find_function_alias_target (bound_minimal_symbol msymbol)
3828 if (!msymbol_is_text (msymbol.minsym))
3831 CORE_ADDR addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
3832 symbol *sym = find_pc_function (addr);
3834 && SYMBOL_CLASS (sym) == LOC_BLOCK
3835 && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) == addr)
3842 /* If P is of the form "operator[ \t]+..." where `...' is
3843 some legitimate operator text, return a pointer to the
3844 beginning of the substring of the operator text.
3845 Otherwise, return "". */
3848 operator_chars (const char *p, const char **end)
3851 if (!startswith (p, CP_OPERATOR_STR))
3853 p += CP_OPERATOR_LEN;
3855 /* Don't get faked out by `operator' being part of a longer
3857 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3860 /* Allow some whitespace between `operator' and the operator symbol. */
3861 while (*p == ' ' || *p == '\t')
3864 /* Recognize 'operator TYPENAME'. */
3866 if (isalpha (*p) || *p == '_' || *p == '$')
3868 const char *q = p + 1;
3870 while (isalnum (*q) || *q == '_' || *q == '$')
3879 case '\\': /* regexp quoting */
3882 if (p[2] == '=') /* 'operator\*=' */
3884 else /* 'operator\*' */
3888 else if (p[1] == '[')
3891 error (_("mismatched quoting on brackets, "
3892 "try 'operator\\[\\]'"));
3893 else if (p[2] == '\\' && p[3] == ']')
3895 *end = p + 4; /* 'operator\[\]' */
3899 error (_("nothing is allowed between '[' and ']'"));
3903 /* Gratuitous qoute: skip it and move on. */
3925 if (p[0] == '-' && p[1] == '>')
3927 /* Struct pointer member operator 'operator->'. */
3930 *end = p + 3; /* 'operator->*' */
3933 else if (p[2] == '\\')
3935 *end = p + 4; /* Hopefully 'operator->\*' */
3940 *end = p + 2; /* 'operator->' */
3944 if (p[1] == '=' || p[1] == p[0])
3955 error (_("`operator ()' must be specified "
3956 "without whitespace in `()'"));
3961 error (_("`operator ?:' must be specified "
3962 "without whitespace in `?:'"));
3967 error (_("`operator []' must be specified "
3968 "without whitespace in `[]'"));
3972 error (_("`operator %s' not supported"), p);
3981 /* Data structure to maintain printing state for output_source_filename. */
3983 struct output_source_filename_data
3985 /* Cache of what we've seen so far. */
3986 struct filename_seen_cache *filename_seen_cache;
3988 /* Flag of whether we're printing the first one. */
3992 /* Slave routine for sources_info. Force line breaks at ,'s.
3993 NAME is the name to print.
3994 DATA contains the state for printing and watching for duplicates. */
3997 output_source_filename (const char *name,
3998 struct output_source_filename_data *data)
4000 /* Since a single source file can result in several partial symbol
4001 tables, we need to avoid printing it more than once. Note: if
4002 some of the psymtabs are read in and some are not, it gets
4003 printed both under "Source files for which symbols have been
4004 read" and "Source files for which symbols will be read in on
4005 demand". I consider this a reasonable way to deal with the
4006 situation. I'm not sure whether this can also happen for
4007 symtabs; it doesn't hurt to check. */
4009 /* Was NAME already seen? */
4010 if (data->filename_seen_cache->seen (name))
4012 /* Yes; don't print it again. */
4016 /* No; print it and reset *FIRST. */
4018 printf_filtered (", ");
4022 fputs_filtered (name, gdb_stdout);
4025 /* A callback for map_partial_symbol_filenames. */
4028 output_partial_symbol_filename (const char *filename, const char *fullname,
4031 output_source_filename (fullname ? fullname : filename,
4032 (struct output_source_filename_data *) data);
4036 info_sources_command (char *ignore, int from_tty)
4038 struct compunit_symtab *cu;
4040 struct objfile *objfile;
4041 struct output_source_filename_data data;
4043 if (!have_full_symbols () && !have_partial_symbols ())
4045 error (_("No symbol table is loaded. Use the \"file\" command."));
4048 filename_seen_cache filenames_seen;
4050 data.filename_seen_cache = &filenames_seen;
4052 printf_filtered ("Source files for which symbols have been read in:\n\n");
4055 ALL_FILETABS (objfile, cu, s)
4057 const char *fullname = symtab_to_fullname (s);
4059 output_source_filename (fullname, &data);
4061 printf_filtered ("\n\n");
4063 printf_filtered ("Source files for which symbols "
4064 "will be read in on demand:\n\n");
4066 filenames_seen.clear ();
4068 map_symbol_filenames (output_partial_symbol_filename, &data,
4069 1 /*need_fullname*/);
4070 printf_filtered ("\n");
4073 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4074 non-zero compare only lbasename of FILES. */
4077 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4081 if (file != NULL && nfiles != 0)
4083 for (i = 0; i < nfiles; i++)
4085 if (compare_filenames_for_search (file, (basenames
4086 ? lbasename (files[i])
4091 else if (nfiles == 0)
4096 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4097 sort symbols, not minimal symbols. */
4100 symbol_search::compare_search_syms (const symbol_search &sym_a,
4101 const symbol_search &sym_b)
4105 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4106 symbol_symtab (sym_b.symbol)->filename);
4110 if (sym_a.block != sym_b.block)
4111 return sym_a.block - sym_b.block;
4113 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4114 SYMBOL_PRINT_NAME (sym_b.symbol));
4117 /* Sort the symbols in RESULT and remove duplicates. */
4120 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4122 std::sort (result->begin (), result->end ());
4123 result->erase (std::unique (result->begin (), result->end ()),
4127 /* Search the symbol table for matches to the regular expression REGEXP,
4128 returning the results.
4130 Only symbols of KIND are searched:
4131 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4132 and constants (enums)
4133 FUNCTIONS_DOMAIN - search all functions
4134 TYPES_DOMAIN - search all type names
4135 ALL_DOMAIN - an internal error for this function
4137 Within each file the results are sorted locally; each symtab's global and
4138 static blocks are separately alphabetized.
4139 Duplicate entries are removed. */
4141 std::vector<symbol_search>
4142 search_symbols (const char *regexp, enum search_domain kind,
4143 int nfiles, const char *files[])
4145 struct compunit_symtab *cust;
4146 const struct blockvector *bv;
4149 struct block_iterator iter;
4151 struct objfile *objfile;
4152 struct minimal_symbol *msymbol;
4154 static const enum minimal_symbol_type types[]
4155 = {mst_data, mst_text, mst_abs};
4156 static const enum minimal_symbol_type types2[]
4157 = {mst_bss, mst_file_text, mst_abs};
4158 static const enum minimal_symbol_type types3[]
4159 = {mst_file_data, mst_solib_trampoline, mst_abs};
4160 static const enum minimal_symbol_type types4[]
4161 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4162 enum minimal_symbol_type ourtype;
4163 enum minimal_symbol_type ourtype2;
4164 enum minimal_symbol_type ourtype3;
4165 enum minimal_symbol_type ourtype4;
4166 std::vector<symbol_search> result;
4167 gdb::optional<compiled_regex> preg;
4169 gdb_assert (kind <= TYPES_DOMAIN);
4171 ourtype = types[kind];
4172 ourtype2 = types2[kind];
4173 ourtype3 = types3[kind];
4174 ourtype4 = types4[kind];
4178 /* Make sure spacing is right for C++ operators.
4179 This is just a courtesy to make the matching less sensitive
4180 to how many spaces the user leaves between 'operator'
4181 and <TYPENAME> or <OPERATOR>. */
4183 const char *opname = operator_chars (regexp, &opend);
4188 int fix = -1; /* -1 means ok; otherwise number of
4191 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4193 /* There should 1 space between 'operator' and 'TYPENAME'. */
4194 if (opname[-1] != ' ' || opname[-2] == ' ')
4199 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4200 if (opname[-1] == ' ')
4203 /* If wrong number of spaces, fix it. */
4206 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4208 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4213 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4215 preg.emplace (regexp, cflags, _("Invalid regexp"));
4218 /* Search through the partial symtabs *first* for all symbols
4219 matching the regexp. That way we don't have to reproduce all of
4220 the machinery below. */
4221 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4223 return file_matches (filename, files, nfiles,
4226 [&] (const char *symname)
4228 return (!preg || preg->exec (symname,
4234 /* Here, we search through the minimal symbol tables for functions
4235 and variables that match, and force their symbols to be read.
4236 This is in particular necessary for demangled variable names,
4237 which are no longer put into the partial symbol tables.
4238 The symbol will then be found during the scan of symtabs below.
4240 For functions, find_pc_symtab should succeed if we have debug info
4241 for the function, for variables we have to call
4242 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4244 If the lookup fails, set found_misc so that we will rescan to print
4245 any matching symbols without debug info.
4246 We only search the objfile the msymbol came from, we no longer search
4247 all objfiles. In large programs (1000s of shared libs) searching all
4248 objfiles is not worth the pain. */
4250 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4252 ALL_MSYMBOLS (objfile, msymbol)
4256 if (msymbol->created_by_gdb)
4259 if (MSYMBOL_TYPE (msymbol) == ourtype
4260 || MSYMBOL_TYPE (msymbol) == ourtype2
4261 || MSYMBOL_TYPE (msymbol) == ourtype3
4262 || MSYMBOL_TYPE (msymbol) == ourtype4)
4265 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4268 /* Note: An important side-effect of these lookup functions
4269 is to expand the symbol table if msymbol is found, for the
4270 benefit of the next loop on ALL_COMPUNITS. */
4271 if (kind == FUNCTIONS_DOMAIN
4272 ? (find_pc_compunit_symtab
4273 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4274 : (lookup_symbol_in_objfile_from_linkage_name
4275 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4283 ALL_COMPUNITS (objfile, cust)
4285 bv = COMPUNIT_BLOCKVECTOR (cust);
4286 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4288 b = BLOCKVECTOR_BLOCK (bv, i);
4289 ALL_BLOCK_SYMBOLS (b, iter, sym)
4291 struct symtab *real_symtab = symbol_symtab (sym);
4295 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4296 a substring of symtab_to_fullname as it may contain "./" etc. */
4297 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4298 || ((basenames_may_differ
4299 || file_matches (lbasename (real_symtab->filename),
4301 && file_matches (symtab_to_fullname (real_symtab),
4304 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4306 && ((kind == VARIABLES_DOMAIN
4307 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4308 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4309 && SYMBOL_CLASS (sym) != LOC_BLOCK
4310 /* LOC_CONST can be used for more than just enums,
4311 e.g., c++ static const members.
4312 We only want to skip enums here. */
4313 && !(SYMBOL_CLASS (sym) == LOC_CONST
4314 && (TYPE_CODE (SYMBOL_TYPE (sym))
4315 == TYPE_CODE_ENUM)))
4316 || (kind == FUNCTIONS_DOMAIN
4317 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4318 || (kind == TYPES_DOMAIN
4319 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4322 result.emplace_back (i, sym);
4328 if (!result.empty ())
4329 sort_search_symbols_remove_dups (&result);
4331 /* If there are no eyes, avoid all contact. I mean, if there are
4332 no debug symbols, then add matching minsyms. */
4334 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4336 ALL_MSYMBOLS (objfile, msymbol)
4340 if (msymbol->created_by_gdb)
4343 if (MSYMBOL_TYPE (msymbol) == ourtype
4344 || MSYMBOL_TYPE (msymbol) == ourtype2
4345 || MSYMBOL_TYPE (msymbol) == ourtype3
4346 || MSYMBOL_TYPE (msymbol) == ourtype4)
4348 if (!preg || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4351 /* For functions we can do a quick check of whether the
4352 symbol might be found via find_pc_symtab. */
4353 if (kind != FUNCTIONS_DOMAIN
4354 || (find_pc_compunit_symtab
4355 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4357 if (lookup_symbol_in_objfile_from_linkage_name
4358 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4362 result.emplace_back (i, msymbol, objfile);
4373 /* Helper function for symtab_symbol_info, this function uses
4374 the data returned from search_symbols() to print information
4375 regarding the match to gdb_stdout. */
4378 print_symbol_info (enum search_domain kind,
4380 int block, const char *last)
4382 struct symtab *s = symbol_symtab (sym);
4383 const char *s_filename = symtab_to_filename_for_display (s);
4385 if (last == NULL || filename_cmp (last, s_filename) != 0)
4387 fputs_filtered ("\nFile ", gdb_stdout);
4388 fputs_filtered (s_filename, gdb_stdout);
4389 fputs_filtered (":\n", gdb_stdout);
4392 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4393 printf_filtered ("static ");
4395 /* Typedef that is not a C++ class. */
4396 if (kind == TYPES_DOMAIN
4397 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4398 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4399 /* variable, func, or typedef-that-is-c++-class. */
4400 else if (kind < TYPES_DOMAIN
4401 || (kind == TYPES_DOMAIN
4402 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4404 type_print (SYMBOL_TYPE (sym),
4405 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4406 ? "" : SYMBOL_PRINT_NAME (sym)),
4409 printf_filtered (";\n");
4413 /* This help function for symtab_symbol_info() prints information
4414 for non-debugging symbols to gdb_stdout. */
4417 print_msymbol_info (struct bound_minimal_symbol msymbol)
4419 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4422 if (gdbarch_addr_bit (gdbarch) <= 32)
4423 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4424 & (CORE_ADDR) 0xffffffff,
4427 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4429 printf_filtered ("%s %s\n",
4430 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4433 /* This is the guts of the commands "info functions", "info types", and
4434 "info variables". It calls search_symbols to find all matches and then
4435 print_[m]symbol_info to print out some useful information about the
4439 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4441 static const char * const classnames[] =
4442 {"variable", "function", "type"};
4443 const char *last_filename = NULL;
4446 gdb_assert (kind <= TYPES_DOMAIN);
4448 /* Must make sure that if we're interrupted, symbols gets freed. */
4449 std::vector<symbol_search> symbols = search_symbols (regexp, kind, 0, NULL);
4452 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4453 classnames[kind], regexp);
4455 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4457 for (const symbol_search &p : symbols)
4461 if (p.msymbol.minsym != NULL)
4465 printf_filtered (_("\nNon-debugging symbols:\n"));
4468 print_msymbol_info (p.msymbol);
4472 print_symbol_info (kind,
4477 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4483 info_variables_command (char *regexp, int from_tty)
4485 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4489 info_functions_command (char *regexp, int from_tty)
4491 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4496 info_types_command (char *regexp, int from_tty)
4498 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4501 /* Breakpoint all functions matching regular expression. */
4504 rbreak_command_wrapper (char *regexp, int from_tty)
4506 rbreak_command (regexp, from_tty);
4509 /* A cleanup function that calls end_rbreak_breakpoints. */
4512 do_end_rbreak_breakpoints (void *ignore)
4514 end_rbreak_breakpoints ();
4518 rbreak_command (char *regexp, int from_tty)
4520 struct cleanup *old_chain;
4521 char *string = NULL;
4523 const char **files = NULL;
4524 const char *file_name;
4529 char *colon = strchr (regexp, ':');
4531 if (colon && *(colon + 1) != ':')
4536 colon_index = colon - regexp;
4537 local_name = (char *) alloca (colon_index + 1);
4538 memcpy (local_name, regexp, colon_index);
4539 local_name[colon_index--] = 0;
4540 while (isspace (local_name[colon_index]))
4541 local_name[colon_index--] = 0;
4542 file_name = local_name;
4545 regexp = skip_spaces (colon + 1);
4549 std::vector<symbol_search> symbols = search_symbols (regexp,
4553 start_rbreak_breakpoints ();
4554 old_chain = make_cleanup (do_end_rbreak_breakpoints, NULL);
4555 for (const symbol_search &p : symbols)
4557 if (p.msymbol.minsym == NULL)
4559 struct symtab *symtab = symbol_symtab (p.symbol);
4560 const char *fullname = symtab_to_fullname (symtab);
4562 int newlen = (strlen (fullname)
4563 + strlen (SYMBOL_LINKAGE_NAME (p.symbol))
4568 string = (char *) xrealloc (string, newlen);
4571 strcpy (string, fullname);
4572 strcat (string, ":'");
4573 strcat (string, SYMBOL_LINKAGE_NAME (p.symbol));
4574 strcat (string, "'");
4575 break_command (string, from_tty);
4576 print_symbol_info (FUNCTIONS_DOMAIN,
4579 symtab_to_filename_for_display (symtab));
4583 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p.msymbol.minsym)) + 3);
4587 string = (char *) xrealloc (string, newlen);
4590 strcpy (string, "'");
4591 strcat (string, MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
4592 strcat (string, "'");
4594 break_command (string, from_tty);
4595 printf_filtered ("<function, no debug info> %s;\n",
4596 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
4600 do_cleanups (old_chain);
4604 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4606 Either sym_text[sym_text_len] != '(' and then we search for any
4607 symbol starting with SYM_TEXT text.
4609 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4610 be terminated at that point. Partial symbol tables do not have parameters
4614 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4616 int (*ncmp) (const char *, const char *, size_t);
4618 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4620 if (ncmp (name, sym_text, sym_text_len) != 0)
4623 if (sym_text[sym_text_len] == '(')
4625 /* User searches for `name(someth...'. Require NAME to be terminated.
4626 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4627 present but accept even parameters presence. In this case this
4628 function is in fact strcmp_iw but whitespace skipping is not supported
4629 for tab completion. */
4631 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4638 /* Test to see if the symbol specified by SYMNAME (which is already
4639 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4640 characters. If so, add it to the current completion list. */
4643 completion_list_add_name (completion_tracker &tracker,
4644 const char *symname,
4645 const char *sym_text, int sym_text_len,
4646 const char *text, const char *word)
4648 /* Clip symbols that cannot match. */
4649 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4652 /* We have a match for a completion, so add SYMNAME to the current list
4653 of matches. Note that the name is moved to freshly malloc'd space. */
4658 if (word == sym_text)
4660 newobj = (char *) xmalloc (strlen (symname) + 5);
4661 strcpy (newobj, symname);
4663 else if (word > sym_text)
4665 /* Return some portion of symname. */
4666 newobj = (char *) xmalloc (strlen (symname) + 5);
4667 strcpy (newobj, symname + (word - sym_text));
4671 /* Return some of SYM_TEXT plus symname. */
4672 newobj = (char *) xmalloc (strlen (symname) + (sym_text - word) + 5);
4673 strncpy (newobj, word, sym_text - word);
4674 newobj[sym_text - word] = '\0';
4675 strcat (newobj, symname);
4678 gdb::unique_xmalloc_ptr<char> completion (newobj);
4680 tracker.add_completion (std::move (completion));
4684 /* completion_list_add_name wrapper for struct symbol. */
4687 completion_list_add_symbol (completion_tracker &tracker,
4689 const char *sym_text, int sym_text_len,
4690 const char *text, const char *word)
4692 completion_list_add_name (tracker, SYMBOL_NATURAL_NAME (sym),
4693 sym_text, sym_text_len, text, word);
4696 /* completion_list_add_name wrapper for struct minimal_symbol. */
4699 completion_list_add_msymbol (completion_tracker &tracker,
4700 minimal_symbol *sym,
4701 const char *sym_text, int sym_text_len,
4702 const char *text, const char *word)
4704 completion_list_add_name (tracker, MSYMBOL_NATURAL_NAME (sym),
4705 sym_text, sym_text_len, text, word);
4708 /* ObjC: In case we are completing on a selector, look as the msymbol
4709 again and feed all the selectors into the mill. */
4712 completion_list_objc_symbol (completion_tracker &tracker,
4713 struct minimal_symbol *msymbol,
4714 const char *sym_text, int sym_text_len,
4715 const char *text, const char *word)
4717 static char *tmp = NULL;
4718 static unsigned int tmplen = 0;
4720 const char *method, *category, *selector;
4723 method = MSYMBOL_NATURAL_NAME (msymbol);
4725 /* Is it a method? */
4726 if ((method[0] != '-') && (method[0] != '+'))
4729 if (sym_text[0] == '[')
4730 /* Complete on shortened method method. */
4731 completion_list_add_name (tracker, method + 1,
4732 sym_text, sym_text_len, text, word);
4734 while ((strlen (method) + 1) >= tmplen)
4740 tmp = (char *) xrealloc (tmp, tmplen);
4742 selector = strchr (method, ' ');
4743 if (selector != NULL)
4746 category = strchr (method, '(');
4748 if ((category != NULL) && (selector != NULL))
4750 memcpy (tmp, method, (category - method));
4751 tmp[category - method] = ' ';
4752 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4753 completion_list_add_name (tracker, tmp,
4754 sym_text, sym_text_len, text, word);
4755 if (sym_text[0] == '[')
4756 completion_list_add_name (tracker, tmp + 1,
4757 sym_text, sym_text_len, text, word);
4760 if (selector != NULL)
4762 /* Complete on selector only. */
4763 strcpy (tmp, selector);
4764 tmp2 = strchr (tmp, ']');
4768 completion_list_add_name (tracker, tmp,
4769 sym_text, sym_text_len, text, word);
4773 /* Break the non-quoted text based on the characters which are in
4774 symbols. FIXME: This should probably be language-specific. */
4777 language_search_unquoted_string (const char *text, const char *p)
4779 for (; p > text; --p)
4781 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4785 if ((current_language->la_language == language_objc))
4787 if (p[-1] == ':') /* Might be part of a method name. */
4789 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4790 p -= 2; /* Beginning of a method name. */
4791 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4792 { /* Might be part of a method name. */
4795 /* Seeing a ' ' or a '(' is not conclusive evidence
4796 that we are in the middle of a method name. However,
4797 finding "-[" or "+[" should be pretty un-ambiguous.
4798 Unfortunately we have to find it now to decide. */
4801 if (isalnum (t[-1]) || t[-1] == '_' ||
4802 t[-1] == ' ' || t[-1] == ':' ||
4803 t[-1] == '(' || t[-1] == ')')
4808 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4809 p = t - 2; /* Method name detected. */
4810 /* Else we leave with p unchanged. */
4820 completion_list_add_fields (completion_tracker &tracker,
4822 const char *sym_text, int sym_text_len,
4823 const char *text, const char *word)
4825 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4827 struct type *t = SYMBOL_TYPE (sym);
4828 enum type_code c = TYPE_CODE (t);
4831 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4832 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4833 if (TYPE_FIELD_NAME (t, j))
4834 completion_list_add_name (tracker, TYPE_FIELD_NAME (t, j),
4835 sym_text, sym_text_len, text, word);
4839 /* Add matching symbols from SYMTAB to the current completion list. */
4842 add_symtab_completions (struct compunit_symtab *cust,
4843 completion_tracker &tracker,
4844 const char *sym_text, int sym_text_len,
4845 const char *text, const char *word,
4846 enum type_code code)
4849 const struct block *b;
4850 struct block_iterator iter;
4856 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4859 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
4860 ALL_BLOCK_SYMBOLS (b, iter, sym)
4862 if (code == TYPE_CODE_UNDEF
4863 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4864 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4865 completion_list_add_symbol (tracker, sym,
4866 sym_text, sym_text_len,
4873 default_collect_symbol_completion_matches_break_on
4874 (completion_tracker &tracker,
4875 complete_symbol_mode mode,
4876 const char *text, const char *word,
4877 const char *break_on, enum type_code code)
4879 /* Problem: All of the symbols have to be copied because readline
4880 frees them. I'm not going to worry about this; hopefully there
4881 won't be that many. */
4884 struct compunit_symtab *cust;
4885 struct minimal_symbol *msymbol;
4886 struct objfile *objfile;
4887 const struct block *b;
4888 const struct block *surrounding_static_block, *surrounding_global_block;
4889 struct block_iterator iter;
4890 /* The symbol we are completing on. Points in same buffer as text. */
4891 const char *sym_text;
4892 /* Length of sym_text. */
4895 /* Now look for the symbol we are supposed to complete on. */
4896 if (mode == complete_symbol_mode::LINESPEC)
4902 const char *quote_pos = NULL;
4904 /* First see if this is a quoted string. */
4906 for (p = text; *p != '\0'; ++p)
4908 if (quote_found != '\0')
4910 if (*p == quote_found)
4911 /* Found close quote. */
4913 else if (*p == '\\' && p[1] == quote_found)
4914 /* A backslash followed by the quote character
4915 doesn't end the string. */
4918 else if (*p == '\'' || *p == '"')
4924 if (quote_found == '\'')
4925 /* A string within single quotes can be a symbol, so complete on it. */
4926 sym_text = quote_pos + 1;
4927 else if (quote_found == '"')
4928 /* A double-quoted string is never a symbol, nor does it make sense
4929 to complete it any other way. */
4935 /* It is not a quoted string. Break it based on the characters
4936 which are in symbols. */
4939 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4940 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4949 sym_text_len = strlen (sym_text);
4951 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4953 if (current_language->la_language == language_cplus
4954 || current_language->la_language == language_fortran)
4956 /* These languages may have parameters entered by user but they are never
4957 present in the partial symbol tables. */
4959 const char *cs = (const char *) memchr (sym_text, '(', sym_text_len);
4962 sym_text_len = cs - sym_text;
4964 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4966 /* At this point scan through the misc symbol vectors and add each
4967 symbol you find to the list. Eventually we want to ignore
4968 anything that isn't a text symbol (everything else will be
4969 handled by the psymtab code below). */
4971 if (code == TYPE_CODE_UNDEF)
4973 ALL_MSYMBOLS (objfile, msymbol)
4977 completion_list_add_msymbol (tracker,
4978 msymbol, sym_text, sym_text_len,
4981 completion_list_objc_symbol (tracker,
4982 msymbol, sym_text, sym_text_len,
4987 /* Add completions for all currently loaded symbol tables. */
4988 ALL_COMPUNITS (objfile, cust)
4989 add_symtab_completions (cust, tracker,
4990 sym_text, sym_text_len, text, word, code);
4992 /* Look through the partial symtabs for all symbols which begin by
4993 matching SYM_TEXT. Expand all CUs that you find to the list. */
4994 expand_symtabs_matching (NULL,
4995 [&] (const char *name) /* symbol matcher */
4997 return compare_symbol_name (name,
5001 [&] (compunit_symtab *symtab) /* expansion notify */
5003 add_symtab_completions (symtab,
5005 sym_text, sym_text_len,
5010 /* Search upwards from currently selected frame (so that we can
5011 complete on local vars). Also catch fields of types defined in
5012 this places which match our text string. Only complete on types
5013 visible from current context. */
5015 b = get_selected_block (0);
5016 surrounding_static_block = block_static_block (b);
5017 surrounding_global_block = block_global_block (b);
5018 if (surrounding_static_block != NULL)
5019 while (b != surrounding_static_block)
5023 ALL_BLOCK_SYMBOLS (b, iter, sym)
5025 if (code == TYPE_CODE_UNDEF)
5027 completion_list_add_symbol (tracker, sym,
5028 sym_text, sym_text_len, text,
5030 completion_list_add_fields (tracker, sym,
5031 sym_text, sym_text_len, text,
5034 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5035 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5036 completion_list_add_symbol (tracker, sym,
5037 sym_text, sym_text_len, text,
5041 /* Stop when we encounter an enclosing function. Do not stop for
5042 non-inlined functions - the locals of the enclosing function
5043 are in scope for a nested function. */
5044 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5046 b = BLOCK_SUPERBLOCK (b);
5049 /* Add fields from the file's types; symbols will be added below. */
5051 if (code == TYPE_CODE_UNDEF)
5053 if (surrounding_static_block != NULL)
5054 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5055 completion_list_add_fields (tracker, sym,
5056 sym_text, sym_text_len, text, word);
5058 if (surrounding_global_block != NULL)
5059 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5060 completion_list_add_fields (tracker, sym,
5061 sym_text, sym_text_len, text, word);
5064 /* Skip macros if we are completing a struct tag -- arguable but
5065 usually what is expected. */
5066 if (current_language->la_macro_expansion == macro_expansion_c
5067 && code == TYPE_CODE_UNDEF)
5069 struct macro_scope *scope;
5071 /* This adds a macro's name to the current completion list. */
5072 auto add_macro_name = [&] (const char *macro_name,
5073 const macro_definition *,
5074 macro_source_file *,
5077 completion_list_add_name (tracker, macro_name,
5078 sym_text, sym_text_len,
5082 /* Add any macros visible in the default scope. Note that this
5083 may yield the occasional wrong result, because an expression
5084 might be evaluated in a scope other than the default. For
5085 example, if the user types "break file:line if <TAB>", the
5086 resulting expression will be evaluated at "file:line" -- but
5087 at there does not seem to be a way to detect this at
5089 scope = default_macro_scope ();
5092 macro_for_each_in_scope (scope->file, scope->line,
5097 /* User-defined macros are always visible. */
5098 macro_for_each (macro_user_macros, add_macro_name);
5103 default_collect_symbol_completion_matches (completion_tracker &tracker,
5104 complete_symbol_mode mode,
5105 const char *text, const char *word,
5106 enum type_code code)
5108 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5113 /* Collect all symbols (regardless of class) which begin by matching
5117 collect_symbol_completion_matches (completion_tracker &tracker,
5118 complete_symbol_mode mode,
5119 const char *text, const char *word)
5121 current_language->la_collect_symbol_completion_matches (tracker, mode,
5126 /* Like collect_symbol_completion_matches, but only collect
5127 STRUCT_DOMAIN symbols whose type code is CODE. */
5130 collect_symbol_completion_matches_type (completion_tracker &tracker,
5131 const char *text, const char *word,
5132 enum type_code code)
5134 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5136 gdb_assert (code == TYPE_CODE_UNION
5137 || code == TYPE_CODE_STRUCT
5138 || code == TYPE_CODE_ENUM);
5139 current_language->la_collect_symbol_completion_matches (tracker, mode,
5143 /* Like collect_symbol_completion_matches, but collects a list of
5144 symbols defined in all source files named SRCFILE. */
5147 collect_file_symbol_completion_matches (completion_tracker &tracker,
5148 complete_symbol_mode mode,
5149 const char *text, const char *word,
5150 const char *srcfile)
5152 /* The symbol we are completing on. Points in same buffer as text. */
5153 const char *sym_text;
5154 /* Length of sym_text. */
5157 /* Now look for the symbol we are supposed to complete on.
5158 FIXME: This should be language-specific. */
5159 if (mode == complete_symbol_mode::LINESPEC)
5165 const char *quote_pos = NULL;
5167 /* First see if this is a quoted string. */
5169 for (p = text; *p != '\0'; ++p)
5171 if (quote_found != '\0')
5173 if (*p == quote_found)
5174 /* Found close quote. */
5176 else if (*p == '\\' && p[1] == quote_found)
5177 /* A backslash followed by the quote character
5178 doesn't end the string. */
5181 else if (*p == '\'' || *p == '"')
5187 if (quote_found == '\'')
5188 /* A string within single quotes can be a symbol, so complete on it. */
5189 sym_text = quote_pos + 1;
5190 else if (quote_found == '"')
5191 /* A double-quoted string is never a symbol, nor does it make sense
5192 to complete it any other way. */
5198 /* Not a quoted string. */
5199 sym_text = language_search_unquoted_string (text, p);
5203 sym_text_len = strlen (sym_text);
5205 /* Go through symtabs for SRCFILE and check the externs and statics
5206 for symbols which match. */
5207 iterate_over_symtabs (srcfile, [&] (symtab *s)
5209 add_symtab_completions (SYMTAB_COMPUNIT (s),
5211 sym_text, sym_text_len,
5212 text, word, TYPE_CODE_UNDEF);
5217 /* A helper function for make_source_files_completion_list. It adds
5218 another file name to a list of possible completions, growing the
5219 list as necessary. */
5222 add_filename_to_list (const char *fname, const char *text, const char *word,
5223 completion_list *list)
5226 size_t fnlen = strlen (fname);
5230 /* Return exactly fname. */
5231 newobj = (char *) xmalloc (fnlen + 5);
5232 strcpy (newobj, fname);
5234 else if (word > text)
5236 /* Return some portion of fname. */
5237 newobj = (char *) xmalloc (fnlen + 5);
5238 strcpy (newobj, fname + (word - text));
5242 /* Return some of TEXT plus fname. */
5243 newobj = (char *) xmalloc (fnlen + (text - word) + 5);
5244 strncpy (newobj, word, text - word);
5245 newobj[text - word] = '\0';
5246 strcat (newobj, fname);
5248 list->emplace_back (newobj);
5252 not_interesting_fname (const char *fname)
5254 static const char *illegal_aliens[] = {
5255 "_globals_", /* inserted by coff_symtab_read */
5260 for (i = 0; illegal_aliens[i]; i++)
5262 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5268 /* An object of this type is passed as the user_data argument to
5269 map_partial_symbol_filenames. */
5270 struct add_partial_filename_data
5272 struct filename_seen_cache *filename_seen_cache;
5276 completion_list *list;
5279 /* A callback for map_partial_symbol_filenames. */
5282 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5285 struct add_partial_filename_data *data
5286 = (struct add_partial_filename_data *) user_data;
5288 if (not_interesting_fname (filename))
5290 if (!data->filename_seen_cache->seen (filename)
5291 && filename_ncmp (filename, data->text, data->text_len) == 0)
5293 /* This file matches for a completion; add it to the
5294 current list of matches. */
5295 add_filename_to_list (filename, data->text, data->word, data->list);
5299 const char *base_name = lbasename (filename);
5301 if (base_name != filename
5302 && !data->filename_seen_cache->seen (base_name)
5303 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5304 add_filename_to_list (base_name, data->text, data->word, data->list);
5308 /* Return a list of all source files whose names begin with matching
5309 TEXT. The file names are looked up in the symbol tables of this
5313 make_source_files_completion_list (const char *text, const char *word)
5315 struct compunit_symtab *cu;
5317 struct objfile *objfile;
5318 size_t text_len = strlen (text);
5319 completion_list list;
5320 const char *base_name;
5321 struct add_partial_filename_data datum;
5323 if (!have_full_symbols () && !have_partial_symbols ())
5326 filename_seen_cache filenames_seen;
5328 ALL_FILETABS (objfile, cu, s)
5330 if (not_interesting_fname (s->filename))
5332 if (!filenames_seen.seen (s->filename)
5333 && filename_ncmp (s->filename, text, text_len) == 0)
5335 /* This file matches for a completion; add it to the current
5337 add_filename_to_list (s->filename, text, word, &list);
5341 /* NOTE: We allow the user to type a base name when the
5342 debug info records leading directories, but not the other
5343 way around. This is what subroutines of breakpoint
5344 command do when they parse file names. */
5345 base_name = lbasename (s->filename);
5346 if (base_name != s->filename
5347 && !filenames_seen.seen (base_name)
5348 && filename_ncmp (base_name, text, text_len) == 0)
5349 add_filename_to_list (base_name, text, word, &list);
5353 datum.filename_seen_cache = &filenames_seen;
5356 datum.text_len = text_len;
5358 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5359 0 /*need_fullname*/);
5366 /* Return the "main_info" object for the current program space. If
5367 the object has not yet been created, create it and fill in some
5370 static struct main_info *
5371 get_main_info (void)
5373 struct main_info *info
5374 = (struct main_info *) program_space_data (current_program_space,
5375 main_progspace_key);
5379 /* It may seem strange to store the main name in the progspace
5380 and also in whatever objfile happens to see a main name in
5381 its debug info. The reason for this is mainly historical:
5382 gdb returned "main" as the name even if no function named
5383 "main" was defined the program; and this approach lets us
5384 keep compatibility. */
5385 info = XCNEW (struct main_info);
5386 info->language_of_main = language_unknown;
5387 set_program_space_data (current_program_space, main_progspace_key,
5394 /* A cleanup to destroy a struct main_info when a progspace is
5398 main_info_cleanup (struct program_space *pspace, void *data)
5400 struct main_info *info = (struct main_info *) data;
5403 xfree (info->name_of_main);
5408 set_main_name (const char *name, enum language lang)
5410 struct main_info *info = get_main_info ();
5412 if (info->name_of_main != NULL)
5414 xfree (info->name_of_main);
5415 info->name_of_main = NULL;
5416 info->language_of_main = language_unknown;
5420 info->name_of_main = xstrdup (name);
5421 info->language_of_main = lang;
5425 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5429 find_main_name (void)
5431 const char *new_main_name;
5432 struct objfile *objfile;
5434 /* First check the objfiles to see whether a debuginfo reader has
5435 picked up the appropriate main name. Historically the main name
5436 was found in a more or less random way; this approach instead
5437 relies on the order of objfile creation -- which still isn't
5438 guaranteed to get the correct answer, but is just probably more
5440 ALL_OBJFILES (objfile)
5442 if (objfile->per_bfd->name_of_main != NULL)
5444 set_main_name (objfile->per_bfd->name_of_main,
5445 objfile->per_bfd->language_of_main);
5450 /* Try to see if the main procedure is in Ada. */
5451 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5452 be to add a new method in the language vector, and call this
5453 method for each language until one of them returns a non-empty
5454 name. This would allow us to remove this hard-coded call to
5455 an Ada function. It is not clear that this is a better approach
5456 at this point, because all methods need to be written in a way
5457 such that false positives never be returned. For instance, it is
5458 important that a method does not return a wrong name for the main
5459 procedure if the main procedure is actually written in a different
5460 language. It is easy to guaranty this with Ada, since we use a
5461 special symbol generated only when the main in Ada to find the name
5462 of the main procedure. It is difficult however to see how this can
5463 be guarantied for languages such as C, for instance. This suggests
5464 that order of call for these methods becomes important, which means
5465 a more complicated approach. */
5466 new_main_name = ada_main_name ();
5467 if (new_main_name != NULL)
5469 set_main_name (new_main_name, language_ada);
5473 new_main_name = d_main_name ();
5474 if (new_main_name != NULL)
5476 set_main_name (new_main_name, language_d);
5480 new_main_name = go_main_name ();
5481 if (new_main_name != NULL)
5483 set_main_name (new_main_name, language_go);
5487 new_main_name = pascal_main_name ();
5488 if (new_main_name != NULL)
5490 set_main_name (new_main_name, language_pascal);
5494 /* The languages above didn't identify the name of the main procedure.
5495 Fallback to "main". */
5496 set_main_name ("main", language_unknown);
5502 struct main_info *info = get_main_info ();
5504 if (info->name_of_main == NULL)
5507 return info->name_of_main;
5510 /* Return the language of the main function. If it is not known,
5511 return language_unknown. */
5514 main_language (void)
5516 struct main_info *info = get_main_info ();
5518 if (info->name_of_main == NULL)
5521 return info->language_of_main;
5524 /* Handle ``executable_changed'' events for the symtab module. */
5527 symtab_observer_executable_changed (void)
5529 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5530 set_main_name (NULL, language_unknown);
5533 /* Return 1 if the supplied producer string matches the ARM RealView
5534 compiler (armcc). */
5537 producer_is_realview (const char *producer)
5539 static const char *const arm_idents[] = {
5540 "ARM C Compiler, ADS",
5541 "Thumb C Compiler, ADS",
5542 "ARM C++ Compiler, ADS",
5543 "Thumb C++ Compiler, ADS",
5544 "ARM/Thumb C/C++ Compiler, RVCT",
5545 "ARM C/C++ Compiler, RVCT"
5549 if (producer == NULL)
5552 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5553 if (startswith (producer, arm_idents[i]))
5561 /* The next index to hand out in response to a registration request. */
5563 static int next_aclass_value = LOC_FINAL_VALUE;
5565 /* The maximum number of "aclass" registrations we support. This is
5566 constant for convenience. */
5567 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5569 /* The objects representing the various "aclass" values. The elements
5570 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5571 elements are those registered at gdb initialization time. */
5573 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5575 /* The globally visible pointer. This is separate from 'symbol_impl'
5576 so that it can be const. */
5578 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5580 /* Make sure we saved enough room in struct symbol. */
5582 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5584 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5585 is the ops vector associated with this index. This returns the new
5586 index, which should be used as the aclass_index field for symbols
5590 register_symbol_computed_impl (enum address_class aclass,
5591 const struct symbol_computed_ops *ops)
5593 int result = next_aclass_value++;
5595 gdb_assert (aclass == LOC_COMPUTED);
5596 gdb_assert (result < MAX_SYMBOL_IMPLS);
5597 symbol_impl[result].aclass = aclass;
5598 symbol_impl[result].ops_computed = ops;
5600 /* Sanity check OPS. */
5601 gdb_assert (ops != NULL);
5602 gdb_assert (ops->tracepoint_var_ref != NULL);
5603 gdb_assert (ops->describe_location != NULL);
5604 gdb_assert (ops->get_symbol_read_needs != NULL);
5605 gdb_assert (ops->read_variable != NULL);
5610 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5611 OPS is the ops vector associated with this index. This returns the
5612 new index, which should be used as the aclass_index field for symbols
5616 register_symbol_block_impl (enum address_class aclass,
5617 const struct symbol_block_ops *ops)
5619 int result = next_aclass_value++;
5621 gdb_assert (aclass == LOC_BLOCK);
5622 gdb_assert (result < MAX_SYMBOL_IMPLS);
5623 symbol_impl[result].aclass = aclass;
5624 symbol_impl[result].ops_block = ops;
5626 /* Sanity check OPS. */
5627 gdb_assert (ops != NULL);
5628 gdb_assert (ops->find_frame_base_location != NULL);
5633 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5634 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5635 this index. This returns the new index, which should be used as
5636 the aclass_index field for symbols of this type. */
5639 register_symbol_register_impl (enum address_class aclass,
5640 const struct symbol_register_ops *ops)
5642 int result = next_aclass_value++;
5644 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5645 gdb_assert (result < MAX_SYMBOL_IMPLS);
5646 symbol_impl[result].aclass = aclass;
5647 symbol_impl[result].ops_register = ops;
5652 /* Initialize elements of 'symbol_impl' for the constants in enum
5656 initialize_ordinary_address_classes (void)
5660 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5661 symbol_impl[i].aclass = (enum address_class) i;
5666 /* Helper function to initialize the fields of an objfile-owned symbol.
5667 It assumed that *SYM is already all zeroes. */
5670 initialize_objfile_symbol_1 (struct symbol *sym)
5672 SYMBOL_OBJFILE_OWNED (sym) = 1;
5673 SYMBOL_SECTION (sym) = -1;
5676 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5679 initialize_objfile_symbol (struct symbol *sym)
5681 memset (sym, 0, sizeof (*sym));
5682 initialize_objfile_symbol_1 (sym);
5685 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5689 allocate_symbol (struct objfile *objfile)
5691 struct symbol *result;
5693 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5694 initialize_objfile_symbol_1 (result);
5699 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5702 struct template_symbol *
5703 allocate_template_symbol (struct objfile *objfile)
5705 struct template_symbol *result;
5707 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5708 initialize_objfile_symbol_1 (&result->base);
5716 symbol_objfile (const struct symbol *symbol)
5718 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5719 return SYMTAB_OBJFILE (symbol->owner.symtab);
5725 symbol_arch (const struct symbol *symbol)
5727 if (!SYMBOL_OBJFILE_OWNED (symbol))
5728 return symbol->owner.arch;
5729 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
5735 symbol_symtab (const struct symbol *symbol)
5737 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5738 return symbol->owner.symtab;
5744 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
5746 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5747 symbol->owner.symtab = symtab;
5753 _initialize_symtab (void)
5755 initialize_ordinary_address_classes ();
5758 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5761 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
5763 add_info ("variables", info_variables_command, _("\
5764 All global and static variable names, or those matching REGEXP."));
5766 add_com ("whereis", class_info, info_variables_command, _("\
5767 All global and static variable names, or those matching REGEXP."));
5769 add_info ("functions", info_functions_command,
5770 _("All function names, or those matching REGEXP."));
5772 /* FIXME: This command has at least the following problems:
5773 1. It prints builtin types (in a very strange and confusing fashion).
5774 2. It doesn't print right, e.g. with
5775 typedef struct foo *FOO
5776 type_print prints "FOO" when we want to make it (in this situation)
5777 print "struct foo *".
5778 I also think "ptype" or "whatis" is more likely to be useful (but if
5779 there is much disagreement "info types" can be fixed). */
5780 add_info ("types", info_types_command,
5781 _("All type names, or those matching REGEXP."));
5783 add_info ("sources", info_sources_command,
5784 _("Source files in the program."));
5786 add_com ("rbreak", class_breakpoint, rbreak_command,
5787 _("Set a breakpoint for all functions matching REGEXP."));
5789 add_setshow_enum_cmd ("multiple-symbols", no_class,
5790 multiple_symbols_modes, &multiple_symbols_mode,
5792 Set the debugger behavior when more than one symbol are possible matches\n\
5793 in an expression."), _("\
5794 Show how the debugger handles ambiguities in expressions."), _("\
5795 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5796 NULL, NULL, &setlist, &showlist);
5798 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5799 &basenames_may_differ, _("\
5800 Set whether a source file may have multiple base names."), _("\
5801 Show whether a source file may have multiple base names."), _("\
5802 (A \"base name\" is the name of a file with the directory part removed.\n\
5803 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5804 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5805 before comparing them. Canonicalization is an expensive operation,\n\
5806 but it allows the same file be known by more than one base name.\n\
5807 If not set (the default), all source files are assumed to have just\n\
5808 one base name, and gdb will do file name comparisons more efficiently."),
5810 &setlist, &showlist);
5812 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5813 _("Set debugging of symbol table creation."),
5814 _("Show debugging of symbol table creation."), _("\
5815 When enabled (non-zero), debugging messages are printed when building\n\
5816 symbol tables. A value of 1 (one) normally provides enough information.\n\
5817 A value greater than 1 provides more verbose information."),
5820 &setdebuglist, &showdebuglist);
5822 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
5824 Set debugging of symbol lookup."), _("\
5825 Show debugging of symbol lookup."), _("\
5826 When enabled (non-zero), symbol lookups are logged."),
5828 &setdebuglist, &showdebuglist);
5830 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
5831 &new_symbol_cache_size,
5832 _("Set the size of the symbol cache."),
5833 _("Show the size of the symbol cache."), _("\
5834 The size of the symbol cache.\n\
5835 If zero then the symbol cache is disabled."),
5836 set_symbol_cache_size_handler, NULL,
5837 &maintenance_set_cmdlist,
5838 &maintenance_show_cmdlist);
5840 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
5841 _("Dump the symbol cache for each program space."),
5842 &maintenanceprintlist);
5844 add_cmd ("symbol-cache-statistics", class_maintenance,
5845 maintenance_print_symbol_cache_statistics,
5846 _("Print symbol cache statistics for each program space."),
5847 &maintenanceprintlist);
5849 add_cmd ("flush-symbol-cache", class_maintenance,
5850 maintenance_flush_symbol_cache,
5851 _("Flush the symbol cache for each program space."),
5854 observer_attach_executable_changed (symtab_observer_executable_changed);
5855 observer_attach_new_objfile (symtab_new_objfile_observer);
5856 observer_attach_free_objfile (symtab_free_objfile_observer);