1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
30 #include "gdb_regex.h"
31 #include "expression.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
43 #include "cli/cli-utils.h"
47 #include "gdb_obstack.h"
49 #include "dictionary.h"
51 #include <sys/types.h>
56 #include "cp-support.h"
60 #include "macroscope.h"
62 #include "parser-defs.h"
63 #include "completer.h"
64 #include "progspace-and-thread.h"
65 #include "common/gdb_optional.h"
66 #include "filename-seen-cache.h"
68 /* Forward declarations for local functions. */
70 static void rbreak_command (char *, int);
72 static int find_line_common (struct linetable *, int, int *, int);
74 static struct block_symbol
75 lookup_symbol_aux (const char *name,
76 const struct block *block,
77 const domain_enum domain,
78 enum language language,
79 struct field_of_this_result *);
82 struct block_symbol lookup_local_symbol (const char *name,
83 const struct block *block,
84 const domain_enum domain,
85 enum language language);
87 static struct block_symbol
88 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
89 const char *name, const domain_enum domain);
92 const struct block_symbol null_block_symbol = { NULL, NULL };
94 extern initialize_file_ftype _initialize_symtab;
96 /* Program space key for finding name and language of "main". */
98 static const struct program_space_data *main_progspace_key;
100 /* Type of the data stored on the program space. */
104 /* Name of "main". */
108 /* Language of "main". */
110 enum language language_of_main;
113 /* Program space key for finding its symbol cache. */
115 static const struct program_space_data *symbol_cache_key;
117 /* The default symbol cache size.
118 There is no extra cpu cost for large N (except when flushing the cache,
119 which is rare). The value here is just a first attempt. A better default
120 value may be higher or lower. A prime number can make up for a bad hash
121 computation, so that's why the number is what it is. */
122 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
124 /* The maximum symbol cache size.
125 There's no method to the decision of what value to use here, other than
126 there's no point in allowing a user typo to make gdb consume all memory. */
127 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
129 /* symbol_cache_lookup returns this if a previous lookup failed to find the
130 symbol in any objfile. */
131 #define SYMBOL_LOOKUP_FAILED \
132 ((struct block_symbol) {(struct symbol *) 1, NULL})
133 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
135 /* Recording lookups that don't find the symbol is just as important, if not
136 more so, than recording found symbols. */
138 enum symbol_cache_slot_state
141 SYMBOL_SLOT_NOT_FOUND,
145 struct symbol_cache_slot
147 enum symbol_cache_slot_state state;
149 /* The objfile that was current when the symbol was looked up.
150 This is only needed for global blocks, but for simplicity's sake
151 we allocate the space for both. If data shows the extra space used
152 for static blocks is a problem, we can split things up then.
154 Global blocks need cache lookup to include the objfile context because
155 we need to account for gdbarch_iterate_over_objfiles_in_search_order
156 which can traverse objfiles in, effectively, any order, depending on
157 the current objfile, thus affecting which symbol is found. Normally,
158 only the current objfile is searched first, and then the rest are
159 searched in recorded order; but putting cache lookup inside
160 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
161 Instead we just make the current objfile part of the context of
162 cache lookup. This means we can record the same symbol multiple times,
163 each with a different "current objfile" that was in effect when the
164 lookup was saved in the cache, but cache space is pretty cheap. */
165 const struct objfile *objfile_context;
169 struct block_symbol found;
178 /* Symbols don't specify global vs static block.
179 So keep them in separate caches. */
181 struct block_symbol_cache
185 unsigned int collisions;
187 /* SYMBOLS is a variable length array of this size.
188 One can imagine that in general one cache (global/static) should be a
189 fraction of the size of the other, but there's no data at the moment
190 on which to decide. */
193 struct symbol_cache_slot symbols[1];
198 Searching for symbols in the static and global blocks over multiple objfiles
199 again and again can be slow, as can searching very big objfiles. This is a
200 simple cache to improve symbol lookup performance, which is critical to
201 overall gdb performance.
203 Symbols are hashed on the name, its domain, and block.
204 They are also hashed on their objfile for objfile-specific lookups. */
208 struct block_symbol_cache *global_symbols;
209 struct block_symbol_cache *static_symbols;
212 /* When non-zero, print debugging messages related to symtab creation. */
213 unsigned int symtab_create_debug = 0;
215 /* When non-zero, print debugging messages related to symbol lookup. */
216 unsigned int symbol_lookup_debug = 0;
218 /* The size of the cache is staged here. */
219 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
221 /* The current value of the symbol cache size.
222 This is saved so that if the user enters a value too big we can restore
223 the original value from here. */
224 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
226 /* Non-zero if a file may be known by two different basenames.
227 This is the uncommon case, and significantly slows down gdb.
228 Default set to "off" to not slow down the common case. */
229 int basenames_may_differ = 0;
231 /* Allow the user to configure the debugger behavior with respect
232 to multiple-choice menus when more than one symbol matches during
235 const char multiple_symbols_ask[] = "ask";
236 const char multiple_symbols_all[] = "all";
237 const char multiple_symbols_cancel[] = "cancel";
238 static const char *const multiple_symbols_modes[] =
240 multiple_symbols_ask,
241 multiple_symbols_all,
242 multiple_symbols_cancel,
245 static const char *multiple_symbols_mode = multiple_symbols_all;
247 /* Read-only accessor to AUTO_SELECT_MODE. */
250 multiple_symbols_select_mode (void)
252 return multiple_symbols_mode;
255 /* Return the name of a domain_enum. */
258 domain_name (domain_enum e)
262 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
263 case VAR_DOMAIN: return "VAR_DOMAIN";
264 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
265 case MODULE_DOMAIN: return "MODULE_DOMAIN";
266 case LABEL_DOMAIN: return "LABEL_DOMAIN";
267 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
268 default: gdb_assert_not_reached ("bad domain_enum");
272 /* Return the name of a search_domain . */
275 search_domain_name (enum search_domain e)
279 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
280 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
281 case TYPES_DOMAIN: return "TYPES_DOMAIN";
282 case ALL_DOMAIN: return "ALL_DOMAIN";
283 default: gdb_assert_not_reached ("bad search_domain");
290 compunit_primary_filetab (const struct compunit_symtab *cust)
292 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
294 /* The primary file symtab is the first one in the list. */
295 return COMPUNIT_FILETABS (cust);
301 compunit_language (const struct compunit_symtab *cust)
303 struct symtab *symtab = compunit_primary_filetab (cust);
305 /* The language of the compunit symtab is the language of its primary
307 return SYMTAB_LANGUAGE (symtab);
310 /* See whether FILENAME matches SEARCH_NAME using the rule that we
311 advertise to the user. (The manual's description of linespecs
312 describes what we advertise). Returns true if they match, false
316 compare_filenames_for_search (const char *filename, const char *search_name)
318 int len = strlen (filename);
319 size_t search_len = strlen (search_name);
321 if (len < search_len)
324 /* The tail of FILENAME must match. */
325 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
328 /* Either the names must completely match, or the character
329 preceding the trailing SEARCH_NAME segment of FILENAME must be a
332 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
333 cannot match FILENAME "/path//dir/file.c" - as user has requested
334 absolute path. The sama applies for "c:\file.c" possibly
335 incorrectly hypothetically matching "d:\dir\c:\file.c".
337 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
338 compatible with SEARCH_NAME "file.c". In such case a compiler had
339 to put the "c:file.c" name into debug info. Such compatibility
340 works only on GDB built for DOS host. */
341 return (len == search_len
342 || (!IS_ABSOLUTE_PATH (search_name)
343 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
344 || (HAS_DRIVE_SPEC (filename)
345 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
348 /* Same as compare_filenames_for_search, but for glob-style patterns.
349 Heads up on the order of the arguments. They match the order of
350 compare_filenames_for_search, but it's the opposite of the order of
351 arguments to gdb_filename_fnmatch. */
354 compare_glob_filenames_for_search (const char *filename,
355 const char *search_name)
357 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
358 all /s have to be explicitly specified. */
359 int file_path_elements = count_path_elements (filename);
360 int search_path_elements = count_path_elements (search_name);
362 if (search_path_elements > file_path_elements)
365 if (IS_ABSOLUTE_PATH (search_name))
367 return (search_path_elements == file_path_elements
368 && gdb_filename_fnmatch (search_name, filename,
369 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
373 const char *file_to_compare
374 = strip_leading_path_elements (filename,
375 file_path_elements - search_path_elements);
377 return gdb_filename_fnmatch (search_name, file_to_compare,
378 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
382 /* Check for a symtab of a specific name by searching some symtabs.
383 This is a helper function for callbacks of iterate_over_symtabs.
385 If NAME is not absolute, then REAL_PATH is NULL
386 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
388 The return value, NAME, REAL_PATH and CALLBACK are identical to the
389 `map_symtabs_matching_filename' method of quick_symbol_functions.
391 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
392 Each symtab within the specified compunit symtab is also searched.
393 AFTER_LAST is one past the last compunit symtab to search; NULL means to
394 search until the end of the list. */
397 iterate_over_some_symtabs (const char *name,
398 const char *real_path,
399 struct compunit_symtab *first,
400 struct compunit_symtab *after_last,
401 gdb::function_view<bool (symtab *)> callback)
403 struct compunit_symtab *cust;
405 const char* base_name = lbasename (name);
407 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
409 ALL_COMPUNIT_FILETABS (cust, s)
411 if (compare_filenames_for_search (s->filename, name))
418 /* Before we invoke realpath, which can get expensive when many
419 files are involved, do a quick comparison of the basenames. */
420 if (! basenames_may_differ
421 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
424 if (compare_filenames_for_search (symtab_to_fullname (s), name))
431 /* If the user gave us an absolute path, try to find the file in
432 this symtab and use its absolute path. */
433 if (real_path != NULL)
435 const char *fullname = symtab_to_fullname (s);
437 gdb_assert (IS_ABSOLUTE_PATH (real_path));
438 gdb_assert (IS_ABSOLUTE_PATH (name));
439 if (FILENAME_CMP (real_path, fullname) == 0)
452 /* Check for a symtab of a specific name; first in symtabs, then in
453 psymtabs. *If* there is no '/' in the name, a match after a '/'
454 in the symtab filename will also work.
456 Calls CALLBACK with each symtab that is found. If CALLBACK returns
457 true, the search stops. */
460 iterate_over_symtabs (const char *name,
461 gdb::function_view<bool (symtab *)> callback)
463 struct objfile *objfile;
464 gdb::unique_xmalloc_ptr<char> real_path;
466 /* Here we are interested in canonicalizing an absolute path, not
467 absolutizing a relative path. */
468 if (IS_ABSOLUTE_PATH (name))
470 real_path.reset (gdb_realpath (name));
471 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
474 ALL_OBJFILES (objfile)
476 if (iterate_over_some_symtabs (name, real_path.get (),
477 objfile->compunit_symtabs, NULL,
482 /* Same search rules as above apply here, but now we look thru the
485 ALL_OBJFILES (objfile)
488 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
496 /* A wrapper for iterate_over_symtabs that returns the first matching
500 lookup_symtab (const char *name)
502 struct symtab *result = NULL;
504 iterate_over_symtabs (name, [&] (symtab *symtab)
514 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
515 full method name, which consist of the class name (from T), the unadorned
516 method name from METHOD_ID, and the signature for the specific overload,
517 specified by SIGNATURE_ID. Note that this function is g++ specific. */
520 gdb_mangle_name (struct type *type, int method_id, int signature_id)
522 int mangled_name_len;
524 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
525 struct fn_field *method = &f[signature_id];
526 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
527 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
528 const char *newname = type_name_no_tag (type);
530 /* Does the form of physname indicate that it is the full mangled name
531 of a constructor (not just the args)? */
532 int is_full_physname_constructor;
535 int is_destructor = is_destructor_name (physname);
536 /* Need a new type prefix. */
537 const char *const_prefix = method->is_const ? "C" : "";
538 const char *volatile_prefix = method->is_volatile ? "V" : "";
540 int len = (newname == NULL ? 0 : strlen (newname));
542 /* Nothing to do if physname already contains a fully mangled v3 abi name
543 or an operator name. */
544 if ((physname[0] == '_' && physname[1] == 'Z')
545 || is_operator_name (field_name))
546 return xstrdup (physname);
548 is_full_physname_constructor = is_constructor_name (physname);
550 is_constructor = is_full_physname_constructor
551 || (newname && strcmp (field_name, newname) == 0);
554 is_destructor = (startswith (physname, "__dt"));
556 if (is_destructor || is_full_physname_constructor)
558 mangled_name = (char *) xmalloc (strlen (physname) + 1);
559 strcpy (mangled_name, physname);
565 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
567 else if (physname[0] == 't' || physname[0] == 'Q')
569 /* The physname for template and qualified methods already includes
571 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
577 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
578 volatile_prefix, len);
580 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
581 + strlen (buf) + len + strlen (physname) + 1);
583 mangled_name = (char *) xmalloc (mangled_name_len);
585 mangled_name[0] = '\0';
587 strcpy (mangled_name, field_name);
589 strcat (mangled_name, buf);
590 /* If the class doesn't have a name, i.e. newname NULL, then we just
591 mangle it using 0 for the length of the class. Thus it gets mangled
592 as something starting with `::' rather than `classname::'. */
594 strcat (mangled_name, newname);
596 strcat (mangled_name, physname);
597 return (mangled_name);
600 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
601 correctly allocated. */
604 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
606 struct obstack *obstack)
608 if (gsymbol->language == language_ada)
612 gsymbol->ada_mangled = 0;
613 gsymbol->language_specific.obstack = obstack;
617 gsymbol->ada_mangled = 1;
618 gsymbol->language_specific.demangled_name = name;
622 gsymbol->language_specific.demangled_name = name;
625 /* Return the demangled name of GSYMBOL. */
628 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
630 if (gsymbol->language == language_ada)
632 if (!gsymbol->ada_mangled)
637 return gsymbol->language_specific.demangled_name;
641 /* Initialize the language dependent portion of a symbol
642 depending upon the language for the symbol. */
645 symbol_set_language (struct general_symbol_info *gsymbol,
646 enum language language,
647 struct obstack *obstack)
649 gsymbol->language = language;
650 if (gsymbol->language == language_cplus
651 || gsymbol->language == language_d
652 || gsymbol->language == language_go
653 || gsymbol->language == language_objc
654 || gsymbol->language == language_fortran)
656 symbol_set_demangled_name (gsymbol, NULL, obstack);
658 else if (gsymbol->language == language_ada)
660 gdb_assert (gsymbol->ada_mangled == 0);
661 gsymbol->language_specific.obstack = obstack;
665 memset (&gsymbol->language_specific, 0,
666 sizeof (gsymbol->language_specific));
670 /* Functions to initialize a symbol's mangled name. */
672 /* Objects of this type are stored in the demangled name hash table. */
673 struct demangled_name_entry
679 /* Hash function for the demangled name hash. */
682 hash_demangled_name_entry (const void *data)
684 const struct demangled_name_entry *e
685 = (const struct demangled_name_entry *) data;
687 return htab_hash_string (e->mangled);
690 /* Equality function for the demangled name hash. */
693 eq_demangled_name_entry (const void *a, const void *b)
695 const struct demangled_name_entry *da
696 = (const struct demangled_name_entry *) a;
697 const struct demangled_name_entry *db
698 = (const struct demangled_name_entry *) b;
700 return strcmp (da->mangled, db->mangled) == 0;
703 /* Create the hash table used for demangled names. Each hash entry is
704 a pair of strings; one for the mangled name and one for the demangled
705 name. The entry is hashed via just the mangled name. */
708 create_demangled_names_hash (struct objfile *objfile)
710 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
711 The hash table code will round this up to the next prime number.
712 Choosing a much larger table size wastes memory, and saves only about
713 1% in symbol reading. */
715 objfile->per_bfd->demangled_names_hash = htab_create_alloc
716 (256, hash_demangled_name_entry, eq_demangled_name_entry,
717 NULL, xcalloc, xfree);
720 /* Try to determine the demangled name for a symbol, based on the
721 language of that symbol. If the language is set to language_auto,
722 it will attempt to find any demangling algorithm that works and
723 then set the language appropriately. The returned name is allocated
724 by the demangler and should be xfree'd. */
727 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
730 char *demangled = NULL;
734 if (gsymbol->language == language_unknown)
735 gsymbol->language = language_auto;
737 if (gsymbol->language != language_auto)
739 const struct language_defn *lang = language_def (gsymbol->language);
741 language_sniff_from_mangled_name (lang, mangled, &demangled);
745 for (i = language_unknown; i < nr_languages; ++i)
747 enum language l = (enum language) i;
748 const struct language_defn *lang = language_def (l);
750 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
752 gsymbol->language = l;
760 /* Set both the mangled and demangled (if any) names for GSYMBOL based
761 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
762 objfile's obstack; but if COPY_NAME is 0 and if NAME is
763 NUL-terminated, then this function assumes that NAME is already
764 correctly saved (either permanently or with a lifetime tied to the
765 objfile), and it will not be copied.
767 The hash table corresponding to OBJFILE is used, and the memory
768 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
769 so the pointer can be discarded after calling this function. */
772 symbol_set_names (struct general_symbol_info *gsymbol,
773 const char *linkage_name, int len, int copy_name,
774 struct objfile *objfile)
776 struct demangled_name_entry **slot;
777 /* A 0-terminated copy of the linkage name. */
778 const char *linkage_name_copy;
779 struct demangled_name_entry entry;
780 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
782 if (gsymbol->language == language_ada)
784 /* In Ada, we do the symbol lookups using the mangled name, so
785 we can save some space by not storing the demangled name. */
787 gsymbol->name = linkage_name;
790 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
793 memcpy (name, linkage_name, len);
795 gsymbol->name = name;
797 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
802 if (per_bfd->demangled_names_hash == NULL)
803 create_demangled_names_hash (objfile);
805 if (linkage_name[len] != '\0')
809 alloc_name = (char *) alloca (len + 1);
810 memcpy (alloc_name, linkage_name, len);
811 alloc_name[len] = '\0';
813 linkage_name_copy = alloc_name;
816 linkage_name_copy = linkage_name;
818 entry.mangled = linkage_name_copy;
819 slot = ((struct demangled_name_entry **)
820 htab_find_slot (per_bfd->demangled_names_hash,
823 /* If this name is not in the hash table, add it. */
825 /* A C version of the symbol may have already snuck into the table.
826 This happens to, e.g., main.init (__go_init_main). Cope. */
827 || (gsymbol->language == language_go
828 && (*slot)->demangled[0] == '\0'))
830 char *demangled_name = symbol_find_demangled_name (gsymbol,
832 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
834 /* Suppose we have demangled_name==NULL, copy_name==0, and
835 linkage_name_copy==linkage_name. In this case, we already have the
836 mangled name saved, and we don't have a demangled name. So,
837 you might think we could save a little space by not recording
838 this in the hash table at all.
840 It turns out that it is actually important to still save such
841 an entry in the hash table, because storing this name gives
842 us better bcache hit rates for partial symbols. */
843 if (!copy_name && linkage_name_copy == linkage_name)
846 = ((struct demangled_name_entry *)
847 obstack_alloc (&per_bfd->storage_obstack,
848 offsetof (struct demangled_name_entry, demangled)
849 + demangled_len + 1));
850 (*slot)->mangled = linkage_name;
856 /* If we must copy the mangled name, put it directly after
857 the demangled name so we can have a single
860 = ((struct demangled_name_entry *)
861 obstack_alloc (&per_bfd->storage_obstack,
862 offsetof (struct demangled_name_entry, demangled)
863 + len + demangled_len + 2));
864 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
865 strcpy (mangled_ptr, linkage_name_copy);
866 (*slot)->mangled = mangled_ptr;
869 if (demangled_name != NULL)
871 strcpy ((*slot)->demangled, demangled_name);
872 xfree (demangled_name);
875 (*slot)->demangled[0] = '\0';
878 gsymbol->name = (*slot)->mangled;
879 if ((*slot)->demangled[0] != '\0')
880 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
881 &per_bfd->storage_obstack);
883 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
886 /* Return the source code name of a symbol. In languages where
887 demangling is necessary, this is the demangled name. */
890 symbol_natural_name (const struct general_symbol_info *gsymbol)
892 switch (gsymbol->language)
898 case language_fortran:
899 if (symbol_get_demangled_name (gsymbol) != NULL)
900 return symbol_get_demangled_name (gsymbol);
903 return ada_decode_symbol (gsymbol);
907 return gsymbol->name;
910 /* Return the demangled name for a symbol based on the language for
911 that symbol. If no demangled name exists, return NULL. */
914 symbol_demangled_name (const struct general_symbol_info *gsymbol)
916 const char *dem_name = NULL;
918 switch (gsymbol->language)
924 case language_fortran:
925 dem_name = symbol_get_demangled_name (gsymbol);
928 dem_name = ada_decode_symbol (gsymbol);
936 /* Return the search name of a symbol---generally the demangled or
937 linkage name of the symbol, depending on how it will be searched for.
938 If there is no distinct demangled name, then returns the same value
939 (same pointer) as SYMBOL_LINKAGE_NAME. */
942 symbol_search_name (const struct general_symbol_info *gsymbol)
944 if (gsymbol->language == language_ada)
945 return gsymbol->name;
947 return symbol_natural_name (gsymbol);
950 /* Initialize the structure fields to zero values. */
953 init_sal (struct symtab_and_line *sal)
955 memset (sal, 0, sizeof (*sal));
959 /* Return 1 if the two sections are the same, or if they could
960 plausibly be copies of each other, one in an original object
961 file and another in a separated debug file. */
964 matching_obj_sections (struct obj_section *obj_first,
965 struct obj_section *obj_second)
967 asection *first = obj_first? obj_first->the_bfd_section : NULL;
968 asection *second = obj_second? obj_second->the_bfd_section : NULL;
971 /* If they're the same section, then they match. */
975 /* If either is NULL, give up. */
976 if (first == NULL || second == NULL)
979 /* This doesn't apply to absolute symbols. */
980 if (first->owner == NULL || second->owner == NULL)
983 /* If they're in the same object file, they must be different sections. */
984 if (first->owner == second->owner)
987 /* Check whether the two sections are potentially corresponding. They must
988 have the same size, address, and name. We can't compare section indexes,
989 which would be more reliable, because some sections may have been
991 if (bfd_get_section_size (first) != bfd_get_section_size (second))
994 /* In-memory addresses may start at a different offset, relativize them. */
995 if (bfd_get_section_vma (first->owner, first)
996 - bfd_get_start_address (first->owner)
997 != bfd_get_section_vma (second->owner, second)
998 - bfd_get_start_address (second->owner))
1001 if (bfd_get_section_name (first->owner, first) == NULL
1002 || bfd_get_section_name (second->owner, second) == NULL
1003 || strcmp (bfd_get_section_name (first->owner, first),
1004 bfd_get_section_name (second->owner, second)) != 0)
1007 /* Otherwise check that they are in corresponding objfiles. */
1010 if (obj->obfd == first->owner)
1012 gdb_assert (obj != NULL);
1014 if (obj->separate_debug_objfile != NULL
1015 && obj->separate_debug_objfile->obfd == second->owner)
1017 if (obj->separate_debug_objfile_backlink != NULL
1018 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1027 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1029 struct objfile *objfile;
1030 struct bound_minimal_symbol msymbol;
1032 /* If we know that this is not a text address, return failure. This is
1033 necessary because we loop based on texthigh and textlow, which do
1034 not include the data ranges. */
1035 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1037 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1038 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1039 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1040 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1041 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1044 ALL_OBJFILES (objfile)
1046 struct compunit_symtab *cust = NULL;
1049 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1056 /* Hash function for the symbol cache. */
1059 hash_symbol_entry (const struct objfile *objfile_context,
1060 const char *name, domain_enum domain)
1062 unsigned int hash = (uintptr_t) objfile_context;
1065 hash += htab_hash_string (name);
1067 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1068 to map to the same slot. */
1069 if (domain == STRUCT_DOMAIN)
1070 hash += VAR_DOMAIN * 7;
1077 /* Equality function for the symbol cache. */
1080 eq_symbol_entry (const struct symbol_cache_slot *slot,
1081 const struct objfile *objfile_context,
1082 const char *name, domain_enum domain)
1084 const char *slot_name;
1085 domain_enum slot_domain;
1087 if (slot->state == SYMBOL_SLOT_UNUSED)
1090 if (slot->objfile_context != objfile_context)
1093 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1095 slot_name = slot->value.not_found.name;
1096 slot_domain = slot->value.not_found.domain;
1100 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1101 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1104 /* NULL names match. */
1105 if (slot_name == NULL && name == NULL)
1107 /* But there's no point in calling symbol_matches_domain in the
1108 SYMBOL_SLOT_FOUND case. */
1109 if (slot_domain != domain)
1112 else if (slot_name != NULL && name != NULL)
1114 /* It's important that we use the same comparison that was done the
1115 first time through. If the slot records a found symbol, then this
1116 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1117 It also means using symbol_matches_domain for found symbols.
1120 If the slot records a not-found symbol, then require a precise match.
1121 We could still be lax with whitespace like strcmp_iw though. */
1123 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1125 if (strcmp (slot_name, name) != 0)
1127 if (slot_domain != domain)
1132 struct symbol *sym = slot->value.found.symbol;
1134 if (strcmp_iw (slot_name, name) != 0)
1136 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1137 slot_domain, domain))
1143 /* Only one name is NULL. */
1150 /* Given a cache of size SIZE, return the size of the struct (with variable
1151 length array) in bytes. */
1154 symbol_cache_byte_size (unsigned int size)
1156 return (sizeof (struct block_symbol_cache)
1157 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1163 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1165 /* If there's no change in size, don't do anything.
1166 All caches have the same size, so we can just compare with the size
1167 of the global symbols cache. */
1168 if ((cache->global_symbols != NULL
1169 && cache->global_symbols->size == new_size)
1170 || (cache->global_symbols == NULL
1174 xfree (cache->global_symbols);
1175 xfree (cache->static_symbols);
1179 cache->global_symbols = NULL;
1180 cache->static_symbols = NULL;
1184 size_t total_size = symbol_cache_byte_size (new_size);
1186 cache->global_symbols
1187 = (struct block_symbol_cache *) xcalloc (1, total_size);
1188 cache->static_symbols
1189 = (struct block_symbol_cache *) xcalloc (1, total_size);
1190 cache->global_symbols->size = new_size;
1191 cache->static_symbols->size = new_size;
1195 /* Make a symbol cache of size SIZE. */
1197 static struct symbol_cache *
1198 make_symbol_cache (unsigned int size)
1200 struct symbol_cache *cache;
1202 cache = XCNEW (struct symbol_cache);
1203 resize_symbol_cache (cache, symbol_cache_size);
1207 /* Free the space used by CACHE. */
1210 free_symbol_cache (struct symbol_cache *cache)
1212 xfree (cache->global_symbols);
1213 xfree (cache->static_symbols);
1217 /* Return the symbol cache of PSPACE.
1218 Create one if it doesn't exist yet. */
1220 static struct symbol_cache *
1221 get_symbol_cache (struct program_space *pspace)
1223 struct symbol_cache *cache
1224 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1228 cache = make_symbol_cache (symbol_cache_size);
1229 set_program_space_data (pspace, symbol_cache_key, cache);
1235 /* Delete the symbol cache of PSPACE.
1236 Called when PSPACE is destroyed. */
1239 symbol_cache_cleanup (struct program_space *pspace, void *data)
1241 struct symbol_cache *cache = (struct symbol_cache *) data;
1243 free_symbol_cache (cache);
1246 /* Set the size of the symbol cache in all program spaces. */
1249 set_symbol_cache_size (unsigned int new_size)
1251 struct program_space *pspace;
1253 ALL_PSPACES (pspace)
1255 struct symbol_cache *cache
1256 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1258 /* The pspace could have been created but not have a cache yet. */
1260 resize_symbol_cache (cache, new_size);
1264 /* Called when symbol-cache-size is set. */
1267 set_symbol_cache_size_handler (char *args, int from_tty,
1268 struct cmd_list_element *c)
1270 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1272 /* Restore the previous value.
1273 This is the value the "show" command prints. */
1274 new_symbol_cache_size = symbol_cache_size;
1276 error (_("Symbol cache size is too large, max is %u."),
1277 MAX_SYMBOL_CACHE_SIZE);
1279 symbol_cache_size = new_symbol_cache_size;
1281 set_symbol_cache_size (symbol_cache_size);
1284 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1285 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1286 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1287 failed (and thus this one will too), or NULL if the symbol is not present
1289 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1290 set to the cache and slot of the symbol to save the result of a full lookup
1293 static struct block_symbol
1294 symbol_cache_lookup (struct symbol_cache *cache,
1295 struct objfile *objfile_context, int block,
1296 const char *name, domain_enum domain,
1297 struct block_symbol_cache **bsc_ptr,
1298 struct symbol_cache_slot **slot_ptr)
1300 struct block_symbol_cache *bsc;
1302 struct symbol_cache_slot *slot;
1304 if (block == GLOBAL_BLOCK)
1305 bsc = cache->global_symbols;
1307 bsc = cache->static_symbols;
1312 return (struct block_symbol) {NULL, NULL};
1315 hash = hash_symbol_entry (objfile_context, name, domain);
1316 slot = bsc->symbols + hash % bsc->size;
1318 if (eq_symbol_entry (slot, objfile_context, name, domain))
1320 if (symbol_lookup_debug)
1321 fprintf_unfiltered (gdb_stdlog,
1322 "%s block symbol cache hit%s for %s, %s\n",
1323 block == GLOBAL_BLOCK ? "Global" : "Static",
1324 slot->state == SYMBOL_SLOT_NOT_FOUND
1325 ? " (not found)" : "",
1326 name, domain_name (domain));
1328 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1329 return SYMBOL_LOOKUP_FAILED;
1330 return slot->value.found;
1333 /* Symbol is not present in the cache. */
1338 if (symbol_lookup_debug)
1340 fprintf_unfiltered (gdb_stdlog,
1341 "%s block symbol cache miss for %s, %s\n",
1342 block == GLOBAL_BLOCK ? "Global" : "Static",
1343 name, domain_name (domain));
1346 return (struct block_symbol) {NULL, NULL};
1349 /* Clear out SLOT. */
1352 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1354 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1355 xfree (slot->value.not_found.name);
1356 slot->state = SYMBOL_SLOT_UNUSED;
1359 /* Mark SYMBOL as found in SLOT.
1360 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1361 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1362 necessarily the objfile the symbol was found in. */
1365 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1366 struct symbol_cache_slot *slot,
1367 struct objfile *objfile_context,
1368 struct symbol *symbol,
1369 const struct block *block)
1373 if (slot->state != SYMBOL_SLOT_UNUSED)
1376 symbol_cache_clear_slot (slot);
1378 slot->state = SYMBOL_SLOT_FOUND;
1379 slot->objfile_context = objfile_context;
1380 slot->value.found.symbol = symbol;
1381 slot->value.found.block = block;
1384 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1385 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1386 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1389 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1390 struct symbol_cache_slot *slot,
1391 struct objfile *objfile_context,
1392 const char *name, domain_enum domain)
1396 if (slot->state != SYMBOL_SLOT_UNUSED)
1399 symbol_cache_clear_slot (slot);
1401 slot->state = SYMBOL_SLOT_NOT_FOUND;
1402 slot->objfile_context = objfile_context;
1403 slot->value.not_found.name = xstrdup (name);
1404 slot->value.not_found.domain = domain;
1407 /* Flush the symbol cache of PSPACE. */
1410 symbol_cache_flush (struct program_space *pspace)
1412 struct symbol_cache *cache
1413 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1418 if (cache->global_symbols == NULL)
1420 gdb_assert (symbol_cache_size == 0);
1421 gdb_assert (cache->static_symbols == NULL);
1425 /* If the cache is untouched since the last flush, early exit.
1426 This is important for performance during the startup of a program linked
1427 with 100s (or 1000s) of shared libraries. */
1428 if (cache->global_symbols->misses == 0
1429 && cache->static_symbols->misses == 0)
1432 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1433 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1435 for (pass = 0; pass < 2; ++pass)
1437 struct block_symbol_cache *bsc
1438 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1441 for (i = 0; i < bsc->size; ++i)
1442 symbol_cache_clear_slot (&bsc->symbols[i]);
1445 cache->global_symbols->hits = 0;
1446 cache->global_symbols->misses = 0;
1447 cache->global_symbols->collisions = 0;
1448 cache->static_symbols->hits = 0;
1449 cache->static_symbols->misses = 0;
1450 cache->static_symbols->collisions = 0;
1456 symbol_cache_dump (const struct symbol_cache *cache)
1460 if (cache->global_symbols == NULL)
1462 printf_filtered (" <disabled>\n");
1466 for (pass = 0; pass < 2; ++pass)
1468 const struct block_symbol_cache *bsc
1469 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1473 printf_filtered ("Global symbols:\n");
1475 printf_filtered ("Static symbols:\n");
1477 for (i = 0; i < bsc->size; ++i)
1479 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1483 switch (slot->state)
1485 case SYMBOL_SLOT_UNUSED:
1487 case SYMBOL_SLOT_NOT_FOUND:
1488 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1489 host_address_to_string (slot->objfile_context),
1490 slot->value.not_found.name,
1491 domain_name (slot->value.not_found.domain));
1493 case SYMBOL_SLOT_FOUND:
1495 struct symbol *found = slot->value.found.symbol;
1496 const struct objfile *context = slot->objfile_context;
1498 printf_filtered (" [%4u] = %s, %s %s\n", i,
1499 host_address_to_string (context),
1500 SYMBOL_PRINT_NAME (found),
1501 domain_name (SYMBOL_DOMAIN (found)));
1509 /* The "mt print symbol-cache" command. */
1512 maintenance_print_symbol_cache (char *args, int from_tty)
1514 struct program_space *pspace;
1516 ALL_PSPACES (pspace)
1518 struct symbol_cache *cache;
1520 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1522 pspace->symfile_object_file != NULL
1523 ? objfile_name (pspace->symfile_object_file)
1524 : "(no object file)");
1526 /* If the cache hasn't been created yet, avoid creating one. */
1528 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1530 printf_filtered (" <empty>\n");
1532 symbol_cache_dump (cache);
1536 /* The "mt flush-symbol-cache" command. */
1539 maintenance_flush_symbol_cache (char *args, int from_tty)
1541 struct program_space *pspace;
1543 ALL_PSPACES (pspace)
1545 symbol_cache_flush (pspace);
1549 /* Print usage statistics of CACHE. */
1552 symbol_cache_stats (struct symbol_cache *cache)
1556 if (cache->global_symbols == NULL)
1558 printf_filtered (" <disabled>\n");
1562 for (pass = 0; pass < 2; ++pass)
1564 const struct block_symbol_cache *bsc
1565 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1570 printf_filtered ("Global block cache stats:\n");
1572 printf_filtered ("Static block cache stats:\n");
1574 printf_filtered (" size: %u\n", bsc->size);
1575 printf_filtered (" hits: %u\n", bsc->hits);
1576 printf_filtered (" misses: %u\n", bsc->misses);
1577 printf_filtered (" collisions: %u\n", bsc->collisions);
1581 /* The "mt print symbol-cache-statistics" command. */
1584 maintenance_print_symbol_cache_statistics (char *args, int from_tty)
1586 struct program_space *pspace;
1588 ALL_PSPACES (pspace)
1590 struct symbol_cache *cache;
1592 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1594 pspace->symfile_object_file != NULL
1595 ? objfile_name (pspace->symfile_object_file)
1596 : "(no object file)");
1598 /* If the cache hasn't been created yet, avoid creating one. */
1600 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1602 printf_filtered (" empty, no stats available\n");
1604 symbol_cache_stats (cache);
1608 /* This module's 'new_objfile' observer. */
1611 symtab_new_objfile_observer (struct objfile *objfile)
1613 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1614 symbol_cache_flush (current_program_space);
1617 /* This module's 'free_objfile' observer. */
1620 symtab_free_objfile_observer (struct objfile *objfile)
1622 symbol_cache_flush (objfile->pspace);
1625 /* Debug symbols usually don't have section information. We need to dig that
1626 out of the minimal symbols and stash that in the debug symbol. */
1629 fixup_section (struct general_symbol_info *ginfo,
1630 CORE_ADDR addr, struct objfile *objfile)
1632 struct minimal_symbol *msym;
1634 /* First, check whether a minimal symbol with the same name exists
1635 and points to the same address. The address check is required
1636 e.g. on PowerPC64, where the minimal symbol for a function will
1637 point to the function descriptor, while the debug symbol will
1638 point to the actual function code. */
1639 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1641 ginfo->section = MSYMBOL_SECTION (msym);
1644 /* Static, function-local variables do appear in the linker
1645 (minimal) symbols, but are frequently given names that won't
1646 be found via lookup_minimal_symbol(). E.g., it has been
1647 observed in frv-uclinux (ELF) executables that a static,
1648 function-local variable named "foo" might appear in the
1649 linker symbols as "foo.6" or "foo.3". Thus, there is no
1650 point in attempting to extend the lookup-by-name mechanism to
1651 handle this case due to the fact that there can be multiple
1654 So, instead, search the section table when lookup by name has
1655 failed. The ``addr'' and ``endaddr'' fields may have already
1656 been relocated. If so, the relocation offset (i.e. the
1657 ANOFFSET value) needs to be subtracted from these values when
1658 performing the comparison. We unconditionally subtract it,
1659 because, when no relocation has been performed, the ANOFFSET
1660 value will simply be zero.
1662 The address of the symbol whose section we're fixing up HAS
1663 NOT BEEN adjusted (relocated) yet. It can't have been since
1664 the section isn't yet known and knowing the section is
1665 necessary in order to add the correct relocation value. In
1666 other words, we wouldn't even be in this function (attempting
1667 to compute the section) if it were already known.
1669 Note that it is possible to search the minimal symbols
1670 (subtracting the relocation value if necessary) to find the
1671 matching minimal symbol, but this is overkill and much less
1672 efficient. It is not necessary to find the matching minimal
1673 symbol, only its section.
1675 Note that this technique (of doing a section table search)
1676 can fail when unrelocated section addresses overlap. For
1677 this reason, we still attempt a lookup by name prior to doing
1678 a search of the section table. */
1680 struct obj_section *s;
1683 ALL_OBJFILE_OSECTIONS (objfile, s)
1685 int idx = s - objfile->sections;
1686 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1691 if (obj_section_addr (s) - offset <= addr
1692 && addr < obj_section_endaddr (s) - offset)
1694 ginfo->section = idx;
1699 /* If we didn't find the section, assume it is in the first
1700 section. If there is no allocated section, then it hardly
1701 matters what we pick, so just pick zero. */
1705 ginfo->section = fallback;
1710 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1717 if (!SYMBOL_OBJFILE_OWNED (sym))
1720 /* We either have an OBJFILE, or we can get at it from the sym's
1721 symtab. Anything else is a bug. */
1722 gdb_assert (objfile || symbol_symtab (sym));
1724 if (objfile == NULL)
1725 objfile = symbol_objfile (sym);
1727 if (SYMBOL_OBJ_SECTION (objfile, sym))
1730 /* We should have an objfile by now. */
1731 gdb_assert (objfile);
1733 switch (SYMBOL_CLASS (sym))
1737 addr = SYMBOL_VALUE_ADDRESS (sym);
1740 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1744 /* Nothing else will be listed in the minsyms -- no use looking
1749 fixup_section (&sym->ginfo, addr, objfile);
1754 /* Compute the demangled form of NAME as used by the various symbol
1755 lookup functions. The result can either be the input NAME
1756 directly, or a pointer to a buffer owned by the STORAGE object.
1758 For Ada, this function just returns NAME, unmodified.
1759 Normally, Ada symbol lookups are performed using the encoded name
1760 rather than the demangled name, and so it might seem to make sense
1761 for this function to return an encoded version of NAME.
1762 Unfortunately, we cannot do this, because this function is used in
1763 circumstances where it is not appropriate to try to encode NAME.
1764 For instance, when displaying the frame info, we demangle the name
1765 of each parameter, and then perform a symbol lookup inside our
1766 function using that demangled name. In Ada, certain functions
1767 have internally-generated parameters whose name contain uppercase
1768 characters. Encoding those name would result in those uppercase
1769 characters to become lowercase, and thus cause the symbol lookup
1773 demangle_for_lookup (const char *name, enum language lang,
1774 demangle_result_storage &storage)
1776 /* If we are using C++, D, or Go, demangle the name before doing a
1777 lookup, so we can always binary search. */
1778 if (lang == language_cplus)
1780 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1781 if (demangled_name != NULL)
1782 return storage.set_malloc_ptr (demangled_name);
1784 /* If we were given a non-mangled name, canonicalize it
1785 according to the language (so far only for C++). */
1786 std::string canon = cp_canonicalize_string (name);
1787 if (!canon.empty ())
1788 return storage.swap_string (canon);
1790 else if (lang == language_d)
1792 char *demangled_name = d_demangle (name, 0);
1793 if (demangled_name != NULL)
1794 return storage.set_malloc_ptr (demangled_name);
1796 else if (lang == language_go)
1798 char *demangled_name = go_demangle (name, 0);
1799 if (demangled_name != NULL)
1800 return storage.set_malloc_ptr (demangled_name);
1808 This function (or rather its subordinates) have a bunch of loops and
1809 it would seem to be attractive to put in some QUIT's (though I'm not really
1810 sure whether it can run long enough to be really important). But there
1811 are a few calls for which it would appear to be bad news to quit
1812 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1813 that there is C++ code below which can error(), but that probably
1814 doesn't affect these calls since they are looking for a known
1815 variable and thus can probably assume it will never hit the C++
1819 lookup_symbol_in_language (const char *name, const struct block *block,
1820 const domain_enum domain, enum language lang,
1821 struct field_of_this_result *is_a_field_of_this)
1823 demangle_result_storage storage;
1824 const char *modified_name = demangle_for_lookup (name, lang, storage);
1826 return lookup_symbol_aux (modified_name, block, domain, lang,
1827 is_a_field_of_this);
1833 lookup_symbol (const char *name, const struct block *block,
1835 struct field_of_this_result *is_a_field_of_this)
1837 return lookup_symbol_in_language (name, block, domain,
1838 current_language->la_language,
1839 is_a_field_of_this);
1845 lookup_language_this (const struct language_defn *lang,
1846 const struct block *block)
1848 if (lang->la_name_of_this == NULL || block == NULL)
1849 return (struct block_symbol) {NULL, NULL};
1851 if (symbol_lookup_debug > 1)
1853 struct objfile *objfile = lookup_objfile_from_block (block);
1855 fprintf_unfiltered (gdb_stdlog,
1856 "lookup_language_this (%s, %s (objfile %s))",
1857 lang->la_name, host_address_to_string (block),
1858 objfile_debug_name (objfile));
1865 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1868 if (symbol_lookup_debug > 1)
1870 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1871 SYMBOL_PRINT_NAME (sym),
1872 host_address_to_string (sym),
1873 host_address_to_string (block));
1875 return (struct block_symbol) {sym, block};
1877 if (BLOCK_FUNCTION (block))
1879 block = BLOCK_SUPERBLOCK (block);
1882 if (symbol_lookup_debug > 1)
1883 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1884 return (struct block_symbol) {NULL, NULL};
1887 /* Given TYPE, a structure/union,
1888 return 1 if the component named NAME from the ultimate target
1889 structure/union is defined, otherwise, return 0. */
1892 check_field (struct type *type, const char *name,
1893 struct field_of_this_result *is_a_field_of_this)
1897 /* The type may be a stub. */
1898 type = check_typedef (type);
1900 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1902 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1904 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1906 is_a_field_of_this->type = type;
1907 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1912 /* C++: If it was not found as a data field, then try to return it
1913 as a pointer to a method. */
1915 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1917 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1919 is_a_field_of_this->type = type;
1920 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1925 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1926 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1932 /* Behave like lookup_symbol except that NAME is the natural name
1933 (e.g., demangled name) of the symbol that we're looking for. */
1935 static struct block_symbol
1936 lookup_symbol_aux (const char *name, const struct block *block,
1937 const domain_enum domain, enum language language,
1938 struct field_of_this_result *is_a_field_of_this)
1940 struct block_symbol result;
1941 const struct language_defn *langdef;
1943 if (symbol_lookup_debug)
1945 struct objfile *objfile = lookup_objfile_from_block (block);
1947 fprintf_unfiltered (gdb_stdlog,
1948 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
1949 name, host_address_to_string (block),
1951 ? objfile_debug_name (objfile) : "NULL",
1952 domain_name (domain), language_str (language));
1955 /* Make sure we do something sensible with is_a_field_of_this, since
1956 the callers that set this parameter to some non-null value will
1957 certainly use it later. If we don't set it, the contents of
1958 is_a_field_of_this are undefined. */
1959 if (is_a_field_of_this != NULL)
1960 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1962 /* Search specified block and its superiors. Don't search
1963 STATIC_BLOCK or GLOBAL_BLOCK. */
1965 result = lookup_local_symbol (name, block, domain, language);
1966 if (result.symbol != NULL)
1968 if (symbol_lookup_debug)
1970 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
1971 host_address_to_string (result.symbol));
1976 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1977 check to see if NAME is a field of `this'. */
1979 langdef = language_def (language);
1981 /* Don't do this check if we are searching for a struct. It will
1982 not be found by check_field, but will be found by other
1984 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1986 result = lookup_language_this (langdef, block);
1990 struct type *t = result.symbol->type;
1992 /* I'm not really sure that type of this can ever
1993 be typedefed; just be safe. */
1994 t = check_typedef (t);
1995 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
1996 t = TYPE_TARGET_TYPE (t);
1998 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1999 && TYPE_CODE (t) != TYPE_CODE_UNION)
2000 error (_("Internal error: `%s' is not an aggregate"),
2001 langdef->la_name_of_this);
2003 if (check_field (t, name, is_a_field_of_this))
2005 if (symbol_lookup_debug)
2007 fprintf_unfiltered (gdb_stdlog,
2008 "lookup_symbol_aux (...) = NULL\n");
2010 return (struct block_symbol) {NULL, NULL};
2015 /* Now do whatever is appropriate for LANGUAGE to look
2016 up static and global variables. */
2018 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2019 if (result.symbol != NULL)
2021 if (symbol_lookup_debug)
2023 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2024 host_address_to_string (result.symbol));
2029 /* Now search all static file-level symbols. Not strictly correct,
2030 but more useful than an error. */
2032 result = lookup_static_symbol (name, domain);
2033 if (symbol_lookup_debug)
2035 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2036 result.symbol != NULL
2037 ? host_address_to_string (result.symbol)
2043 /* Check to see if the symbol is defined in BLOCK or its superiors.
2044 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2046 static struct block_symbol
2047 lookup_local_symbol (const char *name, const struct block *block,
2048 const domain_enum domain,
2049 enum language language)
2052 const struct block *static_block = block_static_block (block);
2053 const char *scope = block_scope (block);
2055 /* Check if either no block is specified or it's a global block. */
2057 if (static_block == NULL)
2058 return (struct block_symbol) {NULL, NULL};
2060 while (block != static_block)
2062 sym = lookup_symbol_in_block (name, block, domain);
2064 return (struct block_symbol) {sym, block};
2066 if (language == language_cplus || language == language_fortran)
2068 struct block_symbol sym
2069 = cp_lookup_symbol_imports_or_template (scope, name, block,
2072 if (sym.symbol != NULL)
2076 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2078 block = BLOCK_SUPERBLOCK (block);
2081 /* We've reached the end of the function without finding a result. */
2083 return (struct block_symbol) {NULL, NULL};
2089 lookup_objfile_from_block (const struct block *block)
2091 struct objfile *obj;
2092 struct compunit_symtab *cust;
2097 block = block_global_block (block);
2098 /* Look through all blockvectors. */
2099 ALL_COMPUNITS (obj, cust)
2100 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2103 if (obj->separate_debug_objfile_backlink)
2104 obj = obj->separate_debug_objfile_backlink;
2115 lookup_symbol_in_block (const char *name, const struct block *block,
2116 const domain_enum domain)
2120 if (symbol_lookup_debug > 1)
2122 struct objfile *objfile = lookup_objfile_from_block (block);
2124 fprintf_unfiltered (gdb_stdlog,
2125 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2126 name, host_address_to_string (block),
2127 objfile_debug_name (objfile),
2128 domain_name (domain));
2131 sym = block_lookup_symbol (block, name, domain);
2134 if (symbol_lookup_debug > 1)
2136 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2137 host_address_to_string (sym));
2139 return fixup_symbol_section (sym, NULL);
2142 if (symbol_lookup_debug > 1)
2143 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2150 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2152 const domain_enum domain)
2154 struct objfile *objfile;
2156 for (objfile = main_objfile;
2158 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2160 struct block_symbol result
2161 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2163 if (result.symbol != NULL)
2167 return (struct block_symbol) {NULL, NULL};
2170 /* Check to see if the symbol is defined in one of the OBJFILE's
2171 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2172 depending on whether or not we want to search global symbols or
2175 static struct block_symbol
2176 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2177 const char *name, const domain_enum domain)
2179 struct compunit_symtab *cust;
2181 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2183 if (symbol_lookup_debug > 1)
2185 fprintf_unfiltered (gdb_stdlog,
2186 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2187 objfile_debug_name (objfile),
2188 block_index == GLOBAL_BLOCK
2189 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2190 name, domain_name (domain));
2193 ALL_OBJFILE_COMPUNITS (objfile, cust)
2195 const struct blockvector *bv;
2196 const struct block *block;
2197 struct block_symbol result;
2199 bv = COMPUNIT_BLOCKVECTOR (cust);
2200 block = BLOCKVECTOR_BLOCK (bv, block_index);
2201 result.symbol = block_lookup_symbol_primary (block, name, domain);
2202 result.block = block;
2203 if (result.symbol != NULL)
2205 if (symbol_lookup_debug > 1)
2207 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2208 host_address_to_string (result.symbol),
2209 host_address_to_string (block));
2211 result.symbol = fixup_symbol_section (result.symbol, objfile);
2217 if (symbol_lookup_debug > 1)
2218 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2219 return (struct block_symbol) {NULL, NULL};
2222 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2223 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2224 and all associated separate debug objfiles.
2226 Normally we only look in OBJFILE, and not any separate debug objfiles
2227 because the outer loop will cause them to be searched too. This case is
2228 different. Here we're called from search_symbols where it will only
2229 call us for the the objfile that contains a matching minsym. */
2231 static struct block_symbol
2232 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2233 const char *linkage_name,
2236 enum language lang = current_language->la_language;
2237 struct objfile *main_objfile, *cur_objfile;
2239 demangle_result_storage storage;
2240 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2242 if (objfile->separate_debug_objfile_backlink)
2243 main_objfile = objfile->separate_debug_objfile_backlink;
2245 main_objfile = objfile;
2247 for (cur_objfile = main_objfile;
2249 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2251 struct block_symbol result;
2253 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2254 modified_name, domain);
2255 if (result.symbol == NULL)
2256 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2257 modified_name, domain);
2258 if (result.symbol != NULL)
2262 return (struct block_symbol) {NULL, NULL};
2265 /* A helper function that throws an exception when a symbol was found
2266 in a psymtab but not in a symtab. */
2268 static void ATTRIBUTE_NORETURN
2269 error_in_psymtab_expansion (int block_index, const char *name,
2270 struct compunit_symtab *cust)
2273 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2274 %s may be an inlined function, or may be a template function\n \
2275 (if a template, try specifying an instantiation: %s<type>)."),
2276 block_index == GLOBAL_BLOCK ? "global" : "static",
2278 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2282 /* A helper function for various lookup routines that interfaces with
2283 the "quick" symbol table functions. */
2285 static struct block_symbol
2286 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2287 const char *name, const domain_enum domain)
2289 struct compunit_symtab *cust;
2290 const struct blockvector *bv;
2291 const struct block *block;
2292 struct block_symbol result;
2295 return (struct block_symbol) {NULL, NULL};
2297 if (symbol_lookup_debug > 1)
2299 fprintf_unfiltered (gdb_stdlog,
2300 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2301 objfile_debug_name (objfile),
2302 block_index == GLOBAL_BLOCK
2303 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2304 name, domain_name (domain));
2307 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2310 if (symbol_lookup_debug > 1)
2312 fprintf_unfiltered (gdb_stdlog,
2313 "lookup_symbol_via_quick_fns (...) = NULL\n");
2315 return (struct block_symbol) {NULL, NULL};
2318 bv = COMPUNIT_BLOCKVECTOR (cust);
2319 block = BLOCKVECTOR_BLOCK (bv, block_index);
2320 result.symbol = block_lookup_symbol (block, name, domain);
2321 if (result.symbol == NULL)
2322 error_in_psymtab_expansion (block_index, name, cust);
2324 if (symbol_lookup_debug > 1)
2326 fprintf_unfiltered (gdb_stdlog,
2327 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2328 host_address_to_string (result.symbol),
2329 host_address_to_string (block));
2332 result.symbol = fixup_symbol_section (result.symbol, objfile);
2333 result.block = block;
2340 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2342 const struct block *block,
2343 const domain_enum domain)
2345 struct block_symbol result;
2347 /* NOTE: carlton/2003-05-19: The comments below were written when
2348 this (or what turned into this) was part of lookup_symbol_aux;
2349 I'm much less worried about these questions now, since these
2350 decisions have turned out well, but I leave these comments here
2353 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2354 not it would be appropriate to search the current global block
2355 here as well. (That's what this code used to do before the
2356 is_a_field_of_this check was moved up.) On the one hand, it's
2357 redundant with the lookup in all objfiles search that happens
2358 next. On the other hand, if decode_line_1 is passed an argument
2359 like filename:var, then the user presumably wants 'var' to be
2360 searched for in filename. On the third hand, there shouldn't be
2361 multiple global variables all of which are named 'var', and it's
2362 not like decode_line_1 has ever restricted its search to only
2363 global variables in a single filename. All in all, only
2364 searching the static block here seems best: it's correct and it's
2367 /* NOTE: carlton/2002-12-05: There's also a possible performance
2368 issue here: if you usually search for global symbols in the
2369 current file, then it would be slightly better to search the
2370 current global block before searching all the symtabs. But there
2371 are other factors that have a much greater effect on performance
2372 than that one, so I don't think we should worry about that for
2375 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2376 the current objfile. Searching the current objfile first is useful
2377 for both matching user expectations as well as performance. */
2379 result = lookup_symbol_in_static_block (name, block, domain);
2380 if (result.symbol != NULL)
2383 /* If we didn't find a definition for a builtin type in the static block,
2384 search for it now. This is actually the right thing to do and can be
2385 a massive performance win. E.g., when debugging a program with lots of
2386 shared libraries we could search all of them only to find out the
2387 builtin type isn't defined in any of them. This is common for types
2389 if (domain == VAR_DOMAIN)
2391 struct gdbarch *gdbarch;
2394 gdbarch = target_gdbarch ();
2396 gdbarch = block_gdbarch (block);
2397 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2399 result.block = NULL;
2400 if (result.symbol != NULL)
2404 return lookup_global_symbol (name, block, domain);
2410 lookup_symbol_in_static_block (const char *name,
2411 const struct block *block,
2412 const domain_enum domain)
2414 const struct block *static_block = block_static_block (block);
2417 if (static_block == NULL)
2418 return (struct block_symbol) {NULL, NULL};
2420 if (symbol_lookup_debug)
2422 struct objfile *objfile = lookup_objfile_from_block (static_block);
2424 fprintf_unfiltered (gdb_stdlog,
2425 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2428 host_address_to_string (block),
2429 objfile_debug_name (objfile),
2430 domain_name (domain));
2433 sym = lookup_symbol_in_block (name, static_block, domain);
2434 if (symbol_lookup_debug)
2436 fprintf_unfiltered (gdb_stdlog,
2437 "lookup_symbol_in_static_block (...) = %s\n",
2438 sym != NULL ? host_address_to_string (sym) : "NULL");
2440 return (struct block_symbol) {sym, static_block};
2443 /* Perform the standard symbol lookup of NAME in OBJFILE:
2444 1) First search expanded symtabs, and if not found
2445 2) Search the "quick" symtabs (partial or .gdb_index).
2446 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2448 static struct block_symbol
2449 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2450 const char *name, const domain_enum domain)
2452 struct block_symbol result;
2454 if (symbol_lookup_debug)
2456 fprintf_unfiltered (gdb_stdlog,
2457 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2458 objfile_debug_name (objfile),
2459 block_index == GLOBAL_BLOCK
2460 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2461 name, domain_name (domain));
2464 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2466 if (result.symbol != NULL)
2468 if (symbol_lookup_debug)
2470 fprintf_unfiltered (gdb_stdlog,
2471 "lookup_symbol_in_objfile (...) = %s"
2473 host_address_to_string (result.symbol));
2478 result = lookup_symbol_via_quick_fns (objfile, block_index,
2480 if (symbol_lookup_debug)
2482 fprintf_unfiltered (gdb_stdlog,
2483 "lookup_symbol_in_objfile (...) = %s%s\n",
2484 result.symbol != NULL
2485 ? host_address_to_string (result.symbol)
2487 result.symbol != NULL ? " (via quick fns)" : "");
2495 lookup_static_symbol (const char *name, const domain_enum domain)
2497 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2498 struct objfile *objfile;
2499 struct block_symbol result;
2500 struct block_symbol_cache *bsc;
2501 struct symbol_cache_slot *slot;
2503 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2504 NULL for OBJFILE_CONTEXT. */
2505 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2507 if (result.symbol != NULL)
2509 if (SYMBOL_LOOKUP_FAILED_P (result))
2510 return (struct block_symbol) {NULL, NULL};
2514 ALL_OBJFILES (objfile)
2516 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2517 if (result.symbol != NULL)
2519 /* Still pass NULL for OBJFILE_CONTEXT here. */
2520 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2526 /* Still pass NULL for OBJFILE_CONTEXT here. */
2527 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2528 return (struct block_symbol) {NULL, NULL};
2531 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2533 struct global_sym_lookup_data
2535 /* The name of the symbol we are searching for. */
2538 /* The domain to use for our search. */
2541 /* The field where the callback should store the symbol if found.
2542 It should be initialized to {NULL, NULL} before the search is started. */
2543 struct block_symbol result;
2546 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2547 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2548 OBJFILE. The arguments for the search are passed via CB_DATA,
2549 which in reality is a pointer to struct global_sym_lookup_data. */
2552 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2555 struct global_sym_lookup_data *data =
2556 (struct global_sym_lookup_data *) cb_data;
2558 gdb_assert (data->result.symbol == NULL
2559 && data->result.block == NULL);
2561 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2562 data->name, data->domain);
2564 /* If we found a match, tell the iterator to stop. Otherwise,
2566 return (data->result.symbol != NULL);
2572 lookup_global_symbol (const char *name,
2573 const struct block *block,
2574 const domain_enum domain)
2576 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2577 struct block_symbol result;
2578 struct objfile *objfile;
2579 struct global_sym_lookup_data lookup_data;
2580 struct block_symbol_cache *bsc;
2581 struct symbol_cache_slot *slot;
2583 objfile = lookup_objfile_from_block (block);
2585 /* First see if we can find the symbol in the cache.
2586 This works because we use the current objfile to qualify the lookup. */
2587 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2589 if (result.symbol != NULL)
2591 if (SYMBOL_LOOKUP_FAILED_P (result))
2592 return (struct block_symbol) {NULL, NULL};
2596 /* Call library-specific lookup procedure. */
2597 if (objfile != NULL)
2598 result = solib_global_lookup (objfile, name, domain);
2600 /* If that didn't work go a global search (of global blocks, heh). */
2601 if (result.symbol == NULL)
2603 memset (&lookup_data, 0, sizeof (lookup_data));
2604 lookup_data.name = name;
2605 lookup_data.domain = domain;
2606 gdbarch_iterate_over_objfiles_in_search_order
2607 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2608 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2609 result = lookup_data.result;
2612 if (result.symbol != NULL)
2613 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2615 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2621 symbol_matches_domain (enum language symbol_language,
2622 domain_enum symbol_domain,
2625 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2626 Similarly, any Ada type declaration implicitly defines a typedef. */
2627 if (symbol_language == language_cplus
2628 || symbol_language == language_d
2629 || symbol_language == language_ada
2630 || symbol_language == language_rust)
2632 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2633 && symbol_domain == STRUCT_DOMAIN)
2636 /* For all other languages, strict match is required. */
2637 return (symbol_domain == domain);
2643 lookup_transparent_type (const char *name)
2645 return current_language->la_lookup_transparent_type (name);
2648 /* A helper for basic_lookup_transparent_type that interfaces with the
2649 "quick" symbol table functions. */
2651 static struct type *
2652 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2655 struct compunit_symtab *cust;
2656 const struct blockvector *bv;
2657 struct block *block;
2662 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2667 bv = COMPUNIT_BLOCKVECTOR (cust);
2668 block = BLOCKVECTOR_BLOCK (bv, block_index);
2669 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2670 block_find_non_opaque_type, NULL);
2672 error_in_psymtab_expansion (block_index, name, cust);
2673 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2674 return SYMBOL_TYPE (sym);
2677 /* Subroutine of basic_lookup_transparent_type to simplify it.
2678 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2679 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2681 static struct type *
2682 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2685 const struct compunit_symtab *cust;
2686 const struct blockvector *bv;
2687 const struct block *block;
2688 const struct symbol *sym;
2690 ALL_OBJFILE_COMPUNITS (objfile, cust)
2692 bv = COMPUNIT_BLOCKVECTOR (cust);
2693 block = BLOCKVECTOR_BLOCK (bv, block_index);
2694 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2695 block_find_non_opaque_type, NULL);
2698 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2699 return SYMBOL_TYPE (sym);
2706 /* The standard implementation of lookup_transparent_type. This code
2707 was modeled on lookup_symbol -- the parts not relevant to looking
2708 up types were just left out. In particular it's assumed here that
2709 types are available in STRUCT_DOMAIN and only in file-static or
2713 basic_lookup_transparent_type (const char *name)
2715 struct objfile *objfile;
2718 /* Now search all the global symbols. Do the symtab's first, then
2719 check the psymtab's. If a psymtab indicates the existence
2720 of the desired name as a global, then do psymtab-to-symtab
2721 conversion on the fly and return the found symbol. */
2723 ALL_OBJFILES (objfile)
2725 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2730 ALL_OBJFILES (objfile)
2732 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2737 /* Now search the static file-level symbols.
2738 Not strictly correct, but more useful than an error.
2739 Do the symtab's first, then
2740 check the psymtab's. If a psymtab indicates the existence
2741 of the desired name as a file-level static, then do psymtab-to-symtab
2742 conversion on the fly and return the found symbol. */
2744 ALL_OBJFILES (objfile)
2746 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2751 ALL_OBJFILES (objfile)
2753 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2758 return (struct type *) 0;
2761 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2763 For each symbol that matches, CALLBACK is called. The symbol is
2764 passed to the callback.
2766 If CALLBACK returns false, the iteration ends. Otherwise, the
2767 search continues. */
2770 iterate_over_symbols (const struct block *block, const char *name,
2771 const domain_enum domain,
2772 gdb::function_view<symbol_found_callback_ftype> callback)
2774 struct block_iterator iter;
2777 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2779 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2780 SYMBOL_DOMAIN (sym), domain))
2782 if (!callback (sym))
2788 /* Find the compunit symtab associated with PC and SECTION.
2789 This will read in debug info as necessary. */
2791 struct compunit_symtab *
2792 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2794 struct compunit_symtab *cust;
2795 struct compunit_symtab *best_cust = NULL;
2796 struct objfile *objfile;
2797 CORE_ADDR distance = 0;
2798 struct bound_minimal_symbol msymbol;
2800 /* If we know that this is not a text address, return failure. This is
2801 necessary because we loop based on the block's high and low code
2802 addresses, which do not include the data ranges, and because
2803 we call find_pc_sect_psymtab which has a similar restriction based
2804 on the partial_symtab's texthigh and textlow. */
2805 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2807 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2808 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2809 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2810 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2811 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2814 /* Search all symtabs for the one whose file contains our address, and which
2815 is the smallest of all the ones containing the address. This is designed
2816 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2817 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2818 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2820 This happens for native ecoff format, where code from included files
2821 gets its own symtab. The symtab for the included file should have
2822 been read in already via the dependency mechanism.
2823 It might be swifter to create several symtabs with the same name
2824 like xcoff does (I'm not sure).
2826 It also happens for objfiles that have their functions reordered.
2827 For these, the symtab we are looking for is not necessarily read in. */
2829 ALL_COMPUNITS (objfile, cust)
2832 const struct blockvector *bv;
2834 bv = COMPUNIT_BLOCKVECTOR (cust);
2835 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2837 if (BLOCK_START (b) <= pc
2838 && BLOCK_END (b) > pc
2840 || BLOCK_END (b) - BLOCK_START (b) < distance))
2842 /* For an objfile that has its functions reordered,
2843 find_pc_psymtab will find the proper partial symbol table
2844 and we simply return its corresponding symtab. */
2845 /* In order to better support objfiles that contain both
2846 stabs and coff debugging info, we continue on if a psymtab
2848 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2850 struct compunit_symtab *result;
2853 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2862 struct block_iterator iter;
2863 struct symbol *sym = NULL;
2865 ALL_BLOCK_SYMBOLS (b, iter, sym)
2867 fixup_symbol_section (sym, objfile);
2868 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2873 continue; /* No symbol in this symtab matches
2876 distance = BLOCK_END (b) - BLOCK_START (b);
2881 if (best_cust != NULL)
2884 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2886 ALL_OBJFILES (objfile)
2888 struct compunit_symtab *result;
2892 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2903 /* Find the compunit symtab associated with PC.
2904 This will read in debug info as necessary.
2905 Backward compatibility, no section. */
2907 struct compunit_symtab *
2908 find_pc_compunit_symtab (CORE_ADDR pc)
2910 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2914 /* Find the source file and line number for a given PC value and SECTION.
2915 Return a structure containing a symtab pointer, a line number,
2916 and a pc range for the entire source line.
2917 The value's .pc field is NOT the specified pc.
2918 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2919 use the line that ends there. Otherwise, in that case, the line
2920 that begins there is used. */
2922 /* The big complication here is that a line may start in one file, and end just
2923 before the start of another file. This usually occurs when you #include
2924 code in the middle of a subroutine. To properly find the end of a line's PC
2925 range, we must search all symtabs associated with this compilation unit, and
2926 find the one whose first PC is closer than that of the next line in this
2929 /* If it's worth the effort, we could be using a binary search. */
2931 struct symtab_and_line
2932 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2934 struct compunit_symtab *cust;
2935 struct symtab *iter_s;
2936 struct linetable *l;
2939 struct linetable_entry *item;
2940 struct symtab_and_line val;
2941 const struct blockvector *bv;
2942 struct bound_minimal_symbol msymbol;
2944 /* Info on best line seen so far, and where it starts, and its file. */
2946 struct linetable_entry *best = NULL;
2947 CORE_ADDR best_end = 0;
2948 struct symtab *best_symtab = 0;
2950 /* Store here the first line number
2951 of a file which contains the line at the smallest pc after PC.
2952 If we don't find a line whose range contains PC,
2953 we will use a line one less than this,
2954 with a range from the start of that file to the first line's pc. */
2955 struct linetable_entry *alt = NULL;
2957 /* Info on best line seen in this file. */
2959 struct linetable_entry *prev;
2961 /* If this pc is not from the current frame,
2962 it is the address of the end of a call instruction.
2963 Quite likely that is the start of the following statement.
2964 But what we want is the statement containing the instruction.
2965 Fudge the pc to make sure we get that. */
2967 init_sal (&val); /* initialize to zeroes */
2969 val.pspace = current_program_space;
2971 /* It's tempting to assume that, if we can't find debugging info for
2972 any function enclosing PC, that we shouldn't search for line
2973 number info, either. However, GAS can emit line number info for
2974 assembly files --- very helpful when debugging hand-written
2975 assembly code. In such a case, we'd have no debug info for the
2976 function, but we would have line info. */
2981 /* elz: added this because this function returned the wrong
2982 information if the pc belongs to a stub (import/export)
2983 to call a shlib function. This stub would be anywhere between
2984 two functions in the target, and the line info was erroneously
2985 taken to be the one of the line before the pc. */
2987 /* RT: Further explanation:
2989 * We have stubs (trampolines) inserted between procedures.
2991 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2992 * exists in the main image.
2994 * In the minimal symbol table, we have a bunch of symbols
2995 * sorted by start address. The stubs are marked as "trampoline",
2996 * the others appear as text. E.g.:
2998 * Minimal symbol table for main image
2999 * main: code for main (text symbol)
3000 * shr1: stub (trampoline symbol)
3001 * foo: code for foo (text symbol)
3003 * Minimal symbol table for "shr1" image:
3005 * shr1: code for shr1 (text symbol)
3008 * So the code below is trying to detect if we are in the stub
3009 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3010 * and if found, do the symbolization from the real-code address
3011 * rather than the stub address.
3013 * Assumptions being made about the minimal symbol table:
3014 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3015 * if we're really in the trampoline.s If we're beyond it (say
3016 * we're in "foo" in the above example), it'll have a closer
3017 * symbol (the "foo" text symbol for example) and will not
3018 * return the trampoline.
3019 * 2. lookup_minimal_symbol_text() will find a real text symbol
3020 * corresponding to the trampoline, and whose address will
3021 * be different than the trampoline address. I put in a sanity
3022 * check for the address being the same, to avoid an
3023 * infinite recursion.
3025 msymbol = lookup_minimal_symbol_by_pc (pc);
3026 if (msymbol.minsym != NULL)
3027 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3029 struct bound_minimal_symbol mfunsym
3030 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3033 if (mfunsym.minsym == NULL)
3034 /* I eliminated this warning since it is coming out
3035 * in the following situation:
3036 * gdb shmain // test program with shared libraries
3037 * (gdb) break shr1 // function in shared lib
3038 * Warning: In stub for ...
3039 * In the above situation, the shared lib is not loaded yet,
3040 * so of course we can't find the real func/line info,
3041 * but the "break" still works, and the warning is annoying.
3042 * So I commented out the warning. RT */
3043 /* warning ("In stub for %s; unable to find real function/line info",
3044 SYMBOL_LINKAGE_NAME (msymbol)); */
3047 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3048 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3049 /* Avoid infinite recursion */
3050 /* See above comment about why warning is commented out. */
3051 /* warning ("In stub for %s; unable to find real function/line info",
3052 SYMBOL_LINKAGE_NAME (msymbol)); */
3056 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3060 cust = find_pc_sect_compunit_symtab (pc, section);
3063 /* If no symbol information, return previous pc. */
3070 bv = COMPUNIT_BLOCKVECTOR (cust);
3072 /* Look at all the symtabs that share this blockvector.
3073 They all have the same apriori range, that we found was right;
3074 but they have different line tables. */
3076 ALL_COMPUNIT_FILETABS (cust, iter_s)
3078 /* Find the best line in this symtab. */
3079 l = SYMTAB_LINETABLE (iter_s);
3085 /* I think len can be zero if the symtab lacks line numbers
3086 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3087 I'm not sure which, and maybe it depends on the symbol
3093 item = l->item; /* Get first line info. */
3095 /* Is this file's first line closer than the first lines of other files?
3096 If so, record this file, and its first line, as best alternate. */
3097 if (item->pc > pc && (!alt || item->pc < alt->pc))
3100 for (i = 0; i < len; i++, item++)
3102 /* Leave prev pointing to the linetable entry for the last line
3103 that started at or before PC. */
3110 /* At this point, prev points at the line whose start addr is <= pc, and
3111 item points at the next line. If we ran off the end of the linetable
3112 (pc >= start of the last line), then prev == item. If pc < start of
3113 the first line, prev will not be set. */
3115 /* Is this file's best line closer than the best in the other files?
3116 If so, record this file, and its best line, as best so far. Don't
3117 save prev if it represents the end of a function (i.e. line number
3118 0) instead of a real line. */
3120 if (prev && prev->line && (!best || prev->pc > best->pc))
3123 best_symtab = iter_s;
3125 /* Discard BEST_END if it's before the PC of the current BEST. */
3126 if (best_end <= best->pc)
3130 /* If another line (denoted by ITEM) is in the linetable and its
3131 PC is after BEST's PC, but before the current BEST_END, then
3132 use ITEM's PC as the new best_end. */
3133 if (best && i < len && item->pc > best->pc
3134 && (best_end == 0 || best_end > item->pc))
3135 best_end = item->pc;
3140 /* If we didn't find any line number info, just return zeros.
3141 We used to return alt->line - 1 here, but that could be
3142 anywhere; if we don't have line number info for this PC,
3143 don't make some up. */
3146 else if (best->line == 0)
3148 /* If our best fit is in a range of PC's for which no line
3149 number info is available (line number is zero) then we didn't
3150 find any valid line information. */
3155 val.symtab = best_symtab;
3156 val.line = best->line;
3158 if (best_end && (!alt || best_end < alt->pc))
3163 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3165 val.section = section;
3169 /* Backward compatibility (no section). */
3171 struct symtab_and_line
3172 find_pc_line (CORE_ADDR pc, int notcurrent)
3174 struct obj_section *section;
3176 section = find_pc_overlay (pc);
3177 if (pc_in_unmapped_range (pc, section))
3178 pc = overlay_mapped_address (pc, section);
3179 return find_pc_sect_line (pc, section, notcurrent);
3185 find_pc_line_symtab (CORE_ADDR pc)
3187 struct symtab_and_line sal;
3189 /* This always passes zero for NOTCURRENT to find_pc_line.
3190 There are currently no callers that ever pass non-zero. */
3191 sal = find_pc_line (pc, 0);
3195 /* Find line number LINE in any symtab whose name is the same as
3198 If found, return the symtab that contains the linetable in which it was
3199 found, set *INDEX to the index in the linetable of the best entry
3200 found, and set *EXACT_MATCH nonzero if the value returned is an
3203 If not found, return NULL. */
3206 find_line_symtab (struct symtab *symtab, int line,
3207 int *index, int *exact_match)
3209 int exact = 0; /* Initialized here to avoid a compiler warning. */
3211 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3215 struct linetable *best_linetable;
3216 struct symtab *best_symtab;
3218 /* First try looking it up in the given symtab. */
3219 best_linetable = SYMTAB_LINETABLE (symtab);
3220 best_symtab = symtab;
3221 best_index = find_line_common (best_linetable, line, &exact, 0);
3222 if (best_index < 0 || !exact)
3224 /* Didn't find an exact match. So we better keep looking for
3225 another symtab with the same name. In the case of xcoff,
3226 multiple csects for one source file (produced by IBM's FORTRAN
3227 compiler) produce multiple symtabs (this is unavoidable
3228 assuming csects can be at arbitrary places in memory and that
3229 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3231 /* BEST is the smallest linenumber > LINE so far seen,
3232 or 0 if none has been seen so far.
3233 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3236 struct objfile *objfile;
3237 struct compunit_symtab *cu;
3240 if (best_index >= 0)
3241 best = best_linetable->item[best_index].line;
3245 ALL_OBJFILES (objfile)
3248 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3249 symtab_to_fullname (symtab));
3252 ALL_FILETABS (objfile, cu, s)
3254 struct linetable *l;
3257 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3259 if (FILENAME_CMP (symtab_to_fullname (symtab),
3260 symtab_to_fullname (s)) != 0)
3262 l = SYMTAB_LINETABLE (s);
3263 ind = find_line_common (l, line, &exact, 0);
3273 if (best == 0 || l->item[ind].line < best)
3275 best = l->item[ind].line;
3288 *index = best_index;
3290 *exact_match = exact;
3295 /* Given SYMTAB, returns all the PCs function in the symtab that
3296 exactly match LINE. Returns an empty vector if there are no exact
3297 matches, but updates BEST_ITEM in this case. */
3299 std::vector<CORE_ADDR>
3300 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3301 struct linetable_entry **best_item)
3304 std::vector<CORE_ADDR> result;
3306 /* First, collect all the PCs that are at this line. */
3312 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3319 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3321 if (*best_item == NULL || item->line < (*best_item)->line)
3327 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3335 /* Set the PC value for a given source file and line number and return true.
3336 Returns zero for invalid line number (and sets the PC to 0).
3337 The source file is specified with a struct symtab. */
3340 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3342 struct linetable *l;
3349 symtab = find_line_symtab (symtab, line, &ind, NULL);
3352 l = SYMTAB_LINETABLE (symtab);
3353 *pc = l->item[ind].pc;
3360 /* Find the range of pc values in a line.
3361 Store the starting pc of the line into *STARTPTR
3362 and the ending pc (start of next line) into *ENDPTR.
3363 Returns 1 to indicate success.
3364 Returns 0 if could not find the specified line. */
3367 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3370 CORE_ADDR startaddr;
3371 struct symtab_and_line found_sal;
3374 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3377 /* This whole function is based on address. For example, if line 10 has
3378 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3379 "info line *0x123" should say the line goes from 0x100 to 0x200
3380 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3381 This also insures that we never give a range like "starts at 0x134
3382 and ends at 0x12c". */
3384 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3385 if (found_sal.line != sal.line)
3387 /* The specified line (sal) has zero bytes. */
3388 *startptr = found_sal.pc;
3389 *endptr = found_sal.pc;
3393 *startptr = found_sal.pc;
3394 *endptr = found_sal.end;
3399 /* Given a line table and a line number, return the index into the line
3400 table for the pc of the nearest line whose number is >= the specified one.
3401 Return -1 if none is found. The value is >= 0 if it is an index.
3402 START is the index at which to start searching the line table.
3404 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3407 find_line_common (struct linetable *l, int lineno,
3408 int *exact_match, int start)
3413 /* BEST is the smallest linenumber > LINENO so far seen,
3414 or 0 if none has been seen so far.
3415 BEST_INDEX identifies the item for it. */
3417 int best_index = -1;
3428 for (i = start; i < len; i++)
3430 struct linetable_entry *item = &(l->item[i]);
3432 if (item->line == lineno)
3434 /* Return the first (lowest address) entry which matches. */
3439 if (item->line > lineno && (best == 0 || item->line < best))
3446 /* If we got here, we didn't get an exact match. */
3451 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3453 struct symtab_and_line sal;
3455 sal = find_pc_line (pc, 0);
3458 return sal.symtab != 0;
3461 /* Given a function symbol SYM, find the symtab and line for the start
3463 If the argument FUNFIRSTLINE is nonzero, we want the first line
3464 of real code inside the function.
3465 This function should return SALs matching those from minsym_found,
3466 otherwise false multiple-locations breakpoints could be placed. */
3468 struct symtab_and_line
3469 find_function_start_sal (struct symbol *sym, int funfirstline)
3471 struct symtab_and_line sal;
3472 struct obj_section *section;
3474 fixup_symbol_section (sym, NULL);
3475 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3476 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3478 if (funfirstline && sal.symtab != NULL
3479 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3480 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3482 struct gdbarch *gdbarch = symbol_arch (sym);
3484 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3485 if (gdbarch_skip_entrypoint_p (gdbarch))
3486 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3490 /* We always should have a line for the function start address.
3491 If we don't, something is odd. Create a plain SAL refering
3492 just the PC and hope that skip_prologue_sal (if requested)
3493 can find a line number for after the prologue. */
3494 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3497 sal.pspace = current_program_space;
3498 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3499 sal.section = section;
3503 skip_prologue_sal (&sal);
3508 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3509 address for that function that has an entry in SYMTAB's line info
3510 table. If such an entry cannot be found, return FUNC_ADDR
3514 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3516 CORE_ADDR func_start, func_end;
3517 struct linetable *l;
3520 /* Give up if this symbol has no lineinfo table. */
3521 l = SYMTAB_LINETABLE (symtab);
3525 /* Get the range for the function's PC values, or give up if we
3526 cannot, for some reason. */
3527 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3530 /* Linetable entries are ordered by PC values, see the commentary in
3531 symtab.h where `struct linetable' is defined. Thus, the first
3532 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3533 address we are looking for. */
3534 for (i = 0; i < l->nitems; i++)
3536 struct linetable_entry *item = &(l->item[i]);
3538 /* Don't use line numbers of zero, they mark special entries in
3539 the table. See the commentary on symtab.h before the
3540 definition of struct linetable. */
3541 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3548 /* Adjust SAL to the first instruction past the function prologue.
3549 If the PC was explicitly specified, the SAL is not changed.
3550 If the line number was explicitly specified, at most the SAL's PC
3551 is updated. If SAL is already past the prologue, then do nothing. */
3554 skip_prologue_sal (struct symtab_and_line *sal)
3557 struct symtab_and_line start_sal;
3558 CORE_ADDR pc, saved_pc;
3559 struct obj_section *section;
3561 struct objfile *objfile;
3562 struct gdbarch *gdbarch;
3563 const struct block *b, *function_block;
3564 int force_skip, skip;
3566 /* Do not change the SAL if PC was specified explicitly. */
3567 if (sal->explicit_pc)
3570 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3572 switch_to_program_space_and_thread (sal->pspace);
3574 sym = find_pc_sect_function (sal->pc, sal->section);
3577 fixup_symbol_section (sym, NULL);
3579 objfile = symbol_objfile (sym);
3580 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3581 section = SYMBOL_OBJ_SECTION (objfile, sym);
3582 name = SYMBOL_LINKAGE_NAME (sym);
3586 struct bound_minimal_symbol msymbol
3587 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3589 if (msymbol.minsym == NULL)
3592 objfile = msymbol.objfile;
3593 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3594 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3595 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3598 gdbarch = get_objfile_arch (objfile);
3600 /* Process the prologue in two passes. In the first pass try to skip the
3601 prologue (SKIP is true) and verify there is a real need for it (indicated
3602 by FORCE_SKIP). If no such reason was found run a second pass where the
3603 prologue is not skipped (SKIP is false). */
3608 /* Be conservative - allow direct PC (without skipping prologue) only if we
3609 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3610 have to be set by the caller so we use SYM instead. */
3612 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3620 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3621 so that gdbarch_skip_prologue has something unique to work on. */
3622 if (section_is_overlay (section) && !section_is_mapped (section))
3623 pc = overlay_unmapped_address (pc, section);
3625 /* Skip "first line" of function (which is actually its prologue). */
3626 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3627 if (gdbarch_skip_entrypoint_p (gdbarch))
3628 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3630 pc = gdbarch_skip_prologue (gdbarch, pc);
3632 /* For overlays, map pc back into its mapped VMA range. */
3633 pc = overlay_mapped_address (pc, section);
3635 /* Calculate line number. */
3636 start_sal = find_pc_sect_line (pc, section, 0);
3638 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3639 line is still part of the same function. */
3640 if (skip && start_sal.pc != pc
3641 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3642 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3643 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3644 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3646 /* First pc of next line */
3648 /* Recalculate the line number (might not be N+1). */
3649 start_sal = find_pc_sect_line (pc, section, 0);
3652 /* On targets with executable formats that don't have a concept of
3653 constructors (ELF with .init has, PE doesn't), gcc emits a call
3654 to `__main' in `main' between the prologue and before user
3656 if (gdbarch_skip_main_prologue_p (gdbarch)
3657 && name && strcmp_iw (name, "main") == 0)
3659 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3660 /* Recalculate the line number (might not be N+1). */
3661 start_sal = find_pc_sect_line (pc, section, 0);
3665 while (!force_skip && skip--);
3667 /* If we still don't have a valid source line, try to find the first
3668 PC in the lineinfo table that belongs to the same function. This
3669 happens with COFF debug info, which does not seem to have an
3670 entry in lineinfo table for the code after the prologue which has
3671 no direct relation to source. For example, this was found to be
3672 the case with the DJGPP target using "gcc -gcoff" when the
3673 compiler inserted code after the prologue to make sure the stack
3675 if (!force_skip && sym && start_sal.symtab == NULL)
3677 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3678 /* Recalculate the line number. */
3679 start_sal = find_pc_sect_line (pc, section, 0);
3682 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3683 forward SAL to the end of the prologue. */
3688 sal->section = section;
3690 /* Unless the explicit_line flag was set, update the SAL line
3691 and symtab to correspond to the modified PC location. */
3692 if (sal->explicit_line)
3695 sal->symtab = start_sal.symtab;
3696 sal->line = start_sal.line;
3697 sal->end = start_sal.end;
3699 /* Check if we are now inside an inlined function. If we can,
3700 use the call site of the function instead. */
3701 b = block_for_pc_sect (sal->pc, sal->section);
3702 function_block = NULL;
3705 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3707 else if (BLOCK_FUNCTION (b) != NULL)
3709 b = BLOCK_SUPERBLOCK (b);
3711 if (function_block != NULL
3712 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3714 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3715 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3719 /* Given PC at the function's start address, attempt to find the
3720 prologue end using SAL information. Return zero if the skip fails.
3722 A non-optimized prologue traditionally has one SAL for the function
3723 and a second for the function body. A single line function has
3724 them both pointing at the same line.
3726 An optimized prologue is similar but the prologue may contain
3727 instructions (SALs) from the instruction body. Need to skip those
3728 while not getting into the function body.
3730 The functions end point and an increasing SAL line are used as
3731 indicators of the prologue's endpoint.
3733 This code is based on the function refine_prologue_limit
3737 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3739 struct symtab_and_line prologue_sal;
3742 const struct block *bl;
3744 /* Get an initial range for the function. */
3745 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3746 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3748 prologue_sal = find_pc_line (start_pc, 0);
3749 if (prologue_sal.line != 0)
3751 /* For languages other than assembly, treat two consecutive line
3752 entries at the same address as a zero-instruction prologue.
3753 The GNU assembler emits separate line notes for each instruction
3754 in a multi-instruction macro, but compilers generally will not
3756 if (prologue_sal.symtab->language != language_asm)
3758 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3761 /* Skip any earlier lines, and any end-of-sequence marker
3762 from a previous function. */
3763 while (linetable->item[idx].pc != prologue_sal.pc
3764 || linetable->item[idx].line == 0)
3767 if (idx+1 < linetable->nitems
3768 && linetable->item[idx+1].line != 0
3769 && linetable->item[idx+1].pc == start_pc)
3773 /* If there is only one sal that covers the entire function,
3774 then it is probably a single line function, like
3776 if (prologue_sal.end >= end_pc)
3779 while (prologue_sal.end < end_pc)
3781 struct symtab_and_line sal;
3783 sal = find_pc_line (prologue_sal.end, 0);
3786 /* Assume that a consecutive SAL for the same (or larger)
3787 line mark the prologue -> body transition. */
3788 if (sal.line >= prologue_sal.line)
3790 /* Likewise if we are in a different symtab altogether
3791 (e.g. within a file included via #include). */
3792 if (sal.symtab != prologue_sal.symtab)
3795 /* The line number is smaller. Check that it's from the
3796 same function, not something inlined. If it's inlined,
3797 then there is no point comparing the line numbers. */
3798 bl = block_for_pc (prologue_sal.end);
3801 if (block_inlined_p (bl))
3803 if (BLOCK_FUNCTION (bl))
3808 bl = BLOCK_SUPERBLOCK (bl);
3813 /* The case in which compiler's optimizer/scheduler has
3814 moved instructions into the prologue. We look ahead in
3815 the function looking for address ranges whose
3816 corresponding line number is less the first one that we
3817 found for the function. This is more conservative then
3818 refine_prologue_limit which scans a large number of SALs
3819 looking for any in the prologue. */
3824 if (prologue_sal.end < end_pc)
3825 /* Return the end of this line, or zero if we could not find a
3827 return prologue_sal.end;
3829 /* Don't return END_PC, which is past the end of the function. */
3830 return prologue_sal.pc;
3833 /* If P is of the form "operator[ \t]+..." where `...' is
3834 some legitimate operator text, return a pointer to the
3835 beginning of the substring of the operator text.
3836 Otherwise, return "". */
3839 operator_chars (const char *p, const char **end)
3842 if (!startswith (p, "operator"))
3846 /* Don't get faked out by `operator' being part of a longer
3848 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3851 /* Allow some whitespace between `operator' and the operator symbol. */
3852 while (*p == ' ' || *p == '\t')
3855 /* Recognize 'operator TYPENAME'. */
3857 if (isalpha (*p) || *p == '_' || *p == '$')
3859 const char *q = p + 1;
3861 while (isalnum (*q) || *q == '_' || *q == '$')
3870 case '\\': /* regexp quoting */
3873 if (p[2] == '=') /* 'operator\*=' */
3875 else /* 'operator\*' */
3879 else if (p[1] == '[')
3882 error (_("mismatched quoting on brackets, "
3883 "try 'operator\\[\\]'"));
3884 else if (p[2] == '\\' && p[3] == ']')
3886 *end = p + 4; /* 'operator\[\]' */
3890 error (_("nothing is allowed between '[' and ']'"));
3894 /* Gratuitous qoute: skip it and move on. */
3916 if (p[0] == '-' && p[1] == '>')
3918 /* Struct pointer member operator 'operator->'. */
3921 *end = p + 3; /* 'operator->*' */
3924 else if (p[2] == '\\')
3926 *end = p + 4; /* Hopefully 'operator->\*' */
3931 *end = p + 2; /* 'operator->' */
3935 if (p[1] == '=' || p[1] == p[0])
3946 error (_("`operator ()' must be specified "
3947 "without whitespace in `()'"));
3952 error (_("`operator ?:' must be specified "
3953 "without whitespace in `?:'"));
3958 error (_("`operator []' must be specified "
3959 "without whitespace in `[]'"));
3963 error (_("`operator %s' not supported"), p);
3972 /* Data structure to maintain printing state for output_source_filename. */
3974 struct output_source_filename_data
3976 /* Cache of what we've seen so far. */
3977 struct filename_seen_cache *filename_seen_cache;
3979 /* Flag of whether we're printing the first one. */
3983 /* Slave routine for sources_info. Force line breaks at ,'s.
3984 NAME is the name to print.
3985 DATA contains the state for printing and watching for duplicates. */
3988 output_source_filename (const char *name,
3989 struct output_source_filename_data *data)
3991 /* Since a single source file can result in several partial symbol
3992 tables, we need to avoid printing it more than once. Note: if
3993 some of the psymtabs are read in and some are not, it gets
3994 printed both under "Source files for which symbols have been
3995 read" and "Source files for which symbols will be read in on
3996 demand". I consider this a reasonable way to deal with the
3997 situation. I'm not sure whether this can also happen for
3998 symtabs; it doesn't hurt to check. */
4000 /* Was NAME already seen? */
4001 if (data->filename_seen_cache->seen (name))
4003 /* Yes; don't print it again. */
4007 /* No; print it and reset *FIRST. */
4009 printf_filtered (", ");
4013 fputs_filtered (name, gdb_stdout);
4016 /* A callback for map_partial_symbol_filenames. */
4019 output_partial_symbol_filename (const char *filename, const char *fullname,
4022 output_source_filename (fullname ? fullname : filename,
4023 (struct output_source_filename_data *) data);
4027 sources_info (char *ignore, int from_tty)
4029 struct compunit_symtab *cu;
4031 struct objfile *objfile;
4032 struct output_source_filename_data data;
4034 if (!have_full_symbols () && !have_partial_symbols ())
4036 error (_("No symbol table is loaded. Use the \"file\" command."));
4039 filename_seen_cache filenames_seen;
4041 data.filename_seen_cache = &filenames_seen;
4043 printf_filtered ("Source files for which symbols have been read in:\n\n");
4046 ALL_FILETABS (objfile, cu, s)
4048 const char *fullname = symtab_to_fullname (s);
4050 output_source_filename (fullname, &data);
4052 printf_filtered ("\n\n");
4054 printf_filtered ("Source files for which symbols "
4055 "will be read in on demand:\n\n");
4057 filenames_seen.clear ();
4059 map_symbol_filenames (output_partial_symbol_filename, &data,
4060 1 /*need_fullname*/);
4061 printf_filtered ("\n");
4064 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4065 non-zero compare only lbasename of FILES. */
4068 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4072 if (file != NULL && nfiles != 0)
4074 for (i = 0; i < nfiles; i++)
4076 if (compare_filenames_for_search (file, (basenames
4077 ? lbasename (files[i])
4082 else if (nfiles == 0)
4087 /* Free any memory associated with a search. */
4090 free_search_symbols (struct symbol_search *symbols)
4092 struct symbol_search *p;
4093 struct symbol_search *next;
4095 for (p = symbols; p != NULL; p = next)
4103 do_free_search_symbols_cleanup (void *symbolsp)
4105 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4107 free_search_symbols (symbols);
4111 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4113 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4116 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4117 sort symbols, not minimal symbols. */
4120 compare_search_syms (const void *sa, const void *sb)
4122 struct symbol_search *sym_a = *(struct symbol_search **) sa;
4123 struct symbol_search *sym_b = *(struct symbol_search **) sb;
4126 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4127 symbol_symtab (sym_b->symbol)->filename);
4131 if (sym_a->block != sym_b->block)
4132 return sym_a->block - sym_b->block;
4134 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4135 SYMBOL_PRINT_NAME (sym_b->symbol));
4138 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4139 The duplicates are freed, and the new list is returned in
4140 *NEW_HEAD, *NEW_TAIL. */
4143 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4144 struct symbol_search **new_head,
4145 struct symbol_search **new_tail)
4147 struct symbol_search **symbols, *symp;
4150 gdb_assert (found != NULL && nfound > 0);
4152 /* Build an array out of the list so we can easily sort them. */
4153 symbols = XNEWVEC (struct symbol_search *, nfound);
4156 for (i = 0; i < nfound; i++)
4158 gdb_assert (symp != NULL);
4159 gdb_assert (symp->block >= 0 && symp->block <= 1);
4163 gdb_assert (symp == NULL);
4165 qsort (symbols, nfound, sizeof (struct symbol_search *),
4166 compare_search_syms);
4168 /* Collapse out the dups. */
4169 for (i = 1, j = 1; i < nfound; ++i)
4171 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4172 symbols[j++] = symbols[i];
4177 symbols[j - 1]->next = NULL;
4179 /* Rebuild the linked list. */
4180 for (i = 0; i < nunique - 1; i++)
4181 symbols[i]->next = symbols[i + 1];
4182 symbols[nunique - 1]->next = NULL;
4184 *new_head = symbols[0];
4185 *new_tail = symbols[nunique - 1];
4189 /* Search the symbol table for matches to the regular expression REGEXP,
4190 returning the results in *MATCHES.
4192 Only symbols of KIND are searched:
4193 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4194 and constants (enums)
4195 FUNCTIONS_DOMAIN - search all functions
4196 TYPES_DOMAIN - search all type names
4197 ALL_DOMAIN - an internal error for this function
4199 free_search_symbols should be called when *MATCHES is no longer needed.
4201 Within each file the results are sorted locally; each symtab's global and
4202 static blocks are separately alphabetized.
4203 Duplicate entries are removed. */
4206 search_symbols (const char *regexp, enum search_domain kind,
4207 int nfiles, const char *files[],
4208 struct symbol_search **matches)
4210 struct compunit_symtab *cust;
4211 const struct blockvector *bv;
4214 struct block_iterator iter;
4216 struct objfile *objfile;
4217 struct minimal_symbol *msymbol;
4219 static const enum minimal_symbol_type types[]
4220 = {mst_data, mst_text, mst_abs};
4221 static const enum minimal_symbol_type types2[]
4222 = {mst_bss, mst_file_text, mst_abs};
4223 static const enum minimal_symbol_type types3[]
4224 = {mst_file_data, mst_solib_trampoline, mst_abs};
4225 static const enum minimal_symbol_type types4[]
4226 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4227 enum minimal_symbol_type ourtype;
4228 enum minimal_symbol_type ourtype2;
4229 enum minimal_symbol_type ourtype3;
4230 enum minimal_symbol_type ourtype4;
4231 struct symbol_search *found;
4232 struct symbol_search *tail;
4234 gdb::optional<compiled_regex> preg;
4236 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4237 CLEANUP_CHAIN is freed only in the case of an error. */
4238 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4239 struct cleanup *retval_chain;
4241 gdb_assert (kind <= TYPES_DOMAIN);
4243 ourtype = types[kind];
4244 ourtype2 = types2[kind];
4245 ourtype3 = types3[kind];
4246 ourtype4 = types4[kind];
4252 /* Make sure spacing is right for C++ operators.
4253 This is just a courtesy to make the matching less sensitive
4254 to how many spaces the user leaves between 'operator'
4255 and <TYPENAME> or <OPERATOR>. */
4257 const char *opname = operator_chars (regexp, &opend);
4262 int fix = -1; /* -1 means ok; otherwise number of
4265 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4267 /* There should 1 space between 'operator' and 'TYPENAME'. */
4268 if (opname[-1] != ' ' || opname[-2] == ' ')
4273 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4274 if (opname[-1] == ' ')
4277 /* If wrong number of spaces, fix it. */
4280 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4282 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4287 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4289 preg.emplace (regexp, cflags, _("Invalid regexp"));
4292 /* Search through the partial symtabs *first* for all symbols
4293 matching the regexp. That way we don't have to reproduce all of
4294 the machinery below. */
4295 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4297 return file_matches (filename, files, nfiles,
4300 [&] (const char *symname)
4302 return (!preg || preg->exec (symname,
4308 /* Here, we search through the minimal symbol tables for functions
4309 and variables that match, and force their symbols to be read.
4310 This is in particular necessary for demangled variable names,
4311 which are no longer put into the partial symbol tables.
4312 The symbol will then be found during the scan of symtabs below.
4314 For functions, find_pc_symtab should succeed if we have debug info
4315 for the function, for variables we have to call
4316 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4318 If the lookup fails, set found_misc so that we will rescan to print
4319 any matching symbols without debug info.
4320 We only search the objfile the msymbol came from, we no longer search
4321 all objfiles. In large programs (1000s of shared libs) searching all
4322 objfiles is not worth the pain. */
4324 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4326 ALL_MSYMBOLS (objfile, msymbol)
4330 if (msymbol->created_by_gdb)
4333 if (MSYMBOL_TYPE (msymbol) == ourtype
4334 || MSYMBOL_TYPE (msymbol) == ourtype2
4335 || MSYMBOL_TYPE (msymbol) == ourtype3
4336 || MSYMBOL_TYPE (msymbol) == ourtype4)
4339 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4342 /* Note: An important side-effect of these lookup functions
4343 is to expand the symbol table if msymbol is found, for the
4344 benefit of the next loop on ALL_COMPUNITS. */
4345 if (kind == FUNCTIONS_DOMAIN
4346 ? (find_pc_compunit_symtab
4347 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4348 : (lookup_symbol_in_objfile_from_linkage_name
4349 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4360 retval_chain = make_cleanup_free_search_symbols (&found);
4362 ALL_COMPUNITS (objfile, cust)
4364 bv = COMPUNIT_BLOCKVECTOR (cust);
4365 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4367 b = BLOCKVECTOR_BLOCK (bv, i);
4368 ALL_BLOCK_SYMBOLS (b, iter, sym)
4370 struct symtab *real_symtab = symbol_symtab (sym);
4374 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4375 a substring of symtab_to_fullname as it may contain "./" etc. */
4376 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4377 || ((basenames_may_differ
4378 || file_matches (lbasename (real_symtab->filename),
4380 && file_matches (symtab_to_fullname (real_symtab),
4383 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4385 && ((kind == VARIABLES_DOMAIN
4386 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4387 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4388 && SYMBOL_CLASS (sym) != LOC_BLOCK
4389 /* LOC_CONST can be used for more than just enums,
4390 e.g., c++ static const members.
4391 We only want to skip enums here. */
4392 && !(SYMBOL_CLASS (sym) == LOC_CONST
4393 && (TYPE_CODE (SYMBOL_TYPE (sym))
4394 == TYPE_CODE_ENUM)))
4395 || (kind == FUNCTIONS_DOMAIN
4396 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4397 || (kind == TYPES_DOMAIN
4398 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4401 struct symbol_search *psr = XCNEW (struct symbol_search);
4419 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4420 /* Note: nfound is no longer useful beyond this point. */
4423 /* If there are no eyes, avoid all contact. I mean, if there are
4424 no debug symbols, then add matching minsyms. */
4426 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4428 ALL_MSYMBOLS (objfile, msymbol)
4432 if (msymbol->created_by_gdb)
4435 if (MSYMBOL_TYPE (msymbol) == ourtype
4436 || MSYMBOL_TYPE (msymbol) == ourtype2
4437 || MSYMBOL_TYPE (msymbol) == ourtype3
4438 || MSYMBOL_TYPE (msymbol) == ourtype4)
4440 if (!preg || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4443 /* For functions we can do a quick check of whether the
4444 symbol might be found via find_pc_symtab. */
4445 if (kind != FUNCTIONS_DOMAIN
4446 || (find_pc_compunit_symtab
4447 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4449 if (lookup_symbol_in_objfile_from_linkage_name
4450 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4454 struct symbol_search *psr = XNEW (struct symbol_search);
4456 psr->msymbol.minsym = msymbol;
4457 psr->msymbol.objfile = objfile;
4472 discard_cleanups (retval_chain);
4473 do_cleanups (old_chain);
4477 /* Helper function for symtab_symbol_info, this function uses
4478 the data returned from search_symbols() to print information
4479 regarding the match to gdb_stdout. */
4482 print_symbol_info (enum search_domain kind,
4484 int block, const char *last)
4486 struct symtab *s = symbol_symtab (sym);
4487 const char *s_filename = symtab_to_filename_for_display (s);
4489 if (last == NULL || filename_cmp (last, s_filename) != 0)
4491 fputs_filtered ("\nFile ", gdb_stdout);
4492 fputs_filtered (s_filename, gdb_stdout);
4493 fputs_filtered (":\n", gdb_stdout);
4496 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4497 printf_filtered ("static ");
4499 /* Typedef that is not a C++ class. */
4500 if (kind == TYPES_DOMAIN
4501 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4502 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4503 /* variable, func, or typedef-that-is-c++-class. */
4504 else if (kind < TYPES_DOMAIN
4505 || (kind == TYPES_DOMAIN
4506 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4508 type_print (SYMBOL_TYPE (sym),
4509 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4510 ? "" : SYMBOL_PRINT_NAME (sym)),
4513 printf_filtered (";\n");
4517 /* This help function for symtab_symbol_info() prints information
4518 for non-debugging symbols to gdb_stdout. */
4521 print_msymbol_info (struct bound_minimal_symbol msymbol)
4523 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4526 if (gdbarch_addr_bit (gdbarch) <= 32)
4527 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4528 & (CORE_ADDR) 0xffffffff,
4531 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4533 printf_filtered ("%s %s\n",
4534 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4537 /* This is the guts of the commands "info functions", "info types", and
4538 "info variables". It calls search_symbols to find all matches and then
4539 print_[m]symbol_info to print out some useful information about the
4543 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4545 static const char * const classnames[] =
4546 {"variable", "function", "type"};
4547 struct symbol_search *symbols;
4548 struct symbol_search *p;
4549 struct cleanup *old_chain;
4550 const char *last_filename = NULL;
4553 gdb_assert (kind <= TYPES_DOMAIN);
4555 /* Must make sure that if we're interrupted, symbols gets freed. */
4556 search_symbols (regexp, kind, 0, NULL, &symbols);
4557 old_chain = make_cleanup_free_search_symbols (&symbols);
4560 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4561 classnames[kind], regexp);
4563 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4565 for (p = symbols; p != NULL; p = p->next)
4569 if (p->msymbol.minsym != NULL)
4573 printf_filtered (_("\nNon-debugging symbols:\n"));
4576 print_msymbol_info (p->msymbol);
4580 print_symbol_info (kind,
4585 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4589 do_cleanups (old_chain);
4593 variables_info (char *regexp, int from_tty)
4595 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4599 functions_info (char *regexp, int from_tty)
4601 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4606 types_info (char *regexp, int from_tty)
4608 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4611 /* Breakpoint all functions matching regular expression. */
4614 rbreak_command_wrapper (char *regexp, int from_tty)
4616 rbreak_command (regexp, from_tty);
4619 /* A cleanup function that calls end_rbreak_breakpoints. */
4622 do_end_rbreak_breakpoints (void *ignore)
4624 end_rbreak_breakpoints ();
4628 rbreak_command (char *regexp, int from_tty)
4630 struct symbol_search *ss;
4631 struct symbol_search *p;
4632 struct cleanup *old_chain;
4633 char *string = NULL;
4635 const char **files = NULL;
4636 const char *file_name;
4641 char *colon = strchr (regexp, ':');
4643 if (colon && *(colon + 1) != ':')
4648 colon_index = colon - regexp;
4649 local_name = (char *) alloca (colon_index + 1);
4650 memcpy (local_name, regexp, colon_index);
4651 local_name[colon_index--] = 0;
4652 while (isspace (local_name[colon_index]))
4653 local_name[colon_index--] = 0;
4654 file_name = local_name;
4657 regexp = skip_spaces (colon + 1);
4661 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4662 old_chain = make_cleanup_free_search_symbols (&ss);
4663 make_cleanup (free_current_contents, &string);
4665 start_rbreak_breakpoints ();
4666 make_cleanup (do_end_rbreak_breakpoints, NULL);
4667 for (p = ss; p != NULL; p = p->next)
4669 if (p->msymbol.minsym == NULL)
4671 struct symtab *symtab = symbol_symtab (p->symbol);
4672 const char *fullname = symtab_to_fullname (symtab);
4674 int newlen = (strlen (fullname)
4675 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4680 string = (char *) xrealloc (string, newlen);
4683 strcpy (string, fullname);
4684 strcat (string, ":'");
4685 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4686 strcat (string, "'");
4687 break_command (string, from_tty);
4688 print_symbol_info (FUNCTIONS_DOMAIN,
4691 symtab_to_filename_for_display (symtab));
4695 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4699 string = (char *) xrealloc (string, newlen);
4702 strcpy (string, "'");
4703 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4704 strcat (string, "'");
4706 break_command (string, from_tty);
4707 printf_filtered ("<function, no debug info> %s;\n",
4708 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4712 do_cleanups (old_chain);
4716 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4718 Either sym_text[sym_text_len] != '(' and then we search for any
4719 symbol starting with SYM_TEXT text.
4721 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4722 be terminated at that point. Partial symbol tables do not have parameters
4726 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4728 int (*ncmp) (const char *, const char *, size_t);
4730 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4732 if (ncmp (name, sym_text, sym_text_len) != 0)
4735 if (sym_text[sym_text_len] == '(')
4737 /* User searches for `name(someth...'. Require NAME to be terminated.
4738 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4739 present but accept even parameters presence. In this case this
4740 function is in fact strcmp_iw but whitespace skipping is not supported
4741 for tab completion. */
4743 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4750 /* Free any memory associated with a completion list. */
4753 free_completion_list (VEC (char_ptr) **list_ptr)
4758 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4760 VEC_free (char_ptr, *list_ptr);
4763 /* Callback for make_cleanup. */
4766 do_free_completion_list (void *list)
4768 free_completion_list ((VEC (char_ptr) **) list);
4771 static VEC (char_ptr) *return_val;
4773 /* Tracker for how many unique completions have been generated. Used
4774 to terminate completion list generation early if the list has grown
4775 to a size so large as to be useless. This helps avoid GDB seeming
4776 to lock up in the event the user requests to complete on something
4777 vague that necessitates the time consuming expansion of many symbol
4780 static completion_tracker_t completion_tracker;
4782 /* Test to see if the symbol specified by SYMNAME (which is already
4783 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4784 characters. If so, add it to the current completion list. */
4787 completion_list_add_name (const char *symname,
4788 const char *sym_text, int sym_text_len,
4789 const char *text, const char *word)
4791 /* Clip symbols that cannot match. */
4792 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4795 /* We have a match for a completion, so add SYMNAME to the current list
4796 of matches. Note that the name is moved to freshly malloc'd space. */
4800 enum maybe_add_completion_enum add_status;
4802 if (word == sym_text)
4804 newobj = (char *) xmalloc (strlen (symname) + 5);
4805 strcpy (newobj, symname);
4807 else if (word > sym_text)
4809 /* Return some portion of symname. */
4810 newobj = (char *) xmalloc (strlen (symname) + 5);
4811 strcpy (newobj, symname + (word - sym_text));
4815 /* Return some of SYM_TEXT plus symname. */
4816 newobj = (char *) xmalloc (strlen (symname) + (sym_text - word) + 5);
4817 strncpy (newobj, word, sym_text - word);
4818 newobj[sym_text - word] = '\0';
4819 strcat (newobj, symname);
4822 add_status = maybe_add_completion (completion_tracker, newobj);
4826 case MAYBE_ADD_COMPLETION_OK:
4827 VEC_safe_push (char_ptr, return_val, newobj);
4829 case MAYBE_ADD_COMPLETION_OK_MAX_REACHED:
4830 VEC_safe_push (char_ptr, return_val, newobj);
4831 throw_max_completions_reached_error ();
4832 case MAYBE_ADD_COMPLETION_MAX_REACHED:
4834 throw_max_completions_reached_error ();
4835 case MAYBE_ADD_COMPLETION_DUPLICATE:
4842 /* completion_list_add_name wrapper for struct symbol. */
4845 completion_list_add_symbol (symbol *sym,
4846 const char *sym_text, int sym_text_len,
4847 const char *text, const char *word)
4849 completion_list_add_name (SYMBOL_NATURAL_NAME (sym),
4850 sym_text, sym_text_len, text, word);
4853 /* completion_list_add_name wrapper for struct minimal_symbol. */
4856 completion_list_add_msymbol (minimal_symbol *sym,
4857 const char *sym_text, int sym_text_len,
4858 const char *text, const char *word)
4860 completion_list_add_name (MSYMBOL_NATURAL_NAME (sym),
4861 sym_text, sym_text_len, text, word);
4864 /* ObjC: In case we are completing on a selector, look as the msymbol
4865 again and feed all the selectors into the mill. */
4868 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4869 const char *sym_text, int sym_text_len,
4870 const char *text, const char *word)
4872 static char *tmp = NULL;
4873 static unsigned int tmplen = 0;
4875 const char *method, *category, *selector;
4878 method = MSYMBOL_NATURAL_NAME (msymbol);
4880 /* Is it a method? */
4881 if ((method[0] != '-') && (method[0] != '+'))
4884 if (sym_text[0] == '[')
4885 /* Complete on shortened method method. */
4886 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4888 while ((strlen (method) + 1) >= tmplen)
4894 tmp = (char *) xrealloc (tmp, tmplen);
4896 selector = strchr (method, ' ');
4897 if (selector != NULL)
4900 category = strchr (method, '(');
4902 if ((category != NULL) && (selector != NULL))
4904 memcpy (tmp, method, (category - method));
4905 tmp[category - method] = ' ';
4906 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4907 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4908 if (sym_text[0] == '[')
4909 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4912 if (selector != NULL)
4914 /* Complete on selector only. */
4915 strcpy (tmp, selector);
4916 tmp2 = strchr (tmp, ']');
4920 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4924 /* Break the non-quoted text based on the characters which are in
4925 symbols. FIXME: This should probably be language-specific. */
4928 language_search_unquoted_string (const char *text, const char *p)
4930 for (; p > text; --p)
4932 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4936 if ((current_language->la_language == language_objc))
4938 if (p[-1] == ':') /* Might be part of a method name. */
4940 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4941 p -= 2; /* Beginning of a method name. */
4942 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4943 { /* Might be part of a method name. */
4946 /* Seeing a ' ' or a '(' is not conclusive evidence
4947 that we are in the middle of a method name. However,
4948 finding "-[" or "+[" should be pretty un-ambiguous.
4949 Unfortunately we have to find it now to decide. */
4952 if (isalnum (t[-1]) || t[-1] == '_' ||
4953 t[-1] == ' ' || t[-1] == ':' ||
4954 t[-1] == '(' || t[-1] == ')')
4959 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4960 p = t - 2; /* Method name detected. */
4961 /* Else we leave with p unchanged. */
4971 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4972 int sym_text_len, const char *text,
4975 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4977 struct type *t = SYMBOL_TYPE (sym);
4978 enum type_code c = TYPE_CODE (t);
4981 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4982 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4983 if (TYPE_FIELD_NAME (t, j))
4984 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4985 sym_text, sym_text_len, text, word);
4989 /* Add matching symbols from SYMTAB to the current completion list. */
4992 add_symtab_completions (struct compunit_symtab *cust,
4993 const char *sym_text, int sym_text_len,
4994 const char *text, const char *word,
4995 enum type_code code)
4998 const struct block *b;
4999 struct block_iterator iter;
5005 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5008 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5009 ALL_BLOCK_SYMBOLS (b, iter, sym)
5011 if (code == TYPE_CODE_UNDEF
5012 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5013 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5014 completion_list_add_symbol (sym,
5015 sym_text, sym_text_len,
5022 default_make_symbol_completion_list_break_on_1 (const char *text,
5024 const char *break_on,
5025 enum type_code code)
5027 /* Problem: All of the symbols have to be copied because readline
5028 frees them. I'm not going to worry about this; hopefully there
5029 won't be that many. */
5032 struct compunit_symtab *cust;
5033 struct minimal_symbol *msymbol;
5034 struct objfile *objfile;
5035 const struct block *b;
5036 const struct block *surrounding_static_block, *surrounding_global_block;
5037 struct block_iterator iter;
5038 /* The symbol we are completing on. Points in same buffer as text. */
5039 const char *sym_text;
5040 /* Length of sym_text. */
5042 struct cleanup *cleanups;
5044 /* Now look for the symbol we are supposed to complete on. */
5048 const char *quote_pos = NULL;
5050 /* First see if this is a quoted string. */
5052 for (p = text; *p != '\0'; ++p)
5054 if (quote_found != '\0')
5056 if (*p == quote_found)
5057 /* Found close quote. */
5059 else if (*p == '\\' && p[1] == quote_found)
5060 /* A backslash followed by the quote character
5061 doesn't end the string. */
5064 else if (*p == '\'' || *p == '"')
5070 if (quote_found == '\'')
5071 /* A string within single quotes can be a symbol, so complete on it. */
5072 sym_text = quote_pos + 1;
5073 else if (quote_found == '"')
5074 /* A double-quoted string is never a symbol, nor does it make sense
5075 to complete it any other way. */
5081 /* It is not a quoted string. Break it based on the characters
5082 which are in symbols. */
5085 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5086 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5095 sym_text_len = strlen (sym_text);
5097 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5099 if (current_language->la_language == language_cplus
5100 || current_language->la_language == language_fortran)
5102 /* These languages may have parameters entered by user but they are never
5103 present in the partial symbol tables. */
5105 const char *cs = (const char *) memchr (sym_text, '(', sym_text_len);
5108 sym_text_len = cs - sym_text;
5110 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5112 completion_tracker = new_completion_tracker ();
5113 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5115 /* At this point scan through the misc symbol vectors and add each
5116 symbol you find to the list. Eventually we want to ignore
5117 anything that isn't a text symbol (everything else will be
5118 handled by the psymtab code below). */
5120 if (code == TYPE_CODE_UNDEF)
5122 ALL_MSYMBOLS (objfile, msymbol)
5125 completion_list_add_msymbol (msymbol, sym_text, sym_text_len, text,
5128 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
5133 /* Add completions for all currently loaded symbol tables. */
5134 ALL_COMPUNITS (objfile, cust)
5135 add_symtab_completions (cust, sym_text, sym_text_len, text, word,
5138 /* Look through the partial symtabs for all symbols which begin by
5139 matching SYM_TEXT. Expand all CUs that you find to the list. */
5140 expand_symtabs_matching (NULL,
5141 [&] (const char *name) /* symbol matcher */
5143 return compare_symbol_name (name,
5147 [&] (compunit_symtab *symtab) /* expansion notify */
5149 add_symtab_completions (symtab,
5150 sym_text, sym_text_len,
5155 /* Search upwards from currently selected frame (so that we can
5156 complete on local vars). Also catch fields of types defined in
5157 this places which match our text string. Only complete on types
5158 visible from current context. */
5160 b = get_selected_block (0);
5161 surrounding_static_block = block_static_block (b);
5162 surrounding_global_block = block_global_block (b);
5163 if (surrounding_static_block != NULL)
5164 while (b != surrounding_static_block)
5168 ALL_BLOCK_SYMBOLS (b, iter, sym)
5170 if (code == TYPE_CODE_UNDEF)
5172 completion_list_add_symbol (sym, sym_text, sym_text_len, text,
5174 completion_list_add_fields (sym, sym_text, sym_text_len, text,
5177 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5178 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5179 completion_list_add_symbol (sym, sym_text, sym_text_len, text,
5183 /* Stop when we encounter an enclosing function. Do not stop for
5184 non-inlined functions - the locals of the enclosing function
5185 are in scope for a nested function. */
5186 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5188 b = BLOCK_SUPERBLOCK (b);
5191 /* Add fields from the file's types; symbols will be added below. */
5193 if (code == TYPE_CODE_UNDEF)
5195 if (surrounding_static_block != NULL)
5196 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5197 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5199 if (surrounding_global_block != NULL)
5200 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5201 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5204 /* Skip macros if we are completing a struct tag -- arguable but
5205 usually what is expected. */
5206 if (current_language->la_macro_expansion == macro_expansion_c
5207 && code == TYPE_CODE_UNDEF)
5209 struct macro_scope *scope;
5211 /* This adds a macro's name to the current completion list. */
5212 auto add_macro_name = [&] (const char *macro_name,
5213 const macro_definition *,
5214 macro_source_file *,
5217 completion_list_add_name (macro_name,
5218 sym_text, sym_text_len,
5222 /* Add any macros visible in the default scope. Note that this
5223 may yield the occasional wrong result, because an expression
5224 might be evaluated in a scope other than the default. For
5225 example, if the user types "break file:line if <TAB>", the
5226 resulting expression will be evaluated at "file:line" -- but
5227 at there does not seem to be a way to detect this at
5229 scope = default_macro_scope ();
5232 macro_for_each_in_scope (scope->file, scope->line,
5237 /* User-defined macros are always visible. */
5238 macro_for_each (macro_user_macros, add_macro_name);
5241 do_cleanups (cleanups);
5245 default_make_symbol_completion_list_break_on (const char *text,
5247 const char *break_on,
5248 enum type_code code)
5250 struct cleanup *back_to;
5253 back_to = make_cleanup (do_free_completion_list, &return_val);
5257 default_make_symbol_completion_list_break_on_1 (text, word,
5260 CATCH (except, RETURN_MASK_ERROR)
5262 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5263 throw_exception (except);
5267 discard_cleanups (back_to);
5272 default_make_symbol_completion_list (const char *text, const char *word,
5273 enum type_code code)
5275 return default_make_symbol_completion_list_break_on (text, word, "", code);
5278 /* Return a vector of all symbols (regardless of class) which begin by
5279 matching TEXT. If the answer is no symbols, then the return value
5283 make_symbol_completion_list (const char *text, const char *word)
5285 return current_language->la_make_symbol_completion_list (text, word,
5289 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
5290 symbols whose type code is CODE. */
5293 make_symbol_completion_type (const char *text, const char *word,
5294 enum type_code code)
5296 gdb_assert (code == TYPE_CODE_UNION
5297 || code == TYPE_CODE_STRUCT
5298 || code == TYPE_CODE_ENUM);
5299 return current_language->la_make_symbol_completion_list (text, word, code);
5302 /* Like make_symbol_completion_list, but returns a list of symbols
5303 defined in all source files name SRCFILE. */
5305 static VEC (char_ptr) *
5306 make_file_symbol_completion_list_1 (const char *text, const char *word,
5307 const char *srcfile)
5309 /* The symbol we are completing on. Points in same buffer as text. */
5310 const char *sym_text;
5311 /* Length of sym_text. */
5314 /* Now look for the symbol we are supposed to complete on.
5315 FIXME: This should be language-specific. */
5319 const char *quote_pos = NULL;
5321 /* First see if this is a quoted string. */
5323 for (p = text; *p != '\0'; ++p)
5325 if (quote_found != '\0')
5327 if (*p == quote_found)
5328 /* Found close quote. */
5330 else if (*p == '\\' && p[1] == quote_found)
5331 /* A backslash followed by the quote character
5332 doesn't end the string. */
5335 else if (*p == '\'' || *p == '"')
5341 if (quote_found == '\'')
5342 /* A string within single quotes can be a symbol, so complete on it. */
5343 sym_text = quote_pos + 1;
5344 else if (quote_found == '"')
5345 /* A double-quoted string is never a symbol, nor does it make sense
5346 to complete it any other way. */
5352 /* Not a quoted string. */
5353 sym_text = language_search_unquoted_string (text, p);
5357 sym_text_len = strlen (sym_text);
5359 /* Go through symtabs for SRCFILE and check the externs and statics
5360 for symbols which match. */
5361 iterate_over_symtabs (srcfile, [&] (symtab *s)
5363 add_symtab_completions (SYMTAB_COMPUNIT (s),
5364 sym_text, sym_text_len,
5365 text, word, TYPE_CODE_UNDEF);
5369 return (return_val);
5372 /* Wrapper around make_file_symbol_completion_list_1
5373 to handle MAX_COMPLETIONS_REACHED_ERROR. */
5376 make_file_symbol_completion_list (const char *text, const char *word,
5377 const char *srcfile)
5379 struct cleanup *back_to, *cleanups;
5381 completion_tracker = new_completion_tracker ();
5382 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5384 back_to = make_cleanup (do_free_completion_list, &return_val);
5388 make_file_symbol_completion_list_1 (text, word, srcfile);
5390 CATCH (except, RETURN_MASK_ERROR)
5392 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5393 throw_exception (except);
5397 discard_cleanups (back_to);
5398 do_cleanups (cleanups);
5402 /* A helper function for make_source_files_completion_list. It adds
5403 another file name to a list of possible completions, growing the
5404 list as necessary. */
5407 add_filename_to_list (const char *fname, const char *text, const char *word,
5408 VEC (char_ptr) **list)
5411 size_t fnlen = strlen (fname);
5415 /* Return exactly fname. */
5416 newobj = (char *) xmalloc (fnlen + 5);
5417 strcpy (newobj, fname);
5419 else if (word > text)
5421 /* Return some portion of fname. */
5422 newobj = (char *) xmalloc (fnlen + 5);
5423 strcpy (newobj, fname + (word - text));
5427 /* Return some of TEXT plus fname. */
5428 newobj = (char *) xmalloc (fnlen + (text - word) + 5);
5429 strncpy (newobj, word, text - word);
5430 newobj[text - word] = '\0';
5431 strcat (newobj, fname);
5433 VEC_safe_push (char_ptr, *list, newobj);
5437 not_interesting_fname (const char *fname)
5439 static const char *illegal_aliens[] = {
5440 "_globals_", /* inserted by coff_symtab_read */
5445 for (i = 0; illegal_aliens[i]; i++)
5447 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5453 /* An object of this type is passed as the user_data argument to
5454 map_partial_symbol_filenames. */
5455 struct add_partial_filename_data
5457 struct filename_seen_cache *filename_seen_cache;
5461 VEC (char_ptr) **list;
5464 /* A callback for map_partial_symbol_filenames. */
5467 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5470 struct add_partial_filename_data *data
5471 = (struct add_partial_filename_data *) user_data;
5473 if (not_interesting_fname (filename))
5475 if (!data->filename_seen_cache->seen (filename)
5476 && filename_ncmp (filename, data->text, data->text_len) == 0)
5478 /* This file matches for a completion; add it to the
5479 current list of matches. */
5480 add_filename_to_list (filename, data->text, data->word, data->list);
5484 const char *base_name = lbasename (filename);
5486 if (base_name != filename
5487 && !data->filename_seen_cache->seen (base_name)
5488 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5489 add_filename_to_list (base_name, data->text, data->word, data->list);
5493 /* Return a vector of all source files whose names begin with matching
5494 TEXT. The file names are looked up in the symbol tables of this
5495 program. If the answer is no matchess, then the return value is
5499 make_source_files_completion_list (const char *text, const char *word)
5501 struct compunit_symtab *cu;
5503 struct objfile *objfile;
5504 size_t text_len = strlen (text);
5505 VEC (char_ptr) *list = NULL;
5506 const char *base_name;
5507 struct add_partial_filename_data datum;
5508 struct cleanup *back_to;
5510 if (!have_full_symbols () && !have_partial_symbols ())
5513 back_to = make_cleanup (do_free_completion_list, &list);
5515 filename_seen_cache filenames_seen;
5517 ALL_FILETABS (objfile, cu, s)
5519 if (not_interesting_fname (s->filename))
5521 if (!filenames_seen.seen (s->filename)
5522 && filename_ncmp (s->filename, text, text_len) == 0)
5524 /* This file matches for a completion; add it to the current
5526 add_filename_to_list (s->filename, text, word, &list);
5530 /* NOTE: We allow the user to type a base name when the
5531 debug info records leading directories, but not the other
5532 way around. This is what subroutines of breakpoint
5533 command do when they parse file names. */
5534 base_name = lbasename (s->filename);
5535 if (base_name != s->filename
5536 && !filenames_seen.seen (base_name)
5537 && filename_ncmp (base_name, text, text_len) == 0)
5538 add_filename_to_list (base_name, text, word, &list);
5542 datum.filename_seen_cache = &filenames_seen;
5545 datum.text_len = text_len;
5547 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5548 0 /*need_fullname*/);
5550 discard_cleanups (back_to);
5557 /* Return the "main_info" object for the current program space. If
5558 the object has not yet been created, create it and fill in some
5561 static struct main_info *
5562 get_main_info (void)
5564 struct main_info *info
5565 = (struct main_info *) program_space_data (current_program_space,
5566 main_progspace_key);
5570 /* It may seem strange to store the main name in the progspace
5571 and also in whatever objfile happens to see a main name in
5572 its debug info. The reason for this is mainly historical:
5573 gdb returned "main" as the name even if no function named
5574 "main" was defined the program; and this approach lets us
5575 keep compatibility. */
5576 info = XCNEW (struct main_info);
5577 info->language_of_main = language_unknown;
5578 set_program_space_data (current_program_space, main_progspace_key,
5585 /* A cleanup to destroy a struct main_info when a progspace is
5589 main_info_cleanup (struct program_space *pspace, void *data)
5591 struct main_info *info = (struct main_info *) data;
5594 xfree (info->name_of_main);
5599 set_main_name (const char *name, enum language lang)
5601 struct main_info *info = get_main_info ();
5603 if (info->name_of_main != NULL)
5605 xfree (info->name_of_main);
5606 info->name_of_main = NULL;
5607 info->language_of_main = language_unknown;
5611 info->name_of_main = xstrdup (name);
5612 info->language_of_main = lang;
5616 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5620 find_main_name (void)
5622 const char *new_main_name;
5623 struct objfile *objfile;
5625 /* First check the objfiles to see whether a debuginfo reader has
5626 picked up the appropriate main name. Historically the main name
5627 was found in a more or less random way; this approach instead
5628 relies on the order of objfile creation -- which still isn't
5629 guaranteed to get the correct answer, but is just probably more
5631 ALL_OBJFILES (objfile)
5633 if (objfile->per_bfd->name_of_main != NULL)
5635 set_main_name (objfile->per_bfd->name_of_main,
5636 objfile->per_bfd->language_of_main);
5641 /* Try to see if the main procedure is in Ada. */
5642 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5643 be to add a new method in the language vector, and call this
5644 method for each language until one of them returns a non-empty
5645 name. This would allow us to remove this hard-coded call to
5646 an Ada function. It is not clear that this is a better approach
5647 at this point, because all methods need to be written in a way
5648 such that false positives never be returned. For instance, it is
5649 important that a method does not return a wrong name for the main
5650 procedure if the main procedure is actually written in a different
5651 language. It is easy to guaranty this with Ada, since we use a
5652 special symbol generated only when the main in Ada to find the name
5653 of the main procedure. It is difficult however to see how this can
5654 be guarantied for languages such as C, for instance. This suggests
5655 that order of call for these methods becomes important, which means
5656 a more complicated approach. */
5657 new_main_name = ada_main_name ();
5658 if (new_main_name != NULL)
5660 set_main_name (new_main_name, language_ada);
5664 new_main_name = d_main_name ();
5665 if (new_main_name != NULL)
5667 set_main_name (new_main_name, language_d);
5671 new_main_name = go_main_name ();
5672 if (new_main_name != NULL)
5674 set_main_name (new_main_name, language_go);
5678 new_main_name = pascal_main_name ();
5679 if (new_main_name != NULL)
5681 set_main_name (new_main_name, language_pascal);
5685 /* The languages above didn't identify the name of the main procedure.
5686 Fallback to "main". */
5687 set_main_name ("main", language_unknown);
5693 struct main_info *info = get_main_info ();
5695 if (info->name_of_main == NULL)
5698 return info->name_of_main;
5701 /* Return the language of the main function. If it is not known,
5702 return language_unknown. */
5705 main_language (void)
5707 struct main_info *info = get_main_info ();
5709 if (info->name_of_main == NULL)
5712 return info->language_of_main;
5715 /* Handle ``executable_changed'' events for the symtab module. */
5718 symtab_observer_executable_changed (void)
5720 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5721 set_main_name (NULL, language_unknown);
5724 /* Return 1 if the supplied producer string matches the ARM RealView
5725 compiler (armcc). */
5728 producer_is_realview (const char *producer)
5730 static const char *const arm_idents[] = {
5731 "ARM C Compiler, ADS",
5732 "Thumb C Compiler, ADS",
5733 "ARM C++ Compiler, ADS",
5734 "Thumb C++ Compiler, ADS",
5735 "ARM/Thumb C/C++ Compiler, RVCT",
5736 "ARM C/C++ Compiler, RVCT"
5740 if (producer == NULL)
5743 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5744 if (startswith (producer, arm_idents[i]))
5752 /* The next index to hand out in response to a registration request. */
5754 static int next_aclass_value = LOC_FINAL_VALUE;
5756 /* The maximum number of "aclass" registrations we support. This is
5757 constant for convenience. */
5758 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5760 /* The objects representing the various "aclass" values. The elements
5761 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5762 elements are those registered at gdb initialization time. */
5764 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5766 /* The globally visible pointer. This is separate from 'symbol_impl'
5767 so that it can be const. */
5769 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5771 /* Make sure we saved enough room in struct symbol. */
5773 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5775 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5776 is the ops vector associated with this index. This returns the new
5777 index, which should be used as the aclass_index field for symbols
5781 register_symbol_computed_impl (enum address_class aclass,
5782 const struct symbol_computed_ops *ops)
5784 int result = next_aclass_value++;
5786 gdb_assert (aclass == LOC_COMPUTED);
5787 gdb_assert (result < MAX_SYMBOL_IMPLS);
5788 symbol_impl[result].aclass = aclass;
5789 symbol_impl[result].ops_computed = ops;
5791 /* Sanity check OPS. */
5792 gdb_assert (ops != NULL);
5793 gdb_assert (ops->tracepoint_var_ref != NULL);
5794 gdb_assert (ops->describe_location != NULL);
5795 gdb_assert (ops->get_symbol_read_needs != NULL);
5796 gdb_assert (ops->read_variable != NULL);
5801 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5802 OPS is the ops vector associated with this index. This returns the
5803 new index, which should be used as the aclass_index field for symbols
5807 register_symbol_block_impl (enum address_class aclass,
5808 const struct symbol_block_ops *ops)
5810 int result = next_aclass_value++;
5812 gdb_assert (aclass == LOC_BLOCK);
5813 gdb_assert (result < MAX_SYMBOL_IMPLS);
5814 symbol_impl[result].aclass = aclass;
5815 symbol_impl[result].ops_block = ops;
5817 /* Sanity check OPS. */
5818 gdb_assert (ops != NULL);
5819 gdb_assert (ops->find_frame_base_location != NULL);
5824 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5825 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5826 this index. This returns the new index, which should be used as
5827 the aclass_index field for symbols of this type. */
5830 register_symbol_register_impl (enum address_class aclass,
5831 const struct symbol_register_ops *ops)
5833 int result = next_aclass_value++;
5835 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5836 gdb_assert (result < MAX_SYMBOL_IMPLS);
5837 symbol_impl[result].aclass = aclass;
5838 symbol_impl[result].ops_register = ops;
5843 /* Initialize elements of 'symbol_impl' for the constants in enum
5847 initialize_ordinary_address_classes (void)
5851 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5852 symbol_impl[i].aclass = (enum address_class) i;
5857 /* Helper function to initialize the fields of an objfile-owned symbol.
5858 It assumed that *SYM is already all zeroes. */
5861 initialize_objfile_symbol_1 (struct symbol *sym)
5863 SYMBOL_OBJFILE_OWNED (sym) = 1;
5864 SYMBOL_SECTION (sym) = -1;
5867 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5870 initialize_objfile_symbol (struct symbol *sym)
5872 memset (sym, 0, sizeof (*sym));
5873 initialize_objfile_symbol_1 (sym);
5876 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5880 allocate_symbol (struct objfile *objfile)
5882 struct symbol *result;
5884 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5885 initialize_objfile_symbol_1 (result);
5890 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5893 struct template_symbol *
5894 allocate_template_symbol (struct objfile *objfile)
5896 struct template_symbol *result;
5898 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5899 initialize_objfile_symbol_1 (&result->base);
5907 symbol_objfile (const struct symbol *symbol)
5909 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5910 return SYMTAB_OBJFILE (symbol->owner.symtab);
5916 symbol_arch (const struct symbol *symbol)
5918 if (!SYMBOL_OBJFILE_OWNED (symbol))
5919 return symbol->owner.arch;
5920 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
5926 symbol_symtab (const struct symbol *symbol)
5928 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5929 return symbol->owner.symtab;
5935 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
5937 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5938 symbol->owner.symtab = symtab;
5944 _initialize_symtab (void)
5946 initialize_ordinary_address_classes ();
5949 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5952 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
5954 add_info ("variables", variables_info, _("\
5955 All global and static variable names, or those matching REGEXP."));
5957 add_com ("whereis", class_info, variables_info, _("\
5958 All global and static variable names, or those matching REGEXP."));
5960 add_info ("functions", functions_info,
5961 _("All function names, or those matching REGEXP."));
5963 /* FIXME: This command has at least the following problems:
5964 1. It prints builtin types (in a very strange and confusing fashion).
5965 2. It doesn't print right, e.g. with
5966 typedef struct foo *FOO
5967 type_print prints "FOO" when we want to make it (in this situation)
5968 print "struct foo *".
5969 I also think "ptype" or "whatis" is more likely to be useful (but if
5970 there is much disagreement "info types" can be fixed). */
5971 add_info ("types", types_info,
5972 _("All type names, or those matching REGEXP."));
5974 add_info ("sources", sources_info,
5975 _("Source files in the program."));
5977 add_com ("rbreak", class_breakpoint, rbreak_command,
5978 _("Set a breakpoint for all functions matching REGEXP."));
5980 add_setshow_enum_cmd ("multiple-symbols", no_class,
5981 multiple_symbols_modes, &multiple_symbols_mode,
5983 Set the debugger behavior when more than one symbol are possible matches\n\
5984 in an expression."), _("\
5985 Show how the debugger handles ambiguities in expressions."), _("\
5986 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5987 NULL, NULL, &setlist, &showlist);
5989 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5990 &basenames_may_differ, _("\
5991 Set whether a source file may have multiple base names."), _("\
5992 Show whether a source file may have multiple base names."), _("\
5993 (A \"base name\" is the name of a file with the directory part removed.\n\
5994 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5995 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5996 before comparing them. Canonicalization is an expensive operation,\n\
5997 but it allows the same file be known by more than one base name.\n\
5998 If not set (the default), all source files are assumed to have just\n\
5999 one base name, and gdb will do file name comparisons more efficiently."),
6001 &setlist, &showlist);
6003 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6004 _("Set debugging of symbol table creation."),
6005 _("Show debugging of symbol table creation."), _("\
6006 When enabled (non-zero), debugging messages are printed when building\n\
6007 symbol tables. A value of 1 (one) normally provides enough information.\n\
6008 A value greater than 1 provides more verbose information."),
6011 &setdebuglist, &showdebuglist);
6013 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6015 Set debugging of symbol lookup."), _("\
6016 Show debugging of symbol lookup."), _("\
6017 When enabled (non-zero), symbol lookups are logged."),
6019 &setdebuglist, &showdebuglist);
6021 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6022 &new_symbol_cache_size,
6023 _("Set the size of the symbol cache."),
6024 _("Show the size of the symbol cache."), _("\
6025 The size of the symbol cache.\n\
6026 If zero then the symbol cache is disabled."),
6027 set_symbol_cache_size_handler, NULL,
6028 &maintenance_set_cmdlist,
6029 &maintenance_show_cmdlist);
6031 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6032 _("Dump the symbol cache for each program space."),
6033 &maintenanceprintlist);
6035 add_cmd ("symbol-cache-statistics", class_maintenance,
6036 maintenance_print_symbol_cache_statistics,
6037 _("Print symbol cache statistics for each program space."),
6038 &maintenanceprintlist);
6040 add_cmd ("flush-symbol-cache", class_maintenance,
6041 maintenance_flush_symbol_cache,
6042 _("Flush the symbol cache for each program space."),
6045 observer_attach_executable_changed (symtab_observer_executable_changed);
6046 observer_attach_new_objfile (symtab_new_objfile_observer);
6047 observer_attach_free_objfile (symtab_free_objfile_observer);