1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
30 #include "gdb_regex.h"
31 #include "expression.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
43 #include "cli/cli-utils.h"
47 #include "gdb_obstack.h"
49 #include "dictionary.h"
51 #include <sys/types.h>
56 #include "cp-support.h"
60 #include "macroscope.h"
62 #include "parser-defs.h"
63 #include "completer.h"
64 #include "progspace-and-thread.h"
65 #include "common/gdb_optional.h"
66 #include "filename-seen-cache.h"
67 #include "arch-utils.h"
70 /* Forward declarations for local functions. */
72 static void rbreak_command (const char *, int);
74 static int find_line_common (struct linetable *, int, int *, int);
76 static struct block_symbol
77 lookup_symbol_aux (const char *name,
78 symbol_name_match_type match_type,
79 const struct block *block,
80 const domain_enum domain,
81 enum language language,
82 struct field_of_this_result *);
85 struct block_symbol lookup_local_symbol (const char *name,
86 symbol_name_match_type match_type,
87 const struct block *block,
88 const domain_enum domain,
89 enum language language);
91 static struct block_symbol
92 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
93 const char *name, const domain_enum domain);
96 const struct block_symbol null_block_symbol = { NULL, NULL };
98 /* Program space key for finding name and language of "main". */
100 static const struct program_space_data *main_progspace_key;
102 /* Type of the data stored on the program space. */
106 /* Name of "main". */
110 /* Language of "main". */
112 enum language language_of_main;
115 /* Program space key for finding its symbol cache. */
117 static const struct program_space_data *symbol_cache_key;
119 /* The default symbol cache size.
120 There is no extra cpu cost for large N (except when flushing the cache,
121 which is rare). The value here is just a first attempt. A better default
122 value may be higher or lower. A prime number can make up for a bad hash
123 computation, so that's why the number is what it is. */
124 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
126 /* The maximum symbol cache size.
127 There's no method to the decision of what value to use here, other than
128 there's no point in allowing a user typo to make gdb consume all memory. */
129 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
131 /* symbol_cache_lookup returns this if a previous lookup failed to find the
132 symbol in any objfile. */
133 #define SYMBOL_LOOKUP_FAILED \
134 ((struct block_symbol) {(struct symbol *) 1, NULL})
135 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
137 /* Recording lookups that don't find the symbol is just as important, if not
138 more so, than recording found symbols. */
140 enum symbol_cache_slot_state
143 SYMBOL_SLOT_NOT_FOUND,
147 struct symbol_cache_slot
149 enum symbol_cache_slot_state state;
151 /* The objfile that was current when the symbol was looked up.
152 This is only needed for global blocks, but for simplicity's sake
153 we allocate the space for both. If data shows the extra space used
154 for static blocks is a problem, we can split things up then.
156 Global blocks need cache lookup to include the objfile context because
157 we need to account for gdbarch_iterate_over_objfiles_in_search_order
158 which can traverse objfiles in, effectively, any order, depending on
159 the current objfile, thus affecting which symbol is found. Normally,
160 only the current objfile is searched first, and then the rest are
161 searched in recorded order; but putting cache lookup inside
162 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
163 Instead we just make the current objfile part of the context of
164 cache lookup. This means we can record the same symbol multiple times,
165 each with a different "current objfile" that was in effect when the
166 lookup was saved in the cache, but cache space is pretty cheap. */
167 const struct objfile *objfile_context;
171 struct block_symbol found;
180 /* Symbols don't specify global vs static block.
181 So keep them in separate caches. */
183 struct block_symbol_cache
187 unsigned int collisions;
189 /* SYMBOLS is a variable length array of this size.
190 One can imagine that in general one cache (global/static) should be a
191 fraction of the size of the other, but there's no data at the moment
192 on which to decide. */
195 struct symbol_cache_slot symbols[1];
200 Searching for symbols in the static and global blocks over multiple objfiles
201 again and again can be slow, as can searching very big objfiles. This is a
202 simple cache to improve symbol lookup performance, which is critical to
203 overall gdb performance.
205 Symbols are hashed on the name, its domain, and block.
206 They are also hashed on their objfile for objfile-specific lookups. */
210 struct block_symbol_cache *global_symbols;
211 struct block_symbol_cache *static_symbols;
214 /* When non-zero, print debugging messages related to symtab creation. */
215 unsigned int symtab_create_debug = 0;
217 /* When non-zero, print debugging messages related to symbol lookup. */
218 unsigned int symbol_lookup_debug = 0;
220 /* The size of the cache is staged here. */
221 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
223 /* The current value of the symbol cache size.
224 This is saved so that if the user enters a value too big we can restore
225 the original value from here. */
226 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
228 /* Non-zero if a file may be known by two different basenames.
229 This is the uncommon case, and significantly slows down gdb.
230 Default set to "off" to not slow down the common case. */
231 int basenames_may_differ = 0;
233 /* Allow the user to configure the debugger behavior with respect
234 to multiple-choice menus when more than one symbol matches during
237 const char multiple_symbols_ask[] = "ask";
238 const char multiple_symbols_all[] = "all";
239 const char multiple_symbols_cancel[] = "cancel";
240 static const char *const multiple_symbols_modes[] =
242 multiple_symbols_ask,
243 multiple_symbols_all,
244 multiple_symbols_cancel,
247 static const char *multiple_symbols_mode = multiple_symbols_all;
249 /* Read-only accessor to AUTO_SELECT_MODE. */
252 multiple_symbols_select_mode (void)
254 return multiple_symbols_mode;
257 /* Return the name of a domain_enum. */
260 domain_name (domain_enum e)
264 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
265 case VAR_DOMAIN: return "VAR_DOMAIN";
266 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
267 case MODULE_DOMAIN: return "MODULE_DOMAIN";
268 case LABEL_DOMAIN: return "LABEL_DOMAIN";
269 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
270 default: gdb_assert_not_reached ("bad domain_enum");
274 /* Return the name of a search_domain . */
277 search_domain_name (enum search_domain e)
281 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
282 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
283 case TYPES_DOMAIN: return "TYPES_DOMAIN";
284 case ALL_DOMAIN: return "ALL_DOMAIN";
285 default: gdb_assert_not_reached ("bad search_domain");
292 compunit_primary_filetab (const struct compunit_symtab *cust)
294 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
296 /* The primary file symtab is the first one in the list. */
297 return COMPUNIT_FILETABS (cust);
303 compunit_language (const struct compunit_symtab *cust)
305 struct symtab *symtab = compunit_primary_filetab (cust);
307 /* The language of the compunit symtab is the language of its primary
309 return SYMTAB_LANGUAGE (symtab);
312 /* See whether FILENAME matches SEARCH_NAME using the rule that we
313 advertise to the user. (The manual's description of linespecs
314 describes what we advertise). Returns true if they match, false
318 compare_filenames_for_search (const char *filename, const char *search_name)
320 int len = strlen (filename);
321 size_t search_len = strlen (search_name);
323 if (len < search_len)
326 /* The tail of FILENAME must match. */
327 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
330 /* Either the names must completely match, or the character
331 preceding the trailing SEARCH_NAME segment of FILENAME must be a
334 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
335 cannot match FILENAME "/path//dir/file.c" - as user has requested
336 absolute path. The sama applies for "c:\file.c" possibly
337 incorrectly hypothetically matching "d:\dir\c:\file.c".
339 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
340 compatible with SEARCH_NAME "file.c". In such case a compiler had
341 to put the "c:file.c" name into debug info. Such compatibility
342 works only on GDB built for DOS host. */
343 return (len == search_len
344 || (!IS_ABSOLUTE_PATH (search_name)
345 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
346 || (HAS_DRIVE_SPEC (filename)
347 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
350 /* Same as compare_filenames_for_search, but for glob-style patterns.
351 Heads up on the order of the arguments. They match the order of
352 compare_filenames_for_search, but it's the opposite of the order of
353 arguments to gdb_filename_fnmatch. */
356 compare_glob_filenames_for_search (const char *filename,
357 const char *search_name)
359 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
360 all /s have to be explicitly specified. */
361 int file_path_elements = count_path_elements (filename);
362 int search_path_elements = count_path_elements (search_name);
364 if (search_path_elements > file_path_elements)
367 if (IS_ABSOLUTE_PATH (search_name))
369 return (search_path_elements == file_path_elements
370 && gdb_filename_fnmatch (search_name, filename,
371 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
375 const char *file_to_compare
376 = strip_leading_path_elements (filename,
377 file_path_elements - search_path_elements);
379 return gdb_filename_fnmatch (search_name, file_to_compare,
380 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
384 /* Check for a symtab of a specific name by searching some symtabs.
385 This is a helper function for callbacks of iterate_over_symtabs.
387 If NAME is not absolute, then REAL_PATH is NULL
388 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
390 The return value, NAME, REAL_PATH and CALLBACK are identical to the
391 `map_symtabs_matching_filename' method of quick_symbol_functions.
393 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
394 Each symtab within the specified compunit symtab is also searched.
395 AFTER_LAST is one past the last compunit symtab to search; NULL means to
396 search until the end of the list. */
399 iterate_over_some_symtabs (const char *name,
400 const char *real_path,
401 struct compunit_symtab *first,
402 struct compunit_symtab *after_last,
403 gdb::function_view<bool (symtab *)> callback)
405 struct compunit_symtab *cust;
407 const char* base_name = lbasename (name);
409 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
411 ALL_COMPUNIT_FILETABS (cust, s)
413 if (compare_filenames_for_search (s->filename, name))
420 /* Before we invoke realpath, which can get expensive when many
421 files are involved, do a quick comparison of the basenames. */
422 if (! basenames_may_differ
423 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
426 if (compare_filenames_for_search (symtab_to_fullname (s), name))
433 /* If the user gave us an absolute path, try to find the file in
434 this symtab and use its absolute path. */
435 if (real_path != NULL)
437 const char *fullname = symtab_to_fullname (s);
439 gdb_assert (IS_ABSOLUTE_PATH (real_path));
440 gdb_assert (IS_ABSOLUTE_PATH (name));
441 if (FILENAME_CMP (real_path, fullname) == 0)
454 /* Check for a symtab of a specific name; first in symtabs, then in
455 psymtabs. *If* there is no '/' in the name, a match after a '/'
456 in the symtab filename will also work.
458 Calls CALLBACK with each symtab that is found. If CALLBACK returns
459 true, the search stops. */
462 iterate_over_symtabs (const char *name,
463 gdb::function_view<bool (symtab *)> callback)
465 struct objfile *objfile;
466 gdb::unique_xmalloc_ptr<char> real_path;
468 /* Here we are interested in canonicalizing an absolute path, not
469 absolutizing a relative path. */
470 if (IS_ABSOLUTE_PATH (name))
472 real_path = gdb_realpath (name);
473 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
476 ALL_OBJFILES (objfile)
478 if (iterate_over_some_symtabs (name, real_path.get (),
479 objfile->compunit_symtabs, NULL,
484 /* Same search rules as above apply here, but now we look thru the
487 ALL_OBJFILES (objfile)
490 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
498 /* A wrapper for iterate_over_symtabs that returns the first matching
502 lookup_symtab (const char *name)
504 struct symtab *result = NULL;
506 iterate_over_symtabs (name, [&] (symtab *symtab)
516 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
517 full method name, which consist of the class name (from T), the unadorned
518 method name from METHOD_ID, and the signature for the specific overload,
519 specified by SIGNATURE_ID. Note that this function is g++ specific. */
522 gdb_mangle_name (struct type *type, int method_id, int signature_id)
524 int mangled_name_len;
526 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
527 struct fn_field *method = &f[signature_id];
528 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
529 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
530 const char *newname = type_name_no_tag (type);
532 /* Does the form of physname indicate that it is the full mangled name
533 of a constructor (not just the args)? */
534 int is_full_physname_constructor;
537 int is_destructor = is_destructor_name (physname);
538 /* Need a new type prefix. */
539 const char *const_prefix = method->is_const ? "C" : "";
540 const char *volatile_prefix = method->is_volatile ? "V" : "";
542 int len = (newname == NULL ? 0 : strlen (newname));
544 /* Nothing to do if physname already contains a fully mangled v3 abi name
545 or an operator name. */
546 if ((physname[0] == '_' && physname[1] == 'Z')
547 || is_operator_name (field_name))
548 return xstrdup (physname);
550 is_full_physname_constructor = is_constructor_name (physname);
552 is_constructor = is_full_physname_constructor
553 || (newname && strcmp (field_name, newname) == 0);
556 is_destructor = (startswith (physname, "__dt"));
558 if (is_destructor || is_full_physname_constructor)
560 mangled_name = (char *) xmalloc (strlen (physname) + 1);
561 strcpy (mangled_name, physname);
567 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
569 else if (physname[0] == 't' || physname[0] == 'Q')
571 /* The physname for template and qualified methods already includes
573 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
579 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
580 volatile_prefix, len);
582 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
583 + strlen (buf) + len + strlen (physname) + 1);
585 mangled_name = (char *) xmalloc (mangled_name_len);
587 mangled_name[0] = '\0';
589 strcpy (mangled_name, field_name);
591 strcat (mangled_name, buf);
592 /* If the class doesn't have a name, i.e. newname NULL, then we just
593 mangle it using 0 for the length of the class. Thus it gets mangled
594 as something starting with `::' rather than `classname::'. */
596 strcat (mangled_name, newname);
598 strcat (mangled_name, physname);
599 return (mangled_name);
602 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
603 correctly allocated. */
606 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
608 struct obstack *obstack)
610 if (gsymbol->language == language_ada)
614 gsymbol->ada_mangled = 0;
615 gsymbol->language_specific.obstack = obstack;
619 gsymbol->ada_mangled = 1;
620 gsymbol->language_specific.demangled_name = name;
624 gsymbol->language_specific.demangled_name = name;
627 /* Return the demangled name of GSYMBOL. */
630 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
632 if (gsymbol->language == language_ada)
634 if (!gsymbol->ada_mangled)
639 return gsymbol->language_specific.demangled_name;
643 /* Initialize the language dependent portion of a symbol
644 depending upon the language for the symbol. */
647 symbol_set_language (struct general_symbol_info *gsymbol,
648 enum language language,
649 struct obstack *obstack)
651 gsymbol->language = language;
652 if (gsymbol->language == language_cplus
653 || gsymbol->language == language_d
654 || gsymbol->language == language_go
655 || gsymbol->language == language_objc
656 || gsymbol->language == language_fortran)
658 symbol_set_demangled_name (gsymbol, NULL, obstack);
660 else if (gsymbol->language == language_ada)
662 gdb_assert (gsymbol->ada_mangled == 0);
663 gsymbol->language_specific.obstack = obstack;
667 memset (&gsymbol->language_specific, 0,
668 sizeof (gsymbol->language_specific));
672 /* Functions to initialize a symbol's mangled name. */
674 /* Objects of this type are stored in the demangled name hash table. */
675 struct demangled_name_entry
681 /* Hash function for the demangled name hash. */
684 hash_demangled_name_entry (const void *data)
686 const struct demangled_name_entry *e
687 = (const struct demangled_name_entry *) data;
689 return htab_hash_string (e->mangled);
692 /* Equality function for the demangled name hash. */
695 eq_demangled_name_entry (const void *a, const void *b)
697 const struct demangled_name_entry *da
698 = (const struct demangled_name_entry *) a;
699 const struct demangled_name_entry *db
700 = (const struct demangled_name_entry *) b;
702 return strcmp (da->mangled, db->mangled) == 0;
705 /* Create the hash table used for demangled names. Each hash entry is
706 a pair of strings; one for the mangled name and one for the demangled
707 name. The entry is hashed via just the mangled name. */
710 create_demangled_names_hash (struct objfile *objfile)
712 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
713 The hash table code will round this up to the next prime number.
714 Choosing a much larger table size wastes memory, and saves only about
715 1% in symbol reading. */
717 objfile->per_bfd->demangled_names_hash = htab_create_alloc
718 (256, hash_demangled_name_entry, eq_demangled_name_entry,
719 NULL, xcalloc, xfree);
722 /* Try to determine the demangled name for a symbol, based on the
723 language of that symbol. If the language is set to language_auto,
724 it will attempt to find any demangling algorithm that works and
725 then set the language appropriately. The returned name is allocated
726 by the demangler and should be xfree'd. */
729 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
732 char *demangled = NULL;
735 if (gsymbol->language == language_unknown)
736 gsymbol->language = language_auto;
738 if (gsymbol->language != language_auto)
740 const struct language_defn *lang = language_def (gsymbol->language);
742 language_sniff_from_mangled_name (lang, mangled, &demangled);
746 for (i = language_unknown; i < nr_languages; ++i)
748 enum language l = (enum language) i;
749 const struct language_defn *lang = language_def (l);
751 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
753 gsymbol->language = l;
761 /* Set both the mangled and demangled (if any) names for GSYMBOL based
762 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
763 objfile's obstack; but if COPY_NAME is 0 and if NAME is
764 NUL-terminated, then this function assumes that NAME is already
765 correctly saved (either permanently or with a lifetime tied to the
766 objfile), and it will not be copied.
768 The hash table corresponding to OBJFILE is used, and the memory
769 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
770 so the pointer can be discarded after calling this function. */
773 symbol_set_names (struct general_symbol_info *gsymbol,
774 const char *linkage_name, int len, int copy_name,
775 struct objfile *objfile)
777 struct demangled_name_entry **slot;
778 /* A 0-terminated copy of the linkage name. */
779 const char *linkage_name_copy;
780 struct demangled_name_entry entry;
781 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
783 if (gsymbol->language == language_ada)
785 /* In Ada, we do the symbol lookups using the mangled name, so
786 we can save some space by not storing the demangled name. */
788 gsymbol->name = linkage_name;
791 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
794 memcpy (name, linkage_name, len);
796 gsymbol->name = name;
798 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
803 if (per_bfd->demangled_names_hash == NULL)
804 create_demangled_names_hash (objfile);
806 if (linkage_name[len] != '\0')
810 alloc_name = (char *) alloca (len + 1);
811 memcpy (alloc_name, linkage_name, len);
812 alloc_name[len] = '\0';
814 linkage_name_copy = alloc_name;
817 linkage_name_copy = linkage_name;
819 entry.mangled = linkage_name_copy;
820 slot = ((struct demangled_name_entry **)
821 htab_find_slot (per_bfd->demangled_names_hash,
824 /* If this name is not in the hash table, add it. */
826 /* A C version of the symbol may have already snuck into the table.
827 This happens to, e.g., main.init (__go_init_main). Cope. */
828 || (gsymbol->language == language_go
829 && (*slot)->demangled[0] == '\0'))
831 char *demangled_name = symbol_find_demangled_name (gsymbol,
833 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
835 /* Suppose we have demangled_name==NULL, copy_name==0, and
836 linkage_name_copy==linkage_name. In this case, we already have the
837 mangled name saved, and we don't have a demangled name. So,
838 you might think we could save a little space by not recording
839 this in the hash table at all.
841 It turns out that it is actually important to still save such
842 an entry in the hash table, because storing this name gives
843 us better bcache hit rates for partial symbols. */
844 if (!copy_name && linkage_name_copy == linkage_name)
847 = ((struct demangled_name_entry *)
848 obstack_alloc (&per_bfd->storage_obstack,
849 offsetof (struct demangled_name_entry, demangled)
850 + demangled_len + 1));
851 (*slot)->mangled = linkage_name;
857 /* If we must copy the mangled name, put it directly after
858 the demangled name so we can have a single
861 = ((struct demangled_name_entry *)
862 obstack_alloc (&per_bfd->storage_obstack,
863 offsetof (struct demangled_name_entry, demangled)
864 + len + demangled_len + 2));
865 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
866 strcpy (mangled_ptr, linkage_name_copy);
867 (*slot)->mangled = mangled_ptr;
870 if (demangled_name != NULL)
872 strcpy ((*slot)->demangled, demangled_name);
873 xfree (demangled_name);
876 (*slot)->demangled[0] = '\0';
879 gsymbol->name = (*slot)->mangled;
880 if ((*slot)->demangled[0] != '\0')
881 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
882 &per_bfd->storage_obstack);
884 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
887 /* Return the source code name of a symbol. In languages where
888 demangling is necessary, this is the demangled name. */
891 symbol_natural_name (const struct general_symbol_info *gsymbol)
893 switch (gsymbol->language)
899 case language_fortran:
900 if (symbol_get_demangled_name (gsymbol) != NULL)
901 return symbol_get_demangled_name (gsymbol);
904 return ada_decode_symbol (gsymbol);
908 return gsymbol->name;
911 /* Return the demangled name for a symbol based on the language for
912 that symbol. If no demangled name exists, return NULL. */
915 symbol_demangled_name (const struct general_symbol_info *gsymbol)
917 const char *dem_name = NULL;
919 switch (gsymbol->language)
925 case language_fortran:
926 dem_name = symbol_get_demangled_name (gsymbol);
929 dem_name = ada_decode_symbol (gsymbol);
937 /* Return the search name of a symbol---generally the demangled or
938 linkage name of the symbol, depending on how it will be searched for.
939 If there is no distinct demangled name, then returns the same value
940 (same pointer) as SYMBOL_LINKAGE_NAME. */
943 symbol_search_name (const struct general_symbol_info *gsymbol)
945 if (gsymbol->language == language_ada)
946 return gsymbol->name;
948 return symbol_natural_name (gsymbol);
954 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
955 const lookup_name_info &name)
957 symbol_name_matcher_ftype *name_match
958 = get_symbol_name_matcher (language_def (gsymbol->language), name);
959 return name_match (symbol_search_name (gsymbol), name, NULL);
964 /* Return 1 if the two sections are the same, or if they could
965 plausibly be copies of each other, one in an original object
966 file and another in a separated debug file. */
969 matching_obj_sections (struct obj_section *obj_first,
970 struct obj_section *obj_second)
972 asection *first = obj_first? obj_first->the_bfd_section : NULL;
973 asection *second = obj_second? obj_second->the_bfd_section : NULL;
976 /* If they're the same section, then they match. */
980 /* If either is NULL, give up. */
981 if (first == NULL || second == NULL)
984 /* This doesn't apply to absolute symbols. */
985 if (first->owner == NULL || second->owner == NULL)
988 /* If they're in the same object file, they must be different sections. */
989 if (first->owner == second->owner)
992 /* Check whether the two sections are potentially corresponding. They must
993 have the same size, address, and name. We can't compare section indexes,
994 which would be more reliable, because some sections may have been
996 if (bfd_get_section_size (first) != bfd_get_section_size (second))
999 /* In-memory addresses may start at a different offset, relativize them. */
1000 if (bfd_get_section_vma (first->owner, first)
1001 - bfd_get_start_address (first->owner)
1002 != bfd_get_section_vma (second->owner, second)
1003 - bfd_get_start_address (second->owner))
1006 if (bfd_get_section_name (first->owner, first) == NULL
1007 || bfd_get_section_name (second->owner, second) == NULL
1008 || strcmp (bfd_get_section_name (first->owner, first),
1009 bfd_get_section_name (second->owner, second)) != 0)
1012 /* Otherwise check that they are in corresponding objfiles. */
1015 if (obj->obfd == first->owner)
1017 gdb_assert (obj != NULL);
1019 if (obj->separate_debug_objfile != NULL
1020 && obj->separate_debug_objfile->obfd == second->owner)
1022 if (obj->separate_debug_objfile_backlink != NULL
1023 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1032 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1034 struct objfile *objfile;
1035 struct bound_minimal_symbol msymbol;
1037 /* If we know that this is not a text address, return failure. This is
1038 necessary because we loop based on texthigh and textlow, which do
1039 not include the data ranges. */
1040 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1042 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1043 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1044 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1045 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1046 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1049 ALL_OBJFILES (objfile)
1051 struct compunit_symtab *cust = NULL;
1054 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1061 /* Hash function for the symbol cache. */
1064 hash_symbol_entry (const struct objfile *objfile_context,
1065 const char *name, domain_enum domain)
1067 unsigned int hash = (uintptr_t) objfile_context;
1070 hash += htab_hash_string (name);
1072 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1073 to map to the same slot. */
1074 if (domain == STRUCT_DOMAIN)
1075 hash += VAR_DOMAIN * 7;
1082 /* Equality function for the symbol cache. */
1085 eq_symbol_entry (const struct symbol_cache_slot *slot,
1086 const struct objfile *objfile_context,
1087 const char *name, domain_enum domain)
1089 const char *slot_name;
1090 domain_enum slot_domain;
1092 if (slot->state == SYMBOL_SLOT_UNUSED)
1095 if (slot->objfile_context != objfile_context)
1098 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1100 slot_name = slot->value.not_found.name;
1101 slot_domain = slot->value.not_found.domain;
1105 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1106 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1109 /* NULL names match. */
1110 if (slot_name == NULL && name == NULL)
1112 /* But there's no point in calling symbol_matches_domain in the
1113 SYMBOL_SLOT_FOUND case. */
1114 if (slot_domain != domain)
1117 else if (slot_name != NULL && name != NULL)
1119 /* It's important that we use the same comparison that was done
1120 the first time through. If the slot records a found symbol,
1121 then this means using the symbol name comparison function of
1122 the symbol's language with SYMBOL_SEARCH_NAME. See
1123 dictionary.c. It also means using symbol_matches_domain for
1124 found symbols. See block.c.
1126 If the slot records a not-found symbol, then require a precise match.
1127 We could still be lax with whitespace like strcmp_iw though. */
1129 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1131 if (strcmp (slot_name, name) != 0)
1133 if (slot_domain != domain)
1138 struct symbol *sym = slot->value.found.symbol;
1139 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1141 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1144 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1145 slot_domain, domain))
1151 /* Only one name is NULL. */
1158 /* Given a cache of size SIZE, return the size of the struct (with variable
1159 length array) in bytes. */
1162 symbol_cache_byte_size (unsigned int size)
1164 return (sizeof (struct block_symbol_cache)
1165 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1171 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1173 /* If there's no change in size, don't do anything.
1174 All caches have the same size, so we can just compare with the size
1175 of the global symbols cache. */
1176 if ((cache->global_symbols != NULL
1177 && cache->global_symbols->size == new_size)
1178 || (cache->global_symbols == NULL
1182 xfree (cache->global_symbols);
1183 xfree (cache->static_symbols);
1187 cache->global_symbols = NULL;
1188 cache->static_symbols = NULL;
1192 size_t total_size = symbol_cache_byte_size (new_size);
1194 cache->global_symbols
1195 = (struct block_symbol_cache *) xcalloc (1, total_size);
1196 cache->static_symbols
1197 = (struct block_symbol_cache *) xcalloc (1, total_size);
1198 cache->global_symbols->size = new_size;
1199 cache->static_symbols->size = new_size;
1203 /* Make a symbol cache of size SIZE. */
1205 static struct symbol_cache *
1206 make_symbol_cache (unsigned int size)
1208 struct symbol_cache *cache;
1210 cache = XCNEW (struct symbol_cache);
1211 resize_symbol_cache (cache, symbol_cache_size);
1215 /* Free the space used by CACHE. */
1218 free_symbol_cache (struct symbol_cache *cache)
1220 xfree (cache->global_symbols);
1221 xfree (cache->static_symbols);
1225 /* Return the symbol cache of PSPACE.
1226 Create one if it doesn't exist yet. */
1228 static struct symbol_cache *
1229 get_symbol_cache (struct program_space *pspace)
1231 struct symbol_cache *cache
1232 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1236 cache = make_symbol_cache (symbol_cache_size);
1237 set_program_space_data (pspace, symbol_cache_key, cache);
1243 /* Delete the symbol cache of PSPACE.
1244 Called when PSPACE is destroyed. */
1247 symbol_cache_cleanup (struct program_space *pspace, void *data)
1249 struct symbol_cache *cache = (struct symbol_cache *) data;
1251 free_symbol_cache (cache);
1254 /* Set the size of the symbol cache in all program spaces. */
1257 set_symbol_cache_size (unsigned int new_size)
1259 struct program_space *pspace;
1261 ALL_PSPACES (pspace)
1263 struct symbol_cache *cache
1264 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1266 /* The pspace could have been created but not have a cache yet. */
1268 resize_symbol_cache (cache, new_size);
1272 /* Called when symbol-cache-size is set. */
1275 set_symbol_cache_size_handler (const char *args, int from_tty,
1276 struct cmd_list_element *c)
1278 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1280 /* Restore the previous value.
1281 This is the value the "show" command prints. */
1282 new_symbol_cache_size = symbol_cache_size;
1284 error (_("Symbol cache size is too large, max is %u."),
1285 MAX_SYMBOL_CACHE_SIZE);
1287 symbol_cache_size = new_symbol_cache_size;
1289 set_symbol_cache_size (symbol_cache_size);
1292 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1293 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1294 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1295 failed (and thus this one will too), or NULL if the symbol is not present
1297 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1298 set to the cache and slot of the symbol to save the result of a full lookup
1301 static struct block_symbol
1302 symbol_cache_lookup (struct symbol_cache *cache,
1303 struct objfile *objfile_context, int block,
1304 const char *name, domain_enum domain,
1305 struct block_symbol_cache **bsc_ptr,
1306 struct symbol_cache_slot **slot_ptr)
1308 struct block_symbol_cache *bsc;
1310 struct symbol_cache_slot *slot;
1312 if (block == GLOBAL_BLOCK)
1313 bsc = cache->global_symbols;
1315 bsc = cache->static_symbols;
1320 return (struct block_symbol) {NULL, NULL};
1323 hash = hash_symbol_entry (objfile_context, name, domain);
1324 slot = bsc->symbols + hash % bsc->size;
1326 if (eq_symbol_entry (slot, objfile_context, name, domain))
1328 if (symbol_lookup_debug)
1329 fprintf_unfiltered (gdb_stdlog,
1330 "%s block symbol cache hit%s for %s, %s\n",
1331 block == GLOBAL_BLOCK ? "Global" : "Static",
1332 slot->state == SYMBOL_SLOT_NOT_FOUND
1333 ? " (not found)" : "",
1334 name, domain_name (domain));
1336 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1337 return SYMBOL_LOOKUP_FAILED;
1338 return slot->value.found;
1341 /* Symbol is not present in the cache. */
1346 if (symbol_lookup_debug)
1348 fprintf_unfiltered (gdb_stdlog,
1349 "%s block symbol cache miss for %s, %s\n",
1350 block == GLOBAL_BLOCK ? "Global" : "Static",
1351 name, domain_name (domain));
1354 return (struct block_symbol) {NULL, NULL};
1357 /* Clear out SLOT. */
1360 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1362 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1363 xfree (slot->value.not_found.name);
1364 slot->state = SYMBOL_SLOT_UNUSED;
1367 /* Mark SYMBOL as found in SLOT.
1368 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1369 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1370 necessarily the objfile the symbol was found in. */
1373 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1374 struct symbol_cache_slot *slot,
1375 struct objfile *objfile_context,
1376 struct symbol *symbol,
1377 const struct block *block)
1381 if (slot->state != SYMBOL_SLOT_UNUSED)
1384 symbol_cache_clear_slot (slot);
1386 slot->state = SYMBOL_SLOT_FOUND;
1387 slot->objfile_context = objfile_context;
1388 slot->value.found.symbol = symbol;
1389 slot->value.found.block = block;
1392 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1393 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1394 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1397 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1398 struct symbol_cache_slot *slot,
1399 struct objfile *objfile_context,
1400 const char *name, domain_enum domain)
1404 if (slot->state != SYMBOL_SLOT_UNUSED)
1407 symbol_cache_clear_slot (slot);
1409 slot->state = SYMBOL_SLOT_NOT_FOUND;
1410 slot->objfile_context = objfile_context;
1411 slot->value.not_found.name = xstrdup (name);
1412 slot->value.not_found.domain = domain;
1415 /* Flush the symbol cache of PSPACE. */
1418 symbol_cache_flush (struct program_space *pspace)
1420 struct symbol_cache *cache
1421 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1426 if (cache->global_symbols == NULL)
1428 gdb_assert (symbol_cache_size == 0);
1429 gdb_assert (cache->static_symbols == NULL);
1433 /* If the cache is untouched since the last flush, early exit.
1434 This is important for performance during the startup of a program linked
1435 with 100s (or 1000s) of shared libraries. */
1436 if (cache->global_symbols->misses == 0
1437 && cache->static_symbols->misses == 0)
1440 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1441 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1443 for (pass = 0; pass < 2; ++pass)
1445 struct block_symbol_cache *bsc
1446 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1449 for (i = 0; i < bsc->size; ++i)
1450 symbol_cache_clear_slot (&bsc->symbols[i]);
1453 cache->global_symbols->hits = 0;
1454 cache->global_symbols->misses = 0;
1455 cache->global_symbols->collisions = 0;
1456 cache->static_symbols->hits = 0;
1457 cache->static_symbols->misses = 0;
1458 cache->static_symbols->collisions = 0;
1464 symbol_cache_dump (const struct symbol_cache *cache)
1468 if (cache->global_symbols == NULL)
1470 printf_filtered (" <disabled>\n");
1474 for (pass = 0; pass < 2; ++pass)
1476 const struct block_symbol_cache *bsc
1477 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1481 printf_filtered ("Global symbols:\n");
1483 printf_filtered ("Static symbols:\n");
1485 for (i = 0; i < bsc->size; ++i)
1487 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1491 switch (slot->state)
1493 case SYMBOL_SLOT_UNUSED:
1495 case SYMBOL_SLOT_NOT_FOUND:
1496 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1497 host_address_to_string (slot->objfile_context),
1498 slot->value.not_found.name,
1499 domain_name (slot->value.not_found.domain));
1501 case SYMBOL_SLOT_FOUND:
1503 struct symbol *found = slot->value.found.symbol;
1504 const struct objfile *context = slot->objfile_context;
1506 printf_filtered (" [%4u] = %s, %s %s\n", i,
1507 host_address_to_string (context),
1508 SYMBOL_PRINT_NAME (found),
1509 domain_name (SYMBOL_DOMAIN (found)));
1517 /* The "mt print symbol-cache" command. */
1520 maintenance_print_symbol_cache (const char *args, int from_tty)
1522 struct program_space *pspace;
1524 ALL_PSPACES (pspace)
1526 struct symbol_cache *cache;
1528 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1530 pspace->symfile_object_file != NULL
1531 ? objfile_name (pspace->symfile_object_file)
1532 : "(no object file)");
1534 /* If the cache hasn't been created yet, avoid creating one. */
1536 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1538 printf_filtered (" <empty>\n");
1540 symbol_cache_dump (cache);
1544 /* The "mt flush-symbol-cache" command. */
1547 maintenance_flush_symbol_cache (const char *args, int from_tty)
1549 struct program_space *pspace;
1551 ALL_PSPACES (pspace)
1553 symbol_cache_flush (pspace);
1557 /* Print usage statistics of CACHE. */
1560 symbol_cache_stats (struct symbol_cache *cache)
1564 if (cache->global_symbols == NULL)
1566 printf_filtered (" <disabled>\n");
1570 for (pass = 0; pass < 2; ++pass)
1572 const struct block_symbol_cache *bsc
1573 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1578 printf_filtered ("Global block cache stats:\n");
1580 printf_filtered ("Static block cache stats:\n");
1582 printf_filtered (" size: %u\n", bsc->size);
1583 printf_filtered (" hits: %u\n", bsc->hits);
1584 printf_filtered (" misses: %u\n", bsc->misses);
1585 printf_filtered (" collisions: %u\n", bsc->collisions);
1589 /* The "mt print symbol-cache-statistics" command. */
1592 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1594 struct program_space *pspace;
1596 ALL_PSPACES (pspace)
1598 struct symbol_cache *cache;
1600 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1602 pspace->symfile_object_file != NULL
1603 ? objfile_name (pspace->symfile_object_file)
1604 : "(no object file)");
1606 /* If the cache hasn't been created yet, avoid creating one. */
1608 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1610 printf_filtered (" empty, no stats available\n");
1612 symbol_cache_stats (cache);
1616 /* This module's 'new_objfile' observer. */
1619 symtab_new_objfile_observer (struct objfile *objfile)
1621 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1622 symbol_cache_flush (current_program_space);
1625 /* This module's 'free_objfile' observer. */
1628 symtab_free_objfile_observer (struct objfile *objfile)
1630 symbol_cache_flush (objfile->pspace);
1633 /* Debug symbols usually don't have section information. We need to dig that
1634 out of the minimal symbols and stash that in the debug symbol. */
1637 fixup_section (struct general_symbol_info *ginfo,
1638 CORE_ADDR addr, struct objfile *objfile)
1640 struct minimal_symbol *msym;
1642 /* First, check whether a minimal symbol with the same name exists
1643 and points to the same address. The address check is required
1644 e.g. on PowerPC64, where the minimal symbol for a function will
1645 point to the function descriptor, while the debug symbol will
1646 point to the actual function code. */
1647 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1649 ginfo->section = MSYMBOL_SECTION (msym);
1652 /* Static, function-local variables do appear in the linker
1653 (minimal) symbols, but are frequently given names that won't
1654 be found via lookup_minimal_symbol(). E.g., it has been
1655 observed in frv-uclinux (ELF) executables that a static,
1656 function-local variable named "foo" might appear in the
1657 linker symbols as "foo.6" or "foo.3". Thus, there is no
1658 point in attempting to extend the lookup-by-name mechanism to
1659 handle this case due to the fact that there can be multiple
1662 So, instead, search the section table when lookup by name has
1663 failed. The ``addr'' and ``endaddr'' fields may have already
1664 been relocated. If so, the relocation offset (i.e. the
1665 ANOFFSET value) needs to be subtracted from these values when
1666 performing the comparison. We unconditionally subtract it,
1667 because, when no relocation has been performed, the ANOFFSET
1668 value will simply be zero.
1670 The address of the symbol whose section we're fixing up HAS
1671 NOT BEEN adjusted (relocated) yet. It can't have been since
1672 the section isn't yet known and knowing the section is
1673 necessary in order to add the correct relocation value. In
1674 other words, we wouldn't even be in this function (attempting
1675 to compute the section) if it were already known.
1677 Note that it is possible to search the minimal symbols
1678 (subtracting the relocation value if necessary) to find the
1679 matching minimal symbol, but this is overkill and much less
1680 efficient. It is not necessary to find the matching minimal
1681 symbol, only its section.
1683 Note that this technique (of doing a section table search)
1684 can fail when unrelocated section addresses overlap. For
1685 this reason, we still attempt a lookup by name prior to doing
1686 a search of the section table. */
1688 struct obj_section *s;
1691 ALL_OBJFILE_OSECTIONS (objfile, s)
1693 int idx = s - objfile->sections;
1694 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1699 if (obj_section_addr (s) - offset <= addr
1700 && addr < obj_section_endaddr (s) - offset)
1702 ginfo->section = idx;
1707 /* If we didn't find the section, assume it is in the first
1708 section. If there is no allocated section, then it hardly
1709 matters what we pick, so just pick zero. */
1713 ginfo->section = fallback;
1718 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1725 if (!SYMBOL_OBJFILE_OWNED (sym))
1728 /* We either have an OBJFILE, or we can get at it from the sym's
1729 symtab. Anything else is a bug. */
1730 gdb_assert (objfile || symbol_symtab (sym));
1732 if (objfile == NULL)
1733 objfile = symbol_objfile (sym);
1735 if (SYMBOL_OBJ_SECTION (objfile, sym))
1738 /* We should have an objfile by now. */
1739 gdb_assert (objfile);
1741 switch (SYMBOL_CLASS (sym))
1745 addr = SYMBOL_VALUE_ADDRESS (sym);
1748 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1752 /* Nothing else will be listed in the minsyms -- no use looking
1757 fixup_section (&sym->ginfo, addr, objfile);
1764 demangle_for_lookup_info::demangle_for_lookup_info
1765 (const lookup_name_info &lookup_name, language lang)
1767 demangle_result_storage storage;
1769 if (lookup_name.ignore_parameters () && lang == language_cplus)
1771 gdb::unique_xmalloc_ptr<char> without_params
1772 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1773 lookup_name.completion_mode ());
1775 if (without_params != NULL)
1777 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1778 m_demangled_name = demangle_for_lookup (without_params.get (),
1784 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1785 m_demangled_name = lookup_name.name ();
1787 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1793 const lookup_name_info &
1794 lookup_name_info::match_any ()
1796 /* Lookup any symbol that "" would complete. I.e., this matches all
1798 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1804 /* Compute the demangled form of NAME as used by the various symbol
1805 lookup functions. The result can either be the input NAME
1806 directly, or a pointer to a buffer owned by the STORAGE object.
1808 For Ada, this function just returns NAME, unmodified.
1809 Normally, Ada symbol lookups are performed using the encoded name
1810 rather than the demangled name, and so it might seem to make sense
1811 for this function to return an encoded version of NAME.
1812 Unfortunately, we cannot do this, because this function is used in
1813 circumstances where it is not appropriate to try to encode NAME.
1814 For instance, when displaying the frame info, we demangle the name
1815 of each parameter, and then perform a symbol lookup inside our
1816 function using that demangled name. In Ada, certain functions
1817 have internally-generated parameters whose name contain uppercase
1818 characters. Encoding those name would result in those uppercase
1819 characters to become lowercase, and thus cause the symbol lookup
1823 demangle_for_lookup (const char *name, enum language lang,
1824 demangle_result_storage &storage)
1826 /* If we are using C++, D, or Go, demangle the name before doing a
1827 lookup, so we can always binary search. */
1828 if (lang == language_cplus)
1830 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1831 if (demangled_name != NULL)
1832 return storage.set_malloc_ptr (demangled_name);
1834 /* If we were given a non-mangled name, canonicalize it
1835 according to the language (so far only for C++). */
1836 std::string canon = cp_canonicalize_string (name);
1837 if (!canon.empty ())
1838 return storage.swap_string (canon);
1840 else if (lang == language_d)
1842 char *demangled_name = d_demangle (name, 0);
1843 if (demangled_name != NULL)
1844 return storage.set_malloc_ptr (demangled_name);
1846 else if (lang == language_go)
1848 char *demangled_name = go_demangle (name, 0);
1849 if (demangled_name != NULL)
1850 return storage.set_malloc_ptr (demangled_name);
1859 search_name_hash (enum language language, const char *search_name)
1861 return language_def (language)->la_search_name_hash (search_name);
1866 This function (or rather its subordinates) have a bunch of loops and
1867 it would seem to be attractive to put in some QUIT's (though I'm not really
1868 sure whether it can run long enough to be really important). But there
1869 are a few calls for which it would appear to be bad news to quit
1870 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1871 that there is C++ code below which can error(), but that probably
1872 doesn't affect these calls since they are looking for a known
1873 variable and thus can probably assume it will never hit the C++
1877 lookup_symbol_in_language (const char *name, const struct block *block,
1878 const domain_enum domain, enum language lang,
1879 struct field_of_this_result *is_a_field_of_this)
1881 demangle_result_storage storage;
1882 const char *modified_name = demangle_for_lookup (name, lang, storage);
1884 return lookup_symbol_aux (modified_name,
1885 symbol_name_match_type::FULL,
1886 block, domain, lang,
1887 is_a_field_of_this);
1893 lookup_symbol (const char *name, const struct block *block,
1895 struct field_of_this_result *is_a_field_of_this)
1897 return lookup_symbol_in_language (name, block, domain,
1898 current_language->la_language,
1899 is_a_field_of_this);
1905 lookup_symbol_search_name (const char *search_name, const struct block *block,
1908 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1909 block, domain, language_asm, NULL);
1915 lookup_language_this (const struct language_defn *lang,
1916 const struct block *block)
1918 if (lang->la_name_of_this == NULL || block == NULL)
1919 return (struct block_symbol) {NULL, NULL};
1921 if (symbol_lookup_debug > 1)
1923 struct objfile *objfile = lookup_objfile_from_block (block);
1925 fprintf_unfiltered (gdb_stdlog,
1926 "lookup_language_this (%s, %s (objfile %s))",
1927 lang->la_name, host_address_to_string (block),
1928 objfile_debug_name (objfile));
1935 sym = block_lookup_symbol (block, lang->la_name_of_this,
1936 symbol_name_match_type::SEARCH_NAME,
1940 if (symbol_lookup_debug > 1)
1942 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1943 SYMBOL_PRINT_NAME (sym),
1944 host_address_to_string (sym),
1945 host_address_to_string (block));
1947 return (struct block_symbol) {sym, block};
1949 if (BLOCK_FUNCTION (block))
1951 block = BLOCK_SUPERBLOCK (block);
1954 if (symbol_lookup_debug > 1)
1955 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1956 return (struct block_symbol) {NULL, NULL};
1959 /* Given TYPE, a structure/union,
1960 return 1 if the component named NAME from the ultimate target
1961 structure/union is defined, otherwise, return 0. */
1964 check_field (struct type *type, const char *name,
1965 struct field_of_this_result *is_a_field_of_this)
1969 /* The type may be a stub. */
1970 type = check_typedef (type);
1972 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1974 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1976 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1978 is_a_field_of_this->type = type;
1979 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1984 /* C++: If it was not found as a data field, then try to return it
1985 as a pointer to a method. */
1987 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1989 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1991 is_a_field_of_this->type = type;
1992 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1997 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1998 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2004 /* Behave like lookup_symbol except that NAME is the natural name
2005 (e.g., demangled name) of the symbol that we're looking for. */
2007 static struct block_symbol
2008 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2009 const struct block *block,
2010 const domain_enum domain, enum language language,
2011 struct field_of_this_result *is_a_field_of_this)
2013 struct block_symbol result;
2014 const struct language_defn *langdef;
2016 if (symbol_lookup_debug)
2018 struct objfile *objfile = lookup_objfile_from_block (block);
2020 fprintf_unfiltered (gdb_stdlog,
2021 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2022 name, host_address_to_string (block),
2024 ? objfile_debug_name (objfile) : "NULL",
2025 domain_name (domain), language_str (language));
2028 /* Make sure we do something sensible with is_a_field_of_this, since
2029 the callers that set this parameter to some non-null value will
2030 certainly use it later. If we don't set it, the contents of
2031 is_a_field_of_this are undefined. */
2032 if (is_a_field_of_this != NULL)
2033 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2035 /* Search specified block and its superiors. Don't search
2036 STATIC_BLOCK or GLOBAL_BLOCK. */
2038 result = lookup_local_symbol (name, match_type, block, domain, language);
2039 if (result.symbol != NULL)
2041 if (symbol_lookup_debug)
2043 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2044 host_address_to_string (result.symbol));
2049 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2050 check to see if NAME is a field of `this'. */
2052 langdef = language_def (language);
2054 /* Don't do this check if we are searching for a struct. It will
2055 not be found by check_field, but will be found by other
2057 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2059 result = lookup_language_this (langdef, block);
2063 struct type *t = result.symbol->type;
2065 /* I'm not really sure that type of this can ever
2066 be typedefed; just be safe. */
2067 t = check_typedef (t);
2068 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2069 t = TYPE_TARGET_TYPE (t);
2071 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2072 && TYPE_CODE (t) != TYPE_CODE_UNION)
2073 error (_("Internal error: `%s' is not an aggregate"),
2074 langdef->la_name_of_this);
2076 if (check_field (t, name, is_a_field_of_this))
2078 if (symbol_lookup_debug)
2080 fprintf_unfiltered (gdb_stdlog,
2081 "lookup_symbol_aux (...) = NULL\n");
2083 return (struct block_symbol) {NULL, NULL};
2088 /* Now do whatever is appropriate for LANGUAGE to look
2089 up static and global variables. */
2091 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2092 if (result.symbol != NULL)
2094 if (symbol_lookup_debug)
2096 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2097 host_address_to_string (result.symbol));
2102 /* Now search all static file-level symbols. Not strictly correct,
2103 but more useful than an error. */
2105 result = lookup_static_symbol (name, domain);
2106 if (symbol_lookup_debug)
2108 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2109 result.symbol != NULL
2110 ? host_address_to_string (result.symbol)
2116 /* Check to see if the symbol is defined in BLOCK or its superiors.
2117 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2119 static struct block_symbol
2120 lookup_local_symbol (const char *name,
2121 symbol_name_match_type match_type,
2122 const struct block *block,
2123 const domain_enum domain,
2124 enum language language)
2127 const struct block *static_block = block_static_block (block);
2128 const char *scope = block_scope (block);
2130 /* Check if either no block is specified or it's a global block. */
2132 if (static_block == NULL)
2133 return (struct block_symbol) {NULL, NULL};
2135 while (block != static_block)
2137 sym = lookup_symbol_in_block (name, match_type, block, domain);
2139 return (struct block_symbol) {sym, block};
2141 if (language == language_cplus || language == language_fortran)
2143 struct block_symbol sym
2144 = cp_lookup_symbol_imports_or_template (scope, name, block,
2147 if (sym.symbol != NULL)
2151 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2153 block = BLOCK_SUPERBLOCK (block);
2156 /* We've reached the end of the function without finding a result. */
2158 return (struct block_symbol) {NULL, NULL};
2164 lookup_objfile_from_block (const struct block *block)
2166 struct objfile *obj;
2167 struct compunit_symtab *cust;
2172 block = block_global_block (block);
2173 /* Look through all blockvectors. */
2174 ALL_COMPUNITS (obj, cust)
2175 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2178 if (obj->separate_debug_objfile_backlink)
2179 obj = obj->separate_debug_objfile_backlink;
2190 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2191 const struct block *block,
2192 const domain_enum domain)
2196 if (symbol_lookup_debug > 1)
2198 struct objfile *objfile = lookup_objfile_from_block (block);
2200 fprintf_unfiltered (gdb_stdlog,
2201 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2202 name, host_address_to_string (block),
2203 objfile_debug_name (objfile),
2204 domain_name (domain));
2207 sym = block_lookup_symbol (block, name, match_type, domain);
2210 if (symbol_lookup_debug > 1)
2212 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2213 host_address_to_string (sym));
2215 return fixup_symbol_section (sym, NULL);
2218 if (symbol_lookup_debug > 1)
2219 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2226 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2228 const domain_enum domain)
2230 struct objfile *objfile;
2232 for (objfile = main_objfile;
2234 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2236 struct block_symbol result
2237 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2239 if (result.symbol != NULL)
2243 return (struct block_symbol) {NULL, NULL};
2246 /* Check to see if the symbol is defined in one of the OBJFILE's
2247 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2248 depending on whether or not we want to search global symbols or
2251 static struct block_symbol
2252 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2253 const char *name, const domain_enum domain)
2255 struct compunit_symtab *cust;
2257 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2259 if (symbol_lookup_debug > 1)
2261 fprintf_unfiltered (gdb_stdlog,
2262 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2263 objfile_debug_name (objfile),
2264 block_index == GLOBAL_BLOCK
2265 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2266 name, domain_name (domain));
2269 ALL_OBJFILE_COMPUNITS (objfile, cust)
2271 const struct blockvector *bv;
2272 const struct block *block;
2273 struct block_symbol result;
2275 bv = COMPUNIT_BLOCKVECTOR (cust);
2276 block = BLOCKVECTOR_BLOCK (bv, block_index);
2277 result.symbol = block_lookup_symbol_primary (block, name, domain);
2278 result.block = block;
2279 if (result.symbol != NULL)
2281 if (symbol_lookup_debug > 1)
2283 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2284 host_address_to_string (result.symbol),
2285 host_address_to_string (block));
2287 result.symbol = fixup_symbol_section (result.symbol, objfile);
2293 if (symbol_lookup_debug > 1)
2294 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2295 return (struct block_symbol) {NULL, NULL};
2298 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2299 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2300 and all associated separate debug objfiles.
2302 Normally we only look in OBJFILE, and not any separate debug objfiles
2303 because the outer loop will cause them to be searched too. This case is
2304 different. Here we're called from search_symbols where it will only
2305 call us for the the objfile that contains a matching minsym. */
2307 static struct block_symbol
2308 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2309 const char *linkage_name,
2312 enum language lang = current_language->la_language;
2313 struct objfile *main_objfile, *cur_objfile;
2315 demangle_result_storage storage;
2316 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2318 if (objfile->separate_debug_objfile_backlink)
2319 main_objfile = objfile->separate_debug_objfile_backlink;
2321 main_objfile = objfile;
2323 for (cur_objfile = main_objfile;
2325 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2327 struct block_symbol result;
2329 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2330 modified_name, domain);
2331 if (result.symbol == NULL)
2332 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2333 modified_name, domain);
2334 if (result.symbol != NULL)
2338 return (struct block_symbol) {NULL, NULL};
2341 /* A helper function that throws an exception when a symbol was found
2342 in a psymtab but not in a symtab. */
2344 static void ATTRIBUTE_NORETURN
2345 error_in_psymtab_expansion (int block_index, const char *name,
2346 struct compunit_symtab *cust)
2349 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2350 %s may be an inlined function, or may be a template function\n \
2351 (if a template, try specifying an instantiation: %s<type>)."),
2352 block_index == GLOBAL_BLOCK ? "global" : "static",
2354 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2358 /* A helper function for various lookup routines that interfaces with
2359 the "quick" symbol table functions. */
2361 static struct block_symbol
2362 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2363 const char *name, const domain_enum domain)
2365 struct compunit_symtab *cust;
2366 const struct blockvector *bv;
2367 const struct block *block;
2368 struct block_symbol result;
2371 return (struct block_symbol) {NULL, NULL};
2373 if (symbol_lookup_debug > 1)
2375 fprintf_unfiltered (gdb_stdlog,
2376 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2377 objfile_debug_name (objfile),
2378 block_index == GLOBAL_BLOCK
2379 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2380 name, domain_name (domain));
2383 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2386 if (symbol_lookup_debug > 1)
2388 fprintf_unfiltered (gdb_stdlog,
2389 "lookup_symbol_via_quick_fns (...) = NULL\n");
2391 return (struct block_symbol) {NULL, NULL};
2394 bv = COMPUNIT_BLOCKVECTOR (cust);
2395 block = BLOCKVECTOR_BLOCK (bv, block_index);
2396 result.symbol = block_lookup_symbol (block, name,
2397 symbol_name_match_type::FULL, domain);
2398 if (result.symbol == NULL)
2399 error_in_psymtab_expansion (block_index, name, cust);
2401 if (symbol_lookup_debug > 1)
2403 fprintf_unfiltered (gdb_stdlog,
2404 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2405 host_address_to_string (result.symbol),
2406 host_address_to_string (block));
2409 result.symbol = fixup_symbol_section (result.symbol, objfile);
2410 result.block = block;
2417 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2419 const struct block *block,
2420 const domain_enum domain)
2422 struct block_symbol result;
2424 /* NOTE: carlton/2003-05-19: The comments below were written when
2425 this (or what turned into this) was part of lookup_symbol_aux;
2426 I'm much less worried about these questions now, since these
2427 decisions have turned out well, but I leave these comments here
2430 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2431 not it would be appropriate to search the current global block
2432 here as well. (That's what this code used to do before the
2433 is_a_field_of_this check was moved up.) On the one hand, it's
2434 redundant with the lookup in all objfiles search that happens
2435 next. On the other hand, if decode_line_1 is passed an argument
2436 like filename:var, then the user presumably wants 'var' to be
2437 searched for in filename. On the third hand, there shouldn't be
2438 multiple global variables all of which are named 'var', and it's
2439 not like decode_line_1 has ever restricted its search to only
2440 global variables in a single filename. All in all, only
2441 searching the static block here seems best: it's correct and it's
2444 /* NOTE: carlton/2002-12-05: There's also a possible performance
2445 issue here: if you usually search for global symbols in the
2446 current file, then it would be slightly better to search the
2447 current global block before searching all the symtabs. But there
2448 are other factors that have a much greater effect on performance
2449 than that one, so I don't think we should worry about that for
2452 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2453 the current objfile. Searching the current objfile first is useful
2454 for both matching user expectations as well as performance. */
2456 result = lookup_symbol_in_static_block (name, block, domain);
2457 if (result.symbol != NULL)
2460 /* If we didn't find a definition for a builtin type in the static block,
2461 search for it now. This is actually the right thing to do and can be
2462 a massive performance win. E.g., when debugging a program with lots of
2463 shared libraries we could search all of them only to find out the
2464 builtin type isn't defined in any of them. This is common for types
2466 if (domain == VAR_DOMAIN)
2468 struct gdbarch *gdbarch;
2471 gdbarch = target_gdbarch ();
2473 gdbarch = block_gdbarch (block);
2474 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2476 result.block = NULL;
2477 if (result.symbol != NULL)
2481 return lookup_global_symbol (name, block, domain);
2487 lookup_symbol_in_static_block (const char *name,
2488 const struct block *block,
2489 const domain_enum domain)
2491 const struct block *static_block = block_static_block (block);
2494 if (static_block == NULL)
2495 return (struct block_symbol) {NULL, NULL};
2497 if (symbol_lookup_debug)
2499 struct objfile *objfile = lookup_objfile_from_block (static_block);
2501 fprintf_unfiltered (gdb_stdlog,
2502 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2505 host_address_to_string (block),
2506 objfile_debug_name (objfile),
2507 domain_name (domain));
2510 sym = lookup_symbol_in_block (name,
2511 symbol_name_match_type::FULL,
2512 static_block, domain);
2513 if (symbol_lookup_debug)
2515 fprintf_unfiltered (gdb_stdlog,
2516 "lookup_symbol_in_static_block (...) = %s\n",
2517 sym != NULL ? host_address_to_string (sym) : "NULL");
2519 return (struct block_symbol) {sym, static_block};
2522 /* Perform the standard symbol lookup of NAME in OBJFILE:
2523 1) First search expanded symtabs, and if not found
2524 2) Search the "quick" symtabs (partial or .gdb_index).
2525 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2527 static struct block_symbol
2528 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2529 const char *name, const domain_enum domain)
2531 struct block_symbol result;
2533 if (symbol_lookup_debug)
2535 fprintf_unfiltered (gdb_stdlog,
2536 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2537 objfile_debug_name (objfile),
2538 block_index == GLOBAL_BLOCK
2539 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2540 name, domain_name (domain));
2543 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2545 if (result.symbol != NULL)
2547 if (symbol_lookup_debug)
2549 fprintf_unfiltered (gdb_stdlog,
2550 "lookup_symbol_in_objfile (...) = %s"
2552 host_address_to_string (result.symbol));
2557 result = lookup_symbol_via_quick_fns (objfile, block_index,
2559 if (symbol_lookup_debug)
2561 fprintf_unfiltered (gdb_stdlog,
2562 "lookup_symbol_in_objfile (...) = %s%s\n",
2563 result.symbol != NULL
2564 ? host_address_to_string (result.symbol)
2566 result.symbol != NULL ? " (via quick fns)" : "");
2574 lookup_static_symbol (const char *name, const domain_enum domain)
2576 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2577 struct objfile *objfile;
2578 struct block_symbol result;
2579 struct block_symbol_cache *bsc;
2580 struct symbol_cache_slot *slot;
2582 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2583 NULL for OBJFILE_CONTEXT. */
2584 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2586 if (result.symbol != NULL)
2588 if (SYMBOL_LOOKUP_FAILED_P (result))
2589 return (struct block_symbol) {NULL, NULL};
2593 ALL_OBJFILES (objfile)
2595 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2596 if (result.symbol != NULL)
2598 /* Still pass NULL for OBJFILE_CONTEXT here. */
2599 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2605 /* Still pass NULL for OBJFILE_CONTEXT here. */
2606 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2607 return (struct block_symbol) {NULL, NULL};
2610 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2612 struct global_sym_lookup_data
2614 /* The name of the symbol we are searching for. */
2617 /* The domain to use for our search. */
2620 /* The field where the callback should store the symbol if found.
2621 It should be initialized to {NULL, NULL} before the search is started. */
2622 struct block_symbol result;
2625 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2626 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2627 OBJFILE. The arguments for the search are passed via CB_DATA,
2628 which in reality is a pointer to struct global_sym_lookup_data. */
2631 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2634 struct global_sym_lookup_data *data =
2635 (struct global_sym_lookup_data *) cb_data;
2637 gdb_assert (data->result.symbol == NULL
2638 && data->result.block == NULL);
2640 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2641 data->name, data->domain);
2643 /* If we found a match, tell the iterator to stop. Otherwise,
2645 return (data->result.symbol != NULL);
2651 lookup_global_symbol (const char *name,
2652 const struct block *block,
2653 const domain_enum domain)
2655 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2656 struct block_symbol result;
2657 struct objfile *objfile;
2658 struct global_sym_lookup_data lookup_data;
2659 struct block_symbol_cache *bsc;
2660 struct symbol_cache_slot *slot;
2662 objfile = lookup_objfile_from_block (block);
2664 /* First see if we can find the symbol in the cache.
2665 This works because we use the current objfile to qualify the lookup. */
2666 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2668 if (result.symbol != NULL)
2670 if (SYMBOL_LOOKUP_FAILED_P (result))
2671 return (struct block_symbol) {NULL, NULL};
2675 /* Call library-specific lookup procedure. */
2676 if (objfile != NULL)
2677 result = solib_global_lookup (objfile, name, domain);
2679 /* If that didn't work go a global search (of global blocks, heh). */
2680 if (result.symbol == NULL)
2682 memset (&lookup_data, 0, sizeof (lookup_data));
2683 lookup_data.name = name;
2684 lookup_data.domain = domain;
2685 gdbarch_iterate_over_objfiles_in_search_order
2686 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2687 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2688 result = lookup_data.result;
2691 if (result.symbol != NULL)
2692 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2694 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2700 symbol_matches_domain (enum language symbol_language,
2701 domain_enum symbol_domain,
2704 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2705 Similarly, any Ada type declaration implicitly defines a typedef. */
2706 if (symbol_language == language_cplus
2707 || symbol_language == language_d
2708 || symbol_language == language_ada
2709 || symbol_language == language_rust)
2711 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2712 && symbol_domain == STRUCT_DOMAIN)
2715 /* For all other languages, strict match is required. */
2716 return (symbol_domain == domain);
2722 lookup_transparent_type (const char *name)
2724 return current_language->la_lookup_transparent_type (name);
2727 /* A helper for basic_lookup_transparent_type that interfaces with the
2728 "quick" symbol table functions. */
2730 static struct type *
2731 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2734 struct compunit_symtab *cust;
2735 const struct blockvector *bv;
2736 struct block *block;
2741 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2746 bv = COMPUNIT_BLOCKVECTOR (cust);
2747 block = BLOCKVECTOR_BLOCK (bv, block_index);
2748 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2749 block_find_non_opaque_type, NULL);
2751 error_in_psymtab_expansion (block_index, name, cust);
2752 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2753 return SYMBOL_TYPE (sym);
2756 /* Subroutine of basic_lookup_transparent_type to simplify it.
2757 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2758 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2760 static struct type *
2761 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2764 const struct compunit_symtab *cust;
2765 const struct blockvector *bv;
2766 const struct block *block;
2767 const struct symbol *sym;
2769 ALL_OBJFILE_COMPUNITS (objfile, cust)
2771 bv = COMPUNIT_BLOCKVECTOR (cust);
2772 block = BLOCKVECTOR_BLOCK (bv, block_index);
2773 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2774 block_find_non_opaque_type, NULL);
2777 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2778 return SYMBOL_TYPE (sym);
2785 /* The standard implementation of lookup_transparent_type. This code
2786 was modeled on lookup_symbol -- the parts not relevant to looking
2787 up types were just left out. In particular it's assumed here that
2788 types are available in STRUCT_DOMAIN and only in file-static or
2792 basic_lookup_transparent_type (const char *name)
2794 struct objfile *objfile;
2797 /* Now search all the global symbols. Do the symtab's first, then
2798 check the psymtab's. If a psymtab indicates the existence
2799 of the desired name as a global, then do psymtab-to-symtab
2800 conversion on the fly and return the found symbol. */
2802 ALL_OBJFILES (objfile)
2804 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2809 ALL_OBJFILES (objfile)
2811 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2816 /* Now search the static file-level symbols.
2817 Not strictly correct, but more useful than an error.
2818 Do the symtab's first, then
2819 check the psymtab's. If a psymtab indicates the existence
2820 of the desired name as a file-level static, then do psymtab-to-symtab
2821 conversion on the fly and return the found symbol. */
2823 ALL_OBJFILES (objfile)
2825 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2830 ALL_OBJFILES (objfile)
2832 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2837 return (struct type *) 0;
2840 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2842 For each symbol that matches, CALLBACK is called. The symbol is
2843 passed to the callback.
2845 If CALLBACK returns false, the iteration ends. Otherwise, the
2846 search continues. */
2849 iterate_over_symbols (const struct block *block,
2850 const lookup_name_info &name,
2851 const domain_enum domain,
2852 gdb::function_view<symbol_found_callback_ftype> callback)
2854 struct block_iterator iter;
2857 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2859 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2860 SYMBOL_DOMAIN (sym), domain))
2862 if (!callback (sym))
2868 /* Find the compunit symtab associated with PC and SECTION.
2869 This will read in debug info as necessary. */
2871 struct compunit_symtab *
2872 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2874 struct compunit_symtab *cust;
2875 struct compunit_symtab *best_cust = NULL;
2876 struct objfile *objfile;
2877 CORE_ADDR distance = 0;
2878 struct bound_minimal_symbol msymbol;
2880 /* If we know that this is not a text address, return failure. This is
2881 necessary because we loop based on the block's high and low code
2882 addresses, which do not include the data ranges, and because
2883 we call find_pc_sect_psymtab which has a similar restriction based
2884 on the partial_symtab's texthigh and textlow. */
2885 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2887 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2888 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2889 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2890 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2891 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2894 /* Search all symtabs for the one whose file contains our address, and which
2895 is the smallest of all the ones containing the address. This is designed
2896 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2897 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2898 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2900 This happens for native ecoff format, where code from included files
2901 gets its own symtab. The symtab for the included file should have
2902 been read in already via the dependency mechanism.
2903 It might be swifter to create several symtabs with the same name
2904 like xcoff does (I'm not sure).
2906 It also happens for objfiles that have their functions reordered.
2907 For these, the symtab we are looking for is not necessarily read in. */
2909 ALL_COMPUNITS (objfile, cust)
2912 const struct blockvector *bv;
2914 bv = COMPUNIT_BLOCKVECTOR (cust);
2915 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2917 if (BLOCK_START (b) <= pc
2918 && BLOCK_END (b) > pc
2920 || BLOCK_END (b) - BLOCK_START (b) < distance))
2922 /* For an objfile that has its functions reordered,
2923 find_pc_psymtab will find the proper partial symbol table
2924 and we simply return its corresponding symtab. */
2925 /* In order to better support objfiles that contain both
2926 stabs and coff debugging info, we continue on if a psymtab
2928 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2930 struct compunit_symtab *result;
2933 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2942 struct block_iterator iter;
2943 struct symbol *sym = NULL;
2945 ALL_BLOCK_SYMBOLS (b, iter, sym)
2947 fixup_symbol_section (sym, objfile);
2948 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2953 continue; /* No symbol in this symtab matches
2956 distance = BLOCK_END (b) - BLOCK_START (b);
2961 if (best_cust != NULL)
2964 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2966 ALL_OBJFILES (objfile)
2968 struct compunit_symtab *result;
2972 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2983 /* Find the compunit symtab associated with PC.
2984 This will read in debug info as necessary.
2985 Backward compatibility, no section. */
2987 struct compunit_symtab *
2988 find_pc_compunit_symtab (CORE_ADDR pc)
2990 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2996 find_symbol_at_address (CORE_ADDR address)
2998 struct objfile *objfile;
3000 ALL_OBJFILES (objfile)
3002 if (objfile->sf == NULL
3003 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3006 struct compunit_symtab *symtab
3007 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3010 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3012 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3014 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3015 struct block_iterator iter;
3018 ALL_BLOCK_SYMBOLS (b, iter, sym)
3020 if (SYMBOL_CLASS (sym) == LOC_STATIC
3021 && SYMBOL_VALUE_ADDRESS (sym) == address)
3033 /* Find the source file and line number for a given PC value and SECTION.
3034 Return a structure containing a symtab pointer, a line number,
3035 and a pc range for the entire source line.
3036 The value's .pc field is NOT the specified pc.
3037 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3038 use the line that ends there. Otherwise, in that case, the line
3039 that begins there is used. */
3041 /* The big complication here is that a line may start in one file, and end just
3042 before the start of another file. This usually occurs when you #include
3043 code in the middle of a subroutine. To properly find the end of a line's PC
3044 range, we must search all symtabs associated with this compilation unit, and
3045 find the one whose first PC is closer than that of the next line in this
3048 /* If it's worth the effort, we could be using a binary search. */
3050 struct symtab_and_line
3051 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3053 struct compunit_symtab *cust;
3054 struct symtab *iter_s;
3055 struct linetable *l;
3058 struct linetable_entry *item;
3059 const struct blockvector *bv;
3060 struct bound_minimal_symbol msymbol;
3062 /* Info on best line seen so far, and where it starts, and its file. */
3064 struct linetable_entry *best = NULL;
3065 CORE_ADDR best_end = 0;
3066 struct symtab *best_symtab = 0;
3068 /* Store here the first line number
3069 of a file which contains the line at the smallest pc after PC.
3070 If we don't find a line whose range contains PC,
3071 we will use a line one less than this,
3072 with a range from the start of that file to the first line's pc. */
3073 struct linetable_entry *alt = NULL;
3075 /* Info on best line seen in this file. */
3077 struct linetable_entry *prev;
3079 /* If this pc is not from the current frame,
3080 it is the address of the end of a call instruction.
3081 Quite likely that is the start of the following statement.
3082 But what we want is the statement containing the instruction.
3083 Fudge the pc to make sure we get that. */
3085 /* It's tempting to assume that, if we can't find debugging info for
3086 any function enclosing PC, that we shouldn't search for line
3087 number info, either. However, GAS can emit line number info for
3088 assembly files --- very helpful when debugging hand-written
3089 assembly code. In such a case, we'd have no debug info for the
3090 function, but we would have line info. */
3095 /* elz: added this because this function returned the wrong
3096 information if the pc belongs to a stub (import/export)
3097 to call a shlib function. This stub would be anywhere between
3098 two functions in the target, and the line info was erroneously
3099 taken to be the one of the line before the pc. */
3101 /* RT: Further explanation:
3103 * We have stubs (trampolines) inserted between procedures.
3105 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3106 * exists in the main image.
3108 * In the minimal symbol table, we have a bunch of symbols
3109 * sorted by start address. The stubs are marked as "trampoline",
3110 * the others appear as text. E.g.:
3112 * Minimal symbol table for main image
3113 * main: code for main (text symbol)
3114 * shr1: stub (trampoline symbol)
3115 * foo: code for foo (text symbol)
3117 * Minimal symbol table for "shr1" image:
3119 * shr1: code for shr1 (text symbol)
3122 * So the code below is trying to detect if we are in the stub
3123 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3124 * and if found, do the symbolization from the real-code address
3125 * rather than the stub address.
3127 * Assumptions being made about the minimal symbol table:
3128 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3129 * if we're really in the trampoline.s If we're beyond it (say
3130 * we're in "foo" in the above example), it'll have a closer
3131 * symbol (the "foo" text symbol for example) and will not
3132 * return the trampoline.
3133 * 2. lookup_minimal_symbol_text() will find a real text symbol
3134 * corresponding to the trampoline, and whose address will
3135 * be different than the trampoline address. I put in a sanity
3136 * check for the address being the same, to avoid an
3137 * infinite recursion.
3139 msymbol = lookup_minimal_symbol_by_pc (pc);
3140 if (msymbol.minsym != NULL)
3141 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3143 struct bound_minimal_symbol mfunsym
3144 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3147 if (mfunsym.minsym == NULL)
3148 /* I eliminated this warning since it is coming out
3149 * in the following situation:
3150 * gdb shmain // test program with shared libraries
3151 * (gdb) break shr1 // function in shared lib
3152 * Warning: In stub for ...
3153 * In the above situation, the shared lib is not loaded yet,
3154 * so of course we can't find the real func/line info,
3155 * but the "break" still works, and the warning is annoying.
3156 * So I commented out the warning. RT */
3157 /* warning ("In stub for %s; unable to find real function/line info",
3158 SYMBOL_LINKAGE_NAME (msymbol)); */
3161 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3162 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3163 /* Avoid infinite recursion */
3164 /* See above comment about why warning is commented out. */
3165 /* warning ("In stub for %s; unable to find real function/line info",
3166 SYMBOL_LINKAGE_NAME (msymbol)); */
3170 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3173 symtab_and_line val;
3174 val.pspace = current_program_space;
3176 cust = find_pc_sect_compunit_symtab (pc, section);
3179 /* If no symbol information, return previous pc. */
3186 bv = COMPUNIT_BLOCKVECTOR (cust);
3188 /* Look at all the symtabs that share this blockvector.
3189 They all have the same apriori range, that we found was right;
3190 but they have different line tables. */
3192 ALL_COMPUNIT_FILETABS (cust, iter_s)
3194 /* Find the best line in this symtab. */
3195 l = SYMTAB_LINETABLE (iter_s);
3201 /* I think len can be zero if the symtab lacks line numbers
3202 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3203 I'm not sure which, and maybe it depends on the symbol
3209 item = l->item; /* Get first line info. */
3211 /* Is this file's first line closer than the first lines of other files?
3212 If so, record this file, and its first line, as best alternate. */
3213 if (item->pc > pc && (!alt || item->pc < alt->pc))
3216 for (i = 0; i < len; i++, item++)
3218 /* Leave prev pointing to the linetable entry for the last line
3219 that started at or before PC. */
3226 /* At this point, prev points at the line whose start addr is <= pc, and
3227 item points at the next line. If we ran off the end of the linetable
3228 (pc >= start of the last line), then prev == item. If pc < start of
3229 the first line, prev will not be set. */
3231 /* Is this file's best line closer than the best in the other files?
3232 If so, record this file, and its best line, as best so far. Don't
3233 save prev if it represents the end of a function (i.e. line number
3234 0) instead of a real line. */
3236 if (prev && prev->line && (!best || prev->pc > best->pc))
3239 best_symtab = iter_s;
3241 /* Discard BEST_END if it's before the PC of the current BEST. */
3242 if (best_end <= best->pc)
3246 /* If another line (denoted by ITEM) is in the linetable and its
3247 PC is after BEST's PC, but before the current BEST_END, then
3248 use ITEM's PC as the new best_end. */
3249 if (best && i < len && item->pc > best->pc
3250 && (best_end == 0 || best_end > item->pc))
3251 best_end = item->pc;
3256 /* If we didn't find any line number info, just return zeros.
3257 We used to return alt->line - 1 here, but that could be
3258 anywhere; if we don't have line number info for this PC,
3259 don't make some up. */
3262 else if (best->line == 0)
3264 /* If our best fit is in a range of PC's for which no line
3265 number info is available (line number is zero) then we didn't
3266 find any valid line information. */
3271 val.symtab = best_symtab;
3272 val.line = best->line;
3274 if (best_end && (!alt || best_end < alt->pc))
3279 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3281 val.section = section;
3285 /* Backward compatibility (no section). */
3287 struct symtab_and_line
3288 find_pc_line (CORE_ADDR pc, int notcurrent)
3290 struct obj_section *section;
3292 section = find_pc_overlay (pc);
3293 if (pc_in_unmapped_range (pc, section))
3294 pc = overlay_mapped_address (pc, section);
3295 return find_pc_sect_line (pc, section, notcurrent);
3301 find_pc_line_symtab (CORE_ADDR pc)
3303 struct symtab_and_line sal;
3305 /* This always passes zero for NOTCURRENT to find_pc_line.
3306 There are currently no callers that ever pass non-zero. */
3307 sal = find_pc_line (pc, 0);
3311 /* Find line number LINE in any symtab whose name is the same as
3314 If found, return the symtab that contains the linetable in which it was
3315 found, set *INDEX to the index in the linetable of the best entry
3316 found, and set *EXACT_MATCH nonzero if the value returned is an
3319 If not found, return NULL. */
3322 find_line_symtab (struct symtab *symtab, int line,
3323 int *index, int *exact_match)
3325 int exact = 0; /* Initialized here to avoid a compiler warning. */
3327 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3331 struct linetable *best_linetable;
3332 struct symtab *best_symtab;
3334 /* First try looking it up in the given symtab. */
3335 best_linetable = SYMTAB_LINETABLE (symtab);
3336 best_symtab = symtab;
3337 best_index = find_line_common (best_linetable, line, &exact, 0);
3338 if (best_index < 0 || !exact)
3340 /* Didn't find an exact match. So we better keep looking for
3341 another symtab with the same name. In the case of xcoff,
3342 multiple csects for one source file (produced by IBM's FORTRAN
3343 compiler) produce multiple symtabs (this is unavoidable
3344 assuming csects can be at arbitrary places in memory and that
3345 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3347 /* BEST is the smallest linenumber > LINE so far seen,
3348 or 0 if none has been seen so far.
3349 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3352 struct objfile *objfile;
3353 struct compunit_symtab *cu;
3356 if (best_index >= 0)
3357 best = best_linetable->item[best_index].line;
3361 ALL_OBJFILES (objfile)
3364 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3365 symtab_to_fullname (symtab));
3368 ALL_FILETABS (objfile, cu, s)
3370 struct linetable *l;
3373 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3375 if (FILENAME_CMP (symtab_to_fullname (symtab),
3376 symtab_to_fullname (s)) != 0)
3378 l = SYMTAB_LINETABLE (s);
3379 ind = find_line_common (l, line, &exact, 0);
3389 if (best == 0 || l->item[ind].line < best)
3391 best = l->item[ind].line;
3404 *index = best_index;
3406 *exact_match = exact;
3411 /* Given SYMTAB, returns all the PCs function in the symtab that
3412 exactly match LINE. Returns an empty vector if there are no exact
3413 matches, but updates BEST_ITEM in this case. */
3415 std::vector<CORE_ADDR>
3416 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3417 struct linetable_entry **best_item)
3420 std::vector<CORE_ADDR> result;
3422 /* First, collect all the PCs that are at this line. */
3428 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3435 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3437 if (*best_item == NULL || item->line < (*best_item)->line)
3443 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3451 /* Set the PC value for a given source file and line number and return true.
3452 Returns zero for invalid line number (and sets the PC to 0).
3453 The source file is specified with a struct symtab. */
3456 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3458 struct linetable *l;
3465 symtab = find_line_symtab (symtab, line, &ind, NULL);
3468 l = SYMTAB_LINETABLE (symtab);
3469 *pc = l->item[ind].pc;
3476 /* Find the range of pc values in a line.
3477 Store the starting pc of the line into *STARTPTR
3478 and the ending pc (start of next line) into *ENDPTR.
3479 Returns 1 to indicate success.
3480 Returns 0 if could not find the specified line. */
3483 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3486 CORE_ADDR startaddr;
3487 struct symtab_and_line found_sal;
3490 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3493 /* This whole function is based on address. For example, if line 10 has
3494 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3495 "info line *0x123" should say the line goes from 0x100 to 0x200
3496 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3497 This also insures that we never give a range like "starts at 0x134
3498 and ends at 0x12c". */
3500 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3501 if (found_sal.line != sal.line)
3503 /* The specified line (sal) has zero bytes. */
3504 *startptr = found_sal.pc;
3505 *endptr = found_sal.pc;
3509 *startptr = found_sal.pc;
3510 *endptr = found_sal.end;
3515 /* Given a line table and a line number, return the index into the line
3516 table for the pc of the nearest line whose number is >= the specified one.
3517 Return -1 if none is found. The value is >= 0 if it is an index.
3518 START is the index at which to start searching the line table.
3520 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3523 find_line_common (struct linetable *l, int lineno,
3524 int *exact_match, int start)
3529 /* BEST is the smallest linenumber > LINENO so far seen,
3530 or 0 if none has been seen so far.
3531 BEST_INDEX identifies the item for it. */
3533 int best_index = -1;
3544 for (i = start; i < len; i++)
3546 struct linetable_entry *item = &(l->item[i]);
3548 if (item->line == lineno)
3550 /* Return the first (lowest address) entry which matches. */
3555 if (item->line > lineno && (best == 0 || item->line < best))
3562 /* If we got here, we didn't get an exact match. */
3567 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3569 struct symtab_and_line sal;
3571 sal = find_pc_line (pc, 0);
3574 return sal.symtab != 0;
3577 /* Given a function symbol SYM, find the symtab and line for the start
3579 If the argument FUNFIRSTLINE is nonzero, we want the first line
3580 of real code inside the function.
3581 This function should return SALs matching those from minsym_found,
3582 otherwise false multiple-locations breakpoints could be placed. */
3584 struct symtab_and_line
3585 find_function_start_sal (struct symbol *sym, int funfirstline)
3587 fixup_symbol_section (sym, NULL);
3589 obj_section *section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3591 = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3594 if (funfirstline && sal.symtab != NULL
3595 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3596 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3598 struct gdbarch *gdbarch = symbol_arch (sym);
3600 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3601 if (gdbarch_skip_entrypoint_p (gdbarch))
3602 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3606 /* We always should have a line for the function start address.
3607 If we don't, something is odd. Create a plain SAL refering
3608 just the PC and hope that skip_prologue_sal (if requested)
3609 can find a line number for after the prologue. */
3610 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3613 sal.pspace = current_program_space;
3614 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3615 sal.section = section;
3620 skip_prologue_sal (&sal);
3625 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3626 address for that function that has an entry in SYMTAB's line info
3627 table. If such an entry cannot be found, return FUNC_ADDR
3631 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3633 CORE_ADDR func_start, func_end;
3634 struct linetable *l;
3637 /* Give up if this symbol has no lineinfo table. */
3638 l = SYMTAB_LINETABLE (symtab);
3642 /* Get the range for the function's PC values, or give up if we
3643 cannot, for some reason. */
3644 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3647 /* Linetable entries are ordered by PC values, see the commentary in
3648 symtab.h where `struct linetable' is defined. Thus, the first
3649 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3650 address we are looking for. */
3651 for (i = 0; i < l->nitems; i++)
3653 struct linetable_entry *item = &(l->item[i]);
3655 /* Don't use line numbers of zero, they mark special entries in
3656 the table. See the commentary on symtab.h before the
3657 definition of struct linetable. */
3658 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3665 /* Adjust SAL to the first instruction past the function prologue.
3666 If the PC was explicitly specified, the SAL is not changed.
3667 If the line number was explicitly specified, at most the SAL's PC
3668 is updated. If SAL is already past the prologue, then do nothing. */
3671 skip_prologue_sal (struct symtab_and_line *sal)
3674 struct symtab_and_line start_sal;
3675 CORE_ADDR pc, saved_pc;
3676 struct obj_section *section;
3678 struct objfile *objfile;
3679 struct gdbarch *gdbarch;
3680 const struct block *b, *function_block;
3681 int force_skip, skip;
3683 /* Do not change the SAL if PC was specified explicitly. */
3684 if (sal->explicit_pc)
3687 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3689 switch_to_program_space_and_thread (sal->pspace);
3691 sym = find_pc_sect_function (sal->pc, sal->section);
3694 fixup_symbol_section (sym, NULL);
3696 objfile = symbol_objfile (sym);
3697 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3698 section = SYMBOL_OBJ_SECTION (objfile, sym);
3699 name = SYMBOL_LINKAGE_NAME (sym);
3703 struct bound_minimal_symbol msymbol
3704 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3706 if (msymbol.minsym == NULL)
3709 objfile = msymbol.objfile;
3710 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3711 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3712 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3715 gdbarch = get_objfile_arch (objfile);
3717 /* Process the prologue in two passes. In the first pass try to skip the
3718 prologue (SKIP is true) and verify there is a real need for it (indicated
3719 by FORCE_SKIP). If no such reason was found run a second pass where the
3720 prologue is not skipped (SKIP is false). */
3725 /* Be conservative - allow direct PC (without skipping prologue) only if we
3726 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3727 have to be set by the caller so we use SYM instead. */
3729 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3737 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3738 so that gdbarch_skip_prologue has something unique to work on. */
3739 if (section_is_overlay (section) && !section_is_mapped (section))
3740 pc = overlay_unmapped_address (pc, section);
3742 /* Skip "first line" of function (which is actually its prologue). */
3743 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3744 if (gdbarch_skip_entrypoint_p (gdbarch))
3745 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3747 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3749 /* For overlays, map pc back into its mapped VMA range. */
3750 pc = overlay_mapped_address (pc, section);
3752 /* Calculate line number. */
3753 start_sal = find_pc_sect_line (pc, section, 0);
3755 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3756 line is still part of the same function. */
3757 if (skip && start_sal.pc != pc
3758 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3759 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3760 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3761 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3763 /* First pc of next line */
3765 /* Recalculate the line number (might not be N+1). */
3766 start_sal = find_pc_sect_line (pc, section, 0);
3769 /* On targets with executable formats that don't have a concept of
3770 constructors (ELF with .init has, PE doesn't), gcc emits a call
3771 to `__main' in `main' between the prologue and before user
3773 if (gdbarch_skip_main_prologue_p (gdbarch)
3774 && name && strcmp_iw (name, "main") == 0)
3776 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3777 /* Recalculate the line number (might not be N+1). */
3778 start_sal = find_pc_sect_line (pc, section, 0);
3782 while (!force_skip && skip--);
3784 /* If we still don't have a valid source line, try to find the first
3785 PC in the lineinfo table that belongs to the same function. This
3786 happens with COFF debug info, which does not seem to have an
3787 entry in lineinfo table for the code after the prologue which has
3788 no direct relation to source. For example, this was found to be
3789 the case with the DJGPP target using "gcc -gcoff" when the
3790 compiler inserted code after the prologue to make sure the stack
3792 if (!force_skip && sym && start_sal.symtab == NULL)
3794 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3795 /* Recalculate the line number. */
3796 start_sal = find_pc_sect_line (pc, section, 0);
3799 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3800 forward SAL to the end of the prologue. */
3805 sal->section = section;
3807 /* Unless the explicit_line flag was set, update the SAL line
3808 and symtab to correspond to the modified PC location. */
3809 if (sal->explicit_line)
3812 sal->symtab = start_sal.symtab;
3813 sal->line = start_sal.line;
3814 sal->end = start_sal.end;
3816 /* Check if we are now inside an inlined function. If we can,
3817 use the call site of the function instead. */
3818 b = block_for_pc_sect (sal->pc, sal->section);
3819 function_block = NULL;
3822 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3824 else if (BLOCK_FUNCTION (b) != NULL)
3826 b = BLOCK_SUPERBLOCK (b);
3828 if (function_block != NULL
3829 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3831 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3832 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3836 /* Given PC at the function's start address, attempt to find the
3837 prologue end using SAL information. Return zero if the skip fails.
3839 A non-optimized prologue traditionally has one SAL for the function
3840 and a second for the function body. A single line function has
3841 them both pointing at the same line.
3843 An optimized prologue is similar but the prologue may contain
3844 instructions (SALs) from the instruction body. Need to skip those
3845 while not getting into the function body.
3847 The functions end point and an increasing SAL line are used as
3848 indicators of the prologue's endpoint.
3850 This code is based on the function refine_prologue_limit
3854 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3856 struct symtab_and_line prologue_sal;
3859 const struct block *bl;
3861 /* Get an initial range for the function. */
3862 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3863 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3865 prologue_sal = find_pc_line (start_pc, 0);
3866 if (prologue_sal.line != 0)
3868 /* For languages other than assembly, treat two consecutive line
3869 entries at the same address as a zero-instruction prologue.
3870 The GNU assembler emits separate line notes for each instruction
3871 in a multi-instruction macro, but compilers generally will not
3873 if (prologue_sal.symtab->language != language_asm)
3875 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3878 /* Skip any earlier lines, and any end-of-sequence marker
3879 from a previous function. */
3880 while (linetable->item[idx].pc != prologue_sal.pc
3881 || linetable->item[idx].line == 0)
3884 if (idx+1 < linetable->nitems
3885 && linetable->item[idx+1].line != 0
3886 && linetable->item[idx+1].pc == start_pc)
3890 /* If there is only one sal that covers the entire function,
3891 then it is probably a single line function, like
3893 if (prologue_sal.end >= end_pc)
3896 while (prologue_sal.end < end_pc)
3898 struct symtab_and_line sal;
3900 sal = find_pc_line (prologue_sal.end, 0);
3903 /* Assume that a consecutive SAL for the same (or larger)
3904 line mark the prologue -> body transition. */
3905 if (sal.line >= prologue_sal.line)
3907 /* Likewise if we are in a different symtab altogether
3908 (e.g. within a file included via #include). */
3909 if (sal.symtab != prologue_sal.symtab)
3912 /* The line number is smaller. Check that it's from the
3913 same function, not something inlined. If it's inlined,
3914 then there is no point comparing the line numbers. */
3915 bl = block_for_pc (prologue_sal.end);
3918 if (block_inlined_p (bl))
3920 if (BLOCK_FUNCTION (bl))
3925 bl = BLOCK_SUPERBLOCK (bl);
3930 /* The case in which compiler's optimizer/scheduler has
3931 moved instructions into the prologue. We look ahead in
3932 the function looking for address ranges whose
3933 corresponding line number is less the first one that we
3934 found for the function. This is more conservative then
3935 refine_prologue_limit which scans a large number of SALs
3936 looking for any in the prologue. */
3941 if (prologue_sal.end < end_pc)
3942 /* Return the end of this line, or zero if we could not find a
3944 return prologue_sal.end;
3946 /* Don't return END_PC, which is past the end of the function. */
3947 return prologue_sal.pc;
3953 find_function_alias_target (bound_minimal_symbol msymbol)
3955 CORE_ADDR func_addr;
3956 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3959 symbol *sym = find_pc_function (func_addr);
3961 && SYMBOL_CLASS (sym) == LOC_BLOCK
3962 && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3969 /* If P is of the form "operator[ \t]+..." where `...' is
3970 some legitimate operator text, return a pointer to the
3971 beginning of the substring of the operator text.
3972 Otherwise, return "". */
3975 operator_chars (const char *p, const char **end)
3978 if (!startswith (p, CP_OPERATOR_STR))
3980 p += CP_OPERATOR_LEN;
3982 /* Don't get faked out by `operator' being part of a longer
3984 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3987 /* Allow some whitespace between `operator' and the operator symbol. */
3988 while (*p == ' ' || *p == '\t')
3991 /* Recognize 'operator TYPENAME'. */
3993 if (isalpha (*p) || *p == '_' || *p == '$')
3995 const char *q = p + 1;
3997 while (isalnum (*q) || *q == '_' || *q == '$')
4006 case '\\': /* regexp quoting */
4009 if (p[2] == '=') /* 'operator\*=' */
4011 else /* 'operator\*' */
4015 else if (p[1] == '[')
4018 error (_("mismatched quoting on brackets, "
4019 "try 'operator\\[\\]'"));
4020 else if (p[2] == '\\' && p[3] == ']')
4022 *end = p + 4; /* 'operator\[\]' */
4026 error (_("nothing is allowed between '[' and ']'"));
4030 /* Gratuitous qoute: skip it and move on. */
4052 if (p[0] == '-' && p[1] == '>')
4054 /* Struct pointer member operator 'operator->'. */
4057 *end = p + 3; /* 'operator->*' */
4060 else if (p[2] == '\\')
4062 *end = p + 4; /* Hopefully 'operator->\*' */
4067 *end = p + 2; /* 'operator->' */
4071 if (p[1] == '=' || p[1] == p[0])
4082 error (_("`operator ()' must be specified "
4083 "without whitespace in `()'"));
4088 error (_("`operator ?:' must be specified "
4089 "without whitespace in `?:'"));
4094 error (_("`operator []' must be specified "
4095 "without whitespace in `[]'"));
4099 error (_("`operator %s' not supported"), p);
4108 /* Data structure to maintain printing state for output_source_filename. */
4110 struct output_source_filename_data
4112 /* Cache of what we've seen so far. */
4113 struct filename_seen_cache *filename_seen_cache;
4115 /* Flag of whether we're printing the first one. */
4119 /* Slave routine for sources_info. Force line breaks at ,'s.
4120 NAME is the name to print.
4121 DATA contains the state for printing and watching for duplicates. */
4124 output_source_filename (const char *name,
4125 struct output_source_filename_data *data)
4127 /* Since a single source file can result in several partial symbol
4128 tables, we need to avoid printing it more than once. Note: if
4129 some of the psymtabs are read in and some are not, it gets
4130 printed both under "Source files for which symbols have been
4131 read" and "Source files for which symbols will be read in on
4132 demand". I consider this a reasonable way to deal with the
4133 situation. I'm not sure whether this can also happen for
4134 symtabs; it doesn't hurt to check. */
4136 /* Was NAME already seen? */
4137 if (data->filename_seen_cache->seen (name))
4139 /* Yes; don't print it again. */
4143 /* No; print it and reset *FIRST. */
4145 printf_filtered (", ");
4149 fputs_filtered (name, gdb_stdout);
4152 /* A callback for map_partial_symbol_filenames. */
4155 output_partial_symbol_filename (const char *filename, const char *fullname,
4158 output_source_filename (fullname ? fullname : filename,
4159 (struct output_source_filename_data *) data);
4163 info_sources_command (const char *ignore, int from_tty)
4165 struct compunit_symtab *cu;
4167 struct objfile *objfile;
4168 struct output_source_filename_data data;
4170 if (!have_full_symbols () && !have_partial_symbols ())
4172 error (_("No symbol table is loaded. Use the \"file\" command."));
4175 filename_seen_cache filenames_seen;
4177 data.filename_seen_cache = &filenames_seen;
4179 printf_filtered ("Source files for which symbols have been read in:\n\n");
4182 ALL_FILETABS (objfile, cu, s)
4184 const char *fullname = symtab_to_fullname (s);
4186 output_source_filename (fullname, &data);
4188 printf_filtered ("\n\n");
4190 printf_filtered ("Source files for which symbols "
4191 "will be read in on demand:\n\n");
4193 filenames_seen.clear ();
4195 map_symbol_filenames (output_partial_symbol_filename, &data,
4196 1 /*need_fullname*/);
4197 printf_filtered ("\n");
4200 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4201 non-zero compare only lbasename of FILES. */
4204 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4208 if (file != NULL && nfiles != 0)
4210 for (i = 0; i < nfiles; i++)
4212 if (compare_filenames_for_search (file, (basenames
4213 ? lbasename (files[i])
4218 else if (nfiles == 0)
4223 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4224 sort symbols, not minimal symbols. */
4227 symbol_search::compare_search_syms (const symbol_search &sym_a,
4228 const symbol_search &sym_b)
4232 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4233 symbol_symtab (sym_b.symbol)->filename);
4237 if (sym_a.block != sym_b.block)
4238 return sym_a.block - sym_b.block;
4240 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4241 SYMBOL_PRINT_NAME (sym_b.symbol));
4244 /* Sort the symbols in RESULT and remove duplicates. */
4247 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4249 std::sort (result->begin (), result->end ());
4250 result->erase (std::unique (result->begin (), result->end ()),
4254 /* Search the symbol table for matches to the regular expression REGEXP,
4255 returning the results.
4257 Only symbols of KIND are searched:
4258 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4259 and constants (enums)
4260 FUNCTIONS_DOMAIN - search all functions
4261 TYPES_DOMAIN - search all type names
4262 ALL_DOMAIN - an internal error for this function
4264 Within each file the results are sorted locally; each symtab's global and
4265 static blocks are separately alphabetized.
4266 Duplicate entries are removed. */
4268 std::vector<symbol_search>
4269 search_symbols (const char *regexp, enum search_domain kind,
4270 int nfiles, const char *files[])
4272 struct compunit_symtab *cust;
4273 const struct blockvector *bv;
4276 struct block_iterator iter;
4278 struct objfile *objfile;
4279 struct minimal_symbol *msymbol;
4281 static const enum minimal_symbol_type types[]
4282 = {mst_data, mst_text, mst_abs};
4283 static const enum minimal_symbol_type types2[]
4284 = {mst_bss, mst_file_text, mst_abs};
4285 static const enum minimal_symbol_type types3[]
4286 = {mst_file_data, mst_solib_trampoline, mst_abs};
4287 static const enum minimal_symbol_type types4[]
4288 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4289 enum minimal_symbol_type ourtype;
4290 enum minimal_symbol_type ourtype2;
4291 enum minimal_symbol_type ourtype3;
4292 enum minimal_symbol_type ourtype4;
4293 std::vector<symbol_search> result;
4294 gdb::optional<compiled_regex> preg;
4296 gdb_assert (kind <= TYPES_DOMAIN);
4298 ourtype = types[kind];
4299 ourtype2 = types2[kind];
4300 ourtype3 = types3[kind];
4301 ourtype4 = types4[kind];
4305 /* Make sure spacing is right for C++ operators.
4306 This is just a courtesy to make the matching less sensitive
4307 to how many spaces the user leaves between 'operator'
4308 and <TYPENAME> or <OPERATOR>. */
4310 const char *opname = operator_chars (regexp, &opend);
4314 int fix = -1; /* -1 means ok; otherwise number of
4317 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4319 /* There should 1 space between 'operator' and 'TYPENAME'. */
4320 if (opname[-1] != ' ' || opname[-2] == ' ')
4325 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4326 if (opname[-1] == ' ')
4329 /* If wrong number of spaces, fix it. */
4332 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4334 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4339 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4341 preg.emplace (regexp, cflags, _("Invalid regexp"));
4344 /* Search through the partial symtabs *first* for all symbols
4345 matching the regexp. That way we don't have to reproduce all of
4346 the machinery below. */
4347 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4349 return file_matches (filename, files, nfiles,
4352 lookup_name_info::match_any (),
4353 [&] (const char *symname)
4355 return (!preg || preg->exec (symname,
4361 /* Here, we search through the minimal symbol tables for functions
4362 and variables that match, and force their symbols to be read.
4363 This is in particular necessary for demangled variable names,
4364 which are no longer put into the partial symbol tables.
4365 The symbol will then be found during the scan of symtabs below.
4367 For functions, find_pc_symtab should succeed if we have debug info
4368 for the function, for variables we have to call
4369 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4371 If the lookup fails, set found_misc so that we will rescan to print
4372 any matching symbols without debug info.
4373 We only search the objfile the msymbol came from, we no longer search
4374 all objfiles. In large programs (1000s of shared libs) searching all
4375 objfiles is not worth the pain. */
4377 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4379 ALL_MSYMBOLS (objfile, msymbol)
4383 if (msymbol->created_by_gdb)
4386 if (MSYMBOL_TYPE (msymbol) == ourtype
4387 || MSYMBOL_TYPE (msymbol) == ourtype2
4388 || MSYMBOL_TYPE (msymbol) == ourtype3
4389 || MSYMBOL_TYPE (msymbol) == ourtype4)
4392 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4395 /* Note: An important side-effect of these lookup functions
4396 is to expand the symbol table if msymbol is found, for the
4397 benefit of the next loop on ALL_COMPUNITS. */
4398 if (kind == FUNCTIONS_DOMAIN
4399 ? (find_pc_compunit_symtab
4400 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4401 : (lookup_symbol_in_objfile_from_linkage_name
4402 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4410 ALL_COMPUNITS (objfile, cust)
4412 bv = COMPUNIT_BLOCKVECTOR (cust);
4413 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4415 b = BLOCKVECTOR_BLOCK (bv, i);
4416 ALL_BLOCK_SYMBOLS (b, iter, sym)
4418 struct symtab *real_symtab = symbol_symtab (sym);
4422 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4423 a substring of symtab_to_fullname as it may contain "./" etc. */
4424 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4425 || ((basenames_may_differ
4426 || file_matches (lbasename (real_symtab->filename),
4428 && file_matches (symtab_to_fullname (real_symtab),
4431 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4433 && ((kind == VARIABLES_DOMAIN
4434 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4435 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4436 && SYMBOL_CLASS (sym) != LOC_BLOCK
4437 /* LOC_CONST can be used for more than just enums,
4438 e.g., c++ static const members.
4439 We only want to skip enums here. */
4440 && !(SYMBOL_CLASS (sym) == LOC_CONST
4441 && (TYPE_CODE (SYMBOL_TYPE (sym))
4442 == TYPE_CODE_ENUM)))
4443 || (kind == FUNCTIONS_DOMAIN
4444 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4445 || (kind == TYPES_DOMAIN
4446 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4449 result.emplace_back (i, sym);
4455 if (!result.empty ())
4456 sort_search_symbols_remove_dups (&result);
4458 /* If there are no eyes, avoid all contact. I mean, if there are
4459 no debug symbols, then add matching minsyms. */
4461 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4463 ALL_MSYMBOLS (objfile, msymbol)
4467 if (msymbol->created_by_gdb)
4470 if (MSYMBOL_TYPE (msymbol) == ourtype
4471 || MSYMBOL_TYPE (msymbol) == ourtype2
4472 || MSYMBOL_TYPE (msymbol) == ourtype3
4473 || MSYMBOL_TYPE (msymbol) == ourtype4)
4475 if (!preg || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4478 /* For functions we can do a quick check of whether the
4479 symbol might be found via find_pc_symtab. */
4480 if (kind != FUNCTIONS_DOMAIN
4481 || (find_pc_compunit_symtab
4482 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4484 if (lookup_symbol_in_objfile_from_linkage_name
4485 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4489 result.emplace_back (i, msymbol, objfile);
4500 /* Helper function for symtab_symbol_info, this function uses
4501 the data returned from search_symbols() to print information
4502 regarding the match to gdb_stdout. */
4505 print_symbol_info (enum search_domain kind,
4507 int block, const char *last)
4509 struct symtab *s = symbol_symtab (sym);
4510 const char *s_filename = symtab_to_filename_for_display (s);
4512 if (last == NULL || filename_cmp (last, s_filename) != 0)
4514 fputs_filtered ("\nFile ", gdb_stdout);
4515 fputs_filtered (s_filename, gdb_stdout);
4516 fputs_filtered (":\n", gdb_stdout);
4519 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4520 printf_filtered ("static ");
4522 /* Typedef that is not a C++ class. */
4523 if (kind == TYPES_DOMAIN
4524 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4525 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4526 /* variable, func, or typedef-that-is-c++-class. */
4527 else if (kind < TYPES_DOMAIN
4528 || (kind == TYPES_DOMAIN
4529 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4531 type_print (SYMBOL_TYPE (sym),
4532 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4533 ? "" : SYMBOL_PRINT_NAME (sym)),
4536 printf_filtered (";\n");
4540 /* This help function for symtab_symbol_info() prints information
4541 for non-debugging symbols to gdb_stdout. */
4544 print_msymbol_info (struct bound_minimal_symbol msymbol)
4546 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4549 if (gdbarch_addr_bit (gdbarch) <= 32)
4550 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4551 & (CORE_ADDR) 0xffffffff,
4554 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4556 printf_filtered ("%s %s\n",
4557 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4560 /* This is the guts of the commands "info functions", "info types", and
4561 "info variables". It calls search_symbols to find all matches and then
4562 print_[m]symbol_info to print out some useful information about the
4566 symtab_symbol_info (const char *regexp, enum search_domain kind, int from_tty)
4568 static const char * const classnames[] =
4569 {"variable", "function", "type"};
4570 const char *last_filename = NULL;
4573 gdb_assert (kind <= TYPES_DOMAIN);
4575 /* Must make sure that if we're interrupted, symbols gets freed. */
4576 std::vector<symbol_search> symbols = search_symbols (regexp, kind, 0, NULL);
4579 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4580 classnames[kind], regexp);
4582 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4584 for (const symbol_search &p : symbols)
4588 if (p.msymbol.minsym != NULL)
4592 printf_filtered (_("\nNon-debugging symbols:\n"));
4595 print_msymbol_info (p.msymbol);
4599 print_symbol_info (kind,
4604 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4610 info_variables_command (const char *regexp, int from_tty)
4612 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4616 info_functions_command (const char *regexp, int from_tty)
4618 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4623 info_types_command (const char *regexp, int from_tty)
4625 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4628 /* Breakpoint all functions matching regular expression. */
4631 rbreak_command_wrapper (char *regexp, int from_tty)
4633 rbreak_command (regexp, from_tty);
4637 rbreak_command (const char *regexp, int from_tty)
4640 const char **files = NULL;
4641 const char *file_name;
4646 const char *colon = strchr (regexp, ':');
4648 if (colon && *(colon + 1) != ':')
4653 colon_index = colon - regexp;
4654 local_name = (char *) alloca (colon_index + 1);
4655 memcpy (local_name, regexp, colon_index);
4656 local_name[colon_index--] = 0;
4657 while (isspace (local_name[colon_index]))
4658 local_name[colon_index--] = 0;
4659 file_name = local_name;
4662 regexp = skip_spaces (colon + 1);
4666 std::vector<symbol_search> symbols = search_symbols (regexp,
4670 scoped_rbreak_breakpoints finalize;
4671 for (const symbol_search &p : symbols)
4673 if (p.msymbol.minsym == NULL)
4675 struct symtab *symtab = symbol_symtab (p.symbol);
4676 const char *fullname = symtab_to_fullname (symtab);
4678 string = string_printf ("%s:'%s'", fullname,
4679 SYMBOL_LINKAGE_NAME (p.symbol));
4680 break_command (&string[0], from_tty);
4681 print_symbol_info (FUNCTIONS_DOMAIN,
4684 symtab_to_filename_for_display (symtab));
4688 string = string_printf ("'%s'",
4689 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
4691 break_command (&string[0], from_tty);
4692 printf_filtered ("<function, no debug info> %s;\n",
4693 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
4699 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
4702 compare_symbol_name (const char *symbol_name, language symbol_language,
4703 const lookup_name_info &lookup_name,
4704 completion_match_result &match_res)
4706 const language_defn *lang = language_def (symbol_language);
4708 symbol_name_matcher_ftype *name_match
4709 = get_symbol_name_matcher (lang, lookup_name);
4711 return name_match (symbol_name, lookup_name, &match_res);
4717 completion_list_add_name (completion_tracker &tracker,
4718 language symbol_language,
4719 const char *symname,
4720 const lookup_name_info &lookup_name,
4721 const char *text, const char *word)
4723 completion_match_result &match_res
4724 = tracker.reset_completion_match_result ();
4726 /* Clip symbols that cannot match. */
4727 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
4730 /* Refresh SYMNAME from the match string. It's potentially
4731 different depending on language. (E.g., on Ada, the match may be
4732 the encoded symbol name wrapped in "<>"). */
4733 symname = match_res.match.match ();
4734 gdb_assert (symname != NULL);
4736 /* We have a match for a completion, so add SYMNAME to the current list
4737 of matches. Note that the name is moved to freshly malloc'd space. */
4740 gdb::unique_xmalloc_ptr<char> completion
4741 = make_completion_match_str (symname, text, word);
4743 /* Here we pass the match-for-lcd object to add_completion. Some
4744 languages match the user text against substrings of symbol
4745 names in some cases. E.g., in C++, "b push_ba" completes to
4746 "std::vector::push_back", "std::string::push_back", etc., and
4747 in this case we want the completion lowest common denominator
4748 to be "push_back" instead of "std::". */
4749 tracker.add_completion (std::move (completion),
4750 &match_res.match_for_lcd, text, word);
4754 /* completion_list_add_name wrapper for struct symbol. */
4757 completion_list_add_symbol (completion_tracker &tracker,
4759 const lookup_name_info &lookup_name,
4760 const char *text, const char *word)
4762 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4763 SYMBOL_NATURAL_NAME (sym),
4764 lookup_name, text, word);
4767 /* completion_list_add_name wrapper for struct minimal_symbol. */
4770 completion_list_add_msymbol (completion_tracker &tracker,
4771 minimal_symbol *sym,
4772 const lookup_name_info &lookup_name,
4773 const char *text, const char *word)
4775 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
4776 MSYMBOL_NATURAL_NAME (sym),
4777 lookup_name, text, word);
4781 /* ObjC: In case we are completing on a selector, look as the msymbol
4782 again and feed all the selectors into the mill. */
4785 completion_list_objc_symbol (completion_tracker &tracker,
4786 struct minimal_symbol *msymbol,
4787 const lookup_name_info &lookup_name,
4788 const char *text, const char *word)
4790 static char *tmp = NULL;
4791 static unsigned int tmplen = 0;
4793 const char *method, *category, *selector;
4796 method = MSYMBOL_NATURAL_NAME (msymbol);
4798 /* Is it a method? */
4799 if ((method[0] != '-') && (method[0] != '+'))
4803 /* Complete on shortened method method. */
4804 completion_list_add_name (tracker, language_objc,
4809 while ((strlen (method) + 1) >= tmplen)
4815 tmp = (char *) xrealloc (tmp, tmplen);
4817 selector = strchr (method, ' ');
4818 if (selector != NULL)
4821 category = strchr (method, '(');
4823 if ((category != NULL) && (selector != NULL))
4825 memcpy (tmp, method, (category - method));
4826 tmp[category - method] = ' ';
4827 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4828 completion_list_add_name (tracker, language_objc, tmp,
4829 lookup_name, text, word);
4831 completion_list_add_name (tracker, language_objc, tmp + 1,
4832 lookup_name, text, word);
4835 if (selector != NULL)
4837 /* Complete on selector only. */
4838 strcpy (tmp, selector);
4839 tmp2 = strchr (tmp, ']');
4843 completion_list_add_name (tracker, language_objc, tmp,
4844 lookup_name, text, word);
4848 /* Break the non-quoted text based on the characters which are in
4849 symbols. FIXME: This should probably be language-specific. */
4852 language_search_unquoted_string (const char *text, const char *p)
4854 for (; p > text; --p)
4856 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4860 if ((current_language->la_language == language_objc))
4862 if (p[-1] == ':') /* Might be part of a method name. */
4864 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4865 p -= 2; /* Beginning of a method name. */
4866 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4867 { /* Might be part of a method name. */
4870 /* Seeing a ' ' or a '(' is not conclusive evidence
4871 that we are in the middle of a method name. However,
4872 finding "-[" or "+[" should be pretty un-ambiguous.
4873 Unfortunately we have to find it now to decide. */
4876 if (isalnum (t[-1]) || t[-1] == '_' ||
4877 t[-1] == ' ' || t[-1] == ':' ||
4878 t[-1] == '(' || t[-1] == ')')
4883 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4884 p = t - 2; /* Method name detected. */
4885 /* Else we leave with p unchanged. */
4895 completion_list_add_fields (completion_tracker &tracker,
4897 const lookup_name_info &lookup_name,
4898 const char *text, const char *word)
4900 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4902 struct type *t = SYMBOL_TYPE (sym);
4903 enum type_code c = TYPE_CODE (t);
4906 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4907 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4908 if (TYPE_FIELD_NAME (t, j))
4909 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4910 TYPE_FIELD_NAME (t, j),
4911 lookup_name, text, word);
4918 symbol_is_function_or_method (symbol *sym)
4920 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
4922 case TYPE_CODE_FUNC:
4923 case TYPE_CODE_METHOD:
4933 symbol_is_function_or_method (minimal_symbol *msymbol)
4935 switch (MSYMBOL_TYPE (msymbol))
4938 case mst_text_gnu_ifunc:
4939 case mst_solib_trampoline:
4947 /* Add matching symbols from SYMTAB to the current completion list. */
4950 add_symtab_completions (struct compunit_symtab *cust,
4951 completion_tracker &tracker,
4952 complete_symbol_mode mode,
4953 const lookup_name_info &lookup_name,
4954 const char *text, const char *word,
4955 enum type_code code)
4958 const struct block *b;
4959 struct block_iterator iter;
4965 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4968 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
4969 ALL_BLOCK_SYMBOLS (b, iter, sym)
4971 if (completion_skip_symbol (mode, sym))
4974 if (code == TYPE_CODE_UNDEF
4975 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4976 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4977 completion_list_add_symbol (tracker, sym,
4985 default_collect_symbol_completion_matches_break_on
4986 (completion_tracker &tracker, complete_symbol_mode mode,
4987 symbol_name_match_type name_match_type,
4988 const char *text, const char *word,
4989 const char *break_on, enum type_code code)
4991 /* Problem: All of the symbols have to be copied because readline
4992 frees them. I'm not going to worry about this; hopefully there
4993 won't be that many. */
4996 struct compunit_symtab *cust;
4997 struct minimal_symbol *msymbol;
4998 struct objfile *objfile;
4999 const struct block *b;
5000 const struct block *surrounding_static_block, *surrounding_global_block;
5001 struct block_iterator iter;
5002 /* The symbol we are completing on. Points in same buffer as text. */
5003 const char *sym_text;
5005 /* Now look for the symbol we are supposed to complete on. */
5006 if (mode == complete_symbol_mode::LINESPEC)
5012 const char *quote_pos = NULL;
5014 /* First see if this is a quoted string. */
5016 for (p = text; *p != '\0'; ++p)
5018 if (quote_found != '\0')
5020 if (*p == quote_found)
5021 /* Found close quote. */
5023 else if (*p == '\\' && p[1] == quote_found)
5024 /* A backslash followed by the quote character
5025 doesn't end the string. */
5028 else if (*p == '\'' || *p == '"')
5034 if (quote_found == '\'')
5035 /* A string within single quotes can be a symbol, so complete on it. */
5036 sym_text = quote_pos + 1;
5037 else if (quote_found == '"')
5038 /* A double-quoted string is never a symbol, nor does it make sense
5039 to complete it any other way. */
5045 /* It is not a quoted string. Break it based on the characters
5046 which are in symbols. */
5049 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5050 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5059 lookup_name_info lookup_name (sym_text, name_match_type, true);
5061 /* At this point scan through the misc symbol vectors and add each
5062 symbol you find to the list. Eventually we want to ignore
5063 anything that isn't a text symbol (everything else will be
5064 handled by the psymtab code below). */
5066 if (code == TYPE_CODE_UNDEF)
5068 ALL_MSYMBOLS (objfile, msymbol)
5072 if (completion_skip_symbol (mode, msymbol))
5075 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5078 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5083 /* Add completions for all currently loaded symbol tables. */
5084 ALL_COMPUNITS (objfile, cust)
5085 add_symtab_completions (cust, tracker, mode, lookup_name,
5086 sym_text, word, code);
5088 /* Look through the partial symtabs for all symbols which begin by
5089 matching SYM_TEXT. Expand all CUs that you find to the list. */
5090 expand_symtabs_matching (NULL,
5093 [&] (compunit_symtab *symtab) /* expansion notify */
5095 add_symtab_completions (symtab,
5096 tracker, mode, lookup_name,
5097 sym_text, word, code);
5101 /* Search upwards from currently selected frame (so that we can
5102 complete on local vars). Also catch fields of types defined in
5103 this places which match our text string. Only complete on types
5104 visible from current context. */
5106 b = get_selected_block (0);
5107 surrounding_static_block = block_static_block (b);
5108 surrounding_global_block = block_global_block (b);
5109 if (surrounding_static_block != NULL)
5110 while (b != surrounding_static_block)
5114 ALL_BLOCK_SYMBOLS (b, iter, sym)
5116 if (code == TYPE_CODE_UNDEF)
5118 completion_list_add_symbol (tracker, sym, lookup_name,
5120 completion_list_add_fields (tracker, sym, lookup_name,
5123 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5124 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5125 completion_list_add_symbol (tracker, sym, lookup_name,
5129 /* Stop when we encounter an enclosing function. Do not stop for
5130 non-inlined functions - the locals of the enclosing function
5131 are in scope for a nested function. */
5132 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5134 b = BLOCK_SUPERBLOCK (b);
5137 /* Add fields from the file's types; symbols will be added below. */
5139 if (code == TYPE_CODE_UNDEF)
5141 if (surrounding_static_block != NULL)
5142 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5143 completion_list_add_fields (tracker, sym, lookup_name,
5146 if (surrounding_global_block != NULL)
5147 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5148 completion_list_add_fields (tracker, sym, lookup_name,
5152 /* Skip macros if we are completing a struct tag -- arguable but
5153 usually what is expected. */
5154 if (current_language->la_macro_expansion == macro_expansion_c
5155 && code == TYPE_CODE_UNDEF)
5157 struct macro_scope *scope;
5159 /* This adds a macro's name to the current completion list. */
5160 auto add_macro_name = [&] (const char *macro_name,
5161 const macro_definition *,
5162 macro_source_file *,
5165 completion_list_add_name (tracker, language_c, macro_name,
5166 lookup_name, sym_text, word);
5169 /* Add any macros visible in the default scope. Note that this
5170 may yield the occasional wrong result, because an expression
5171 might be evaluated in a scope other than the default. For
5172 example, if the user types "break file:line if <TAB>", the
5173 resulting expression will be evaluated at "file:line" -- but
5174 at there does not seem to be a way to detect this at
5176 scope = default_macro_scope ();
5179 macro_for_each_in_scope (scope->file, scope->line,
5184 /* User-defined macros are always visible. */
5185 macro_for_each (macro_user_macros, add_macro_name);
5190 default_collect_symbol_completion_matches (completion_tracker &tracker,
5191 complete_symbol_mode mode,
5192 symbol_name_match_type name_match_type,
5193 const char *text, const char *word,
5194 enum type_code code)
5196 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5202 /* Collect all symbols (regardless of class) which begin by matching
5206 collect_symbol_completion_matches (completion_tracker &tracker,
5207 complete_symbol_mode mode,
5208 symbol_name_match_type name_match_type,
5209 const char *text, const char *word)
5211 current_language->la_collect_symbol_completion_matches (tracker, mode,
5217 /* Like collect_symbol_completion_matches, but only collect
5218 STRUCT_DOMAIN symbols whose type code is CODE. */
5221 collect_symbol_completion_matches_type (completion_tracker &tracker,
5222 const char *text, const char *word,
5223 enum type_code code)
5225 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5226 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5228 gdb_assert (code == TYPE_CODE_UNION
5229 || code == TYPE_CODE_STRUCT
5230 || code == TYPE_CODE_ENUM);
5231 current_language->la_collect_symbol_completion_matches (tracker, mode,
5236 /* Like collect_symbol_completion_matches, but collects a list of
5237 symbols defined in all source files named SRCFILE. */
5240 collect_file_symbol_completion_matches (completion_tracker &tracker,
5241 complete_symbol_mode mode,
5242 symbol_name_match_type name_match_type,
5243 const char *text, const char *word,
5244 const char *srcfile)
5246 /* The symbol we are completing on. Points in same buffer as text. */
5247 const char *sym_text;
5249 /* Now look for the symbol we are supposed to complete on.
5250 FIXME: This should be language-specific. */
5251 if (mode == complete_symbol_mode::LINESPEC)
5257 const char *quote_pos = NULL;
5259 /* First see if this is a quoted string. */
5261 for (p = text; *p != '\0'; ++p)
5263 if (quote_found != '\0')
5265 if (*p == quote_found)
5266 /* Found close quote. */
5268 else if (*p == '\\' && p[1] == quote_found)
5269 /* A backslash followed by the quote character
5270 doesn't end the string. */
5273 else if (*p == '\'' || *p == '"')
5279 if (quote_found == '\'')
5280 /* A string within single quotes can be a symbol, so complete on it. */
5281 sym_text = quote_pos + 1;
5282 else if (quote_found == '"')
5283 /* A double-quoted string is never a symbol, nor does it make sense
5284 to complete it any other way. */
5290 /* Not a quoted string. */
5291 sym_text = language_search_unquoted_string (text, p);
5295 lookup_name_info lookup_name (sym_text, name_match_type, true);
5297 /* Go through symtabs for SRCFILE and check the externs and statics
5298 for symbols which match. */
5299 iterate_over_symtabs (srcfile, [&] (symtab *s)
5301 add_symtab_completions (SYMTAB_COMPUNIT (s),
5302 tracker, mode, lookup_name,
5303 sym_text, word, TYPE_CODE_UNDEF);
5308 /* A helper function for make_source_files_completion_list. It adds
5309 another file name to a list of possible completions, growing the
5310 list as necessary. */
5313 add_filename_to_list (const char *fname, const char *text, const char *word,
5314 completion_list *list)
5316 list->emplace_back (make_completion_match_str (fname, text, word));
5320 not_interesting_fname (const char *fname)
5322 static const char *illegal_aliens[] = {
5323 "_globals_", /* inserted by coff_symtab_read */
5328 for (i = 0; illegal_aliens[i]; i++)
5330 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5336 /* An object of this type is passed as the user_data argument to
5337 map_partial_symbol_filenames. */
5338 struct add_partial_filename_data
5340 struct filename_seen_cache *filename_seen_cache;
5344 completion_list *list;
5347 /* A callback for map_partial_symbol_filenames. */
5350 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5353 struct add_partial_filename_data *data
5354 = (struct add_partial_filename_data *) user_data;
5356 if (not_interesting_fname (filename))
5358 if (!data->filename_seen_cache->seen (filename)
5359 && filename_ncmp (filename, data->text, data->text_len) == 0)
5361 /* This file matches for a completion; add it to the
5362 current list of matches. */
5363 add_filename_to_list (filename, data->text, data->word, data->list);
5367 const char *base_name = lbasename (filename);
5369 if (base_name != filename
5370 && !data->filename_seen_cache->seen (base_name)
5371 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5372 add_filename_to_list (base_name, data->text, data->word, data->list);
5376 /* Return a list of all source files whose names begin with matching
5377 TEXT. The file names are looked up in the symbol tables of this
5381 make_source_files_completion_list (const char *text, const char *word)
5383 struct compunit_symtab *cu;
5385 struct objfile *objfile;
5386 size_t text_len = strlen (text);
5387 completion_list list;
5388 const char *base_name;
5389 struct add_partial_filename_data datum;
5391 if (!have_full_symbols () && !have_partial_symbols ())
5394 filename_seen_cache filenames_seen;
5396 ALL_FILETABS (objfile, cu, s)
5398 if (not_interesting_fname (s->filename))
5400 if (!filenames_seen.seen (s->filename)
5401 && filename_ncmp (s->filename, text, text_len) == 0)
5403 /* This file matches for a completion; add it to the current
5405 add_filename_to_list (s->filename, text, word, &list);
5409 /* NOTE: We allow the user to type a base name when the
5410 debug info records leading directories, but not the other
5411 way around. This is what subroutines of breakpoint
5412 command do when they parse file names. */
5413 base_name = lbasename (s->filename);
5414 if (base_name != s->filename
5415 && !filenames_seen.seen (base_name)
5416 && filename_ncmp (base_name, text, text_len) == 0)
5417 add_filename_to_list (base_name, text, word, &list);
5421 datum.filename_seen_cache = &filenames_seen;
5424 datum.text_len = text_len;
5426 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5427 0 /*need_fullname*/);
5434 /* Return the "main_info" object for the current program space. If
5435 the object has not yet been created, create it and fill in some
5438 static struct main_info *
5439 get_main_info (void)
5441 struct main_info *info
5442 = (struct main_info *) program_space_data (current_program_space,
5443 main_progspace_key);
5447 /* It may seem strange to store the main name in the progspace
5448 and also in whatever objfile happens to see a main name in
5449 its debug info. The reason for this is mainly historical:
5450 gdb returned "main" as the name even if no function named
5451 "main" was defined the program; and this approach lets us
5452 keep compatibility. */
5453 info = XCNEW (struct main_info);
5454 info->language_of_main = language_unknown;
5455 set_program_space_data (current_program_space, main_progspace_key,
5462 /* A cleanup to destroy a struct main_info when a progspace is
5466 main_info_cleanup (struct program_space *pspace, void *data)
5468 struct main_info *info = (struct main_info *) data;
5471 xfree (info->name_of_main);
5476 set_main_name (const char *name, enum language lang)
5478 struct main_info *info = get_main_info ();
5480 if (info->name_of_main != NULL)
5482 xfree (info->name_of_main);
5483 info->name_of_main = NULL;
5484 info->language_of_main = language_unknown;
5488 info->name_of_main = xstrdup (name);
5489 info->language_of_main = lang;
5493 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5497 find_main_name (void)
5499 const char *new_main_name;
5500 struct objfile *objfile;
5502 /* First check the objfiles to see whether a debuginfo reader has
5503 picked up the appropriate main name. Historically the main name
5504 was found in a more or less random way; this approach instead
5505 relies on the order of objfile creation -- which still isn't
5506 guaranteed to get the correct answer, but is just probably more
5508 ALL_OBJFILES (objfile)
5510 if (objfile->per_bfd->name_of_main != NULL)
5512 set_main_name (objfile->per_bfd->name_of_main,
5513 objfile->per_bfd->language_of_main);
5518 /* Try to see if the main procedure is in Ada. */
5519 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5520 be to add a new method in the language vector, and call this
5521 method for each language until one of them returns a non-empty
5522 name. This would allow us to remove this hard-coded call to
5523 an Ada function. It is not clear that this is a better approach
5524 at this point, because all methods need to be written in a way
5525 such that false positives never be returned. For instance, it is
5526 important that a method does not return a wrong name for the main
5527 procedure if the main procedure is actually written in a different
5528 language. It is easy to guaranty this with Ada, since we use a
5529 special symbol generated only when the main in Ada to find the name
5530 of the main procedure. It is difficult however to see how this can
5531 be guarantied for languages such as C, for instance. This suggests
5532 that order of call for these methods becomes important, which means
5533 a more complicated approach. */
5534 new_main_name = ada_main_name ();
5535 if (new_main_name != NULL)
5537 set_main_name (new_main_name, language_ada);
5541 new_main_name = d_main_name ();
5542 if (new_main_name != NULL)
5544 set_main_name (new_main_name, language_d);
5548 new_main_name = go_main_name ();
5549 if (new_main_name != NULL)
5551 set_main_name (new_main_name, language_go);
5555 new_main_name = pascal_main_name ();
5556 if (new_main_name != NULL)
5558 set_main_name (new_main_name, language_pascal);
5562 /* The languages above didn't identify the name of the main procedure.
5563 Fallback to "main". */
5564 set_main_name ("main", language_unknown);
5570 struct main_info *info = get_main_info ();
5572 if (info->name_of_main == NULL)
5575 return info->name_of_main;
5578 /* Return the language of the main function. If it is not known,
5579 return language_unknown. */
5582 main_language (void)
5584 struct main_info *info = get_main_info ();
5586 if (info->name_of_main == NULL)
5589 return info->language_of_main;
5592 /* Handle ``executable_changed'' events for the symtab module. */
5595 symtab_observer_executable_changed (void)
5597 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5598 set_main_name (NULL, language_unknown);
5601 /* Return 1 if the supplied producer string matches the ARM RealView
5602 compiler (armcc). */
5605 producer_is_realview (const char *producer)
5607 static const char *const arm_idents[] = {
5608 "ARM C Compiler, ADS",
5609 "Thumb C Compiler, ADS",
5610 "ARM C++ Compiler, ADS",
5611 "Thumb C++ Compiler, ADS",
5612 "ARM/Thumb C/C++ Compiler, RVCT",
5613 "ARM C/C++ Compiler, RVCT"
5617 if (producer == NULL)
5620 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5621 if (startswith (producer, arm_idents[i]))
5629 /* The next index to hand out in response to a registration request. */
5631 static int next_aclass_value = LOC_FINAL_VALUE;
5633 /* The maximum number of "aclass" registrations we support. This is
5634 constant for convenience. */
5635 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5637 /* The objects representing the various "aclass" values. The elements
5638 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5639 elements are those registered at gdb initialization time. */
5641 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5643 /* The globally visible pointer. This is separate from 'symbol_impl'
5644 so that it can be const. */
5646 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5648 /* Make sure we saved enough room in struct symbol. */
5650 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5652 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5653 is the ops vector associated with this index. This returns the new
5654 index, which should be used as the aclass_index field for symbols
5658 register_symbol_computed_impl (enum address_class aclass,
5659 const struct symbol_computed_ops *ops)
5661 int result = next_aclass_value++;
5663 gdb_assert (aclass == LOC_COMPUTED);
5664 gdb_assert (result < MAX_SYMBOL_IMPLS);
5665 symbol_impl[result].aclass = aclass;
5666 symbol_impl[result].ops_computed = ops;
5668 /* Sanity check OPS. */
5669 gdb_assert (ops != NULL);
5670 gdb_assert (ops->tracepoint_var_ref != NULL);
5671 gdb_assert (ops->describe_location != NULL);
5672 gdb_assert (ops->get_symbol_read_needs != NULL);
5673 gdb_assert (ops->read_variable != NULL);
5678 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5679 OPS is the ops vector associated with this index. This returns the
5680 new index, which should be used as the aclass_index field for symbols
5684 register_symbol_block_impl (enum address_class aclass,
5685 const struct symbol_block_ops *ops)
5687 int result = next_aclass_value++;
5689 gdb_assert (aclass == LOC_BLOCK);
5690 gdb_assert (result < MAX_SYMBOL_IMPLS);
5691 symbol_impl[result].aclass = aclass;
5692 symbol_impl[result].ops_block = ops;
5694 /* Sanity check OPS. */
5695 gdb_assert (ops != NULL);
5696 gdb_assert (ops->find_frame_base_location != NULL);
5701 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5702 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5703 this index. This returns the new index, which should be used as
5704 the aclass_index field for symbols of this type. */
5707 register_symbol_register_impl (enum address_class aclass,
5708 const struct symbol_register_ops *ops)
5710 int result = next_aclass_value++;
5712 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5713 gdb_assert (result < MAX_SYMBOL_IMPLS);
5714 symbol_impl[result].aclass = aclass;
5715 symbol_impl[result].ops_register = ops;
5720 /* Initialize elements of 'symbol_impl' for the constants in enum
5724 initialize_ordinary_address_classes (void)
5728 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5729 symbol_impl[i].aclass = (enum address_class) i;
5734 /* Helper function to initialize the fields of an objfile-owned symbol.
5735 It assumed that *SYM is already all zeroes. */
5738 initialize_objfile_symbol_1 (struct symbol *sym)
5740 SYMBOL_OBJFILE_OWNED (sym) = 1;
5741 SYMBOL_SECTION (sym) = -1;
5744 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5747 initialize_objfile_symbol (struct symbol *sym)
5749 memset (sym, 0, sizeof (*sym));
5750 initialize_objfile_symbol_1 (sym);
5753 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5757 allocate_symbol (struct objfile *objfile)
5759 struct symbol *result;
5761 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5762 initialize_objfile_symbol_1 (result);
5767 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5770 struct template_symbol *
5771 allocate_template_symbol (struct objfile *objfile)
5773 struct template_symbol *result;
5775 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5776 initialize_objfile_symbol_1 (result);
5784 symbol_objfile (const struct symbol *symbol)
5786 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5787 return SYMTAB_OBJFILE (symbol->owner.symtab);
5793 symbol_arch (const struct symbol *symbol)
5795 if (!SYMBOL_OBJFILE_OWNED (symbol))
5796 return symbol->owner.arch;
5797 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
5803 symbol_symtab (const struct symbol *symbol)
5805 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5806 return symbol->owner.symtab;
5812 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
5814 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5815 symbol->owner.symtab = symtab;
5821 _initialize_symtab (void)
5823 initialize_ordinary_address_classes ();
5826 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5829 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
5831 add_info ("variables", info_variables_command, _("\
5832 All global and static variable names, or those matching REGEXP."));
5834 add_com ("whereis", class_info, info_variables_command, _("\
5835 All global and static variable names, or those matching REGEXP."));
5837 add_info ("functions", info_functions_command,
5838 _("All function names, or those matching REGEXP."));
5840 /* FIXME: This command has at least the following problems:
5841 1. It prints builtin types (in a very strange and confusing fashion).
5842 2. It doesn't print right, e.g. with
5843 typedef struct foo *FOO
5844 type_print prints "FOO" when we want to make it (in this situation)
5845 print "struct foo *".
5846 I also think "ptype" or "whatis" is more likely to be useful (but if
5847 there is much disagreement "info types" can be fixed). */
5848 add_info ("types", info_types_command,
5849 _("All type names, or those matching REGEXP."));
5851 add_info ("sources", info_sources_command,
5852 _("Source files in the program."));
5854 add_com ("rbreak", class_breakpoint, rbreak_command,
5855 _("Set a breakpoint for all functions matching REGEXP."));
5857 add_setshow_enum_cmd ("multiple-symbols", no_class,
5858 multiple_symbols_modes, &multiple_symbols_mode,
5860 Set the debugger behavior when more than one symbol are possible matches\n\
5861 in an expression."), _("\
5862 Show how the debugger handles ambiguities in expressions."), _("\
5863 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5864 NULL, NULL, &setlist, &showlist);
5866 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5867 &basenames_may_differ, _("\
5868 Set whether a source file may have multiple base names."), _("\
5869 Show whether a source file may have multiple base names."), _("\
5870 (A \"base name\" is the name of a file with the directory part removed.\n\
5871 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5872 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5873 before comparing them. Canonicalization is an expensive operation,\n\
5874 but it allows the same file be known by more than one base name.\n\
5875 If not set (the default), all source files are assumed to have just\n\
5876 one base name, and gdb will do file name comparisons more efficiently."),
5878 &setlist, &showlist);
5880 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5881 _("Set debugging of symbol table creation."),
5882 _("Show debugging of symbol table creation."), _("\
5883 When enabled (non-zero), debugging messages are printed when building\n\
5884 symbol tables. A value of 1 (one) normally provides enough information.\n\
5885 A value greater than 1 provides more verbose information."),
5888 &setdebuglist, &showdebuglist);
5890 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
5892 Set debugging of symbol lookup."), _("\
5893 Show debugging of symbol lookup."), _("\
5894 When enabled (non-zero), symbol lookups are logged."),
5896 &setdebuglist, &showdebuglist);
5898 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
5899 &new_symbol_cache_size,
5900 _("Set the size of the symbol cache."),
5901 _("Show the size of the symbol cache."), _("\
5902 The size of the symbol cache.\n\
5903 If zero then the symbol cache is disabled."),
5904 set_symbol_cache_size_handler, NULL,
5905 &maintenance_set_cmdlist,
5906 &maintenance_show_cmdlist);
5908 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
5909 _("Dump the symbol cache for each program space."),
5910 &maintenanceprintlist);
5912 add_cmd ("symbol-cache-statistics", class_maintenance,
5913 maintenance_print_symbol_cache_statistics,
5914 _("Print symbol cache statistics for each program space."),
5915 &maintenanceprintlist);
5917 add_cmd ("flush-symbol-cache", class_maintenance,
5918 maintenance_flush_symbol_cache,
5919 _("Flush the symbol cache for each program space."),
5922 observer_attach_executable_changed (symtab_observer_executable_changed);
5923 observer_attach_new_objfile (symtab_new_objfile_observer);
5924 observer_attach_free_objfile (symtab_free_objfile_observer);