1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
30 #include "call-cmds.h"
31 #include "gdb_regex.h"
32 #include "expression.h"
37 #include "filenames.h" /* for FILENAME_CMP */
38 #include "objc-lang.h"
47 #include "gdb_obstack.h"
49 #include "dictionary.h"
51 #include <sys/types.h>
53 #include "gdb_string.h"
57 #include "cp-support.h"
59 #include "gdb_assert.h"
62 #include "macroscope.h"
65 #include "parser-defs.h"
67 /* Prototypes for local functions */
69 static void rbreak_command (char *, int);
71 static void types_info (char *, int);
73 static void functions_info (char *, int);
75 static void variables_info (char *, int);
77 static void sources_info (char *, int);
79 static int find_line_common (struct linetable *, int, int *, int);
81 static struct symbol *lookup_symbol_aux (const char *name,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 int *is_a_field_of_this);
88 struct symbol *lookup_symbol_aux_local (const char *name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
94 struct symbol *lookup_symbol_aux_symtabs (int block_index,
96 const domain_enum domain);
99 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
102 const domain_enum domain);
104 static void print_msymbol_info (struct minimal_symbol *);
106 void _initialize_symtab (void);
110 /* When non-zero, print debugging messages related to symtab creation. */
111 int symtab_create_debug = 0;
113 /* Non-zero if a file may be known by two different basenames.
114 This is the uncommon case, and significantly slows down gdb.
115 Default set to "off" to not slow down the common case. */
116 int basenames_may_differ = 0;
118 /* Allow the user to configure the debugger behavior with respect
119 to multiple-choice menus when more than one symbol matches during
122 const char multiple_symbols_ask[] = "ask";
123 const char multiple_symbols_all[] = "all";
124 const char multiple_symbols_cancel[] = "cancel";
125 static const char *const multiple_symbols_modes[] =
127 multiple_symbols_ask,
128 multiple_symbols_all,
129 multiple_symbols_cancel,
132 static const char *multiple_symbols_mode = multiple_symbols_all;
134 /* Read-only accessor to AUTO_SELECT_MODE. */
137 multiple_symbols_select_mode (void)
139 return multiple_symbols_mode;
142 /* Block in which the most recently searched-for symbol was found.
143 Might be better to make this a parameter to lookup_symbol and
146 const struct block *block_found;
148 /* See whether FILENAME matches SEARCH_NAME using the rule that we
149 advertise to the user. (The manual's description of linespecs
150 describes what we advertise). SEARCH_LEN is the length of
151 SEARCH_NAME. We assume that SEARCH_NAME is a relative path.
152 Returns true if they match, false otherwise. */
155 compare_filenames_for_search (const char *filename, const char *search_name,
158 int len = strlen (filename);
160 if (len < search_len)
163 /* The tail of FILENAME must match. */
164 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
167 /* Either the names must completely match, or the character
168 preceding the trailing SEARCH_NAME segment of FILENAME must be a
169 directory separator. */
170 return (len == search_len
171 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
172 || (HAS_DRIVE_SPEC (filename)
173 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
176 /* Check for a symtab of a specific name by searching some symtabs.
177 This is a helper function for callbacks of iterate_over_symtabs.
179 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
180 are identical to the `map_symtabs_matching_filename' method of
181 quick_symbol_functions.
183 FIRST and AFTER_LAST indicate the range of symtabs to search.
184 AFTER_LAST is one past the last symtab to search; NULL means to
185 search until the end of the list. */
188 iterate_over_some_symtabs (const char *name,
189 const char *full_path,
190 const char *real_path,
191 int (*callback) (struct symtab *symtab,
194 struct symtab *first,
195 struct symtab *after_last)
197 struct symtab *s = NULL;
198 const char* base_name = lbasename (name);
199 int name_len = strlen (name);
200 int is_abs = IS_ABSOLUTE_PATH (name);
202 for (s = first; s != NULL && s != after_last; s = s->next)
204 /* Exact match is always ok. */
205 if (FILENAME_CMP (name, s->filename) == 0)
207 if (callback (s, data))
211 if (!is_abs && compare_filenames_for_search (s->filename, name, name_len))
213 if (callback (s, data))
217 /* Before we invoke realpath, which can get expensive when many
218 files are involved, do a quick comparison of the basenames. */
219 if (! basenames_may_differ
220 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
223 /* If the user gave us an absolute path, try to find the file in
224 this symtab and use its absolute path. */
226 if (full_path != NULL)
228 const char *fp = symtab_to_fullname (s);
230 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
232 if (callback (s, data))
236 if (fp != NULL && !is_abs && compare_filenames_for_search (fp, name,
239 if (callback (s, data))
244 if (real_path != NULL)
246 const char *fullname = symtab_to_fullname (s);
248 if (fullname != NULL)
250 char *rp = gdb_realpath (fullname);
252 make_cleanup (xfree, rp);
253 if (FILENAME_CMP (real_path, rp) == 0)
255 if (callback (s, data))
259 if (!is_abs && compare_filenames_for_search (rp, name, name_len))
261 if (callback (s, data))
271 /* Check for a symtab of a specific name; first in symtabs, then in
272 psymtabs. *If* there is no '/' in the name, a match after a '/'
273 in the symtab filename will also work.
275 Calls CALLBACK with each symtab that is found and with the supplied
276 DATA. If CALLBACK returns true, the search stops. */
279 iterate_over_symtabs (const char *name,
280 int (*callback) (struct symtab *symtab,
284 struct symtab *s = NULL;
285 struct objfile *objfile;
286 char *real_path = NULL;
287 char *full_path = NULL;
288 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
290 /* Here we are interested in canonicalizing an absolute path, not
291 absolutizing a relative path. */
292 if (IS_ABSOLUTE_PATH (name))
294 full_path = xfullpath (name);
295 make_cleanup (xfree, full_path);
296 real_path = gdb_realpath (name);
297 make_cleanup (xfree, real_path);
300 ALL_OBJFILES (objfile)
302 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
303 objfile->symtabs, NULL))
305 do_cleanups (cleanups);
310 /* Same search rules as above apply here, but now we look thru the
313 ALL_OBJFILES (objfile)
316 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
323 do_cleanups (cleanups);
328 do_cleanups (cleanups);
331 /* The callback function used by lookup_symtab. */
334 lookup_symtab_callback (struct symtab *symtab, void *data)
336 struct symtab **result_ptr = data;
338 *result_ptr = symtab;
342 /* A wrapper for iterate_over_symtabs that returns the first matching
346 lookup_symtab (const char *name)
348 struct symtab *result = NULL;
350 iterate_over_symtabs (name, lookup_symtab_callback, &result);
355 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
356 full method name, which consist of the class name (from T), the unadorned
357 method name from METHOD_ID, and the signature for the specific overload,
358 specified by SIGNATURE_ID. Note that this function is g++ specific. */
361 gdb_mangle_name (struct type *type, int method_id, int signature_id)
363 int mangled_name_len;
365 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
366 struct fn_field *method = &f[signature_id];
367 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
368 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
369 const char *newname = type_name_no_tag (type);
371 /* Does the form of physname indicate that it is the full mangled name
372 of a constructor (not just the args)? */
373 int is_full_physname_constructor;
376 int is_destructor = is_destructor_name (physname);
377 /* Need a new type prefix. */
378 char *const_prefix = method->is_const ? "C" : "";
379 char *volatile_prefix = method->is_volatile ? "V" : "";
381 int len = (newname == NULL ? 0 : strlen (newname));
383 /* Nothing to do if physname already contains a fully mangled v3 abi name
384 or an operator name. */
385 if ((physname[0] == '_' && physname[1] == 'Z')
386 || is_operator_name (field_name))
387 return xstrdup (physname);
389 is_full_physname_constructor = is_constructor_name (physname);
391 is_constructor = is_full_physname_constructor
392 || (newname && strcmp (field_name, newname) == 0);
395 is_destructor = (strncmp (physname, "__dt", 4) == 0);
397 if (is_destructor || is_full_physname_constructor)
399 mangled_name = (char *) xmalloc (strlen (physname) + 1);
400 strcpy (mangled_name, physname);
406 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
408 else if (physname[0] == 't' || physname[0] == 'Q')
410 /* The physname for template and qualified methods already includes
412 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
418 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
419 volatile_prefix, len);
421 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
422 + strlen (buf) + len + strlen (physname) + 1);
424 mangled_name = (char *) xmalloc (mangled_name_len);
426 mangled_name[0] = '\0';
428 strcpy (mangled_name, field_name);
430 strcat (mangled_name, buf);
431 /* If the class doesn't have a name, i.e. newname NULL, then we just
432 mangle it using 0 for the length of the class. Thus it gets mangled
433 as something starting with `::' rather than `classname::'. */
435 strcat (mangled_name, newname);
437 strcat (mangled_name, physname);
438 return (mangled_name);
441 /* Initialize the cplus_specific structure. 'cplus_specific' should
442 only be allocated for use with cplus symbols. */
445 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
446 struct objfile *objfile)
448 /* A language_specific structure should not have been previously
450 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
451 gdb_assert (objfile != NULL);
453 gsymbol->language_specific.cplus_specific =
454 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
457 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
458 correctly allocated. For C++ symbols a cplus_specific struct is
459 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
460 OBJFILE can be NULL. */
463 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
465 struct objfile *objfile)
467 if (gsymbol->language == language_cplus)
469 if (gsymbol->language_specific.cplus_specific == NULL)
470 symbol_init_cplus_specific (gsymbol, objfile);
472 gsymbol->language_specific.cplus_specific->demangled_name = name;
475 gsymbol->language_specific.mangled_lang.demangled_name = name;
478 /* Return the demangled name of GSYMBOL. */
481 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
483 if (gsymbol->language == language_cplus)
485 if (gsymbol->language_specific.cplus_specific != NULL)
486 return gsymbol->language_specific.cplus_specific->demangled_name;
491 return gsymbol->language_specific.mangled_lang.demangled_name;
495 /* Initialize the language dependent portion of a symbol
496 depending upon the language for the symbol. */
499 symbol_set_language (struct general_symbol_info *gsymbol,
500 enum language language)
502 gsymbol->language = language;
503 if (gsymbol->language == language_d
504 || gsymbol->language == language_go
505 || gsymbol->language == language_java
506 || gsymbol->language == language_objc
507 || gsymbol->language == language_fortran)
509 symbol_set_demangled_name (gsymbol, NULL, NULL);
511 else if (gsymbol->language == language_cplus)
512 gsymbol->language_specific.cplus_specific = NULL;
515 memset (&gsymbol->language_specific, 0,
516 sizeof (gsymbol->language_specific));
520 /* Functions to initialize a symbol's mangled name. */
522 /* Objects of this type are stored in the demangled name hash table. */
523 struct demangled_name_entry
529 /* Hash function for the demangled name hash. */
532 hash_demangled_name_entry (const void *data)
534 const struct demangled_name_entry *e = data;
536 return htab_hash_string (e->mangled);
539 /* Equality function for the demangled name hash. */
542 eq_demangled_name_entry (const void *a, const void *b)
544 const struct demangled_name_entry *da = a;
545 const struct demangled_name_entry *db = b;
547 return strcmp (da->mangled, db->mangled) == 0;
550 /* Create the hash table used for demangled names. Each hash entry is
551 a pair of strings; one for the mangled name and one for the demangled
552 name. The entry is hashed via just the mangled name. */
555 create_demangled_names_hash (struct objfile *objfile)
557 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
558 The hash table code will round this up to the next prime number.
559 Choosing a much larger table size wastes memory, and saves only about
560 1% in symbol reading. */
562 objfile->demangled_names_hash = htab_create_alloc
563 (256, hash_demangled_name_entry, eq_demangled_name_entry,
564 NULL, xcalloc, xfree);
567 /* Try to determine the demangled name for a symbol, based on the
568 language of that symbol. If the language is set to language_auto,
569 it will attempt to find any demangling algorithm that works and
570 then set the language appropriately. The returned name is allocated
571 by the demangler and should be xfree'd. */
574 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
577 char *demangled = NULL;
579 if (gsymbol->language == language_unknown)
580 gsymbol->language = language_auto;
582 if (gsymbol->language == language_objc
583 || gsymbol->language == language_auto)
586 objc_demangle (mangled, 0);
587 if (demangled != NULL)
589 gsymbol->language = language_objc;
593 if (gsymbol->language == language_cplus
594 || gsymbol->language == language_auto)
597 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
598 if (demangled != NULL)
600 gsymbol->language = language_cplus;
604 if (gsymbol->language == language_java)
607 cplus_demangle (mangled,
608 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
609 if (demangled != NULL)
611 gsymbol->language = language_java;
615 if (gsymbol->language == language_d
616 || gsymbol->language == language_auto)
618 demangled = d_demangle(mangled, 0);
619 if (demangled != NULL)
621 gsymbol->language = language_d;
625 /* FIXME(dje): Continually adding languages here is clumsy.
626 Better to just call la_demangle if !auto, and if auto then call
627 a utility routine that tries successive languages in turn and reports
628 which one it finds. I realize the la_demangle options may be different
629 for different languages but there's already a FIXME for that. */
630 if (gsymbol->language == language_go
631 || gsymbol->language == language_auto)
633 demangled = go_demangle (mangled, 0);
634 if (demangled != NULL)
636 gsymbol->language = language_go;
641 /* We could support `gsymbol->language == language_fortran' here to provide
642 module namespaces also for inferiors with only minimal symbol table (ELF
643 symbols). Just the mangling standard is not standardized across compilers
644 and there is no DW_AT_producer available for inferiors with only the ELF
645 symbols to check the mangling kind. */
649 /* Set both the mangled and demangled (if any) names for GSYMBOL based
650 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
651 objfile's obstack; but if COPY_NAME is 0 and if NAME is
652 NUL-terminated, then this function assumes that NAME is already
653 correctly saved (either permanently or with a lifetime tied to the
654 objfile), and it will not be copied.
656 The hash table corresponding to OBJFILE is used, and the memory
657 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
658 so the pointer can be discarded after calling this function. */
660 /* We have to be careful when dealing with Java names: when we run
661 into a Java minimal symbol, we don't know it's a Java symbol, so it
662 gets demangled as a C++ name. This is unfortunate, but there's not
663 much we can do about it: but when demangling partial symbols and
664 regular symbols, we'd better not reuse the wrong demangled name.
665 (See PR gdb/1039.) We solve this by putting a distinctive prefix
666 on Java names when storing them in the hash table. */
668 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
669 don't mind the Java prefix so much: different languages have
670 different demangling requirements, so it's only natural that we
671 need to keep language data around in our demangling cache. But
672 it's not good that the minimal symbol has the wrong demangled name.
673 Unfortunately, I can't think of any easy solution to that
676 #define JAVA_PREFIX "##JAVA$$"
677 #define JAVA_PREFIX_LEN 8
680 symbol_set_names (struct general_symbol_info *gsymbol,
681 const char *linkage_name, int len, int copy_name,
682 struct objfile *objfile)
684 struct demangled_name_entry **slot;
685 /* A 0-terminated copy of the linkage name. */
686 const char *linkage_name_copy;
687 /* A copy of the linkage name that might have a special Java prefix
688 added to it, for use when looking names up in the hash table. */
689 const char *lookup_name;
690 /* The length of lookup_name. */
692 struct demangled_name_entry entry;
694 if (gsymbol->language == language_ada)
696 /* In Ada, we do the symbol lookups using the mangled name, so
697 we can save some space by not storing the demangled name.
699 As a side note, we have also observed some overlap between
700 the C++ mangling and Ada mangling, similarly to what has
701 been observed with Java. Because we don't store the demangled
702 name with the symbol, we don't need to use the same trick
705 gsymbol->name = linkage_name;
708 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
710 memcpy (name, linkage_name, len);
712 gsymbol->name = name;
714 symbol_set_demangled_name (gsymbol, NULL, NULL);
719 if (objfile->demangled_names_hash == NULL)
720 create_demangled_names_hash (objfile);
722 /* The stabs reader generally provides names that are not
723 NUL-terminated; most of the other readers don't do this, so we
724 can just use the given copy, unless we're in the Java case. */
725 if (gsymbol->language == language_java)
729 lookup_len = len + JAVA_PREFIX_LEN;
730 alloc_name = alloca (lookup_len + 1);
731 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
732 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
733 alloc_name[lookup_len] = '\0';
735 lookup_name = alloc_name;
736 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
738 else if (linkage_name[len] != '\0')
743 alloc_name = alloca (lookup_len + 1);
744 memcpy (alloc_name, linkage_name, len);
745 alloc_name[lookup_len] = '\0';
747 lookup_name = alloc_name;
748 linkage_name_copy = alloc_name;
753 lookup_name = linkage_name;
754 linkage_name_copy = linkage_name;
757 entry.mangled = (char *) lookup_name;
758 slot = ((struct demangled_name_entry **)
759 htab_find_slot (objfile->demangled_names_hash,
762 /* If this name is not in the hash table, add it. */
764 /* A C version of the symbol may have already snuck into the table.
765 This happens to, e.g., main.init (__go_init_main). Cope. */
766 || (gsymbol->language == language_go
767 && (*slot)->demangled[0] == '\0'))
769 char *demangled_name = symbol_find_demangled_name (gsymbol,
771 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
773 /* Suppose we have demangled_name==NULL, copy_name==0, and
774 lookup_name==linkage_name. In this case, we already have the
775 mangled name saved, and we don't have a demangled name. So,
776 you might think we could save a little space by not recording
777 this in the hash table at all.
779 It turns out that it is actually important to still save such
780 an entry in the hash table, because storing this name gives
781 us better bcache hit rates for partial symbols. */
782 if (!copy_name && lookup_name == linkage_name)
784 *slot = obstack_alloc (&objfile->objfile_obstack,
785 offsetof (struct demangled_name_entry,
787 + demangled_len + 1);
788 (*slot)->mangled = (char *) lookup_name;
792 /* If we must copy the mangled name, put it directly after
793 the demangled name so we can have a single
795 *slot = obstack_alloc (&objfile->objfile_obstack,
796 offsetof (struct demangled_name_entry,
798 + lookup_len + demangled_len + 2);
799 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
800 strcpy ((*slot)->mangled, lookup_name);
803 if (demangled_name != NULL)
805 strcpy ((*slot)->demangled, demangled_name);
806 xfree (demangled_name);
809 (*slot)->demangled[0] = '\0';
812 gsymbol->name = (*slot)->mangled + lookup_len - len;
813 if ((*slot)->demangled[0] != '\0')
814 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
816 symbol_set_demangled_name (gsymbol, NULL, objfile);
819 /* Return the source code name of a symbol. In languages where
820 demangling is necessary, this is the demangled name. */
823 symbol_natural_name (const struct general_symbol_info *gsymbol)
825 switch (gsymbol->language)
832 case language_fortran:
833 if (symbol_get_demangled_name (gsymbol) != NULL)
834 return symbol_get_demangled_name (gsymbol);
837 if (symbol_get_demangled_name (gsymbol) != NULL)
838 return symbol_get_demangled_name (gsymbol);
840 return ada_decode_symbol (gsymbol);
845 return gsymbol->name;
848 /* Return the demangled name for a symbol based on the language for
849 that symbol. If no demangled name exists, return NULL. */
852 symbol_demangled_name (const struct general_symbol_info *gsymbol)
854 const char *dem_name = NULL;
856 switch (gsymbol->language)
863 case language_fortran:
864 dem_name = symbol_get_demangled_name (gsymbol);
867 dem_name = symbol_get_demangled_name (gsymbol);
868 if (dem_name == NULL)
869 dem_name = ada_decode_symbol (gsymbol);
877 /* Return the search name of a symbol---generally the demangled or
878 linkage name of the symbol, depending on how it will be searched for.
879 If there is no distinct demangled name, then returns the same value
880 (same pointer) as SYMBOL_LINKAGE_NAME. */
883 symbol_search_name (const struct general_symbol_info *gsymbol)
885 if (gsymbol->language == language_ada)
886 return gsymbol->name;
888 return symbol_natural_name (gsymbol);
891 /* Initialize the structure fields to zero values. */
894 init_sal (struct symtab_and_line *sal)
902 sal->explicit_pc = 0;
903 sal->explicit_line = 0;
908 /* Return 1 if the two sections are the same, or if they could
909 plausibly be copies of each other, one in an original object
910 file and another in a separated debug file. */
913 matching_obj_sections (struct obj_section *obj_first,
914 struct obj_section *obj_second)
916 asection *first = obj_first? obj_first->the_bfd_section : NULL;
917 asection *second = obj_second? obj_second->the_bfd_section : NULL;
920 /* If they're the same section, then they match. */
924 /* If either is NULL, give up. */
925 if (first == NULL || second == NULL)
928 /* This doesn't apply to absolute symbols. */
929 if (first->owner == NULL || second->owner == NULL)
932 /* If they're in the same object file, they must be different sections. */
933 if (first->owner == second->owner)
936 /* Check whether the two sections are potentially corresponding. They must
937 have the same size, address, and name. We can't compare section indexes,
938 which would be more reliable, because some sections may have been
940 if (bfd_get_section_size (first) != bfd_get_section_size (second))
943 /* In-memory addresses may start at a different offset, relativize them. */
944 if (bfd_get_section_vma (first->owner, first)
945 - bfd_get_start_address (first->owner)
946 != bfd_get_section_vma (second->owner, second)
947 - bfd_get_start_address (second->owner))
950 if (bfd_get_section_name (first->owner, first) == NULL
951 || bfd_get_section_name (second->owner, second) == NULL
952 || strcmp (bfd_get_section_name (first->owner, first),
953 bfd_get_section_name (second->owner, second)) != 0)
956 /* Otherwise check that they are in corresponding objfiles. */
959 if (obj->obfd == first->owner)
961 gdb_assert (obj != NULL);
963 if (obj->separate_debug_objfile != NULL
964 && obj->separate_debug_objfile->obfd == second->owner)
966 if (obj->separate_debug_objfile_backlink != NULL
967 && obj->separate_debug_objfile_backlink->obfd == second->owner)
974 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
976 struct objfile *objfile;
977 struct minimal_symbol *msymbol;
979 /* If we know that this is not a text address, return failure. This is
980 necessary because we loop based on texthigh and textlow, which do
981 not include the data ranges. */
982 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
984 && (MSYMBOL_TYPE (msymbol) == mst_data
985 || MSYMBOL_TYPE (msymbol) == mst_bss
986 || MSYMBOL_TYPE (msymbol) == mst_abs
987 || MSYMBOL_TYPE (msymbol) == mst_file_data
988 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
991 ALL_OBJFILES (objfile)
993 struct symtab *result = NULL;
996 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1005 /* Debug symbols usually don't have section information. We need to dig that
1006 out of the minimal symbols and stash that in the debug symbol. */
1009 fixup_section (struct general_symbol_info *ginfo,
1010 CORE_ADDR addr, struct objfile *objfile)
1012 struct minimal_symbol *msym;
1014 /* First, check whether a minimal symbol with the same name exists
1015 and points to the same address. The address check is required
1016 e.g. on PowerPC64, where the minimal symbol for a function will
1017 point to the function descriptor, while the debug symbol will
1018 point to the actual function code. */
1019 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1022 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1023 ginfo->section = SYMBOL_SECTION (msym);
1027 /* Static, function-local variables do appear in the linker
1028 (minimal) symbols, but are frequently given names that won't
1029 be found via lookup_minimal_symbol(). E.g., it has been
1030 observed in frv-uclinux (ELF) executables that a static,
1031 function-local variable named "foo" might appear in the
1032 linker symbols as "foo.6" or "foo.3". Thus, there is no
1033 point in attempting to extend the lookup-by-name mechanism to
1034 handle this case due to the fact that there can be multiple
1037 So, instead, search the section table when lookup by name has
1038 failed. The ``addr'' and ``endaddr'' fields may have already
1039 been relocated. If so, the relocation offset (i.e. the
1040 ANOFFSET value) needs to be subtracted from these values when
1041 performing the comparison. We unconditionally subtract it,
1042 because, when no relocation has been performed, the ANOFFSET
1043 value will simply be zero.
1045 The address of the symbol whose section we're fixing up HAS
1046 NOT BEEN adjusted (relocated) yet. It can't have been since
1047 the section isn't yet known and knowing the section is
1048 necessary in order to add the correct relocation value. In
1049 other words, we wouldn't even be in this function (attempting
1050 to compute the section) if it were already known.
1052 Note that it is possible to search the minimal symbols
1053 (subtracting the relocation value if necessary) to find the
1054 matching minimal symbol, but this is overkill and much less
1055 efficient. It is not necessary to find the matching minimal
1056 symbol, only its section.
1058 Note that this technique (of doing a section table search)
1059 can fail when unrelocated section addresses overlap. For
1060 this reason, we still attempt a lookup by name prior to doing
1061 a search of the section table. */
1063 struct obj_section *s;
1065 ALL_OBJFILE_OSECTIONS (objfile, s)
1067 int idx = s->the_bfd_section->index;
1068 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1070 if (obj_section_addr (s) - offset <= addr
1071 && addr < obj_section_endaddr (s) - offset)
1073 ginfo->obj_section = s;
1074 ginfo->section = idx;
1082 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1089 if (SYMBOL_OBJ_SECTION (sym))
1092 /* We either have an OBJFILE, or we can get at it from the sym's
1093 symtab. Anything else is a bug. */
1094 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1096 if (objfile == NULL)
1097 objfile = SYMBOL_SYMTAB (sym)->objfile;
1099 /* We should have an objfile by now. */
1100 gdb_assert (objfile);
1102 switch (SYMBOL_CLASS (sym))
1106 addr = SYMBOL_VALUE_ADDRESS (sym);
1109 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1113 /* Nothing else will be listed in the minsyms -- no use looking
1118 fixup_section (&sym->ginfo, addr, objfile);
1123 /* Compute the demangled form of NAME as used by the various symbol
1124 lookup functions. The result is stored in *RESULT_NAME. Returns a
1125 cleanup which can be used to clean up the result.
1127 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1128 Normally, Ada symbol lookups are performed using the encoded name
1129 rather than the demangled name, and so it might seem to make sense
1130 for this function to return an encoded version of NAME.
1131 Unfortunately, we cannot do this, because this function is used in
1132 circumstances where it is not appropriate to try to encode NAME.
1133 For instance, when displaying the frame info, we demangle the name
1134 of each parameter, and then perform a symbol lookup inside our
1135 function using that demangled name. In Ada, certain functions
1136 have internally-generated parameters whose name contain uppercase
1137 characters. Encoding those name would result in those uppercase
1138 characters to become lowercase, and thus cause the symbol lookup
1142 demangle_for_lookup (const char *name, enum language lang,
1143 const char **result_name)
1145 char *demangled_name = NULL;
1146 const char *modified_name = NULL;
1147 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1149 modified_name = name;
1151 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1152 lookup, so we can always binary search. */
1153 if (lang == language_cplus)
1155 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1158 modified_name = demangled_name;
1159 make_cleanup (xfree, demangled_name);
1163 /* If we were given a non-mangled name, canonicalize it
1164 according to the language (so far only for C++). */
1165 demangled_name = cp_canonicalize_string (name);
1168 modified_name = demangled_name;
1169 make_cleanup (xfree, demangled_name);
1173 else if (lang == language_java)
1175 demangled_name = cplus_demangle (name,
1176 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1179 modified_name = demangled_name;
1180 make_cleanup (xfree, demangled_name);
1183 else if (lang == language_d)
1185 demangled_name = d_demangle (name, 0);
1188 modified_name = demangled_name;
1189 make_cleanup (xfree, demangled_name);
1192 else if (lang == language_go)
1194 demangled_name = go_demangle (name, 0);
1197 modified_name = demangled_name;
1198 make_cleanup (xfree, demangled_name);
1202 *result_name = modified_name;
1206 /* Find the definition for a specified symbol name NAME
1207 in domain DOMAIN, visible from lexical block BLOCK.
1208 Returns the struct symbol pointer, or zero if no symbol is found.
1209 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1210 NAME is a field of the current implied argument `this'. If so set
1211 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1212 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1213 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1215 /* This function (or rather its subordinates) have a bunch of loops and
1216 it would seem to be attractive to put in some QUIT's (though I'm not really
1217 sure whether it can run long enough to be really important). But there
1218 are a few calls for which it would appear to be bad news to quit
1219 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1220 that there is C++ code below which can error(), but that probably
1221 doesn't affect these calls since they are looking for a known
1222 variable and thus can probably assume it will never hit the C++
1226 lookup_symbol_in_language (const char *name, const struct block *block,
1227 const domain_enum domain, enum language lang,
1228 int *is_a_field_of_this)
1230 const char *modified_name;
1231 struct symbol *returnval;
1232 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1234 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1235 is_a_field_of_this);
1236 do_cleanups (cleanup);
1241 /* Behave like lookup_symbol_in_language, but performed with the
1242 current language. */
1245 lookup_symbol (const char *name, const struct block *block,
1246 domain_enum domain, int *is_a_field_of_this)
1248 return lookup_symbol_in_language (name, block, domain,
1249 current_language->la_language,
1250 is_a_field_of_this);
1253 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1254 found, or NULL if not found. */
1257 lookup_language_this (const struct language_defn *lang,
1258 const struct block *block)
1260 if (lang->la_name_of_this == NULL || block == NULL)
1267 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1270 block_found = block;
1273 if (BLOCK_FUNCTION (block))
1275 block = BLOCK_SUPERBLOCK (block);
1281 /* Behave like lookup_symbol except that NAME is the natural name
1282 (e.g., demangled name) of the symbol that we're looking for. */
1284 static struct symbol *
1285 lookup_symbol_aux (const char *name, const struct block *block,
1286 const domain_enum domain, enum language language,
1287 int *is_a_field_of_this)
1290 const struct language_defn *langdef;
1292 /* Make sure we do something sensible with is_a_field_of_this, since
1293 the callers that set this parameter to some non-null value will
1294 certainly use it later and expect it to be either 0 or 1.
1295 If we don't set it, the contents of is_a_field_of_this are
1297 if (is_a_field_of_this != NULL)
1298 *is_a_field_of_this = 0;
1300 /* Search specified block and its superiors. Don't search
1301 STATIC_BLOCK or GLOBAL_BLOCK. */
1303 sym = lookup_symbol_aux_local (name, block, domain, language);
1307 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1308 check to see if NAME is a field of `this'. */
1310 langdef = language_def (language);
1312 if (is_a_field_of_this != NULL)
1314 struct symbol *sym = lookup_language_this (langdef, block);
1318 struct type *t = sym->type;
1320 /* I'm not really sure that type of this can ever
1321 be typedefed; just be safe. */
1323 if (TYPE_CODE (t) == TYPE_CODE_PTR
1324 || TYPE_CODE (t) == TYPE_CODE_REF)
1325 t = TYPE_TARGET_TYPE (t);
1327 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1328 && TYPE_CODE (t) != TYPE_CODE_UNION)
1329 error (_("Internal error: `%s' is not an aggregate"),
1330 langdef->la_name_of_this);
1332 if (check_field (t, name))
1334 *is_a_field_of_this = 1;
1340 /* Now do whatever is appropriate for LANGUAGE to look
1341 up static and global variables. */
1343 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1347 /* Now search all static file-level symbols. Not strictly correct,
1348 but more useful than an error. */
1350 return lookup_static_symbol_aux (name, domain);
1353 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1354 first, then check the psymtabs. If a psymtab indicates the existence of the
1355 desired name as a file-level static, then do psymtab-to-symtab conversion on
1356 the fly and return the found symbol. */
1359 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1361 struct objfile *objfile;
1364 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1368 ALL_OBJFILES (objfile)
1370 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1378 /* Check to see if the symbol is defined in BLOCK or its superiors.
1379 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1381 static struct symbol *
1382 lookup_symbol_aux_local (const char *name, const struct block *block,
1383 const domain_enum domain,
1384 enum language language)
1387 const struct block *static_block = block_static_block (block);
1388 const char *scope = block_scope (block);
1390 /* Check if either no block is specified or it's a global block. */
1392 if (static_block == NULL)
1395 while (block != static_block)
1397 sym = lookup_symbol_aux_block (name, block, domain);
1401 if (language == language_cplus || language == language_fortran)
1403 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1409 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1411 block = BLOCK_SUPERBLOCK (block);
1414 /* We've reached the edge of the function without finding a result. */
1419 /* Look up OBJFILE to BLOCK. */
1422 lookup_objfile_from_block (const struct block *block)
1424 struct objfile *obj;
1430 block = block_global_block (block);
1431 /* Go through SYMTABS. */
1432 ALL_SYMTABS (obj, s)
1433 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1435 if (obj->separate_debug_objfile_backlink)
1436 obj = obj->separate_debug_objfile_backlink;
1444 /* Look up a symbol in a block; if found, fixup the symbol, and set
1445 block_found appropriately. */
1448 lookup_symbol_aux_block (const char *name, const struct block *block,
1449 const domain_enum domain)
1453 sym = lookup_block_symbol (block, name, domain);
1456 block_found = block;
1457 return fixup_symbol_section (sym, NULL);
1463 /* Check all global symbols in OBJFILE in symtabs and
1467 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1469 const domain_enum domain)
1471 const struct objfile *objfile;
1473 struct blockvector *bv;
1474 const struct block *block;
1477 for (objfile = main_objfile;
1479 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1481 /* Go through symtabs. */
1482 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1484 bv = BLOCKVECTOR (s);
1485 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1486 sym = lookup_block_symbol (block, name, domain);
1489 block_found = block;
1490 return fixup_symbol_section (sym, (struct objfile *)objfile);
1494 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1503 /* Check to see if the symbol is defined in one of the OBJFILE's
1504 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1505 depending on whether or not we want to search global symbols or
1508 static struct symbol *
1509 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1510 const char *name, const domain_enum domain)
1512 struct symbol *sym = NULL;
1513 struct blockvector *bv;
1514 const struct block *block;
1518 objfile->sf->qf->pre_expand_symtabs_matching (objfile, block_index,
1521 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1523 bv = BLOCKVECTOR (s);
1524 block = BLOCKVECTOR_BLOCK (bv, block_index);
1525 sym = lookup_block_symbol (block, name, domain);
1528 block_found = block;
1529 return fixup_symbol_section (sym, objfile);
1536 /* Same as lookup_symbol_aux_objfile, except that it searches all
1537 objfiles. Return the first match found. */
1539 static struct symbol *
1540 lookup_symbol_aux_symtabs (int block_index, const char *name,
1541 const domain_enum domain)
1544 struct objfile *objfile;
1546 ALL_OBJFILES (objfile)
1548 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1556 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1557 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1558 and all related objfiles. */
1560 static struct symbol *
1561 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1562 const char *linkage_name,
1565 enum language lang = current_language->la_language;
1566 const char *modified_name;
1567 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1569 struct objfile *main_objfile, *cur_objfile;
1571 if (objfile->separate_debug_objfile_backlink)
1572 main_objfile = objfile->separate_debug_objfile_backlink;
1574 main_objfile = objfile;
1576 for (cur_objfile = main_objfile;
1578 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1582 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1583 modified_name, domain);
1585 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1586 modified_name, domain);
1589 do_cleanups (cleanup);
1594 do_cleanups (cleanup);
1598 /* A helper function for lookup_symbol_aux that interfaces with the
1599 "quick" symbol table functions. */
1601 static struct symbol *
1602 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1603 const char *name, const domain_enum domain)
1605 struct symtab *symtab;
1606 struct blockvector *bv;
1607 const struct block *block;
1612 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1616 bv = BLOCKVECTOR (symtab);
1617 block = BLOCKVECTOR_BLOCK (bv, kind);
1618 sym = lookup_block_symbol (block, name, domain);
1621 /* This shouldn't be necessary, but as a last resort try
1622 looking in the statics even though the psymtab claimed
1623 the symbol was global, or vice-versa. It's possible
1624 that the psymtab gets it wrong in some cases. */
1626 /* FIXME: carlton/2002-09-30: Should we really do that?
1627 If that happens, isn't it likely to be a GDB error, in
1628 which case we should fix the GDB error rather than
1629 silently dealing with it here? So I'd vote for
1630 removing the check for the symbol in the other
1632 block = BLOCKVECTOR_BLOCK (bv,
1633 kind == GLOBAL_BLOCK ?
1634 STATIC_BLOCK : GLOBAL_BLOCK);
1635 sym = lookup_block_symbol (block, name, domain);
1638 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1639 %s may be an inlined function, or may be a template function\n\
1640 (if a template, try specifying an instantiation: %s<type>)."),
1641 kind == GLOBAL_BLOCK ? "global" : "static",
1642 name, symtab->filename, name, name);
1644 return fixup_symbol_section (sym, objfile);
1647 /* A default version of lookup_symbol_nonlocal for use by languages
1648 that can't think of anything better to do. This implements the C
1652 basic_lookup_symbol_nonlocal (const char *name,
1653 const struct block *block,
1654 const domain_enum domain)
1658 /* NOTE: carlton/2003-05-19: The comments below were written when
1659 this (or what turned into this) was part of lookup_symbol_aux;
1660 I'm much less worried about these questions now, since these
1661 decisions have turned out well, but I leave these comments here
1664 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1665 not it would be appropriate to search the current global block
1666 here as well. (That's what this code used to do before the
1667 is_a_field_of_this check was moved up.) On the one hand, it's
1668 redundant with the lookup_symbol_aux_symtabs search that happens
1669 next. On the other hand, if decode_line_1 is passed an argument
1670 like filename:var, then the user presumably wants 'var' to be
1671 searched for in filename. On the third hand, there shouldn't be
1672 multiple global variables all of which are named 'var', and it's
1673 not like decode_line_1 has ever restricted its search to only
1674 global variables in a single filename. All in all, only
1675 searching the static block here seems best: it's correct and it's
1678 /* NOTE: carlton/2002-12-05: There's also a possible performance
1679 issue here: if you usually search for global symbols in the
1680 current file, then it would be slightly better to search the
1681 current global block before searching all the symtabs. But there
1682 are other factors that have a much greater effect on performance
1683 than that one, so I don't think we should worry about that for
1686 sym = lookup_symbol_static (name, block, domain);
1690 return lookup_symbol_global (name, block, domain);
1693 /* Lookup a symbol in the static block associated to BLOCK, if there
1694 is one; do nothing if BLOCK is NULL or a global block. */
1697 lookup_symbol_static (const char *name,
1698 const struct block *block,
1699 const domain_enum domain)
1701 const struct block *static_block = block_static_block (block);
1703 if (static_block != NULL)
1704 return lookup_symbol_aux_block (name, static_block, domain);
1709 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1711 struct global_sym_lookup_data
1713 /* The name of the symbol we are searching for. */
1716 /* The domain to use for our search. */
1719 /* The field where the callback should store the symbol if found.
1720 It should be initialized to NULL before the search is started. */
1721 struct symbol *result;
1724 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1725 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1726 OBJFILE. The arguments for the search are passed via CB_DATA,
1727 which in reality is a pointer to struct global_sym_lookup_data. */
1730 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1733 struct global_sym_lookup_data *data =
1734 (struct global_sym_lookup_data *) cb_data;
1736 gdb_assert (data->result == NULL);
1738 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1739 data->name, data->domain);
1740 if (data->result == NULL)
1741 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1742 data->name, data->domain);
1744 /* If we found a match, tell the iterator to stop. Otherwise,
1746 return (data->result != NULL);
1749 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1753 lookup_symbol_global (const char *name,
1754 const struct block *block,
1755 const domain_enum domain)
1757 struct symbol *sym = NULL;
1758 struct objfile *objfile = NULL;
1759 struct global_sym_lookup_data lookup_data;
1761 /* Call library-specific lookup procedure. */
1762 objfile = lookup_objfile_from_block (block);
1763 if (objfile != NULL)
1764 sym = solib_global_lookup (objfile, name, domain);
1768 memset (&lookup_data, 0, sizeof (lookup_data));
1769 lookup_data.name = name;
1770 lookup_data.domain = domain;
1771 gdbarch_iterate_over_objfiles_in_search_order
1772 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1773 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1775 return lookup_data.result;
1779 symbol_matches_domain (enum language symbol_language,
1780 domain_enum symbol_domain,
1783 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1784 A Java class declaration also defines a typedef for the class.
1785 Similarly, any Ada type declaration implicitly defines a typedef. */
1786 if (symbol_language == language_cplus
1787 || symbol_language == language_d
1788 || symbol_language == language_java
1789 || symbol_language == language_ada)
1791 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1792 && symbol_domain == STRUCT_DOMAIN)
1795 /* For all other languages, strict match is required. */
1796 return (symbol_domain == domain);
1799 /* Look up a type named NAME in the struct_domain. The type returned
1800 must not be opaque -- i.e., must have at least one field
1804 lookup_transparent_type (const char *name)
1806 return current_language->la_lookup_transparent_type (name);
1809 /* A helper for basic_lookup_transparent_type that interfaces with the
1810 "quick" symbol table functions. */
1812 static struct type *
1813 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1816 struct symtab *symtab;
1817 struct blockvector *bv;
1818 struct block *block;
1823 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1827 bv = BLOCKVECTOR (symtab);
1828 block = BLOCKVECTOR_BLOCK (bv, kind);
1829 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1832 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1834 /* This shouldn't be necessary, but as a last resort
1835 * try looking in the 'other kind' even though the psymtab
1836 * claimed the symbol was one thing. It's possible that
1837 * the psymtab gets it wrong in some cases.
1839 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1840 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1842 /* FIXME; error is wrong in one case. */
1844 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1845 %s may be an inlined function, or may be a template function\n\
1846 (if a template, try specifying an instantiation: %s<type>)."),
1847 name, symtab->filename, name, name);
1849 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1850 return SYMBOL_TYPE (sym);
1855 /* The standard implementation of lookup_transparent_type. This code
1856 was modeled on lookup_symbol -- the parts not relevant to looking
1857 up types were just left out. In particular it's assumed here that
1858 types are available in struct_domain and only at file-static or
1862 basic_lookup_transparent_type (const char *name)
1865 struct symtab *s = NULL;
1866 struct blockvector *bv;
1867 struct objfile *objfile;
1868 struct block *block;
1871 /* Now search all the global symbols. Do the symtab's first, then
1872 check the psymtab's. If a psymtab indicates the existence
1873 of the desired name as a global, then do psymtab-to-symtab
1874 conversion on the fly and return the found symbol. */
1876 ALL_OBJFILES (objfile)
1879 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1881 name, STRUCT_DOMAIN);
1883 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1885 bv = BLOCKVECTOR (s);
1886 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1887 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1888 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1890 return SYMBOL_TYPE (sym);
1895 ALL_OBJFILES (objfile)
1897 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1902 /* Now search the static file-level symbols.
1903 Not strictly correct, but more useful than an error.
1904 Do the symtab's first, then
1905 check the psymtab's. If a psymtab indicates the existence
1906 of the desired name as a file-level static, then do psymtab-to-symtab
1907 conversion on the fly and return the found symbol. */
1909 ALL_OBJFILES (objfile)
1912 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1913 name, STRUCT_DOMAIN);
1915 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1917 bv = BLOCKVECTOR (s);
1918 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1919 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1920 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1922 return SYMBOL_TYPE (sym);
1927 ALL_OBJFILES (objfile)
1929 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1934 return (struct type *) 0;
1937 /* Find the name of the file containing main(). */
1938 /* FIXME: What about languages without main() or specially linked
1939 executables that have no main() ? */
1942 find_main_filename (void)
1944 struct objfile *objfile;
1945 char *name = main_name ();
1947 ALL_OBJFILES (objfile)
1953 result = objfile->sf->qf->find_symbol_file (objfile, name);
1960 /* Search BLOCK for symbol NAME in DOMAIN.
1962 Note that if NAME is the demangled form of a C++ symbol, we will fail
1963 to find a match during the binary search of the non-encoded names, but
1964 for now we don't worry about the slight inefficiency of looking for
1965 a match we'll never find, since it will go pretty quick. Once the
1966 binary search terminates, we drop through and do a straight linear
1967 search on the symbols. Each symbol which is marked as being a ObjC/C++
1968 symbol (language_cplus or language_objc set) has both the encoded and
1969 non-encoded names tested for a match. */
1972 lookup_block_symbol (const struct block *block, const char *name,
1973 const domain_enum domain)
1975 struct block_iterator iter;
1978 if (!BLOCK_FUNCTION (block))
1980 for (sym = block_iter_name_first (block, name, &iter);
1982 sym = block_iter_name_next (name, &iter))
1984 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1985 SYMBOL_DOMAIN (sym), domain))
1992 /* Note that parameter symbols do not always show up last in the
1993 list; this loop makes sure to take anything else other than
1994 parameter symbols first; it only uses parameter symbols as a
1995 last resort. Note that this only takes up extra computation
1998 struct symbol *sym_found = NULL;
2000 for (sym = block_iter_name_first (block, name, &iter);
2002 sym = block_iter_name_next (name, &iter))
2004 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2005 SYMBOL_DOMAIN (sym), domain))
2008 if (!SYMBOL_IS_ARGUMENT (sym))
2014 return (sym_found); /* Will be NULL if not found. */
2018 /* Iterate over the symbols named NAME, matching DOMAIN, starting with
2021 For each symbol that matches, CALLBACK is called. The symbol and
2022 DATA are passed to the callback.
2024 If CALLBACK returns zero, the iteration ends. Otherwise, the
2025 search continues. This function iterates upward through blocks.
2026 When the outermost block has been finished, the function
2030 iterate_over_symbols (const struct block *block, const char *name,
2031 const domain_enum domain,
2032 symbol_found_callback_ftype *callback,
2037 struct block_iterator iter;
2040 for (sym = block_iter_name_first (block, name, &iter);
2042 sym = block_iter_name_next (name, &iter))
2044 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2045 SYMBOL_DOMAIN (sym), domain))
2047 if (!callback (sym, data))
2052 block = BLOCK_SUPERBLOCK (block);
2056 /* Find the symtab associated with PC and SECTION. Look through the
2057 psymtabs and read in another symtab if necessary. */
2060 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2063 struct blockvector *bv;
2064 struct symtab *s = NULL;
2065 struct symtab *best_s = NULL;
2066 struct objfile *objfile;
2067 struct program_space *pspace;
2068 CORE_ADDR distance = 0;
2069 struct minimal_symbol *msymbol;
2071 pspace = current_program_space;
2073 /* If we know that this is not a text address, return failure. This is
2074 necessary because we loop based on the block's high and low code
2075 addresses, which do not include the data ranges, and because
2076 we call find_pc_sect_psymtab which has a similar restriction based
2077 on the partial_symtab's texthigh and textlow. */
2078 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2080 && (MSYMBOL_TYPE (msymbol) == mst_data
2081 || MSYMBOL_TYPE (msymbol) == mst_bss
2082 || MSYMBOL_TYPE (msymbol) == mst_abs
2083 || MSYMBOL_TYPE (msymbol) == mst_file_data
2084 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2087 /* Search all symtabs for the one whose file contains our address, and which
2088 is the smallest of all the ones containing the address. This is designed
2089 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2090 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2091 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2093 This happens for native ecoff format, where code from included files
2094 gets its own symtab. The symtab for the included file should have
2095 been read in already via the dependency mechanism.
2096 It might be swifter to create several symtabs with the same name
2097 like xcoff does (I'm not sure).
2099 It also happens for objfiles that have their functions reordered.
2100 For these, the symtab we are looking for is not necessarily read in. */
2102 ALL_PRIMARY_SYMTABS (objfile, s)
2104 bv = BLOCKVECTOR (s);
2105 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2107 if (BLOCK_START (b) <= pc
2108 && BLOCK_END (b) > pc
2110 || BLOCK_END (b) - BLOCK_START (b) < distance))
2112 /* For an objfile that has its functions reordered,
2113 find_pc_psymtab will find the proper partial symbol table
2114 and we simply return its corresponding symtab. */
2115 /* In order to better support objfiles that contain both
2116 stabs and coff debugging info, we continue on if a psymtab
2118 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2120 struct symtab *result;
2123 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2132 struct block_iterator iter;
2133 struct symbol *sym = NULL;
2135 ALL_BLOCK_SYMBOLS (b, iter, sym)
2137 fixup_symbol_section (sym, objfile);
2138 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2142 continue; /* No symbol in this symtab matches
2145 distance = BLOCK_END (b) - BLOCK_START (b);
2153 ALL_OBJFILES (objfile)
2155 struct symtab *result;
2159 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2170 /* Find the symtab associated with PC. Look through the psymtabs and read
2171 in another symtab if necessary. Backward compatibility, no section. */
2174 find_pc_symtab (CORE_ADDR pc)
2176 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2180 /* Find the source file and line number for a given PC value and SECTION.
2181 Return a structure containing a symtab pointer, a line number,
2182 and a pc range for the entire source line.
2183 The value's .pc field is NOT the specified pc.
2184 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2185 use the line that ends there. Otherwise, in that case, the line
2186 that begins there is used. */
2188 /* The big complication here is that a line may start in one file, and end just
2189 before the start of another file. This usually occurs when you #include
2190 code in the middle of a subroutine. To properly find the end of a line's PC
2191 range, we must search all symtabs associated with this compilation unit, and
2192 find the one whose first PC is closer than that of the next line in this
2195 /* If it's worth the effort, we could be using a binary search. */
2197 struct symtab_and_line
2198 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2201 struct linetable *l;
2204 struct linetable_entry *item;
2205 struct symtab_and_line val;
2206 struct blockvector *bv;
2207 struct minimal_symbol *msymbol;
2208 struct minimal_symbol *mfunsym;
2209 struct objfile *objfile;
2211 /* Info on best line seen so far, and where it starts, and its file. */
2213 struct linetable_entry *best = NULL;
2214 CORE_ADDR best_end = 0;
2215 struct symtab *best_symtab = 0;
2217 /* Store here the first line number
2218 of a file which contains the line at the smallest pc after PC.
2219 If we don't find a line whose range contains PC,
2220 we will use a line one less than this,
2221 with a range from the start of that file to the first line's pc. */
2222 struct linetable_entry *alt = NULL;
2223 struct symtab *alt_symtab = 0;
2225 /* Info on best line seen in this file. */
2227 struct linetable_entry *prev;
2229 /* If this pc is not from the current frame,
2230 it is the address of the end of a call instruction.
2231 Quite likely that is the start of the following statement.
2232 But what we want is the statement containing the instruction.
2233 Fudge the pc to make sure we get that. */
2235 init_sal (&val); /* initialize to zeroes */
2237 val.pspace = current_program_space;
2239 /* It's tempting to assume that, if we can't find debugging info for
2240 any function enclosing PC, that we shouldn't search for line
2241 number info, either. However, GAS can emit line number info for
2242 assembly files --- very helpful when debugging hand-written
2243 assembly code. In such a case, we'd have no debug info for the
2244 function, but we would have line info. */
2249 /* elz: added this because this function returned the wrong
2250 information if the pc belongs to a stub (import/export)
2251 to call a shlib function. This stub would be anywhere between
2252 two functions in the target, and the line info was erroneously
2253 taken to be the one of the line before the pc. */
2255 /* RT: Further explanation:
2257 * We have stubs (trampolines) inserted between procedures.
2259 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2260 * exists in the main image.
2262 * In the minimal symbol table, we have a bunch of symbols
2263 * sorted by start address. The stubs are marked as "trampoline",
2264 * the others appear as text. E.g.:
2266 * Minimal symbol table for main image
2267 * main: code for main (text symbol)
2268 * shr1: stub (trampoline symbol)
2269 * foo: code for foo (text symbol)
2271 * Minimal symbol table for "shr1" image:
2273 * shr1: code for shr1 (text symbol)
2276 * So the code below is trying to detect if we are in the stub
2277 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2278 * and if found, do the symbolization from the real-code address
2279 * rather than the stub address.
2281 * Assumptions being made about the minimal symbol table:
2282 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2283 * if we're really in the trampoline.s If we're beyond it (say
2284 * we're in "foo" in the above example), it'll have a closer
2285 * symbol (the "foo" text symbol for example) and will not
2286 * return the trampoline.
2287 * 2. lookup_minimal_symbol_text() will find a real text symbol
2288 * corresponding to the trampoline, and whose address will
2289 * be different than the trampoline address. I put in a sanity
2290 * check for the address being the same, to avoid an
2291 * infinite recursion.
2293 msymbol = lookup_minimal_symbol_by_pc (pc);
2294 if (msymbol != NULL)
2295 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2297 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2299 if (mfunsym == NULL)
2300 /* I eliminated this warning since it is coming out
2301 * in the following situation:
2302 * gdb shmain // test program with shared libraries
2303 * (gdb) break shr1 // function in shared lib
2304 * Warning: In stub for ...
2305 * In the above situation, the shared lib is not loaded yet,
2306 * so of course we can't find the real func/line info,
2307 * but the "break" still works, and the warning is annoying.
2308 * So I commented out the warning. RT */
2309 /* warning ("In stub for %s; unable to find real function/line info",
2310 SYMBOL_LINKAGE_NAME (msymbol)); */
2313 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2314 == SYMBOL_VALUE_ADDRESS (msymbol))
2315 /* Avoid infinite recursion */
2316 /* See above comment about why warning is commented out. */
2317 /* warning ("In stub for %s; unable to find real function/line info",
2318 SYMBOL_LINKAGE_NAME (msymbol)); */
2322 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2326 s = find_pc_sect_symtab (pc, section);
2329 /* If no symbol information, return previous pc. */
2336 bv = BLOCKVECTOR (s);
2337 objfile = s->objfile;
2339 /* Look at all the symtabs that share this blockvector.
2340 They all have the same apriori range, that we found was right;
2341 but they have different line tables. */
2343 ALL_OBJFILE_SYMTABS (objfile, s)
2345 if (BLOCKVECTOR (s) != bv)
2348 /* Find the best line in this symtab. */
2355 /* I think len can be zero if the symtab lacks line numbers
2356 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2357 I'm not sure which, and maybe it depends on the symbol
2363 item = l->item; /* Get first line info. */
2365 /* Is this file's first line closer than the first lines of other files?
2366 If so, record this file, and its first line, as best alternate. */
2367 if (item->pc > pc && (!alt || item->pc < alt->pc))
2373 for (i = 0; i < len; i++, item++)
2375 /* Leave prev pointing to the linetable entry for the last line
2376 that started at or before PC. */
2383 /* At this point, prev points at the line whose start addr is <= pc, and
2384 item points at the next line. If we ran off the end of the linetable
2385 (pc >= start of the last line), then prev == item. If pc < start of
2386 the first line, prev will not be set. */
2388 /* Is this file's best line closer than the best in the other files?
2389 If so, record this file, and its best line, as best so far. Don't
2390 save prev if it represents the end of a function (i.e. line number
2391 0) instead of a real line. */
2393 if (prev && prev->line && (!best || prev->pc > best->pc))
2398 /* Discard BEST_END if it's before the PC of the current BEST. */
2399 if (best_end <= best->pc)
2403 /* If another line (denoted by ITEM) is in the linetable and its
2404 PC is after BEST's PC, but before the current BEST_END, then
2405 use ITEM's PC as the new best_end. */
2406 if (best && i < len && item->pc > best->pc
2407 && (best_end == 0 || best_end > item->pc))
2408 best_end = item->pc;
2413 /* If we didn't find any line number info, just return zeros.
2414 We used to return alt->line - 1 here, but that could be
2415 anywhere; if we don't have line number info for this PC,
2416 don't make some up. */
2419 else if (best->line == 0)
2421 /* If our best fit is in a range of PC's for which no line
2422 number info is available (line number is zero) then we didn't
2423 find any valid line information. */
2428 val.symtab = best_symtab;
2429 val.line = best->line;
2431 if (best_end && (!alt || best_end < alt->pc))
2436 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2438 val.section = section;
2442 /* Backward compatibility (no section). */
2444 struct symtab_and_line
2445 find_pc_line (CORE_ADDR pc, int notcurrent)
2447 struct obj_section *section;
2449 section = find_pc_overlay (pc);
2450 if (pc_in_unmapped_range (pc, section))
2451 pc = overlay_mapped_address (pc, section);
2452 return find_pc_sect_line (pc, section, notcurrent);
2455 /* Find line number LINE in any symtab whose name is the same as
2458 If found, return the symtab that contains the linetable in which it was
2459 found, set *INDEX to the index in the linetable of the best entry
2460 found, and set *EXACT_MATCH nonzero if the value returned is an
2463 If not found, return NULL. */
2466 find_line_symtab (struct symtab *symtab, int line,
2467 int *index, int *exact_match)
2469 int exact = 0; /* Initialized here to avoid a compiler warning. */
2471 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2475 struct linetable *best_linetable;
2476 struct symtab *best_symtab;
2478 /* First try looking it up in the given symtab. */
2479 best_linetable = LINETABLE (symtab);
2480 best_symtab = symtab;
2481 best_index = find_line_common (best_linetable, line, &exact, 0);
2482 if (best_index < 0 || !exact)
2484 /* Didn't find an exact match. So we better keep looking for
2485 another symtab with the same name. In the case of xcoff,
2486 multiple csects for one source file (produced by IBM's FORTRAN
2487 compiler) produce multiple symtabs (this is unavoidable
2488 assuming csects can be at arbitrary places in memory and that
2489 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2491 /* BEST is the smallest linenumber > LINE so far seen,
2492 or 0 if none has been seen so far.
2493 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2496 struct objfile *objfile;
2499 if (best_index >= 0)
2500 best = best_linetable->item[best_index].line;
2504 ALL_OBJFILES (objfile)
2507 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2511 /* Get symbol full file name if possible. */
2512 symtab_to_fullname (symtab);
2514 ALL_SYMTABS (objfile, s)
2516 struct linetable *l;
2519 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2521 if (symtab->fullname != NULL
2522 && symtab_to_fullname (s) != NULL
2523 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2526 ind = find_line_common (l, line, &exact, 0);
2536 if (best == 0 || l->item[ind].line < best)
2538 best = l->item[ind].line;
2551 *index = best_index;
2553 *exact_match = exact;
2558 /* Given SYMTAB, returns all the PCs function in the symtab that
2559 exactly match LINE. Returns NULL if there are no exact matches,
2560 but updates BEST_ITEM in this case. */
2563 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2564 struct linetable_entry **best_item)
2567 struct symbol *previous_function = NULL;
2568 VEC (CORE_ADDR) *result = NULL;
2570 /* First, collect all the PCs that are at this line. */
2576 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2582 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2584 if (*best_item == NULL || item->line < (*best_item)->line)
2590 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2598 /* Set the PC value for a given source file and line number and return true.
2599 Returns zero for invalid line number (and sets the PC to 0).
2600 The source file is specified with a struct symtab. */
2603 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2605 struct linetable *l;
2612 symtab = find_line_symtab (symtab, line, &ind, NULL);
2615 l = LINETABLE (symtab);
2616 *pc = l->item[ind].pc;
2623 /* Find the range of pc values in a line.
2624 Store the starting pc of the line into *STARTPTR
2625 and the ending pc (start of next line) into *ENDPTR.
2626 Returns 1 to indicate success.
2627 Returns 0 if could not find the specified line. */
2630 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2633 CORE_ADDR startaddr;
2634 struct symtab_and_line found_sal;
2637 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2640 /* This whole function is based on address. For example, if line 10 has
2641 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2642 "info line *0x123" should say the line goes from 0x100 to 0x200
2643 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2644 This also insures that we never give a range like "starts at 0x134
2645 and ends at 0x12c". */
2647 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2648 if (found_sal.line != sal.line)
2650 /* The specified line (sal) has zero bytes. */
2651 *startptr = found_sal.pc;
2652 *endptr = found_sal.pc;
2656 *startptr = found_sal.pc;
2657 *endptr = found_sal.end;
2662 /* Given a line table and a line number, return the index into the line
2663 table for the pc of the nearest line whose number is >= the specified one.
2664 Return -1 if none is found. The value is >= 0 if it is an index.
2665 START is the index at which to start searching the line table.
2667 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2670 find_line_common (struct linetable *l, int lineno,
2671 int *exact_match, int start)
2676 /* BEST is the smallest linenumber > LINENO so far seen,
2677 or 0 if none has been seen so far.
2678 BEST_INDEX identifies the item for it. */
2680 int best_index = -1;
2691 for (i = start; i < len; i++)
2693 struct linetable_entry *item = &(l->item[i]);
2695 if (item->line == lineno)
2697 /* Return the first (lowest address) entry which matches. */
2702 if (item->line > lineno && (best == 0 || item->line < best))
2709 /* If we got here, we didn't get an exact match. */
2714 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2716 struct symtab_and_line sal;
2718 sal = find_pc_line (pc, 0);
2721 return sal.symtab != 0;
2724 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2725 address for that function that has an entry in SYMTAB's line info
2726 table. If such an entry cannot be found, return FUNC_ADDR
2730 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2732 CORE_ADDR func_start, func_end;
2733 struct linetable *l;
2736 /* Give up if this symbol has no lineinfo table. */
2737 l = LINETABLE (symtab);
2741 /* Get the range for the function's PC values, or give up if we
2742 cannot, for some reason. */
2743 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2746 /* Linetable entries are ordered by PC values, see the commentary in
2747 symtab.h where `struct linetable' is defined. Thus, the first
2748 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2749 address we are looking for. */
2750 for (i = 0; i < l->nitems; i++)
2752 struct linetable_entry *item = &(l->item[i]);
2754 /* Don't use line numbers of zero, they mark special entries in
2755 the table. See the commentary on symtab.h before the
2756 definition of struct linetable. */
2757 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2764 /* Given a function symbol SYM, find the symtab and line for the start
2766 If the argument FUNFIRSTLINE is nonzero, we want the first line
2767 of real code inside the function. */
2769 struct symtab_and_line
2770 find_function_start_sal (struct symbol *sym, int funfirstline)
2772 struct symtab_and_line sal;
2774 fixup_symbol_section (sym, NULL);
2775 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2776 SYMBOL_OBJ_SECTION (sym), 0);
2778 /* We always should have a line for the function start address.
2779 If we don't, something is odd. Create a plain SAL refering
2780 just the PC and hope that skip_prologue_sal (if requested)
2781 can find a line number for after the prologue. */
2782 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2785 sal.pspace = current_program_space;
2786 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2787 sal.section = SYMBOL_OBJ_SECTION (sym);
2791 skip_prologue_sal (&sal);
2796 /* Adjust SAL to the first instruction past the function prologue.
2797 If the PC was explicitly specified, the SAL is not changed.
2798 If the line number was explicitly specified, at most the SAL's PC
2799 is updated. If SAL is already past the prologue, then do nothing. */
2802 skip_prologue_sal (struct symtab_and_line *sal)
2805 struct symtab_and_line start_sal;
2806 struct cleanup *old_chain;
2807 CORE_ADDR pc, saved_pc;
2808 struct obj_section *section;
2810 struct objfile *objfile;
2811 struct gdbarch *gdbarch;
2812 struct block *b, *function_block;
2813 int force_skip, skip;
2815 /* Do not change the SAL if PC was specified explicitly. */
2816 if (sal->explicit_pc)
2819 old_chain = save_current_space_and_thread ();
2820 switch_to_program_space_and_thread (sal->pspace);
2822 sym = find_pc_sect_function (sal->pc, sal->section);
2825 fixup_symbol_section (sym, NULL);
2827 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2828 section = SYMBOL_OBJ_SECTION (sym);
2829 name = SYMBOL_LINKAGE_NAME (sym);
2830 objfile = SYMBOL_SYMTAB (sym)->objfile;
2834 struct minimal_symbol *msymbol
2835 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2837 if (msymbol == NULL)
2839 do_cleanups (old_chain);
2843 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2844 section = SYMBOL_OBJ_SECTION (msymbol);
2845 name = SYMBOL_LINKAGE_NAME (msymbol);
2846 objfile = msymbol_objfile (msymbol);
2849 gdbarch = get_objfile_arch (objfile);
2851 /* Process the prologue in two passes. In the first pass try to skip the
2852 prologue (SKIP is true) and verify there is a real need for it (indicated
2853 by FORCE_SKIP). If no such reason was found run a second pass where the
2854 prologue is not skipped (SKIP is false). */
2859 /* Be conservative - allow direct PC (without skipping prologue) only if we
2860 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2861 have to be set by the caller so we use SYM instead. */
2862 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2870 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2871 so that gdbarch_skip_prologue has something unique to work on. */
2872 if (section_is_overlay (section) && !section_is_mapped (section))
2873 pc = overlay_unmapped_address (pc, section);
2875 /* Skip "first line" of function (which is actually its prologue). */
2876 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2878 pc = gdbarch_skip_prologue (gdbarch, pc);
2880 /* For overlays, map pc back into its mapped VMA range. */
2881 pc = overlay_mapped_address (pc, section);
2883 /* Calculate line number. */
2884 start_sal = find_pc_sect_line (pc, section, 0);
2886 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2887 line is still part of the same function. */
2888 if (skip && start_sal.pc != pc
2889 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2890 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2891 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2892 == lookup_minimal_symbol_by_pc_section (pc, section))))
2894 /* First pc of next line */
2896 /* Recalculate the line number (might not be N+1). */
2897 start_sal = find_pc_sect_line (pc, section, 0);
2900 /* On targets with executable formats that don't have a concept of
2901 constructors (ELF with .init has, PE doesn't), gcc emits a call
2902 to `__main' in `main' between the prologue and before user
2904 if (gdbarch_skip_main_prologue_p (gdbarch)
2905 && name && strcmp_iw (name, "main") == 0)
2907 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2908 /* Recalculate the line number (might not be N+1). */
2909 start_sal = find_pc_sect_line (pc, section, 0);
2913 while (!force_skip && skip--);
2915 /* If we still don't have a valid source line, try to find the first
2916 PC in the lineinfo table that belongs to the same function. This
2917 happens with COFF debug info, which does not seem to have an
2918 entry in lineinfo table for the code after the prologue which has
2919 no direct relation to source. For example, this was found to be
2920 the case with the DJGPP target using "gcc -gcoff" when the
2921 compiler inserted code after the prologue to make sure the stack
2923 if (!force_skip && sym && start_sal.symtab == NULL)
2925 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2926 /* Recalculate the line number. */
2927 start_sal = find_pc_sect_line (pc, section, 0);
2930 do_cleanups (old_chain);
2932 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2933 forward SAL to the end of the prologue. */
2938 sal->section = section;
2940 /* Unless the explicit_line flag was set, update the SAL line
2941 and symtab to correspond to the modified PC location. */
2942 if (sal->explicit_line)
2945 sal->symtab = start_sal.symtab;
2946 sal->line = start_sal.line;
2947 sal->end = start_sal.end;
2949 /* Check if we are now inside an inlined function. If we can,
2950 use the call site of the function instead. */
2951 b = block_for_pc_sect (sal->pc, sal->section);
2952 function_block = NULL;
2955 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2957 else if (BLOCK_FUNCTION (b) != NULL)
2959 b = BLOCK_SUPERBLOCK (b);
2961 if (function_block != NULL
2962 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2964 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2965 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2969 /* If P is of the form "operator[ \t]+..." where `...' is
2970 some legitimate operator text, return a pointer to the
2971 beginning of the substring of the operator text.
2972 Otherwise, return "". */
2975 operator_chars (char *p, char **end)
2978 if (strncmp (p, "operator", 8))
2982 /* Don't get faked out by `operator' being part of a longer
2984 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2987 /* Allow some whitespace between `operator' and the operator symbol. */
2988 while (*p == ' ' || *p == '\t')
2991 /* Recognize 'operator TYPENAME'. */
2993 if (isalpha (*p) || *p == '_' || *p == '$')
2997 while (isalnum (*q) || *q == '_' || *q == '$')
3006 case '\\': /* regexp quoting */
3009 if (p[2] == '=') /* 'operator\*=' */
3011 else /* 'operator\*' */
3015 else if (p[1] == '[')
3018 error (_("mismatched quoting on brackets, "
3019 "try 'operator\\[\\]'"));
3020 else if (p[2] == '\\' && p[3] == ']')
3022 *end = p + 4; /* 'operator\[\]' */
3026 error (_("nothing is allowed between '[' and ']'"));
3030 /* Gratuitous qoute: skip it and move on. */
3052 if (p[0] == '-' && p[1] == '>')
3054 /* Struct pointer member operator 'operator->'. */
3057 *end = p + 3; /* 'operator->*' */
3060 else if (p[2] == '\\')
3062 *end = p + 4; /* Hopefully 'operator->\*' */
3067 *end = p + 2; /* 'operator->' */
3071 if (p[1] == '=' || p[1] == p[0])
3082 error (_("`operator ()' must be specified "
3083 "without whitespace in `()'"));
3088 error (_("`operator ?:' must be specified "
3089 "without whitespace in `?:'"));
3094 error (_("`operator []' must be specified "
3095 "without whitespace in `[]'"));
3099 error (_("`operator %s' not supported"), p);
3108 /* Cache to watch for file names already seen by filename_seen. */
3110 struct filename_seen_cache
3112 /* Table of files seen so far. */
3114 /* Initial size of the table. It automagically grows from here. */
3115 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3118 /* filename_seen_cache constructor. */
3120 static struct filename_seen_cache *
3121 create_filename_seen_cache (void)
3123 struct filename_seen_cache *cache;
3125 cache = XNEW (struct filename_seen_cache);
3126 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3127 filename_hash, filename_eq,
3128 NULL, xcalloc, xfree);
3133 /* Empty the cache, but do not delete it. */
3136 clear_filename_seen_cache (struct filename_seen_cache *cache)
3138 htab_empty (cache->tab);
3141 /* filename_seen_cache destructor.
3142 This takes a void * argument as it is generally used as a cleanup. */
3145 delete_filename_seen_cache (void *ptr)
3147 struct filename_seen_cache *cache = ptr;
3149 htab_delete (cache->tab);
3153 /* If FILE is not already in the table of files in CACHE, return zero;
3154 otherwise return non-zero. Optionally add FILE to the table if ADD
3157 NOTE: We don't manage space for FILE, we assume FILE lives as long
3158 as the caller needs. */
3161 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3165 /* Is FILE in tab? */
3166 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3170 /* No; maybe add it to tab. */
3172 *slot = (char *) file;
3177 /* Data structure to maintain printing state for output_source_filename. */
3179 struct output_source_filename_data
3181 /* Cache of what we've seen so far. */
3182 struct filename_seen_cache *filename_seen_cache;
3184 /* Flag of whether we're printing the first one. */
3188 /* Slave routine for sources_info. Force line breaks at ,'s.
3189 NAME is the name to print.
3190 DATA contains the state for printing and watching for duplicates. */
3193 output_source_filename (const char *name,
3194 struct output_source_filename_data *data)
3196 /* Since a single source file can result in several partial symbol
3197 tables, we need to avoid printing it more than once. Note: if
3198 some of the psymtabs are read in and some are not, it gets
3199 printed both under "Source files for which symbols have been
3200 read" and "Source files for which symbols will be read in on
3201 demand". I consider this a reasonable way to deal with the
3202 situation. I'm not sure whether this can also happen for
3203 symtabs; it doesn't hurt to check. */
3205 /* Was NAME already seen? */
3206 if (filename_seen (data->filename_seen_cache, name, 1))
3208 /* Yes; don't print it again. */
3212 /* No; print it and reset *FIRST. */
3214 printf_filtered (", ");
3218 fputs_filtered (name, gdb_stdout);
3221 /* A callback for map_partial_symbol_filenames. */
3224 output_partial_symbol_filename (const char *filename, const char *fullname,
3227 output_source_filename (fullname ? fullname : filename, data);
3231 sources_info (char *ignore, int from_tty)
3234 struct objfile *objfile;
3235 struct output_source_filename_data data;
3236 struct cleanup *cleanups;
3238 if (!have_full_symbols () && !have_partial_symbols ())
3240 error (_("No symbol table is loaded. Use the \"file\" command."));
3243 data.filename_seen_cache = create_filename_seen_cache ();
3244 cleanups = make_cleanup (delete_filename_seen_cache,
3245 data.filename_seen_cache);
3247 printf_filtered ("Source files for which symbols have been read in:\n\n");
3250 ALL_SYMTABS (objfile, s)
3252 const char *fullname = symtab_to_fullname (s);
3254 output_source_filename (fullname ? fullname : s->filename, &data);
3256 printf_filtered ("\n\n");
3258 printf_filtered ("Source files for which symbols "
3259 "will be read in on demand:\n\n");
3261 clear_filename_seen_cache (data.filename_seen_cache);
3263 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3264 1 /*need_fullname*/);
3265 printf_filtered ("\n");
3267 do_cleanups (cleanups);
3271 file_matches (const char *file, char *files[], int nfiles)
3275 if (file != NULL && nfiles != 0)
3277 for (i = 0; i < nfiles; i++)
3279 if (filename_cmp (files[i], lbasename (file)) == 0)
3283 else if (nfiles == 0)
3288 /* Free any memory associated with a search. */
3291 free_search_symbols (struct symbol_search *symbols)
3293 struct symbol_search *p;
3294 struct symbol_search *next;
3296 for (p = symbols; p != NULL; p = next)
3304 do_free_search_symbols_cleanup (void *symbols)
3306 free_search_symbols (symbols);
3310 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3312 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3315 /* Helper function for sort_search_symbols and qsort. Can only
3316 sort symbols, not minimal symbols. */
3319 compare_search_syms (const void *sa, const void *sb)
3321 struct symbol_search **sym_a = (struct symbol_search **) sa;
3322 struct symbol_search **sym_b = (struct symbol_search **) sb;
3324 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3325 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3328 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3329 prevtail where it is, but update its next pointer to point to
3330 the first of the sorted symbols. */
3332 static struct symbol_search *
3333 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3335 struct symbol_search **symbols, *symp, *old_next;
3338 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3340 symp = prevtail->next;
3341 for (i = 0; i < nfound; i++)
3346 /* Generally NULL. */
3349 qsort (symbols, nfound, sizeof (struct symbol_search *),
3350 compare_search_syms);
3353 for (i = 0; i < nfound; i++)
3355 symp->next = symbols[i];
3358 symp->next = old_next;
3364 /* An object of this type is passed as the user_data to the
3365 expand_symtabs_matching method. */
3366 struct search_symbols_data
3371 /* It is true if PREG contains valid data, false otherwise. */
3372 unsigned preg_p : 1;
3376 /* A callback for expand_symtabs_matching. */
3379 search_symbols_file_matches (const char *filename, void *user_data)
3381 struct search_symbols_data *data = user_data;
3383 return file_matches (filename, data->files, data->nfiles);
3386 /* A callback for expand_symtabs_matching. */
3389 search_symbols_name_matches (const char *symname, void *user_data)
3391 struct search_symbols_data *data = user_data;
3393 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3396 /* Search the symbol table for matches to the regular expression REGEXP,
3397 returning the results in *MATCHES.
3399 Only symbols of KIND are searched:
3400 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3401 and constants (enums)
3402 FUNCTIONS_DOMAIN - search all functions
3403 TYPES_DOMAIN - search all type names
3404 ALL_DOMAIN - an internal error for this function
3406 free_search_symbols should be called when *MATCHES is no longer needed.
3408 The results are sorted locally; each symtab's global and static blocks are
3409 separately alphabetized. */
3412 search_symbols (char *regexp, enum search_domain kind,
3413 int nfiles, char *files[],
3414 struct symbol_search **matches)
3417 struct blockvector *bv;
3420 struct block_iterator iter;
3422 struct objfile *objfile;
3423 struct minimal_symbol *msymbol;
3425 static const enum minimal_symbol_type types[]
3426 = {mst_data, mst_text, mst_abs};
3427 static const enum minimal_symbol_type types2[]
3428 = {mst_bss, mst_file_text, mst_abs};
3429 static const enum minimal_symbol_type types3[]
3430 = {mst_file_data, mst_solib_trampoline, mst_abs};
3431 static const enum minimal_symbol_type types4[]
3432 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3433 enum minimal_symbol_type ourtype;
3434 enum minimal_symbol_type ourtype2;
3435 enum minimal_symbol_type ourtype3;
3436 enum minimal_symbol_type ourtype4;
3437 struct symbol_search *sr;
3438 struct symbol_search *psr;
3439 struct symbol_search *tail;
3440 struct search_symbols_data datum;
3442 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3443 CLEANUP_CHAIN is freed only in the case of an error. */
3444 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3445 struct cleanup *retval_chain;
3447 gdb_assert (kind <= TYPES_DOMAIN);
3449 ourtype = types[kind];
3450 ourtype2 = types2[kind];
3451 ourtype3 = types3[kind];
3452 ourtype4 = types4[kind];
3454 sr = *matches = NULL;
3460 /* Make sure spacing is right for C++ operators.
3461 This is just a courtesy to make the matching less sensitive
3462 to how many spaces the user leaves between 'operator'
3463 and <TYPENAME> or <OPERATOR>. */
3465 char *opname = operator_chars (regexp, &opend);
3470 int fix = -1; /* -1 means ok; otherwise number of
3473 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3475 /* There should 1 space between 'operator' and 'TYPENAME'. */
3476 if (opname[-1] != ' ' || opname[-2] == ' ')
3481 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3482 if (opname[-1] == ' ')
3485 /* If wrong number of spaces, fix it. */
3488 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3490 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3495 errcode = regcomp (&datum.preg, regexp,
3496 REG_NOSUB | (case_sensitivity == case_sensitive_off
3500 char *err = get_regcomp_error (errcode, &datum.preg);
3502 make_cleanup (xfree, err);
3503 error (_("Invalid regexp (%s): %s"), err, regexp);
3506 make_regfree_cleanup (&datum.preg);
3509 /* Search through the partial symtabs *first* for all symbols
3510 matching the regexp. That way we don't have to reproduce all of
3511 the machinery below. */
3513 datum.nfiles = nfiles;
3514 datum.files = files;
3515 ALL_OBJFILES (objfile)
3518 objfile->sf->qf->expand_symtabs_matching (objfile,
3521 : search_symbols_file_matches),
3522 search_symbols_name_matches,
3527 retval_chain = old_chain;
3529 /* Here, we search through the minimal symbol tables for functions
3530 and variables that match, and force their symbols to be read.
3531 This is in particular necessary for demangled variable names,
3532 which are no longer put into the partial symbol tables.
3533 The symbol will then be found during the scan of symtabs below.
3535 For functions, find_pc_symtab should succeed if we have debug info
3536 for the function, for variables we have to call
3537 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3539 If the lookup fails, set found_misc so that we will rescan to print
3540 any matching symbols without debug info.
3541 We only search the objfile the msymbol came from, we no longer search
3542 all objfiles. In large programs (1000s of shared libs) searching all
3543 objfiles is not worth the pain. */
3545 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3547 ALL_MSYMBOLS (objfile, msymbol)
3551 if (msymbol->created_by_gdb)
3554 if (MSYMBOL_TYPE (msymbol) == ourtype
3555 || MSYMBOL_TYPE (msymbol) == ourtype2
3556 || MSYMBOL_TYPE (msymbol) == ourtype3
3557 || MSYMBOL_TYPE (msymbol) == ourtype4)
3560 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3563 /* Note: An important side-effect of these lookup functions
3564 is to expand the symbol table if msymbol is found, for the
3565 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3566 if (kind == FUNCTIONS_DOMAIN
3567 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3568 : (lookup_symbol_in_objfile_from_linkage_name
3569 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3577 ALL_PRIMARY_SYMTABS (objfile, s)
3579 bv = BLOCKVECTOR (s);
3580 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3582 struct symbol_search *prevtail = tail;
3585 b = BLOCKVECTOR_BLOCK (bv, i);
3586 ALL_BLOCK_SYMBOLS (b, iter, sym)
3588 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3592 if (file_matches (real_symtab->filename, files, nfiles)
3594 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3596 && ((kind == VARIABLES_DOMAIN
3597 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3598 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3599 && SYMBOL_CLASS (sym) != LOC_BLOCK
3600 /* LOC_CONST can be used for more than just enums,
3601 e.g., c++ static const members.
3602 We only want to skip enums here. */
3603 && !(SYMBOL_CLASS (sym) == LOC_CONST
3604 && TYPE_CODE (SYMBOL_TYPE (sym))
3606 || (kind == FUNCTIONS_DOMAIN
3607 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3608 || (kind == TYPES_DOMAIN
3609 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3612 psr = (struct symbol_search *)
3613 xmalloc (sizeof (struct symbol_search));
3615 psr->symtab = real_symtab;
3617 psr->msymbol = NULL;
3629 if (prevtail == NULL)
3631 struct symbol_search dummy;
3634 tail = sort_search_symbols (&dummy, nfound);
3637 make_cleanup_free_search_symbols (sr);
3640 tail = sort_search_symbols (prevtail, nfound);
3645 /* If there are no eyes, avoid all contact. I mean, if there are
3646 no debug symbols, then print directly from the msymbol_vector. */
3648 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3650 ALL_MSYMBOLS (objfile, msymbol)
3654 if (msymbol->created_by_gdb)
3657 if (MSYMBOL_TYPE (msymbol) == ourtype
3658 || MSYMBOL_TYPE (msymbol) == ourtype2
3659 || MSYMBOL_TYPE (msymbol) == ourtype3
3660 || MSYMBOL_TYPE (msymbol) == ourtype4)
3663 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3666 /* For functions we can do a quick check of whether the
3667 symbol might be found via find_pc_symtab. */
3668 if (kind != FUNCTIONS_DOMAIN
3669 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3671 if (lookup_symbol_in_objfile_from_linkage_name
3672 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3676 psr = (struct symbol_search *)
3677 xmalloc (sizeof (struct symbol_search));
3679 psr->msymbol = msymbol;
3686 make_cleanup_free_search_symbols (sr);
3698 discard_cleanups (retval_chain);
3699 do_cleanups (old_chain);
3703 /* Helper function for symtab_symbol_info, this function uses
3704 the data returned from search_symbols() to print information
3705 regarding the match to gdb_stdout. */
3708 print_symbol_info (enum search_domain kind,
3709 struct symtab *s, struct symbol *sym,
3710 int block, char *last)
3712 if (last == NULL || filename_cmp (last, s->filename) != 0)
3714 fputs_filtered ("\nFile ", gdb_stdout);
3715 fputs_filtered (s->filename, gdb_stdout);
3716 fputs_filtered (":\n", gdb_stdout);
3719 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3720 printf_filtered ("static ");
3722 /* Typedef that is not a C++ class. */
3723 if (kind == TYPES_DOMAIN
3724 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3725 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3726 /* variable, func, or typedef-that-is-c++-class. */
3727 else if (kind < TYPES_DOMAIN
3728 || (kind == TYPES_DOMAIN
3729 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3731 type_print (SYMBOL_TYPE (sym),
3732 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3733 ? "" : SYMBOL_PRINT_NAME (sym)),
3736 printf_filtered (";\n");
3740 /* This help function for symtab_symbol_info() prints information
3741 for non-debugging symbols to gdb_stdout. */
3744 print_msymbol_info (struct minimal_symbol *msymbol)
3746 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3749 if (gdbarch_addr_bit (gdbarch) <= 32)
3750 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3751 & (CORE_ADDR) 0xffffffff,
3754 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3756 printf_filtered ("%s %s\n",
3757 tmp, SYMBOL_PRINT_NAME (msymbol));
3760 /* This is the guts of the commands "info functions", "info types", and
3761 "info variables". It calls search_symbols to find all matches and then
3762 print_[m]symbol_info to print out some useful information about the
3766 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3768 static const char * const classnames[] =
3769 {"variable", "function", "type"};
3770 struct symbol_search *symbols;
3771 struct symbol_search *p;
3772 struct cleanup *old_chain;
3773 char *last_filename = NULL;
3776 gdb_assert (kind <= TYPES_DOMAIN);
3778 /* Must make sure that if we're interrupted, symbols gets freed. */
3779 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3780 old_chain = make_cleanup_free_search_symbols (symbols);
3783 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3784 classnames[kind], regexp);
3786 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3788 for (p = symbols; p != NULL; p = p->next)
3792 if (p->msymbol != NULL)
3796 printf_filtered (_("\nNon-debugging symbols:\n"));
3799 print_msymbol_info (p->msymbol);
3803 print_symbol_info (kind,
3808 last_filename = p->symtab->filename;
3812 do_cleanups (old_chain);
3816 variables_info (char *regexp, int from_tty)
3818 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3822 functions_info (char *regexp, int from_tty)
3824 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3829 types_info (char *regexp, int from_tty)
3831 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3834 /* Breakpoint all functions matching regular expression. */
3837 rbreak_command_wrapper (char *regexp, int from_tty)
3839 rbreak_command (regexp, from_tty);
3842 /* A cleanup function that calls end_rbreak_breakpoints. */
3845 do_end_rbreak_breakpoints (void *ignore)
3847 end_rbreak_breakpoints ();
3851 rbreak_command (char *regexp, int from_tty)
3853 struct symbol_search *ss;
3854 struct symbol_search *p;
3855 struct cleanup *old_chain;
3856 char *string = NULL;
3858 char **files = NULL, *file_name;
3863 char *colon = strchr (regexp, ':');
3865 if (colon && *(colon + 1) != ':')
3869 colon_index = colon - regexp;
3870 file_name = alloca (colon_index + 1);
3871 memcpy (file_name, regexp, colon_index);
3872 file_name[colon_index--] = 0;
3873 while (isspace (file_name[colon_index]))
3874 file_name[colon_index--] = 0;
3878 while (isspace (*regexp)) regexp++;
3882 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3883 old_chain = make_cleanup_free_search_symbols (ss);
3884 make_cleanup (free_current_contents, &string);
3886 start_rbreak_breakpoints ();
3887 make_cleanup (do_end_rbreak_breakpoints, NULL);
3888 for (p = ss; p != NULL; p = p->next)
3890 if (p->msymbol == NULL)
3892 int newlen = (strlen (p->symtab->filename)
3893 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3898 string = xrealloc (string, newlen);
3901 strcpy (string, p->symtab->filename);
3902 strcat (string, ":'");
3903 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3904 strcat (string, "'");
3905 break_command (string, from_tty);
3906 print_symbol_info (FUNCTIONS_DOMAIN,
3910 p->symtab->filename);
3914 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3918 string = xrealloc (string, newlen);
3921 strcpy (string, "'");
3922 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3923 strcat (string, "'");
3925 break_command (string, from_tty);
3926 printf_filtered ("<function, no debug info> %s;\n",
3927 SYMBOL_PRINT_NAME (p->msymbol));
3931 do_cleanups (old_chain);
3935 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3937 Either sym_text[sym_text_len] != '(' and then we search for any
3938 symbol starting with SYM_TEXT text.
3940 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3941 be terminated at that point. Partial symbol tables do not have parameters
3945 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3947 int (*ncmp) (const char *, const char *, size_t);
3949 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3951 if (ncmp (name, sym_text, sym_text_len) != 0)
3954 if (sym_text[sym_text_len] == '(')
3956 /* User searches for `name(someth...'. Require NAME to be terminated.
3957 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3958 present but accept even parameters presence. In this case this
3959 function is in fact strcmp_iw but whitespace skipping is not supported
3960 for tab completion. */
3962 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3969 /* Free any memory associated with a completion list. */
3972 free_completion_list (VEC (char_ptr) **list_ptr)
3977 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
3979 VEC_free (char_ptr, *list_ptr);
3982 /* Callback for make_cleanup. */
3985 do_free_completion_list (void *list)
3987 free_completion_list (list);
3990 /* Helper routine for make_symbol_completion_list. */
3992 static VEC (char_ptr) *return_val;
3994 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3995 completion_list_add_name \
3996 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3998 /* Test to see if the symbol specified by SYMNAME (which is already
3999 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4000 characters. If so, add it to the current completion list. */
4003 completion_list_add_name (const char *symname,
4004 const char *sym_text, int sym_text_len,
4005 const char *text, const char *word)
4009 /* Clip symbols that cannot match. */
4010 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4013 /* We have a match for a completion, so add SYMNAME to the current list
4014 of matches. Note that the name is moved to freshly malloc'd space. */
4019 if (word == sym_text)
4021 new = xmalloc (strlen (symname) + 5);
4022 strcpy (new, symname);
4024 else if (word > sym_text)
4026 /* Return some portion of symname. */
4027 new = xmalloc (strlen (symname) + 5);
4028 strcpy (new, symname + (word - sym_text));
4032 /* Return some of SYM_TEXT plus symname. */
4033 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4034 strncpy (new, word, sym_text - word);
4035 new[sym_text - word] = '\0';
4036 strcat (new, symname);
4039 VEC_safe_push (char_ptr, return_val, new);
4043 /* ObjC: In case we are completing on a selector, look as the msymbol
4044 again and feed all the selectors into the mill. */
4047 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4048 const char *sym_text, int sym_text_len,
4049 const char *text, const char *word)
4051 static char *tmp = NULL;
4052 static unsigned int tmplen = 0;
4054 const char *method, *category, *selector;
4057 method = SYMBOL_NATURAL_NAME (msymbol);
4059 /* Is it a method? */
4060 if ((method[0] != '-') && (method[0] != '+'))
4063 if (sym_text[0] == '[')
4064 /* Complete on shortened method method. */
4065 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4067 while ((strlen (method) + 1) >= tmplen)
4073 tmp = xrealloc (tmp, tmplen);
4075 selector = strchr (method, ' ');
4076 if (selector != NULL)
4079 category = strchr (method, '(');
4081 if ((category != NULL) && (selector != NULL))
4083 memcpy (tmp, method, (category - method));
4084 tmp[category - method] = ' ';
4085 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4086 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4087 if (sym_text[0] == '[')
4088 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4091 if (selector != NULL)
4093 /* Complete on selector only. */
4094 strcpy (tmp, selector);
4095 tmp2 = strchr (tmp, ']');
4099 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4103 /* Break the non-quoted text based on the characters which are in
4104 symbols. FIXME: This should probably be language-specific. */
4107 language_search_unquoted_string (char *text, char *p)
4109 for (; p > text; --p)
4111 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4115 if ((current_language->la_language == language_objc))
4117 if (p[-1] == ':') /* Might be part of a method name. */
4119 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4120 p -= 2; /* Beginning of a method name. */
4121 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4122 { /* Might be part of a method name. */
4125 /* Seeing a ' ' or a '(' is not conclusive evidence
4126 that we are in the middle of a method name. However,
4127 finding "-[" or "+[" should be pretty un-ambiguous.
4128 Unfortunately we have to find it now to decide. */
4131 if (isalnum (t[-1]) || t[-1] == '_' ||
4132 t[-1] == ' ' || t[-1] == ':' ||
4133 t[-1] == '(' || t[-1] == ')')
4138 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4139 p = t - 2; /* Method name detected. */
4140 /* Else we leave with p unchanged. */
4150 completion_list_add_fields (struct symbol *sym, char *sym_text,
4151 int sym_text_len, char *text, char *word)
4153 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4155 struct type *t = SYMBOL_TYPE (sym);
4156 enum type_code c = TYPE_CODE (t);
4159 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4160 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4161 if (TYPE_FIELD_NAME (t, j))
4162 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4163 sym_text, sym_text_len, text, word);
4167 /* Type of the user_data argument passed to add_macro_name or
4168 expand_partial_symbol_name. The contents are simply whatever is
4169 needed by completion_list_add_name. */
4170 struct add_name_data
4178 /* A callback used with macro_for_each and macro_for_each_in_scope.
4179 This adds a macro's name to the current completion list. */
4182 add_macro_name (const char *name, const struct macro_definition *ignore,
4183 struct macro_source_file *ignore2, int ignore3,
4186 struct add_name_data *datum = (struct add_name_data *) user_data;
4188 completion_list_add_name ((char *) name,
4189 datum->sym_text, datum->sym_text_len,
4190 datum->text, datum->word);
4193 /* A callback for expand_partial_symbol_names. */
4196 expand_partial_symbol_name (const char *name, void *user_data)
4198 struct add_name_data *datum = (struct add_name_data *) user_data;
4200 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4204 default_make_symbol_completion_list_break_on (char *text, char *word,
4205 const char *break_on)
4207 /* Problem: All of the symbols have to be copied because readline
4208 frees them. I'm not going to worry about this; hopefully there
4209 won't be that many. */
4213 struct minimal_symbol *msymbol;
4214 struct objfile *objfile;
4216 const struct block *surrounding_static_block, *surrounding_global_block;
4217 struct block_iterator iter;
4218 /* The symbol we are completing on. Points in same buffer as text. */
4220 /* Length of sym_text. */
4222 struct add_name_data datum;
4223 struct cleanup *back_to;
4225 /* Now look for the symbol we are supposed to complete on. */
4229 char *quote_pos = NULL;
4231 /* First see if this is a quoted string. */
4233 for (p = text; *p != '\0'; ++p)
4235 if (quote_found != '\0')
4237 if (*p == quote_found)
4238 /* Found close quote. */
4240 else if (*p == '\\' && p[1] == quote_found)
4241 /* A backslash followed by the quote character
4242 doesn't end the string. */
4245 else if (*p == '\'' || *p == '"')
4251 if (quote_found == '\'')
4252 /* A string within single quotes can be a symbol, so complete on it. */
4253 sym_text = quote_pos + 1;
4254 else if (quote_found == '"')
4255 /* A double-quoted string is never a symbol, nor does it make sense
4256 to complete it any other way. */
4262 /* It is not a quoted string. Break it based on the characters
4263 which are in symbols. */
4266 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4267 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4276 sym_text_len = strlen (sym_text);
4278 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4280 if (current_language->la_language == language_cplus
4281 || current_language->la_language == language_java
4282 || current_language->la_language == language_fortran)
4284 /* These languages may have parameters entered by user but they are never
4285 present in the partial symbol tables. */
4287 const char *cs = memchr (sym_text, '(', sym_text_len);
4290 sym_text_len = cs - sym_text;
4292 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4295 back_to = make_cleanup (do_free_completion_list, &return_val);
4297 datum.sym_text = sym_text;
4298 datum.sym_text_len = sym_text_len;
4302 /* Look through the partial symtabs for all symbols which begin
4303 by matching SYM_TEXT. Expand all CUs that you find to the list.
4304 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4305 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4307 /* At this point scan through the misc symbol vectors and add each
4308 symbol you find to the list. Eventually we want to ignore
4309 anything that isn't a text symbol (everything else will be
4310 handled by the psymtab code above). */
4312 ALL_MSYMBOLS (objfile, msymbol)
4315 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
4317 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
4320 /* Search upwards from currently selected frame (so that we can
4321 complete on local vars). Also catch fields of types defined in
4322 this places which match our text string. Only complete on types
4323 visible from current context. */
4325 b = get_selected_block (0);
4326 surrounding_static_block = block_static_block (b);
4327 surrounding_global_block = block_global_block (b);
4328 if (surrounding_static_block != NULL)
4329 while (b != surrounding_static_block)
4333 ALL_BLOCK_SYMBOLS (b, iter, sym)
4335 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4337 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4341 /* Stop when we encounter an enclosing function. Do not stop for
4342 non-inlined functions - the locals of the enclosing function
4343 are in scope for a nested function. */
4344 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4346 b = BLOCK_SUPERBLOCK (b);
4349 /* Add fields from the file's types; symbols will be added below. */
4351 if (surrounding_static_block != NULL)
4352 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4353 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4355 if (surrounding_global_block != NULL)
4356 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4357 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4359 /* Go through the symtabs and check the externs and statics for
4360 symbols which match. */
4362 ALL_PRIMARY_SYMTABS (objfile, s)
4365 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4366 ALL_BLOCK_SYMBOLS (b, iter, sym)
4368 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4372 ALL_PRIMARY_SYMTABS (objfile, s)
4375 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4376 ALL_BLOCK_SYMBOLS (b, iter, sym)
4378 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4382 if (current_language->la_macro_expansion == macro_expansion_c)
4384 struct macro_scope *scope;
4386 /* Add any macros visible in the default scope. Note that this
4387 may yield the occasional wrong result, because an expression
4388 might be evaluated in a scope other than the default. For
4389 example, if the user types "break file:line if <TAB>", the
4390 resulting expression will be evaluated at "file:line" -- but
4391 at there does not seem to be a way to detect this at
4393 scope = default_macro_scope ();
4396 macro_for_each_in_scope (scope->file, scope->line,
4397 add_macro_name, &datum);
4401 /* User-defined macros are always visible. */
4402 macro_for_each (macro_user_macros, add_macro_name, &datum);
4405 discard_cleanups (back_to);
4406 return (return_val);
4410 default_make_symbol_completion_list (char *text, char *word)
4412 return default_make_symbol_completion_list_break_on (text, word, "");
4415 /* Return a vector of all symbols (regardless of class) which begin by
4416 matching TEXT. If the answer is no symbols, then the return value
4420 make_symbol_completion_list (char *text, char *word)
4422 return current_language->la_make_symbol_completion_list (text, word);
4425 /* Like make_symbol_completion_list, but suitable for use as a
4426 completion function. */
4429 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4430 char *text, char *word)
4432 return make_symbol_completion_list (text, word);
4435 /* Like make_symbol_completion_list, but returns a list of symbols
4436 defined in a source file FILE. */
4439 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4444 struct block_iterator iter;
4445 /* The symbol we are completing on. Points in same buffer as text. */
4447 /* Length of sym_text. */
4450 /* Now look for the symbol we are supposed to complete on.
4451 FIXME: This should be language-specific. */
4455 char *quote_pos = NULL;
4457 /* First see if this is a quoted string. */
4459 for (p = text; *p != '\0'; ++p)
4461 if (quote_found != '\0')
4463 if (*p == quote_found)
4464 /* Found close quote. */
4466 else if (*p == '\\' && p[1] == quote_found)
4467 /* A backslash followed by the quote character
4468 doesn't end the string. */
4471 else if (*p == '\'' || *p == '"')
4477 if (quote_found == '\'')
4478 /* A string within single quotes can be a symbol, so complete on it. */
4479 sym_text = quote_pos + 1;
4480 else if (quote_found == '"')
4481 /* A double-quoted string is never a symbol, nor does it make sense
4482 to complete it any other way. */
4488 /* Not a quoted string. */
4489 sym_text = language_search_unquoted_string (text, p);
4493 sym_text_len = strlen (sym_text);
4497 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4499 s = lookup_symtab (srcfile);
4502 /* Maybe they typed the file with leading directories, while the
4503 symbol tables record only its basename. */
4504 const char *tail = lbasename (srcfile);
4507 s = lookup_symtab (tail);
4510 /* If we have no symtab for that file, return an empty list. */
4512 return (return_val);
4514 /* Go through this symtab and check the externs and statics for
4515 symbols which match. */
4517 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4518 ALL_BLOCK_SYMBOLS (b, iter, sym)
4520 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4523 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4524 ALL_BLOCK_SYMBOLS (b, iter, sym)
4526 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4529 return (return_val);
4532 /* A helper function for make_source_files_completion_list. It adds
4533 another file name to a list of possible completions, growing the
4534 list as necessary. */
4537 add_filename_to_list (const char *fname, char *text, char *word,
4538 VEC (char_ptr) **list)
4541 size_t fnlen = strlen (fname);
4545 /* Return exactly fname. */
4546 new = xmalloc (fnlen + 5);
4547 strcpy (new, fname);
4549 else if (word > text)
4551 /* Return some portion of fname. */
4552 new = xmalloc (fnlen + 5);
4553 strcpy (new, fname + (word - text));
4557 /* Return some of TEXT plus fname. */
4558 new = xmalloc (fnlen + (text - word) + 5);
4559 strncpy (new, word, text - word);
4560 new[text - word] = '\0';
4561 strcat (new, fname);
4563 VEC_safe_push (char_ptr, *list, new);
4567 not_interesting_fname (const char *fname)
4569 static const char *illegal_aliens[] = {
4570 "_globals_", /* inserted by coff_symtab_read */
4575 for (i = 0; illegal_aliens[i]; i++)
4577 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4583 /* An object of this type is passed as the user_data argument to
4584 map_partial_symbol_filenames. */
4585 struct add_partial_filename_data
4587 struct filename_seen_cache *filename_seen_cache;
4591 VEC (char_ptr) **list;
4594 /* A callback for map_partial_symbol_filenames. */
4597 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4600 struct add_partial_filename_data *data = user_data;
4602 if (not_interesting_fname (filename))
4604 if (!filename_seen (data->filename_seen_cache, filename, 1)
4605 && filename_ncmp (filename, data->text, data->text_len) == 0)
4607 /* This file matches for a completion; add it to the
4608 current list of matches. */
4609 add_filename_to_list (filename, data->text, data->word, data->list);
4613 const char *base_name = lbasename (filename);
4615 if (base_name != filename
4616 && !filename_seen (data->filename_seen_cache, base_name, 1)
4617 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4618 add_filename_to_list (base_name, data->text, data->word, data->list);
4622 /* Return a vector of all source files whose names begin with matching
4623 TEXT. The file names are looked up in the symbol tables of this
4624 program. If the answer is no matchess, then the return value is
4628 make_source_files_completion_list (char *text, char *word)
4631 struct objfile *objfile;
4632 size_t text_len = strlen (text);
4633 VEC (char_ptr) *list = NULL;
4634 const char *base_name;
4635 struct add_partial_filename_data datum;
4636 struct filename_seen_cache *filename_seen_cache;
4637 struct cleanup *back_to, *cache_cleanup;
4639 if (!have_full_symbols () && !have_partial_symbols ())
4642 back_to = make_cleanup (do_free_completion_list, &list);
4644 filename_seen_cache = create_filename_seen_cache ();
4645 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4646 filename_seen_cache);
4648 ALL_SYMTABS (objfile, s)
4650 if (not_interesting_fname (s->filename))
4652 if (!filename_seen (filename_seen_cache, s->filename, 1)
4653 && filename_ncmp (s->filename, text, text_len) == 0)
4655 /* This file matches for a completion; add it to the current
4657 add_filename_to_list (s->filename, text, word, &list);
4661 /* NOTE: We allow the user to type a base name when the
4662 debug info records leading directories, but not the other
4663 way around. This is what subroutines of breakpoint
4664 command do when they parse file names. */
4665 base_name = lbasename (s->filename);
4666 if (base_name != s->filename
4667 && !filename_seen (filename_seen_cache, base_name, 1)
4668 && filename_ncmp (base_name, text, text_len) == 0)
4669 add_filename_to_list (base_name, text, word, &list);
4673 datum.filename_seen_cache = filename_seen_cache;
4676 datum.text_len = text_len;
4678 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4679 0 /*need_fullname*/);
4681 do_cleanups (cache_cleanup);
4682 discard_cleanups (back_to);
4687 /* Determine if PC is in the prologue of a function. The prologue is the area
4688 between the first instruction of a function, and the first executable line.
4689 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4691 If non-zero, func_start is where we think the prologue starts, possibly
4692 by previous examination of symbol table information. */
4695 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4697 struct symtab_and_line sal;
4698 CORE_ADDR func_addr, func_end;
4700 /* We have several sources of information we can consult to figure
4702 - Compilers usually emit line number info that marks the prologue
4703 as its own "source line". So the ending address of that "line"
4704 is the end of the prologue. If available, this is the most
4706 - The minimal symbols and partial symbols, which can usually tell
4707 us the starting and ending addresses of a function.
4708 - If we know the function's start address, we can call the
4709 architecture-defined gdbarch_skip_prologue function to analyze the
4710 instruction stream and guess where the prologue ends.
4711 - Our `func_start' argument; if non-zero, this is the caller's
4712 best guess as to the function's entry point. At the time of
4713 this writing, handle_inferior_event doesn't get this right, so
4714 it should be our last resort. */
4716 /* Consult the partial symbol table, to find which function
4718 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4720 CORE_ADDR prologue_end;
4722 /* We don't even have minsym information, so fall back to using
4723 func_start, if given. */
4725 return 1; /* We *might* be in a prologue. */
4727 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4729 return func_start <= pc && pc < prologue_end;
4732 /* If we have line number information for the function, that's
4733 usually pretty reliable. */
4734 sal = find_pc_line (func_addr, 0);
4736 /* Now sal describes the source line at the function's entry point,
4737 which (by convention) is the prologue. The end of that "line",
4738 sal.end, is the end of the prologue.
4740 Note that, for functions whose source code is all on a single
4741 line, the line number information doesn't always end up this way.
4742 So we must verify that our purported end-of-prologue address is
4743 *within* the function, not at its start or end. */
4745 || sal.end <= func_addr
4746 || func_end <= sal.end)
4748 /* We don't have any good line number info, so use the minsym
4749 information, together with the architecture-specific prologue
4751 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4753 return func_addr <= pc && pc < prologue_end;
4756 /* We have line number info, and it looks good. */
4757 return func_addr <= pc && pc < sal.end;
4760 /* Given PC at the function's start address, attempt to find the
4761 prologue end using SAL information. Return zero if the skip fails.
4763 A non-optimized prologue traditionally has one SAL for the function
4764 and a second for the function body. A single line function has
4765 them both pointing at the same line.
4767 An optimized prologue is similar but the prologue may contain
4768 instructions (SALs) from the instruction body. Need to skip those
4769 while not getting into the function body.
4771 The functions end point and an increasing SAL line are used as
4772 indicators of the prologue's endpoint.
4774 This code is based on the function refine_prologue_limit
4778 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4780 struct symtab_and_line prologue_sal;
4785 /* Get an initial range for the function. */
4786 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4787 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4789 prologue_sal = find_pc_line (start_pc, 0);
4790 if (prologue_sal.line != 0)
4792 /* For languages other than assembly, treat two consecutive line
4793 entries at the same address as a zero-instruction prologue.
4794 The GNU assembler emits separate line notes for each instruction
4795 in a multi-instruction macro, but compilers generally will not
4797 if (prologue_sal.symtab->language != language_asm)
4799 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4802 /* Skip any earlier lines, and any end-of-sequence marker
4803 from a previous function. */
4804 while (linetable->item[idx].pc != prologue_sal.pc
4805 || linetable->item[idx].line == 0)
4808 if (idx+1 < linetable->nitems
4809 && linetable->item[idx+1].line != 0
4810 && linetable->item[idx+1].pc == start_pc)
4814 /* If there is only one sal that covers the entire function,
4815 then it is probably a single line function, like
4817 if (prologue_sal.end >= end_pc)
4820 while (prologue_sal.end < end_pc)
4822 struct symtab_and_line sal;
4824 sal = find_pc_line (prologue_sal.end, 0);
4827 /* Assume that a consecutive SAL for the same (or larger)
4828 line mark the prologue -> body transition. */
4829 if (sal.line >= prologue_sal.line)
4832 /* The line number is smaller. Check that it's from the
4833 same function, not something inlined. If it's inlined,
4834 then there is no point comparing the line numbers. */
4835 bl = block_for_pc (prologue_sal.end);
4838 if (block_inlined_p (bl))
4840 if (BLOCK_FUNCTION (bl))
4845 bl = BLOCK_SUPERBLOCK (bl);
4850 /* The case in which compiler's optimizer/scheduler has
4851 moved instructions into the prologue. We look ahead in
4852 the function looking for address ranges whose
4853 corresponding line number is less the first one that we
4854 found for the function. This is more conservative then
4855 refine_prologue_limit which scans a large number of SALs
4856 looking for any in the prologue. */
4861 if (prologue_sal.end < end_pc)
4862 /* Return the end of this line, or zero if we could not find a
4864 return prologue_sal.end;
4866 /* Don't return END_PC, which is past the end of the function. */
4867 return prologue_sal.pc;
4871 static char *name_of_main;
4872 enum language language_of_main = language_unknown;
4875 set_main_name (const char *name)
4877 if (name_of_main != NULL)
4879 xfree (name_of_main);
4880 name_of_main = NULL;
4881 language_of_main = language_unknown;
4885 name_of_main = xstrdup (name);
4886 language_of_main = language_unknown;
4890 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4894 find_main_name (void)
4896 const char *new_main_name;
4898 /* Try to see if the main procedure is in Ada. */
4899 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4900 be to add a new method in the language vector, and call this
4901 method for each language until one of them returns a non-empty
4902 name. This would allow us to remove this hard-coded call to
4903 an Ada function. It is not clear that this is a better approach
4904 at this point, because all methods need to be written in a way
4905 such that false positives never be returned. For instance, it is
4906 important that a method does not return a wrong name for the main
4907 procedure if the main procedure is actually written in a different
4908 language. It is easy to guaranty this with Ada, since we use a
4909 special symbol generated only when the main in Ada to find the name
4910 of the main procedure. It is difficult however to see how this can
4911 be guarantied for languages such as C, for instance. This suggests
4912 that order of call for these methods becomes important, which means
4913 a more complicated approach. */
4914 new_main_name = ada_main_name ();
4915 if (new_main_name != NULL)
4917 set_main_name (new_main_name);
4921 new_main_name = go_main_name ();
4922 if (new_main_name != NULL)
4924 set_main_name (new_main_name);
4928 new_main_name = pascal_main_name ();
4929 if (new_main_name != NULL)
4931 set_main_name (new_main_name);
4935 /* The languages above didn't identify the name of the main procedure.
4936 Fallback to "main". */
4937 set_main_name ("main");
4943 if (name_of_main == NULL)
4946 return name_of_main;
4949 /* Handle ``executable_changed'' events for the symtab module. */
4952 symtab_observer_executable_changed (void)
4954 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4955 set_main_name (NULL);
4958 /* Return 1 if the supplied producer string matches the ARM RealView
4959 compiler (armcc). */
4962 producer_is_realview (const char *producer)
4964 static const char *const arm_idents[] = {
4965 "ARM C Compiler, ADS",
4966 "Thumb C Compiler, ADS",
4967 "ARM C++ Compiler, ADS",
4968 "Thumb C++ Compiler, ADS",
4969 "ARM/Thumb C/C++ Compiler, RVCT",
4970 "ARM C/C++ Compiler, RVCT"
4974 if (producer == NULL)
4977 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4978 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4985 _initialize_symtab (void)
4987 add_info ("variables", variables_info, _("\
4988 All global and static variable names, or those matching REGEXP."));
4990 add_com ("whereis", class_info, variables_info, _("\
4991 All global and static variable names, or those matching REGEXP."));
4993 add_info ("functions", functions_info,
4994 _("All function names, or those matching REGEXP."));
4996 /* FIXME: This command has at least the following problems:
4997 1. It prints builtin types (in a very strange and confusing fashion).
4998 2. It doesn't print right, e.g. with
4999 typedef struct foo *FOO
5000 type_print prints "FOO" when we want to make it (in this situation)
5001 print "struct foo *".
5002 I also think "ptype" or "whatis" is more likely to be useful (but if
5003 there is much disagreement "info types" can be fixed). */
5004 add_info ("types", types_info,
5005 _("All type names, or those matching REGEXP."));
5007 add_info ("sources", sources_info,
5008 _("Source files in the program."));
5010 add_com ("rbreak", class_breakpoint, rbreak_command,
5011 _("Set a breakpoint for all functions matching REGEXP."));
5015 add_com ("lf", class_info, sources_info,
5016 _("Source files in the program"));
5017 add_com ("lg", class_info, variables_info, _("\
5018 All global and static variable names, or those matching REGEXP."));
5021 add_setshow_enum_cmd ("multiple-symbols", no_class,
5022 multiple_symbols_modes, &multiple_symbols_mode,
5024 Set the debugger behavior when more than one symbol are possible matches\n\
5025 in an expression."), _("\
5026 Show how the debugger handles ambiguities in expressions."), _("\
5027 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5028 NULL, NULL, &setlist, &showlist);
5030 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5031 &basenames_may_differ, _("\
5032 Set whether a source file may have multiple base names."), _("\
5033 Show whether a source file may have multiple base names."), _("\
5034 (A \"base name\" is the name of a file with the directory part removed.\n\
5035 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5036 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5037 before comparing them. Canonicalization is an expensive operation,\n\
5038 but it allows the same file be known by more than one base name.\n\
5039 If not set (the default), all source files are assumed to have just\n\
5040 one base name, and gdb will do file name comparisons more efficiently."),
5042 &setlist, &showlist);
5044 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5045 _("Set debugging of symbol table creation."),
5046 _("Show debugging of symbol table creation."), _("\
5047 When enabled, debugging messages are printed when building symbol tables."),
5050 &setdebuglist, &showdebuglist);
5052 observer_attach_executable_changed (symtab_observer_executable_changed);