1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
30 #include "gdb_regex.h"
31 #include "expression.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
43 #include "cli/cli-utils.h"
47 #include "gdb_obstack.h"
49 #include "dictionary.h"
51 #include <sys/types.h>
56 #include "cp-support.h"
60 #include "macroscope.h"
62 #include "parser-defs.h"
64 /* Prototypes for local functions */
66 static void rbreak_command (char *, int);
68 static void types_info (char *, int);
70 static void functions_info (char *, int);
72 static void variables_info (char *, int);
74 static void sources_info (char *, int);
76 static int find_line_common (struct linetable *, int, int *, int);
78 static struct symbol *lookup_symbol_aux (const char *name,
79 const struct block *block,
80 const domain_enum domain,
81 enum language language,
82 struct field_of_this_result *is_a_field_of_this);
85 struct symbol *lookup_symbol_aux_local (const char *name,
86 const struct block *block,
87 const domain_enum domain,
88 enum language language);
91 struct symbol *lookup_symbol_aux_symtabs (int block_index,
93 const domain_enum domain);
96 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
99 const domain_enum domain);
101 void _initialize_symtab (void);
105 /* Program space key for finding name and language of "main". */
107 static const struct program_space_data *main_progspace_key;
109 /* Type of the data stored on the program space. */
113 /* Name of "main". */
117 /* Language of "main". */
119 enum language language_of_main;
122 /* When non-zero, print debugging messages related to symtab creation. */
123 unsigned int symtab_create_debug = 0;
125 /* Non-zero if a file may be known by two different basenames.
126 This is the uncommon case, and significantly slows down gdb.
127 Default set to "off" to not slow down the common case. */
128 int basenames_may_differ = 0;
130 /* Allow the user to configure the debugger behavior with respect
131 to multiple-choice menus when more than one symbol matches during
134 const char multiple_symbols_ask[] = "ask";
135 const char multiple_symbols_all[] = "all";
136 const char multiple_symbols_cancel[] = "cancel";
137 static const char *const multiple_symbols_modes[] =
139 multiple_symbols_ask,
140 multiple_symbols_all,
141 multiple_symbols_cancel,
144 static const char *multiple_symbols_mode = multiple_symbols_all;
146 /* Read-only accessor to AUTO_SELECT_MODE. */
149 multiple_symbols_select_mode (void)
151 return multiple_symbols_mode;
154 /* Block in which the most recently searched-for symbol was found.
155 Might be better to make this a parameter to lookup_symbol and
158 const struct block *block_found;
160 /* Return the name of a domain_enum. */
163 domain_name (domain_enum e)
167 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
168 case VAR_DOMAIN: return "VAR_DOMAIN";
169 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
170 case LABEL_DOMAIN: return "LABEL_DOMAIN";
171 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
172 default: gdb_assert_not_reached ("bad domain_enum");
176 /* Return the name of a search_domain . */
179 search_domain_name (enum search_domain e)
183 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
184 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
185 case TYPES_DOMAIN: return "TYPES_DOMAIN";
186 case ALL_DOMAIN: return "ALL_DOMAIN";
187 default: gdb_assert_not_reached ("bad search_domain");
191 /* Set the primary field in SYMTAB. */
194 set_symtab_primary (struct symtab *symtab, int primary)
196 symtab->primary = primary;
198 if (symtab_create_debug && primary)
200 fprintf_unfiltered (gdb_stdlog,
201 "Created primary symtab %s for %s.\n",
202 host_address_to_string (symtab),
203 symtab_to_filename_for_display (symtab));
207 /* See whether FILENAME matches SEARCH_NAME using the rule that we
208 advertise to the user. (The manual's description of linespecs
209 describes what we advertise). Returns true if they match, false
213 compare_filenames_for_search (const char *filename, const char *search_name)
215 int len = strlen (filename);
216 size_t search_len = strlen (search_name);
218 if (len < search_len)
221 /* The tail of FILENAME must match. */
222 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
225 /* Either the names must completely match, or the character
226 preceding the trailing SEARCH_NAME segment of FILENAME must be a
229 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
230 cannot match FILENAME "/path//dir/file.c" - as user has requested
231 absolute path. The sama applies for "c:\file.c" possibly
232 incorrectly hypothetically matching "d:\dir\c:\file.c".
234 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
235 compatible with SEARCH_NAME "file.c". In such case a compiler had
236 to put the "c:file.c" name into debug info. Such compatibility
237 works only on GDB built for DOS host. */
238 return (len == search_len
239 || (!IS_ABSOLUTE_PATH (search_name)
240 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
241 || (HAS_DRIVE_SPEC (filename)
242 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
245 /* Check for a symtab of a specific name by searching some symtabs.
246 This is a helper function for callbacks of iterate_over_symtabs.
248 If NAME is not absolute, then REAL_PATH is NULL
249 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
251 The return value, NAME, REAL_PATH, CALLBACK, and DATA
252 are identical to the `map_symtabs_matching_filename' method of
253 quick_symbol_functions.
255 FIRST and AFTER_LAST indicate the range of symtabs to search.
256 AFTER_LAST is one past the last symtab to search; NULL means to
257 search until the end of the list. */
260 iterate_over_some_symtabs (const char *name,
261 const char *real_path,
262 int (*callback) (struct symtab *symtab,
265 struct symtab *first,
266 struct symtab *after_last)
268 struct symtab *s = NULL;
269 const char* base_name = lbasename (name);
271 for (s = first; s != NULL && s != after_last; s = s->next)
273 if (compare_filenames_for_search (s->filename, name))
275 if (callback (s, data))
280 /* Before we invoke realpath, which can get expensive when many
281 files are involved, do a quick comparison of the basenames. */
282 if (! basenames_may_differ
283 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
286 if (compare_filenames_for_search (symtab_to_fullname (s), name))
288 if (callback (s, data))
293 /* If the user gave us an absolute path, try to find the file in
294 this symtab and use its absolute path. */
295 if (real_path != NULL)
297 const char *fullname = symtab_to_fullname (s);
299 gdb_assert (IS_ABSOLUTE_PATH (real_path));
300 gdb_assert (IS_ABSOLUTE_PATH (name));
301 if (FILENAME_CMP (real_path, fullname) == 0)
303 if (callback (s, data))
313 /* Check for a symtab of a specific name; first in symtabs, then in
314 psymtabs. *If* there is no '/' in the name, a match after a '/'
315 in the symtab filename will also work.
317 Calls CALLBACK with each symtab that is found and with the supplied
318 DATA. If CALLBACK returns true, the search stops. */
321 iterate_over_symtabs (const char *name,
322 int (*callback) (struct symtab *symtab,
326 struct objfile *objfile;
327 char *real_path = NULL;
328 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
330 /* Here we are interested in canonicalizing an absolute path, not
331 absolutizing a relative path. */
332 if (IS_ABSOLUTE_PATH (name))
334 real_path = gdb_realpath (name);
335 make_cleanup (xfree, real_path);
336 gdb_assert (IS_ABSOLUTE_PATH (real_path));
339 ALL_OBJFILES (objfile)
341 if (iterate_over_some_symtabs (name, real_path, callback, data,
342 objfile->symtabs, NULL))
344 do_cleanups (cleanups);
349 /* Same search rules as above apply here, but now we look thru the
352 ALL_OBJFILES (objfile)
355 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
361 do_cleanups (cleanups);
366 do_cleanups (cleanups);
369 /* The callback function used by lookup_symtab. */
372 lookup_symtab_callback (struct symtab *symtab, void *data)
374 struct symtab **result_ptr = data;
376 *result_ptr = symtab;
380 /* A wrapper for iterate_over_symtabs that returns the first matching
384 lookup_symtab (const char *name)
386 struct symtab *result = NULL;
388 iterate_over_symtabs (name, lookup_symtab_callback, &result);
393 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
394 full method name, which consist of the class name (from T), the unadorned
395 method name from METHOD_ID, and the signature for the specific overload,
396 specified by SIGNATURE_ID. Note that this function is g++ specific. */
399 gdb_mangle_name (struct type *type, int method_id, int signature_id)
401 int mangled_name_len;
403 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
404 struct fn_field *method = &f[signature_id];
405 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
406 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
407 const char *newname = type_name_no_tag (type);
409 /* Does the form of physname indicate that it is the full mangled name
410 of a constructor (not just the args)? */
411 int is_full_physname_constructor;
414 int is_destructor = is_destructor_name (physname);
415 /* Need a new type prefix. */
416 char *const_prefix = method->is_const ? "C" : "";
417 char *volatile_prefix = method->is_volatile ? "V" : "";
419 int len = (newname == NULL ? 0 : strlen (newname));
421 /* Nothing to do if physname already contains a fully mangled v3 abi name
422 or an operator name. */
423 if ((physname[0] == '_' && physname[1] == 'Z')
424 || is_operator_name (field_name))
425 return xstrdup (physname);
427 is_full_physname_constructor = is_constructor_name (physname);
429 is_constructor = is_full_physname_constructor
430 || (newname && strcmp (field_name, newname) == 0);
433 is_destructor = (strncmp (physname, "__dt", 4) == 0);
435 if (is_destructor || is_full_physname_constructor)
437 mangled_name = (char *) xmalloc (strlen (physname) + 1);
438 strcpy (mangled_name, physname);
444 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
446 else if (physname[0] == 't' || physname[0] == 'Q')
448 /* The physname for template and qualified methods already includes
450 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
456 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
457 volatile_prefix, len);
459 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
460 + strlen (buf) + len + strlen (physname) + 1);
462 mangled_name = (char *) xmalloc (mangled_name_len);
464 mangled_name[0] = '\0';
466 strcpy (mangled_name, field_name);
468 strcat (mangled_name, buf);
469 /* If the class doesn't have a name, i.e. newname NULL, then we just
470 mangle it using 0 for the length of the class. Thus it gets mangled
471 as something starting with `::' rather than `classname::'. */
473 strcat (mangled_name, newname);
475 strcat (mangled_name, physname);
476 return (mangled_name);
479 /* Initialize the cplus_specific structure. 'cplus_specific' should
480 only be allocated for use with cplus symbols. */
483 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
484 struct obstack *obstack)
486 /* A language_specific structure should not have been previously
488 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
489 gdb_assert (obstack != NULL);
491 gsymbol->language_specific.cplus_specific =
492 OBSTACK_ZALLOC (obstack, struct cplus_specific);
495 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
496 correctly allocated. For C++ symbols a cplus_specific struct is
497 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
498 OBJFILE can be NULL. */
501 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
503 struct obstack *obstack)
505 if (gsymbol->language == language_cplus)
507 if (gsymbol->language_specific.cplus_specific == NULL)
508 symbol_init_cplus_specific (gsymbol, obstack);
510 gsymbol->language_specific.cplus_specific->demangled_name = name;
512 else if (gsymbol->language == language_ada)
516 gsymbol->ada_mangled = 0;
517 gsymbol->language_specific.obstack = obstack;
521 gsymbol->ada_mangled = 1;
522 gsymbol->language_specific.mangled_lang.demangled_name = name;
526 gsymbol->language_specific.mangled_lang.demangled_name = name;
529 /* Return the demangled name of GSYMBOL. */
532 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
534 if (gsymbol->language == language_cplus)
536 if (gsymbol->language_specific.cplus_specific != NULL)
537 return gsymbol->language_specific.cplus_specific->demangled_name;
541 else if (gsymbol->language == language_ada)
543 if (!gsymbol->ada_mangled)
548 return gsymbol->language_specific.mangled_lang.demangled_name;
552 /* Initialize the language dependent portion of a symbol
553 depending upon the language for the symbol. */
556 symbol_set_language (struct general_symbol_info *gsymbol,
557 enum language language,
558 struct obstack *obstack)
560 gsymbol->language = language;
561 if (gsymbol->language == language_d
562 || gsymbol->language == language_go
563 || gsymbol->language == language_java
564 || gsymbol->language == language_objc
565 || gsymbol->language == language_fortran)
567 symbol_set_demangled_name (gsymbol, NULL, obstack);
569 else if (gsymbol->language == language_ada)
571 gdb_assert (gsymbol->ada_mangled == 0);
572 gsymbol->language_specific.obstack = obstack;
574 else if (gsymbol->language == language_cplus)
575 gsymbol->language_specific.cplus_specific = NULL;
578 memset (&gsymbol->language_specific, 0,
579 sizeof (gsymbol->language_specific));
583 /* Functions to initialize a symbol's mangled name. */
585 /* Objects of this type are stored in the demangled name hash table. */
586 struct demangled_name_entry
592 /* Hash function for the demangled name hash. */
595 hash_demangled_name_entry (const void *data)
597 const struct demangled_name_entry *e = data;
599 return htab_hash_string (e->mangled);
602 /* Equality function for the demangled name hash. */
605 eq_demangled_name_entry (const void *a, const void *b)
607 const struct demangled_name_entry *da = a;
608 const struct demangled_name_entry *db = b;
610 return strcmp (da->mangled, db->mangled) == 0;
613 /* Create the hash table used for demangled names. Each hash entry is
614 a pair of strings; one for the mangled name and one for the demangled
615 name. The entry is hashed via just the mangled name. */
618 create_demangled_names_hash (struct objfile *objfile)
620 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
621 The hash table code will round this up to the next prime number.
622 Choosing a much larger table size wastes memory, and saves only about
623 1% in symbol reading. */
625 objfile->per_bfd->demangled_names_hash = htab_create_alloc
626 (256, hash_demangled_name_entry, eq_demangled_name_entry,
627 NULL, xcalloc, xfree);
630 /* Try to determine the demangled name for a symbol, based on the
631 language of that symbol. If the language is set to language_auto,
632 it will attempt to find any demangling algorithm that works and
633 then set the language appropriately. The returned name is allocated
634 by the demangler and should be xfree'd. */
637 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
640 char *demangled = NULL;
642 if (gsymbol->language == language_unknown)
643 gsymbol->language = language_auto;
645 if (gsymbol->language == language_objc
646 || gsymbol->language == language_auto)
649 objc_demangle (mangled, 0);
650 if (demangled != NULL)
652 gsymbol->language = language_objc;
656 if (gsymbol->language == language_cplus
657 || gsymbol->language == language_auto)
660 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
661 if (demangled != NULL)
663 gsymbol->language = language_cplus;
667 if (gsymbol->language == language_java)
670 gdb_demangle (mangled,
671 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
672 if (demangled != NULL)
674 gsymbol->language = language_java;
678 if (gsymbol->language == language_d
679 || gsymbol->language == language_auto)
681 demangled = d_demangle(mangled, 0);
682 if (demangled != NULL)
684 gsymbol->language = language_d;
688 /* FIXME(dje): Continually adding languages here is clumsy.
689 Better to just call la_demangle if !auto, and if auto then call
690 a utility routine that tries successive languages in turn and reports
691 which one it finds. I realize the la_demangle options may be different
692 for different languages but there's already a FIXME for that. */
693 if (gsymbol->language == language_go
694 || gsymbol->language == language_auto)
696 demangled = go_demangle (mangled, 0);
697 if (demangled != NULL)
699 gsymbol->language = language_go;
704 /* We could support `gsymbol->language == language_fortran' here to provide
705 module namespaces also for inferiors with only minimal symbol table (ELF
706 symbols). Just the mangling standard is not standardized across compilers
707 and there is no DW_AT_producer available for inferiors with only the ELF
708 symbols to check the mangling kind. */
710 /* Check for Ada symbols last. See comment below explaining why. */
712 if (gsymbol->language == language_auto)
714 const char *demangled = ada_decode (mangled);
716 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
718 /* Set the gsymbol language to Ada, but still return NULL.
719 Two reasons for that:
721 1. For Ada, we prefer computing the symbol's decoded name
722 on the fly rather than pre-compute it, in order to save
723 memory (Ada projects are typically very large).
725 2. There are some areas in the definition of the GNAT
726 encoding where, with a bit of bad luck, we might be able
727 to decode a non-Ada symbol, generating an incorrect
728 demangled name (Eg: names ending with "TB" for instance
729 are identified as task bodies and so stripped from
730 the decoded name returned).
732 Returning NULL, here, helps us get a little bit of
733 the best of both worlds. Because we're last, we should
734 not affect any of the other languages that were able to
735 demangle the symbol before us; we get to correctly tag
736 Ada symbols as such; and even if we incorrectly tagged
737 a non-Ada symbol, which should be rare, any routing
738 through the Ada language should be transparent (Ada
739 tries to behave much like C/C++ with non-Ada symbols). */
740 gsymbol->language = language_ada;
748 /* Set both the mangled and demangled (if any) names for GSYMBOL based
749 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
750 objfile's obstack; but if COPY_NAME is 0 and if NAME is
751 NUL-terminated, then this function assumes that NAME is already
752 correctly saved (either permanently or with a lifetime tied to the
753 objfile), and it will not be copied.
755 The hash table corresponding to OBJFILE is used, and the memory
756 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
757 so the pointer can be discarded after calling this function. */
759 /* We have to be careful when dealing with Java names: when we run
760 into a Java minimal symbol, we don't know it's a Java symbol, so it
761 gets demangled as a C++ name. This is unfortunate, but there's not
762 much we can do about it: but when demangling partial symbols and
763 regular symbols, we'd better not reuse the wrong demangled name.
764 (See PR gdb/1039.) We solve this by putting a distinctive prefix
765 on Java names when storing them in the hash table. */
767 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
768 don't mind the Java prefix so much: different languages have
769 different demangling requirements, so it's only natural that we
770 need to keep language data around in our demangling cache. But
771 it's not good that the minimal symbol has the wrong demangled name.
772 Unfortunately, I can't think of any easy solution to that
775 #define JAVA_PREFIX "##JAVA$$"
776 #define JAVA_PREFIX_LEN 8
779 symbol_set_names (struct general_symbol_info *gsymbol,
780 const char *linkage_name, int len, int copy_name,
781 struct objfile *objfile)
783 struct demangled_name_entry **slot;
784 /* A 0-terminated copy of the linkage name. */
785 const char *linkage_name_copy;
786 /* A copy of the linkage name that might have a special Java prefix
787 added to it, for use when looking names up in the hash table. */
788 const char *lookup_name;
789 /* The length of lookup_name. */
791 struct demangled_name_entry entry;
792 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
794 if (gsymbol->language == language_ada)
796 /* In Ada, we do the symbol lookups using the mangled name, so
797 we can save some space by not storing the demangled name.
799 As a side note, we have also observed some overlap between
800 the C++ mangling and Ada mangling, similarly to what has
801 been observed with Java. Because we don't store the demangled
802 name with the symbol, we don't need to use the same trick
805 gsymbol->name = linkage_name;
808 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
810 memcpy (name, linkage_name, len);
812 gsymbol->name = name;
814 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
819 if (per_bfd->demangled_names_hash == NULL)
820 create_demangled_names_hash (objfile);
822 /* The stabs reader generally provides names that are not
823 NUL-terminated; most of the other readers don't do this, so we
824 can just use the given copy, unless we're in the Java case. */
825 if (gsymbol->language == language_java)
829 lookup_len = len + JAVA_PREFIX_LEN;
830 alloc_name = alloca (lookup_len + 1);
831 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
832 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
833 alloc_name[lookup_len] = '\0';
835 lookup_name = alloc_name;
836 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
838 else if (linkage_name[len] != '\0')
843 alloc_name = alloca (lookup_len + 1);
844 memcpy (alloc_name, linkage_name, len);
845 alloc_name[lookup_len] = '\0';
847 lookup_name = alloc_name;
848 linkage_name_copy = alloc_name;
853 lookup_name = linkage_name;
854 linkage_name_copy = linkage_name;
857 entry.mangled = lookup_name;
858 slot = ((struct demangled_name_entry **)
859 htab_find_slot (per_bfd->demangled_names_hash,
862 /* If this name is not in the hash table, add it. */
864 /* A C version of the symbol may have already snuck into the table.
865 This happens to, e.g., main.init (__go_init_main). Cope. */
866 || (gsymbol->language == language_go
867 && (*slot)->demangled[0] == '\0'))
869 char *demangled_name = symbol_find_demangled_name (gsymbol,
871 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
873 /* Suppose we have demangled_name==NULL, copy_name==0, and
874 lookup_name==linkage_name. In this case, we already have the
875 mangled name saved, and we don't have a demangled name. So,
876 you might think we could save a little space by not recording
877 this in the hash table at all.
879 It turns out that it is actually important to still save such
880 an entry in the hash table, because storing this name gives
881 us better bcache hit rates for partial symbols. */
882 if (!copy_name && lookup_name == linkage_name)
884 *slot = obstack_alloc (&per_bfd->storage_obstack,
885 offsetof (struct demangled_name_entry,
887 + demangled_len + 1);
888 (*slot)->mangled = lookup_name;
894 /* If we must copy the mangled name, put it directly after
895 the demangled name so we can have a single
897 *slot = obstack_alloc (&per_bfd->storage_obstack,
898 offsetof (struct demangled_name_entry,
900 + lookup_len + demangled_len + 2);
901 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
902 strcpy (mangled_ptr, lookup_name);
903 (*slot)->mangled = mangled_ptr;
906 if (demangled_name != NULL)
908 strcpy ((*slot)->demangled, demangled_name);
909 xfree (demangled_name);
912 (*slot)->demangled[0] = '\0';
915 gsymbol->name = (*slot)->mangled + lookup_len - len;
916 if ((*slot)->demangled[0] != '\0')
917 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
918 &per_bfd->storage_obstack);
920 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
923 /* Return the source code name of a symbol. In languages where
924 demangling is necessary, this is the demangled name. */
927 symbol_natural_name (const struct general_symbol_info *gsymbol)
929 switch (gsymbol->language)
936 case language_fortran:
937 if (symbol_get_demangled_name (gsymbol) != NULL)
938 return symbol_get_demangled_name (gsymbol);
941 return ada_decode_symbol (gsymbol);
945 return gsymbol->name;
948 /* Return the demangled name for a symbol based on the language for
949 that symbol. If no demangled name exists, return NULL. */
952 symbol_demangled_name (const struct general_symbol_info *gsymbol)
954 const char *dem_name = NULL;
956 switch (gsymbol->language)
963 case language_fortran:
964 dem_name = symbol_get_demangled_name (gsymbol);
967 dem_name = ada_decode_symbol (gsymbol);
975 /* Return the search name of a symbol---generally the demangled or
976 linkage name of the symbol, depending on how it will be searched for.
977 If there is no distinct demangled name, then returns the same value
978 (same pointer) as SYMBOL_LINKAGE_NAME. */
981 symbol_search_name (const struct general_symbol_info *gsymbol)
983 if (gsymbol->language == language_ada)
984 return gsymbol->name;
986 return symbol_natural_name (gsymbol);
989 /* Initialize the structure fields to zero values. */
992 init_sal (struct symtab_and_line *sal)
994 memset (sal, 0, sizeof (*sal));
998 /* Return 1 if the two sections are the same, or if they could
999 plausibly be copies of each other, one in an original object
1000 file and another in a separated debug file. */
1003 matching_obj_sections (struct obj_section *obj_first,
1004 struct obj_section *obj_second)
1006 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1007 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1008 struct objfile *obj;
1010 /* If they're the same section, then they match. */
1011 if (first == second)
1014 /* If either is NULL, give up. */
1015 if (first == NULL || second == NULL)
1018 /* This doesn't apply to absolute symbols. */
1019 if (first->owner == NULL || second->owner == NULL)
1022 /* If they're in the same object file, they must be different sections. */
1023 if (first->owner == second->owner)
1026 /* Check whether the two sections are potentially corresponding. They must
1027 have the same size, address, and name. We can't compare section indexes,
1028 which would be more reliable, because some sections may have been
1030 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1033 /* In-memory addresses may start at a different offset, relativize them. */
1034 if (bfd_get_section_vma (first->owner, first)
1035 - bfd_get_start_address (first->owner)
1036 != bfd_get_section_vma (second->owner, second)
1037 - bfd_get_start_address (second->owner))
1040 if (bfd_get_section_name (first->owner, first) == NULL
1041 || bfd_get_section_name (second->owner, second) == NULL
1042 || strcmp (bfd_get_section_name (first->owner, first),
1043 bfd_get_section_name (second->owner, second)) != 0)
1046 /* Otherwise check that they are in corresponding objfiles. */
1049 if (obj->obfd == first->owner)
1051 gdb_assert (obj != NULL);
1053 if (obj->separate_debug_objfile != NULL
1054 && obj->separate_debug_objfile->obfd == second->owner)
1056 if (obj->separate_debug_objfile_backlink != NULL
1057 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1064 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
1066 struct objfile *objfile;
1067 struct bound_minimal_symbol msymbol;
1069 /* If we know that this is not a text address, return failure. This is
1070 necessary because we loop based on texthigh and textlow, which do
1071 not include the data ranges. */
1072 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1074 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1075 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1076 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1077 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1078 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1081 ALL_OBJFILES (objfile)
1083 struct symtab *result = NULL;
1086 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1095 /* Debug symbols usually don't have section information. We need to dig that
1096 out of the minimal symbols and stash that in the debug symbol. */
1099 fixup_section (struct general_symbol_info *ginfo,
1100 CORE_ADDR addr, struct objfile *objfile)
1102 struct minimal_symbol *msym;
1104 /* First, check whether a minimal symbol with the same name exists
1105 and points to the same address. The address check is required
1106 e.g. on PowerPC64, where the minimal symbol for a function will
1107 point to the function descriptor, while the debug symbol will
1108 point to the actual function code. */
1109 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1111 ginfo->section = MSYMBOL_SECTION (msym);
1114 /* Static, function-local variables do appear in the linker
1115 (minimal) symbols, but are frequently given names that won't
1116 be found via lookup_minimal_symbol(). E.g., it has been
1117 observed in frv-uclinux (ELF) executables that a static,
1118 function-local variable named "foo" might appear in the
1119 linker symbols as "foo.6" or "foo.3". Thus, there is no
1120 point in attempting to extend the lookup-by-name mechanism to
1121 handle this case due to the fact that there can be multiple
1124 So, instead, search the section table when lookup by name has
1125 failed. The ``addr'' and ``endaddr'' fields may have already
1126 been relocated. If so, the relocation offset (i.e. the
1127 ANOFFSET value) needs to be subtracted from these values when
1128 performing the comparison. We unconditionally subtract it,
1129 because, when no relocation has been performed, the ANOFFSET
1130 value will simply be zero.
1132 The address of the symbol whose section we're fixing up HAS
1133 NOT BEEN adjusted (relocated) yet. It can't have been since
1134 the section isn't yet known and knowing the section is
1135 necessary in order to add the correct relocation value. In
1136 other words, we wouldn't even be in this function (attempting
1137 to compute the section) if it were already known.
1139 Note that it is possible to search the minimal symbols
1140 (subtracting the relocation value if necessary) to find the
1141 matching minimal symbol, but this is overkill and much less
1142 efficient. It is not necessary to find the matching minimal
1143 symbol, only its section.
1145 Note that this technique (of doing a section table search)
1146 can fail when unrelocated section addresses overlap. For
1147 this reason, we still attempt a lookup by name prior to doing
1148 a search of the section table. */
1150 struct obj_section *s;
1153 ALL_OBJFILE_OSECTIONS (objfile, s)
1155 int idx = s - objfile->sections;
1156 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1161 if (obj_section_addr (s) - offset <= addr
1162 && addr < obj_section_endaddr (s) - offset)
1164 ginfo->section = idx;
1169 /* If we didn't find the section, assume it is in the first
1170 section. If there is no allocated section, then it hardly
1171 matters what we pick, so just pick zero. */
1175 ginfo->section = fallback;
1180 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1187 /* We either have an OBJFILE, or we can get at it from the sym's
1188 symtab. Anything else is a bug. */
1189 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1191 if (objfile == NULL)
1192 objfile = SYMBOL_SYMTAB (sym)->objfile;
1194 if (SYMBOL_OBJ_SECTION (objfile, sym))
1197 /* We should have an objfile by now. */
1198 gdb_assert (objfile);
1200 switch (SYMBOL_CLASS (sym))
1204 addr = SYMBOL_VALUE_ADDRESS (sym);
1207 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1211 /* Nothing else will be listed in the minsyms -- no use looking
1216 fixup_section (&sym->ginfo, addr, objfile);
1221 /* Compute the demangled form of NAME as used by the various symbol
1222 lookup functions. The result is stored in *RESULT_NAME. Returns a
1223 cleanup which can be used to clean up the result.
1225 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1226 Normally, Ada symbol lookups are performed using the encoded name
1227 rather than the demangled name, and so it might seem to make sense
1228 for this function to return an encoded version of NAME.
1229 Unfortunately, we cannot do this, because this function is used in
1230 circumstances where it is not appropriate to try to encode NAME.
1231 For instance, when displaying the frame info, we demangle the name
1232 of each parameter, and then perform a symbol lookup inside our
1233 function using that demangled name. In Ada, certain functions
1234 have internally-generated parameters whose name contain uppercase
1235 characters. Encoding those name would result in those uppercase
1236 characters to become lowercase, and thus cause the symbol lookup
1240 demangle_for_lookup (const char *name, enum language lang,
1241 const char **result_name)
1243 char *demangled_name = NULL;
1244 const char *modified_name = NULL;
1245 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1247 modified_name = name;
1249 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1250 lookup, so we can always binary search. */
1251 if (lang == language_cplus)
1253 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1256 modified_name = demangled_name;
1257 make_cleanup (xfree, demangled_name);
1261 /* If we were given a non-mangled name, canonicalize it
1262 according to the language (so far only for C++). */
1263 demangled_name = cp_canonicalize_string (name);
1266 modified_name = demangled_name;
1267 make_cleanup (xfree, demangled_name);
1271 else if (lang == language_java)
1273 demangled_name = gdb_demangle (name,
1274 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1277 modified_name = demangled_name;
1278 make_cleanup (xfree, demangled_name);
1281 else if (lang == language_d)
1283 demangled_name = d_demangle (name, 0);
1286 modified_name = demangled_name;
1287 make_cleanup (xfree, demangled_name);
1290 else if (lang == language_go)
1292 demangled_name = go_demangle (name, 0);
1295 modified_name = demangled_name;
1296 make_cleanup (xfree, demangled_name);
1300 *result_name = modified_name;
1304 /* Find the definition for a specified symbol name NAME
1305 in domain DOMAIN, visible from lexical block BLOCK.
1306 Returns the struct symbol pointer, or zero if no symbol is found.
1307 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1308 NAME is a field of the current implied argument `this'. If so set
1309 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1310 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1311 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1313 /* This function (or rather its subordinates) have a bunch of loops and
1314 it would seem to be attractive to put in some QUIT's (though I'm not really
1315 sure whether it can run long enough to be really important). But there
1316 are a few calls for which it would appear to be bad news to quit
1317 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1318 that there is C++ code below which can error(), but that probably
1319 doesn't affect these calls since they are looking for a known
1320 variable and thus can probably assume it will never hit the C++
1324 lookup_symbol_in_language (const char *name, const struct block *block,
1325 const domain_enum domain, enum language lang,
1326 struct field_of_this_result *is_a_field_of_this)
1328 const char *modified_name;
1329 struct symbol *returnval;
1330 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1332 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1333 is_a_field_of_this);
1334 do_cleanups (cleanup);
1339 /* Behave like lookup_symbol_in_language, but performed with the
1340 current language. */
1343 lookup_symbol (const char *name, const struct block *block,
1345 struct field_of_this_result *is_a_field_of_this)
1347 return lookup_symbol_in_language (name, block, domain,
1348 current_language->la_language,
1349 is_a_field_of_this);
1352 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1353 found, or NULL if not found. */
1356 lookup_language_this (const struct language_defn *lang,
1357 const struct block *block)
1359 if (lang->la_name_of_this == NULL || block == NULL)
1366 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1369 block_found = block;
1372 if (BLOCK_FUNCTION (block))
1374 block = BLOCK_SUPERBLOCK (block);
1380 /* Given TYPE, a structure/union,
1381 return 1 if the component named NAME from the ultimate target
1382 structure/union is defined, otherwise, return 0. */
1385 check_field (struct type *type, const char *name,
1386 struct field_of_this_result *is_a_field_of_this)
1390 /* The type may be a stub. */
1391 CHECK_TYPEDEF (type);
1393 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1395 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1397 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1399 is_a_field_of_this->type = type;
1400 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1405 /* C++: If it was not found as a data field, then try to return it
1406 as a pointer to a method. */
1408 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1410 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1412 is_a_field_of_this->type = type;
1413 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1418 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1419 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1425 /* Behave like lookup_symbol except that NAME is the natural name
1426 (e.g., demangled name) of the symbol that we're looking for. */
1428 static struct symbol *
1429 lookup_symbol_aux (const char *name, const struct block *block,
1430 const domain_enum domain, enum language language,
1431 struct field_of_this_result *is_a_field_of_this)
1434 const struct language_defn *langdef;
1436 /* Make sure we do something sensible with is_a_field_of_this, since
1437 the callers that set this parameter to some non-null value will
1438 certainly use it later. If we don't set it, the contents of
1439 is_a_field_of_this are undefined. */
1440 if (is_a_field_of_this != NULL)
1441 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1443 /* Search specified block and its superiors. Don't search
1444 STATIC_BLOCK or GLOBAL_BLOCK. */
1446 sym = lookup_symbol_aux_local (name, block, domain, language);
1450 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1451 check to see if NAME is a field of `this'. */
1453 langdef = language_def (language);
1455 /* Don't do this check if we are searching for a struct. It will
1456 not be found by check_field, but will be found by other
1458 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1460 struct symbol *sym = lookup_language_this (langdef, block);
1464 struct type *t = sym->type;
1466 /* I'm not really sure that type of this can ever
1467 be typedefed; just be safe. */
1469 if (TYPE_CODE (t) == TYPE_CODE_PTR
1470 || TYPE_CODE (t) == TYPE_CODE_REF)
1471 t = TYPE_TARGET_TYPE (t);
1473 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1474 && TYPE_CODE (t) != TYPE_CODE_UNION)
1475 error (_("Internal error: `%s' is not an aggregate"),
1476 langdef->la_name_of_this);
1478 if (check_field (t, name, is_a_field_of_this))
1483 /* Now do whatever is appropriate for LANGUAGE to look
1484 up static and global variables. */
1486 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1490 /* Now search all static file-level symbols. Not strictly correct,
1491 but more useful than an error. */
1493 return lookup_static_symbol_aux (name, domain);
1496 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1497 first, then check the psymtabs. If a psymtab indicates the existence of the
1498 desired name as a file-level static, then do psymtab-to-symtab conversion on
1499 the fly and return the found symbol. */
1502 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1504 struct objfile *objfile;
1507 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1511 ALL_OBJFILES (objfile)
1513 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1521 /* Check to see if the symbol is defined in BLOCK or its superiors.
1522 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1524 static struct symbol *
1525 lookup_symbol_aux_local (const char *name, const struct block *block,
1526 const domain_enum domain,
1527 enum language language)
1530 const struct block *static_block = block_static_block (block);
1531 const char *scope = block_scope (block);
1533 /* Check if either no block is specified or it's a global block. */
1535 if (static_block == NULL)
1538 while (block != static_block)
1540 sym = lookup_symbol_aux_block (name, block, domain);
1544 if (language == language_cplus || language == language_fortran)
1546 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1552 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1554 block = BLOCK_SUPERBLOCK (block);
1557 /* We've reached the edge of the function without finding a result. */
1562 /* Look up OBJFILE to BLOCK. */
1565 lookup_objfile_from_block (const struct block *block)
1567 struct objfile *obj;
1573 block = block_global_block (block);
1574 /* Go through SYMTABS. */
1575 ALL_SYMTABS (obj, s)
1576 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1578 if (obj->separate_debug_objfile_backlink)
1579 obj = obj->separate_debug_objfile_backlink;
1587 /* Look up a symbol in a block; if found, fixup the symbol, and set
1588 block_found appropriately. */
1591 lookup_symbol_aux_block (const char *name, const struct block *block,
1592 const domain_enum domain)
1596 sym = lookup_block_symbol (block, name, domain);
1599 block_found = block;
1600 return fixup_symbol_section (sym, NULL);
1606 /* Check all global symbols in OBJFILE in symtabs and
1610 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1612 const domain_enum domain)
1614 const struct objfile *objfile;
1616 const struct blockvector *bv;
1617 const struct block *block;
1620 for (objfile = main_objfile;
1622 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1624 /* Go through symtabs. */
1625 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1627 bv = BLOCKVECTOR (s);
1628 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1629 sym = lookup_block_symbol (block, name, domain);
1632 block_found = block;
1633 return fixup_symbol_section (sym, (struct objfile *)objfile);
1637 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1646 /* Check to see if the symbol is defined in one of the OBJFILE's
1647 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1648 depending on whether or not we want to search global symbols or
1651 static struct symbol *
1652 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1653 const char *name, const domain_enum domain)
1655 struct symbol *sym = NULL;
1656 const struct blockvector *bv;
1657 const struct block *block;
1660 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1662 bv = BLOCKVECTOR (s);
1663 block = BLOCKVECTOR_BLOCK (bv, block_index);
1664 sym = lookup_block_symbol (block, name, domain);
1667 block_found = block;
1668 return fixup_symbol_section (sym, objfile);
1675 /* Same as lookup_symbol_aux_objfile, except that it searches all
1676 objfiles. Return the first match found. */
1678 static struct symbol *
1679 lookup_symbol_aux_symtabs (int block_index, const char *name,
1680 const domain_enum domain)
1683 struct objfile *objfile;
1685 ALL_OBJFILES (objfile)
1687 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1695 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1696 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1697 and all related objfiles. */
1699 static struct symbol *
1700 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1701 const char *linkage_name,
1704 enum language lang = current_language->la_language;
1705 const char *modified_name;
1706 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1708 struct objfile *main_objfile, *cur_objfile;
1710 if (objfile->separate_debug_objfile_backlink)
1711 main_objfile = objfile->separate_debug_objfile_backlink;
1713 main_objfile = objfile;
1715 for (cur_objfile = main_objfile;
1717 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1721 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1722 modified_name, domain);
1724 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1725 modified_name, domain);
1728 do_cleanups (cleanup);
1733 do_cleanups (cleanup);
1737 /* A helper function that throws an exception when a symbol was found
1738 in a psymtab but not in a symtab. */
1740 static void ATTRIBUTE_NORETURN
1741 error_in_psymtab_expansion (int kind, const char *name, struct symtab *symtab)
1744 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1745 %s may be an inlined function, or may be a template function\n \
1746 (if a template, try specifying an instantiation: %s<type>)."),
1747 kind == GLOBAL_BLOCK ? "global" : "static",
1748 name, symtab_to_filename_for_display (symtab), name, name);
1751 /* A helper function for lookup_symbol_aux that interfaces with the
1752 "quick" symbol table functions. */
1754 static struct symbol *
1755 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1756 const char *name, const domain_enum domain)
1758 struct symtab *symtab;
1759 const struct blockvector *bv;
1760 const struct block *block;
1765 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1769 bv = BLOCKVECTOR (symtab);
1770 block = BLOCKVECTOR_BLOCK (bv, kind);
1771 sym = lookup_block_symbol (block, name, domain);
1773 error_in_psymtab_expansion (kind, name, symtab);
1774 return fixup_symbol_section (sym, objfile);
1777 /* A default version of lookup_symbol_nonlocal for use by languages
1778 that can't think of anything better to do. This implements the C
1782 basic_lookup_symbol_nonlocal (const char *name,
1783 const struct block *block,
1784 const domain_enum domain)
1788 /* NOTE: carlton/2003-05-19: The comments below were written when
1789 this (or what turned into this) was part of lookup_symbol_aux;
1790 I'm much less worried about these questions now, since these
1791 decisions have turned out well, but I leave these comments here
1794 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1795 not it would be appropriate to search the current global block
1796 here as well. (That's what this code used to do before the
1797 is_a_field_of_this check was moved up.) On the one hand, it's
1798 redundant with the lookup_symbol_aux_symtabs search that happens
1799 next. On the other hand, if decode_line_1 is passed an argument
1800 like filename:var, then the user presumably wants 'var' to be
1801 searched for in filename. On the third hand, there shouldn't be
1802 multiple global variables all of which are named 'var', and it's
1803 not like decode_line_1 has ever restricted its search to only
1804 global variables in a single filename. All in all, only
1805 searching the static block here seems best: it's correct and it's
1808 /* NOTE: carlton/2002-12-05: There's also a possible performance
1809 issue here: if you usually search for global symbols in the
1810 current file, then it would be slightly better to search the
1811 current global block before searching all the symtabs. But there
1812 are other factors that have a much greater effect on performance
1813 than that one, so I don't think we should worry about that for
1816 sym = lookup_symbol_static (name, block, domain);
1820 return lookup_symbol_global (name, block, domain);
1823 /* Lookup a symbol in the static block associated to BLOCK, if there
1824 is one; do nothing if BLOCK is NULL or a global block. */
1827 lookup_symbol_static (const char *name,
1828 const struct block *block,
1829 const domain_enum domain)
1831 const struct block *static_block = block_static_block (block);
1833 if (static_block != NULL)
1834 return lookup_symbol_aux_block (name, static_block, domain);
1839 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1841 struct global_sym_lookup_data
1843 /* The name of the symbol we are searching for. */
1846 /* The domain to use for our search. */
1849 /* The field where the callback should store the symbol if found.
1850 It should be initialized to NULL before the search is started. */
1851 struct symbol *result;
1854 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1855 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1856 OBJFILE. The arguments for the search are passed via CB_DATA,
1857 which in reality is a pointer to struct global_sym_lookup_data. */
1860 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1863 struct global_sym_lookup_data *data =
1864 (struct global_sym_lookup_data *) cb_data;
1866 gdb_assert (data->result == NULL);
1868 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1869 data->name, data->domain);
1870 if (data->result == NULL)
1871 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1872 data->name, data->domain);
1874 /* If we found a match, tell the iterator to stop. Otherwise,
1876 return (data->result != NULL);
1879 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1883 lookup_symbol_global (const char *name,
1884 const struct block *block,
1885 const domain_enum domain)
1887 struct symbol *sym = NULL;
1888 struct objfile *objfile = NULL;
1889 struct global_sym_lookup_data lookup_data;
1891 /* Call library-specific lookup procedure. */
1892 objfile = lookup_objfile_from_block (block);
1893 if (objfile != NULL)
1894 sym = solib_global_lookup (objfile, name, domain);
1898 memset (&lookup_data, 0, sizeof (lookup_data));
1899 lookup_data.name = name;
1900 lookup_data.domain = domain;
1901 gdbarch_iterate_over_objfiles_in_search_order
1902 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1903 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1905 return lookup_data.result;
1909 symbol_matches_domain (enum language symbol_language,
1910 domain_enum symbol_domain,
1913 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1914 A Java class declaration also defines a typedef for the class.
1915 Similarly, any Ada type declaration implicitly defines a typedef. */
1916 if (symbol_language == language_cplus
1917 || symbol_language == language_d
1918 || symbol_language == language_java
1919 || symbol_language == language_ada)
1921 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1922 && symbol_domain == STRUCT_DOMAIN)
1925 /* For all other languages, strict match is required. */
1926 return (symbol_domain == domain);
1929 /* Look up a type named NAME in the struct_domain. The type returned
1930 must not be opaque -- i.e., must have at least one field
1934 lookup_transparent_type (const char *name)
1936 return current_language->la_lookup_transparent_type (name);
1939 /* A helper for basic_lookup_transparent_type that interfaces with the
1940 "quick" symbol table functions. */
1942 static struct type *
1943 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1946 struct symtab *symtab;
1947 const struct blockvector *bv;
1948 struct block *block;
1953 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1957 bv = BLOCKVECTOR (symtab);
1958 block = BLOCKVECTOR_BLOCK (bv, kind);
1959 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1961 error_in_psymtab_expansion (kind, name, symtab);
1963 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1964 return SYMBOL_TYPE (sym);
1969 /* The standard implementation of lookup_transparent_type. This code
1970 was modeled on lookup_symbol -- the parts not relevant to looking
1971 up types were just left out. In particular it's assumed here that
1972 types are available in struct_domain and only at file-static or
1976 basic_lookup_transparent_type (const char *name)
1979 struct symtab *s = NULL;
1980 const struct blockvector *bv;
1981 struct objfile *objfile;
1982 struct block *block;
1985 /* Now search all the global symbols. Do the symtab's first, then
1986 check the psymtab's. If a psymtab indicates the existence
1987 of the desired name as a global, then do psymtab-to-symtab
1988 conversion on the fly and return the found symbol. */
1990 ALL_OBJFILES (objfile)
1992 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1994 bv = BLOCKVECTOR (s);
1995 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1996 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1997 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1999 return SYMBOL_TYPE (sym);
2004 ALL_OBJFILES (objfile)
2006 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2011 /* Now search the static file-level symbols.
2012 Not strictly correct, but more useful than an error.
2013 Do the symtab's first, then
2014 check the psymtab's. If a psymtab indicates the existence
2015 of the desired name as a file-level static, then do psymtab-to-symtab
2016 conversion on the fly and return the found symbol. */
2018 ALL_OBJFILES (objfile)
2020 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
2022 bv = BLOCKVECTOR (s);
2023 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
2024 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
2025 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2027 return SYMBOL_TYPE (sym);
2032 ALL_OBJFILES (objfile)
2034 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2039 return (struct type *) 0;
2042 /* Search BLOCK for symbol NAME in DOMAIN.
2044 Note that if NAME is the demangled form of a C++ symbol, we will fail
2045 to find a match during the binary search of the non-encoded names, but
2046 for now we don't worry about the slight inefficiency of looking for
2047 a match we'll never find, since it will go pretty quick. Once the
2048 binary search terminates, we drop through and do a straight linear
2049 search on the symbols. Each symbol which is marked as being a ObjC/C++
2050 symbol (language_cplus or language_objc set) has both the encoded and
2051 non-encoded names tested for a match. */
2054 lookup_block_symbol (const struct block *block, const char *name,
2055 const domain_enum domain)
2057 struct block_iterator iter;
2060 if (!BLOCK_FUNCTION (block))
2062 for (sym = block_iter_name_first (block, name, &iter);
2064 sym = block_iter_name_next (name, &iter))
2066 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2067 SYMBOL_DOMAIN (sym), domain))
2074 /* Note that parameter symbols do not always show up last in the
2075 list; this loop makes sure to take anything else other than
2076 parameter symbols first; it only uses parameter symbols as a
2077 last resort. Note that this only takes up extra computation
2080 struct symbol *sym_found = NULL;
2082 for (sym = block_iter_name_first (block, name, &iter);
2084 sym = block_iter_name_next (name, &iter))
2086 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2087 SYMBOL_DOMAIN (sym), domain))
2090 if (!SYMBOL_IS_ARGUMENT (sym))
2096 return (sym_found); /* Will be NULL if not found. */
2100 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2102 For each symbol that matches, CALLBACK is called. The symbol and
2103 DATA are passed to the callback.
2105 If CALLBACK returns zero, the iteration ends. Otherwise, the
2106 search continues. */
2109 iterate_over_symbols (const struct block *block, const char *name,
2110 const domain_enum domain,
2111 symbol_found_callback_ftype *callback,
2114 struct block_iterator iter;
2117 for (sym = block_iter_name_first (block, name, &iter);
2119 sym = block_iter_name_next (name, &iter))
2121 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2122 SYMBOL_DOMAIN (sym), domain))
2124 if (!callback (sym, data))
2130 /* Find the symtab associated with PC and SECTION. Look through the
2131 psymtabs and read in another symtab if necessary. */
2134 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2137 const struct blockvector *bv;
2138 struct symtab *s = NULL;
2139 struct symtab *best_s = NULL;
2140 struct objfile *objfile;
2141 CORE_ADDR distance = 0;
2142 struct bound_minimal_symbol msymbol;
2144 /* If we know that this is not a text address, return failure. This is
2145 necessary because we loop based on the block's high and low code
2146 addresses, which do not include the data ranges, and because
2147 we call find_pc_sect_psymtab which has a similar restriction based
2148 on the partial_symtab's texthigh and textlow. */
2149 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2151 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2152 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2153 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2154 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2155 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2158 /* Search all symtabs for the one whose file contains our address, and which
2159 is the smallest of all the ones containing the address. This is designed
2160 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2161 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2162 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2164 This happens for native ecoff format, where code from included files
2165 gets its own symtab. The symtab for the included file should have
2166 been read in already via the dependency mechanism.
2167 It might be swifter to create several symtabs with the same name
2168 like xcoff does (I'm not sure).
2170 It also happens for objfiles that have their functions reordered.
2171 For these, the symtab we are looking for is not necessarily read in. */
2173 ALL_PRIMARY_SYMTABS (objfile, s)
2175 bv = BLOCKVECTOR (s);
2176 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2178 if (BLOCK_START (b) <= pc
2179 && BLOCK_END (b) > pc
2181 || BLOCK_END (b) - BLOCK_START (b) < distance))
2183 /* For an objfile that has its functions reordered,
2184 find_pc_psymtab will find the proper partial symbol table
2185 and we simply return its corresponding symtab. */
2186 /* In order to better support objfiles that contain both
2187 stabs and coff debugging info, we continue on if a psymtab
2189 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2191 struct symtab *result;
2194 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2203 struct block_iterator iter;
2204 struct symbol *sym = NULL;
2206 ALL_BLOCK_SYMBOLS (b, iter, sym)
2208 fixup_symbol_section (sym, objfile);
2209 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2214 continue; /* No symbol in this symtab matches
2217 distance = BLOCK_END (b) - BLOCK_START (b);
2225 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2227 ALL_OBJFILES (objfile)
2229 struct symtab *result;
2233 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2244 /* Find the symtab associated with PC. Look through the psymtabs and read
2245 in another symtab if necessary. Backward compatibility, no section. */
2248 find_pc_symtab (CORE_ADDR pc)
2250 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2254 /* Find the source file and line number for a given PC value and SECTION.
2255 Return a structure containing a symtab pointer, a line number,
2256 and a pc range for the entire source line.
2257 The value's .pc field is NOT the specified pc.
2258 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2259 use the line that ends there. Otherwise, in that case, the line
2260 that begins there is used. */
2262 /* The big complication here is that a line may start in one file, and end just
2263 before the start of another file. This usually occurs when you #include
2264 code in the middle of a subroutine. To properly find the end of a line's PC
2265 range, we must search all symtabs associated with this compilation unit, and
2266 find the one whose first PC is closer than that of the next line in this
2269 /* If it's worth the effort, we could be using a binary search. */
2271 struct symtab_and_line
2272 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2275 struct linetable *l;
2278 struct linetable_entry *item;
2279 struct symtab_and_line val;
2280 const struct blockvector *bv;
2281 struct bound_minimal_symbol msymbol;
2282 struct objfile *objfile;
2284 /* Info on best line seen so far, and where it starts, and its file. */
2286 struct linetable_entry *best = NULL;
2287 CORE_ADDR best_end = 0;
2288 struct symtab *best_symtab = 0;
2290 /* Store here the first line number
2291 of a file which contains the line at the smallest pc after PC.
2292 If we don't find a line whose range contains PC,
2293 we will use a line one less than this,
2294 with a range from the start of that file to the first line's pc. */
2295 struct linetable_entry *alt = NULL;
2297 /* Info on best line seen in this file. */
2299 struct linetable_entry *prev;
2301 /* If this pc is not from the current frame,
2302 it is the address of the end of a call instruction.
2303 Quite likely that is the start of the following statement.
2304 But what we want is the statement containing the instruction.
2305 Fudge the pc to make sure we get that. */
2307 init_sal (&val); /* initialize to zeroes */
2309 val.pspace = current_program_space;
2311 /* It's tempting to assume that, if we can't find debugging info for
2312 any function enclosing PC, that we shouldn't search for line
2313 number info, either. However, GAS can emit line number info for
2314 assembly files --- very helpful when debugging hand-written
2315 assembly code. In such a case, we'd have no debug info for the
2316 function, but we would have line info. */
2321 /* elz: added this because this function returned the wrong
2322 information if the pc belongs to a stub (import/export)
2323 to call a shlib function. This stub would be anywhere between
2324 two functions in the target, and the line info was erroneously
2325 taken to be the one of the line before the pc. */
2327 /* RT: Further explanation:
2329 * We have stubs (trampolines) inserted between procedures.
2331 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2332 * exists in the main image.
2334 * In the minimal symbol table, we have a bunch of symbols
2335 * sorted by start address. The stubs are marked as "trampoline",
2336 * the others appear as text. E.g.:
2338 * Minimal symbol table for main image
2339 * main: code for main (text symbol)
2340 * shr1: stub (trampoline symbol)
2341 * foo: code for foo (text symbol)
2343 * Minimal symbol table for "shr1" image:
2345 * shr1: code for shr1 (text symbol)
2348 * So the code below is trying to detect if we are in the stub
2349 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2350 * and if found, do the symbolization from the real-code address
2351 * rather than the stub address.
2353 * Assumptions being made about the minimal symbol table:
2354 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2355 * if we're really in the trampoline.s If we're beyond it (say
2356 * we're in "foo" in the above example), it'll have a closer
2357 * symbol (the "foo" text symbol for example) and will not
2358 * return the trampoline.
2359 * 2. lookup_minimal_symbol_text() will find a real text symbol
2360 * corresponding to the trampoline, and whose address will
2361 * be different than the trampoline address. I put in a sanity
2362 * check for the address being the same, to avoid an
2363 * infinite recursion.
2365 msymbol = lookup_minimal_symbol_by_pc (pc);
2366 if (msymbol.minsym != NULL)
2367 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2369 struct bound_minimal_symbol mfunsym
2370 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2373 if (mfunsym.minsym == NULL)
2374 /* I eliminated this warning since it is coming out
2375 * in the following situation:
2376 * gdb shmain // test program with shared libraries
2377 * (gdb) break shr1 // function in shared lib
2378 * Warning: In stub for ...
2379 * In the above situation, the shared lib is not loaded yet,
2380 * so of course we can't find the real func/line info,
2381 * but the "break" still works, and the warning is annoying.
2382 * So I commented out the warning. RT */
2383 /* warning ("In stub for %s; unable to find real function/line info",
2384 SYMBOL_LINKAGE_NAME (msymbol)); */
2387 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2388 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2389 /* Avoid infinite recursion */
2390 /* See above comment about why warning is commented out. */
2391 /* warning ("In stub for %s; unable to find real function/line info",
2392 SYMBOL_LINKAGE_NAME (msymbol)); */
2396 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2400 s = find_pc_sect_symtab (pc, section);
2403 /* If no symbol information, return previous pc. */
2410 bv = BLOCKVECTOR (s);
2411 objfile = s->objfile;
2413 /* Look at all the symtabs that share this blockvector.
2414 They all have the same apriori range, that we found was right;
2415 but they have different line tables. */
2417 ALL_OBJFILE_SYMTABS (objfile, s)
2419 if (BLOCKVECTOR (s) != bv)
2422 /* Find the best line in this symtab. */
2429 /* I think len can be zero if the symtab lacks line numbers
2430 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2431 I'm not sure which, and maybe it depends on the symbol
2437 item = l->item; /* Get first line info. */
2439 /* Is this file's first line closer than the first lines of other files?
2440 If so, record this file, and its first line, as best alternate. */
2441 if (item->pc > pc && (!alt || item->pc < alt->pc))
2444 for (i = 0; i < len; i++, item++)
2446 /* Leave prev pointing to the linetable entry for the last line
2447 that started at or before PC. */
2454 /* At this point, prev points at the line whose start addr is <= pc, and
2455 item points at the next line. If we ran off the end of the linetable
2456 (pc >= start of the last line), then prev == item. If pc < start of
2457 the first line, prev will not be set. */
2459 /* Is this file's best line closer than the best in the other files?
2460 If so, record this file, and its best line, as best so far. Don't
2461 save prev if it represents the end of a function (i.e. line number
2462 0) instead of a real line. */
2464 if (prev && prev->line && (!best || prev->pc > best->pc))
2469 /* Discard BEST_END if it's before the PC of the current BEST. */
2470 if (best_end <= best->pc)
2474 /* If another line (denoted by ITEM) is in the linetable and its
2475 PC is after BEST's PC, but before the current BEST_END, then
2476 use ITEM's PC as the new best_end. */
2477 if (best && i < len && item->pc > best->pc
2478 && (best_end == 0 || best_end > item->pc))
2479 best_end = item->pc;
2484 /* If we didn't find any line number info, just return zeros.
2485 We used to return alt->line - 1 here, but that could be
2486 anywhere; if we don't have line number info for this PC,
2487 don't make some up. */
2490 else if (best->line == 0)
2492 /* If our best fit is in a range of PC's for which no line
2493 number info is available (line number is zero) then we didn't
2494 find any valid line information. */
2499 val.symtab = best_symtab;
2500 val.line = best->line;
2502 if (best_end && (!alt || best_end < alt->pc))
2507 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2509 val.section = section;
2513 /* Backward compatibility (no section). */
2515 struct symtab_and_line
2516 find_pc_line (CORE_ADDR pc, int notcurrent)
2518 struct obj_section *section;
2520 section = find_pc_overlay (pc);
2521 if (pc_in_unmapped_range (pc, section))
2522 pc = overlay_mapped_address (pc, section);
2523 return find_pc_sect_line (pc, section, notcurrent);
2526 /* Find line number LINE in any symtab whose name is the same as
2529 If found, return the symtab that contains the linetable in which it was
2530 found, set *INDEX to the index in the linetable of the best entry
2531 found, and set *EXACT_MATCH nonzero if the value returned is an
2534 If not found, return NULL. */
2537 find_line_symtab (struct symtab *symtab, int line,
2538 int *index, int *exact_match)
2540 int exact = 0; /* Initialized here to avoid a compiler warning. */
2542 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2546 struct linetable *best_linetable;
2547 struct symtab *best_symtab;
2549 /* First try looking it up in the given symtab. */
2550 best_linetable = LINETABLE (symtab);
2551 best_symtab = symtab;
2552 best_index = find_line_common (best_linetable, line, &exact, 0);
2553 if (best_index < 0 || !exact)
2555 /* Didn't find an exact match. So we better keep looking for
2556 another symtab with the same name. In the case of xcoff,
2557 multiple csects for one source file (produced by IBM's FORTRAN
2558 compiler) produce multiple symtabs (this is unavoidable
2559 assuming csects can be at arbitrary places in memory and that
2560 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2562 /* BEST is the smallest linenumber > LINE so far seen,
2563 or 0 if none has been seen so far.
2564 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2567 struct objfile *objfile;
2570 if (best_index >= 0)
2571 best = best_linetable->item[best_index].line;
2575 ALL_OBJFILES (objfile)
2578 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2579 symtab_to_fullname (symtab));
2582 ALL_SYMTABS (objfile, s)
2584 struct linetable *l;
2587 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2589 if (FILENAME_CMP (symtab_to_fullname (symtab),
2590 symtab_to_fullname (s)) != 0)
2593 ind = find_line_common (l, line, &exact, 0);
2603 if (best == 0 || l->item[ind].line < best)
2605 best = l->item[ind].line;
2618 *index = best_index;
2620 *exact_match = exact;
2625 /* Given SYMTAB, returns all the PCs function in the symtab that
2626 exactly match LINE. Returns NULL if there are no exact matches,
2627 but updates BEST_ITEM in this case. */
2630 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2631 struct linetable_entry **best_item)
2634 VEC (CORE_ADDR) *result = NULL;
2636 /* First, collect all the PCs that are at this line. */
2642 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2648 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2650 if (*best_item == NULL || item->line < (*best_item)->line)
2656 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2664 /* Set the PC value for a given source file and line number and return true.
2665 Returns zero for invalid line number (and sets the PC to 0).
2666 The source file is specified with a struct symtab. */
2669 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2671 struct linetable *l;
2678 symtab = find_line_symtab (symtab, line, &ind, NULL);
2681 l = LINETABLE (symtab);
2682 *pc = l->item[ind].pc;
2689 /* Find the range of pc values in a line.
2690 Store the starting pc of the line into *STARTPTR
2691 and the ending pc (start of next line) into *ENDPTR.
2692 Returns 1 to indicate success.
2693 Returns 0 if could not find the specified line. */
2696 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2699 CORE_ADDR startaddr;
2700 struct symtab_and_line found_sal;
2703 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2706 /* This whole function is based on address. For example, if line 10 has
2707 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2708 "info line *0x123" should say the line goes from 0x100 to 0x200
2709 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2710 This also insures that we never give a range like "starts at 0x134
2711 and ends at 0x12c". */
2713 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2714 if (found_sal.line != sal.line)
2716 /* The specified line (sal) has zero bytes. */
2717 *startptr = found_sal.pc;
2718 *endptr = found_sal.pc;
2722 *startptr = found_sal.pc;
2723 *endptr = found_sal.end;
2728 /* Given a line table and a line number, return the index into the line
2729 table for the pc of the nearest line whose number is >= the specified one.
2730 Return -1 if none is found. The value is >= 0 if it is an index.
2731 START is the index at which to start searching the line table.
2733 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2736 find_line_common (struct linetable *l, int lineno,
2737 int *exact_match, int start)
2742 /* BEST is the smallest linenumber > LINENO so far seen,
2743 or 0 if none has been seen so far.
2744 BEST_INDEX identifies the item for it. */
2746 int best_index = -1;
2757 for (i = start; i < len; i++)
2759 struct linetable_entry *item = &(l->item[i]);
2761 if (item->line == lineno)
2763 /* Return the first (lowest address) entry which matches. */
2768 if (item->line > lineno && (best == 0 || item->line < best))
2775 /* If we got here, we didn't get an exact match. */
2780 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2782 struct symtab_and_line sal;
2784 sal = find_pc_line (pc, 0);
2787 return sal.symtab != 0;
2790 /* Given a function symbol SYM, find the symtab and line for the start
2792 If the argument FUNFIRSTLINE is nonzero, we want the first line
2793 of real code inside the function. */
2795 struct symtab_and_line
2796 find_function_start_sal (struct symbol *sym, int funfirstline)
2798 struct symtab_and_line sal;
2800 fixup_symbol_section (sym, NULL);
2801 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2802 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2804 /* We always should have a line for the function start address.
2805 If we don't, something is odd. Create a plain SAL refering
2806 just the PC and hope that skip_prologue_sal (if requested)
2807 can find a line number for after the prologue. */
2808 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2811 sal.pspace = current_program_space;
2812 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2813 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2817 skip_prologue_sal (&sal);
2822 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2823 address for that function that has an entry in SYMTAB's line info
2824 table. If such an entry cannot be found, return FUNC_ADDR
2828 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2830 CORE_ADDR func_start, func_end;
2831 struct linetable *l;
2834 /* Give up if this symbol has no lineinfo table. */
2835 l = LINETABLE (symtab);
2839 /* Get the range for the function's PC values, or give up if we
2840 cannot, for some reason. */
2841 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2844 /* Linetable entries are ordered by PC values, see the commentary in
2845 symtab.h where `struct linetable' is defined. Thus, the first
2846 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2847 address we are looking for. */
2848 for (i = 0; i < l->nitems; i++)
2850 struct linetable_entry *item = &(l->item[i]);
2852 /* Don't use line numbers of zero, they mark special entries in
2853 the table. See the commentary on symtab.h before the
2854 definition of struct linetable. */
2855 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2862 /* Adjust SAL to the first instruction past the function prologue.
2863 If the PC was explicitly specified, the SAL is not changed.
2864 If the line number was explicitly specified, at most the SAL's PC
2865 is updated. If SAL is already past the prologue, then do nothing. */
2868 skip_prologue_sal (struct symtab_and_line *sal)
2871 struct symtab_and_line start_sal;
2872 struct cleanup *old_chain;
2873 CORE_ADDR pc, saved_pc;
2874 struct obj_section *section;
2876 struct objfile *objfile;
2877 struct gdbarch *gdbarch;
2878 const struct block *b, *function_block;
2879 int force_skip, skip;
2881 /* Do not change the SAL if PC was specified explicitly. */
2882 if (sal->explicit_pc)
2885 old_chain = save_current_space_and_thread ();
2886 switch_to_program_space_and_thread (sal->pspace);
2888 sym = find_pc_sect_function (sal->pc, sal->section);
2891 fixup_symbol_section (sym, NULL);
2893 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2894 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2895 name = SYMBOL_LINKAGE_NAME (sym);
2896 objfile = SYMBOL_SYMTAB (sym)->objfile;
2900 struct bound_minimal_symbol msymbol
2901 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2903 if (msymbol.minsym == NULL)
2905 do_cleanups (old_chain);
2909 objfile = msymbol.objfile;
2910 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2911 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2912 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2915 gdbarch = get_objfile_arch (objfile);
2917 /* Process the prologue in two passes. In the first pass try to skip the
2918 prologue (SKIP is true) and verify there is a real need for it (indicated
2919 by FORCE_SKIP). If no such reason was found run a second pass where the
2920 prologue is not skipped (SKIP is false). */
2925 /* Be conservative - allow direct PC (without skipping prologue) only if we
2926 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2927 have to be set by the caller so we use SYM instead. */
2928 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2936 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2937 so that gdbarch_skip_prologue has something unique to work on. */
2938 if (section_is_overlay (section) && !section_is_mapped (section))
2939 pc = overlay_unmapped_address (pc, section);
2941 /* Skip "first line" of function (which is actually its prologue). */
2942 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2943 if (gdbarch_skip_entrypoint_p (gdbarch))
2944 pc = gdbarch_skip_entrypoint (gdbarch, pc);
2946 pc = gdbarch_skip_prologue (gdbarch, pc);
2948 /* For overlays, map pc back into its mapped VMA range. */
2949 pc = overlay_mapped_address (pc, section);
2951 /* Calculate line number. */
2952 start_sal = find_pc_sect_line (pc, section, 0);
2954 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2955 line is still part of the same function. */
2956 if (skip && start_sal.pc != pc
2957 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2958 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2959 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2960 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2962 /* First pc of next line */
2964 /* Recalculate the line number (might not be N+1). */
2965 start_sal = find_pc_sect_line (pc, section, 0);
2968 /* On targets with executable formats that don't have a concept of
2969 constructors (ELF with .init has, PE doesn't), gcc emits a call
2970 to `__main' in `main' between the prologue and before user
2972 if (gdbarch_skip_main_prologue_p (gdbarch)
2973 && name && strcmp_iw (name, "main") == 0)
2975 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2976 /* Recalculate the line number (might not be N+1). */
2977 start_sal = find_pc_sect_line (pc, section, 0);
2981 while (!force_skip && skip--);
2983 /* If we still don't have a valid source line, try to find the first
2984 PC in the lineinfo table that belongs to the same function. This
2985 happens with COFF debug info, which does not seem to have an
2986 entry in lineinfo table for the code after the prologue which has
2987 no direct relation to source. For example, this was found to be
2988 the case with the DJGPP target using "gcc -gcoff" when the
2989 compiler inserted code after the prologue to make sure the stack
2991 if (!force_skip && sym && start_sal.symtab == NULL)
2993 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2994 /* Recalculate the line number. */
2995 start_sal = find_pc_sect_line (pc, section, 0);
2998 do_cleanups (old_chain);
3000 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3001 forward SAL to the end of the prologue. */
3006 sal->section = section;
3008 /* Unless the explicit_line flag was set, update the SAL line
3009 and symtab to correspond to the modified PC location. */
3010 if (sal->explicit_line)
3013 sal->symtab = start_sal.symtab;
3014 sal->line = start_sal.line;
3015 sal->end = start_sal.end;
3017 /* Check if we are now inside an inlined function. If we can,
3018 use the call site of the function instead. */
3019 b = block_for_pc_sect (sal->pc, sal->section);
3020 function_block = NULL;
3023 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3025 else if (BLOCK_FUNCTION (b) != NULL)
3027 b = BLOCK_SUPERBLOCK (b);
3029 if (function_block != NULL
3030 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3032 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3033 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
3037 /* Determine if PC is in the prologue of a function. The prologue is the area
3038 between the first instruction of a function, and the first executable line.
3039 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
3041 If non-zero, func_start is where we think the prologue starts, possibly
3042 by previous examination of symbol table information. */
3045 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
3047 struct symtab_and_line sal;
3048 CORE_ADDR func_addr, func_end;
3050 /* We have several sources of information we can consult to figure
3052 - Compilers usually emit line number info that marks the prologue
3053 as its own "source line". So the ending address of that "line"
3054 is the end of the prologue. If available, this is the most
3056 - The minimal symbols and partial symbols, which can usually tell
3057 us the starting and ending addresses of a function.
3058 - If we know the function's start address, we can call the
3059 architecture-defined gdbarch_skip_prologue function to analyze the
3060 instruction stream and guess where the prologue ends.
3061 - Our `func_start' argument; if non-zero, this is the caller's
3062 best guess as to the function's entry point. At the time of
3063 this writing, handle_inferior_event doesn't get this right, so
3064 it should be our last resort. */
3066 /* Consult the partial symbol table, to find which function
3068 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3070 CORE_ADDR prologue_end;
3072 /* We don't even have minsym information, so fall back to using
3073 func_start, if given. */
3075 return 1; /* We *might* be in a prologue. */
3077 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
3079 return func_start <= pc && pc < prologue_end;
3082 /* If we have line number information for the function, that's
3083 usually pretty reliable. */
3084 sal = find_pc_line (func_addr, 0);
3086 /* Now sal describes the source line at the function's entry point,
3087 which (by convention) is the prologue. The end of that "line",
3088 sal.end, is the end of the prologue.
3090 Note that, for functions whose source code is all on a single
3091 line, the line number information doesn't always end up this way.
3092 So we must verify that our purported end-of-prologue address is
3093 *within* the function, not at its start or end. */
3095 || sal.end <= func_addr
3096 || func_end <= sal.end)
3098 /* We don't have any good line number info, so use the minsym
3099 information, together with the architecture-specific prologue
3101 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
3103 return func_addr <= pc && pc < prologue_end;
3106 /* We have line number info, and it looks good. */
3107 return func_addr <= pc && pc < sal.end;
3110 /* Given PC at the function's start address, attempt to find the
3111 prologue end using SAL information. Return zero if the skip fails.
3113 A non-optimized prologue traditionally has one SAL for the function
3114 and a second for the function body. A single line function has
3115 them both pointing at the same line.
3117 An optimized prologue is similar but the prologue may contain
3118 instructions (SALs) from the instruction body. Need to skip those
3119 while not getting into the function body.
3121 The functions end point and an increasing SAL line are used as
3122 indicators of the prologue's endpoint.
3124 This code is based on the function refine_prologue_limit
3128 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3130 struct symtab_and_line prologue_sal;
3133 const struct block *bl;
3135 /* Get an initial range for the function. */
3136 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3137 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3139 prologue_sal = find_pc_line (start_pc, 0);
3140 if (prologue_sal.line != 0)
3142 /* For languages other than assembly, treat two consecutive line
3143 entries at the same address as a zero-instruction prologue.
3144 The GNU assembler emits separate line notes for each instruction
3145 in a multi-instruction macro, but compilers generally will not
3147 if (prologue_sal.symtab->language != language_asm)
3149 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
3152 /* Skip any earlier lines, and any end-of-sequence marker
3153 from a previous function. */
3154 while (linetable->item[idx].pc != prologue_sal.pc
3155 || linetable->item[idx].line == 0)
3158 if (idx+1 < linetable->nitems
3159 && linetable->item[idx+1].line != 0
3160 && linetable->item[idx+1].pc == start_pc)
3164 /* If there is only one sal that covers the entire function,
3165 then it is probably a single line function, like
3167 if (prologue_sal.end >= end_pc)
3170 while (prologue_sal.end < end_pc)
3172 struct symtab_and_line sal;
3174 sal = find_pc_line (prologue_sal.end, 0);
3177 /* Assume that a consecutive SAL for the same (or larger)
3178 line mark the prologue -> body transition. */
3179 if (sal.line >= prologue_sal.line)
3181 /* Likewise if we are in a different symtab altogether
3182 (e.g. within a file included via #include). */
3183 if (sal.symtab != prologue_sal.symtab)
3186 /* The line number is smaller. Check that it's from the
3187 same function, not something inlined. If it's inlined,
3188 then there is no point comparing the line numbers. */
3189 bl = block_for_pc (prologue_sal.end);
3192 if (block_inlined_p (bl))
3194 if (BLOCK_FUNCTION (bl))
3199 bl = BLOCK_SUPERBLOCK (bl);
3204 /* The case in which compiler's optimizer/scheduler has
3205 moved instructions into the prologue. We look ahead in
3206 the function looking for address ranges whose
3207 corresponding line number is less the first one that we
3208 found for the function. This is more conservative then
3209 refine_prologue_limit which scans a large number of SALs
3210 looking for any in the prologue. */
3215 if (prologue_sal.end < end_pc)
3216 /* Return the end of this line, or zero if we could not find a
3218 return prologue_sal.end;
3220 /* Don't return END_PC, which is past the end of the function. */
3221 return prologue_sal.pc;
3224 /* If P is of the form "operator[ \t]+..." where `...' is
3225 some legitimate operator text, return a pointer to the
3226 beginning of the substring of the operator text.
3227 Otherwise, return "". */
3230 operator_chars (const char *p, const char **end)
3233 if (strncmp (p, "operator", 8))
3237 /* Don't get faked out by `operator' being part of a longer
3239 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3242 /* Allow some whitespace between `operator' and the operator symbol. */
3243 while (*p == ' ' || *p == '\t')
3246 /* Recognize 'operator TYPENAME'. */
3248 if (isalpha (*p) || *p == '_' || *p == '$')
3250 const char *q = p + 1;
3252 while (isalnum (*q) || *q == '_' || *q == '$')
3261 case '\\': /* regexp quoting */
3264 if (p[2] == '=') /* 'operator\*=' */
3266 else /* 'operator\*' */
3270 else if (p[1] == '[')
3273 error (_("mismatched quoting on brackets, "
3274 "try 'operator\\[\\]'"));
3275 else if (p[2] == '\\' && p[3] == ']')
3277 *end = p + 4; /* 'operator\[\]' */
3281 error (_("nothing is allowed between '[' and ']'"));
3285 /* Gratuitous qoute: skip it and move on. */
3307 if (p[0] == '-' && p[1] == '>')
3309 /* Struct pointer member operator 'operator->'. */
3312 *end = p + 3; /* 'operator->*' */
3315 else if (p[2] == '\\')
3317 *end = p + 4; /* Hopefully 'operator->\*' */
3322 *end = p + 2; /* 'operator->' */
3326 if (p[1] == '=' || p[1] == p[0])
3337 error (_("`operator ()' must be specified "
3338 "without whitespace in `()'"));
3343 error (_("`operator ?:' must be specified "
3344 "without whitespace in `?:'"));
3349 error (_("`operator []' must be specified "
3350 "without whitespace in `[]'"));
3354 error (_("`operator %s' not supported"), p);
3363 /* Cache to watch for file names already seen by filename_seen. */
3365 struct filename_seen_cache
3367 /* Table of files seen so far. */
3369 /* Initial size of the table. It automagically grows from here. */
3370 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3373 /* filename_seen_cache constructor. */
3375 static struct filename_seen_cache *
3376 create_filename_seen_cache (void)
3378 struct filename_seen_cache *cache;
3380 cache = XNEW (struct filename_seen_cache);
3381 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3382 filename_hash, filename_eq,
3383 NULL, xcalloc, xfree);
3388 /* Empty the cache, but do not delete it. */
3391 clear_filename_seen_cache (struct filename_seen_cache *cache)
3393 htab_empty (cache->tab);
3396 /* filename_seen_cache destructor.
3397 This takes a void * argument as it is generally used as a cleanup. */
3400 delete_filename_seen_cache (void *ptr)
3402 struct filename_seen_cache *cache = ptr;
3404 htab_delete (cache->tab);
3408 /* If FILE is not already in the table of files in CACHE, return zero;
3409 otherwise return non-zero. Optionally add FILE to the table if ADD
3412 NOTE: We don't manage space for FILE, we assume FILE lives as long
3413 as the caller needs. */
3416 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3420 /* Is FILE in tab? */
3421 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3425 /* No; maybe add it to tab. */
3427 *slot = (char *) file;
3432 /* Data structure to maintain printing state for output_source_filename. */
3434 struct output_source_filename_data
3436 /* Cache of what we've seen so far. */
3437 struct filename_seen_cache *filename_seen_cache;
3439 /* Flag of whether we're printing the first one. */
3443 /* Slave routine for sources_info. Force line breaks at ,'s.
3444 NAME is the name to print.
3445 DATA contains the state for printing and watching for duplicates. */
3448 output_source_filename (const char *name,
3449 struct output_source_filename_data *data)
3451 /* Since a single source file can result in several partial symbol
3452 tables, we need to avoid printing it more than once. Note: if
3453 some of the psymtabs are read in and some are not, it gets
3454 printed both under "Source files for which symbols have been
3455 read" and "Source files for which symbols will be read in on
3456 demand". I consider this a reasonable way to deal with the
3457 situation. I'm not sure whether this can also happen for
3458 symtabs; it doesn't hurt to check. */
3460 /* Was NAME already seen? */
3461 if (filename_seen (data->filename_seen_cache, name, 1))
3463 /* Yes; don't print it again. */
3467 /* No; print it and reset *FIRST. */
3469 printf_filtered (", ");
3473 fputs_filtered (name, gdb_stdout);
3476 /* A callback for map_partial_symbol_filenames. */
3479 output_partial_symbol_filename (const char *filename, const char *fullname,
3482 output_source_filename (fullname ? fullname : filename, data);
3486 sources_info (char *ignore, int from_tty)
3489 struct objfile *objfile;
3490 struct output_source_filename_data data;
3491 struct cleanup *cleanups;
3493 if (!have_full_symbols () && !have_partial_symbols ())
3495 error (_("No symbol table is loaded. Use the \"file\" command."));
3498 data.filename_seen_cache = create_filename_seen_cache ();
3499 cleanups = make_cleanup (delete_filename_seen_cache,
3500 data.filename_seen_cache);
3502 printf_filtered ("Source files for which symbols have been read in:\n\n");
3505 ALL_SYMTABS (objfile, s)
3507 const char *fullname = symtab_to_fullname (s);
3509 output_source_filename (fullname, &data);
3511 printf_filtered ("\n\n");
3513 printf_filtered ("Source files for which symbols "
3514 "will be read in on demand:\n\n");
3516 clear_filename_seen_cache (data.filename_seen_cache);
3518 map_symbol_filenames (output_partial_symbol_filename, &data,
3519 1 /*need_fullname*/);
3520 printf_filtered ("\n");
3522 do_cleanups (cleanups);
3525 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3526 non-zero compare only lbasename of FILES. */
3529 file_matches (const char *file, const char *files[], int nfiles, int basenames)
3533 if (file != NULL && nfiles != 0)
3535 for (i = 0; i < nfiles; i++)
3537 if (compare_filenames_for_search (file, (basenames
3538 ? lbasename (files[i])
3543 else if (nfiles == 0)
3548 /* Free any memory associated with a search. */
3551 free_search_symbols (struct symbol_search *symbols)
3553 struct symbol_search *p;
3554 struct symbol_search *next;
3556 for (p = symbols; p != NULL; p = next)
3564 do_free_search_symbols_cleanup (void *symbolsp)
3566 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3568 free_search_symbols (symbols);
3572 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3574 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3577 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3578 sort symbols, not minimal symbols. */
3581 compare_search_syms (const void *sa, const void *sb)
3583 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3584 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3587 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3591 if (sym_a->block != sym_b->block)
3592 return sym_a->block - sym_b->block;
3594 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3595 SYMBOL_PRINT_NAME (sym_b->symbol));
3598 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3599 The duplicates are freed, and the new list is returned in
3600 *NEW_HEAD, *NEW_TAIL. */
3603 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3604 struct symbol_search **new_head,
3605 struct symbol_search **new_tail)
3607 struct symbol_search **symbols, *symp, *old_next;
3610 gdb_assert (found != NULL && nfound > 0);
3612 /* Build an array out of the list so we can easily sort them. */
3613 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3616 for (i = 0; i < nfound; i++)
3618 gdb_assert (symp != NULL);
3619 gdb_assert (symp->block >= 0 && symp->block <= 1);
3623 gdb_assert (symp == NULL);
3625 qsort (symbols, nfound, sizeof (struct symbol_search *),
3626 compare_search_syms);
3628 /* Collapse out the dups. */
3629 for (i = 1, j = 1; i < nfound; ++i)
3631 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3632 symbols[j++] = symbols[i];
3637 symbols[j - 1]->next = NULL;
3639 /* Rebuild the linked list. */
3640 for (i = 0; i < nunique - 1; i++)
3641 symbols[i]->next = symbols[i + 1];
3642 symbols[nunique - 1]->next = NULL;
3644 *new_head = symbols[0];
3645 *new_tail = symbols[nunique - 1];
3649 /* An object of this type is passed as the user_data to the
3650 expand_symtabs_matching method. */
3651 struct search_symbols_data
3656 /* It is true if PREG contains valid data, false otherwise. */
3657 unsigned preg_p : 1;
3661 /* A callback for expand_symtabs_matching. */
3664 search_symbols_file_matches (const char *filename, void *user_data,
3667 struct search_symbols_data *data = user_data;
3669 return file_matches (filename, data->files, data->nfiles, basenames);
3672 /* A callback for expand_symtabs_matching. */
3675 search_symbols_name_matches (const char *symname, void *user_data)
3677 struct search_symbols_data *data = user_data;
3679 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3682 /* Search the symbol table for matches to the regular expression REGEXP,
3683 returning the results in *MATCHES.
3685 Only symbols of KIND are searched:
3686 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3687 and constants (enums)
3688 FUNCTIONS_DOMAIN - search all functions
3689 TYPES_DOMAIN - search all type names
3690 ALL_DOMAIN - an internal error for this function
3692 free_search_symbols should be called when *MATCHES is no longer needed.
3694 Within each file the results are sorted locally; each symtab's global and
3695 static blocks are separately alphabetized.
3696 Duplicate entries are removed. */
3699 search_symbols (const char *regexp, enum search_domain kind,
3700 int nfiles, const char *files[],
3701 struct symbol_search **matches)
3704 const struct blockvector *bv;
3707 struct block_iterator iter;
3709 struct objfile *objfile;
3710 struct minimal_symbol *msymbol;
3712 static const enum minimal_symbol_type types[]
3713 = {mst_data, mst_text, mst_abs};
3714 static const enum minimal_symbol_type types2[]
3715 = {mst_bss, mst_file_text, mst_abs};
3716 static const enum minimal_symbol_type types3[]
3717 = {mst_file_data, mst_solib_trampoline, mst_abs};
3718 static const enum minimal_symbol_type types4[]
3719 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3720 enum minimal_symbol_type ourtype;
3721 enum minimal_symbol_type ourtype2;
3722 enum minimal_symbol_type ourtype3;
3723 enum minimal_symbol_type ourtype4;
3724 struct symbol_search *found;
3725 struct symbol_search *tail;
3726 struct search_symbols_data datum;
3729 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3730 CLEANUP_CHAIN is freed only in the case of an error. */
3731 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3732 struct cleanup *retval_chain;
3734 gdb_assert (kind <= TYPES_DOMAIN);
3736 ourtype = types[kind];
3737 ourtype2 = types2[kind];
3738 ourtype3 = types3[kind];
3739 ourtype4 = types4[kind];
3746 /* Make sure spacing is right for C++ operators.
3747 This is just a courtesy to make the matching less sensitive
3748 to how many spaces the user leaves between 'operator'
3749 and <TYPENAME> or <OPERATOR>. */
3751 const char *opname = operator_chars (regexp, &opend);
3756 int fix = -1; /* -1 means ok; otherwise number of
3759 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3761 /* There should 1 space between 'operator' and 'TYPENAME'. */
3762 if (opname[-1] != ' ' || opname[-2] == ' ')
3767 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3768 if (opname[-1] == ' ')
3771 /* If wrong number of spaces, fix it. */
3774 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3776 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3781 errcode = regcomp (&datum.preg, regexp,
3782 REG_NOSUB | (case_sensitivity == case_sensitive_off
3786 char *err = get_regcomp_error (errcode, &datum.preg);
3788 make_cleanup (xfree, err);
3789 error (_("Invalid regexp (%s): %s"), err, regexp);
3792 make_regfree_cleanup (&datum.preg);
3795 /* Search through the partial symtabs *first* for all symbols
3796 matching the regexp. That way we don't have to reproduce all of
3797 the machinery below. */
3799 datum.nfiles = nfiles;
3800 datum.files = files;
3801 expand_symtabs_matching ((nfiles == 0
3803 : search_symbols_file_matches),
3804 search_symbols_name_matches,
3807 /* Here, we search through the minimal symbol tables for functions
3808 and variables that match, and force their symbols to be read.
3809 This is in particular necessary for demangled variable names,
3810 which are no longer put into the partial symbol tables.
3811 The symbol will then be found during the scan of symtabs below.
3813 For functions, find_pc_symtab should succeed if we have debug info
3814 for the function, for variables we have to call
3815 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3817 If the lookup fails, set found_misc so that we will rescan to print
3818 any matching symbols without debug info.
3819 We only search the objfile the msymbol came from, we no longer search
3820 all objfiles. In large programs (1000s of shared libs) searching all
3821 objfiles is not worth the pain. */
3823 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3825 ALL_MSYMBOLS (objfile, msymbol)
3829 if (msymbol->created_by_gdb)
3832 if (MSYMBOL_TYPE (msymbol) == ourtype
3833 || MSYMBOL_TYPE (msymbol) == ourtype2
3834 || MSYMBOL_TYPE (msymbol) == ourtype3
3835 || MSYMBOL_TYPE (msymbol) == ourtype4)
3838 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3841 /* Note: An important side-effect of these lookup functions
3842 is to expand the symbol table if msymbol is found, for the
3843 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3844 if (kind == FUNCTIONS_DOMAIN
3845 ? find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3847 : (lookup_symbol_in_objfile_from_linkage_name
3848 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3859 retval_chain = make_cleanup_free_search_symbols (&found);
3861 ALL_PRIMARY_SYMTABS (objfile, s)
3863 bv = BLOCKVECTOR (s);
3864 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3866 b = BLOCKVECTOR_BLOCK (bv, i);
3867 ALL_BLOCK_SYMBOLS (b, iter, sym)
3869 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3873 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3874 a substring of symtab_to_fullname as it may contain "./" etc. */
3875 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3876 || ((basenames_may_differ
3877 || file_matches (lbasename (real_symtab->filename),
3879 && file_matches (symtab_to_fullname (real_symtab),
3882 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3884 && ((kind == VARIABLES_DOMAIN
3885 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3886 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3887 && SYMBOL_CLASS (sym) != LOC_BLOCK
3888 /* LOC_CONST can be used for more than just enums,
3889 e.g., c++ static const members.
3890 We only want to skip enums here. */
3891 && !(SYMBOL_CLASS (sym) == LOC_CONST
3892 && TYPE_CODE (SYMBOL_TYPE (sym))
3894 || (kind == FUNCTIONS_DOMAIN
3895 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3896 || (kind == TYPES_DOMAIN
3897 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3900 struct symbol_search *psr = (struct symbol_search *)
3901 xmalloc (sizeof (struct symbol_search));
3903 psr->symtab = real_symtab;
3905 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3920 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3921 /* Note: nfound is no longer useful beyond this point. */
3924 /* If there are no eyes, avoid all contact. I mean, if there are
3925 no debug symbols, then print directly from the msymbol_vector. */
3927 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3929 ALL_MSYMBOLS (objfile, msymbol)
3933 if (msymbol->created_by_gdb)
3936 if (MSYMBOL_TYPE (msymbol) == ourtype
3937 || MSYMBOL_TYPE (msymbol) == ourtype2
3938 || MSYMBOL_TYPE (msymbol) == ourtype3
3939 || MSYMBOL_TYPE (msymbol) == ourtype4)
3942 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3945 /* For functions we can do a quick check of whether the
3946 symbol might be found via find_pc_symtab. */
3947 if (kind != FUNCTIONS_DOMAIN
3948 || find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3951 if (lookup_symbol_in_objfile_from_linkage_name
3952 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3956 struct symbol_search *psr = (struct symbol_search *)
3957 xmalloc (sizeof (struct symbol_search));
3959 psr->msymbol.minsym = msymbol;
3960 psr->msymbol.objfile = objfile;
3976 discard_cleanups (retval_chain);
3977 do_cleanups (old_chain);
3981 /* Helper function for symtab_symbol_info, this function uses
3982 the data returned from search_symbols() to print information
3983 regarding the match to gdb_stdout. */
3986 print_symbol_info (enum search_domain kind,
3987 struct symtab *s, struct symbol *sym,
3988 int block, const char *last)
3990 const char *s_filename = symtab_to_filename_for_display (s);
3992 if (last == NULL || filename_cmp (last, s_filename) != 0)
3994 fputs_filtered ("\nFile ", gdb_stdout);
3995 fputs_filtered (s_filename, gdb_stdout);
3996 fputs_filtered (":\n", gdb_stdout);
3999 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4000 printf_filtered ("static ");
4002 /* Typedef that is not a C++ class. */
4003 if (kind == TYPES_DOMAIN
4004 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4005 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4006 /* variable, func, or typedef-that-is-c++-class. */
4007 else if (kind < TYPES_DOMAIN
4008 || (kind == TYPES_DOMAIN
4009 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4011 type_print (SYMBOL_TYPE (sym),
4012 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4013 ? "" : SYMBOL_PRINT_NAME (sym)),
4016 printf_filtered (";\n");
4020 /* This help function for symtab_symbol_info() prints information
4021 for non-debugging symbols to gdb_stdout. */
4024 print_msymbol_info (struct bound_minimal_symbol msymbol)
4026 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4029 if (gdbarch_addr_bit (gdbarch) <= 32)
4030 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4031 & (CORE_ADDR) 0xffffffff,
4034 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4036 printf_filtered ("%s %s\n",
4037 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4040 /* This is the guts of the commands "info functions", "info types", and
4041 "info variables". It calls search_symbols to find all matches and then
4042 print_[m]symbol_info to print out some useful information about the
4046 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4048 static const char * const classnames[] =
4049 {"variable", "function", "type"};
4050 struct symbol_search *symbols;
4051 struct symbol_search *p;
4052 struct cleanup *old_chain;
4053 const char *last_filename = NULL;
4056 gdb_assert (kind <= TYPES_DOMAIN);
4058 /* Must make sure that if we're interrupted, symbols gets freed. */
4059 search_symbols (regexp, kind, 0, NULL, &symbols);
4060 old_chain = make_cleanup_free_search_symbols (&symbols);
4063 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4064 classnames[kind], regexp);
4066 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4068 for (p = symbols; p != NULL; p = p->next)
4072 if (p->msymbol.minsym != NULL)
4076 printf_filtered (_("\nNon-debugging symbols:\n"));
4079 print_msymbol_info (p->msymbol);
4083 print_symbol_info (kind,
4088 last_filename = symtab_to_filename_for_display (p->symtab);
4092 do_cleanups (old_chain);
4096 variables_info (char *regexp, int from_tty)
4098 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4102 functions_info (char *regexp, int from_tty)
4104 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4109 types_info (char *regexp, int from_tty)
4111 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4114 /* Breakpoint all functions matching regular expression. */
4117 rbreak_command_wrapper (char *regexp, int from_tty)
4119 rbreak_command (regexp, from_tty);
4122 /* A cleanup function that calls end_rbreak_breakpoints. */
4125 do_end_rbreak_breakpoints (void *ignore)
4127 end_rbreak_breakpoints ();
4131 rbreak_command (char *regexp, int from_tty)
4133 struct symbol_search *ss;
4134 struct symbol_search *p;
4135 struct cleanup *old_chain;
4136 char *string = NULL;
4138 const char **files = NULL;
4139 const char *file_name;
4144 char *colon = strchr (regexp, ':');
4146 if (colon && *(colon + 1) != ':')
4151 colon_index = colon - regexp;
4152 local_name = alloca (colon_index + 1);
4153 memcpy (local_name, regexp, colon_index);
4154 local_name[colon_index--] = 0;
4155 while (isspace (local_name[colon_index]))
4156 local_name[colon_index--] = 0;
4157 file_name = local_name;
4160 regexp = skip_spaces (colon + 1);
4164 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4165 old_chain = make_cleanup_free_search_symbols (&ss);
4166 make_cleanup (free_current_contents, &string);
4168 start_rbreak_breakpoints ();
4169 make_cleanup (do_end_rbreak_breakpoints, NULL);
4170 for (p = ss; p != NULL; p = p->next)
4172 if (p->msymbol.minsym == NULL)
4174 const char *fullname = symtab_to_fullname (p->symtab);
4176 int newlen = (strlen (fullname)
4177 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4182 string = xrealloc (string, newlen);
4185 strcpy (string, fullname);
4186 strcat (string, ":'");
4187 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4188 strcat (string, "'");
4189 break_command (string, from_tty);
4190 print_symbol_info (FUNCTIONS_DOMAIN,
4194 symtab_to_filename_for_display (p->symtab));
4198 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4202 string = xrealloc (string, newlen);
4205 strcpy (string, "'");
4206 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4207 strcat (string, "'");
4209 break_command (string, from_tty);
4210 printf_filtered ("<function, no debug info> %s;\n",
4211 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4215 do_cleanups (old_chain);
4219 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4221 Either sym_text[sym_text_len] != '(' and then we search for any
4222 symbol starting with SYM_TEXT text.
4224 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4225 be terminated at that point. Partial symbol tables do not have parameters
4229 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4231 int (*ncmp) (const char *, const char *, size_t);
4233 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4235 if (ncmp (name, sym_text, sym_text_len) != 0)
4238 if (sym_text[sym_text_len] == '(')
4240 /* User searches for `name(someth...'. Require NAME to be terminated.
4241 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4242 present but accept even parameters presence. In this case this
4243 function is in fact strcmp_iw but whitespace skipping is not supported
4244 for tab completion. */
4246 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4253 /* Free any memory associated with a completion list. */
4256 free_completion_list (VEC (char_ptr) **list_ptr)
4261 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4263 VEC_free (char_ptr, *list_ptr);
4266 /* Callback for make_cleanup. */
4269 do_free_completion_list (void *list)
4271 free_completion_list (list);
4274 /* Helper routine for make_symbol_completion_list. */
4276 static VEC (char_ptr) *return_val;
4278 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4279 completion_list_add_name \
4280 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4282 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4283 completion_list_add_name \
4284 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4286 /* Test to see if the symbol specified by SYMNAME (which is already
4287 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4288 characters. If so, add it to the current completion list. */
4291 completion_list_add_name (const char *symname,
4292 const char *sym_text, int sym_text_len,
4293 const char *text, const char *word)
4295 /* Clip symbols that cannot match. */
4296 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4299 /* We have a match for a completion, so add SYMNAME to the current list
4300 of matches. Note that the name is moved to freshly malloc'd space. */
4305 if (word == sym_text)
4307 new = xmalloc (strlen (symname) + 5);
4308 strcpy (new, symname);
4310 else if (word > sym_text)
4312 /* Return some portion of symname. */
4313 new = xmalloc (strlen (symname) + 5);
4314 strcpy (new, symname + (word - sym_text));
4318 /* Return some of SYM_TEXT plus symname. */
4319 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4320 strncpy (new, word, sym_text - word);
4321 new[sym_text - word] = '\0';
4322 strcat (new, symname);
4325 VEC_safe_push (char_ptr, return_val, new);
4329 /* ObjC: In case we are completing on a selector, look as the msymbol
4330 again and feed all the selectors into the mill. */
4333 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4334 const char *sym_text, int sym_text_len,
4335 const char *text, const char *word)
4337 static char *tmp = NULL;
4338 static unsigned int tmplen = 0;
4340 const char *method, *category, *selector;
4343 method = MSYMBOL_NATURAL_NAME (msymbol);
4345 /* Is it a method? */
4346 if ((method[0] != '-') && (method[0] != '+'))
4349 if (sym_text[0] == '[')
4350 /* Complete on shortened method method. */
4351 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4353 while ((strlen (method) + 1) >= tmplen)
4359 tmp = xrealloc (tmp, tmplen);
4361 selector = strchr (method, ' ');
4362 if (selector != NULL)
4365 category = strchr (method, '(');
4367 if ((category != NULL) && (selector != NULL))
4369 memcpy (tmp, method, (category - method));
4370 tmp[category - method] = ' ';
4371 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4372 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4373 if (sym_text[0] == '[')
4374 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4377 if (selector != NULL)
4379 /* Complete on selector only. */
4380 strcpy (tmp, selector);
4381 tmp2 = strchr (tmp, ']');
4385 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4389 /* Break the non-quoted text based on the characters which are in
4390 symbols. FIXME: This should probably be language-specific. */
4393 language_search_unquoted_string (const char *text, const char *p)
4395 for (; p > text; --p)
4397 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4401 if ((current_language->la_language == language_objc))
4403 if (p[-1] == ':') /* Might be part of a method name. */
4405 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4406 p -= 2; /* Beginning of a method name. */
4407 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4408 { /* Might be part of a method name. */
4411 /* Seeing a ' ' or a '(' is not conclusive evidence
4412 that we are in the middle of a method name. However,
4413 finding "-[" or "+[" should be pretty un-ambiguous.
4414 Unfortunately we have to find it now to decide. */
4417 if (isalnum (t[-1]) || t[-1] == '_' ||
4418 t[-1] == ' ' || t[-1] == ':' ||
4419 t[-1] == '(' || t[-1] == ')')
4424 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4425 p = t - 2; /* Method name detected. */
4426 /* Else we leave with p unchanged. */
4436 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4437 int sym_text_len, const char *text,
4440 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4442 struct type *t = SYMBOL_TYPE (sym);
4443 enum type_code c = TYPE_CODE (t);
4446 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4447 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4448 if (TYPE_FIELD_NAME (t, j))
4449 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4450 sym_text, sym_text_len, text, word);
4454 /* Type of the user_data argument passed to add_macro_name or
4455 symbol_completion_matcher. The contents are simply whatever is
4456 needed by completion_list_add_name. */
4457 struct add_name_data
4459 const char *sym_text;
4465 /* A callback used with macro_for_each and macro_for_each_in_scope.
4466 This adds a macro's name to the current completion list. */
4469 add_macro_name (const char *name, const struct macro_definition *ignore,
4470 struct macro_source_file *ignore2, int ignore3,
4473 struct add_name_data *datum = (struct add_name_data *) user_data;
4475 completion_list_add_name (name,
4476 datum->sym_text, datum->sym_text_len,
4477 datum->text, datum->word);
4480 /* A callback for expand_symtabs_matching. */
4483 symbol_completion_matcher (const char *name, void *user_data)
4485 struct add_name_data *datum = (struct add_name_data *) user_data;
4487 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4491 default_make_symbol_completion_list_break_on (const char *text,
4493 const char *break_on,
4494 enum type_code code)
4496 /* Problem: All of the symbols have to be copied because readline
4497 frees them. I'm not going to worry about this; hopefully there
4498 won't be that many. */
4502 struct minimal_symbol *msymbol;
4503 struct objfile *objfile;
4504 const struct block *b;
4505 const struct block *surrounding_static_block, *surrounding_global_block;
4506 struct block_iterator iter;
4507 /* The symbol we are completing on. Points in same buffer as text. */
4508 const char *sym_text;
4509 /* Length of sym_text. */
4511 struct add_name_data datum;
4512 struct cleanup *back_to;
4514 /* Now look for the symbol we are supposed to complete on. */
4518 const char *quote_pos = NULL;
4520 /* First see if this is a quoted string. */
4522 for (p = text; *p != '\0'; ++p)
4524 if (quote_found != '\0')
4526 if (*p == quote_found)
4527 /* Found close quote. */
4529 else if (*p == '\\' && p[1] == quote_found)
4530 /* A backslash followed by the quote character
4531 doesn't end the string. */
4534 else if (*p == '\'' || *p == '"')
4540 if (quote_found == '\'')
4541 /* A string within single quotes can be a symbol, so complete on it. */
4542 sym_text = quote_pos + 1;
4543 else if (quote_found == '"')
4544 /* A double-quoted string is never a symbol, nor does it make sense
4545 to complete it any other way. */
4551 /* It is not a quoted string. Break it based on the characters
4552 which are in symbols. */
4555 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4556 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4565 sym_text_len = strlen (sym_text);
4567 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4569 if (current_language->la_language == language_cplus
4570 || current_language->la_language == language_java
4571 || current_language->la_language == language_fortran)
4573 /* These languages may have parameters entered by user but they are never
4574 present in the partial symbol tables. */
4576 const char *cs = memchr (sym_text, '(', sym_text_len);
4579 sym_text_len = cs - sym_text;
4581 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4584 back_to = make_cleanup (do_free_completion_list, &return_val);
4586 datum.sym_text = sym_text;
4587 datum.sym_text_len = sym_text_len;
4591 /* Look through the partial symtabs for all symbols which begin
4592 by matching SYM_TEXT. Expand all CUs that you find to the list.
4593 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4594 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4597 /* At this point scan through the misc symbol vectors and add each
4598 symbol you find to the list. Eventually we want to ignore
4599 anything that isn't a text symbol (everything else will be
4600 handled by the psymtab code above). */
4602 if (code == TYPE_CODE_UNDEF)
4604 ALL_MSYMBOLS (objfile, msymbol)
4607 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4610 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4615 /* Search upwards from currently selected frame (so that we can
4616 complete on local vars). Also catch fields of types defined in
4617 this places which match our text string. Only complete on types
4618 visible from current context. */
4620 b = get_selected_block (0);
4621 surrounding_static_block = block_static_block (b);
4622 surrounding_global_block = block_global_block (b);
4623 if (surrounding_static_block != NULL)
4624 while (b != surrounding_static_block)
4628 ALL_BLOCK_SYMBOLS (b, iter, sym)
4630 if (code == TYPE_CODE_UNDEF)
4632 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4634 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4637 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4638 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4639 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4643 /* Stop when we encounter an enclosing function. Do not stop for
4644 non-inlined functions - the locals of the enclosing function
4645 are in scope for a nested function. */
4646 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4648 b = BLOCK_SUPERBLOCK (b);
4651 /* Add fields from the file's types; symbols will be added below. */
4653 if (code == TYPE_CODE_UNDEF)
4655 if (surrounding_static_block != NULL)
4656 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4657 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4659 if (surrounding_global_block != NULL)
4660 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4661 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4664 /* Go through the symtabs and check the externs and statics for
4665 symbols which match. */
4667 ALL_PRIMARY_SYMTABS (objfile, s)
4670 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4671 ALL_BLOCK_SYMBOLS (b, iter, sym)
4673 if (code == TYPE_CODE_UNDEF
4674 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4675 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4676 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4680 ALL_PRIMARY_SYMTABS (objfile, s)
4683 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4684 ALL_BLOCK_SYMBOLS (b, iter, sym)
4686 if (code == TYPE_CODE_UNDEF
4687 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4688 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4689 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4693 /* Skip macros if we are completing a struct tag -- arguable but
4694 usually what is expected. */
4695 if (current_language->la_macro_expansion == macro_expansion_c
4696 && code == TYPE_CODE_UNDEF)
4698 struct macro_scope *scope;
4700 /* Add any macros visible in the default scope. Note that this
4701 may yield the occasional wrong result, because an expression
4702 might be evaluated in a scope other than the default. For
4703 example, if the user types "break file:line if <TAB>", the
4704 resulting expression will be evaluated at "file:line" -- but
4705 at there does not seem to be a way to detect this at
4707 scope = default_macro_scope ();
4710 macro_for_each_in_scope (scope->file, scope->line,
4711 add_macro_name, &datum);
4715 /* User-defined macros are always visible. */
4716 macro_for_each (macro_user_macros, add_macro_name, &datum);
4719 discard_cleanups (back_to);
4720 return (return_val);
4724 default_make_symbol_completion_list (const char *text, const char *word,
4725 enum type_code code)
4727 return default_make_symbol_completion_list_break_on (text, word, "", code);
4730 /* Return a vector of all symbols (regardless of class) which begin by
4731 matching TEXT. If the answer is no symbols, then the return value
4735 make_symbol_completion_list (const char *text, const char *word)
4737 return current_language->la_make_symbol_completion_list (text, word,
4741 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4742 symbols whose type code is CODE. */
4745 make_symbol_completion_type (const char *text, const char *word,
4746 enum type_code code)
4748 gdb_assert (code == TYPE_CODE_UNION
4749 || code == TYPE_CODE_STRUCT
4750 || code == TYPE_CODE_CLASS
4751 || code == TYPE_CODE_ENUM);
4752 return current_language->la_make_symbol_completion_list (text, word, code);
4755 /* Like make_symbol_completion_list, but suitable for use as a
4756 completion function. */
4759 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4760 const char *text, const char *word)
4762 return make_symbol_completion_list (text, word);
4765 /* Like make_symbol_completion_list, but returns a list of symbols
4766 defined in a source file FILE. */
4769 make_file_symbol_completion_list (const char *text, const char *word,
4770 const char *srcfile)
4775 struct block_iterator iter;
4776 /* The symbol we are completing on. Points in same buffer as text. */
4777 const char *sym_text;
4778 /* Length of sym_text. */
4781 /* Now look for the symbol we are supposed to complete on.
4782 FIXME: This should be language-specific. */
4786 const char *quote_pos = NULL;
4788 /* First see if this is a quoted string. */
4790 for (p = text; *p != '\0'; ++p)
4792 if (quote_found != '\0')
4794 if (*p == quote_found)
4795 /* Found close quote. */
4797 else if (*p == '\\' && p[1] == quote_found)
4798 /* A backslash followed by the quote character
4799 doesn't end the string. */
4802 else if (*p == '\'' || *p == '"')
4808 if (quote_found == '\'')
4809 /* A string within single quotes can be a symbol, so complete on it. */
4810 sym_text = quote_pos + 1;
4811 else if (quote_found == '"')
4812 /* A double-quoted string is never a symbol, nor does it make sense
4813 to complete it any other way. */
4819 /* Not a quoted string. */
4820 sym_text = language_search_unquoted_string (text, p);
4824 sym_text_len = strlen (sym_text);
4828 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4830 s = lookup_symtab (srcfile);
4833 /* Maybe they typed the file with leading directories, while the
4834 symbol tables record only its basename. */
4835 const char *tail = lbasename (srcfile);
4838 s = lookup_symtab (tail);
4841 /* If we have no symtab for that file, return an empty list. */
4843 return (return_val);
4845 /* Go through this symtab and check the externs and statics for
4846 symbols which match. */
4848 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4849 ALL_BLOCK_SYMBOLS (b, iter, sym)
4851 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4854 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4855 ALL_BLOCK_SYMBOLS (b, iter, sym)
4857 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4860 return (return_val);
4863 /* A helper function for make_source_files_completion_list. It adds
4864 another file name to a list of possible completions, growing the
4865 list as necessary. */
4868 add_filename_to_list (const char *fname, const char *text, const char *word,
4869 VEC (char_ptr) **list)
4872 size_t fnlen = strlen (fname);
4876 /* Return exactly fname. */
4877 new = xmalloc (fnlen + 5);
4878 strcpy (new, fname);
4880 else if (word > text)
4882 /* Return some portion of fname. */
4883 new = xmalloc (fnlen + 5);
4884 strcpy (new, fname + (word - text));
4888 /* Return some of TEXT plus fname. */
4889 new = xmalloc (fnlen + (text - word) + 5);
4890 strncpy (new, word, text - word);
4891 new[text - word] = '\0';
4892 strcat (new, fname);
4894 VEC_safe_push (char_ptr, *list, new);
4898 not_interesting_fname (const char *fname)
4900 static const char *illegal_aliens[] = {
4901 "_globals_", /* inserted by coff_symtab_read */
4906 for (i = 0; illegal_aliens[i]; i++)
4908 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4914 /* An object of this type is passed as the user_data argument to
4915 map_partial_symbol_filenames. */
4916 struct add_partial_filename_data
4918 struct filename_seen_cache *filename_seen_cache;
4922 VEC (char_ptr) **list;
4925 /* A callback for map_partial_symbol_filenames. */
4928 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4931 struct add_partial_filename_data *data = user_data;
4933 if (not_interesting_fname (filename))
4935 if (!filename_seen (data->filename_seen_cache, filename, 1)
4936 && filename_ncmp (filename, data->text, data->text_len) == 0)
4938 /* This file matches for a completion; add it to the
4939 current list of matches. */
4940 add_filename_to_list (filename, data->text, data->word, data->list);
4944 const char *base_name = lbasename (filename);
4946 if (base_name != filename
4947 && !filename_seen (data->filename_seen_cache, base_name, 1)
4948 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4949 add_filename_to_list (base_name, data->text, data->word, data->list);
4953 /* Return a vector of all source files whose names begin with matching
4954 TEXT. The file names are looked up in the symbol tables of this
4955 program. If the answer is no matchess, then the return value is
4959 make_source_files_completion_list (const char *text, const char *word)
4962 struct objfile *objfile;
4963 size_t text_len = strlen (text);
4964 VEC (char_ptr) *list = NULL;
4965 const char *base_name;
4966 struct add_partial_filename_data datum;
4967 struct filename_seen_cache *filename_seen_cache;
4968 struct cleanup *back_to, *cache_cleanup;
4970 if (!have_full_symbols () && !have_partial_symbols ())
4973 back_to = make_cleanup (do_free_completion_list, &list);
4975 filename_seen_cache = create_filename_seen_cache ();
4976 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4977 filename_seen_cache);
4979 ALL_SYMTABS (objfile, s)
4981 if (not_interesting_fname (s->filename))
4983 if (!filename_seen (filename_seen_cache, s->filename, 1)
4984 && filename_ncmp (s->filename, text, text_len) == 0)
4986 /* This file matches for a completion; add it to the current
4988 add_filename_to_list (s->filename, text, word, &list);
4992 /* NOTE: We allow the user to type a base name when the
4993 debug info records leading directories, but not the other
4994 way around. This is what subroutines of breakpoint
4995 command do when they parse file names. */
4996 base_name = lbasename (s->filename);
4997 if (base_name != s->filename
4998 && !filename_seen (filename_seen_cache, base_name, 1)
4999 && filename_ncmp (base_name, text, text_len) == 0)
5000 add_filename_to_list (base_name, text, word, &list);
5004 datum.filename_seen_cache = filename_seen_cache;
5007 datum.text_len = text_len;
5009 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5010 0 /*need_fullname*/);
5012 do_cleanups (cache_cleanup);
5013 discard_cleanups (back_to);
5020 /* Return the "main_info" object for the current program space. If
5021 the object has not yet been created, create it and fill in some
5024 static struct main_info *
5025 get_main_info (void)
5027 struct main_info *info = program_space_data (current_program_space,
5028 main_progspace_key);
5032 /* It may seem strange to store the main name in the progspace
5033 and also in whatever objfile happens to see a main name in
5034 its debug info. The reason for this is mainly historical:
5035 gdb returned "main" as the name even if no function named
5036 "main" was defined the program; and this approach lets us
5037 keep compatibility. */
5038 info = XCNEW (struct main_info);
5039 info->language_of_main = language_unknown;
5040 set_program_space_data (current_program_space, main_progspace_key,
5047 /* A cleanup to destroy a struct main_info when a progspace is
5051 main_info_cleanup (struct program_space *pspace, void *data)
5053 struct main_info *info = data;
5056 xfree (info->name_of_main);
5061 set_main_name (const char *name, enum language lang)
5063 struct main_info *info = get_main_info ();
5065 if (info->name_of_main != NULL)
5067 xfree (info->name_of_main);
5068 info->name_of_main = NULL;
5069 info->language_of_main = language_unknown;
5073 info->name_of_main = xstrdup (name);
5074 info->language_of_main = lang;
5078 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5082 find_main_name (void)
5084 const char *new_main_name;
5085 struct objfile *objfile;
5087 /* First check the objfiles to see whether a debuginfo reader has
5088 picked up the appropriate main name. Historically the main name
5089 was found in a more or less random way; this approach instead
5090 relies on the order of objfile creation -- which still isn't
5091 guaranteed to get the correct answer, but is just probably more
5093 ALL_OBJFILES (objfile)
5095 if (objfile->per_bfd->name_of_main != NULL)
5097 set_main_name (objfile->per_bfd->name_of_main,
5098 objfile->per_bfd->language_of_main);
5103 /* Try to see if the main procedure is in Ada. */
5104 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5105 be to add a new method in the language vector, and call this
5106 method for each language until one of them returns a non-empty
5107 name. This would allow us to remove this hard-coded call to
5108 an Ada function. It is not clear that this is a better approach
5109 at this point, because all methods need to be written in a way
5110 such that false positives never be returned. For instance, it is
5111 important that a method does not return a wrong name for the main
5112 procedure if the main procedure is actually written in a different
5113 language. It is easy to guaranty this with Ada, since we use a
5114 special symbol generated only when the main in Ada to find the name
5115 of the main procedure. It is difficult however to see how this can
5116 be guarantied for languages such as C, for instance. This suggests
5117 that order of call for these methods becomes important, which means
5118 a more complicated approach. */
5119 new_main_name = ada_main_name ();
5120 if (new_main_name != NULL)
5122 set_main_name (new_main_name, language_ada);
5126 new_main_name = d_main_name ();
5127 if (new_main_name != NULL)
5129 set_main_name (new_main_name, language_d);
5133 new_main_name = go_main_name ();
5134 if (new_main_name != NULL)
5136 set_main_name (new_main_name, language_go);
5140 new_main_name = pascal_main_name ();
5141 if (new_main_name != NULL)
5143 set_main_name (new_main_name, language_pascal);
5147 /* The languages above didn't identify the name of the main procedure.
5148 Fallback to "main". */
5149 set_main_name ("main", language_unknown);
5155 struct main_info *info = get_main_info ();
5157 if (info->name_of_main == NULL)
5160 return info->name_of_main;
5163 /* Return the language of the main function. If it is not known,
5164 return language_unknown. */
5167 main_language (void)
5169 struct main_info *info = get_main_info ();
5171 if (info->name_of_main == NULL)
5174 return info->language_of_main;
5177 /* Handle ``executable_changed'' events for the symtab module. */
5180 symtab_observer_executable_changed (void)
5182 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5183 set_main_name (NULL, language_unknown);
5186 /* Return 1 if the supplied producer string matches the ARM RealView
5187 compiler (armcc). */
5190 producer_is_realview (const char *producer)
5192 static const char *const arm_idents[] = {
5193 "ARM C Compiler, ADS",
5194 "Thumb C Compiler, ADS",
5195 "ARM C++ Compiler, ADS",
5196 "Thumb C++ Compiler, ADS",
5197 "ARM/Thumb C/C++ Compiler, RVCT",
5198 "ARM C/C++ Compiler, RVCT"
5202 if (producer == NULL)
5205 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5206 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5214 /* The next index to hand out in response to a registration request. */
5216 static int next_aclass_value = LOC_FINAL_VALUE;
5218 /* The maximum number of "aclass" registrations we support. This is
5219 constant for convenience. */
5220 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5222 /* The objects representing the various "aclass" values. The elements
5223 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5224 elements are those registered at gdb initialization time. */
5226 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5228 /* The globally visible pointer. This is separate from 'symbol_impl'
5229 so that it can be const. */
5231 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5233 /* Make sure we saved enough room in struct symbol. */
5235 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5237 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5238 is the ops vector associated with this index. This returns the new
5239 index, which should be used as the aclass_index field for symbols
5243 register_symbol_computed_impl (enum address_class aclass,
5244 const struct symbol_computed_ops *ops)
5246 int result = next_aclass_value++;
5248 gdb_assert (aclass == LOC_COMPUTED);
5249 gdb_assert (result < MAX_SYMBOL_IMPLS);
5250 symbol_impl[result].aclass = aclass;
5251 symbol_impl[result].ops_computed = ops;
5253 /* Sanity check OPS. */
5254 gdb_assert (ops != NULL);
5255 gdb_assert (ops->tracepoint_var_ref != NULL);
5256 gdb_assert (ops->describe_location != NULL);
5257 gdb_assert (ops->read_needs_frame != NULL);
5258 gdb_assert (ops->read_variable != NULL);
5263 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5264 OPS is the ops vector associated with this index. This returns the
5265 new index, which should be used as the aclass_index field for symbols
5269 register_symbol_block_impl (enum address_class aclass,
5270 const struct symbol_block_ops *ops)
5272 int result = next_aclass_value++;
5274 gdb_assert (aclass == LOC_BLOCK);
5275 gdb_assert (result < MAX_SYMBOL_IMPLS);
5276 symbol_impl[result].aclass = aclass;
5277 symbol_impl[result].ops_block = ops;
5279 /* Sanity check OPS. */
5280 gdb_assert (ops != NULL);
5281 gdb_assert (ops->find_frame_base_location != NULL);
5286 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5287 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5288 this index. This returns the new index, which should be used as
5289 the aclass_index field for symbols of this type. */
5292 register_symbol_register_impl (enum address_class aclass,
5293 const struct symbol_register_ops *ops)
5295 int result = next_aclass_value++;
5297 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5298 gdb_assert (result < MAX_SYMBOL_IMPLS);
5299 symbol_impl[result].aclass = aclass;
5300 symbol_impl[result].ops_register = ops;
5305 /* Initialize elements of 'symbol_impl' for the constants in enum
5309 initialize_ordinary_address_classes (void)
5313 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5314 symbol_impl[i].aclass = i;
5319 /* Initialize the symbol SYM. */
5322 initialize_symbol (struct symbol *sym)
5324 memset (sym, 0, sizeof (*sym));
5325 SYMBOL_SECTION (sym) = -1;
5328 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5332 allocate_symbol (struct objfile *objfile)
5334 struct symbol *result;
5336 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5337 SYMBOL_SECTION (result) = -1;
5342 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5345 struct template_symbol *
5346 allocate_template_symbol (struct objfile *objfile)
5348 struct template_symbol *result;
5350 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5351 SYMBOL_SECTION (&result->base) = -1;
5359 _initialize_symtab (void)
5361 initialize_ordinary_address_classes ();
5364 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5366 add_info ("variables", variables_info, _("\
5367 All global and static variable names, or those matching REGEXP."));
5369 add_com ("whereis", class_info, variables_info, _("\
5370 All global and static variable names, or those matching REGEXP."));
5372 add_info ("functions", functions_info,
5373 _("All function names, or those matching REGEXP."));
5375 /* FIXME: This command has at least the following problems:
5376 1. It prints builtin types (in a very strange and confusing fashion).
5377 2. It doesn't print right, e.g. with
5378 typedef struct foo *FOO
5379 type_print prints "FOO" when we want to make it (in this situation)
5380 print "struct foo *".
5381 I also think "ptype" or "whatis" is more likely to be useful (but if
5382 there is much disagreement "info types" can be fixed). */
5383 add_info ("types", types_info,
5384 _("All type names, or those matching REGEXP."));
5386 add_info ("sources", sources_info,
5387 _("Source files in the program."));
5389 add_com ("rbreak", class_breakpoint, rbreak_command,
5390 _("Set a breakpoint for all functions matching REGEXP."));
5394 add_com ("lf", class_info, sources_info,
5395 _("Source files in the program"));
5396 add_com ("lg", class_info, variables_info, _("\
5397 All global and static variable names, or those matching REGEXP."));
5400 add_setshow_enum_cmd ("multiple-symbols", no_class,
5401 multiple_symbols_modes, &multiple_symbols_mode,
5403 Set the debugger behavior when more than one symbol are possible matches\n\
5404 in an expression."), _("\
5405 Show how the debugger handles ambiguities in expressions."), _("\
5406 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5407 NULL, NULL, &setlist, &showlist);
5409 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5410 &basenames_may_differ, _("\
5411 Set whether a source file may have multiple base names."), _("\
5412 Show whether a source file may have multiple base names."), _("\
5413 (A \"base name\" is the name of a file with the directory part removed.\n\
5414 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5415 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5416 before comparing them. Canonicalization is an expensive operation,\n\
5417 but it allows the same file be known by more than one base name.\n\
5418 If not set (the default), all source files are assumed to have just\n\
5419 one base name, and gdb will do file name comparisons more efficiently."),
5421 &setlist, &showlist);
5423 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5424 _("Set debugging of symbol table creation."),
5425 _("Show debugging of symbol table creation."), _("\
5426 When enabled (non-zero), debugging messages are printed when building\n\
5427 symbol tables. A value of 1 (one) normally provides enough information.\n\
5428 A value greater than 1 provides more verbose information."),
5431 &setdebuglist, &showdebuglist);
5433 observer_attach_executable_changed (symtab_observer_executable_changed);